
Multi-class Trajectory Prediction in Ur-
ban Traffic using the View-of-Delft
Dataset

Bruno K.W. Martens

M
as

te
ro

fS
cie

nc
eT

he
sis

Multi-class Trajectory Prediction in Urban
Tra�c using the View-of-Delft Dataset

Master Thesis

For the degree of Master of Science in Robotics at Delft University of

Technology

Bruno K.W. Martens

4389956

Thesis committee: Prof. Dr. D.M. Gavrila TU Delft, supervisor, chair

Ir. H.J. Boekema TU Delft, supervisor, member

Dr. J.F.P. Kooij TU Delft, external member

May ��, ����

To be defended publicly on 01-06-2023.

Copyright ©
All rights reserved.

1

Multi-class Trajectory Prediction in Urban Traffic
using the View-of-Delft Dataset

Bruno K.W. Martens1

Abstract—Critical to the safe application of autonomous
vehicles is the ability to accurately predict the future motion of
agents surrounding the vehicle. This is especially important - and
challenging - in urban traffic, where vehicles share the road with
Vulnerable Road Users (VRUs) such as pedestrians and cyclists.
However, the majority of the existing on-board prediction
datasets focus on predicting future trajectories of vehicles.
We therefore present the View-of-Delft Prediction dataset, an
extension of the recently-released urban View-of-Delft (VoD)
dataset. The proposed dataset contains a large proportion of
VRUs and has a good class balance, consisting of 844 prediction
scenarios in the city of Delft, with 228 prediction instances for
vehicles, 159 for cyclists, and 444 for pedestrians in dense urban
traffic. Since state-of-the-art trajectory prediction approaches
are primarily developed on car-dominated traffic with little
interaction with VRUs, we analyse if the same methodology is
suitable for mixed-traffic urban environments with VRUs and
vehicles in close proximity. As our baseline for this analysis, we
select the graph-based PGP model, for which we propose the
addition of encoding motion of surrounding cyclists separately
to facilitate its application in dense urban traffic. Since PGP
relies on the lane graph topology, we provide novel rich map
annotations for the VoD dataset, including lane polylines. Our
analysis shows that there is a significant domain gap between the
vehicle-dominated nuScenes and VRU-dominated View-of-Delft
Prediction datasets, as training only on nuScenes results in a
107.79% higher minADE10 on the VoD Prediction test set than
training the model on VoD Prediction. Furthermore, we modify
the model by adding target agent class information, to make
it suited for multi-class trajectory prediction. Our analysis
shows that this yields a significant performance improvement
of 13.92% in minADE10 for a six-second prediction horizon.
The View-of-Delft Prediction dataset will be publicly released,
enabling novel research on urban mixed-traffic trajectory
prediction.

Index Terms—Vectorized Representations, Trajectory Predic-
tion, Graph Neural Networks, Autonomous Driving

I. INTRODUCTION

Forecasting trajectories of nearby traffic agents is key to
the safe application of autonomous vehicles. In particular,
reducing the number of accidents involving Vulnerable Road
Users (VRUs) such as pedestrians and cyclists could lead to
fewer road deaths, as these agents make up more than half of
all traffic fatalities [1].

However, forecasting the motion of VRUs in mixed traffic
is especially challenging due to their stochastic and multi-
modal behaviour and the unique dynamics and traffic laws
for each class of agent. This is of specific concern in urban
settings, where traffic is dense, there are many VRUs, and

1Intelligent Vehicles Group, TU Delft, The Netherlands.

Fig. 1: Camera view and prediction scenario in the VoD
Prediction dataset. The vectorised map elements are visualised
in the bottom image. The target agent is shown in cyan,
pedestrians are shown in green, and cyclists in red. The ground
truth is shown in orange and predictions in blue.

traffic infrastructure is shared between agent classes, leading
to complex interactions between agents.

Trajectory prediction performance for vehicles has improved
significantly in recent years [2]–[5] as approaches increasingly
rely on modelling the combination of semantic cues present
in traffic scenarios. These cues range from map information
to agent dynamics to interactions between agents. [6]. State-
of-the-art methods for this task are deep-learning-based ap-
proaches that use an encoder-decoder architecture to encode
the variety of contextual cues present in a scenario. Generally,
the encoder transforms the past trajectory of agents, their
interactions, and the local map information into a feature rep-
resentation of the scene. The decoder predicts possible future
trajectories for the target agent from such representations.

Current state-of-the-art models use ‘vectorised’ inputs to
encode salient information for the prediction task [7]–[9].
This type of input efficiently represents road elements from

2

vectorised map data and motion states of tracked agents
as vectors, which avoids issues associated with rasterised
representations of the environment, e.g. lossy rendering and
computational inefficiency [7], [9]. Vectorised semantic map
information has been used with great success to learn the
influence of the static environment on a vehicle’s trajectory.
This approach not only improves scene compliance but also
the accuracy of predictions for vehicles [8]–[10].

Despite these encouraging developments, predicting the
trajectories of VRUs remains challenging and most existing
datasets primarily focus on vehicle prediction [11]. Besides
that, these datasets are largely recorded in suburban or regional
locations. While dense inner-city traffic is rich in interactions
and tends to have a higher number of VRUs, resulting in more
challenging and safety-critical scenarios than many current
datasets offer, and thus poses additional challenges such as
partial occlusion and complex interactions between agents.

We therefore present the View-of-Delft Prediction dataset,
an urban prediction dataset with a good class balance and
a high proportion of VRUs such as pedestrians and cyclists
in addition to vehicles, to enable research on multi-class
trajectory prediction in this challenging setting. This dataset is
an extension of the View-of-Delft (VoD) dataset [12], and adds
semantic map data which state-of-the-art trajectory prediction
methods rely on as a prior for accurate trajectory prediction.
An example camera image from the VoD dataset and the
corresponding prediction scenario are shown in Figure 1. To
indicate the relevance of our proposed dataset, we evaluate
whether a domain shift is present between the widely-used
nuScenes [13] dataset and VoD prediction, which was recorded
in dense urban traffic. For this study, we use Prediction via
Graph-based Policy (PGP) [8], a graph-based trajectory predic-
tion approach. We add information of surrounding cyclists as
a distinct class to the model, to make it suited for VRU-dense
environments. Further, we investigate if the current trajectory
prediction methodology for vehicles is also well suited for
other agent classes in these VRU-dominated environments.
To this extent, we apply PGP on our novel View-of-Delft
Prediction dataset. Finally, we propose the addition of target
agent class information to the PGP architecture, leading to
increased prediction performance.

II. RELATED WORK

A. Trajectory Prediction
A considerable amount of literature exists on trajectory

prediction of traffic agents in the context of autonomous
driving; see [2]–[5] for surveys on this topic. Leveraged
methodologies range from physics-based to planning-based to
pattern-based and increasingly rely on contextual cues such as
agent information, social interaction and static environmental
cues [3]. Physics-based approaches rely on dynamical models
and are most effective for short-term prediction horizons as
they struggle with capturing the increased complexity of longer
prediction horizons or complex interactions. Planning-based
approaches tend to rely on the goal of the agent, which is
often latent at prediction time in the context of autonomous
driving. Nowadays, the majority of work leverages pattern-
based methods, aided by the rapid developments in deep

learning. Pattern-based methods can more easily account for
a wide variety of environmental cues and have an increased
ability to handle the latent intent of agents, making them suited
for prediction in complex environments with longer prediction
horizons [3]. However, the majority of current work focuses on
predicting the future trajectory for a single class of road user,
e.g. cars [8], [14], [15], cyclists [16], or pedestrians [17]–[19].
Few approaches are designed to forecast the future trajectories
of multiple classes of agents [14], [20], [21].

Advancements in deep learning led to the popularity of
pattern-based encoder-decoder architectures to encode and
account for a variety of environmental cues. Initially, rasterized
representations [22]–[25] were a popular choice for encoding
contextual cues. In recent years, vectorised representations
[7], [8], [26], [27] have gained popularity as a means to
encode scene information, as they do not suffer from the lossy
rendering, manual tuning and high computational requirements
inherent to rasterised representations [7]. Prediction via Graph-
based Policy (PGP) [8] effectively leverages a vectorized rep-
resentation to sample feasible trajectories for vehicles over the
lane graph. This is an advantage over popular goal-conditioned
prediction methods [14], [15], [28], [29], which only take the
feasibility of the selected goal location into account, not of
the possible routes to a goal [10]. Additionally, PGP uses
Graph Neural Networks (GNNs), which are a natural choice
for modelling the interactions between traffic agents and the
road topology with this representation and have been shown
to improve prediction performance [8], [26], [30].

B. Motion Prediction Datasets

Followed by the recent interest in autonomous driving and
related tasks, numerous trajectory prediction datasets have
been released in the past few years [11], [13], [31]–[33],
driving progress in trajectory prediction. We limit our scope
to datasets that were recorded from a moving vehicle - the so-
called ‘on-board’ setting - as this setting is the most relevant
to autonomous driving systems. For a dataset to be useful for
trajectory prediction in mixed traffic, we argue it should meet
the following requirements: 1) contain prediction instances of
multiple agent classes, 2) have a high density of interactions
between different agent classes, 3) contain accurate vectorised
map annotations, and 4) provide sensor data to enable the use
of subtle context cues. In Table I we show the compliance of
commonly-used datasets with these requirements.

Many of the current datasets that are suitable for multi-
class trajectory prediction either have a class imbalance, with
vehicles making up the majority (prediction) class or are
comprised of highly structured traffic scenarios in suburban or
regional locations and thus have limited interactions between
agent classes. These datasets are primarily recorded in North
America, which is rich in multi-lane traffic and where traffic
possesses a limited amount of cases where road elements
are shared between agents, which leads to fewer interactions
between different agent classes. Lyft level 5 [33] specifically is
a large dataset. However, it is recorded in a small geographical
domain (less than six kilometres in road length), with record-
ing vehicles driving the same region multiple times.

3

TABLE I: Overview of motion prediction datasets, with their released sensor information, map information, size of the dataset,
number of agents, number of classes for prediction, and recording locations. † We only consider high-quality map annotations,
i.e. human-annotated and vectorised. ⇤ All agents reported because a breakdown of target agents is not officially reported. N.
Am. = North America.

Dataset Location
Information Size Agents for Prediction

Camera LiDAR Radar Sem.
Map† Scenes Duration (s)

(hist. - fut.)
Vehicles
(# (%))

Cyclists
(# (%))

Pedestrians
(# (%))

Pred.
Classes

Lyft Level 5 [33] N. Am. ⇤ ⇤ ⇤ ⇤ 170k 0.5 - 5 49M⇤ (92) 77k⇤ (6) 605k⇤ (2) 3
WOMD [31] N. Am. ⇤ ⇤ ⇤ ⇤X 104k 1 - 8 60k⇤ (72) 620⇤ (0) 23k⇤ (28) 3
Argoverse 2 [32] N. Am. ⇤ ⇤ ⇤ ⇤X 250k 5 - 6 >10k (>84) >1000 (>8) >1000 (>8) 5
NuScenes [13] N. Am., Asia ⇤X ⇤X ⇤ ⇤X 1000 2 - 6 16k (100) 0 (0) 0 (0) 1
Euro-PVI [11] Europe ⇤X ⇤X ⇤ ⇤ 1077 0.5 - 3 1077 (12) 1581 (18) 6177 (70) 3
View-of-Delft Europe ⇤X ⇤X ⇤X ⇤X 844 1 - 2 228 (28) 159 (19) 444 (53) 3

Accurate and detailed map annotations have become crucial
due to the increasing reliance of prediction models on map
information [32]. Although many recent datasets provide some
form of map annotation, not all of these annotations are of
equal quality. Lyft Level 5 [33] provides the location of lane
boundaries in a non-vector format. Euro-PVI [11] contains
only segmented semantic maps, adopted from OpenStreetMap
1. We argue that the accuracy of these segmented maps is too
limited for autonomous driving tasks, as supported by evidence
in Appendix A and [34].

Sharing additional information, besides lane information,
such as regions where pedestrians and cyclists can manoeuvre,
allows for the development of more universal prediction meth-
ods. Only nuScenes [13] provides this information, however,
they just provide prediction instances of vehicles in their test
set, making the dataset unsuitable for multi-class trajectory
prediction.

Lastly, sensor data can be used to develop more effective
prediction frameworks, as it provides additional information
not available from agent tracks. However, most large-scale
trajectory datasets do not provide sensor information such as
camera images, LiDAR pointclouds, or radar data.

The only dataset that has a significant percentage of VRUs
and consists of dense urban traffic is Euro-PVI [11], which
was recorded in Europe. However, we note that Euro-PVI has
limitations in the sense that both their map annotations and
agent tracks lack sufficient accuracy, as shown in Appendix
A. Furthermore, Euro-PVI [11] only contains interactions
between the recording vehicle and VRUs, as surrounding
vehicle tracks are not provided, which limits the ability to
study the interaction between vehicles.

C. Contributions
Our contributions are threefold:
1) We release the naturalistic View-of-Delft Prediction

dataset, an extension of the urban View-of-Delft dataset
[12]. This dataset has a good class balance and contains
a large proportion of VRUs such as pedestrians and
cyclists and dense interactions between agent classes. It
additionally has high-quality 3D road user annotations,
labelled vectorised semantic map elements such as lanes,

1https://www.openstreetmap.org/

crosswalks, intersections and off-road areas, plus sensor
data from camera, LiDAR, and radar. The dataset is ac-
companied by a software kit to enable motion prediction
for pedestrians, cyclists, and vehicles.

2) To study the relevance of this dataset, we study the do-
main shift between the vehicle-dominated nuScenes and
urban View-of-Delft Prediction datasets. We select the
’vector-based’ PGP [8] model for our analysis. We find
that there is a significant domain gap between models
trained on the nuScenes and View-of-Delft Prediction
datasets, as training the model on nuScenes results in a
107.79% higher minADE10 on the VoD Prediction test
set compared to training the model on VoD Prediction.

3) Finally, we investigate whether vehicle-based trajectory
prediction approaches are suitable for mixed-traffic ur-
ban settings. We modify the PGP model, by encoding the
motion of surrounding cyclists separately, to make it ap-
plicable to prediction in urban settings. Additionally, we
propose a class-aware version of the model: PGP-CA,
by providing agent class information to the trajectory
decoder such that it accounts for class-specific dynam-
ics. PGP-CA outperforms PGP for every single agent
class, leading to an overall improvement of 13.92% in
minADE10 for a six-second prediction horizon on our
dataset.

III. DATASET

In this section, we present the View-of-Delft Prediction
dataset, an extension of the View-of-Delft (VoD) dataset [12]
for trajectory prediction in urban environments. The VoD Pre-
diction dataset contains dense interactions between all agent
classes. Figure 2 shows the observed agent tracks per agent
class, which shows the proximity of surrounding agents in our
dataset. Contrary to Euro-PVI [11], the VoD Prediction dataset
also provides track information of surrounding vehicles.

The VoD dataset comprises camera, radar, LiDAR, and
GPS/IMU information. A summary of the dataset and compar-
ison with major trajectory prediction datasets can be found in
Table I. For more details on the sensor setup, we refer readers
to the VoD paper [12]. Here, we outline the specific additions
that allow the dataset to be used for trajectory prediction for
vehicles and VRUs.

4

(a) Vehicles (b) Cyclists (c) Pedestrians

Fig. 2: Tracks of surrounding agents observed in an on-board setting in the VoD dataset. The blue rectangle depicts the
recording vehicle.

A. Vector Map Information

As current trajectory prediction methods rely on semantic
map data, we provide accurate annotations of lanes, inter-
sections, crosswalks and off-road areas (pedestrian domain)
with extensive labels for each road element. This means that
our dataset contains information that can aid the prediction
performance for the most common agent classes: vehicles,
pedestrians, and cyclists. The annotations are created by hu-
man annotators from georeferenced aerial images, as further
outlined in Appendix B. We label every road element with a
unique element identifier, its road type and which road users
are allowed to use the road element. The road element-specific
labels are summarized in Table II.

Lanes are annotated as polylines demarking the left and
right boundary of the driving lane, from which the lane
centreline is interpolated. Additionally, we provide the fol-
lowing labels: a lane identifier to match the left and right
boundary of the lane, the direction of the lane (one-way or
bidirectional), whether the lane has any connections in the
form of predecessor or successor lanes and the type of road
boundary (i.e. solid/dashed marking). This helps to determine
feasible lane switch possibilities.

Intersections are annotated as a polygon that encloses the
area of an intersection. As lane boundaries are often not clearly
visible at intersections, we use the predecessor and successor
labels of adjacent lanes to determine viable connections and
interpolate a natural connection line between the two-lane
centrelines within the intersection polygon.

Crosswalks are polygons that indicate appointed pedestrian
crossing locations.

Off-road areas indicate the pedestrian domain, e.g. side-
walks or city squares. These polygons are included to aid in
the prediction of pedestrian future motion.

To the best of our knowledge, we are the first to provide a
label for which type of agents are allowed to traverse each
instance of road elements. This is relevant in urban areas,
where e.g. cyclists might be allowed on some roads but not
on others, and may aid further research into urban multi-class
trajectory prediction.

TABLE II: Summary of labels of vectorized map information
released with the VoD Prediction dataset.

Lane Crosswalk Off-Road Area Intersection

element id ⇤X ⇤X ⇤X ⇤X
road type ⇤X ⇤X ⇤X ⇤X
allowed agents ⇤X ⇤X ⇤X ⇤X
boundary right ⇤X ⇤ ⇤ ⇤
boundary left ⇤X ⇤ ⇤ ⇤
boundary type ⇤X ⇤ ⇤ ⇤
predecessors ⇤X ⇤ ⇤ ⇤
successors ⇤X ⇤ ⇤ ⇤
bidirectional lane ⇤X ⇤ ⇤ ⇤
lane id ⇤X ⇤ ⇤ ⇤

B. Scene selection

The View-of-Delft dataset is recorded with a preference for
locations both rich in the number of VRUs and interactions
with VRUs. We select all recorded frames from the original
VoD dataset to be applicable to the VoD prediction dataset.
However, we discard the following scenes:

1) Highway & suburban traffic: We discard recorded
frames in high-speed traffic, such as on the high-way and
regional roads, as they are sparse in the amount of (interactions
with) VRUs. These sequences are thus not within our research
scope.

2) Frames affected by noisy ego-localisation: We filter out
frames that suffer from localisation inaccuracies due to noisy
ego-localisation at the start of recording, by discarding frames
where the traversed distance requires the recording vehicle to
move with a speed higher than 36.1 ms�1, the maximum legal
speed in the Netherlands.

For each scene, we select target agents based on their
presence in every recorded frame, besides the recording ve-
hicle itself. This means that we have trajectory information
over the complete motion history and prediction horizon for
each prediction instance, contrary to e.g. nuScenes [13]. We
do take agents that are partially observed into account as
surrounding agents. Furthermore, we filter target agents based
on the following:

5

3) Parked Cars: As many parked cars along the canals in
the inner city of Delft are naturally present in the dataset, we
filter out parked cars as target agents by dismissing cars that
have an average speed lower than 0.28 ms�1.

4) Infeasible vehicle trajectories: Additionally, we discard
vehicles that move more than 36.1 ms�1 during their motion
history or ground truth trajectory or have infeasible deviations
in yaw (� ⇡/2) between consecutive frames.

By releasing a modular software kit, as further explained in
Appendix C, we allow practitioners to tailor the prediction
horizon to their research scope. In this work, we chose
to experiment with a two-second and six-second prediction
horizon. We use a six-second horizon to be able to compare
the prediction performance of PGP between the nuScenes
dataset and VoD Prediction dataset. The two-second prediction
horizon was selected to evaluate whether trajectory prediction
models can cope with complex urban settings. We adhere
to the original VoD [12] dataset splits, generating scenes
using these splits results in a 53%/12%/34% train/val/test split
for a two-second prediction horizon. If a scene has multiple
prediction instances, we assign them to the same split.

IV. METHODOLOGY

We analyse the performance of trajectory prediction ap-
proaches using vectorised representations that are designed
using a vehicle-dominated dataset on the VRU-dominated
View-of-Delft Prediction dataset. Therefore, we select PGP
[8] as the baseline for this analysis, as this is a prediction
method that uses vectorised representations and performs well
on the vehicle-heavy nuScenes dataset [13]. Since this method
was originally developed for the prediction of vehicles only,
we modify the model to make it suitable for VRU prediction,
and investigate its ability to predict the trajectories of vehicles
and VRUs in mixed traffic situations. We discuss here first
the regular PGP architecture, how we adjust that to make it
suited for trajectory prediction in VRU-dominated dense urban
traffic, and then present our PGP-CA model that improves
the ability of the model to handle multi-class prediction. The
architectures are illustrated in Figure 3.

a) Regular PGP (baseline): PGP [8] consists of three
modules: a graph encoder, a policy header and a trajectory
decoder. The graph encoder encodes the motion of both the
target agent and surrounding agents using Gated Recurrent
Units (GRUs) [35]. Social interactions are encoded by using
scaled dot product attention on the surrounding agents and
their nearby nodes and are represented as node features on
the constructed graph. The final node encodings result from
using a Graph Neural Network (GNN) consisting of graph
attention layers [36] to retrieve the relationships between the
nodes on the graph.

Next, the policy header uses the output of the GNN together
with the motion encoding of the target agent to output likely
and feasible traversals as transitions between nodes in the lane
graph, which are then fed to the trajectory decoder to predict
smooth motion dynamics in the form of trajectories. The
trajectory decoder aggregates the motion encoding of the target
agent with policy information for each unique policy. The

policy information serves, together with the encoded motion of
the target agent and a latent variable, as input to a Multi-Layer
Perceptron (MLP) which outputs the future trajectories.

We add a separate motion encoder for surrounding cyclists
as a general modification to PGP to make it more suitable for
trajectory prediction in dense city environments, which tend
to be rich in the number of VRUs. The vanilla PGP model
only accounts for surrounding cyclists by treating them as
vehicles. However, cyclists influence the behaviour of other
agent classes with their unique dynamics in urban traffic.
Therefore, we add a separate GRU encoder for cyclists to the
model to capture this relationship.

b) Class-aware PGP (PGP-CA): We propose a class-
aware variant of the PGP model to make it more suitable for
multi-class trajectory prediction, by conditioning the trajectory
decoder on the target agent class. We add the target agent
class as input to the trajectory decoder to allow the model to
weigh the importance of the motion encodings and sampled
lane graph traversals differently for each class. We believe that
this feature will help the model to more effectively capture the
behaviour of each agent class. More specifically, we believe
that the predictions for vehicles are more bound to the lane
graph, whereas pedestrians have more freedom to move as the
model learns to leverage the motion history instead of the lane
graph as most important prior to their future trajectory.

V. EXPERIMENTS

A. Experimental Setup

1) Datasets: In our experiments, we use both the View-
of-Delft Prediction dataset and the nuScenes [13] dataset.
We evaluate our models on two versions of the View-of-
Delft Prediction dataset, with a two-second and six-second
prediction horizon. To compare nuScenes to our dataset, we
follow their setup and use a two-second observation window
and a six-second prediction horizon. As this version of our
dataset contains few prediction instances, we investigate pre-
training PGP on nuScenes and fine-tuning the models on the
View-of-Delft Prediction dataset. We also experiment with a
one-second observation window and a two-second prediction
horizon for short-term trajectory prediction, as dense urban
traffic is challenging due to partial occlusion, uncertainty in
the behaviour of VRUs, and dense interactions between agents
and road elements that are shared by different agent classes.
The number of target agents is shown in Table III for both
versions of our dataset.

TABLE III: Breakdown of View-of-Delft target agents.

Agent Class
of Targets

T = 2 s T = 6 s

Vehicles 228 120
Cyclists 159 62
Pedestrians 444 120

Total 844 306

2) Metrics: We adopt the widely used minimum Average
Displacement Error (minADE/mADE) (#) and Miss Rate

6

Fig. 3: Architecture of the PGP [8] model with our proposed modifications for View-of-Delft Prediction. Vehicles are depicted
in dark blue, cyclists in red, pedestrians in green, and the target agent in cyan. We modify the model to make it suitable for
multi-class prediction in urban traffic by adding a separate motion encoder for cyclists and propose an architectural change by
providing class labels to the trajectory decoder. The model with the addition of target agent class information (outlined in red)
is referred to as PGP-CA.

(MR) (#) metrics for K = {5, 10} predictions. The mi-
nADE is the lowest average Euclidean distance between the
ground truth trajectory y and set of K predicted trajectories
{ŷ(1)

, ..., ŷ(K)} over the prediction horizon T :

minADEK = min
i2{1,...,K}

1

T

TX

t=1

���yt � ŷ(i)t

���
2
. (1)

The MR is defined as the fraction of scenes where the final
location ŷT does not lie within a threshold distance r of the
ground truth yT for any of the K predictions:

MRK =
1

N

NX

n=1

H

✓
min

i2{1,...,K}

���yT,n � ŷ(i)T,n

���
2
� r

◆
, (2)

where H(·) is the Heaviside step function. We choose thresh-
olds r of 1.5 m and 0.5 m for prediction horizons of 6 s and
2 s, respectively, to account for the distance agents can travel
over these horizons.

3) Baselines: In addition to the baseline PGP model, we
adopt a constant velocity model (CVM) [37] to assess the
necessity for non-linear trajectory prediction in our dataset.
A constant velocity model extrapolates the final observed
velocity of an agent from the final observed pose over the
entire prediction horizon. We select PGP [8] as the state-
of-the-art model in our baseline suite. As aforementioned in
section IV, this model is modified to encode the motion of

surrounding cyclists separately next to vehicles and pedestrians
and capture their unique dynamics.

B. Implementation Details
For training models on the VoD Prediction dataset, we use

a batch size of 128. We train each model for 1000 epochs,
with a constant learning rate of 0.001. No data augmentation
is used for training on the VoD Prediction dataset. For pre-
training on nuScenes [13], we follow the setup as described
in [8]. For each experiment, we perform five evaluation runs
with different seeds (1 till 5).

C. Domain Shift
We first evaluate the PGP model on the View-of-Delft

Prediction dataset for different training setups, i.e. nuScenes,
VoD Prediction or both, to gain insight into the domain shift
between the datasets and the level of difficulty of our proposed
dataset. Our hypothesis is that urban traffic is more complex
given the high amount of interactions between agents and lack
of segregated road elements per agent class, and thus only
models that are trained on our dataset are able to predict these
scenarios accurately.

In Table IV we observe that training the model just on
nuScenes [13] results in greater errors than training on VoD
Prediction only, e.g. 156.04% higher minADE5 and 107.79%

7

TABLE IV: Prediction performance of PGP [8] model on the
View-of-Delft Prediction test set for a prediction horizon of
T = 6 s and various training configurations.

Training Datasets K=5 K=10

NuScenes [13] VoD mADE # MR # mADE # MR #

⇤X ⇤ 2.33 0.74 1.69 0.62
⇤ ⇤X 0.91 0.43 0.77 0.27
⇤X ⇤X 0.97 0.43 0.73 0.29

higher minADE10 when evaluated on VoD prediction, while
evaluation with this training setup on nuScenes [13] shows
results that are in line with [8]. This indicates that there is a
domain shift between the two datasets.

Furthermore, pre-training on nuScenes [13] and fine-tuning
on View-of-Delft Prediction results in an overall increase of
6.59% in minADE5 and decrease of 5.19% in minADE10 com-
pared to training on View-of-Delft Prediction only, demon-
strating that the two datasets are not fully complementary.
This is expected as nuScenes [13] only contains prediction
instances for vehicles and has very different traffic dynamics.
To gain a better understanding of the effect of pre-training on
prediction performance, we present the metrics per agent class
in Table V and Table VI.

D. Quantitative Results
In Table V we present the results of different prediction

methods for T = 6 s and T = 2 s prediction horizons.
Detailed numerical results including standard deviation are
listed in Appendix D. We evaluate the models for a six-
second horizon to allow comparison between the nuScenes
and VoD Prediction datasets. The poor performance of the
constant velocity model on the metrics for both horizons shows
that the dynamics in our dataset are highly non-linear, and we
thus require additional information to effectively predict dense
urban traffic situations.

For T = 6 s, both the PGP baseline and PGP-CA model
significantly outperform the CVM, showing the ability of the
model to learn non-linear dynamics. Comparing the PGP base-
line with the PGP-CA model, we denote an overall decrease of
8.49% and 13.92% in minADE5 and minADE10 respectively.
Moreover, PGP-CA increases the prediction performance for
K = 10 for each agent class, both measured in minADE10 and
MR10. This demonstrates the importance of class information
for mixed-traffic prediction settings for longer prediction hori-
zons and proves the effectiveness of our proposed change.

For the models that are pre-trained on nuScenes [13] and
fine-tuned on VoD Prediction, we observe that PGP-CA out-
performs PGP for predicting future trajectories for VRUs. This
increase in prediction performance for VRUs comes at the cost
of decreased prediction performance for vehicles. Overall, the
PGP-CA outperforms the PGP model, with a 7.95% decrease
in minADE5.

However, for a shorter horizon of T = 2 s, the PGP-CA
model shows a less clear difference in results, performing
worse than the PGP model for K = 10 predictions, while
performance for K = 5 predictions is slightly better.

VI. DISCUSSION

To gain insight in the cause of the numerical domain
shift between nuScenes and VoD Prediction and thus further
stress the need for the VoD Prediction dataset, we study
qualitative results of PGP trained and evaluated on nuScenes
[13] and VoD Prediction, as shown in Figure 5 and 6 for
prediction instances of nuScenes and Figure 7a, 8a and 9a, for
prediction instances of VoD Prediction. Overall, we note that
PGP excels in (multi-lane) straight prediction scenarios, where
there are relatively few interactions with other agents, which
is a frequently recurring scenario in the nuScenes dataset.
Furthermore, we observe good predictions for turning cases,
and good multimodality in general, observed on both datasets.
Prediction instances with dense interactions between vehicles
and VRUs are more sparse in the nuScenes dataset. In Figure 6
we observe that PGP trained and evaluated on nuScenes
has difficulty accurately predicting pedestrian crossings, even
at dedicated pedestrian crossing areas, which stresses the
importance of evaluating these trajectory prediction methods
in a dense urban setting. As shown in Figure 7a, we observe
that the same model trained and evaluated on our dataset has
an increased ability to account for interactions of vehicles and
VRUs.

In addition, we observe that PGP pre-trained on nuScenes
[13] and fine-tuned on VoD Prediction does not perform
significantly better than PGP solely trained on VoD Prediction
when evaluated on VoD Prediction. Qualitative analysis shows
that the datasets are somewhat complementary, in the sense
that models trained on nuScenes can learn to predict for cases
where the target agents are in no proximity to other agents
and are following the lane graph in VoD Prediction. However,
trajectory prediction in the urban domain, with VRUs as
additional target agents, comes with its own set of challenges.
In urban traffic, there is more stochastic behaviour due to the
high amount of VRUs, making the followed trajectories less
bound to the lane graph, especially for prediction instances
of VRUs. In Figure 14, we observe that the pre-trained
models rely heavily on the lane graph, as learned during
the pre-training phase. This is a relevant prior for the future
trajectory of vehicles, but to a lesser extent for cyclists and
pedestrians. The pre-trained models therefore overfit towards
following the lane graph, leading to a lower policy loss, but no
significant performance increase in terms of minimum average
displacement error or miss rate. This is due to a lack of
performance in cases where the agent is not following the
lane graph. For the transfer learning setting with a six-second
prediction horizon, the PGP-FT-CA model improves prediction
performance for VRUs, as the model relies slightly less on the
lane graph for all agent classes. Unfortunately, this leads to
decreased prediction performance for vehicles in this setting,
as the PGP-FT model is already able to predict very well for
vehicles, due to the extensive pre-training for ’lane-bound’
vehicles on nuScenes [13].

Next, we study the applicability of a vehicle-based trajectory
prediction model (PGP [8]) for multi-class prediction in urban
environments and study the performance of our proposed
method: PGP-CA. Quantitively, both the PGP model and PGP-

8

TABLE V: Performance comparison of models trained and evaluated on the VoD dataset with T = 6 s and T = 2 s prediction
horizons. The best performance on each metric is shown in bold. CA = Class-Aware, mADE = minimum Average Displacement
Error, MR = Miss Rate.

Method
Vehicle Cyclist Pedestrian

K=5 K=10 K=5 K=10 K=5 K=10

mADE # MR # mADE # MR # mADE # MR # mADE # MR # mADE # MR # mADE # MR #

T
=

6 CVM 4.26 0.93 - - 4.47 1.00 - - 2.61 1.00 - -
PGP [8] 0.93 0.54 0.75 0.28 1.34 0.71 1.20 0.61 0.81 0.31 0.70 0.20
PGP-CA (Ours) 0.77 0.43 0.63 0.23 1.40 0.65 1.15 0.60 0.75 0.39 0.59 0.14

T
=

2 CVM 1.68 0.94 - - 2.09 0.98 - - 0.91 0.92 - -
PGP [8] 0.25 0.25 0.18 0.05 0.53 0.56 0.45 0.40 0.28 0.27 0.23 0.14
PGP-CA (Ours) 0.22 0.18 0.18 0.10 0.57 0.58 0.51 0.49 0.28 0.26 0.25 0.20

TABLE VI: Performance comparison of models pre-trained on nuScenes [13], fine-tuned and evaluated on the VoD Prediction
dataset with T = 6 s prediction horizon. Best performance on each metric is shown in bold. FT = Fine Tuning (Transfer
Learning), CA = Class-Aware, mADE = minimum Average Displacement Error, MR = Miss Rate.

Method
Vehicle Cyclist Pedestrian

K=5 K=10 K=5 K=10 K=5 K=10

mADE # MR # mADE # MR # mADE # MR # mADE # MR # mADE # MR # mADE # MR #

FT

PGP-FT 0.97 0.47 0.67 0.26 1.54 0.61 1.11 0.53 0.85 0.37 0.69 0.26
PGP-FT-CA (Ours) 1.03 0.45 0.75 0.28 1.13 0.61 0.97 0.45 0.77 0.33 0.65 0.25

CA model lead to reasonable results, taking into account the
lower speeds that are attained in urban traffic. Especially for
vehicles, the metrics indicate that PGP translates relatively
well to urban environments, given a MR10 of 0.23 and
minADE10 of 0.63 for our PGP-CA model in a six-second
prediction horizon. PGP-CA outperforms PGP for all agent
classes, leading to an overall performance increase on VoD
Prediction.

Analysis of the models trained for a two-second prediction
horizon shows that there is no significant difference between
the PGP and PGP-CA architectures. We argue that the PGP
model, which relies heavily on the lane graph to account for
longer prediction horizons, in its unadjusted form is not suited
for short prediction horizons. We reason that this is due to
the sampling density of nodes on the lane graph (once per
twenty meters), which is too sparse for the limited amount
of distance that target agents tend to move over such a short
prediction span, as further studied in Appendix E. For these
cases, the inductive prior of the lane graph may thus not be
as informative, leading to a large number of noisy features in
the model, which limits the learning ability of the model.

Qualitative analysis of the results for a six-second prediction
horizon, depicted in Figure 7 till Figure 13, shows that for
both PGP and PGP-CA, the policy is informative and serves
as a good prior for the future trajectories of all vehicles
and some VRU instances, given they are reasonably close
to the lane graph. We note that the models in these cases
accurately forecast future trajectories while exhibiting multi-
modal prediction behaviour. For vehicles, the model is thus
able to account for more dense interactions present in the VoD
Prediction dataset, as shown in Figure 7. We argue that the
prediction performance for cyclists, which numerically leads
to the highest errors, rises from the fact that their dynamics
are highly non-linear and less bound to the lane graph, while

their attained speeds are relatively close to that of vehicles in
urban environments.

For pedestrians, we observe another trend, as shown in
Figure 10. If a pedestrian is located sufficiently close to the
lane graph (e.g. adjacent pavement), it aids the prediction for
that instance. However, we note that for instances where the
pedestrian is located on a pedestrian domain that is not close
to the lane graph, the predictions are being drawn towards the
lane graph, leading to inaccurate predictions. This especially
holds for the PGP model, as the PGP-CA model relies more
on the motion dynamics of the target agent for predicting its
future trajectory and thus suffers from this issue to a lesser
extent.

To further investigate this phenomenon, we train the PGP
baseline model and PGP class-aware model on the six-second
variant of the VoD Prediction dataset, where we disable
the policy header for pedestrians. Quantitatively, this does
not lead to a performance improvement, as the pedestrian
instances close to the lane graph suffer from the lack of
policy information. Qualitatively, we observe in Figure 4 that
more feasible predictions are made for the instances where
a pedestrian is located far away from the lane graph, as the
predictions tend to rely more on the agent’s motion dynamics
than the (non-informative) lane graph.

In a further comparison of the PGP and PGP-CA architec-
tures, we observe that PGP-CA relies more on the dynamics
of the agent to predict future trajectories, as opposed to PGP,
which relies more on the policy sampled over the lane graph.
This is in line with our hypothesis in section IV. This increased
influence of the target agent dynamics leads to more accurate
and feasible predictions, which is supported by the lower miss
rate and minimum average displacement errors. This often
leads to increased prediction behaviour in challenging and
turning cases, as shown in Figure 8, Figure 9 and Figure 11,
and proves the effectiveness of our proposed PGP-CA model.

9

(a) Baseline model (b) Pedestrian policies disabled.

Fig. 4: Policy visualization showing a pedestrian instance
located far away from the lane graph for the baseline model
and the baseline model trained without policy information for
pedestrians. Both the left and right images show the target
agent (+ motion history) in cyan, the ground truth in orange
and predictions in blue. The lane graph is visualized in grey,
with policies overlaid as per the legend.

Finally, we study the shortcomings of PGP (in urban traffic).
We note that a general drawback of PGP is that when a mode
(e.g. left turn) is not accounted for as sampled traversal in the
policy header, the model fails to predict trajectories for that
mode, as illustrated in Figure 12. The multimodality of the
predictions thus strongly relies on the quality of the sampled
traversals, as given by the policy header, which limits the
robustness of the model. For the nuScenes dataset, this is
shown in Figure 5c, where PGP fails to capture the mode
(left turn) followed by the ground truth trajectory. It, however,
captures the possibility of a right turn. The predictions are
divided between the feasible modes given by the policy header,
based on the likelihood of each sampled traversal. A similar
case for the VoD dataset is shown in Figure 12a. Specific
to the urban domain, we note that VRUs tend to switch
from road elements (e.g. from lane to sidewalk) easily, which
makes the agent deviate from the lane graph. Both PGP and
PGP-CA are unable to account for these cases, as shown
in Figure 13. Lastly, we note that the PGP model encodes
agent interactions via the lane graph. This also means that
in cases when the lane graph is located far away from the
target agent, social interaction is not accounted for properly.
We recommend encoding the remaining static road elements
using the allowed agents per element, in addition to the lane
graph, to increase scene understanding. This will result in a
different traversable space per agent type. This is enabled by
the VoD Prediction dataset, to resolve the shortcomings for
prediction in dense urban traffic.

VII. CONCLUSIONS

We introduced the View-of-Delft Prediction dataset, an
extension of the View-of-Delft (VoD) dataset, enriching the
available sensor information with vectorized map information.
We show that there is a significant domain shift between
the urban View-of-Delft Prediction dataset and the widely
used nuScenes [13] dataset, highlighting the need for urban
prediction datasets, which are rich in number of Vulnerable

Road Users (VRUs) and dense interactions. Our dataset is
a step towards bridging the gap, enabling future research
on trajectory prediction in complex urban traffic. Further,
we modify the vector-based PGP model [8] by presenting
the class-aware PGP-CA, which leads to increased prediction
performance on VoD Prediction.

In experiments, we analysed the domain gap between the
vehicle-heavy nuScenes dataset and our VRU-rich View-of-
Delft Prediction dataset using a modified PGP [8] model. The
results show that there is a significant domain shift between
the datasets, as training only on nuScenes results in a 107.79%
higher minADE10 on the VoD Prediction test set than training
the model on our dataset.

We proposed a class-aware version of the PGP model,
which outperforms the original model for each single agent
class, leading to an average performance improvement of
13.92% in minADE10 for a six-second prediction horizon.
Qualitatively, we observe that PGP-CA has an increased ability
to differentiate between class dynamics.

Future work includes encoding map context differently for
each agent class to account for their unique interactions with
the static environment and ensuring that predictions are scene-
compliant.

10

(a) PGP accurately predicts for a common straight scenario.

(b) PGP captures turning behaviour and exhibits multi-modal prediction behaviour.

(c) Failure Case: PGP fails to capture the mode (left turn) followed by the ground truth trajectory.

Fig. 5: Common prediction scenarios in the nuScenes dataset. The left image shows the prediction scenario, the middle image
the predictions and the right image the ground truth trajectory.

(a) PGP comes to a (near) collision with a crossing pedestrian (on a crossing).

(b) PGP predicts some feasible and some infeasible predictions for a crossing pedestrian scenario (on a
crossing).

Fig. 6: Prediction scenarios with vehicle - VRU interactions in the nuScenes dataset.

11

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 7: Prediction instance of a vehicle successfully dealing with an interaction with a cyclist. Both the left and right images
show the target agent (+ motion history) in cyan, the ground truth in orange and predictions in blue. The left images show the
prediction scene, with road topology and surrounding agents, where dark blue denotes vehicles, red is used for cyclists and
green for pedestrians. The right images show the lane graph with the policies visualized.

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 8: Prediction scenario for a vehicle making a turn. Both models capture the turning dynamics. The PGP-CA model better
predicts the dynamics, leading to a more accurate prediction of the turning case.

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 9: Prediction scenario for a vehicle making a turn. Both models capture the turning dynamics. The PGP-CA model better
predicts the dynamics, leading to a more accurate prediction of the turning case.

12

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 10: Prediction scenario for a pedestrian located far away from the lane graph. PGP-CA is better able to account for these
cases, as it is not being drawn towards the lane graph as much as the PGP model.

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 11: Prediction scenario for a pedestrian making a turn during the ground truth trajectory. Only PGP-CA predicts the
challenging dynamics, leading to a more accurate prediction for this instance.

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 12: Failure Case: Prediction scenario for a cyclist. Here, an incomplete policy outcome leads to bad predictions for both
models.

13

(a) PGP (b) PGP-CA (c) PGP (d) PGP-CA

Fig. 13: Failure Case: Prediction scenario for a cyclist. Both models are unable to handle agents that follow the lane graph
and suddenly deviate from it during their ground truth trajectory by switching to another static map element.

(a) PGP-FT (b) PGP-FT (c) PGP-FT (d) PGP-FT

Fig. 14: Prediction scenarios for VRUs with a cyclist clearly following the lane graph and a pedestrian who does not. The
PGP-FT model can accurately predict the first case, where it performs less for cases similar to the latter case.

14

APPENDIX A
EURO-PVI ANALYSIS

In this section, we study the accuracy of the available
information in the Euro-PVI [11] dataset. Euro-PVI shares seg-
mented maps from OpenStreetMap as static map information
in their dataset. We argue that these maps from OpenStreetMap
are insufficiently accurate for autonomous driving tasks, as
their positional accuracy was found to be within 1.57 meters in
the following case study that compares accurate land surveying
reference data to the OpenStreetMap of that same region: [34].

We assert that the minimum accuracy of static map infor-
mation should be more accurate than this, ideally within a
couple of centimetres, as such an error margin could lead to a
sidewalk located on a lane and vice versa. To investigate the
accuracy of OpenStreetMap in The Netherlands, we compare
the accuracy of our annotations and aerial images to the
OpenStreetMap map from Delft in Figure 15. Here, we again
observe the limitations of using the map information of Open-
StreetMap directly. As shown in Appendix B, the VoD dataset
is consistent with our aerial images and annotations. Over-
laying these images and annotations over the OpenStreetMap,
we see that the OpenStreetMap map information deviates at
many points from the topology shown in the aerial image
and that the provided map information is less accurate than
the provided map information in the VoD Prediction dataset.
The most striking case is the mislocated lane on the right,
where a sidewalk is placed on a road and vice versa. This
could lead to safety-critical situations, where a self-driving car
would predict its future trajectory on a sidewalk, increasing
the chance of severe collisions. Therefore, we reason that
OpenStreetMap is not sufficiently accurate for autonomous
driving-related tasks.

Additionally, we study the agent tracks in Euro-PVI to
compare the type of traffic to our dataset. We observe that
the agent tracks of the recording vehicle are noisy, leading to
yaw deviations greater than 60 degrees between consecutive
frames recorded at 10 Hz, which is physically impossible given
the non-holonomic constraints of vehicles. When we plot the
surrounding agent motion around the recording vehicle, as
shown in Figure 16 for surrounding cyclists, we observe that
ego-motion correction using these noisy tracks of the recording
vehicle leads to an inaccurate overview of the surrounding
cyclist motion as there tend to be multiple collisions with the
recording vehicle located at the origin. In addition, we observe
many infeasible trajectories following a zig-zag pattern. This
complicates a feasible analysis of the type of interactions in
Euro-PVI compared to our dataset.

APPENDIX B
ANNOTATION PIPELINE

We present our developed procedure to generate accurate
map information using open-source tools, to enable researchers
to follow this pipeline for their use case. To the best of our
knowledge, we are the first to release this procedure in the field
of autonomous driving datasets, which often relies on in-house
tools. First, we explain the georeferencing procedure, used to
match the annotations to the correct location, followed by the

annotation and labelling process and the preprocessing of the
road elements, such that a vectorised representation results.

A. Georeferencing

The goal of the georeferencing phase is to match the
coordinates of the map annotations to the original VoD dataset,
such that the map annotations are consistent with the data in
the VoD dataset. For accurate and detailed annotations, we rely
on aerial images from PDOK2, an open-source dataset with
accurate geo-information about the Netherlands. We retrieve
these aerial images based on the locations of the recording
vehicle in the VoD dataset and georeference them in the same
manner.

To end up with a georeferenced aerial image, which serves
as our annotation region, we undertake the following steps:

• First, select the annotation region by scanning the camera
frames of the VoD dataset. We utilize the GPS location
of the recording vehicle in the VoD dataset, to obtain the
recording locations to generate annotations for. If a frame
is roughly in the region of interest (we annotate a region
of 100 m by 100m, with the recording vehicle as centre),
select that frame number as [FRAME NUMBER].

• If not done yet, clone the prediction branch from the VoD
git repository first at a desired location on your machine.

• Open the terminal on your local machine and navigate
towards the following directory: view-of-delft-

dataset.
• Install the required Python packages as a virtual en-

vironment using the following command: conda env

create -f environment.yml.
• Navigate towards the folder: pdok-wms-request.
• To activate the right environment, run the following

command: source 01-activate.sh.
• Run python aerial maps.py -f [FRAME

NUMBER]. [FRAME NUMBER] follows a five-digit
format (e.g. frame 15, thus becomes 00015). This script
will save both a [FRAME NUMBER].png and [FRAME
NUMBER].tiff file in the current folder. The latter is
the aerial image with an equally spaced grid of 100
georeferenced points overlaid, where each coordinate on
the grid is matched to a pixel in the aerial image.

• Repeat the above such that you have tiles of aerial images
that cover the locations that need to be annotated, in this
case where the recording vehicle has driven. We will use
this as the starting point for the next step.

Some practicalities to take into account: to retrieve the right
region to annotate, the script makes use of the BBOX finder3

and PDOK server. Requesting bounding boxes based on their
centre location is preferred, as the bounding boxes of BBOX
finder are inaccurate by a couple of centimetres, leading to
slight inconsistencies between different georeferenced aerial
images. Using the centre coordinates, this slight inaccuracy
is omitted. For the annotation and georeferencing process,
we adhere to a static coordinate frame (EPSG:28992) to

2https://www.pdok.nl/
3http://bboxfinder.com/

15

(a) Aerial images with our static map information
overlaid.

(b) OpenStreetMap with our static map information
overlaid.

Fig. 15: Comparison of our map annotations with the OpenStreetMap map. We observe inconsistencies in where lanes and
sidewalks are located. Near the large square pedestrian area, we observe a mislocated lane on the pedestrian area.

Fig. 16: Surrounding cyclist tracks from the first thirty scenes
as observed by the recording vehicle, depicted by the blue
rectangle, in the Euro-PVI dataset [11].

omit slight deviations in location, due to dynamic coordinate
systems being handled differently between programs (QGIS4

(annotation tool) and the python packages: osgeo, gdal and
geopandas). Therefore, we convert the centre coordinate and
bounding boxes to the static coordinate frame before sampling
the grid over the aerial image.

B. Annotation & Labelling
Now we have a set of georeferenced aerial images, we are

ready to proceed with the annotation and labelling phase. First,
we load the georeferenced images as rasters into QGIS, the
annotation and labelling tool, such that tiles of aerial images

4https://qgis.org/en/site/

result over the recording locations, on which the annotations
can be drawn. Then we start the annotation and labelling
process, which is set out in more detail below.

As mentioned in section III, we annotate lanes by marking
their right and left boundaries, as they are more clearly visible
compared to the lane centreline, and as interpolation of the
lane centreline from the lane boundaries will lead to more
accurate results. The directionality of the lane centreline is
determined by the direction of the right lane boundary, which
should thus be drawn in the correct direction. Bidirectional
lanes may be annotated in one direction and labelled as
bidirectional. The preprocessing code will take care of creating
the lane copy in the other direction. Furthermore, we denote
intersections, pedestrian crossings and the pedestrian domain
by enclosing the area as a polygon. We export the annotations
and labels per category of road elements as geopackage, which
is a widely used format to store and handle geospatial data.
The process looks as follows:

• In QGIS, open a new project.
• In the top menu bar, select Web > QuickMapSer-

vices > OSM > OSM standard. This will load an
OpenStreetMap of the world, which can serve as a rough
reference check to see whether the georeferencing is
somewhat correct.

• In the bottom right, the current coordinate system
is shown. Click the coordinate system to select the
right coordinate system. Select ‘Amersfoort/ RD New
EPSG:28992’. The OpenStreetMap is now shown as seen
from the top of the North Pole.

• From the map annotation repository, load the tem-
plate geopackage layers (.gpkg): Layers, Crosswalk, Off-
Road and Intersections. These already contain the proper
labelling fields, geometry type and coordinate system for
each road element.

• In QGIS, select Layer > Add layer > Add

16

raster layer. Open the [FRAME NUMBER].tiff
file. Repeat this step for all the generated georeferenced
aerial images.

• In the layer menu on the bottom left, right-click on
the [FRAME NUMBER].tiff file and select Zoom to

layer. You are now ready to annotate.
• In the layer menu on the bottom left, select the right

geopackage layer (lanes, crosswalks, intersections or off-
road).

• Click the pencil icon to toggle editing.
• Based on the element you are drawing, select either the

vertex tool (for lanes) or the polygon tool (for the other
elements).

• Start drawing the road element by adding points on
desirable locations, using a left mouse click.

• To finish a drawn element, use right mouse click. In the
pop-up window, label the element following the required
labels per element as set out in Table II and the following
taxonomy:

– For element and lane identifiers, we use a numerical
numbering system.

– For predecessors and successors, enter the lane iden-
tifier of the predecessor and successor lanes.

– To indicate the left or right boundary, we use a
boolean.

– To indicate the road type, we use the following
system: 1 = urban road, 2 = car road, 3 = bike lane,
4 = tram/bus lane.

– To indicate the boundary type, we use the following
system: 1 = solid marking, 2 = dashed marking.

– To indicate the allowed agents on a specific element,
we use the following system: 1 = pedestrian, 2 =
cyclist, 3 = car, 4 = bus, 5 = tram, 6 = other. Multiple
agents can be entered per road element.

• This step only holds for lanes that share boundaries with
other lanes:

– Right-click the layer in the layer menu, select Open

attribute table.
– Next, toggle editing by pressing the pencil icon

(same icon as in step 2).
– Select the lane element you would like to duplicate.
– Duplicate the layer.
– Adjust the element id of the copied element accord-

ingly and save the changes.
• Repeat the above steps for all road elements. Save the

file. The .gpkg layers now contain the right information
to start preprocessing the static map information.

C. Verification
To verify the georeferencing process, we again use the

aerial maps.py file, where we convert the centre co-
ordinate and corners of the sampled grid back to the dynamic
coordinate frame (UTM/WGS:84) and compare it to the initial
recording vehicle coordinate location from the corresponding
frame [FRAME NUMBER]. Additionally, we perform visual
checks from an onboard and BEV perspective by plotting the
annotations and agents in the VoD dataset to see whether

their location (on the road) corresponds with the generated
annotations, in test maps.py. This indicates consistency
between the georeferenced map information and the original
VoD dataset. An example reference check is shown in Fig-
ure 17 and 18.

Fig. 17: Annotation verification from a birds-eye view. Drawn
lanes are both consistent with the aerial image and the sur-
rounding agents denoted as dots.

Fig. 18: Reference frame for agent location and type for
Figure 17 from the VoD dataset.

D. Map Information Preprocessing
To generate vectorised representations from the map infor-

mation, we require preprocessing of the raw annotated road
elements. The git repository map annotation contains
the relevant code to perform the preprocessing steps. The
following steps are required:

• If not done yet, clone the git repository
map annotation first at a desired location on
your machine.

17

• Open the terminal on you local machine and navigate
towards the following directory: map annotation.

• Install the required python packages as a virtual en-
vironment using the following command: conda env

create -f environment.yml.
• To activate the right environment, run the following

command: source 01-activate.sh.
• Navigate towards the folder: data.
• Copy the final annotation geopackages to the data folder

in the repository.
• Next we run the file preprocess.py.
This file will take care of the following operations. First,

we revert the coordinates of all road elements back to UTM
(WGS:84), to be consistent with the VoD dataset. To save
annotation time/cost, we automate the handling of bidirec-
tional lanes, requiring them to be drawn once in an arbitrary
direction. We duplicate lanes labelled as bidirectional and
reverse the duplicate lane. Given the directionality and possible
traversals of surrounding traffic elements, such as adjacent
intersections, we determine the feasible predecessor-successor
combinations and assign them as labels to the resulting pair
of uni-directional lanes. We also update the remainder of the
lane labels such as element identifier and lane identifier ac-
cordingly, before interpolating the lane centreline, as described
earlier. Similar to lane centrelines, it is difficult to annotate
lane connections on intersections directly, as their path is
not directly visible on aerial images. Therefore, we match
the predecessor and successor lanes to an intersection that
connects both lanes so that we can generate a connection line.
As most prediction models rely on the lane centreline instead
of lane boundaries, we retrieve the lane centreline by sampling
a thousand equally spaced points over both lane boundaries
and interpolating the lane centreline. The directionality of
the lane centreline is determined by the direction of the
right lane boundary, a convention which was adhered to
during annotation. Between the interpolated lane centrelines
we interpolate a natural connection line between the lanes
enclosed by their matched intersection. This way we retrieve
organic lane connections, to which we automatically assign
labels based on the labels of their connecting lanes.

APPENDIX C
DATASET SOFTWARE KIT

Accompanying the preprocessed map information, we also
release a modular software kit for the View-of-Delft Predic-
tion dataset. This modular software kit leverages the agent
information and their corresponding tracking identifier in the
VoD dataset and the preprocessed map information to generate
an object-centric representation of each dataset scene with all
required features.

First of all, it allows for setting the required scene pa-
rameters, such as observation length, prediction horizon, the
distance around the target agent and frame rate in a config file,
for which the accompanied dataset splits will be calculated.
For larger prediction horizons, we incorporate some overlap in
the frames, to increase the size of the dataset. For a six-second
prediction horizon, we start a new scene halfway. Scenes with

overlap are assigned to the same split. For each scene, the
target agents will be determined based on their presence in
every frame of the scenes.

Based on the resulting scenes and accompanying target
agents from the scene selection process, the software kit
handles all required operations to generate a vectorized repre-
sentation for each scene. For both the target and surrounding
agents, it calculates the kinematic states, such as velocity,
acceleration and rotational velocity, during the scenes based
on the positional information in every frame. Additionally, it
also generates the road topology based on the target agent’s
location and orientation. We use homogeneous transformations
to represent the scene in an object-centric frame of reference,
resulting in a unique scene for each target agent. Following, we
vectorise the road elements by discretizing the lane elements
and labelling nodes whether they are located on an intersection
or crosswalk. Furthermore, we determine whether lanes are
neighbouring lanes to determine lane-switching possibilities.
Lastly, we vectorise the kinematic vectors of both the sur-
rounding agents and target agents, such that a vectorised
representation in an object-centric reference frame is served
as input to the model.

A. Obtaining Accurate Agent Trajectories
To minimize the noise in the trajectories in the presented

VoD Prediction dataset, we retrieve more accurate and smooth
agent trajectories by fusing GPS and IMU localization data.

The GPS locations in the VoD dataset do not possess
accuracy up to centimetres, which results in noisy trajectories
for the recording vehicle and similarly for all the agents, as
they are observed in an onboard setting. The odometry data
on the other hand is more smooth and accurate but requires
to be calibrated to a global coordinate in the dataset scene.

For each scene, we calculate the closest GPS location of the
recording vehicle to the lane centreline it is positioned on. Un-
der the assumption that the recording vehicle is located on the
lane centreline, we update the GPS location of the closest point
of the recording vehicle accordingly. Next, we fuse this global
coordinate with the locally accurate and smooth odometry data
to retrieve a more accurate and smooth agent trajectory. As
other agents are observed from the recording vehicle, all agent
trajectories are corrected by updating the trajectory of the
recording vehicle. Using the updated agent trajectories results
in a significant boost in prediction performance for all models.

APPENDIX D
NUMERICAL RESULTS

This Appendix consists of Table VII, VIII and IX and lists
the average results from the experiments including standard
deviation based on five evaluation runs, both split out per agent
class and measured over the total dataset.

APPENDIX E
MISCELLANEOUS EXPERIMENTS

Over the course of this work, we have performed numerous
additional experiments that did not end up in the main body of

18

TABLE VII: Numerical results of models trained and evaluated
on the VoD dataset with a T = 6 s prediction horizon. The best
performance on each metric is shown in bold. CA = Class-
Aware, mADE = minimum Average Displacement Error, MR
= Miss Rate.

CVM PGP PGP-CA

mADE5 # 4.26 ± 0.0 0.93 ± 0.04 0.77 ± 0.03
MR5 # 0.93 ± 0.0 0.54 ± 0.01 0.43 ± 0.05
mADE10 # - 0.75 ± 0.01 0.63 ± 0.01Vehicle
MR10 # - 0.28 ± 0.02 0.23 ± 0.02

mADE5 # 4.47 ± 0.0 1.34 ± 0.03 1.40 ± 0.09
MR5 # 1.00 ± 0.0 0.71 ± 0.05 0.65 ± 0.08
mADE10 # - 1.20 ± 0.02 1.15 ± 0.02Cyclist
MR10 # - 0.61 ± 0.03 0.60 ± 0.00

mADE5 # 2.61 ± 0.0 0.81 ± 0.01 0.75 ± 0.03
MR5 # 1.00 ± 0.0 0.31 ± 0.04 0.39 ± 0.05
mADE10 # - 0.70 ± 0.00 0.59 ± 0.01Pedestrian
MR10 # - 0.20 ± 0.01 0.14 ± 0.01

mADE5 # 3.36 ± 0.00 0.91 ± 0.01 0.83 ± 0.02
MR5 # 0.98 ± 0.00 0.43 ± 0.03 0.43 ± 0.04
mADE10 # - 0.77 ± 0.01 0.67 ± 0.01Total
MR10 # - 0.27 ± 0.01 0.22 ± 0.01

TABLE VIII: Numerical results of models trained and evalu-
ated on the VoD dataset with a T = 2 s prediction horizon.

CVM PGP PGP-CA

mADE5 # 1.68 ± 0.0 0.25 ± 0.01 0.22 ± 0.00
MR5 # 0.94 ± 0.0 0.25 ± 0.01 0.18 ± 0.02
mADE10 # - 0.18 ± 0.00 0.18 ± 0.00Vehicle
MR10 # - 0.05 ± 0.01 0.10 ± 0.00

mADE5 # 2.09 ± 0.0 0.53 ± 0.00 0.57 ± 0.01
MR5 # 0.98 ± 0.0 0.56 ± 0.06 0.58 ± 0.01
mADE10 # - 0.45 ± 0.01 0.51 ± 0.00Cyclist
MR10 # - 0.40 ± 0.02 0.49 ± 0.01

mADE5 # 0.91 ± 0.0 0.28 ± 0.00 0.28 ± 0.00
MR5 # 0.92 ± 0.0 0.27 ± 0.02 0.26 ± 0.01
mADE10 # - 0.23 ± 0.00 0.25 ± 0.00Pedestrian
MR10 # - 0.14 ± 0.01 0.20 ± 0.00

mADE5 # 1.27 ± 0.00 0.31 ± 0.00 0.31 ± 0.00
MR5 # 0.93 ± 0.00 0.31 ± 0.02 0.29 ± 0.01
mADE10 # - 0.25 ± 0.00 0.28 ± 0.00Total
MR10 # - 0.16 ± 0.01 0.22 ± 0.00

the paper but could provide additional insights to practitioners
continuing on this work. Therefore, we list the experiments
and our observations below. Please note that at the time of
experimentation, we did not find the optimal hyperparameters
for PGP on VoD Prediction yet, which might have influenced
the results. Conclusions, based upon this list, should therefore
be drawn with consideration.

• Adjusting the sampling resolution of the road graph
for dense traffic: As mentioned in section VI, the
original node sampling resolution and traversal horizon
threshold of 20 and 15 meters respectively are too sparse
for dense traffic. Relatively few agents move more than
20 meters in dense traffic scenarios with short prediction
horizons. Thus, not many agents would traverse an edge,
limiting the effect of actively using the lane graph to
predict their future motion. This is due to the loss

TABLE IX: Numerical results of models pre-trained on
nuScenes [13], fine-tuned and evaluated on the VoD Prediction
dataset with T = 6 s prediction horizon. FT = Fine Tuning
(Transfer Learning).

PGP-FT PGP-FT-CA

Vehicle
mADE5 # 0.97 ± 0.03 1.03 ± 0.04
MR5 # 0.47 ± 0.05 0.45 ± 0.03
mADE10 # 0.67 ± 0.01 0.75 ± 0.02
MR10 # 0.26 ± 0.02 0.28 ± 0.01

Cyclist
mADE5 # 1.54 ± 0.09 1.13 ± 0.05
MR5 # 0.61 ± 0.05 0.61 ± 0.05
mADE10 # 1.11 ± 0.04 0.97 ± 0.02
MR10 # 0.53 ± 0.07 0.45 ± 0.05

Pedestrian
mADE5 # 0.85 ± 0.02 0.77 ± 0.02
MR5 # 0.37 ± 0.03 0.33 ± 0.02
mADE10 # 0.69 ± 0.00 0.65 ± 0.01
MR10 # 0.26 ± 0.01 0.25 ± 0.01

Total
mADE5 # 0.97 ± 0.01 0.89 ± 0.01
MR5 # 0.43 ± 0.03 0.40 ± 0.02
mADE10 # 0.73 ± 0.00 0.72 ± 0.01
MR10 # 0.29 ± 0.01 0.28 ± 0.01

function, which is used to optimize the model [38]:

L = ↵LBC + Lreg, (3)

where ↵ = 0.5, Lreg denotes the minimum average
displacement loss and LBC is the behaviour cloning loss.
LBC is defined as the negative log-likelihood that a policy
(⇡route) traverses an edge (E) between two nodes (u, v),
given that the ground truth trajectory traverses that edge:

LBC =
X

(u,v)2Egt

� log (⇡route (v | u)) (4)

For this loss term to be effective, a target agent would
need to traverse an edge. Relatively few agents move
more than 20 meters in dense traffic scenarios with
short prediction horizons. Thus, not many agents would
traverse an edge, limiting the effect of actively using the
lane graph to predict their future motion. Therefore, we
experiment with higher resolution node sampling of the
lane graph, such that the model actively uses the lane
graph as a prior for predicting the future trajectory of
all agent classes and accounts for social interactions at a
finer resolution. For a two-meter sampling resolution, we
observed an increase in policy loss, which is expected, as
an increased amount of potential policies come available.
We suggest combining this experiment with a lower
weight for the policy loss term in the loss function
and experimenting with a slightly increased sampling
resolution (e.g. five meters).

• Custom encoder: Apart from adding the target agent
class information to the decoder, we also experimented
with a variant of the PGP model, where we added
this information to the encoder. This allows for direct
input of class information to the encoder and policy
header, instead of relying on backpropagation to influence
these stages of the model as in PGP-CA. No definite
conclusions can be drawn from this experiment. We

19

recommend redoing the experiment with the reported
hyperparameters.

• Custom encoder + decoder: In this experiment, we
evaluated the addition of class information both in the
encoder and the decoder. This is thus a combination of
the above and PGP-CA. No definite conclusions can be
drawn from this experiment. We recommend redoing the
experiment with the reported hyperparameters.

• Loss function terms: given the lower minimum average
displacement errors on the VoD Prediction dataset com-
pared to nuScenes, we tested whether a lower weight for
the policy loss improves the results, given that it has a
bigger influence on the total loss in the absolute sense.
This experiment showed an increase in overall prediction
performance for pedestrians, with the model relying less
on the policy header. However, we observed a slight
decrease in performance for vehicles and cyclists. This
again shows that pedestrians rely to a lesser extent on
the lane graph compared to vehicles and cyclists.

• Decreased model complexity: We also studied the net-
work complexity by experimenting with decreased hidden
layer sizes of the policy header and trajectory decoder.
Given the results in the main body of the paper, we
conclude that the model has sufficient data to learn
meaningful patterns from data and advise sticking with
the current model, given that related methods employ
similar or more extensive network architectures.

REFERENCES

[1] World Health Organization. (2021) Road traffic injuries.
[Online]. Available: https://www.who.int/news-room/fact-sheets/detail/
road-traffic-injuries

[2] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Q.-H. Meng, “A survey on
deep-learning approaches for vehicle trajectory prediction in autonomous
driving,” in 2021 IEEE International Conference on Robotics and
Biomimetics (ROBIO). IEEE, 2021, pp. 978–985.

[3] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila,
and K. O. Arras, “Human motion trajectory prediction: A survey,” The
International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935,
2020.

[4] P. Karle, M. Geisslinger, J. Betz, and M. Lienkamp, “Scenario un-
derstanding and motion prediction for autonomous vehicles-review and
comparison,” IEEE Transactions on Intelligent Transportation Systems,
2022.

[5] S. Mozaffari, O. Y. Al-Jarrah, M. Dianati, P. Jennings, and A. Mouza-
kitis, “Deep learning-based vehicle behavior prediction for autonomous
driving applications: A review,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 23, no. 1, pp. 33–47, 2020.

[6] N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp,
“Wayformer: Motion forecasting via simple & efficient attention net-
works,” arXiv preprint arXiv:2207.05844, 2022.

[7] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
“Vectornet: Encoding hd maps and agent dynamics from vectorized rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 11 525–11 533.

[8] N. Deo, E. Wolff, and O. Beijbom, “Multimodal trajectory prediction
conditioned on lane-graph traversals,” in Conference on Robot Learning.
PMLR, 2022, pp. 203–212.

[9] M. Liang, B. Yang, R. Hu, Y. Chen, R. Liao, S. Feng, and R. Urtasun,
“Learning lane graph representations for motion forecasting,” in Com-
puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part II 16. Springer, 2020, pp. 541–
556.

[10] B. Kim, S. H. Park, S. Lee, E. Khoshimjonov, D. Kum, J. Kim, J. S.
Kim, and J. W. Choi, “Lapred: Lane-aware prediction of multi-modal
future trajectories of dynamic agents,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp.
14 636–14 645.

[11] A. Bhattacharyya, D. O. Reino, M. Fritz, and B. Schiele, “Euro-pvi:
Pedestrian vehicle interactions in dense urban centers,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 6408–6417.

[12] A. Palffy, E. Pool, S. Baratam, J. F. Kooij, and D. M. Gavrila, “Multi-
class road user detection with 3+ 1d radar in the view-of-delft dataset,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4961–4968,
2022.

[13] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 11 621–11 631.

[14] J. Gu, C. Sun, and H. Zhao, “Densetnt: End-to-end trajectory prediction
from dense goal sets,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 15 303–15 312.

[15] H. Zhao, J. Gao, T. Lan, C. Sun, B. Sapp, B. Varadarajan, Y. Shen,
Y. Shen, Y. Chai, C. Schmid et al., “Tnt: Target-driven trajectory
prediction,” in Conference on Robot Learning. PMLR, 2021, pp. 895–
904.

[16] E. A. Pool, J. F. Kooij, and D. M. Gavrila, “Crafted vs learned represen-
tations in predictive models—a case study on cyclist path prediction,”
IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4, pp. 747–759,
2021.

[17] Y. Liu, Q. Yan, and A. Alahi, “Social nce: Contrastive learning of
socially-aware motion representations,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 15 118–15 129.

[18] K. Mangalam, Y. An, H. Girase, and J. Malik, “From goals, waypoints
& paths to long term human trajectory forecasting,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
15 233–15 242.

[19] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 961–971.

[20] X. Mo, Y. Xing, and C. Lv, “Heterogeneous edge-enhanced graph
attention network for multi-agent trajectory prediction,” arXiv preprint
arXiv:2106.07161, 2021.

[21] J. F. Kooij, F. Flohr, E. A. Pool, and D. M. Gavrila, “Context-based path
prediction for targets with switching dynamics,” International Journal
of Computer Vision, vol. 127, no. 3, pp. 239–262, 2019.

[22] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Home: Heatmap output for future motion estimation,” in 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC).
IEEE, 2021, pp. 500–507.

[23] N. Djuric, H. Cui, Z. Su, S. Wu, H. Wang, F.-C. Chou, L. San Martin,
S. Feng, R. Hu, Y. Xu et al., “Multixnet: Multiclass multistage multi-
modal motion prediction,” in 2021 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2021, pp. 435–442.

[24] F.-C. Chou, T.-H. Lin, H. Cui, V. Radosavljevic, T. Nguyen, T.-K.
Huang, M. Niedoba, J. Schneider, and N. Djuric, “Predicting motion of
vulnerable road users using high-definition maps and efficient convnets,”
in 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020, pp.
1655–1662.

[25] S. Casas, C. Gulino, S. Suo, K. Luo, R. Liao, and R. Urtasun,
“Implicit latent variable model for scene-consistent motion forecasting,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIII 16. Springer, 2020,
pp. 624–641.

[26] W. Zeng, M. Liang, R. Liao, and R. Urtasun, “Lanercnn: Distributed
representations for graph-centric motion forecasting,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 532–539.

[27] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,”
in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVIII 16. Springer, 2020,
pp. 683–700.

[28] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde,
“Thomas: Trajectory heatmap output with learned multi-agent sam-
pling,” in International Conference on Learning Representations.

[29] ——, “Gohome: Graph-oriented heatmap output for future motion esti-
mation,” in 2022 International Conference on Robotics and Automation
(ICRA). IEEE, 2022, pp. 9107–9114.

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries

20

[30] X. Gao, X. Jia, Y. Li, and H. Xiong, “Dynamic scenario representation
learning for motion forecasting with heterogeneous graph convolutional
recurrent networks,” IEEE Robotics and Automation Letters, vol. 8,
no. 5, pp. 2946–2953, 2023.

[31] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. R. Qi, Y. Zhou et al., “Large scale interactive motion
forecasting for autonomous driving: The waymo open motion dataset,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 9710–9719.

[32] B. Wilson, W. Qi, T. Agarwal, J. Lambert, J. Singh, S. Khandelwal,
B. Pan, R. Kumar, A. Hartnett, J. K. Pontes et al., “Argoverse 2:
Next generation datasets for self-driving perception and forecasting,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

[33] J. Houston, G. Zuidhof, L. Bergamini, Y. Ye, L. Chen, A. Jain, S. Omari,
V. Iglovikov, and P. Ondruska, “One thousand and one hours: Self-
driving motion prediction dataset,” in Conference on Robot Learning.
PMLR, 2021, pp. 409–418.

[34] K. L. El-Ashmawy, “Testing the positional accuracy of openstreetmap
data for mapping applications,” Geodesy and Cartography, vol. 42, no. 1,
pp. 25–30, 2016.

[35] K. Cho, B. v. M. C. Gulcehre, D. Bahdanau, F. B. H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder–decoder
for statistical machine translation.”

[36] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio
et al., “Graph attention networks,” stat, vol. 1050, no. 20, pp. 10–48 550,
2017.

[37] C. Schöller, V. Aravantinos, F. Lay, and A. Knoll, “What the constant
velocity model can teach us about pedestrian motion prediction,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 1696–1703, 2020.

[38] N. Deo, E. Wolff, and O. Beijbom, “Multimodal trajectory prediction
conditioned on lane-graph traversals,” in Conference on Robot Learning.
PMLR, 2022, pp. 203–212.

	Introduction
	Related Work
	Trajectory Prediction
	Motion Prediction Datasets
	Contributions

	Dataset
	Vector Map Information
	Scene selection
	Highway & suburban traffic
	Frames affected by noisy ego-localisation
	Parked Cars
	Infeasible vehicle trajectories

	Methodology
	Experiments
	Experimental Setup
	Datasets
	Metrics
	Baselines

	Implementation Details
	Domain Shift
	Quantitative Results

	Discussion
	Conclusions
	Appendix A: Euro-PVI Analysis
	Appendix B: Annotation Pipeline
	Georeferencing
	Annotation & Labelling
	Verification
	Map Information Preprocessing

	Appendix C: Dataset Software Kit
	Obtaining Accurate Agent Trajectories

	Appendix D: Numerical Results
	Appendix E: Miscellaneous Experiments
	References

