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ABSTRACT
Information diffusion prediction, which aims to infer the infected

behavior of individual users during information spread, is critical

for understanding the dynamics of information propagation and

users’ influence on online social media. To date, existing meth-

ods either focus on capturing limited contextual information from

a single cascade, overlooking the potentially complex dependen-

cies across different cascades, or they are committed to improving

model performance by using intricate technologies to extract ad-

ditional features as supplements to user representations, neglect-

ing the drift of model performance across different platforms. To

address these limitations, we propose a novel framework called

CARE (CAscade-REtrieved In-Context Learning) inspired by the

concept of in-context learning in LLMs. Specifically, CARE first

constructs a prompts pool derived from historical cascades, then

utilizes ranking-based search engine techniques to retrieve prompts

with similar patterns based on the query. Moreover, CARE also in-

troduces two augmentation strategies alongside social relationship

enhancement to enrich the input context. Finally, the transformed

query-cascade representation from a GPT-type architecture is pro-

jected to obtain the prediction. Experiments on real-world datasets

from various platforms show that CARE outperforms state-of-the-

art baselines in terms of effectiveness and robustness in information

diffusion prediction.

CCS CONCEPTS
• Information systems → Information systems applications.
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1 INTRODUCTION
Information diffusion prediction (IDP), also known as next acti-
vated user prediction, aims to predict the potential users who will

be infected based on the observed diffusion cascades and some

pertinent knowledge. Accurate predictions can help us understand

the dynamics of information spread and users’ influence, bene-

fiting various downstream applications, such as recommendation

systems [7, 10] and popularity prediction [5, 6, 15, 30, 31, 36]. In

recent years, with the advancement and successful application of

deep learning techniques in computer vision and natural language

processing (NLP), an increasing number of researchers have shifted

their focus towards developing deep learning-based methods for

IDP. For instance, initially, Topo-LSTM [27], SNIDSA [28], andDeep-

Diffuse [13] employ Recurrent Neural Networks (RNN [22])-based

methods to capture the sequential or topological patterns in histori-

cal information diffusion for making predictions. Recently, as Graph

Neural Networks (GNNs) [29] have ascended from a niche of repre-

sentation learning to one of its most coveted methods in various

domains, some researchers have begun integrating both RNNs and

GNNs to collectively model the comprehensive structural and tem-

poral patterns from information diffusion process [8, 19, 25, 34, 34].

Challenges. In summary, current efforts focus on capturing lim-

ited contextual information, such as structural and temporal pat-

terns within individual cascade, or improving user representations

through various embedding techniques (e.g., VAE, Hypergraph).

While these methods have considerably enhanced accuracy for

2472

https://doi.org/10.1145/3626772.3657909
https://doi.org/10.1145/3626772.3657909
https://doi.org/10.1145/3626772.3657909
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626772.3657909&domain=pdf&date_stamp=2024-07-11


SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ting Zhong, Jienan Zhang, Zhangtao Cheng, Fan Zhou & Xueqin Chen

IDP, several key challenges remain unaddressed: (C1) Present ap-
proaches usually overlook complex interdependencies among cas-

cades, and (C2) They do not account for performance variances

across different platforms, i.e., meaning that models optimized for

a particular social media platform often experience a significant de-

cline on datasets from other platforms, even the diffusion processes

are fundamentally similar.

To address these challenges, we propose a novel framework

called CARE (CAscade-REtrieved In-Context Learning), building

on the concept of in-context learning (ICL) [3] – a specificmethod of

prompt engineering and has been successfully extended to various

tasks beyond large language models (LLMs) [4, 14]. Specifically,

CARE first builds a cascade prompts pool derived from all historical

cascades in the dataset to capture cross-cascade dependencies. It

then uses a search technique to retrieve prompts similar to the query,

enabling the model to efficiently leverage relevant past experiences.

Moreover, CARE consists of two prompt augmentation strategies

and a social relations enhancement embedding module to enrich

context, thereby conditioning the model on informative examples

to enhance prediction. Finally, CARE utilizes the query-cascade

representations generated by a pre-trained GPT architecture [20]

for prediction, improving robustness across diverse datasets.

Contribution: Our main contributions are: (1) We propose a novel

framework that explores and demonstrates the potential of ICL in

modeling the diffusion process. Importantly, CARE does not require

the development of a complex model architecture to extract user

dependencies or to learn comprehensive representations. (2) We

design the dynamic cascade prompt, which differs from the com-

mon setting in NLP tasks. Besides, we are among the first to select

the most related prompts for effective modeling. (3) We present

additional prompt augmentation strategies and a social relations

enhancement embedding method that introduce noise into model

training and enrich user features. (4) Extensive experiments con-

ducted on two real-world cascade datasets collected from distinct

platforms show that our CARE outperforms existing state-of-the-art

baselines in terms of effectiveness and robustness.

2 PROBLEM AND METHODOLOGY
Our model architecture is depicted in Figure 1. We focus on learning

a model for solving IDP task by incorporating the embedding power

of the language foundation model - GPT-type architecture [20],

without requiring massive fine-tuning of the backbone. The general

definition of IDP is:

Problem Definition: Suppose in a datasetD, we have a collection

of historical cascades C = {𝐶1, · · · ,𝐶 | C | }, and the social graph G =

(V, E), which encompasses all users present in D. Given a query

cascade q = {𝑢𝑞
1
, · · · , 𝑢𝑞𝑚}, the task of IDP aims to learn a model

𝑀 to predict the next activated user 𝑢
𝑞

𝑚+1
for q based on C and G.

That is, 𝑢
𝑞

𝑚+1
= M(q, C; G;𝜃 ), where 𝜃 is the model parameters. In

the following section, we will reformulate IDP problem w.r.t. ICL,

and introduce the details of CARE.

2.1 In-Context Cascade Learning
A common way to format prompts for NLP tasks involves concate-

nating examples as input-output pairs (𝑥𝑖 , 𝑦𝑖 )𝑛𝑖=1
, where 𝑥𝑖 denotes

a question and 𝑦𝑖 the corresponding expected response to 𝑥𝑖 . IDP is
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V̂

Dot +
Mask+softmax

Figure 1: Overview of CARE.
somehow similar to sequential NLP tasks, i.e., each user in the

cascade can be analogized to a word in a sentence. Moreover, the

diffusion among users forms a dynamic system, where the behavior

of one user is influenced by the actions of their preceding user.

Consequently, in our work, we coin a new term – dynamic cascade

prompt as follows:

Definition 1. Dynamic cascade prompt (DCP) - In this setting, the
prompt is simply the sub-trajectory generated from a given historical
diffusion cascade 𝐶𝑖 , namely, p∗

𝑖
= (𝑢∗

1
, 𝑢∗

2
, · · · , 𝑢∗

𝑛−1
, 𝑢𝑛

∗), where
{𝑢𝑖 }𝑛−1

𝑖=1
are inputs (𝑥𝑖 ), and {𝑢 𝑗 }𝑛𝑗=2

are outputs (𝑦𝑖 ). Notably, the
symbol ∗ indicates that multiple prompts can be derived from each
historical cascade.

In CARE, we generate a set of dynamic cascade prompts from

the given historical cascades, denoted as P, and then the IDP can

be reformulated as: 𝑢
𝑞

𝑚+1
= M(q; P; G;𝜃 ).

2.2 Cascade-Retrieved Prompts Generation
Inspired by document retrieval [18], we design a retrieval-based

module to select 𝐾 most query-relevant cascade prompts from the

historical cascades-based prompts pool.

Prompts pool construction: Assuming we have |C| historical
cascades C on hand, we first slice each cascade 𝐶𝑖 into 𝑁𝑖 sub-

cascades of fixed length𝑊 using a sliding window. All sub-cascades

from each cascade are then pushed into a prompts pool P = {p𝑗 }𝑁P
𝑗=1

,

with a total size of 𝑁P =
∑ |C |
𝑖=1

𝑁𝑖 , and each p𝑗 = (𝑢 𝑗
1
, · · · , 𝑢 𝑗

𝑊
).

Query q slicing: Considering the length of the query cascade |q|
may exceed𝑊 , we employ a similar operation as used on historical

cascades for ease of retrieval, thereby splitting q into a list of sub-

queries, denoted as Q.

Prompts retrieval: Then we employ search engine techniques [18]

to retrieve the most related prompts for a given query q ∈ Q 1
from

P. Firstly, we employ a Boolean query operation [23] to filter out

candidate prompts Pcan = {p̂𝑐 }𝑁can
𝑐=1

from the pool that contains

at least one user in common with the query, where 𝑁can denotes

1
Notably, here q = (𝑢𝑞

1
, · · · ,𝑢𝑞

𝑊
) .
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the number of prompts in Pcan
. Subsequently, we utilize a ranking

function (e.g., BM25 [21]) to calculate the relevant score R for each

candidate p̂𝑐 w.r.t the query 𝑞, i.e.,

R(q, p̂𝑐 ) =
𝑊∑︁
𝑤=1

IDF(𝑢𝑞𝑤)
TF

(
𝑢
𝑞
𝑤 , p̂𝑐

)
· (𝑘1 + 1)

TF
(
𝑢
𝑞
𝑤 , p̂𝑐

)
+ 𝑘1

(1)

where 𝑘1 and 𝑏 are free parameters. TF(𝑢𝑞𝑤 , p̂𝑐 ) represents the term
frequency of user𝑢

𝑞
𝑤 in p̂𝑐 , specifically, it was calculated via Jaccard

similarity:

TF

(
𝑢
𝑞
𝑤 , p̂

𝑐
)
=

��𝑢𝑞𝑤 ∩ 𝑢𝑐𝑤
����𝑢𝑞𝑤 ∪ 𝑢𝑐𝑤
�� , 𝑢𝑐𝑤 ∈ p̂𝑐 , (2)

IDF can be regarded as a penalizing factor, which diminishes the

importance of common users relative to rare users, implies a match

with a rare user yields a stronger similarity signal compared to a

commonly seen user. And IDF term is defined as:

IDF(𝑢𝑞𝑤) = log

𝑁can − N(𝑢𝑞𝑤) + 0.5

N(𝑢𝑞𝑤) + 0.5
, (3)

where N(𝑢𝑞𝑤) represents a function used to statistic the number of

candidate prompts in which the user 𝑢
𝑞
𝑤 appears. After ranking the

candidate prompts using BM25, we then select the Top-𝐾 prompts

P𝐾 = {p𝑟1 , . . . , p𝑟𝐾 } as the final ICL inputs.

2.3 Cascade Prompt Augmentation
In CARE, we also design two augmentation strategies to introduce

noise into the prompts, aiming for effective model training. Specifi-

cally, these strategies are applied following the construction of the

prompt pool:

UserMasking: Inspired by “word dropout”, which is widely adopted
to avoid over-fitting in many NLP tasks [2, 9, 11]. In this work, for

each p = (𝑢1, · · · , 𝑢𝑤) ∈ P, we randomly mask ⌊𝛾 ∗W⌋ users with
a masking rate 𝛾 . Each masked element is replaced by a special

token “[mask]”, and the formed user masking augmented prompt

is denoted as p𝑚𝑎𝑠𝑘 = Amask (p).
User Reordering: Existing methods for IDP ground in an as-

sumption that adjacent users in cascades are sequentially depen-

dent [13, 28]. However, in reality, the order of users’ behaviors could

be flexible due to various unobservable external factors [1, 16]. To

reduce themodel’s dependency on the order of users and to enhance

its robustness against new interactions, we design a user reordering

method. Specifically, we alter the order of a continuous subsequence

of users in p with a length of ⌊𝛽 ∗W⌋ by randomly shuffling their

positions. Here, 𝛽 is the reordering rate. The user reordering aug-

mented prompt can be represented as: preorder = Areorder (p). And
the final augmented prompts pool are the collection of masked

prompts and reordered prompts, i.e., P = {Pmask,Preorder}.

2.4 Social Relations Enhancement
Similar to the settings in NLP, where the inputs of the transformer

backbone are word embeddings, we utilize user dynamic embedding

with social relations enhancement in this work to generate user

embeddings.

Dynamic user embedding: Suppose we have a trainable embed-

ding matrix E ∈ R𝑁×𝑑𝐸
, where 𝑁 is the total number of users in a

dataset, and 𝑑𝐸 is an adjustable dimension.

Social relations enhancement: Since the infected behavior among

users is highly influenced by their interrelationships. We then ex-

tract social relations from a static social network as a supplementary

to the user embedding. Specifically, we use a multi-layer Graph At-

tention Network (GAT [26]) equipped with multi-head attention to

encode the social network graph. And the obtained social relation

embeddings for users are U(𝑙+1)
𝑠 = 𝜎 (∑𝐾

𝑘=1
A𝑘W𝑘U(𝑙 )

𝑠 ) ∈ R𝑁×𝑑𝐸
.

Here,W𝑘
is a set of independent trainable weight matrices and 𝐾 is

the number of attention heads. A𝑘 denotes the attention matrix cal-

culated through self-attention mechanism (refer to [26]), and 𝜎 (·)
represents activation function. The initial input of GAT is U0

𝑠 = E.
Subsequently, we concatenate Ewith U to form the final user em-

bedding matrix U ∈ R𝑁×𝑑𝐸
. And U converts each user into its indi-

vidual embedding by looking up the user index u𝑖 = LookUp(𝑢𝑖 ,U).

2.5 Information Diffusion Prediction
After retrieving the prompts for all queries in Q, we obtain PQ

with 𝐾 × |Q| prompts. Next, for each user in PQ
and𝑄 , we convert

their index into embeddings by looking up the user embedding ma-

trix U. Subsequently, we concatenate these embedding-transformed

prompts and queries (VP+Q ∈ R | Q | (𝐾+1)×𝑑𝐸
), feeding them into

a frozen GPT-type backbone as illustrated in Figure 1. This yields

the output representation V̄P+Q ∈ R | Q | (𝐾+1)×𝑑𝐸
. For the final

prediction, we compress V̄P+Q
into V𝑐𝑝 with ( |Q|, 𝑑𝐸 ) shape by

sum-polling operation, and concatenate it with queries embedding

VQ
. Through a linear layer with softmax, we obtain the final repre-

sentation V̂ = softmax((V𝑐𝑝 ⊕VQ )W+b). And the probabilities for
all users in q are calculated by yq = softmax(V̂U⊤ +Mmask), where
Mmask is used to mask users who have already been activated. The

overall objective is to minimize the cross-entropy loss between

ground truths yq and predictions ŷq [8].

3 EXPERIMENTS
3.1 Experimental Settings
Datasets. We conduct experiments on two real-world datasets col-

lected from different platforms, i.e., Twitter [12], and Douban [35].

Detailed statistics are shown in Table.1.

Table 1: Statistics of the datasets.

Dataset #Users #Cascades #Train #Val #Test Avg.Length
Twitter 12,627 3,454 2,763 345 346 38.22

Douban 12,232 3,485 2,788 348 349 23.09

Evaluation Metrics. Similar to the previous work [33, 34], we

employ Hits score on top 𝑘 (Hits@𝑘) and Mean Average Precision on
top 𝑘 (MAP@𝑘) for model evaluation, 𝑘 = [10, 50, 100].

Baselines. We compare CARE with the following state-of-the-art

baslines: Topo-LSTM [27], NDM [32], Inf-VAE [24], FOREST [33],

DyHGCN [34], MS-HGAT [25], RotDiff [17], and DisenIDP [8].

Parameter Settings. Dataset splitting follows [8]. All baselines

follow the same settings in the original papers. The maximum

length of q is set to 200. Our CARE is implemented with PyTorch
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Table 2: Experimental results on three datasets (%) (Hits@K
scores for K = 10,50,100).

Dataset Twitter Douban
Hits@K @10 @50 @100 @10 @50 @100

Topo-LSTM 10.45 18.89 25.42 8.97 16.33 21.57

NDM 17.88 25.70 29.96 7.28 14.62 19.26

Inf-VAE 14.93 33.52 46.42 10.94 21.02 34.72

FOREST 25.24 37.57 46.39 18.42 28.54 31.63

DyHGCN 27.68 46.49 57.44 15.90 28.71 36.18

MS-HGAT 34.63 47.52 54.29 20.16 33.46 40.34

RotDiff 33.91 50.78 60.60 20.20 34.10 42.82

DisenIDP 34.96 51.14 59.54 19.96 35.16 42.94

CARE 38.50 53.67 63.05 24.30 36.38 43.26

Table 3: Experimental results on three datasets (%) (MAP@K
scores for K = 10,50,100).

Dataset Twitter Douban
MAP@K @10 @50 @100 @10 @50 @100

Topo-LSTM 9.51 13.68 14.68 6.67 7.63 7.88

NDM 12.24 12.50 12.66 3.39 3.72 3.79

Inf-VAE 19.83 20.68 21.82 7.32 7.98 8.03

FOREST 16.81 17.36 17.42 8.41 10.73 10.77

DyHGCN 16.37 17.22 17.25 8.48 9.06 9.16

MS-HGAT 18.81 19.52 19.92 10.24 10.87 10.98

RotDiff 21.88 22.64 22.78 10.36 11.06 11.18

DisenIDP 22.03 22.76 22.87 9.89 10.59 10.70

CARE 25.28 26.02 26.15 14.24 14.80 14.90

and chooses Huggingface GPT2
2
as the backbone. We adopt Adam

as the optimizer, with a learning rate of 0.005. The batch size is

32, and 𝑑𝐸 = 64. The masking and reordering rates are 0.2 and 0.4,

respectively. CARE employs 2 layers of single-head GAT.

3.2 Evaluation Results
Overall Performance. The overall results are shown in Table 2

and Table 3. We can observe that:

(O1) Our model CARE consistently outperforms all baselines

across all datasets, showcasing its effectiveness and robustness.

Specifically, with 𝑘 = 10, CARE achieves more than 10% improve-

ments in all metrics compared to the best baseline. Furthermore, a

comparison between RotDiff and DisenIDP reveals a phenomenon

of performance variation across different datasets.

(O2) Sequential models, i.e., Topo-LSTM and NDM, exhibit the

lowest performance due to their inability to account for the dynamic

shifts of user influence, as well as the structural patterns implied in

cascades.

(O3) The remaining GNN-based baselines outperform sequential

models, highlighting the benefit of IDP by using GNNs to extract

structural patterns and social relations from cascades and social

network, respectively. However, their performance significantly

falls short of our CARE, as these methods only focus on individ-

ual cascades and overlook the complex interdependencies among

different cascades.

Ablation Study.We conduct ablation studies to demonstrate the

effectiveness of CARE’s key components. The results reported in

Table 4 reveal that: (1) Without prompts (w/o Prompt), model perfor-

mance significantly declines, which implies that our prompt design

is useful and accurate. (2) Augmentation strategies (w/o Reorder-
ing & w/o Masking) impose noise to prompts indeed help improve

2
https://huggingface.co/docs/transformers/v4.15.0/model_doc/gpt2

Table 4: Ablation study on key components of CARE.

Model Twitter Douban
Hits@100 MAP@100 Hits@100 MAP@100

CARE All 63.05 26.15 43.26 14.90

Cascades

Prompt

w/o Reordering 61.10 24.59 42.73 12.08

w/o Masking 60.12 24.49 42.12 12.45

w/o Prompt 57.93 23.98 38.73 10.96

LSTM 54.96 21.56 38.58 10.81

Enhanced

User Embedding

w/o E 60.98 24.27 42.54 11.09

GCN 60.79 24.15 42.25 11.14

w/o G 59.15 24.29 41.50 10.99
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Figure 2: Sensitivity Analysis of CARE on two datasets. We
run each model five times and report the mean Hits@100
and MAP@100 respectively.

model performance. (3) Replacing the GPT backbone with a train-

able LSTM (LSTM) fails to enhance the quality of query cascade

representation. (4) Both dynamic embedding (w/o E) and social

relations (w/o G) are crucial for IDP. And (5) GAT is more efficient

than vanilla GCN (GCN ) in learning interrelations among users

because of the attention mechanism.

Sensitivity Analysis. (1) Sliding window size𝑊 for generating the
prompt. Figure 2(a) illustrates the model’s performance across vari-

ous sliding window sizes (choose from {1, 3, 5, 7, 9}). We can see the

optimal size for𝑊 appears to be 5. CARE’s performance initially

improves with increasing sliding window size and subsequently de-

creases when𝑊 becomes larger. (2) The number of retrieved cascade
prompts – 𝐾 . Figure 2(b) verifies that using a retrieval operation

to select the most relevant prompts significantly enhances model

performance, with the best outcomes observed when 𝐾 increases

to 5. However, more prompts (𝐾 > 5) result in a degradation of per-

formance. We speculate that this is due to the superfluous prompts

that induce noise to the model.

4 CONCLUSION
In this paper, we presented a novel in-context learning-based frame-

work – CARE for information diffusion prediction. Specifically,

CARE leverages augmented cascade-retrieved prompts alongside a

frozen GPT backbone, enhanced by the trainable social relations

embedding module and additional linear layers, to achieve accu-

rate predictions. Extensive experimental results on two real-world

datasets demonstrate the effectiveness and robustness of CARE.
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