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ABSTRACT
How well do large language models (LLMs) infer text in a non-
English context when performing code summarization? The goal of
this paper was to understand the mistakes made by LLMs when per-
forming code summarization in Dutch. We categorized the mistakes
made by CodeQwen1.5-7b when inferring Java code comments in
the Dutch language through an open coding methodology to create
a taxonomy of errors by which to categorize these mistakes.

Dutch code comments scraped from Github were analyzed, re-
sulting in a taxonomy that revealed four broad categories under
which inference errors could be classified: Semantic, Syntactic, Lin-
guistic, and LLM Specific. Additional analysis revealed a prevalence
of semantic and LLM specific errors in the dataset compared to the
other categories. The resulting taxonomy has significant overlap
with other taxonomies in similar fields like machine translation and
English code summarization while introducing several categories
that are not prevalent in those fields. Furthermore, it was found
that BLEU-1 And ROUGEL metrics were unreliable as accuracy
measures in this use case due to their nature as similarity metrics.

KEYWORDS
Automatic Code Completion, Transformers, LanguageModels, Open
Coding, Multilingual,Taxonomy, Code summarization

1 INTRODUCTION
Over the last few years, the usage of Large Language Models (LLMs)
has increased significantly, and uses in computer science have be-
come increasingly common [37]. Existing research addresses the
performance while using these models in the context of different
natural languages [26]. Additionally, it has been researched how
these models behave when given coding assignments in different
languages [33]. The consistent result seems that LLMs perform
better in English than many other languages. However, the perfor-
mance of LLMs when summarizing code by way of code comments
in non-English languages remains largely unexplored.

This paper aims to clarify how LLMs performwhen summarizing
Java code in Dutch, as a way to broaden our knowledge about mul-
tilingual LLM performance. To evaluate the performance of LLMs
in this area, a taxonomy of errors is required. In this paper, such an
error taxonomy will be created through an open coding method-
ology. Afterward, the overlap of this error taxonomy with related
fields will be analyzed. The goal of this paper is to understand the
mistakes made by LLMs when performing code summarization in
Dutch which leads to the following research questions:

RQ1: What are the most common mistakes made by LLMs in
the context of Java code summarization in the Dutch language?

RQ2: Are BLEU-1and ROUGE-L metrics reliable indicators for
the accuracy of code summarization inferences?

RQ3: To what extent does the multilingual code summarization
error taxonomy overlap with existing error taxonomies in machine
translation and code summarization?

These questions will be explored by analyzing the performance
of CodeQwen 1.5-7B [30] when inferring Dutch Java comments.
CodeQwen1.5-7B was chosen as it is a new model made by a large
company with a focus on performance in multilingual tasks while
also being of reasonable size. This allows for a large amount of in-
ferences using limited resources. Our contributions are as follows:

• Creation of an error taxonomy by which mistakes made
by an LLM can be classified in the context of multilingual
code summarization.

• Labeling of the mistakes made by an LLM when generat-
ing code documentation in Dutch, leading to an analysis
of the major mistakes LLMs make in the context of the
Dutch language while also taking multilingual contexts
into account.

• Comparison of the error taxonomy for non-English com-
ment inference to taxonomies in similar fields.

• Highlighting of the contexts in which these LLMs seem to
already perform well.

2 RELATEDWORKS
This paper finds itself at the intersection of various larger fields
of research, so a selection of related works will be introduced in
this section to clarify the background of the subject matter. At
first, we will introduce the area of multilingual LLMs to create an
understanding of the technology we will be analyzing. After which
we will be elaborating upon works that touch upon the area of
automatic code summarization. Finally, we will touch upon the
open coding methodology which was used for the quantitative
analysis aspect of this paper.

2.1 Multilingual LLMs
Themultilingual usage and application of LLMs has been researched
[17, 20, 29, 35, 38]. LLMs are limited by the data that was used
to train the models, which may create a bias towards any trends
that occur in the underlying data[9, 11]. Modern LLMs are usually
trained on datasets that were scraped from the internet and English
performs better than other languages on average[29, 36]. As stated
earlier, the field of multilingual LLMs has been garnering more
attention which has led to more attention on languages other than
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English. The fact remains however that despite recent improve-
ments most models will not perform as well in languages other
than the languages which take up a majority of the training dataset.

2.2 Automatic code summarization
Automatic code comment generation encompasses the action of ef-
fectively summarizing code into a human-readable format through
automated means. Correct code documentation has benefits for a
code base, such as easier maintenance and improved comprehen-
sion [7, 10]. Through automation, it is possible to leverage these
benefits while limiting the time investment needed for quality doc-
umentation. There is existing research regarding the generation of
automatic code summarization[16, 23]. Even for a relatively new
field such as Large Language Models, research has been done on
the effectiveness of these programs [1, 2, 21]. Most research uses
English code summarization however, which leaves a knowledge
gap regarding automatic code summarization in languages other
than English. It seems that there is less research regarding error tax-
onomies, as there are few papers about the subject. The SCATE[31]
and MQM[22] taxonomies which are translation taxonomies are
widespread and seem to be used if a taxonomy base is needed.

2.3 Opencoding
Open coding is an analytic process that uses labels to attach con-
cepts to observed data during qualitative analysis. This method
attempts to classify data into meaningful segments which natu-
rally leads to its usage to create a taxonomy[24]. In the context of
code-related error taxonomies, this methodology has been used
before[19, 21].

3 APPROACH
Java code files containing Dutch comments were scraped from
Github, resulting in a dataset that was suitable for this research.
After which any files that did not adhere to our exclusion criteria
were filtered out. Code comments within these files were then
found using regular expressions and automatically analyzed to
determine whether they contained Dutch. The comments were
then span-masked and inferred by an LLM with the rest of the file
as context. The inferred comments were analyzed with the goal of
extracting errors. Quantitative analysis was used to evaluate the
similarity of the comments to their originals. After quantitative
analysis, we performed qualitative analysis by manually classifying
errors according to an open coding approach to create a taxonomy
of errors. Finally, we proceeded to compare the created taxonomy
to other taxonomies of errors in similar fields.

3.1 Quantitative
It was decided to look at the BLEU[25] and ROUGE[18] metrics of
the inferred comments in comparison to the original comments to
increase our understanding of their similarity. These scores gen-
erally measure similarity in the context of translation and sum-
marization respectively. As code summarization can be seen as a
translation and summarization task we decided to use these metrics
for quantitative analysis. We used the original comment as the ref-
erence and the inferred comment as the candidate for every score
calculation. BLEU1 was used as our BLEU metric as other BLEU

metrics would not work correctly with shorter sequences due to
their weight allocations. For ROUGE analysis we used ROUGEL
with a separate generation of its precision, recall, and F1 scores.
We decided to focus on the F1 score as this is a combination of
precision and recall.

3.2 Qualitative
We classified all errors within comments with as much detail as
possible initially, in order to aid in taxonomy creation. An initial
subset of 200 comments was selected for analysis. The generated
comments were manually compared to the originals to classify
any possible errors according to a hypothetical error taxonomy. In
addition, the accuracy of the comments was recorded using three
labels:

• Inaccurate (0), this label was used in case the inferred com-
ment was inaccurate in relation to the relevant code.

• Partially accurate (1), this label was used if the inferred com-
ment contained accurate or partially accurate information
but would not be usable without manual correction.

• Fully accurate (2), this label was used if the inferred com-
ment was deemed usable as is.

A candidate error taxonomy was refined using the results of the
initial qualitative analysis. This evaluation process was repeated
using another subset of 200 comments and a final subset of 300
comments. After every repetition, we discussed our findings re-
garding the error taxonomy and adapted the taxonomy to reflect
any changes that needed to be made according to newly found
categories. While adapting the taxonomy, inclusion and exclusion
criteria were defined per category, to clarify when an error was to
be labeled within them. Finally, comments were labeled using the
final taxonomy to create a set of 600 comments to perform further
analysis1.

Exclusion criteria for the dataset were defined to ensure the
relevance of the collected data in relation to the research questions:

• Comments containing licensing information were excluded
due to their lack of semantic relevance to the code.

• Comments with less than three words were excluded as
these comments would be unmasked due to our context-
saving measures.

• Comments that did not contain Dutch were excluded.
• Comments that mainly contained code were excluded as

they do not contain natural language.

3.3 Taxonomy comparison
After finalizing the taxonomy of errors, we found taxonomies in
similar fields to evaluate their similarity to the taxonomy that re-
sulted from this experiment.

Two research databases were used to find error taxonomies in
the fields of machine translation and code summarization, both of
which were accessed on 19/06/2024. These databases were chosen
due to their smaller sizes, which allowed for a rigorous research
methodology within the time constraints:

• Scopus
• Web of Science

1https://huggingface.co/datasets/NovoGSP/LLM-of-Babel-NL-Labeled
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Due to rapid improvements in the field of LLMs, the search space
was limited to articles published in the last three years.
The following search queries were used:

"error taxonomy" OR "error Category" OR "error categories" OR
"taxonomy of errors" AND "code summarization" OR "code summa-
tion" OR "code documentation" OR "code comments" AND "open
coding"

"error taxonomy" OR "error category" OR "error categories" OR
"taxonomy of errors" AND "translation" AND "LLM" OR "large
language model*" OR "transformer" OR "artificial intelligence" OR
"machine learning"

error OR mistake OR failure AND taxonomy OR "open coding"
AND "automatically generated" OR "machine translation" OR "sum-
marization"

After removing duplicates, a total of 45 papers were found. These 45
papers were then read and checked for the presence of the following
criteria:

• An error taxonomy generatedwith the open codingmethod-
ology has to be present.

• The main focus of the paper needs to be on machine trans-
lation or code summarization involving natural language.

Following this analysis, 3 papers remained that adhered to all re-
quirements. The error taxonomies from these papers were analyzed
in relation to the taxonomy which resulted from our qualitative
research to identify any overlaps and differences.

• Code to Comment Translation: A Comparative Study on
Model Effectiveness & Errors (Mahmoud er al.) [21]

• A Survey of Recent Error Annotation Schemes for Auto-
matically Generated Text (Huidrom and Belz) [13]

• Towards a Consensus Taxonomy for Annotating Errors in
Automatically Generated Text (Sharou and Specia) [28]

These taxonomies were compared through an analysis of the leaf
nodes of each taxonomy in comparison to the taxonomy in this
paper. If a leaf node of the taxonomies could be classified under one
of our leaf nodes or was identical it was labeled as such. Otherwise,
a leaf node was labeled as non-overlapping.

4 DATA
4.1 Dataset
The research dataset2 was created by scraping GitHub for repos-
itories containing the 2,500 most common words in Dutch and
selecting the top 100 files according to the Github search based on
those words. This resulted in 139,488 eligible code files after re-
moving duplicates. We proceeded to filter out any files that did not
contain any comments by searching for the existence of comment
tags, resulting in 120,926 eligible files. The Qwen1.5 tokenizer was
run on the remaining files, which allowed filtration of the dataset
with a maximum token length of 8192, bringing the files down to
103,396. 1,037,750 comments were identified within these files using
regular expressions, which were reduced down to 85,912 eligible
2https://huggingface.co/datasets/AISE-TUDelft/LLM-of-Babel-NL2

comments after filtering out any comments that were deemed to
not be Dutch through the langdetect library 3. To limit the influence
a particular repository can have on the error distribution, it was de-
cided to take a single comment per repository chosen randomly to
create the final dataset consisting of 4,826 comments. To summarize,
we filtered the original dataset in the following criteria:

• The files had to contain comments.
• The files had to have a maximum length of 8192 tokens.
• The comments had to be Dutch.
• The files could not have overlapping repositories.

4.2 Comment Inference
One of the parameters necessary for inference is a limit on the
number of new tokens that can be generated. A compromise be-
tween size and inference time was made regarding this parameter
by finding the distribution of token lengths of all comments that
were eligible for inference before filtering on the repository limit
and setting the maximum to a number that would result in 95%
inclusion of this dataset. What follows is the distribution of the
85,912 eligible comments.

Figure 1: Tokens per comment

It can be seen that a majority of the comments are included with a
maximum token length of 138. The logarithmic distribution causes
a higher token length to result in increasingly worse inclusion per-
centages per token while increasing inference time per comment
significantly. Every comment was found using regular expressions,
with which the Java comment syntax was targeted to extract com-
ments. Three words were left in the context in case of block com-
ments and two words in case of line comments to encourage the
LLM to predict in Dutch instead of defaulting to English predictions.

The DelftBlue [8] computing clusters provided by the Delft Uni-
versity of Technology were used to run the inference pipeline. Fill-
in-the-middle[4] was used to give the model as much context as
possible to ensure proper inference. Additionally, the maximum to-
ken length of these files was limited to 8,192 tokens. This is the max-
imum context for a lot of models, specifically codegemma2-7B[5]
3https://pypi.org/project/langdetect/
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as it is one of the newer available models that has code inference ca-
pabilities. The initial set consisted of 85,912 comments, which was
reduced to 4,826 comments after selecting a subset of comments
while limiting overlapping repositories. These comments were then
inferred through a huggingface pipeline [34] with CodeQwen1.5-7B
[30] as the inference model.

4.3 Language
The CodeQwen1.5-7B model is based on the Qwen1.5 model, which
is advertised as a multilingual model. It is mainly trained on English
and Chinese according to the accompanying paper[30]. Linguis-
tically speaking, the Dutch language has a lot of similarities to
English due to not only their Indo-European roots but also their
West Germanic origins [12, chapter 1]. English is an Ingvaeonic
language, while Dutch has Istvaeonic origins [12, chapter 1]. Ad-
ditionally, modern Dutch has many English influences due to the
prevalence of the English language in the Netherlands, especially
among youths[32]. This may be strengthened even further in the
field of computer science, as many programming languages are
based on English keywords.

Chinese languages consist of the Sinitic branch of the Sino-
Tibetan language family[27], which means that it is not in the
same Indo-European language family as English or Dutch. On top
of the linguistic separation, a difference in writing systems between
Chinese and Dutch may cause more problems in this case. These
different writing systems create a situation in which any tokenizer
will be unable to create tokens with overlap between the two lan-
guages, even if there were linguistic similarities. This naturally
causes issues as the inherent impossibility of token overlap causes
problems with semantic similarity.

5 RESULTS
5.1 Quantitative
We plotted the BLEU-1 and ROUGEL-F1 scores for the research
dataset, resulting in the following graph which seems to follow a log
distribution. A peak can be found at score 1 which is explained by
identical matches between inferences and original comments. An-
other peak can be found at score 0 which is explained by inferences
that have no overlap with their original comments.

Figure 2: BLEU-1 & ROUGEL-F1 occurances

This graph shows that the inferred comments are either identical
to the original or relatively dissimilar on average. Additionally,
it shows the difference between BLEU-1 and ROUGEL-F1 scores,
it seems as if the ROUGEL-F1 score is higher on average. This
can be explained by the difference in calculations where ROUGEL-
F1 evaluates the longest common subsequence whereas BLEU-1
evaluates direct similarity.
The BLEU-1 and ROUGEL-F1 scores were also plotted against the
accuracy for the 600 manually analyzed comments. Boxplots were
used to analyze the relation between these two components. It can
be seen that for both the BLEU-1 and ROUGEL-F1 metrics there are
low mean scores except for cases with Accuracy 2, this indicates
that on average fully accurate inferences have a higher BLEU-1 and
ROUGEL-F1 score. In addition, it can be seen that the BLEU-1 and
ROUGEL-F1 scores of partially accurate inferences do not differ
much from their inaccurate counterparts.

Figure 3: BLEU-1 compared to Accuracy

Figure 4: ROUGEL-F1 compared to Accuracy
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5.2 Qualitative4

Table 1: Taxonomy of errors including occurrence count and number of overlapping leaf categories in compared
taxonomies

Failure category plus label ID Count Mahmud et al.[21] Sharou and Specia [28] Huidrom and Belz[13]

MS Model-oriented Errors
MS-IG Incoherent Generation
MS-CC Copy context
MS-ME Memorization

MS-ME1 PII
MS-ME2 URL
MS-ME3 Training Memorization

MS-ET Early Termination
MS-LT Late Termination
MS-NG No Generation
MS-RE Repetition

MS-RE1 Pattern Repetition
MS-RE2 Verbatim Repetition

398
3
58
13
9
3
1
50
107
0

167
57
110

-
-
-
-
-
-
-
8
-
-
-
2
2

-
-
-
-
-
-
-
-
-
-
-
-
-

-
1
2
-
-
-
-
-
1
-
-
1
1

LG Linguistic Error
LG-GR Grammar

LG-GR1 Plurality
LG-GR2 Conjugation
LG-GR3 Gender
LG-GR4 Language Syntax
LG-GR5 Capitalization
LG-GR6 Cohesion

LG-IS Incorrect synonym
LG-WL Wrong language

LG-WL1 Undesired translations
LG-WL2 Incorrect language

66
33
1
2
6
7
1
16
0
33
5
28

-
2
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
1
-
-
1
1

-
-
-
-
-
-
-
3
2
-
1
1

SE Semantic error
SE-MD Missing Details
SE-TS Too specific
SE-HA Hallucination

SE-HA1 Misplaced Facts
SE-HA2 Out of Context
SE-HA3 In context

SE-CS Completion includes code
SE-CS1 Code commented out
SE-CS2 Code intended to run

520
38
16
290
33
21
236
185
30
155

-
15
3
-
1
1
3
-
-
-

-
1
-
-
3
2
3
-
-
-

1
1
-
-
1
1
1
-
1
1

ST Syntax
ST-IF Incorrect comment format

ST-IF1 Comment Syntax
ST-IF2 Omitted Identifier

8
8
1
7

-
-
-
-

-
-
-
-

-
-
-
-

+ Fully accurate 131

E Excluded 620

4This taxonomy was made in collaboration with 4 other students and takes Polish,
Greek and Chinese examples into account as well.
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Figure 5: Label occurences

In addition to the occurrences of individual errors we found the
error pairs which occurred together most frequently to be able to
analyse the co-correlation between errors.

Error pair Occurences
(SE-HA3, SE-CS2) 91
(SE-HA3, MS-LT) 52
(SE-HA3, MS-RE2) 43
(SE-CS2, MS-LT) 42
(SE-HA3, MS-RE1) 38
(SE-CS2, MS-CC) 27
(MS-LT, MS-RE2) 26
(MS-ET, MS-RE2) 22
(SE-HA3, MS-CC) 20
(MS-LT, MS-CC) 17
(SE-HA3, LG-WL2) 16
(MS-CC, MS-RE2) 11
(SE-HA3, SE-CS1) 11
Table 2: Error pair occurences

Additionally, we evaluated the occurrences of different accuracy
values resulting in the following values:

• Inaccurate (0) - 182 occurrences
• Partially accurate (1) - 287 occurrences
• Fully accurate (2) - 131 occurrences

6 DISCUSSION
6.1 Quantitative analysis
We found that the BLEU-1 and ROUGEL-F1 scores of these infer-
ences have a lowmean value. The values also do not seem to always
be directly related to the quality of a comment as they only reflect
the similarity of an inference to its original comment. There are
comments that are totally dissimilar to the original but of high ac-
curacy, and comments that are highly similar to the original but of

low accuracy. Several problems were identified which could explain
these shortcomings. Both BLEU-1 and ROUGEL-F1 depend on the
presence of reference sequences which are used to create the scores.
As the dataset originated from open-source Github code there was
a large disparity in quality, which resulted in unreliability in the
reference sequences. Additionally, these scores perform better as a
metric when there are several reference sequences, which are not
easily obtainable in this use case. Besides these issues, there are
often several correct ways to summarize code depending on the
surrounding context.

It can be seen in Figure 2 that the ROUGEL-F1 score displays
a higher peak at 1 than the BLEU-1 score, this may be explained
by the tendency of models to keep generating new tokens even if
the inference could be deemed sufficient causing comments with a
higher recall score to occur which cause higher ROUGE-F1 scores.

6.2 Qualitative analysis
Our results in Table 1 point to four categories under which all errors
can be classified, these categories have differing inclusion criteria
justifying their separation. This naturally leads to an answer toRQ1
as these four broad categories were used to classify all common
mistakes made by LLMs within the provided context.

• Linguistic errors
• Semantic errors
• Model behavior errors
• Syntax errors

Linguistic errors are defined as errors that are related to the
linguistic aspect of an inference. In this case, these errors were
related to the Dutch language, it was found that most errors did
not fall into this category.

Semantic errors are related to the meaning of a comment. An
error was deemed as a semantic error if the fundamental meaning
of an inference differed from the expectation in regard to the code
context. These types of errors usually were accompanied by model
behavior errors as can be seen from the following graph:

Model behavior errors are errors that are related to the known
behavior of large language models. These errors are known as
mistakes made by large language models and they illustrate the
current weaknesses of these models within this context.

Syntax errors are related to the syntax of Java, they are errors that
occur when the syntax of Java is broken or misused in some way
resulting in an error. In the context of this paper, these errors were
specifically interesting in cases where the Java comment syntax
was broken or misused in some way.

Regarding the occurrences of specific errors, the following errors
occurred most frequently according to Figure 5: SE-HA3, SE-CS2,
MS-RE2, MS-LT, MS-RE1.

These errors point towards the ability of the model to operate
within the correct context while making errors. The most common
mistake made by the model was SE-HA3 which supports this claim.
SE-HA3 indicates an in context hallucination of the model which
indicates the usage of the surrounding context in a way that does
not make sense for the inference itself.

Additionally, it seems as if these models oftentimes predict code
when they should just be predicting comments. This can be seen
by the prevalence of SE-CS1 and SE-CS2 errors.
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In addition, MS-LT late terminations and MS-RE repetition were
common mistakes. Both of which often occurred together with SE-
HA3 errors. These mistakes are especially unfortunate as the late
termination errors specify that the content before the additional
inferences was accurate.

It also seems as if the model performs well in the context of Lin-
guistic and Syntactic mistakes as these errors occurred relatively
infrequently. The most common linguistic mistake was LG-WL2
which might be related to the linguistic similarity between Dutch
and English as the incorrectly predicted language was always Eng-
lish. The second most common linguistic mistake was LG-GR6
which indicates an incoherent sentence, but this mistake only oc-
curred 16 times.

Another point that should be addressed is the overall perfor-
mance of the model on summarization tasks, our research indicated
that the generated comment was oftentimes at least partially ac-
curate. In fact, only 30.3% of generations were totally inaccurate
according to the manual check. 131 Inferences were fully accurate
and 287 inferences were at least partially accurate which means
that they could be made accurate with adjustments.

6.3 Comparison
We found that our taxonomy contained almost all leaf nodes of
the other taxonomies while sacrificing specificity. SE-MD "Missing
Details" for example had overlap with 15 categories in the taxon-
omy created by Mahmoud et al[21]. This taxonomy was especially
detailed regarding semantic errors, therefore all of the categories
overlap with our taxonomy which contains relatively broader cate-
gories. This indicates that our taxonomy could possibly be expanded
by adopting these categories as subcategories for their respective
matches.

A focus point we would like to address is the categories that
were not present in our taxonomy but were present in the other
papers. The taxonomy created by Sharou and Specia[28] contained
two categories that were not present in our taxonomy. One of
these categories was "Deviation in toxicity (TOX)" which describes
inference errors where the inferred text incites negative actions
towards an individual or group based upon incorrect translation.
We have not found any errors which can be categorized under
TOX within our research dataset. The other category that was
missing from our taxonomy was "Deviation in health/safety risks
(SAF)" which describes inferences where health and safety risks
are introduced into the text through translation errors. We also
were unable to find any such occurrences within our dataset. We
believe these categories to be important to consider nonetheless
due to their negative impact when they do occur. If automatic
code summarization becomes widespread, these errors may become
more relevant, especially in critical use cases such as medical or
governmental software.

There were also several categories within the taxonomy created
by Huidrom and Belz[13] which did not overlap with our taxon-
omy. We evaluated the maximally merged dataset within the paper.
One interesting case that we did not address is the existence of
orthogonal error types, these errors aid in structured categorization
of errors without blowing up the taxonomy size. We decided to
generalize the errors while classifying them for this paper due to

our interest in the broad categories under which LLM categories
can be classified but this is an elegant way to allow for additional
classification. In addition, their taxonomy contains an "ERROR IN
INPUT" category which describes errors which are caused by an
error in the input. We excluded these errors as we believed them to
be a misuse of the model in the context of the experiment within
this paper. It may be interesting however, to analyze whether a
model is able to correct the output regardless of an input error. Ad-
ditionally, Huidrom and Belz included an "Other" category which
technically causes full overlap with our taxonomy.

6.4 Implication
One of the major implications which result from Table 1 is the
prevalence of LLM specific errors and Semantic errors in this exper-
iment. It seems as if there are still many mistakes which might be
corrected with further development. Hallucinations, code snippets,
and repetitions are especially common within the error analysis.
These errors are all critical due to the way they reduce the quality
of a comment significantly by impacting the semantic meaning of
a comment.

It also seems as if there are few errors related to linguistics and
syntax, meaning that these categories already perform well on
average. Additionally, the errors mostly occurred in addition to
errors within the Semantic or LLM Specific categories.

Besides error categories, we also found that BLEU-1 and ROUGEL-
F1 scores are generally unreliable for accuracy evaluationwithin the
context of multilingual code summation if the reference sequences
are made up of public repositories. The scores generally predict
accuracy well if they have a similarity score over 0.8 but if they are
under that value they do not necessarily reflect the accuracy of an
inferred comment.

In addition, we found that the taxonomy that was created in
this experiment had significant overlap with similar taxonomies
while providing categories that classify LLM specific behavior as
well. However, the method by which this taxonomy was created left
semantic gaps within the taxonomy such as "Toxicity" and "User
safety", in addition to in-depth linguistic analysis.

6.5 Recommendations
We recommend additional attention to repetition errors and late
terminations when creating code LLMs as these errors are especially
present within the error set that we found might be solvable. The
other major errors we found were in-context hallucinations but as
these errors can be a wide range of semantic issues that finding
can not directly be acted upon. We also found that models have the
tendency to predict code snippets when given a file even if a span
mask is specifically applied to comment syntax.

Besides this, we do not think that BLEU-1 and ROUGEL-F1 are
good metrics to evaluate the similarity of code to inferred docu-
mentation and we recommend research regarding other metrics.

We also believe that an analysis of errors that models make helps
with the understanding of model behavior, therefore we advocate
for increased usage of the open coding methodology in the context
of LLMs to aid our understanding.

7



Panchu.

7 FUTUREWORK
7.1 Other languages
This paperwas limited by the languages that were analyzed. It might
be interesting to do a similar experiment with other languages,
especially a greater data analysis that takes several languages from
all major linguistic categories.

7.2 Linguistic analysis
We did not do extensive linguistic analysis as we are not linguists.
This means that there may be linguistic peculiarities in the dataset
that are interesting but have not been seen or elaborated upon. The
analysis was performed at the level of a proficient programmer
who is fluent in both Dutch and English, as this is the level of
our research team. This might be interesting in combination with
the previous point, as there might be a correlation between the
performance of languages and the linguistic distance compared to
languages that were used to train LLMs.

7.3 Custom tokenizers
We noticed that the performance of models was dependent on
the way in which data was tokenized. Existing research identifies
improved performance in specialized tasks if the tokenizers are
trained with a bias for those subsets[6]. It might be interesting
to look at the possibilities of improving performances in different
languages by either training custom tokenizers or transliterating
script to fit other language systems.

8 LIMITATIONS
We did not address high level code documentation or lines of code
in this paper, the behavior of LLMs in this context might be an
interesting field to pursue.

Other programming languages. We were limited to Java code,
which is a widely used language, but as every programming lan-
guage is different the errors that occur in a summarization context
might also differ.

Limited max token size. The maximum token size was limited
to 138, which resulted in a 95% inclusion rate for the original com-
ments. This was mostly done due to performance reasons, as longer
predictions naturally take longer to run. We believe that this did
not impact the research greatly, as we included a large part of the
original dataset and long comments are generally rare. However, it
is still recommended to lengthen this maximum in future research
if the available computing power allows for it.

Limited model size. Due to computation constraints, we only used
models with 7 billion parameters. As LLMs seem to consistently
perform better with a higher parameter count, it is better to use a
larger model[14]. It might be possible that the distribution of errors
is different when more parameters are introduced.

Limited model count. Due to time constraints, we were limited to
the analysis of only one model. This is regrettable as there might be
a bias for model behavior errors that are specific to CodeQwen1.5;
therefore, it would be preferable to perform this experiment with
multiple models in the future.

Limited dataset. We were limited in the quality of our dataset
as we automatically found Dutch code. The quality was deemed

sufficient as it reflects the actual quality of comments that result
from human behavior. It might be interesting to perform a similar
experiment with a curated dataset which only contains high quality
code.

Limited quantitative analysis. We were only able to perform
BLEU-1 and ROUGEL-F1 analyses on the dataset due to time con-
straints. It would have been interesting to perform different metrics
and look for score correlations between error types and metric
values.

9 CONCLUSION
The goal of this paper was to understand the mistakes make by
LLMs when performing code summarization in Dutch. The error
taxonomy which was created as a result of the open coding analysis
of errors resulted in four broad error categories which can be used
to classify mistakes. The existence of these categories partially
answers RQ1 and are as follows:

• Linguistic errors
• Semantic errors
• Model behavior errors
• Syntax errors

The most frequent errors made by the model were semantic in
nature or had to do with mistakes which were inherent to LLMs
such as repetition or hallucination.

Additionally we performed quantitative analysis of the dataset
in regards to BLEU-1 and ROUGEL-F1 scores which revealed that
both scores were usable to identify similarity which oftentimes
ensured some accuracy if the similarity was high enough. The fact
remains however that this method is not ironclad due to its inability
to predict partial correctness or cases where the similarity to the
original comment is low while the accuracy in the context of code
summarization is high. Therefore we question the reliability of
these scores as evaluation metrics in this context, which answers
RQ2.

Finally, regarding the similarity to other error taxonomies within
adjacent field asked about in RQ3. We found that our taxonomy
mostly existed as a super-set of the other taxonomies while sacrific-
ing specificity. This illustrates the cross-disciplinary nature of the
taxonomy and indicates the relation between the created taxonomy
and its underlying ground truth. Our main take away is the lack of
toxicity and safety analysis in out current taxonomy which should
be expanded upon if the taxonomy is used to classify errors in a
context where these classifications are relevant or desired.

10 RESPONSIBLE RESEARCH
In this section, we will briefly elaborate upon our adherence to the
Netherlands Code of Conduct for research integrity[3]. This will
be done by explaining how we adhered to the five fundamental
principles and by addressing any concerns we may still have.

10.1 Honesty
We have tried to evaluate our findings as extensively as possible
and to give as many views of the research as possible. Additionally,
we have tried to make clear inclusion and exclusion criteria at every
step of the way to ensure our own honesty and adherence to the
scientific method.

8
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10.2 Scrupulousness
The methods which were used in this paper all have their origins in
existing research or resulted from analysis of the data used during
the research. Additionally, any decisions which were made have be
clarified to the best of our ability.

10.3 Transparency
We have tried to maximize our transparency by describing every
step in our research process. Additionally, all code has been made
available publicly, so the experiment can be repeated independently
if needed. In addition, the method by which we acquired our dataset
has been described, and the dataset itself was published along with
this paper.

10.4 Independence
We have maintained neutrality at every step of the way in this
research paper, and any possible biases such as choices of language
or model have been addressed as limitations of the paper.

10.5 Responsibility
We believe that research into the multilingual availability of LLMs
is both scientifically and socially relevant due to the increasing
prevalence of this technology in day-to-day life. The field of multi-
lingual availability of this technology has the benefit of increasing
accessibility to cutting-edge technology. Even if this paper touches
a small section of the wider field, we believe it to be a step in the
right direction regarding the ethical use of AI.

10.6 Data
The original dataset consists of open-source Github code which
was made public by the original creators. We did not run or use
the code in any setting, limiting our usage to analysis as described
in the paper. While the practice of mining open source code is
frequently used in the field of research, concerns have been raised
regarding the usage of these datasets and whether there may be
violations of the licenses of the code bases[15]. We do not use any
code for the training of LLMs, which is the main problem with the
violation of these licences however. We were unable to find a way
to mitigate these concerns during this research but chose to include
the discussion to highlight our concerns regarding the topic.

10.7 Label transparency
We were limited in the open coding process by our lack of language
experts, we were unable to implement extensive safeguards regard-
ing the correctness of our labels. Additionally we were unable to
verify the labels using a second reviewer. We have tried to miti-
gate this concern as much as possible by defining inclusion and
exclusion criteria as extensively as possible to create transparency
regarding our labeling choices.

10.8 Experiment transparency
The entire process is described extensively, and tools are available
to find similar results. One possible limitation is the high computing
requirements needed to repeat this experiment, as LLMs of this size
require significant computing power to run. Sadly, this fact cannot

be mitigated, which creates a limitation on the repeatability of this
experiment for people or institutions with limited resources.
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