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a b s t r a c t

Strut-and-Tie modelling (STM) is a well-known approach to design D-regions in reinforced concrete
structures. Because the STM method is based on lower-bound analysis, finding a suitable truss-analogy
model is the most important aspect to guarantee good structural and economic performance of a result-
ing design. Continuum topology optimization (TO) methods have been studied for two decades to solve
this problem. However, while these studies provide inspiration to designers, they lack the capability to
automatically generate valid truss-analogy models as needed in the STM method. In order to prevent
manual interpretation and automatically generate suitable STM models for various D-regions, a method
is proposed for the generation of optimization-based STM (OPT-STM) models. The proposed method
includes three phases: the TO phase, the topology extraction phase and the shape optimization phase.
Next, in order to evaluate the effectiveness of the generated OPT-STM models, an evaluation using
Nonlinear Finite Element Analysis (NLFEA) is performed to analyze the performance of STM models.
For two D-region problems, two OPT-STM models and 11 manually constructed STM models from liter-
ature are evaluated, and their performance is compared and discussed, demonstrating the validity and
effectiveness of the proposed automated generation method.
� 2020 The Authors. Published by Elsevier Ltd. This is an open access articleunder the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Strut-and-Tie modelling (STM) method is an effective tool
for engineers to design disturbed regions (so-called D-regions) of
reinforced concrete (RC) structures. The STM method as a truss
analogy method was first generalized as a consistent RC structure
design method by Schlaich et al. [52] and Schlaich and Schafer [51].
It uses truss analogy models to indicate force and stress distribu-
tions in D-regions, and is based on the limit lower-bound theory
of plasticity [46,62]. The method requires axial force equilibrium
while neglecting strain compatibilities [44,24]. The design process
of applying STM methods is convenient for engineers in practice,
and resulting designs are conservative, assuming sufficient ductil-
ity. Various investigations of the STMmethod have been conducted
by engineers and researchers in past decades, and results have
been implemented in design codes worldwide, e.g. British Stan-
dards [16], Canadian Standards [21], code requirements from the
American Concrete Institute [2], fib Model Code for Concrete Struc-
tures 2010 [27], the American Association of State Highway and
Transportation Officials [1] and Eurocode [17].

In STM analysis, the load-to-support transfer mechanisms of
design problems are represented using truss analogy models. Axial
equilibrium forces are calculated, and model members with com-
pressive and tensile forces are categorized as struts and ties respec-
tively. The corresponding dimensioning process and strength
checks are carried out for nodes, struts and ties. Regarding the
whole process of the STM method, different aspects have been
investigated by researchers: 1. In order to predict the ultimate
behaviour of concrete structures, concrete cracking and compati-
bility conditions were implemented in the STM method
[34,7,37,69,19]; 2. In order to predict accurate load capacity using
the STM method, the ultimate strength and strength factors of
struts and nodes under various conditions were investigated
[66,54,49,31]; 3. In order to validate the effectiveness and safety
of STM designs, experiments of various STM designs for different
D-regions were conducted [18,41,38,45,29,35]; 4. In order to facil-
itate the STM design process in engineering practice, computer
STM design tools were developed by researchers to generate vari-
ous STM models [6,63,56,65,48,64].
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Fig. 1. The dapped-end beam design problem (mm).
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Among different investigation aspects related to the STM
method, finding a suitable truss analogy model is a priority and
is one of the most important problems [51]. Based on the lower-
bound theory, various models are available and perform differ-
ently, however more economical (i.e. less conservative) designs
are preferred and can be obtained by using suitable models [24].
Schlaich and Schafer [51] suggested using the load path method
or using stress fields obtained through linear finite element analy-
sis (FEA) as inspirations to construct truss analogy models for the
STM analysis. However, difficulties of using these methods to gen-
erate STM models arise when D-regions become more complex
[42]. In order to address this problem and to provide a method
for a more generalized treatment of D-regions, topology optimiza-
tion (TO) methods have been considered. Using TO to find suitable
STM models is one of the most popular research directions in this
field.

Various investigations using TO in the STM method have been
conducted in the past two decades. Biondini et al. [11], Ali and
White [3,4], Biondini et al. [12] used ground structure based TO
methods to generate truss-analogy models for the STM method.
Numerous approaches using continuum TO methods have been
explored for the same purpose. Liang et al. [42] firstly used the evo-
lutionary structural optimization (ESO) method for creating STM
models from the optimized material layouts. Later on, various
other ESO approaches were proposed [30,40,39,5]. Alternatively,
for the same problem, Bruggi [13,14] and Jewett and Carstensen
[36] used SIMP (solid isotropic material with penalization) TO
methods to generate optimized topologies for the STM method,
whereas the isoline TO method was used in Victoria et al. [58]
and the full-homogenization method was used in Herranz et al.
[32]. Apart from using different TO methods, more sophisticated
material models were adopted in the TO process: Victoria et al.
[58] and Du et al. [23] used bi-modulus material properties for
the generation of STM models, Bruggi [15] implemented an
energy-based TO approach considering no-tension concrete for
deriving STM models. and Gaynor et al. [28] and Jewett and Car-
stensen [35] considered bi-modulus material properties within a
hybrid truss-continuum element formulation for generating opti-
mized material layouts for the STM method.

Despite intensive efforts of using various TO approaches for the
STM method, the generated optimized results from these
approaches cannot be used as STM models without manual adjust-
ments. Because TO results are continua and STM models are truss
analogy models, most approaches can only provide optimized
material layouts as inspiration for subsequent manual generation
of STM models. Manual and subjective interpretations are required
to transform TO results to adequate STM models. Consequently,
interpreted STM models show considerable variation. Moreover,
the manual interpretation process is impractical and inefficient
in engineering practice. This hampers the utilization of TOmethods
for STM. The problem how to generate STM models directly
through the optimization process has thus far not been solved. This
problem is first clearly identified and discussed in more depth in
our recent review on evaluating TO methods for STM [59]. To our
best knowledge, no investigations have been reported that fully
address this gap. Thus, automated optimization-based procedures
to construct an STM model are highly desired.

In this paper, we therefore propose an automatic generation
method for optimization-based STM (OPT-STM) models. The
method starts with a design problem which includes the geometry,
boundaries and load conditions, and compliance minimization-
based topology optimization is conducted for this problem to
obtain optimized material layouts. Next, instead of manually inter-
preting truss-like structures based on TO results, a fully automatic
topology extraction method is proposed to replace this manual
process. Note that the STM method requires a truss-analogy model
satisfying axial-force equilibrium, however the extracted truss-like
structures are usually unstable trusses and equilibrium forces can-
not be calculated through truss analysis [59]. Consequently, a sub-
sequent shape optimization method is introduced to automatically
adjust the extracted truss-like structures to valid STM models, in
which axial force equilibrium is satisfied. Moreover, important
practical geometrical conditions, such as minimum concrete cover
for reinforcement and the member distances to outer surfaces, are
included as constraints in the optimization process. The whole
generation method is implemented as an integrated and automatic
procedure. Thus, the generation method prevents ad-hoc topolog-
ical changes of TO results commonly applied in manual STMmodel
generations and simplifies the process of generating STMmodels in
engineering practice.

In order to validate the effectiveness of the generated OPT-STM
models, an evaluation method is proposed by using Nonlinear
Finite Element Analysis (NLFEA). The nonlinear behavior of con-
crete cracking and crushing and steel yielding and rupturing are
considered. This provides more detailed insights to evaluate the
performance of STMmodels. Two typical D-region design problems
are investigated. By comparing the evaluation results of the gener-
ated OPT-STM models with 11 previously proposed STM models
from literature, the effectiveness of the proposed automated gener-
ation method is demonstrated. As will be shown, in particular the
amount of necessary reinforcement is significantly lower for the
OPT-STM designs, while load capacities remain comparable
between all models. Note that, in order to avoid subjective manual
interventions, reinforcement detailing aspects and constructibility
issues after the STM analysis are not considered in the evaluation
process.

The remainder of the paper is organized as follows: the novel
generation method of optimization-based STM models is intro-
duced in Section 2. The evaluation method for STM models is pre-
sented in Section 3. Three aspects of the generation method,
including the influence of optimization parameters in the TO pro-
cess, the merging length in the topology extraction process and
the importance of satisfying axial equilibrium forces, are discussed
in Section 4. Finally, a comparative evaluation based on two D-
region design problems is presented in Section 5 and conclusions
are given in Section 6.
2. Automatic generation of optimization-based Strut-and-Tie
models

An automatic and integrated generation method is introduced
in this section for the generation of OPT-STM models. An example
of a D-region design problem (a dapped-end beam with an open-
ing) is used to exemplify the proposed generation method. The
geometry, loads and supports of this D-region are shown in
Fig. 1. The thickness of this structure is 120mm. The D-region
has been experimentally investigated by Oviedo et al. [47]. The
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proposed method includes three main phases, as shown in the
flowchart in Fig. 2:

Topology optimization phase: The compliance minimization-
based TO method is adopted for generating optimized material lay-
outs of given design problems. The classical density-based SIMP TO
method [10] is used in this paper. The details are introduced in
Section 2.1.

Topology extraction phase: A topology extraction method is
developed to transform TO continua to truss-like structures. The
extracted truss-like structure comprises a network consisting of
straight, connected structural members which distributes forces
from loads to supports. The detailed procedures of the extraction
method are introduced in Section 2.2.

Shape optimization phase: The extracted truss-like structures
are usually unstable trusses. Therefore, the equilibrium forces can-
not be calculated by truss analysis in most cases. However, the
requirement of the axial-force equilibrium state is a prerequisite
for using truss analogies in STM models. In Section 2.3, the pro-
posed shape optimization method to generate adequate STM mod-
els based on the extracted truss-like structures is presented.

2.1. Topology optimization phase

Since the landmark work by Bendsøe and Kikuchi [9], contin-
uum TO methods have been investigated broadly, and have
become powerful and creative approaches for a wide variety struc-
tural design applications. Specifically in the conceptual design
phase, TO methods provide a systematic procedure to find opti-
mized material distributions of a given domain with specific load
and support conditions.

The classical SIMP TO method [10] is adopted here to optimize
material distributions of given problems. Note that various other
TO methods could be used in this phase, as reviewed in the preced-
ing section. Although we employ a classical TO approach, its main
steps are discussed here for completeness; for additional details,
the reader is referred to Bendsoe and Sigmund [10]. Topology opti-
mization variables, so called densities q, are assigned to all ele-
Fig. 2. Flowchart of the OPT-STM generation method.
ments in the FEM model. Based on FEM analysis results and
sensitivity information, densities are updated at each optimization
iteration until the process converges.

Based on the SIMP method, the mathematical formulation of
the compliance minimization TO problem is:

minimize : C qð Þ ¼ FTU qð Þ
subject to : K qð ÞU ¼ F

V qð Þ 6 aV
e 6 q 6 1

ð1Þ

In this optimization problem, C is the compliance of the structure, F
and U are the nodal force vector and the nodal displacement vector
respectively. q is the density vector which elements are in the range
between e (denoting void) and 1 (solid). The lower limit eis a small
value (10�4) which prevents singularity of K , which is the structural
stiffness matrix depending on densities q as discussed below. V qð Þ
and V are the material volume and the total volume of the full
domain respectively. a 2 0;1½ � is a specific volume fraction for lim-
iting the material utilization of optimized results.

In this paper, conventional four-node bilinear finite elements
under plane stress assumption are adopted to perform the finite
element analysis in all 2D examples. In the SIMP TO method, the
Young’s modulus E qið Þ of element i is scaled by the associated den-
sity qi raised to the power p:

E qið Þ ¼ qp
i E0; ð2Þ

where E0 is the prescribed Young’s modulus. The element stiffness
matrix K i is calculated based on the penalized modulus E qið Þ, and
then assembled to the global stiffness matrix K , defined as:

K qð Þ ¼
Xn
i¼1

K i: ð3Þ

The gradient-based Method of Moving Asymptotes (MMA) [55]
is used to update the densities in every optimization iteration. The
design sensitivities of the structural compliance C qið Þ and volume
constraint V qið Þ are required. The sensitivity of the volume con-
straint @V=@qi simply equals the volume of the i-th element Vi. Fol-
lowing the adjoint method, the sensitivity of the compliance is
given by:

@C
@qi

¼ �UT @K
@qi

U: ð4Þ

Based on the element-wise assembly of global stiffness matrix K
(Eq. (3)) and given the SIMP material interpolation (Eq. (2)), this
simplifies to the following expression on element level:

@C
@qi

¼ �p qið Þ p�1ð ÞUT
i K0U i; ð5Þ

where, U i is the element nodal displacement vector, and K0 is the
original element stiffness matrix of a fully solid element.

In order to avoid mesh dependence and checker-board prob-
lems [53] in the optimization process, a density filter is adopted.
The densities are filtered as:

�qi ¼
Pn

j¼1h i; jð ÞqjPn
j¼1h i; jð Þ : ð6Þ

Here, h is the convolution kernel defined as:

h i; jð Þ ¼ max 0; r0 � r i; jð Þð Þ; ð7Þ
where r0 is a specific radius and r i; jð Þ indicates the centroid dis-
tance between the element i and the element j. Based on the filtered
densities �q, the chain rule is used to obtain consistent sensitivities.
The optimization process terminates when the relative compliance



Fig. 4. The binary image based on the TO result.
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difference between two subsequent iterations is less than a given
threshold (0.1% in this paper) and the volume constraint is satisfied.

Based on the design problem in Fig. 1, a FEM model with
180� 60 elements is generated. Concrete material properties are
adopted of which the Young’s modulus is 30 GPa and the Poisson
ratio is 0.15. In the TO process, the density power is p ¼ 3, the vol-
ume constraint is taken as a ¼ 25%and the filter radius is
r0 ¼ 1:5� meshsizeð Þ. After 103 TO optimization iterations, the
optimized topology of this example is obtained, as shown in Fig. 3.
2.2. Topology extraction phase

The purpose of this phase is to extract a truss-like structure
from the obtained TO, as the next step towards an OPT-STMmodel.
There have been several studies on extracting designs from TO
results for different purposes, which we briefly review here. Lin
and Chao [43] used several shape templates to represent holes in
the TO results. Hsu and Hsu [33] adopted B-splines to describe
the boundaries of TO results. Chou and Lin [20] and Yi and Kim
[60] identified the geometrical features of TO results, and pro-
ceeded with shape and size optimization-based on the obtained
features. Cuillière et al. [22] and Yin et al. [61] extracted 3D TO
results to CAD-friendly models for the further utilization. However
none of these methods was dedicated to extract STM models from
the TO results. In this section, an automatic extraction method is
proposed, which is specifically conceived to extract truss-like mod-
els from continuum TO results for the STM method. The method is
a refinement of the method we have presented in an earlier study
[59], and in particular the robustness of the connectivity identifica-
tion is improved.

The proposed extraction method contains three steps (Fig. 2):
(1) transforming TO results to binary data; (2) Thinning TO results
into image skeletons; (3) Identifying nodes and their connections
for the generation of truss-like structures. These three steps are
described in more detail below.

1. Transforming TO results to binary data. Although TO results
largely denote void/solid regions of structural domains, some of
the densities have intermediate values. Clear binary data is
required in Step 2, thus TO results are transformed to binary data
by setting a threshold. In order to maintain the original topology
in the binary data, in this paper the threshold is set to 0.1. All den-
sities below this value are converted to the void state, and the
remainder is set to solid. The binary image generated from the
optimized topology (Fig. 3) is shown in Fig. 4.

2. Thinning TO results for skeletons. In order to extract truss-
like structures effectively, optimized topologies are simplified
through the thinning process introduced by Zhang and Suen [67].
The binary images are skeletonized by iteratively removing bound-
ary pixels until no further pixels can be removed without changing
the topology. In the thinning process, pixel-wise elimination rules
are applied to determine the boundary pixels which are removable
without changing the topology. Next, based on elimination rules,
every pixel is marked to remove or remain, depending on the val-
ues of its eight neighbour pixels. The whole binary image is
Fig. 3. Optimized topology of the dapped-end beam. Black and grey pixels indicate
the solid and void regions.
thinned iteratively in this manner. For the detailed elimination
rules and further discussion of this thinning process, the reader
is referred to Zhang and Suen [67]. Moreover, in our study, the load
and support points are taken as unremovable pixels in the thinning
method, as these must remain in the final STM model. The
obtained skeleton of the adopted example (Fig. 4) is shown in
Fig. 5. Note that the topology is unchanged, and members are rep-
resented by single-pixel curves.

3. Identifying nodes and connections for the generation of
truss-like structures. The STM model is a truss-analogy model
consisting of a network of nodes and their connections. Moreover,
this truss-analogy model uses the axial-equilibrium forces to indi-
cate the assumed force flow of a structure. Based on the obtained
skeleton from the previous step, the truss-like structure generation
method proceeds by identifying nodes and their connections. The
detailed extraction procedures are introduced below.

First, nodes are detected based on the binary skeleton. Since the
obtained skeleton curve is at most a single pixel wide, node detec-
tion rules are defined to identify candidate nodes by checking
every pixel in the skeleton. The node detection patterns are pre-
sented in Fig. 6. Note that Patterns 1–4 include four rotationally
equivalent cases, as is shown for Pattern 1 only. Every pixel in
the skeleton and its eight neighbouring pixels is probed, and if
the pattern matches one of these sets, it is identified as a candidate
node. Moreover, the load and support points are taken as candidate
nodes as well. The candidate nodes of the example (Fig. 5) are pre-
sented in Fig. 7a in red. Based on the node detection pattern, sev-
eral candidate nodes may cluster in a small region, and a reduction
method is used to eliminate redundant candidate nodes. In this
paper, if the distance between two candidate nodes is smaller than
1:5� the mesh size, they are replaced by a single node at the
rounded-averaged location in the skeleton. The reduced set of can-
didate nodes exclusively contains the identified nodes and is
shown in Fig. 7b.

After identifying the nodes, their connections are required for
the generation of a truss-like structure. Since all detected nodes
are attached to the one-pixel wide skeleton, a recursive method
is proposed to generate node connections. The method node-
wisely checks every identified node. By iteratively detecting the
skeleton pixels from the eight neighbouring pixels, a path from
the considered node to other nodes connected by the skeleton
curve is determined. This path defines a connection between two
Fig. 5. The skeleton after the thinning process. The pixels marked in red circles are
load and support points, and they are unremovable. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)



Fig. 6. Node detection patterns. Red patterns indicate that they have rotationally
equivalent cases. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. Node identification of the truss-like structure.

Fig. 9. The example of merging a short bar.
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nodes, and is replaced by a bar in the truss-like structure. The gen-
erated truss-like structure of the example is presented in Fig. 8.
Note that the curved lines in the skeleton are now replaced by
straight bars, while maintaining the original topology.

The initially generated truss-like structure may have various
short bars. These short bars, while structurally insignificant, are
adverse for the generation of STM models. They increase the num-
ber of optimization variables in the subsequent shape optimization
phase and can produce internal mechanisms in the truss model,
which hamper in finding a static equilibrium state for the STM
method. A merging method is proposed to eliminate these short
bars. In the method, iteratively the lengths of all bars in the gener-
ated truss-like structure are checked. A typical situation is shown
in the conceptual example in Fig. 9. Here the short bar Bi has two
nodes, N1 and N2. In order to eliminate this short bar, a new node
Fig. 8. The generated truss-like structure. Red points indicate the identified nodes
and blue lines indicate their connections. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
N1 is created replacing nodes N1 and N2 by their average. In the
dapped-end beam example, considering a merging length
L0 ¼ 25:4 mm (10% of the smallest outside dimension of the beam),
the refined truss-like structure after removing 10 short bars is
shown in Fig. 10. Note that the topology simplification leads to a
structure that does not fully correspond to the TO result. A possible
increase in compliance will however be counteracted in the final
shape optimization phase.

2.3. Shape optimization phase

In most cases, the generated truss-like structures are statically
and kinematically unstable structures, and their equilibrium forces
cannot be calculated through truss analysis. In order to obtain
equilibrium forces of the generated truss-like structures, instead
of truss elements the classical beam element with a high slender-
ness (height/length = 0.001) is used. However, the obtained equi-
librium forces cannot guarantee the generated truss-like structures
can be used as STM models, because of the existence of shear
forces. Based on the lower bound theory in the STMmethod, a pure
axial force equilibrium state is required and shear forces should be
zero. Thus, the generated truss-like structures can only be applied
as STM models if a network of axial equilibrium forces is obtained.
In this section, a shape optimization procedure is proposed to
obtain an axial-force equilibrium while satisfying the geometry
requirements. The generated truss-like structures are adjusted in
the shape optimization process by modifying the internal node
positions. After this process, a statically stable truss is obtained,
referred to as the optimization-based Strut-and-Tie model (OPT-
STM). The detailed steps are presented below.

2.3.1. Pure axial-force equilibrium requirement
In order to quantify the closeness of the generated truss-like

structures to a pure axial force equilibrium state, the Suitable Truss
Structure (STS) index has been proposed based on axial and shear
forces obtained from beam analysis with slender beams and rigid
joint connections [59], defined as:

STS ¼ 1
n

Xn
e¼1

Nej j
Nej j þ Vej j ; ð8Þ

where, Ne is the element axial force, Ve is the element shear force,
and n is the number of elements. The STS index has range 0;1½ �.
When STS ¼ 1, all members in the truss-like structure are subjected
to axial forces only and it can be used as-is in the STM method. The
STS index of the illustrative example (Fig. 10) is 0.933.
Fig. 10. The refined truss-like structure.
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2.3.2. Including geometric requirements
Several geometric requirements that are important for practical

application of the STM method are considered in this shape opti-
mization process. Minimum required cover depths apply for the
positions of the ties. Also the struts should have a minimum dis-
tance to the outer surface of the concrete element to ensure suffi-
cient widths of these struts. This also applies to holes in the
structure. These aspects were not taken into account in the TO
phase, and the truss-like structure obtained after Step 2 may not
be admissible.

A geometrical constraint is formulated to quantify these
requirements, assuming rectangular impermissible areas. More
complex regions can be represented by combinations of rectangles,
a generalization to arbitrary shapes is left as a future extension.
Two geometrical conditions are presented in Fig. (11), in which
the grey areas denote the impermissible areas. In the first condi-
tion the bar, that is the line segment along the blue line, is crossing
the rectangle, but its endpoints (nodes) are outside. In the second
condition a bar crosses an edge of the rectangle, and one of its
nodes lies in the impermissible region.

In the first case, bar-to-corner distance vectors are used to for-
mulate a geometrical constraint for the shape optimization proce-
dure. Constraint violation is measured by the perpendicular
distance from the bar to the nearest corner of the impermissible
region. As a result, during optimization the bar will move towards
this corner and out of the rectangle. In Fig. 11a, v i are five vectors
from the four corners (i ¼ 1 to 4) and the centre point (i ¼ 0) of the
impermissible area to an endpoint of the bar. The five vector dis-
tances di between the centre and corner points of the impermissi-
ble area and the bar vector v� are calculated as:
Fig. 11. Example illustrating the geometry constraint. Blue points indicate two
nodes of a bar. Black circles and stars indicate the four corners and the centre point
of a rectangular impermissible area respectively. Red points indicate the intersec-
tion points. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
di ¼ I� v� � v�
v�k k2

 !
v i; ð9Þ

where I is the identity matrix and � denotes the dyadic tensor prod-
uct. In this case, the geometrical constraint is defined by the scalar
distance using d, defined as:

d ¼
X4
i¼1

min 0; sign d0 � dið Þ½ � dik k: ð10Þ

In this equation, sign d0 � dið Þ is the sign operator applied on the
inner product of distance vectors. If the bar passes the corner of
the rectangle at the same side as it passes the centre point then
sign d0 � dið Þ ¼ 1, otherwise �1 is obtained. A negative d indicates
that the bar is crossing the rectangle. If the bar lies outside the
impermissible area then d ¼ 0.

In the second case (a bar node that is within the impermissible
area), next to the distance calculated from the first condition, the
penetration length is considered to evaluate the constraint viola-
tion. The bar is thus steered to move out of the impermissible area
along the bar direction. The intersecting line segment of the bar
with the impermissible area is presented as l in Fig. 11b. Note that
when the bar entirely falls inside the impermissible area, l equals
the full bar length. The geometry constraint is given by the length
l, defined as:

l ¼ �1 �min lk k; dj jð Þ: ð11Þ
Combining the two conditions together, the geometry constraint gn

m

of the bar n with respect to the impermissible area m is calculated
as:

gn
m ¼

d Condition 1
l Condition 2
0 Outside the area

8><
>: : ð12Þ

Based on this constraint measure, gn
m is zero when bar n and rectan-

glem do not overlap or intersect (Fig. 11c), and gn
m 6 0 otherwise. In

the illustrative example, six impermissible regions are introduced
to ensure sufficient cover and maintain the opening, as presented
in Fig. 12.

2.3.3. The shape optimization problem
Based on the above aspects, and continuing with the same

objective as used in Phase 1 (Eq. (1)), the mathematical formula-
tion of the shape optimization problem is given by:

minimize : C xð Þ ¼ FTU xð Þ
subject to : K xð ÞU ¼ F

STS P 1� eXn
j¼1

gj
m P 0 m ¼ 1;2 . . .ð Þ

xmin 6 x 6 xmax

ð13Þ
Fig. 12. The geometry constraint regions. Six rectangular regions defining the
required cover layers and the opening are highlighted with dashed lines.



Fig. 14. Comparison of two models. The blue solid lines present the model after
shape optimization, while the black dashed lines present the truss obtained after
Step 2. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 15. Shape optimization convergence history.

Fig. 16. The generated OPT-STM. The blue and red lines indicate struts and ties
respectively. The line width indicates the magnitude of axial forces. Normalized
tensile forces (for a unit loading) are presented. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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where x is a vector containing the coordinates of the nodes of the
generated truss-like structure, which are used as optimization vari-
ables. xmin and xmax are the minimum and maximum coordinates of
the structural domain. Furthermore, m is the index of an impermis-
sible area and n is the number of bar elements. C; F;U and K here
represent the compliance, nodal forces, nodal displacements and
the stiffness matrix based on the beam finite element model. STS
is the axial force equilibrium indicator introduced in Eq. (8). Note
that in this shape optimization, a tolerance e is allowed. Bending
moments and shear forces are inevitable when using beam ele-
ments. Therefore, e is taken as 0.005 in this study in order to obtain

nearly purely axial equilibrium forces. The inequality
Pn

j¼1g
j
m P 0 is

the constraint with respect to region m to guarantee geometry
requirements. Summing all constraints per region into a single
inequality reduces the computational costs in the optimizer due
to a large number of optimization constraints.

Similar to the TO phase, the MMA optimization algorithm is
used to solve this problem. Central finite differences are used to
calculate sensitivities. The perturbation is taken as a value at
0.1% of the mesh size of the continuum elements. The problem
defined by Eq. (13) is a nonconvex constrained optimization prob-
lem. In order to ensure robust convergence, a move limit of 10% of
the mesh size of the continuum elements is imposed on the design
variables.

The result after shape optimization of the example problem is
shown in Fig. 13, and the difference compared to the previous
model is shown in Fig. 14. The convergence history of the objective
value and constraints (g2; g4 and g5 regions are shown in Fig. 12) is
presented in Fig. 15. Some oscillation in constraint g4 is observed
which is due to the non-smoothness of the geometrical constraints,
but the applied move limit is effective in stabilizing the optimiza-
tion process. Although small node position differences are
observed in Fig. 14, the suitability for the STM method is improved
significantly in this final shape optimization step. After 70 opti-
mization iterations, the compliance converges after a considerable
improvement, and the STS index has increased from 0.933 to
0.9997 while the geometry constraints g2; g4 and g5 are reduced
to 0 mm. g1; g3 and g6 remained zero for all iterations. This indi-
cates that a near ideal axial force configuration has been obtained,
that also meets all geometrical requirements. With all three phases
combined, the automated generation process took about 4 min for
the considered example. The generated OPT-STM is shown in
Fig. 16 which can be used for STM analysis.

2.3.4. STM analysis
To complete the process, an STM analysis is conducted for the

generated OPT-STM based on the European code [17] while disre-
garding partial safety factors. The average concrete compressive
strength is 62.8 MPa (from the experiment by Oviedo et al. [47]).
The limit strength of struts and node zones is defined as:

rmax ¼ kmf cm; ð14Þ
where f cm is the concrete compressive strength and m is the concrete
effectiveness factor determined as, with f cm in MPa:

m ¼ 1� f cm=250: ð15Þ
Fig. 13. The generated truss-analogy model after the shape optimization phase.
In Eq. (14), k is a reduction factor which is 1 or 0.85 for the concrete
compressive strength of the C-C-C nodes (nodal zones bounded by
three or more struts) and C-C-T nodes (nodal zones bounded by
two or more struts and a tie) respectively. All nodal zones with large
compressive forces are checked, as illustrated in Fig. 17. In the
strength checking of struts, k ¼ 0:6 for the strut with transverse
tension is used, otherwise k ¼ 1. Based on the given dimensioning,
a summary of the strut checking results is given in Table 1. The gen-
erated OPT-STM satisfies the STM stress requirements.

For the ties, it is assumed that all reinforcements in the STM
designs are fully activated. The reinforcement cross-sectional areas
are determined based on a 100% strength utilization and omitting
partial safety factors.
3. Strut-and-Tie model evaluation method

The intuition of engineers alone is not effective for evaluating
the performance and capacities of complex STM models. In order
to investigate the suitability of the generated OPT-STMs, an evalu-
ation method based on Nonlinear Finite Element Analysis (NLFEA)



Table 1
Summary of strut geometry and forces for STM.

Strut Force k Width Strength
(kN) (mm) utilization (%)

S1 39.9 0.6 13 91
S2 57.5 0.6 18 94
S3 69.2 0.6 21 97
S4 108.7 1.0 20 96
S5 75.9 0.6 23 97
S6 56.8 0.6 18 93
S7 59.7 0.6 18 98

Fig. 18. Reinforcement layout of specimen A in Oviedo et al. [47] (mm).

Table 2
Concrete properties

Mean compressive strength: f cm ¼ 62:8 MPa
Mean tensile strength: f ct ¼ 4:21 MPa
Fracture energy: GF ¼ 0:154 N=mm
Compressive fracture energy: GC ¼ 38:45 N=mm
Young’s modulus: Ec ¼ 39666 MPa
Poisson ratio: m ¼ 0:15

Table 3
Reinforcement properties.

Diameter Yield stress Ultimate stress Ultimate strain
(mm) (MPa) (MPa) (%)

4 522 604 10
4.6 508 603 15
10 625 650 11.5

Fig. 17. Node regions of the generated OPT-STM model after STM analysis.

Table 4
NLFEA solution strategies [8].

– Finite element 8-node plane stress elements for concrete
discretization: Embedded truss elements for reinforcement

Mesh size: 7.5 mm
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is proposed in this section. Nonlinear phenomena such as concrete
cracking and crushing and steel yielding and rupturing are consid-
ered in the NLFEA. Firstly, simulating RC structures by NLFEA is val-
idated with experimental data, as presented in the following
section. Next, the NLFEAs based on the STM models are used to
obtain the structural performance. The structural responses are
compared in terms of crack distribution, failure load and failure
mode to evaluate various STM models. Note that this NLFEA proce-
dure is included here to investigate and demonstrate the perfor-
mance of the OPT-STM model generated by the proposed
method, instead of being part of that method.
– Constitutive relation: Concrete:
� Rotating smeared crack model
� Hordijk model for tensile behavior
� Parabolic model for compressive behavior
(reduction model by Vecchio and Collins [57], 0.6)
Reinforcement:
�Bi-linear strain-stress relation
�Perfect bonded with concrete [25]

– Convergence criteria: Displacement norm: 0.01
Force norm: 0.01

– Loading scheme: Displacement control (Step size: 0.05 mm)

Fig. 19. Finite element model of the experimentally tested dapped-end beam.
3.1. Nonlinear finite element analysis of RC structures

The NLFEA has been broadly applied in simulating RC struc-
tures, and several guidelines have been produced to select suitable
solution strategies, see e.g. in fib [26] and Belletti et al. [8]. In this
section, to validate the simulation an experiment conducted by
Oviedo et al. [47] is simulated by NLFEA. The considered specimen
is based on the same dapped-end beam of the previous section (see
Fig. 1), and its reinforcement layout in the experiment is shown in
Fig. 18. The steel has been placed horizontally and vertically,
reflecting a conventional RC structure.

In order to conduct the NLFEA simulation, various aspects are
considered, such as material models, finite element discretization,
iteration scheme and convergence criteria. According to the solu-
tion strategy by Belletti et al. [8] and based on the compressive
strength 62.8 MPa obtained from the 28-day cylinder test in the
experiment, the derived concrete properties are summarized in
Table 2. The properties of steel reinforcements from the experi-
ment are presented in Table 3. The steel stiffness, Es, is 200 GPa.
They are simulated by fully-bonded embedded truss elements con-
nected to the concrete continuum elements. The other analysis
choices are presented in Table 4.

The analysis model is shown in Fig. 19. The load and support
plates are simulated using a linear material model with stiffness
Es and Poisson ratio 0.3, and interface elements are inserted
between the steel plate and the concrete. The load-displacement
curves of this simulation and the experimental result by Oviedo
et al. [47] are presented in Fig. 20. The displacement is measured
vertically at the middle-bottom point of the beam (C point in
Fig. 18). The peak load of the simulation and experimental results
are 119.0 kN (Point A in the curve) and 117.7 kN respectively. In
the ultimate state (Point B), the structure fails due to steel ruptur-
ing. The strain in the steel and the rupturing location are presented
in Fig. 21, and the crack patterns predicted by the simulation are
shown in Fig. 22. The crack development of the simulation matches
the observation in the experiment [47]. While cracking patterns,
ultimate capacity and failure mode show good agreement with
the experimental findings, the numerical analysis shows substan-
tially smaller deformations than the experiments (Fig. 20). This



Fig. 20. Load-displacement curves of the experimentally tested dapped-end beam.

Fig. 21. Steel strain distribution at the ultimate state B (Point R indicates the
rupturing location).

Fig. 22. Simulated and experimental (inset) crack patterns and widths (mm) at the
ultimate state B of the experimentally tested dapped-end beam. The inset is
adapted from Oviedo et al. [47].

Fig. 23. Finite element model based on the generated OPT-STM for the dapped-end
beam.
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can be attributed to a too high estimate of the Young’s modulus in
the analysis, inadequate modelling of the stiffness of the support
and loading systems, which possibly included felt or plywood lay-
ers, or deformations within the loading frame. It is likely that these
aspects only influence the prediction of the deformation capacity.
Considering the lack of experimental data on these aspects, and
the fact that the main use of the NLFEA is to predict the loading
capacity and failure mode, no further efforts are considered to
improve the displacement predictions. The current solution strat-
egy is used to evaluate Strut-and-Tie models.

3.2. NLFEA-based evaluation method of Strut-and-Tie models

In order to evaluate the performance of complex STM models,
NLFEA is used. It is assumed that reinforcement bars are located
corresponding to the ties in the STM model. In this way, practical
reinforcement detailing aspects are excluded from the procedure
and all NLFEAs are based on the same principle and the obtained
responses can be used for comparing various STM models. The
cross sections of these bars are based on full utilization of the
yielding stress at the design load. The yield strength of steel is
set to 580 MPa, without hardening effects and applying a rupturing
strain of 10%.
Based on the obtained forces of the OPT-STM from the illustra-
tive example (Fig. 16), the resulting finite element model is shown
in Fig. 23. The total steel volume is 87452 mm3. In the NLFEA, the
same solution strategies as in the previous section are used to cal-
culate structural responses. The obtained load-displacement curve
through the NLFEA is presented in Fig. 24. The ultimate capacity
reaches 81.7 kN while the design load for the STM analysis is
71.2 kN. The crack pattern and steel strain at the ultimate state
(Point A) are shown in Fig. 25. Most reinforcements are yielding,
and the structure collapses due to steel rupturing at the ultimate
state and results in a flexural failure mode.

The evaluation process demonstrated here on this OPT-STM
model is used in the later sections to evaluate various other STM
models. We also define a dimensionless ratio that expresses the
degree of utilization of the steel reinforcement for later compar-
isons. This ratio, named PV ratio, is given by:

PV ¼ PloadLk
Vfy

; ð16Þ

where Pload is the peak load obtained from the NLFEA, V is the total
steel volume, f y is the steel yield strength and Lk is a characteristic
length of the structure. In this paper, Lk is taken as the smallest
height of the structure. In the presented OPT-STM example, Lk
equals to 127 mm and the resulting PV ratio is 0.205. Before using
the measures introduced in this section for a comparative evalua-
tion of OPT-STM designs against classical STM models, they are
applied in the next section to study several aspects of the proposed
generation process.

4. Three aspects of the automated design method for OPT-STM
models

In this section, three main aspects influencing the generation of
OPT-STM models are discussed. Different settings and parameters
in the generation method will affect generated OPT-STM models.
Firstly, in the TO phase (Section 2.1), TO is conducted to generate
optimized material distributions. The volume fraction and filter
radius affect the optimized topology and thus influence the gener-
ated OPT-STM models. The influence of these two factors will be
demonstrated and discussed. Next, in the topology extraction
phase (Section 2.2), the merging of short bars (Fig. 9) simplifies
the extracted truss-like structures. However, by adopting different
merging lengths the generated OPT-STM models are affected. The
influence of the merging length will be demonstrated and dis-
cussed. Thirdly, regarding the STM generation phase, the impor-
tance of satisfying the axial force equilibrium is discussed.

4.1. Influence of volume fraction and filter radius in the topology
optimization phase

The volume fraction (a) affects the number of members and
their width in the topology results. The topological changes will
influence the generated OPT-STM models and their performance.
Next to the volume fraction, the filter radius (r0) smoothens the
TO results to prevent mesh dependency and checker-board prob-



Fig. 24. Load-displacement curve of the OPT-STM based design.

Fig. 25. NLFEA simulation results of the OPT-STM based design.

Fig. 26. The generated OPT-STMs with different parameters. Black pixels present
the TO result. The blue and red lines indicate struts and ties respectively. The line
width indicates the magnitude of axial forces. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Table 5
Peak load, steel volume and PV ratio of evaluated OPT-STM models.

a r0 Peak Steel PV
(%) (mesh size) load (kN) volume (mm3) (%)

15 1.5 82.10 86630 20.9
25 1.5 81.73 87452 20.5
35 1.5 79.08 92693 18.2
25 2.5 84.17 91116 20.2
25 3.5 82.95 92927 19.5

Fig. 27. Load-displacement curves of evaluated OPT-STM models.

10 Y. Xia et al. / Computers and Structures 238 (2020) 106297
lems in the TO process. With a large filter radius, a TO result with
fewer members is obtained. In order to investigate the influence of
these parameters, OPT-STM models of the illustrative example
with various volume fractions and filter radii are generated, and
their performance is evaluated using both the PV ratio and the
load-displacement curve obtained through NLFEA.

In the illustrative example, the OPT-STM model is generated
with volume fraction a ¼ 25% and filter radius r0 ¼ 1:5. Here, four
other OPT-STM models are generated based on a one-factor-at-a-
time sensitivity analysis. In these four models the volume fraction
is a ¼ 15% and a ¼ 35% and the radius is r0 ¼ 2:5 and r0 ¼ 3:5
respectively. The topology optimization results and the resulting
OPT-STM models are shown in Fig. 26. All OPT-STM models have
STS indices larger than 0.995 and satisfy the geometry constraints.
The evaluation results based on the proposed evaluation method
are presented in Table 5. The load-displacement curves are pre-
sented in Fig. 27.

Based on the calculated PV ratios of changing volume fractions
((Fig. 26 (a), (b) and (c))), we observe that the OPT-STMmodel with
a ¼ 15% performs better than the other two cases regarding the
ultimate capacity and steel usage. The variations of OPT-STMmod-
els for a changing filter radius are presented in Fig. 26 (b), (d) and
(e). The OPT-STM model performs better with a relatively small
radius (r0 ¼ 1:5). NLFEA shows that all designs based on these
OPT-STM models provide higher capacities than the design load,
as seen in Fig. 27. This observation confirms that STM results in
conservative designs. Although different material distributions
are obtained in the TO results, all models show similar load-
displacement curves and the resulting structures fail due to steel
rupturing. However, the models with a relatively large volume
fraction and filter radius have lower PV ratios. Moreover, from
results not shown in this paper, it has been found that adopting
even larger volume fractions (a ¼ 50%) or larger filter radii
(r0 ¼ 6) leads to unclear topologies, which do not allow generation
of truss-like structures and the OPT-STM models. Therefore, a rel-
atively small volume fraction and filter radius are suggested in the
TO phase.
4.2. Influence of merging length in the topology extraction phase

The merging length Lm is used to eliminate short bars in the
topology extraction phase. This simplification will influence the



Fig. 29. Steel strain distribution of the model (rL ¼ 25%) (Point R indicates the
rupturing location).
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accuracy of extracted truss-like structures in representing TO
results and thus influence the performance of the resulting OPT-
STM models. The merging length Lm is taken as: rL times the small-
est outside dimension of the illustrative example. A fraction
rL ¼ 10% results in a merging length of 25.4 mm for the considered
beam example. The corresponding reference result is shown in
Fig. 26b. In this section, in order to investigate this parameter,
two more OPT-STM models are generated with fractions
rL ¼ 15% and rL ¼ 25% respectively. The generated OPT-STM mod-
els are presented in Fig. 28.

The obtained results for these models are shown in Table 6. The
complexity of the OPT-STM models is reduced with increasing
merging lengths. Regarding the evaluation results of rL ¼ 10%
and rL ¼ 15%, we observe similar PV ratios. By reducing the merg-
ing length, a more accurate and detailed truss-like structure is
obtained in the topology extraction phase, and the resulting OPT-
STM has a higher PV ratio. The OPT-STM generated with rL ¼ 25%
has an obviously different truss analogy model than the other
two cases. In this case, the structure fails due to steel rupturing,
as shown in Fig. 29. The limited steel ductility and concrete plastic-
ity are not able to re-distribute stresses to fully utilize the steel,
therefore the ultimate capacity is lower than the design load
(71.2 kN).

These findings confirm that the merging length affects the
extracted truss-like structures. Although large merging lengths
reduce the complexity of OPT-STM models, the generated models
are no longer representative of the TO results, and a poor perfor-
mance is obtained which has a lower capacity, a higher steel usage
and a lower PV ratio. By choosing suitable lengths, the generated
OPT-STM models are effective in representing the TO results and
have good performance.
Table 7
Peak load, steel volume and PV ratio of evaluated models.

Cases STS Peak Steel PV
index (%) load (kN) volume (mm3) (%)
4.3. Importance of satisfying the axial force equilibrium

Axial force equilibrium states of truss-analogy models are
required in the STM method. The designs based on the STM
method are conservative which is an important aspect in practice.
The extracted truss-like structures are usually statically and kine-
matically unstable structures in which the calculated STS indices
(Eq. (8)) are substantially smaller than 1. Through shape optimiza-
tion, the final OPT-STM structure closely approximates a pure axial
force system. In order to investigate the importance of this shape
optimization step and of satisfying the axial force equilibrium,
the extracted uncorrected truss-like model excluding the shape
optimization phase is analyzed, as shown in Fig. 10. The STS index
Fig. 28. Generated OPT-STMs with two merging lengths. Black pixels present the
TO result. The blue and red lines indicate struts and ties respectively. The line width
indicates the magnitude of axial forces. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 6
Peak load, steel volume and PV ratio of evaluated OPT-STM models.

rL Peak load Steel volume PV
(%) (kN) (mm3) (%)

10 81.73 87452 20.5
15 79.45 85799 20.3
25 65.89 88929 16.2
of this truss-like structure is 93.3%. After the beam analysis, only
axial forces are used to design cross sections of the reinforcement
in the NLFEA model. The evaluation results are summarized in
Table 7, and load-displacement curves are presented in Fig. 30.

The evaluation result of the uncorrected truss-like structure
shows a capacity significantly below the design load, which is sup-
posed to be a lower bound. The shear force diagram of the truss-
like structure is presented in Fig. 31, and the crack patterns and
the steel strain in the ultimate state are presented in Fig. 32. Due
to the large shear forces, the structure fails in a shear failure mode
without steel rupturing. The satisfaction of the STS index require-
ment is important to guarantee that the generated models are suit-
able for the STM method, and lead to safe designs.

5. Applications of the generation method for two D-regions

In this section, the generated OPT-STMmodels and 11 manually
generated STM models from literature for two D-regions are eval-
uated. The first case (Case A) is the dapped-end beam which has
already been used as illustrative example throughout the previous
sections. The second case (Case B) is an irregular deep beam with
an opening. Based on NLFEA results of these STM models, the load
capacity, steel usage, PV ratios and failure modes are compared to
evaluate the relative effectiveness of the generated OPT-STM
models.

5.1. Problem description and Strut-and-Tie models

Case A was introduced in Fig. 1 in Section 2. Case B is based on
Example Problem 4 of ACI SP-208 [50]. The experimental investiga-
Truss-like structure 93.3 43.98 78029 12.4
OPT-STM 99.97 81.73 87452 20.5

Fig. 30. Load-displacement curves of the OPT-STM and the uncorrected truss-like
model.



Fig. 31. The shear force diagram of the uncorrected truss-like structure. The bar
width indicates the magnitude of shear forces.

Fig. 32. Structural response of the uncorrected truss-like structure in the ultimate
state.

Fig. 34. The generated OPT-STM of the irregular deep beam.

Fig. 35. The generated OPT-STM of the irregular deep beam. The blue and red lines
indicate struts and ties respectively. The line width indicates the magnitude of axial
forces. Normalized tensile forces (for an unit loading) are presented. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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tion of this problemwas conducted by Ley et al. [41]. The geometry
and loading conditions are presented in Fig. 33. The thickness of
this structure is 38 mm.

Following the proposed generation method, and using the rec-
ommended settings obtained in Section 4 (volume fraction
a ¼ 25%, filter radius r0 ¼ 1:5, merging length rL ¼ 10%), the
OPT-STM model for this irregular deep beam is generated, as
shown in Fig. 34. It has an STS index equal to 0.999, and is pre-
sented in Fig. 35.

The evaluated STM models of Case A from previous studies in
literature are presented in Fig. 36. The OPT-STMmodel for this case
is the same model as obtained in Section 2, Fig. 16. Four additional
STM models from previous studies, as shown in Fig. 36(b)-(e) with
corresponding references, are also evaluated. STM-A1, STM-A2 and
STM-A3 have a similar right-hand side part, however the force
transmission in the left-hand side part differs between these mod-
Fig. 33. Irregular deep beam with an opening (mm).
els. Model STM-A4 has been generated based on a topology opti-
mization result with manual adjustments.

As for Case B, seven previously proposed STM models are eval-
uated and compared against the generated OPT-STM model, as
shown in Fig. 37. In this example, STM-B1 simulates two beams
which are placed in the upper and lower part of the structure.
STM-B2 simulates the force transmission as a portal frame with a
hinge at the top. STM-B3 was proposed following the load path
method. Compared to STM-B1, STM-B4 uses a deeper truss at the
right-hand side. The motivation of the proposed STM-B5 is to pro-
vide a large amount of ductility. The stresses in the bottom part of
the beam are neglected. STM-B6 and STM-B7 are created based on
Fig. 36. STM models for Case A (the dapped-end beam).



Table 8
The ultimate load and steel usage of STM models of the Case A (dapped-end beam).

Cases Peak load (kN) Steel volume (mm3) PV (%)

OPT-STM 81.73 87452 20.5
STM-A1 80.50 134202 13.1
STM-A2 82.91 189422 9.6
STM-A3 80.58 105979 16.6
STM-A4 77.72 84781 20.0

Fig. 37. STM models for Case B (irregular deep beam).

Fig. 38. The load-displacement curves for the STM models of Case A (dapped-end
beam).
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TO results, followed by manual interpretation. However, a large
difference is observed between the TO result reported in Zhong
et al. [68] and the resulting STM-B7.
Fig. 39. The load-displacement curves for the STM models of Case B (irregular deep
beam).
5.2. Evaluation results and discussions

Based on the evaluation method from Section 3, the aforemen-
tioned STM models are evaluated by NLFEA. The solution strategy
for Case A is the same as in the illustrative example. In Case B, the
concrete properties are calculated based on a mean compressive
strength as 21.4 MPa from the experiment by Ley et al. [41]. The
step size is 0.01 mm in displacement control and the mesh size
for the FEM model is 12 mm. Other aspects of the solution strategy
remain the same as in the first example. All axial equilibrium
forces of evaluated STM models are calculated based on the design
load to determine cross-sectional areas for the reinforcements. The
STS indices for the classical STM models approach 1, indicating
pure axial loading. Given the high STS indices for both OPT-STM
models, there is no difference between all models in this respect.

The obtained load-displacement curves of Case A are shown in
Fig. 38. The ultimate load and steel usage are summarized in
Table 8. The models with best and worst PV ratios have line mark-
ers in the load-displacement curves. In this example, all models fail
due to steel rupturing and they have a peak load larger than the
design load (71.2 kN). Moreover, the load-displacement curve
shows that the OPT-STMmodel is generally stiffer than other mod-
els. It has the largest PV ratio which indicates the most economical
design. STM-A2 has the lowest PV ratio, indicating a relatively
costly design. Since STM-A4 was inspired by a TO result, a rela-
tively large PV ratio is obtained compared to the other classical
STM models. The proposed automated STM model generation pro-
cess is superior to this hand-tuned model in both capacity and PV
ratio, however in terms of absolute reinforcement volume the
STM-A4 model has a slight advantage. Moreover, the peak loads
of all models are reached when the reinforcement reaches the ulti-
mate strain.

In Case B (irregular deep beam), the load-displacement curves
of all evaluated models are presented in Fig. 39. The ultimate load
and steel usage are summarized in Table 9. Similar as in the first
example, the OPT-STM has the best PV ratio. STM-B6 is inspired
by a TO result and also leads to a relatively good PV ratio. Because
of the large differences between STM-B7 and its TO result, a lower
PV ratio is obtained for STM-B7.

In this example, the peak loads of other models are considerably
larger than the design load (23.6 kN) apart from STM-B5. The
design of STM-B5 shows a brittle behaviour in which the reinforce-
ment cannot be fully activated due to the limited plasticity of con-
crete. In this case, most STM models (except STM-B2 and STM-B5)
fail due to steel rupturing. Because of stress redistribution, the



Table 9
The ultimate load and steel usage of STM models of the Case B (irregular deep beam).

Cases Peak load (kN) Steel volume (mm3) PV (%)

OPT-STM-B 26.51 24467 59.4
STM-B1 26.80 42715 34.38
STM-B2 40.90 152440 14.7
STM-B3 27.95 39994 38.3
STM-B4 28.12 43657 35.4
STM-B5 22.63 73639 16.8
STM-B6 29.18 27378 58.4
STM-B7 27.68 42554 35.6

Fig. 40. Crack plots for the OPT-STM models at the ultimate state.
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designs of OPT-STM-B and STM-B3 exhibit restabilization after the
occurrence of critical cracks in the first peak load point. All models
have a similar stiffness before developing the initial cracks. Only
the designs of OPT-STM-B and STM-B1 reach the peak load at the
moment of steel rupturing. Other models show ductility after
reaching the peak load. In terms of steel economy and avoiding
an overly conservative design, the automatically generated OPT-
STM-B model outperforms both hand-tuned designs based on TO
results, as well as all other STM models proposed for this problem.
It is also noted, that through the very efficient use of steel, less duc-
tile behavior is observed.

Based on evaluation results of two D-region problems under
considered concrete and steel properties, large PV ratios are found
for the generated OPT-STM model. Moreover, the resulting design
reaches the peak load in the ultimate state, in which the structure
fails due to steel rupturing. This indicates that more suitable STM
models are generated, which are more accurate in representing
the force flows in the D-region. Comparing TO inspired STM mod-
els (STM-A4 and STM-B6) with other manually created models, it is
clear that the topology inspired models have relatively large PV
ratios. However, by avoiding the manual interpretation of TO
results, the PV ratios are most improved in the generated OPT-
STM models. The crack plots of the two OPT-STM models are pre-
sented in Fig. 40. The OPT-STM models lead to flexural failure
modes due to rupture of the reinforcement. By using a more suit-
able STM model, the usage of reinforcements is reduced and a
more accurate design model for D-regions is obtained.
6. Conclusion

In this paper, a method is proposed to automatically generate
optimization-based Strut-and-Tie (OPT-STM) models. In order to
generate suitable models for the STM method, the proposed
method includes three phases. The topology optimization results
of the compliance minimization problem are obtained in the first
phase. Next, in the topology extraction phase, truss-like structures
which represent the TO results are generated. Finally, in the shape
optimization phase, the requirements of the STM method on the
axial-force equilibrium and geometrical conditions such as open-
ings and cover thicknesses are considered. The entire procedure,
depending on the selected resolution, typically produces a valid
OPT-STM model in a few minutes.

In order to evaluate the generated OPT-STM models, in this
study NLFEA is used to simulate the structural performance. Steel
usage, peak loads and failure modes are used to evaluate the suit-
ability of the used STM models. Based on obtained steel usage and
peak loads, the PV ratio is defined to quantify the degree of utiliza-
tion of steel reinforcement for further comparison. Two D-region
design cases are investigated. In addition to two generated OPT-
STM models, 11 STM models from previous studies are evaluated.
Based on the present investigation, the conclusion is summarized
as follows:

1. The proposed method successfully generates valid OPT-STM
models for D-regions automatically and without manual adjust-
ments. Recommendations for the settings of several parameters
are provided based on parameter studies.

2. Detailed NLFEA simulation of RC structures based on OPT-STM
models show a high stiffness and sufficient, yet not overly con-
servative load capacity. Compared with manually generated
STM models, the OPT-STM models lead to the most economical
steel usage relative to load capacity. The desired flexural failure
mode is obtained.

3. Given these findings, the proposed STM generation method can
be recommended for practical use. It removes variability due to
manual STM model construction from the design process and
replaces this with safe and economical designs. When imple-
mented in the engineering practice, significant savings in design
time and steel usage can be expected.
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