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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is one of the promising non-
invasive technology that helps in the detection of neurodegenerative and neurological dis-
orders, localisation of the different areas of the brain and understanding the connectivity
between them. It involves the acquisition of time series of MR images while the brain is at
"resting-state" and serves as a biomarker for various neurological conditions. The acquired
resting-state blood-oxygen-level-dependent (BOLD) data, however, can be corrupted with
various artefacts (head movements, physiological movements like breathing etc.). Several
preprocessing pipelines have been developed to counter the effect of these known artefacts.
However, there might be some artefacts that could not have been attenuated from the signal
and might lead to incorrect assessment. Therefore, the thesis proposes model-based filtering
of the minimally preprocessed (free from known artefacts) resting-state BOLD signal. It was
observed that these signals have long memory dependencies. Hence, the usage of autoregres-
sive fractional integrative process filters is proposed for this purpose.

Furthermore, the utility of the approach is demonstrated by removing the effect of white noise
from a synthetic signal with statistical properties similar to the resting-state BOLD signal.
Afterwards, the proposed method is implemented on the minimally preprocessed resting-state
BOLD data of 98 subjects from the Human Connectome Project. The results suggest that
the proposed filter, in contrast to the low-pass filter, attenuates the higher frequencies but
do not eliminate them. Additionally, four different evaluation measures (power spectrum,
functional connectivity using Pearson’s correlation and coherence, and eigenmode analysis)
were considered. The results provide evidence that the proposed method can be used as an
additional step in the already existing preprocessing pipeline to mitigate some artefacts that
could not have been filtered out. Besides, the results also provide evidence that the proposed
scheme is suitable to capture the dynamics of resting-state BOLD signals.
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Chapter 1

Introduction

Technological advancements have brought a revolution in the field of biomedical. Some ex-
amples include the devices that provide continuous monitoring of the biological vitals of the
human body, automatic administration of the drugs to the patients and scanners to monitor
the internal organs of the body. The driving force behind this development is the improve-
ment of human health. However, there exist an unprecedented challenge for the control of
chronic and neurological disease such as Alzheimer’s, mental illness, stroke [3], [4].

One effective way to cure these disease is the diagnosis at an early stage [5] [6]. The neuroimag-
ing techniques such as positron emission tomography (PET), functional magnetic resonance
imaging (fMRI), electroencephalography (EEG) [7], [8], [9] provides a great potential to serve
as predictive biomarkers of the neurological conditions. Due to the non-invasive nature and
lack of exposure to radiations, fMRI has gained popularity for understanding the functioning
of the brain [10].

At the heart of fMRI technology is the acquisition of blood-oxygen-level-dependent (BOLD)
signal from the brain and its analysis. Being a data-driven approach, it is prone to con-
tamination by artefacts. Hence, it can lead to a false-positive (indicating the presence of
disease when in reality it is not present) or a false-negative (indicating the absence of disease
when it is present) result. A false-positive diagnosis may result in unnecessary treatment
and, a false-negative result can lead to a wrong diagnosis. Therefore, the correct analysis
is highly dependent on the accuracy of the data. The thesis thus focuses on improving the
preprocessing pipeline of the data.

1-1 Motivation

fMRI is a non-invasive imaging modality used for mapping the functionality of the brain.
It serves as a proxy for neuronal activity by measuring the amount of blood flow. The
fMRI studies assess the fluctuations in BOLD signals of the brain generated as a time series
during rest or as a response to some task or externally applied stimulus. The observations by
Biswal et al. about the temporal correlation between the BOLD fluctuations of left and right
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2 Introduction

hemispheric regions of the primary motor cortex during rest laid the foundation for a new era
of research to understand the neuroanatomy by analysing the resting-state fMRI (rs-fMRI)
BOLD time series data [11], which is also the area of research of this study.

As the name resting-state fMRI (rs-fMRI) suggests; it is the measurement of MR signal
when the subject is in resting-state. Therefore, in these experiments, subjects are placed
into the MR scanner and instructed to rest without falling asleep. rs-fMRI holds several
advantages: minimal behavioural demands due to lack of explicit task, flexibility in terms of
study participants and easier data acquisition, making it a good choice for its use in detecting
neurological disease.

A rapid growth in rs-fMRI literature has been witnessed [12] and numerous studies illustrate
its potential use in clinical applications. For instance, there have been recent studies that
show the use of resting-state BOLD data to detect Autism spectrum disorders [13]. Then
there are studies, which depicts that the rs-fMRI can not only help in the detection of disease
but also assists in understanding the psychological behaviour of human. For example, Cao et
al. describes how this technology can be used to study brain activity in depressed patients
showing suicidal behaviour [14]. Another study illustrates its usage to detect drug abuse [15].
Barkhof et al. presents a review of number of clinical applications of rs-fMRI [16].

However, the resting-state BOLD data can be corrupted with confounds such as distortion due
to head motion, cardiac and respiratory physiological noises, motion due to swallowing, and
scanner instabilities [17]. Marcus et al. in [18] showed that of the total variance in resting-
state BOLD data considered by them, nuisance components account for 16% of variance,
motion regressors for 14%, neural components for 4% and rest is due to other artefacts.

Failure to separate these nuisance signals from the signal of interest can affect the correct
analysis of resting-state BOLD data. Numerous methods have been devised to clean-up
(preprocess) this data from artefacts due to head motion, slice time correction, physiological
noises and hardware instabilities (Murphy et al., 2013 presents a detailed review [1]). Several
studies mark the importance of preprocessing of resting-state BOLD data. For instance,
Grifaanti et al. in [19] illustrate the significance of effective cleaning of rs-fMRI data for early
detection of Alzheimer’s disease by comparing the generated functional connectivity alteration
maps and SNR from four different cleaning methods. A non-clinical study by Craig Bennett
[20] wherein a fMRI experiment was performed on a dead salmon, further demonstrated the
sensitivity of the acquired data. He showed the dead salmon some photographs of humans
with different emotions. Strangely, the dead salmon’s brain showed evidence of activity. In
other words, the fMRI scan showed that the dead salmon was thinking, thus highlighting the
dangers of false positives in the data.

Even after the application of different preprocessing methods, the rs-fMRI data obtained may
include signal fluctuations due to unknown sources of noise or spurious fluctuations caused
by the reintroduction of some artefacts that were removed previously but got added in the
later preprocessing steps [21]. To account for these limitations, the study proposes to take
minimally preprocessed resting-state BOLD signals and perform time-domain filtering using
a fractional parametric filter. The presence of long-term memory in these signals as captured
by their autocorrelation functions led us to propose a univariate Autoregressive Fractional
Integral Moving Average (ARFIMA) model [22] that is suitable to deal with (some) similar
cases to capture such dependencies.
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1-2 Research Questions 3

1-2 Research Questions

Fractional calculus is being widely used to model long-range dependencies of data in numerous
fields, namely, signal processing, control engineering, biomedical systems and physics (Magin
et al. in [23] provides a reference to literature in each of these domains). The long-term
memory in the resting-state BOLD signals have been identified through fractal modelling
(self-similarity structures) in several studies [24], [25], [26]. Herman et al. in [27] studied
fractional properties in spontaneous BOLD fluctuations of a rat brain. Wang et al. used
them to study the effect of different levels of isoflurane anesthesia [28].
However, this is the first time that such a fractional filter is being proposed for the filtering
(modelling) of the resting-state BOLD data to the best of the authors’ knowledge. To realize
the objective, the study intends to find an answer to the following research questions:

Figure 1-1: Mind map for formulating the objective of the thesis.

• Is it possible to use the concept of time series filtering to derive model-based filter to
further cleanup the already preprocessed (i.e., data where identified noise sources have
already been removed) resting-state BOLD signals?
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4 Introduction

• Are the properties of derived model-based filters different from the typical low pass
filters?

• Is the derived filter fulfilling its objective of filtering resting-state BOLD data, not at the
expense of introducing spurious functional connectivity between different brain regions?

The entire process of reaching to the formulation of defined objective and research questions
is structured in Figure 1-1.

1-3 Research Contributions

Technological innovations have made available numerous sensors that can provide finer details
on the inner body parts and organs. The analysis of the data from sensors can help and
improve the diagnosis. However, the acquired biomedical signals contain different types of
noise. A major part of the research nowadays looks into methods to extract clinically viable
information. On the similar grounds, this study provides a method to mitigate the effect of
the leftover noise from the resting-state fMRI data.

The proposed filter is limited to the field of resting-state BOLD signals for this research.
Nonetheless, its scope can be extended to other biomedical signals or even signals in other
domains that have the long-term memory structure such as financial time series, electroen-
cephalography signal and underwater signal [29]. As noticed in this study, the proposed
filters are suitable for modelling the low-frequencies, therefore, their usage can be advanta-
geous where a low-frequency signal is of paramount interest.

This study as part of Master’s thesis is not limited to the degree, rather we have also submitted
a paper based on the conducted research in the PLoS One journal. The implementation of
the proposed method (i.e., the MATLAB code) can be accessed here: link to git repository.

1-4 Thesis Outline

The report is organised as follows: Chapter 2 provides a brief introduction on the principle
of rs-fMRI, its interpretation as time series, the outline of the conducted literature survey
on the presence of artefacts in the resting-state BOLD data and the concepts of time series
filtering. Chapter 3 introduces the dataset used in the study and discusses the proposed
methodology to fulfil the objective of the thesis. Chapter 4 analyses the results obtained after
implementation of the proposed method, and finally, the report concludes with a discussion
on limitations and future work of the study in Chapter 5.
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Chapter 2

Background Information

This chapter begins with a brief introduction on the principle of MRI followed by a discussion
on the principle and data acquisition of rs-fMRI. Further, it presents an overview of the
previously proposed methods to mitigate the effect of artefacts in the rs-fMRI data. The
chapter also discusses the concepts of modelling of time series. The concepts discussed here
are used in the latter part of the research to formulate the proposed method.

2-1 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique used to
examine the functional connectivity of the brain and to study its neuronal activity. It consists
of acquiring a sequence of magnetic resonance (MR) images over a course of time (Figure 2-1).
Therefore, the primary building step towards understanding the acquisition of fMRI data is
studying the principle and acquisition of MR images.

2-1-1 Magnetic Resonance Imaging

Magnetic resonance is the effect that is observed when radiofrequency electromagnetic waves
perturb a magnetic dipole placed in a stronger magnetic field. This phenomenon occurs in
nuclei possessing non zero spins (i.e., the number of protons in a nucleus is not equal to the
number of neutrons). One such nucleus available in abundance in the human body is the
hydrogen atom

(1H
)
. Therefore, in magnetic resonance imaging (MRI) of the human body,

the MR signal arising from dipoles of the hydrogen atom is looked upon.

The MR imaging process begins with placing the subject in an electromagnet having a strong
magnetic field, B0 of the order of 1.5 to 7T. The presence of this strong magnetic field exerts
a force on the hydrogen atoms aligning them in parallel or anti parallel direction to the main
magnetic field. As a result, a net magnetic moment, M is created parallel to B0 as shown
in Figure 2-2. This process is similar to how a small bar magnet aligns itself to the local
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6 Background Information

Figure 2-1: fMRI technology: Acquistion of MR images over a period of time.

(a) (b)

Figure 2-2: Alignment of nuclear spins in presence of strong magnetic field. (a) In absence of
strong magnetic field, hydrogen nuclei are randomly aligned. (b) After application of magnetic

field B0, net magnetic moment M is developed in the direction of applied magnetic field.
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2-1 Functional Magnetic Resonance Imaging 7

magnetic field. In this state, the system is said to be in the state of equilibrium. Now, a radio
frequency (RF) pulse is applied to the system leading to the excitation of the nuclei and they
start precessing in phase. This excitation is only possible at a resonance frequency termed as
Larmor frequency given by

ω = γB0, (2-1)

where ω is the Larmor frequency, γ is the gyromagnetic ratio, and B0 is the external applied
magnetic field. At this frequency, the RF pulse, Brf tilts the net magnetic moment M away
from B0. This effect on magnetic moment due to RF pulse can be seen in Figure 2-3. In this
scenario, the system is said to be in a non-equilibrium state. Once the RF pulse is removed,
the hydrogen nuclei tend to return to their equilibrium state by emitting radio waves, which
induce a current in the receiver coil. The emitted RF signal is referred to as free-induction
decay (FID) response signal, and the induced current provides the MR signal.

Figure 2-3: RF pulse Brf tilts the net magnetic moment M away from B0.

The relaxation of hydrogen nuclei back to their original state can be described by two expo-
nential processes with time constants T1 and T2. The exponential process with time constant
T1, also known as longitudinal relaxation, measures the time required for the relaxation of
nuclei back to their equilibrium state (i.e., realign itself in the direction of the applied mag-
netic field). The transverse relaxation defined by the time constant, T2 measures the time
required for the FID response signal to decay i.e., time taken by nuclei to dephase in the
transverse direction (which were earlier precessing in phase). Ideally, the transverse relax-
ation follows an exponential decay; however, the presence of inhomogeneities (tissue-related
or magnet-related) in the applied magnetic field aids in speeding up the process of transverse
relaxation. The time constant in this case is termed as T2*. The size of these tissue-related
inhomogeneities in the brain is dependent on its physiological state (i.e., the composition of
blood supply to the brain), which in turn is dependent on the neural activity and is measured
by the T2* parameter. T2* thus, is an indirect measure of neural activity.

This section is a basic description of the process of MRI. The detailed description of the same
and the mathematics behind the MR image formation can be found in textbooks [30], [31]).
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8 Background Information

2-1-2 Blood-Oxygen-Level-Dependent (BOLD) fMRI

The technique which forms a link between the neural activity of the brain and measured
T2* is the mechanism called blood-oxygen-level-dependent (BOLD) contrast. In fMRI, these
BOLD signals are the signal of interest.

fMRI study is based on the fact that the oxygenated and deoxygenated haemoglobin have
different magnetic susceptibilities. Deoxyhemoglobin (dHb) being paramagnetic introduces
inhomogeneities in the local field leading to faster dephasing of hydrogen nuclei spins which in
turn shortens T2* and thus suppresses the intensity of the received MR signal. This effect of
dHb on T2* was first observed by Ogawa et al. in their study on the rodent brain [32]. They
concluded that the BOLD contrast varies with change in blood oxygen and, thus, provides
an additional feature to study brain neural activity using MRI [33]. This formed the basis
for the analysis of BOLD signals in fMRI.

Attwell and Laughlin in 2001 [34] noticed that cerebral metabolic rate of oxygen consump-
tion (CMRO2) increases with an increase in neural activity. This implies that when the
blood reaches the area with increased neural activity, more oxygen is loaded from the passing
haemoglobin in the local venous blood vessel leading to increased dHb in the local blood
vessel, hence, shortening T2* and thus, reducing the BOLD signal.

However, earlier studies [33] and [35] show that the BOLD signal increases in response to
neural activity (i.e., decrease in dHb concentration should be observed). The observed de-
crease in dHb concentration is due to an increase in cerebral blood flow (CBF) and cerebral
blood volume (CBV) in response to increased neural activity. Increased neural activity leads
to increased demand for oxygen and, hence, oxyhaemoglobin is oversupplied to the activated
area, thus, resulting in the decrease of dHb concentration (i.e., increase in the magnitude of
BOLD signal).

The explanation of these two contradicting scenarios is based on the fact proven by Hoge et
al. that the resulting increase in CBF in response to neural activity is two times the increase
in CMRO2 [36]. Hence, an overall increase in BOLD signal is observed with increased brain
activity. Therefore, in a simplified manner, the activation of neurons leads to an increase
in local blood oxygen and hence, the amplitude of BOLD signal increases [37], [38]. Figure
2-4 shows a schematic representation between increase in neural activity and BOLD signal.
Hence, the change in metabolic demand of neurons leads to the observed fluctuations in the
acquired BOLD signal, as can be seen in Figure 2-5.

2-1-3 Fluctuations in resting-state BOLD fMRI

The fluctuations in resting-state BOLD signal consists of contribution not only due to true
neural activity of the brain but also from several physiological and non-physiological sources.
Physiological sources of noise include artefacts arising from both neuronal and non-neuronal
components such as due to cardiac and respiratory cycles as well as blood pressure oscillations
[1], [39]. Non physiological noises include drift, slice time correction, head motion and scanner
instabilities [1], [40], [41].

Inability to properly account for these confounds or noises present in the resting-state BOLD
signal can have a considerable effect their analysis. For instance, Van Dijk et al. in [42] shows
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2-1 Functional Magnetic Resonance Imaging 9

Figure 2-4: Representation of relationship between increase in neural activity and magnitude of
BOLD signal (Modified from [1]).

Figure 2-5: Time series of resting-state BOLD signal from one of the regions of brain.
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10 Background Information

the effect of head motion on the functional connectivity measures of rs-fMRI. These nuisance
components pose a risk of artificially influencing functional connectivity between different
brain regions and thus yielding spurious results [39]. The influence of nuisance components
may vary and depend on the number of factors [40]. Therefore, an effective preprocessing
pipeline is needed for the separation of true neural data from the acquired noisy resting-state
BOLD signal.

Existing Denoising Methods in resting-state BOLD fMRI

Many denoising approaches have been developed for isolating true neural activity from ac-
quired rs-fMRI data. These include the following: (i) model-based approaches which estimate
contributions to BOLD signal from physiological sources [43] or due to head motion [44]; (ii)
data-driven approaches which estimate noise from data using independent component analy-
sis [40]; (iii) scrubbing (removing) time points acquired during the period of high motion [45];
(iv) combining data-driven methods with multiecho data acquisitions, which were observed to
perform better in terms of removing noise from resting-state BOLD signal fluctuations [46].

In resting-state fMRI, the change in amplitude of BOLD signal is observed over time (Figure 2-
5 shows an example of resting-state BOLD time series). Therefore, it presents a great potential
to interpret this data as time series and perform filtering. The research thus, is aimed at
exploring methods to achieve its objective of removing confounds from resting-state BOLD
data by interpreting it as time series. The following section highlights some of the basic
concepts of time series modelling.

2-2 Time Series Modelling

Informally, a time series can be described as a set of observations taken sequentially in
time [47]. If this set is discrete, the time series is said to be discrete time series.

Definition 2-2.1 (Time Series [47]). A time series zt ofN successive observations zt1 , zt2 , . . . , ztN ,
where, ztn ∈ C, is a realization from a set of infinite time series that could have been generated
by the stochastic process Zt .

As the time series is a realization of a stochastic process and it will be clear from the context
of discussion what is being referred to, therefore for ease, no notational distinction is made
between both of these concepts. The modelling of time series is generally done with the
assumption of time-invariant statistical properties widely known as stationarity. Another
important property of the time series is based on the measure of dependency or correlation
and is known as long-memory and short-memory processes. The following sections provide a
brief description of these properties of time series.

2-2-1 Stationary time series

Stationarity can be defined as a sort of regularity that may exist over time in the behaviour
of a time series [48]. Mathematically, it can be defined as follows.
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2-2 Time Series Modelling 11

Definition 2-2.2 (Strictly Stationarity [48]). Stationarity is defined as a series having sta-
tistical properties (i.e. mean, variance and covariance) that do not change over time. Thus, a
time series Zt is strictly stationary if, for t = {1, . . . , n} ⊆ N and τ ⊆ Z, its joint distribution
function is invariant under a shift in time:

P [Z1 ≤ α1, . . . , Zn ≤ αn] = P [Z1+τ ≤ α1, . . . , Zn+τ ≤ αn] ∀n ∈ N . (2-2)

A slightly weaker version of stationarity known as Wide Sense Stationarity.

Definition 2-2.3 (Wide Sense Stationary (WSS) [49]). WSS is a weaker notion of station-
arity. A time series {Zt : t ∈ N} is termed as WSS if its mean and covariance are time
invariant i.e., they do not change over time and the variance is finite for all time instants, i.e.,
∀t, τ ∈ N :

Mean: E[Zt] = µ <∞, (2-3)

Covariance: E[(Zt − µ)(Xt+τ − µ)] = γ0 and (2-4)

Variance: E
[
(Zt − µ)2

]
= γτ . (2-5)

2-2-2 Long memory and short memory time series

One of the measures of the dependency of time series is correlation between values of time
series at different time instants. This correlation of the time series with itself can be measured
by sample autocorrelation function.

Definition 2-2.4 (Autocorrelation Function (ACF) [47]). ACF defines the correlation of a
signal with its delayed copy and is given by

ρk =
∑n−k
t=1

(
Zt − Z̄

) (
Zt+k − Z̄

)
∑n
t=1

(
Zt − Z̄

)2 , (2-6)

where ρk is the sample autocorrelation function at lag k, Zt is the observed time series, and
Z̄ is the mean of the time series [47].

The processes which exhibit short-memory property have an autocorrelation function that
declines exponentially as the distance between time increases [29]. However, there exists time
series which possess the long-range dependence (LRD) structure or long-memory property,
i.e., there is strong coupling (correlation) between signal and its delayed copy. Hence, its
sampled autocorrelation function has an inverse power law behaviour (i.e., slowly declining
autocorrelation function) which is the case in the sample autocorrelation plot of the resting-
state BOLD time series from one of the regions of the brain, illustrated in Figure 2-6. The
blue lines in the figure indicate the default 95% confidence interval calculated based on the
assumption that the process is white noise [47]. If the autocorrelation value is within this
region, it means the coefficient is statistically insignificant and can be ignored.

One of the common approaches to model this LRD structure is differencing the time series.
A set of model that uses the concept of fractional differencing for modelling of long memory
time series is Autoregressive Fractional Integral Moving Average (ARFIMA) model.
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12 Background Information

Figure 2-6: Sample Autocorrelation plot of the resting-state BOLD signal from one of the
regions of brain. The inverse power law behavior of the plot depicts the presence of

long-memory in the signal.

2-2-3 ARFIMA modelling

ARFIMA (p, d, q) modelling is an extension to conventional Autoregressive Moving Aver-
age (ARMA) (p, q) by incorporating a fractional differencing term in them. The primitive
knowledge of the ARFIMA processes was given by Granger et al. [22]. Some of the known
processes that exhibit LRD property are: financial time series, electroencephalography signal,
and underwater signal [29]. Although integral differencing can also model the LRD property
in the data, however, economists believe that this may lead to losing some important infor-
mation from the data [22]. Xiu et al. in [50] gives mathematical proof of how integer order
differencing might lead to over differencing and hence, highlights the importance of fractional
differencing. Henceforth, the existing ARMA models, which are capable of modelling the
short-memory time series are extended to ARFIMA models thus, capturing the long run
dependencies and non-stationarity among the data.

A complete mathematical theory about fractional calculus, fractional differential equations
and fractional integrals can be found in literature [51], and [52]. This section highlights some
basic concepts of the ARFIMA (p, d, q) modelling.

ARMA (p, q) model

Consider a stationary stochastic process Zt consisting of zt1 , zt2 , . . . , ztm , M , successive ob-
servations made at equidistant time intervals. Using ARMA (p, q) modelling, the process Zt
can be modelled as

φ(B) (Zt − µ) = ψ(B)εt, (2-7)

where µ is the mean of the process Zt, εt is the independent and identically distributed
(i.i.d.) noise with mean zero and bounded variance. In particular, the noise can be assumed
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2-2 Time Series Modelling 13

to be white gaussian noise, which is described by a normal distribution with zero mean and
variance σ2

ε , denoted by εt ∼WN
(
0, σ2

ε

)
. Additionally, φ(B) and ψ(B) are the autoregressive

and moving average operators respectively, and B is the backward shift operator defined as
BZt = Zt−1, i.e., BiZt = Zt−i.

The autoregressive and moving average operators represented in terms of backshift operator
are defined as

φ(B) = 1−Bφ1 −B2φ2 − · · · −Bpφp (2-8)

and
ψ(B) = 1 +Bψ1 +B2ψ2 + · · ·+Bqψq, (2-9)

where φ1, φ2, . . . , φp ∈ R are the autoregressive parameters, p ∈ N is the order of the autore-
gressive component, ψ1, ψ2, . . . , ψq ∈ R are the moving average parameters, and q ∈ N is the
order of the moving average component.

The ARMA (p, q) model in Equation 2-7 can be termed as purely autoregressive or AR (p)
model if q = 0. An autoregressive process is defined as a process in which the current value
of a process is a linear combination of its past values and a white noise sequence and its
order p highlights the number of the past steps needed to forecast the current value [48].
Mathematically, the AR (p) process can be defined as(

1− φ1B − φ2B
2 − . . .− φpBp

)
(Zt − µ) = εt (2-10)

=⇒ Zt = µ+ φ1 (Zt−1 − µ) + φ2 (Zt−2 − µ) + . . .+ φp (Zt−p − µ) + εt, (2-11)

with φ1, φ2, . . . , φp ∈ R, p ∈ N is the order of the AR process, µ is the mean of the process
Zt, and εt ∼WN

(
0, σ2

ε

)
.

Similarly, the ARMA (p, q) model in Equation 2-7 can be termed as purely moving average
or MA (q) model if p = 0. A moving average process is defined as a process which is formed
by a linear combination of white noise sequence [48]. Mathematically, the MA (q) process
can be defined as

Zt =
(
1 + ψ1B + ψ2B

2 + . . .+ ψqB
q
)
εt (2-12)

=⇒ Zt = εt + ψ1εt−1 + ψ2εt−2 + . . .+ ψqεt−q, (2-13)

where ψ1, ψ2, . . . , ψq ∈ R, q ∈ N is the order of the MA process, and εt ∼WN
(
0, σ2

ε

)
.

However, the ARMA (p, q) processes are known as short-memory processes (i.e., ACF ρk of
such processes decays exponentially fast as h → ∞). In order to model the long-memory
processes with these general models, fractional differencing is employed.

Autoregressive Fractional Integral Moving Average (ARFIMA) (p, d, q) model

Using ARFIMA (p, d, q) modelling the stochastic process, Zt, can be modelled as [47], [29], [53]:

φ(B)(1−B)d (Zt − µ) = ψ(B)εt, (2-14)

where µ is the mean of process Zt, εt is the white noise process with mean zero and variance
σ2
ε defined as εt ∼ WN

(
0, σ2

ε

)
, (1 − B)d is called the difference operator, d ∈ R+ is the

fractional-order difference parameter, and φ(B) and ψ(B) are the autoregressive and moving
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average operators respectively as defined in Equation 2-8 and 2-9. The difference operator
can be represented in terms of gamma function by solving its binomial expansion [50], i.e.,

(1−B)d =
∞∑
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)B

k, (2-15)

where Γ(·) is the gamma function defined as follows.

Definition 2-2.5 (Gamma Function, represented by Γ [54]). It is a generalisation of a fac-
torial function for real number and complex number with real part greater than 1. The
mathematical definition of gamma function is

Γ(z) =
∫ ∞

0
xz−1e−xdx, Re(z) > 0. (2-16)

For a positive integer n, it is given as: Γ(n) = (n− 1)!.

Properties of Gamma Function: Following are some of the important properties of gamma
function, proof of which can be found in [54].

• Γ(z + 1) = zΓ(z).

• Γ(1) = 1, Γ(1/2) =
√
π and Γ(−1/2) = 2

√
π.

• Gamma function is undefined for negative integers.

Procedure for modelling of ARFIMA (p, d, q) processes

The modelling of ARFIMA (p, d, q) process where p denotes the number of autoregressive
parameters, d represents the order of fractional differencing and q denotes the number of
moving average parameters, is a three-step procedure as illustrated by the block diagram
in Figure 2-7. First, fractional differencing parameter d is determined from the long-term
memory present in the process. There are number of methods for estimation of d such as
Hurst parameter, ordinary least square, maximum likelihood, Robinson estimator, methods
based on log-periodogram [55], [56]. Second, fractional differencing procedure on the time
series Zt is employed to obtain a stationary and short-memory process, Wt, which can be
modelled by general ARMA process. Finally, the parameters p, q and the coefficients φ, ψ of
the ARMA (p, q) process are estimated from Wt to obtain an ARFIMA modelled process Xt.

Figure 2-7: Block diagram depicting three step procedure for modelling of ARFIMA (p, d, q)
process.
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2-2 Time Series Modelling 15

Fractional differencing procedure

For time series Zt, fractional differencing of order d can be given by the formula

Wt = (1−B)dZt, (2-17)

where Zt is called an integrated series with parameter d and is denoted as Zt ∼ I(d). The
binomial expansion of (1−B)d is given as:

(1−B)d =
∞∑
k=0

(−1)k
(
d
k

)
Bk

=
∞∑
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)B

k

= 1− dB + d(d− 1)B2/2!− · · · .

(2-18)

After determining the value of d, the only independent parameter in Equation 2-18 is k, and
let it be represented as f(k). Therefore, Equation 2-17 becomes

Wt =
( ∞∑
k=0

f(k)Bk

)
Zt. (2-19)

Hence,
Wt =

(
f(0)B0 + f(1)B1 + f(2)B2 + · · ·+ f(i)Bi + · · ·

)
Zt

=⇒ Wt = f(0)Zt + f(1)Zt−1 + f(2)Zt−2 + · · ·+ f(i)Zt−i + · · · ,
(2-20)

where,

t = 0 : W0 = f(0)Z0
t = 1 : W1 = f(0)Z1 + f(1)Z0
...

...
t = N : WN = f(0)ZN + f(1)ZN−1 + f(2)ZN−2 + · · ·+ f(N − 1)Z1 + f(N)Z0.

The above procedure can be expressed using matrix and thus fractional differencing can be
achieved using matrix multiplication, i.e., by computing W = Z × F , where
W =

[
W0 W1 . . . WN

]
1×N+1

, Z =
[
Z0 Z1 . . . ZN

]
1×N+1

and

F =



f(0) f(1) f(2) f(3) . . . f(N − 1) f(N)
0 f(0) f(1) f(2) . . . . . . . . .
0 0 f(0) f(1) . . . f(2) f(3)
0 0 0 f(0) . . . f(1) f(2)
0 0 0 0 . . . f(0) f(1)
0 0 0 0 0 . . . f(0)


N+1×N+1

.

The fractional differencing of the time series in this study is implemented using the procedure
described above. Further, Figure 2-8 shows the effect of fractional differencing for d = 0.4
on the ACF of a randomly simulated time series having long-memory property. Exponen-
tially declining ACF in Figure 2-8b depicts that the fractional differencing is able to capture
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(a) (b)

Figure 2-8: ACF of simulated ARFIMA (1, d, 1) process with φ = 0.5 and ψ = 0.2. (a) Slowly
declining ACF of ARFIMA (1, 0, 1) time series. (b) Exponentially declining ACF of fractionally

differenced time series modelled by ARFIMA (1, 0.4, 1).

the long-term dependency which was present in the series earlier (as can be observed from
Figure 2-8a).

Drawing motivation from the observation that the resting-state BOLD signal has properties of
long memory processes and using the theory of ARFIMA models to model such processes (dis-
cussed in this chapter), Chapter 3 aims to provide a methodology for using these parametric
models to mathematically model the minimally preprocessed resting-state BOLD data.
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Chapter 3

Proposed Methodology

This chapter introduces the dataset used for the study. Further, it presents the method
proposed to perform ARFIMA (1, d, 0) (model-based) filtering on the resting-state BOLD
signals. Additionally, this chapter also discusses the metrics which will later be used in
Chapter 4 to evaluate and analyse the performance of the proposed methodology.

3-1 Dataset

The research utilises resting-state fMRI (rs-fMRI) dataset from the Human Connectome
Project (HCP), which was minimally preprocessed by a team at the University of Penn-
sylvania. Both [57] and [58] provide a detailed description of the acquisition protocol. Briefly,
the data was acquired in four runs, each of approximately 15 minutes. There were two ses-
sions, each consisting of two runs. Within each session, in one run, phase encoding was done
in the right-to-left (RL) direction and left-to-right (LR) in another run. Participants were
instructed to relax with their eyes open and visual fixation on a projected bright cross-hair
on a dark background (and in a darkened room). The data was acquired on HCP 3T Siemens
“Connectome Skyra” scanner and was part of the HCP S1200 release. rs-fMRI data was
obtained using blood-oxygen-level-dependent (BOLD) contrast sensitive gradient-echo echo-
planar imaging having a multiband factor of 8, TE of 33.1 ms, TR of 720 ms, spatial resolution
of 2 mm isotropic voxels and a flip angle of 52 deg.

The acquisition of fMRI data requires the division of a brain into voxels. Voxels are cubic
volumes that span the 3D volume of the brain. Each voxel has a spatial location (pertaining to
the area of the brain it lies in) and a number (intensity of the measured MR signal) associated
with it. The brain is said to be composed of these 100, 000 equally spaced small cubes known
as voxels as shown in Figure 3-1 wherein the cyan-coloured cube is one of the voxels. In
BOLD fMRI, the time series of BOLD signal is the intensity of measured MR signal from
each of these voxels over a period of time as shown in Figure 3-2.

Therefore, fMRI involves interpretation of the time series of each of the 100, 000 different
voxels which is a computationally expensive process. Hence, in order to simplify the process,

Master of Science Thesis Ishita Rai Bansal
(5038057)



18 Proposed Methodology

Figure 3-1: Parcellation of brain into equally spaced voxels. Cyan colored cube shows one of
the voxel of a brain.

Figure 3-2: Prinicple of fMRI: tracking the measured intensity of a voxel (cyan colored time
series is the timeseries of intensity of a voxel) over a period of time, k = 1, . . . , T .
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3-2 Proposed ARFIMA (model-based) filtering 19

some voxels are grouped together to form Regions of Interest (ROIs). The voxels can be
grouped by creating a small search space (for instance, a sphere with radius of N voxels or
a N ×N square matrix of voxels) or based on anatomical atlases (AAL atlas [59], Talairach
Atlas [60], to name a few). Combining voxels to form ROIs helps in decreasing the number
of 100, 000 time series to a lesser number thus reducing multiple analysis [61]. Therefore, n
resting-state BOLD time series corresponding to n ROIs are obtained.

The HCP dataset (used for the study) consists of data from 98 subjects with least head
movement artefacts, and the brain of each subject is cortically parcellated [62] into n(= 100)
brain regions. Therefore, a total of n(= 100) resting-state BOLD time series with 1200 data
points for each of the four runs of each subject are considered in this research.

3-1-1 Preprocessing

The HCP resting-state BOLD underwent two-step preprocessing at the University of Pennsyl-
vania to remove the effect of known sources of noise which is summarised in Figure 3-3. The
first step utilises FMRIB’s ICA-based Xnoiseifier (ICA-FIX) methodology [63], [64] to remove
artefacts related to motion and nuisance signals. This methodology consists of first decom-
posing the resting-state BOLD signal into various independent components using MELODIC
(Multivariate Exploratory Linear Optimised Decomposition into Independent Components)
[65]. Afterwards, the method of FIX is employed for the identification of ICA components
corresponding to artefacts. Finally, the identified artefactual components are subtracted from
the BOLD data for denoising. This is followed by global signal normalisation, in which the
mean global signal is removed from the data to cancel the artefacts due to global effects
on local resting-state BOLD signals. These global effects may originate from physiological
processes (pulsation, swallowing) or variations in scanner sensitivity [66].

The minimally preprocessesd data thus obtained is further used to fulfil the objective of the
thesis i.e., to remove fluctuations due to leftover confounds such as unstructured noise from
the resting-state BOLD signals. In the context of this study, whenever we refer to the resting-
state BOLD dataset, we mean the minimally preprocessed signals, and filtered BOLD signals
imply the signals obtained after ARFIMA filtering.

3-2 Proposed ARFIMA (model-based) filtering

Each resting-state BOLD time series undergoes the Autoregressive Fractional Integral Moving
Average (ARFIMA) (model-based) filtering separately. Let Zit be a minimally preprocessed
time series from the ith ROI of the brain. The objective is to model this time series using
autoregressive fractional integral moving average (ARFIMA) model[29], [53], [47] and remove
any unwanted fluctuations due to artefacts that could not be removed earlier or that could
have been added in the preprocessing steps. Therefore, an ARFIMA (p, d, q) model is ob-
tained, where the parameters p, d and q describe the order of the autoregressive, fractional
integrative, and moving average component respectively. Specifically, an ARFIMA (p, d, q) is
described by

φ(B)(1−B)d (Zt − µ) = ψ(B)εt, (3-1)
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Figure 3-3: Preprocessing pipeline used at the University of Pennsylvania on rs-fMRI data
obtained from HCP.

where µ is the mean of the process Zt, εt is the independent and identically distributed (i.i.d.)
noise with mean zero and bounded variance. In particular, the noise can be assumed to be
white gaussian noise, which is described by a normal distribution with zero mean and variance
σ2
ε , denoted by εt ∼ WN

(
0, σ2

ε

)
. Additionally, (1− B)d is the difference operator as defined

in Equation 2-15, d ∈ R+ is the fractional-order difference parameter, B is the backshift
operator. Furthermore, φ(B) and ψ(B) are the autoregressive and moving average operators
defined in Equation 2-8 and 2-9, respectively.

The proposed ARFIMA (p, d, q) (model-based) filtering as shown in the block diagram in
Figure 3-4, can be divided into two parts: (i) estimation of the fractional difference, au-
toregressive and moving average parameters of the filter by modelling the time series as in
Equation 3-1 and (ii) use the ARFIMA model to obtain an infinite impulse response filter to
filter out any potential noise present in the data.

• Estimation of the fractional difference parameter, d: There are numerous methods avail-
able in the literature for the estimation of d as noted in Section 2-2-3. However, Liu
et al. in their study [29] remarks that the estimated value of d varies with the type of
method used. Therefore, in this study, a grid search approach is used for the estima-
tion of fractional difference parameter d such that the fractional differencing achieves
short-term memory property and yields stationary time series. Specifically, the resting-
state BOLD time series, Zit , is fractionally differenced for different values of d in the
range [0.1, 5.0] and the number of statistically significant lags (i.e., the lags for which
autocorrelation value lies outside the range ±2/

√
N , where N is the number of sample
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Figure 3-4: Proposed ARFIMA (p, d, q) (model-based) filtering procedure of the minimally
preprocessed resting-state BOLD signal.

points) are calculated. The final value of d considered is that for which the number of
statistically significant lags is minimum.
Notice that the fractional differencing of a time series yields

(1−B)dZt =
( ∞∑
k=0

Γ(k − d)
Γ(k + 1)Γ(−d)B

k

)
Zt

=
(
1− dB + d(d− 1)B2/2!− · · ·

)
Zt

= Zt − dZt−1 + d(d− 1)Zt−2/2!− · · · .

(3-2)

As such, this fractional differencing operation has an infinite impulse response; specif-
ically, it models an infinite order autoregressive process whose parameters are defined
by the fractional differencing weights. Figure 3-5 shows the value of fractional differ-
encing weights f(k) converging to 0 as k →∞ for two different values of d. Therefore,
for the practical implementation, this infinite impulse response process is converted to
finite impulse response by limiting the number of weights (i.e., by truncating the series).
Specifically, the study truncates the series of the fractional difference weights when their
absolute value is less than 1× 10−04.
As the ARMA models assume that the time series is stationary [47]. Therefore, after
fractionally differencing the time series, the study inspects that indeed the differentiated
resting-state BOLD data with the selected parameter d is stationary using the Kwia-
towksi, Phillips, Schmidt and Shin (KPSS) test [67]. It tests the null hypothesis that
the observed time series is stationary around a deterministic trend (for a significance
level of p < 0.05).

• Estimation of the autoregressive parameters, p and φ of ARMA (p, 0) model: After
obtaining the fractionally differenced short-memory and stationary series, Wt, the next
step is to model this time series using Autoregressive Moving Average (ARMA) (p, q)
model. In order to devise a causal filter [47], the moving average parameter q is set to 0
in the ARMA (p, q) model. Therefore, the obtained fractionally differenced time series
is modelled using an ARMA (p, 0) process.
Due to the inherent existence of an infinite order autoregressive process in the fractional
differencing operation in ARFIMA (p, d, 0) modelling, the order p of the autoregressive
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Figure 3-5: Convergence of fractional differencing weights to 0 for different values of fractional
differencing parameter: d = 0.7 (cyan colored curve) and d = 1.3 (red colored curve).

component is limited to 1. This helps in restricting the number of degrees of freedom
and obtaining a stable model as the weights of AR (p) serve as a scaling factor of the
differentiated BOLD.
Additionally, in order to check that indeed AR (1) process is capable of capturing the
dynamics of the fractionally differenced stationary time series, Wt, we start by fitting
an AR model of order 1. The coefficient (φ) of this model is estimated using maximum
likelihood principle [47] and the residual between Wt and the simulated time series Ŵt

(Figure 3-4) from the fitted model are observed. If the residual error is statistically
indistinguishable from white noise (i.e., having flat power spectrum and uncorrelated
residuals), then it suggests that there is no need for higher-order fitting; otherwise, order
p is increased, and then residuals are tested again [68]. The statistical significance of
the residual error following a normal distribution is tested using student’s t -test [69]
(at a significance level of 0.05). In this study, the residuals behaved as standard white
noise sequence for an AR (1) model.

• ARMA (1, 0) filtering: Finally, after the estimation of filter coefficients, the fractionally
differenced BOLD time series Wt is filtered through the designed ARMA (1, 0) filter or
AR (1) filter.

As the obtained dataset consists of data from 98 subjects in four different runs and the brain of
each subject is parcellated into n(= 100) ROIs, therefore, the discussed procedure is repeated
for the resting-state BOLD time series of each of the ROIs for each subject across all runs.
Thus, this procedure can be termed as univariate ARFIMA (1, d, 0) (model-based) filtering of
the resting-state BOLD signal as shown in Figure 3-6.
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Figure 3-6: Univariate ARFIMA (1, d, 0) (model-based) filtering of the minimally preprocessed
resting-state BOLD (rs-BOLD) signals of 98 subjects across 4 runs. In each case, the data is

aquired from 100 ROIs of the brain.
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3-3 Evaluation Measures

In order to validate the impact of the proposed ARFIMA (1, d, 0) filter on the resting-state
BOLD data, following evaluation measures are considered.

3-3-1 Normalised power spectrum

The frequency-domain characteristics of the resting-state BOLD signal have gained huge scien-
tific popularity [70], [71] as they have been associated with various physiological processes [72]
and the resulting brain-network measures [73]. The spectral content helps to better analyse
the fluctuations in BOLD due to neural activity [74]. Therefore, a normalised power spectrum
is used as one of the evaluation measures to observe the effect of the proposed methodology
on the resting-state BOLD signals.

Power spectrum describes the distribution of power in different frequencies present in the
signal. Its formula is given by

P (f) = 1
N

∣∣∣Zit (f)
∣∣∣2 , (3-3)

where Zit (f) is the fast fourier transform of a time series Zit corresponding to the resting-
state BOLD signal from ith ROI. The evaluation is performed by visual observation of the
power spectrum of this signal before filtering and after the implementation of the proposed
ARFIMA (1, d, 0) filter. To better visualise the results, the power spectrum is normalised in
its amplitude by dividing the power with the maximum power present in the signal. Therefore,
normalised power spectrum

∆ |P (f |) = P (f)
max (|P (f)|) , (3-4)

is used for the analysis. For quantification, a statistical test (Kolmogorov–Smirnov test [75])
to test the similarity of the power spectrum of the resting-state BOLD signal and ARFIMA
filtered time series is performed.

3-3-2 Functional connectivity measures

The connectivity of the brain, in general, is described as the interaction between different
regions of the brain. Most conventionally, functional connectivity (FC) is defined as the tem-
poral co-activation in the measured brain signals between two ROIs. The notion of FC, is
not limited to, but has been used for the characterisation of neural bases in healthy pop-
ulation and also for the detection of various neurodegenerative (e.g. Alzheimer’s, demen-
tia [76], [77]), psychiatric (e.g. depression, schizophrenia [78], [79]) and neurological (e.g.
stroke, epilesy [80], [81]) brain diseases. Since the fluctuations in BOLD signal can be con-
founded due to factors other than neuronal activity, henceforth, their effect can be carry
forwarded in the FC measures as well [73]. Therefore, the results of two FC matrices based
on the Pearson’s correlation and coherence are compared before and after proposed filtering.

For any subject, the resting-state BOLD time series are extracted from n (= 100) ROIs. The
pairwise FC between each of the ROI gives a symmetric functional connectivity matrix of size
n×n for one subject in one run. Thus, with the considered dataset for each FC measure two
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matrices, one n×nmatrix from the preprocessed resting-state BOLD signals and another n×n
matrix from the ARFIMA (1, d, 0) filtered BOLD time series are obtained. The difference
matrix between both the obtained matrices (before and after filtering) gives the difference
between the pairwise FC of the ROIs. The following defines the two FC measures: Pearson’s
correlation and coherence, used for this study.

Pearson’s correlation

Pearson’s correlation is a time-domain similarity measure and provides a relative measure of
the linear association between two signals. It is defined by

ρcorr (X,Y ) = cov(X,Y )√
var(X) var(Y )

= (X − X̄)(Y − Ȳ )T(√
(X − X̄)(X − X̄)T

){√(
(Y − Ȳ )(Y − Ȳ )T

)} ,
(3-5)

where cov(X,Y ) is the covariance between the signals, var(X) and var(Y ) is the variance of
signal X and Y respectively and X̄ and Ȳ represent the mean of the respective signals.

The Pearson correlation coefficient ρcorr is scale-invariant and lies in the range from +1 to
−1. A value closer to 0 implies no linear correlation between two signals. A positive value
indicates a positive correlation, that is, both the time series signals tend to be simultaneously
greater than their respective means. A negative value implies a negative correlation, that is,
the time series tend to fall on opposite sides of their respective means.

Coherence

The spectral coherence, also known as magnitude-squared coherence assess the correlation
between two signals in the frequency domain. It provides a measure of similarity between two
signals at each frequency and is given by

ρcoherence (X,Y ) = |PXY (f)|2

PXX(f)PY Y (f) , (3-6)

where PXX(f) and PY Y (f) are the respective power spectral densities of the two signals and
PXY (f) is the cross power spectral density between the two time series. The value of the
coherence ρcoherence ∈ [0, 1], where 0 indicates no coherence and the value 1 strong coherence
between the two time series. Since the coherence is calculated as a correlation between two
signals at each frequency, the mean value of the coherence vector thus obtained can be used
for further analysis.

3-3-3 Eigenmode analysis

The linear time-invariant (LTI) description (Equation 3-7) of the dynamics of system can
be used to study its dynamical properties using a so-called eigenmode decomposition ap-
proach [82]. The model dynamics can be obtained by fitting a stochastic time series model
to the observations of the system. Let Z(k) ∈ Rn be the vector of n(= 100) resting-state
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BOLD signals, where the ith entry, Zi(k), correspond to the resting-state BOLD signal col-
lected at the ith ROI at the sampling time k = 1, . . . , t. The dataset used for the study is
acquired at t = 1200 sample points. Specifically, Zk reprsented as Z[k] = [Z1[k] . . . Zn[k]]>,
with k = 1, . . . , 1200 is the state of the system describing the evolution of the BOLD signal
across different regions of brain. Therefore, the systems’s state can be modelled as

Z(k) = AZ(k − 1) + ε(k), k = 1, . . . , t, (3-7)

where A is an n × n real matrix describing the autonomous dynamics of the system, whose
elements are obtained by fitting a multivariate autoregressive model by solving a least square
optimisation problem [83], and ε(k) ∈ Rn is the approximation error.

The eigendecomposition of A provides n eigenmodes, that is, the n eigenvalue-eigenvector
pairs (each pair represented as : λi, vi). These eigenmodes capture the spatiotemporal char-
acteristics of the process. Specifically, each eigenvector represents an independent pattern of
co-active brain regions and its corresponding eigenvalue describes the oscillation frequency of
the activation pattern. The representation of eigenvalue, (λi) in its polar coordinates (θi, |λi|)
provides the spatial frequency of the oscillation by

fi = θi
2πδt, (3-8)

where δt corresponds to the sampling frequency. The frequency dictates how fast or slow the
signal varies between its peaks. On the other hand, the absolute magnitude of the eigenvalue
provides the stability of the signals in the regions indicated by the associated eigenvectors.
Specifically, the low value of stability implies the dynamical signal will vanish in a short
period of time, whereas if it gets closer to one, then it will oscillate continuously. Altogether,
it is apparent that a combination of regions has a superposition of the dynamical activities
captured by the combination of stability and frequency.

In this study, n eigenvalue-eigenvector pairs are obtained for each run and for each of the 98
subjects in the HCP dataset. Specifically, the 98 × 4 × 100 = 39200 eigenvectors obtained
across all subjects and all runs are clustered into k = 5 clusters using k-means clustering [84].
Similarly, the 39200 output eigenvectors corresponding to the ARFIMA filtered resting-state
BOLD time series across all subjects, and all runs are clustered into 5 clusters. The cluster
centroid for each cluster before and after filtering is plotted on the brain overlays (also known
as “eigenbrains”), and visual inspections are performed to observe any differences in the
activation patterns of different brain regions. A non-parametric statistical testing (two-sample
Kolmogorov–Smirnov test [75]) is utilised to study the variations/similarity in spatial content.

Similarly, the corresponding eigenvalues are grouped based on the eigenvector’s similarity
and the corresponding distribution of frequency and stability (obtained from corresponding
eigenvalues distribution) in each cluster is compared using statistical testing (two-sample
student’s t-test [69] and Wilcoxon rank sum test [85]) before and after filtering to observe
variations in the spectral content.

The proposed methodology is implemented on the dataset, and its results and their analysis
based on the discussed evaluation measures is given in the next chapter. An overview on the
statistical tests used in this study is presented in Appendix B.
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Chapter 4

Results and Discussion

This chapter consists of the results obtained from the implementation of the proposed method
to model the dynamics of resting-state BOLD data. All the results have been obtained in
MATLABr(9.7, R2019b). In order to demonstrate the utility of the proposed approach,
first the method is tested with a synthetic BOLD signal which has properties similar to
the resting-state BOLD signal (e.g., long-term memory [24], [25], [26] and higher power in
lower frequencies [1], [86], [87] as captured by the sACF and power spectrum, respectively),
to which white noise is added. Afterwards, the designed fractional filter is applied to the
original resting-state BOLD dataset, and its utility is tested using the evaluation measures
discussed in Chapter 3.

4-1 Synthetic BOLD signal

One of the major challenge for the evaluation of the filtering method on the resting-state
BOLD signal is the lack of clean signal that includes fluctuation only due to neural activity of
the brain. Thus, the study begins with the implementation of the proposed ARFIMA (1, d, 0)
filtering on a principled synthetic signal such that the “ground-truth” signal is known. The
oscillations in resting-state BOLD signals are generally considered and observed to be low
frequency oscillations in the range of ∼ 0.01 − 0.15 Hz [1], [71], [86], [87] and are observed
to have long-memory dependency [24], [25], [26]. Therefore, the synthetic BOLD signal is
generated as a sum of sinusoidal signals of different frequencies to obtain a signal with long-
term memory property and specific power spectrum, mathematically represented as

Xt =
N∑
i=1

Ai sin (2πfit) (4-1)

where Xt is the synthetic signal, Ai and fi is the amplitude and frequency of the ith signal,
respectively, and N is the number of signals. For the purpose, a vector of 10 random fre-
quencies in the range 0.1− 0.15 Hz was generated to mimic the presence of the low-frequency
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fluctuations in the resting-state BOLD signals. Additionally, the synthetic signal was sam-
pled at 1.3889 Hz in order to emulate the sampling frequency of resting-state BOLD signal of
the HCP dataset. Figure 4-1a shows the presence of low-frequency fluctuations in the range
0.1 − 0.15 Hz in the power spectrum of the simulated BOLD signal and Figure 4-1b depicts
the presence of long-memory property through the inverse power law behaviour of the sample
autocorrelation plot.

(a) Normalised power spectrum consisting of low
frequency fluctuations.

(b) Slowly decaying sampled ACF plot depicting the
presence of long-memory property in the signal.

Figure 4-1: Properties of the simulated synthetic BOLD signal.

The simulated BOLD signal was artificially corrupted with the two different white gaussian
noise sequences, εt ∼ WN (0, 10) and WN (0, 100). Afterwards, the noisy synthetic signal
underwent proposed ARFIMA (1, d, 0) filtering to filter out the artificial noise injected into
the signal. The value of d for the ARFIMA (1, d, 0) filtering of the synthetic signal with noise
variance 10 and 100 was obtained using the procedure described in Section 3-2. Figure 4-2
shows that the value of d for which the number of statistically significant lags are minimum
in: (a) synthetic signal with noise variance 10 is 3.8, and (b) signal with variance of noise
100 is 2.6, respectively. Additionally, the exponentially declining autocorrelation plot of
the fractionally differenced synthetic signal in Figure 4-3 illustrates the modelling of the
long-memory property for both noise variances. Visual inspection of the normalised power
spectrum in Figure 4-4 and 4-5 shows that the proposed ARFIMA (1, 3.8, 0) and ARFIMA
(1, 2.6, 0) filter, respectively, is able to cancel the effect of high frequency noise added to the
clean ground-truth signal (as can also be seen in the zoomed in version of these plots in higher
frequency region).

Several other synthetic signals were created using the described procedure, and similar results
were obtained with others as well. Figure A-1 and A-2 shows the effect of proposed filtering on
two other synthetic signals. Thus, the proposed denoising procedure was capable of retrieving
the ground-truth signal from different artificial noise-induced synthetic BOLD signals.

After the success of the proposed methodology in removing white noise from synthetic BOLD
signal, this section presents the result of the implementation of the proposed approach on
resting-state BOLD signals from the HCP dataset.
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(a) (b)

Figure 4-2: Variation in the number of statistically significant lags in the sampled ACF of
fractionally differenced noise-induced synthetic BOLD signal with different values of fractional
differencing parameter d. (a-b) shows the variation in d for the synthetic signal corrupted with
white noise, εt ∼WN (0, 10) and εt ∼WN (0, 100), respectively. For the signal in (a) the

value of d was selected as 3.8 and in (b) it was selected as 2.6.

(a) (b)

Figure 4-3: Exponentially decaying sample autocorrelation plot of of the fractionally differenced
simulated artificially noise induced synthetic signal, εt ∼WN (0, 10) and fractional difference

parameter, d = 3.8 in (a), and εt ∼WN (0, 100) and d = 2.6 in (b).
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Figure 4-4: Comparison of the normalised power spectrum plot of the noisy synthetic BOLD
signal (cyan colored curve, εt ∼WN (0, 10)) and ARFIMA (1, 3.8, 0) filtered synthetic BOLD

signal (dashed orange). The box in the right panel depicts the power spectrum zoomed-in at the
higher frequency region.

Figure 4-5: Comparison of the normalised power spectrum plot of the noisy synthetic BOLD
signal (cyan colored curve, εt ∼WN (0, 100)) and ARFIMA (1, 2.6, 0) filtered synthetic BOLD
signal (dashed orange). The box in the right panel depicts the power spectrum zoomed-in at the

higher frequency region.
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4-2 ARFIMA filtering of the acquired resting-state BOLD signals

Subsequently, the same proposed ARFIMA methodology was implemented with the resting-
state BOLD signals from the dataset. Both the subject level and group level analysis to
illustrate the effect of the proposed methodology on the resting-state BOLD data acquired
from the 98 subjects in four runs are presented in this section. The fractional difference
parameter d and the autoregressive parameter φ of the ARFIMA (1, d, 0) is estimated using
the procedure described in Section 3-2 for each time series acquired from n (= 100) regions
of interest (ROIs) of each subject across all runs individually. Hence, in this procedure, the
value of fractional difference parameter d and AR coefficient φ varies for each BOLD time
series.

For instance, the value of d was estimated as 0.7, 0.3 and 0.5 for ROIs 7, 11 and 37, respectively,
of subject 1, run 1 and 0.6, 0.1 and 0.1 for the same ROIs of the subject 3, run 2. Table 4-
1 shows the mean value of d for n (= 100) ROIs averaged across all subjects in all runs.
Besides, the value of AR (1) parameter was obtained as −0.1007, 0.0034,−0.1548 and −0.1379
for ROIs 1, 7, 11 and 98, respectively of subject 1, run 1, thus, providing evidence that the
parameters are different for different ROIs. Similarly, the values of the AR (1) parameters
for the same regions of subject 3, run 1, are −0.0992,−0.1820, 0.0406 and −0.0301 ; thus,
providing evidence that these are different across subjects. Fig 4-6 shows the mean of the
estimated values of the AR (1) parameter, φ across different ROIs. Thus, implying that
the proposed ARFIMA (1, d, 0) filtering approach is deployed channel-wise. Additionally,
Kruskal-Wallis test [88] on both parameters φ and d showed that the mean between these
parameters for different subjects and different runs was significantly different (at a significance
level of 0.05).

Figure 4-6: Mean value of the absolute AR(1) parameter averaged across the ROIs of all 98
subjects across all 4 runs.
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Table 4-1: Mean value of the fractional difference parameter ′d′ averaged across the ROIs of all
98 subjects in all 4 runs (i.e., 98× 4).

ROIs d
(Mean ± std. deviation) ROIs d

(Mean ± std. deviation) ROIs d
(Mean ± std. deviation) ROIs d

(Mean ± std. deviation)
1 0.6679 ± 0.1779 26 0.6566 ± 0.1636 51 0.6051 ± 0.1860 76 0.6849 ± 0.1396

2 0.9617 ± 0.1751 27 0.3702 ± 0.1398 52 0.9411 ± 0.1770 77 0.4186 ± 0.1269

3 0.7202 ± 0.2031 28 0.1946 ± 0.1036 53 0.9130 ± 0.1762 78 0.1880 ± 0.0980

4 0.9416 ± 0.1769 29 0.2464 ± 0.1112 54 0.7268 ± 0.2078 79 0.2292 ± 0.1200

5 0.5003 ± 0.1811 30 0.4533 ± 0.1769 55 0.4906 ± 0.1643 80 0.7051 ± 0.1501

6 0.5191 ± 0.1796 31 0.8339 ± 0.1467 56 0.8758 ± 0.1753 81 0.6849 ± 0.1500

7 0.7643 ± 0.1936 32 0.7163 ± 0.1451 57 0.4406 ± 0.1344 82 0.6003 ± 0.1437

8 0.7209 ± 0.1926 33 0.6227 ± 0.1436 58 0.6865 ± 0.1809 83 0.6967 ± 0.1691

9 0.6110 ± 0.1782 34 0.5980 ± 0.1502 59 0.4722 ± 0.1642 84 0.9449 ± 0.1646

10 0.5097 ± 0.1778 35 0.7921 ± 0.1466 60 0.6158 ± 0.1790 85 0.7056 ± 0.1501

11 0.2804 ± 0.1293 36 0.6031 ± 0.1508 61 0.4934 ± 0.1772 86 0.7140 ± 0.1655

12 0.5640 ± 0.1562 37 0.3344 ± 0.1371 62 0.3161 ± 0.1343 87 0.3158 ± 0.1285

13 0.7452 ± 0.1917 38 0.6421 ± 0.1441 63 0.5069 ± 0.1516 88 0.7212 ± 0.1320

14 0.6209 ± 0.1615 39 0.7008 ± 0.1496 64 0.7457 ± 0.1732 89 0.8622 ± 0.1764

15 0.6370 ± 0.1719 40 0.6306 ± 0.1481 65 0.7110 ± 0.1711 90 0.6770 ± 0.1477

16 0.7791 ± 0.1689 41 0.6306 ± 0.1716 66 0.6541 ± 0.1658 91 0.6599 ± 0.1425

17 0.6969 ± 0.1779 42 0.6719 ± 0.1578 67 0.7821 ± 0.1678 92 0.5258 ± 0.1444

18 0.5747 ± 0.1651 43 0.9824 ± 0.1789 68 0.6648 ± 0.1723 93 0.7344 ± 0.1601

19 0.5714 ± 0.1709 44 0.8013 ± 0.1789 69 0.6084 ± 0.1615 94 0.3426 ± 0.1427

20 0.5347 ± 0.1485 45 0.6819 ± 0.1537 70 0.5227 ± 0.1531 95 0.6395 ± 0.1733

21 0.6875 ± 0.1536 46 0.3482 ± 0.1529 71 0.7712 ± 0.1670 96 0.4566 ± 0.1344

22 0.2370 ± 0.1408 47 0.7358 ± 0.1775 72 0.4531 ± 0.1301 97 0.2566 ± 0.1188

23 0.4365 ± 0.1363 48 0.4526 ± 0.1259 73 0.3495 ± 0.1186 98 0.3880 ± 0.1505

24 0.3495 ± 0.1317 49 0.2503 ± 0.1807 74 0.4622 ± 0.1551 99 0.5635 ± 0.1582

25 0.4561 ± 0.1528 50 0.5658 ± 0.1637 75 0.8531 ± 0.1610 100 0.5685 ± 0.1727
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4-2-1 Normalised power spectrum

The comparison of the power spectrum of the resting-state BOLD signals before and after
filtering shows that the proposed filtering often leads to changes that seem to affect mainly
the high-frequency components. In order to show the spatial disparity in the power spectrum
the results of the proposed ARFIMA (1, d, 0) filtering on three different ROIs are presented
in Figure 4-7. The value of d was estimated to be 0.7, 0.3 and 0.5 as illustrated in Figure 4-8.
The three shown power spectrums are such that they have different characteristics in terms
of the presence of power in the frequency region. Specifically, Figure 4-7a depicts the effect
of filtering on the normalised power spectrum of ROI: 7 (present in the visual peripheral
network of the brain), which has maximum power at lower frequencies. In contrast, Figure 4-
7b shows the effect of filtering on the normalised power spectrum of ROI: 11 which lies in
the somatomotor network with power spread out over the whole of its frequency range, and
Figure 4-7c corresponds to the ROI: 37 lying in the executive control network and has most
of the power in its lower frequencies but still consists of a significant amount of power in the
higher frequency region. Thus, depicting a behaviour similar to a low-pass filter.

Additionally, the statistical similarity of the normalised power spectrum of each ROI before
and after filtering, using two-sample Kolmogorov–Smirnov test [75] at a significance level of
0.05 was tested. The statistical comparison between the normalised power spectrum of each
of the ROI of all the subjects across all runs before and after proposed filtering indicates that
of all the power spectrum corresponding to total 98 × 4 × 100 = 39200 resting-state BOLD
signals, around 51% (i.e., 19966 signals) were statistically distinguishable. Thus, indicating
the impact of proposed filtering on the frequency content of the signal.

Comparison between the low-pass filter and the derived ARFIMA filter

Despite depicting a behaviour similar to a low-pass filter, the difference between the character-
istics of an LPF (first-order butterworth) and the proposed ARFIMA filter was observed. For
instance, Fig 4-9a displays the difference between the magnitude bode plot of an LPF (first-
order butterworth) with a cut off frequency of 0.1Hz and the proposed ARFIMA (1, 0.3, 0)
filter for the BOLD signal corresponding to ROI: 11 lying in the somatomotor auditory region
of the brain. Upon using both the filters, it can be observed from Fig 4-9b that the LPF
eliminates the higher frequencies. However, the derived filter does not eradicate rather atten-
uates the high-frequency component thus, preserving some of the high-frequency information
that may be relevant to the neural activity. The attenuation of the order of around 50dB at
higher frequencies in case of low-pass Butterworth filter and of around 6dB with the derived
ARFIMA (1, 0.3, 0) filter explains the observed behaviour. Hence, it provides evidence that
the derived filter has some characteristics different from the ordinary LPF.

Furthermore, because the ARFIMA model-based approach is a time-domain method, various
other scenarios are expected. Specifically, for most signals, ARFIMA filtering performs at-
tenuation at higher frequencies, as can be seen in Fig 4-7. Still, sensitivity in some frequency
distributions was noticed, where a small amount of amplification was observed in the higher
frequencies. The amplification was witnessed in around 17.5% of the entire resting-state time
series, filtered using the proposed filter. For instance, Figure 4-10a shows one such ROI where
the high-frequency components are actually amplified. The amount of amplification can be
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Figure 4-7: Comparison of the normalised power spectrum plot of the preprocessed
(cyan-colored curve) and ARFIMA (1, d, 0) filtered (dashed orange curve) resting-state

BOLD (rs-BOLD) signal for three different ROIs. The location of each of the three ROI is
presented in the brain overlay (in the centre) in different colours. The power spectrum of the
corresponding ROI is outlined in the same colored box. (a) illustrates the impact of proposed
ARFIMA (1, 0.7, 0) filtering on the ROI: 7 (green colored region) lying in the visual peripheral
brain network. (b) shows the effect of proposed ARFIMA (1, 0.3, 0) filtering on the ROI: 11

(blue colored region) in the somatomotor auditory network of the brain. (c) depicts the impact
of proposed ARFIMA (1, 0.5, 0) filtering on the ROI: 37 (red colored region) in the executive

control brain network.
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(a) (b)

(c)

Figure 4-8: Variation in the number of statistically significant lags in the sampled ACF with
changing value of d of resting-state BOLD signals from three different ROIs of one of the

subject. (a) ROI: 7 lying in the central visual brain network. (b) ROI: 11 in the somatomotor
auditory network of the brain. (c) ROI: 37 in the executive control network. The value of d was

selected to be 0.7, 0.3 and 0.5 for ROIs in (a), (b), and (c), respectively
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(a) (b)

Figure 4-9: Difference between the characteristics of a LPF and the proposed ARFIMA filter.
(a) Magnitude Bode plot of the transfer function of the LPF (first-order butterworth filter) with
cut off frequency: 0.1Hz (yellow curve) and the derived ARFIMA (1, 0.3, 0) filter (orange curve)
for ROI: 11 corresponding to the somatomotor auditory region of the brain. (b) Comparison of
the normalised power spectrum of the rs-BOLD (cyan colored), first-order butterworth filtered
(dashed yellow) and ARFIMA (1, 0.3, 0) filtered (dashed orange) BOLD signal of ROI: 11.

observed in the magnitude bode plot of the proposed filter in Figure 4-10b, which is of the or-
der of 0.1 dB. This provides evidence of the versatility of the proposed filtering scheme which
is tailored for each of the channels and the associated data under consideration. Although
we lack the ground-truth of these signals, the synthetic examples explored provide converging
evidence that the proposed filters are attaining their objective.

(a) (b)

Figure 4-10: Amplification in the high frequencies for one of the ROI. (a) shows the normalised
power spectrum of the rs-BOLD signal (cyan curve) and the ARFIMA filtered signal (dashed
orange curve) for one of the ROI. (b) Magnitude bode plot of the derived ARFIMA (1, 0.2, 0)

filter (for the ROI shown in (a)) depicting amplification in higher frequencies.
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The primitive studies denote that the fluctuations due to neural activity in resting-state BOLD
signals are associated with the low-frequencies [11], [89], [90], however, technical advances in
the MR imaging techniques led to the identification of resting-state networks in frequencies
higher than 0.1Hz [70], [91], [92]. The latter suggests that the high-frequency fluctuations in
resting-state BOLD signals are not only the result of artefacts but also include the contribution
from underlying neuronal activity. Therefore, completely filtering out the high-frequency
components do not seem to be an ideal denoising approach. Thus, it is remarkable to highlight
that the proposed filter seems to attenuate/amplify the higher frequencies when required.

4-2-2 Functional Connectivity analysis

Functional connectivity FC matrices (based on Pearson’s correlation and coherence) between
each ROI of the brain for each subject across all runs are found individually in both the
cases with the resting-state BOLD signals and ARFIMA (1, d, 0) filtered BOLD signals. To
perform the group-level analysis, the FC matrices obtained from each subject in each run
are averaged, and one representative FC matrix in terms of mean ± standard deviation is
considered. Since FC is dominated by the high power in slow frequencies; therefore, these
measures capture the slow-frequency properties of the signal. As it was observed from the
power spectrum analysis that the effect of filtering seems to be more heavily present at the
high-frequency component of the signal, hence, the FC matrix may not observe any significant
changes due to filtering. Figure 4-11 depicts the representative FC matrix before and after
filtering found based on Pearson’s Correlation. Similarly, Figure 4-12 shows the FC matrix
based on coherence. The difference mean FC matrices in both cases (Figure 4-11c and 4-12c)
indeed depict that the mean FC matrices before and after filtering are similar. Additionally,
the two-sample Kolmogorov–Smirnov test [75] on the pre and post-filtered mean FC matrices
failed to reject the null hypothesis that they are statistically indistinguishable (at a significance
level of 0.05).

4-2-3 Eigenmode analysis

The dynamics in the resting-state BOLD signals can be modelled by the linear time-invariant
system approximation [82], [93]. The system, thus, obtained can be decomposed into its so-
called eigenmodes. Eigenmodes (represented by corresponding eigenvalue-eigenvector pairs)
can be used to capture the spatiotemporal characteristics of the process. The underlying
system is approximated from the resting-state BOLD signals as well from the ARFIMA
filtered signals. Further, eigenvectors from all the subjects before and after filtering are
computed and clustered into k = 5 clusters using k-means clustering [84] to capture the resting
state networks [93] (for an overview of resting-state networks, see Appendix C). The spatial
correlation shown in Fig 4-13 between the identified cluster centroid (through clustering of
eigenvectors before and after filtering) and the seven resting-state networks (RSNs): visual
(Vis) network, somatomotor (SM) network, dorsal attention network (DN), ventral attention
network (VN), limbic network, executive control network (ECN) and default mode network
(DMN) identified in [2] reveals that each cluster consists of one or more RSNs and the
contribution of each RSN in each cluster (before and after filtering) remains the same.
Specifically, the eigenmode decomposition and clustering helps to: (a) reveal the heteroge-
neous spatial profile of the eigenmodes of the brain and (b) to leverage these now teased out

Master of Science Thesis Ishita Rai Bansal
(5038057)



38 Results and Discussion

(a)

(b)

(c)

Figure 4-11: Whole brain FC matrix (comprising of 100 ROI) defined based on Pearson’s
Correlation. The Pearson’s Correlation FC matrix of each subject in each run is averaged across
to find one representative FC matrix (mean ± std. deviation). (a) Pearson’s correlation matrix
(mean ± std. deviation) (for 100 ROI) obtained from the resting-state BOLD dataset. (b)

Pearson’s correlation matrix (mean ± std. deviation) (for 100 ROI) obtained from the ARFIMA
(1, d, 0) filtered resting-state BOLD signals. (c) The difference between the mean Pearson’s
correlation matrix of the preprocessed dataset (a) and the filtered resting-state BOLD time

series of the whole brain (b).
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(a)

(b)

(c)

Figure 4-12: Whole brain FC matrix (comprising of 100 ROI) defined based on coherence. The
FC matrix of each subject in each run is averaged across to find one representative FC matrix
(mean ± std. deviation). (a) Coherence FC matrix (mean ± std. deviation) (for 100 ROI)
obtained from the resting-state BOLD time series. (b) Coherence FC matrix (mean ± std.
deviation) (for 100 ROI) obtained from the ARFIMA (1, d, 0) filtered resting-state BOLD

signals. (c) The difference between the mean coherence FC matrix of the resting-state BOLD
dataset (a) and the ARFIMA filtered time series of the whole brain (b).
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(a) (b)

Figure 4-13: Similarity between centroid of the clusters and RSNs. (A-B) denotes the spatial
correlation between clusters and resting state networks before and after ARFIMA filtering on the

resting-state BOLD data, respectively.

clusters (i.e., the clusters formed from the eigenvectors of the system from ARFIMA filtered
signals) to better localize any changes after filtering (that potentially impacted some RSNs
differently [possibly due to their intrinsic spectral profile]).

Fig 4-14 shows the 5 cluster centroids (obtained from k-means clustering on the associ-
ated eigenvectors of the resting-state BOLD signals) in the left panel and the cluster cen-
troids (obtained from k-means clustering on the associated eigenvectors corresponding to
ARFIMA (1, d, 0) filtered BOLD signals) in the right panel, plotted on the brain overlays
(also known as “eigen brains”). The cluster centroids were normalised by subtracting each
centroid by its minimum element. In the figure, the larger the value in a given region defined
by an arbitrary unit (AU), larger is the involvement of that region in the underlying dynamics
at any given time. The nomenclature used in this study is as follows: the eigen brains in
Figure 4-14 inside blue colored box correspond to cluster 1, cluster 2 is outlined in orange
colored box, cluster 3 in yellow outline, cluster 4 in purple colored box and cluster 5 in green
colored outlined box.

Visual comparison of the so-formed 5 clusters in Figure 4-14 reveal that cluster 1 to 4 (in
blue, orange, yellow and purple boxes, respectively) looks identical. However, some changes
in the visual and default mode RSNs in cluster 5 (green box) can be observed. Addition-
ally, the two-sample Kolmogorov–Smirnov test [75] was used to test the statistical similarity
between the eigenvector cluster centroid of the respective cluster before and after clustering
at a significance level of 0.05. The test results failed to reject the null hypothesis that the
corresponding eigenvector cluster centroid before and after filtering are significantly similar.

Nonetheless, the result of the implementation of the proposed filter on the temporal dynamics
of the system is observed by witnessing the variation in the spectral content given by the
associated eigenvalues of the resting-state and ARFIMA filtered BOLD signals. The top and
the bottom central plot of Figure 4-14 shows the distribution of the eigenvalues (frequency vs
stability) before and after ARFIMA (1, d, 0) filtering, respectively. The two-sample student’s
t-test [69] and Wilcoxon rank sum test [85] between the distribution of frequency (given
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Figure 4-14: Clustering of eigenvectors and eigenvalues obtained from resting-state BOLD
signal and ARFIMA (1, d, 0) (model-based) filtered signals. All eigenvectors from all subjects
were normalised and clustered into 5 clusters using k-means clustering. The clusters were
color-coded across all subjects and all runs (98 subjects × 4 runs × 100 ROIs = 39,200
eigenvalues). The color codes blue, orange, yellow, purple and green correspond to cluster

1, 2, 3, 4 and 5, respectively. The central plot shows the distribution of eigenvalues based on the
frequency (the argument of eigenvalue) and stability (the absolute magnitude of eigenvalue) of
resting-state and ARFIMA filtered BOLD signals. Error bars represent the mean and standard

deviation of the average stability and frequency of each cluster. The eigenvalues are color coded
based on the five identified clusters. The brain overlays in the left and right panel represent the
spatial distribution of the eigenvector cluster centroid of resting-state BOLD signals before and
after filtering, respectively. Colorbar represents the normalised values of cluster centroid for each

cluster (left and right panel).Master of Science Thesis Ishita Rai Bansal
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Table 4-2: Comparison of the mean stability (magnitude of eigenvalue) and mean frequency
(argument of eigenvalue) of the identified clusters from the resting-state BOLD dataset (before

filtering) and ARFIMA filtered resting-state BOLD signals (after filtering).

Mean frequency
(mean ± std. deviation)

Mean stability
(mean ± std. deviation)

Before filtering After filtering Before filtering After filtering

Cluster 1 0.2943 ± 0.2341 0.2637 ± 0.2112 0.1665 ± 0.1037 0.1773 ± 0.1011

Cluster 2 0.0210 ± 0.0219 0.0185 ± 0.0167 0.4015 ± 0.2713 0.5250 ± 0.2696

Cluster 3 0.0930 ± 0.1300 0.0632 ± 0.0948 0.3304 ± 0.1981 0.3832 ± 0.2093

Cluster 4 0.3090 ± 0.2598 0.2890 ± 0.2509 0.2281 ± 0.1997 0.2044 ± 0.1617

Cluster 5 0.0236 ± 0.0383 0.0209 ± 0.0262 0.4340 ± 0.2904 0.5312 ± 0.1893

by the argument of eigenvalue, Equation 3-8) before and after filtering revealed that it was
statistically distinguishable for all the clusters (at a significance level of 0.05). Similarly, the
pairwise student’s t -test [69] and Wilcoxon rank sum test [85] on the stability (obtained from
the absolute magnitude of eigenvalue) distribution of the resting-state BOLD data and the
ARFIMA filtered signals showed statistical difference for all the clusters (p < 0.05).

Additionally, Table 4-2 compares the average value of the stability and frequency between
each cluster of the eigenvalues of the preprocessed system and ARFIMA filtered system. The
comparison shows that the stability of the system improves by around 7% in cluster 1, around
25% in cluster 2 and 5, and by approximately 16% in cluster 3 after implementation of the
proposed filtering.

These results highlight filtering-related changes. More intriguingly, the spectral profiles as-
sociated with the clusters changes after filtering. Thus, providing additional evidence that
the proposed filter modifies the (spatiotemporal) spectral content of the resting-state BOLD
signals.
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Chapter 5

Conclusion

The blood-oxygen-level-dependent (BOLD) signal arises from a complex interaction between
neuronal activity and vascular processes. Resting-state functional magnetic resonance imaging
(rs-fMRI) studies observe the changes in the fluctuations of the BOLD signals in response to
the neural activity. However, the intrinsic BOLD signal fluctuations can be corrupted due
to the presence of different confounds, some of which are outlined in this study. Different
resting-state cleanup methods have been devised for effective confound removal. Most of
these methods deal with known sources of noise. Therefore, further refinement of the existing
preprocessing pipeline can help in better interpretation of resting-state fMRI data. This
study, thus, proposes a method in the aforementioned direction of further cleaning of the
preprocessing resting-state BOLD signals.

Having witnessed the long-memory dependency in the resting-state BOLD signals, the work
proposed the use of autoregressive fractional integrative processes ARFIMA (1, d, 0) for the
purpose. The proposed ARFIMA (model-based) approach is univariate filtering i.e., the
coefficient φ of the autoregressive AR (1) component and fractional differencing parameter d
of the ARFIMA (1, d, 0) filter are estimated for each resting-state BOLD signal individually.
It is worth noticing that the approach for the estimation of fractional difference parameter d
was a grid search approach such that the fractional differencing achieves short-term memory
and yields stationary time series. The order of autoregressive component was limited to 1
to reduce the degrees of freedom and to obtain a stable model as their weights serve as a
scaling factor of the differentiated BOLD. Additionally, we furloughed the moving average
component to ensure that we deal with causal filters.

A major challenge for evaluating the denoising method of the resting-state BOLD signal is
the unavailability of the ground-truth signal. Therefore, first, the proposed filter is evaluated
with a principled synthetic BOLD signal which has statistical properties similar to the resting-
state BOLD signal identified in the literature (i.e., long-term memory and low-frequency
fluctuations [1], [24], [25], [26], [86], [87]). The proposed denoising procedure was capable of
retrieving the ground-truth signal from the artificial noise-induced synthetic BOLD signal.
Thus, it provides evidence that the filter is attaining its objective.
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Subsequently, the proposed filter was implemented with the preprocessed resting-state BOLD
signals from the HCP dataset. The dataset consists of data from 98 subjects acquired across
4 different runs. The impact of the proposed methodology was evaluated using four different
evaluation measures i.e., normalised power spectrum, functional connectivity (FC) based on
Pearson’s correlation, FC based on coherence, and eigenmode decomposition.

Section 4-2-1 highlights the variations in the normalised power spectrum of the resting-state
BOLD signals pre and post proposed ARFIMA filtering. The effect of the proposed filter was
observed on the high-frequency components wherein the filter seems to attenuate/amplify the
high-frequency components based on the frequency distribution of the resting-state BOLD
signal. FC matrices based on both Pearson’s correlation and coherence were observed to be
insensitive to the differences in BOLD signals pre and post-filtering (Section 4-2-2). This is
mainly due to the evidence (as observed from power spectrum analysis) that the proposed
filter has dominant effects in the high frequencies, but these FC measures capture the low
frequencies of the signals. However, the results from eigenmode decomposition and k- means
clustering in Section 4-2-3 provided additional evidence of the filtering-related changes. Par-
ticularly, the variation in the spectral content of the system captured through the statistical
differences in the distribution of frequency and stability of the LTI systems approximated
from the signals before and after proposed ARFIMA filtering illustrated the said changes.

All these results suggest that the proposed methodology filtered out the data that was not
consistent with the proposed model, which evidence suggests to be properly modeled by
fractional-order processes and, further, corroborated by the synthetic examples explored.
Thus, we conjecture that we were able to remove some additional noise that could be due
to sporadic activity which could not be eliminated through data preprocessing, or maybe
due to additional artefacts introduced by such preprocessing. Hence, the proposed method
can be used as an additional step in the already existing preprocessing pipeline. The results
also provides an evidence that the proposed scheme is suitable to model the dynamics of
preprocessed resting-state BOLD signals.

5-1 Limitations

The major limitation of the study is the evaluation of the proposed denoising approach on
the dataset. The unavailability of standard resting-state BOLD signal for distinguishing
fluctuations due to neural component from artefacts poses a great challenge. Although, to
overcome this limitation, a synthetic BOLD signal which follows the observed properties of the
original BOLD signals was created. However, it is impossible to state beyond doubt that the
signal being filtered out from the original resting-state BOLD signal is the noisy component or
was the source of neural activity. The other limitation lies in the estimation of the fractional
difference parameter, d, in the proposed ARFIMA filtering. The method utilised in this work
is a grid search approach. But, selecting a value too high may lead to over differencing of the
time series and thus, can introduce artificial memory [22], [50]. Therefore, a novel method can
be developed to estimate d, which can also help improve the results obtained in this study.
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5-2 Future work

The current research focuses on the univariate filtering of the resting-state BOLD signals,
however, the spatiotemporal dependencies between different regions of interest of a brain
cannot be ignored [94], [95]. Thus, future work should focus on extending the proposed filter
to the multivariate domain.

Additionally, the value of fractional differencing parameter d in this study was considered
constant over a period of time for resting-state BOLD time series for a particular ROI. Future
research should account for possible variations, like those that occur in criticality analysis of
electrocorticogram signals in epilepsy [96] patients, or critical transition phenomena found in
nature [97].

Finally, in this study, static FC is considered as one of the evaluation metric, largely based on
their common usage in the resting-state fMRI data analysis [98], [99]. However, recently FC
has been observed to fluctuate over time [100] and has opened window to the new research
area called dynamic functional connectivity (dFC) [101], [102]. Future work could observe
the effect of the proposed filter on the dFC metrics.
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Appendix A

Synthetic BOLD signal

This chapter presents the implementation of proposed ARFIMA filtering on two different
synthetic signals, simulated as described in Section 4-1.
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(a) (b)

(c) (d)

Figure A-1: Autocorrelation and normalised power spectrum plots of unfiltered and filtered
synthetic BOLD signal. (a) Slowly decaying sampled ACF plot of the simulated synthetic signal.
(b) The power spectrum of synthetic BOLD signal consisting of low frequency fluctuations in
the range of 0.01− 0.15 Hz. An artificial white noise is added to the created synthetic BOLD
signal. (c) shows the sampled ACF of the fractionally differenced (d = 3.8) noisy synthetic

BOLD signal. (d) shows the normalised power spectrum plot of unfiltered dummy BOLD signal
(cyan) and the ARFIMA (1, 3.8, 0) filtered BOLD signal (dashed orange) embedded with

zoomed in plot at higher frequency.
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(a) (b)

(c) (d)

Figure A-2: Autocorrelation and normalised power spectrum plots of unfiltered and filtered
synthetic BOLD signal. (a) Slowly decaying sampled ACF plot of the simulated synthetic signal.
(b) The power spectrum of synthetic BOLD signal consisting of low frequency fluctuations in
the range of 0.01− 0.15 Hz. An artificial white noise is added to the created synthetic BOLD
signal. (c) shows the sampled ACF of the fractionally differenced (d = 2.4) noisy synthetic

BOLD signal. (d) shows the normalised power spectrum plot of unfiltered dummy BOLD signal
(cyan) and the ARFIMA (1, 2.4, 0) filtered BOLD signal (dashed orange) embedded with

zoomed in plot at higher frequency.

Master of Science Thesis Ishita Rai Bansal
(5038057)



50 Synthetic BOLD signal

Ishita Rai Bansal
(5038057)

Master of Science Thesis



Appendix B

Statistical Tests

This chapter highlights various statistical tests used in the study. It is worth emphasising that
in statistical tests, the rejection of the null hypothesis implies that the alternative hypothesis
is accepted within a defined significance level. However, failure of the rejection of the null
hypothesis does not suggest that the null hypothesis can be accepted.

B-1 KPSS test

Kwiatowksi, Phillips, Schmidt and Shin (KPSS) [67] proposes a Lagrange-Multiplier (LM)
for testing the null hypothesis that the observed time series is stationary around a determin-
istic trend. KPSS test considers the alternative hypothesis that the observable series has a
unit root. The rejection of the null hypothesis implies that it is certain (within a defined
significance level) the series has a unit root. Thus, the KPSS hypothesis test is:

H0 : Series is stationary
H1 : Unit root is present
Test Statistic : The test uses Lagrange multiplier test statistic to test for constant variance
α : Significance level (95%)

B-2 One Sample student’s t- test

This statistical parametric test is used to test if the time series follows a normal distribution
and is defined as [69]:

H0 : Vector follows a normal distribution with mean equal to 0
and unknown variance.

H1 : The population distribution does not have a mean equal to zero.
Test Statistic : t = x̄−µ

s/
√
n
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where x̄ and µ are the sample and hypothesized population mean
respectively, s is the sample standard deviation, and n is the sample size.

α : Significance level (5%)

B-3 Two-sample student’s t- test

The two-sample student’s t- test is a parametric used to test if the data in vectors x and x
comes from independent random samples from normal distributions with equal means and
variance is defined as [69]:

H0 : x and y comes from normal distribution with equal means
and equal but unknown variance.

H1 : Data in x and y comes from populations with unequal means.
Test Statistic : t = x̄−ȳ√

s2
x

n
+

s2
y

m

where x̄ and ȳ are the sample means, sx and sy are the
sample standard deviations, and n and m are the sample sizes.

α : Significance level (5%)

B-4 Wilcoxon rank sum test

It is a non-parametric test used to test if the two vectors x and y have the same probability
distribution [85].

H0 : Data in x and y are samples from continuous distributions with equal medians.
H1 : Data in x and y are samples from continuous distributions with unequal medians.
Test Statistic : z-statistic.
α : Significance level (5%)

B-5 Two-sample Kolmogorov–Smirnov test

This test is used to test if the distribution of data in vectors x and y are statistically simi-
lar [75]. It is defined as:

H0 : Data in the vectors x and y are from same continuous distribution.
H1 : Data in the vectors x and y are from different continuous distributions.
Test Statistic : It evaluates the difference between the cummulative distribution function

of the two sample data vectors over the range of x in each dataset.
α : Significance level (5%)
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B-6 Kruskal-Wallis test

It is a non-parametric statistical test to determine whether data from several groups come
from same distribution [88]. For the purpose, the test compares the medians of the groups of
data in matrix X.

H0 : Samples in the columns of matrix X are drawn from populations with
same distribution.

H1 : Atleast one column in matrix X has a different distribution.
Test Statistic : chi-square statistic
α : Significance level (1%)
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Appendix C

Resting-State Networks

A network is defined as a set of objects that interact or share some relationship with one
another. The objects in these networks are symbolised by nodes and the relationship between
them by edges [103]. The network of brain, in this way, can be considered as a complex
and an efficient network [104]. A representation of the network of brain consists of nodes
as the interacting units which are identified by parcellating the brain into homogeneous and
unique regions (e.g., brain areas). The connections between these regions can be anatomical
(i.e., physical or structural connection) or functional (i.e, synchronous neuronal oscillations).
The functional connectivity between these identified regions of interest is studied through
interaction between these nodes defined by a pairwise relationship between each node (e.g.,
the presence of a significant correlation between two area’s resting-state timecourses) [103].

A number of group resting-state studies have detected spatially separated regions in the brain
whose BOLD signal fluctuations show temporal correlation during rest [11], [89], [2]. Such
regions showing coherent BOLD fluctuations across time during rest constitute resting-state
networks (RSNs) or intrinsic connectivity networks (ICNs). In this study, the term RSN is
used.

Although depending on the methods used to study functional connectivity (e.g. ICA or seed-
based analysis), or on different group of subjects, the identified RSNs may differ [105], [106],
[107], [108]. However, there is a large similarity between the findings and hence, has led to the
definition of seven major RSNs [109]. The identified seven major RSNs: visual (Vis) network,
somatomotor (SM) network, dorsal attention network (DN), ventral attention network (VN),
limbic network, frontoparietal or executive control network (ECN) and default mode network
(DMN) are shown in Figure C-1.

RSNs are characterised by having a default mode of functioning reflecting their ongoing
intrinsic activity [110]. The reason for the study of these networks during rs-fMRI is due
to the fact that some regions that are active during rest may be deactivated during certain
activities [111]. The idea of the presence of these networks in resting-state is analogous to
that of a computer, implying that even in the absence of any task, the human brain has
background activity.
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56 Resting-State Networks

Figure C-1: Seven major identified resting-state networks in the human brain plotted on the
brain overlays [2]. The networks are distinguished by the specific color codes as displayed in the

legend

One of the important resting-state networks which is used for analysing neurological state
is Default Mode Network (DMN). DMN is a group of brain regions consisting of precuneus
and posterior cingulate, bilateral inferior–lateral–parietal and ventromedial frontal cortex
[16]. The DMN is specific to the resting-state as it is characterised by reduced activity
during task-based activity [112] and increased intrinsic activity during resting-state [113].
The changes in DMN have also been seen in subjects in a coma state, with ageing [16] and
due to neurodegenerative disease like Alzheimer’s, amyotrophic lateral sclerosis, schizophrenia
[114],[115], [116]. Application of rs-fMRI in the identification of neurodegenerative disease
is highly characterised by the type of BOLD signal available for analysis which, therefore,
indicate the need for obtaining a desired noise-free BOLD signal.
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List of Acronyms

BOLD blood-oxygen-level-dependent
fMRI functional magnetic resonance imaging
rs-fMRI resting-state fMRI
rs-BOLD resting-state BOLD
FC functional connectivity
WSS Wide Sense Stationary
LRD long-range dependence
ARFIMA Autoregressive Fractional Integral Moving Average
ARMA Autoregressive Moving Average
ROI region of interest
ROIs Regions of Interest
ACF Autocorrelation Function
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