
 
 

Delft University of Technology

Integrated design of a semi-submersible floating vertical axis wind turbine (VAWT) with
active blade pitch control

Huijs, Fons; Vlasveld, Ebert; Gormand, Maël; Savenije, Feike; Caboni, Marco; Leblanc, Bruce; Ferreira,
Carlos; Lindenburg, Koert; More Authors
DOI
10.1088/1742-6596/1104/1/012022
Publication date
2018
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Huijs, F., Vlasveld, E., Gormand, M., Savenije, F., Caboni, M., Leblanc, B., Ferreira, C., Lindenburg, K., &
More Authors (2018). Integrated design of a semi-submersible floating vertical axis wind turbine (VAWT)
with active blade pitch control. Journal of Physics: Conference Series, 1104, Article 012022.
https://doi.org/10.1088/1742-6596/1104/1/012022
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/1104/1/012022
https://doi.org/10.1088/1742-6596/1104/1/012022


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Integrated design of a semi-submersible floating vertical axis wind
turbine (VAWT) with active blade pitch control
To cite this article: Fons Huijs et al 2018 J. Phys.: Conf. Ser. 1104 012022

 

View the article online for updates and enhancements.

This content was downloaded from IP address 85.146.244.150 on 06/11/2018 at 13:00

https://doi.org/10.1088/1742-6596/1104/1/012022
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/399823377/Middle/IOPP/IOPs-Mid-JPCS-pdf/IOPs-Mid-JPCS-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012022

IOP Publishing

doi:10.1088/1742-6596/1104/1/012022

1

 

 

 

 

 

 

 

Integrated design of a semi-submersible floating vertical axis 

wind turbine (VAWT) with active blade pitch control  

Fons Huijs1, Ebert Vlasveld1, Maël Gormand1, Feike Savenije2, Marco Caboni2, 

Bruce LeBlanc3, Carlos Simao Ferreira3, Koert Lindenburg4, Sébastien 

Gueydon5, William Otto5, Benoît Paillard6 

1 GustoMSC, Schiedam, The Netherlands 
2 ECN, Petten, The Netherlands 
3 Delft University of Technology, Delft, The Netherlands 
4 Knowledge Centre WMC, Wieringerwerf, The Netherlands 
5 MARIN, Wageningen, The Netherlands 
6 EOLFI, Paris, France 

E-mail: Fons.Huijs@GustoMSC.com 

Abstract. A semi-submersible Tri-Floater has been designed to support a 6 MW vertical axis 

wind turbine (VAWT) with active blade pitch control. Due to the low centre of gravity and large 

allowable floater tilt angle, a relatively small floater can be used to support a VAWT. Coupled 

simulations including hydrodynamics, mooring system, aerodynamics and control system have 

been performed to analyse the strongly coupled dynamics of floater and wind turbine. Software 

tools have been developed or upgraded to enable these simulations. Based on typical extreme 

operational and survival design load cases, it is illustrated that the active blade pitch control 

system can be successfully used to minimize the governing loads on the floater. Whereas for a 

VAWT with fixed blades, the parked survival conditions are typically design driving for the 

floating support structure, this is not the case if blade pitch control is applied. It is concluded 

that, compared to a horizontal axis wind turbine (HAWT) with the same rated power, a 20 percent 

lighter floater can be used as support structure for the VAWT with active blade pitch control. 

 

Keywords: floating wind turbine; semi-submersible; vertical axis wind turbine (VAWT); active 

blade pitch control; coupled aero-hydro-servo-elastic simulations 

1.  Introduction 

With the offshore wind industry moving towards larger turbines and deeper waters, the potential for 

floating vertical axis wind turbines (VAWT) is increasing. First of all, the VAWT can probably be scaled 

to larger turbine sizes more easily than the horizontal axis wind turbine (HAWT) [1]. Secondly, the 

VAWT is very well suited for application on a floating support structure. Compared to a HAWT, the 

generator and thus also the overall centre of gravity of a VAWT is located lower. Furthermore, a VAWT 

allows for larger floater tilt angles than a HAWT. Consequently, a smaller and more cost-effective 

floater can be used to support a VAWT.  

During the last years, several studies on floating VAWT have been published. Vita et al [2] proposed 

a Darrieus rotor with a long vertical rotating shaft transitioning into a spar buoy, with the generator 

submerged at the keel of the floater. This concept was further developed and tested within the DeepWind 

project, as presented by Berthelsen et al [3] and Paulsen et al [4, 5]. Cahay et al [6] presented a semi-

http://creativecommons.org/licenses/by/3.0
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submersible floating VAWT design, comprising a 3-bladed rotor with twisted blades developed by 

Nenuphar. They concluded that the VAWT is very well fitted for floating offshore applications, 

especially due to the low centre of gravity. Blonk [7] studied the economic feasibility of both a straight 

bladed VAWT supported by a GustoMSC Tri-Floater semi-submersible and a guyed VAWT with 

curved blades on a floating buoy. Borg et al [8, 9] performed a long term global performance analysis 

for a semi-submersible VAWT and published a comparison between the dynamics of floating HAWT 

and VAWT. Galinos et al [10] investigated the design load cases for VAWT and compared these to 

HAWT. Based on the latter two studies, the main differences can be expected from the yaw moment 

induced by the rotor torque, the oscillating behaviour of the thrust force and, for fixed pitch VAWT, the 

increasing thrust and torque at wind speeds above rated wind velocity and a larger rotor drag when 

parked. All this previous work has been done for VAWT with fixed blades. 

Vertical axis wind turbines with fixed blades, as built until now, are subject to high wind loads during 

parked survival conditions. As a consequence, the design of the floater for such a VAWT would be 

governed by the parked survival condition rather than the operational conditions. By introducing blade 

pitch control, this issue can be solved. In addition, blade pitch control improves the aerodynamic 

efficiency of the rotor and can be used to lower the loads during power production. With the objective 

to verify and quantify the assumed benefits of the VAWT with active blade pitch control for floating 

offshore applications, the S4VAWT project was initiated. Within this project, the design of a semi-

submersible floating support structure based on GustoMSC’s Tri-Floater technology, has been 

customized to support a 6 MW VAWT with pitched blades based on EOLFI’s SpinFloat technology. 

An artist impression of the resulting design is presented in figure 1.  

 

 

Figure 1. Artist impression of the semi-submersible floating vertical axis wind turbine (VAWT) 

 

In this paper, a global overview of the S4VAWT project and its main finding are presented. First, the 

research objectives and approach are provided, followed by the basis of design. Sections 4 and 5 discuss 

the design of the wind turbine and the floater respectively. The coupled analysis of the floating VAWT 

is described in section 6, after which the results and recommendations for further work are discussed in 

section 7. Finally, section 8 summarizes the main conclusions of the paper. 
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2.  Research objectives and approach 

In the S4VAWT research project, ECN, EOLFI, Delft University of Technology, GustoMSC, MARIN 

and WMC have been cooperating with the following research objectives and approach.  

2.1.  Objectives 

Aiming to verify and quantify the claimed advantages of the VAWT for floating wind turbine 

applications, the main objective of the S4VAWT project has been to design a competitive semi-

submersible support structure for a large scale VAWT with active blade pitch control. In order to reach 

a safe, reliable and cost-effective floating support structure and mooring system, the performance in 

combined wind and waves had to be verified by state-of-the-art numerical simulations. Coupled design 

and simulation tools had to be developed and the governing load cases for the floating VAWT were to 

be identified. 

2.2.  Approach 

An aerodynamic model has been developed for the vertical axis rotor using a method sufficiently fast 

for design calculations and the existing program Phatas in the FOCUS6 wind turbine design package of 

WMC has been modified to allow for vertically orientated blades. The Phatas code had been coupled to 

the hydrodynamic software packages Ansys AQWA and aNySIM before and this coupling has now 

been updated to deal with VAWT. The developed coupled tools have been used to optimize and verify 

the GustoMSC Tri-Floater and its mooring system for supporting a VAWT. During several design 

iterations, the floater dimensions have been optimized in order to achieve the most cost-effective design. 

A dedicated family of airfoils has been designed by Delft University of Technology, combining high 

aerodynamic and structural performance. ECN control system technology for floating wind turbines has 

been further developed for use on floating VAWT. Initial design loops have been performed using 

uncoupled and simplified analyses, followed by final integrated design loops with fully coupled 

simulations. Preparing already for future work, MARIN has defined requirements and a proposed setup 

for wave basin model testing of the floating VAWT. 

3.  Basis of design 

This section provides the basis of design for the floating VAWT. The site conditions are presented, 

followed by the applied rules and regulations and turbine tilt design criteria. 

3.1.  Site conditions 

The structure has been designed for operation in the French part of the Mediterranean Sea at a site with 

approximately 100 m water depth. Typical metocean data for this region has been used. Typical extreme 

operational and 50-year survival conditions for the site are presented in table 1. For these cases, a 

JONSWAP wave spectrum with a peak enhancement factor γ of 3.3 has been assumed. A wind shear 

profile based on a power law has been applied, with an exponent of 0.08. 

 

Table 1. Extreme operational and 50-year survival current, wind and wave conditions  

 extreme 

operational  

rated 

extreme 

operational  

cut-out 

50-year  

survival  

parked 

Surface current velocity [m/s] 0.7 0.7 1.6 

Significant wave height [m] 4.0 5.4 6.5 

Associated wave peak period range [s] 7 – 11 8 – 12 9 – 13 

10-min wind velocity at 100 m above SWL [m/s] 11 25 39 

Associated turbulence intensity [%] 10 8 11 
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3.2.  Rules and regulations 

The floating VAWT has been designed according the standards for floating wind turbine structures of 

DNV GL [11], with a design life of 20 years. In line with UK regulations, a requirement for a minimum 

airgap of 23 m between SWL and the rotor blades has been applied for the non-inclined floater. 

3.3.  Turbine tilt 

The floater has been designed such that the maximum static tilt angle of the VAWT during power 

production does not exceed 10 degrees. The VAWT has been designed to cope with this inclination. 

This static tilt design value is about twice as large as the typical values allowable for floating HAWT, 

which is one of the advantages of the VAWT. The semi-submersible floater has been designed to keep 

dynamic tilt angles and accelerations at the electrical generator as low as possible.  

4.  Vertical axis wind turbine (VAWT) design 

The vertical axis wind turbine is a variation on the SpinFloat concept developed by EOLFI, with 

dedicated airfoils and control system developed within the S4VAWT project. The electrical generator 

and drive train are accommodated in the central tower. 

4.1.  Rotor 

The three-bladed 6 MW VAWT rotor as shown in figure 1 has been designed with a projected area of 

17700 m2. This relatively low power density will secure high capacity factors in moderate wind climates. 

For sites with higher mean wind velocities, the turbine could be modified to a higher power rating. The 

rotor main dimensions and the mass properties of the VAWT are presented in tables 2 and 3 respectively. 

 

Table 2. Rotor main dimensions  Table 3. VAWT mass properties 

Dimension Size [m] 

Blade span 140 

Blade chord 5 

Rotor diameter at lower end 115 

Rotor diameter at upper end 139 
 

 Item  Mass [t] 

Rotor  130 

Nacelle  240 

Tower  180 

Total: wind turbine  550 
 

 

The rotor has been optimized for lowest aero-structural cost. A parametrized model has been created, 

including the main geometric variables. The goal was to find a trade-off between structural resistance, 

aerodynamic performance, material cost and rotor thrust, and to find it through a structural modelling 

with enough accuracy to be confident with the final weight estimate. Since most of the aerodynamic 

shapes are manufactured with composites, a dedicated calculation tool had to be used. There have been 

previous attempts to implement such an optimization, such as presented by Roscher [12], however this 

was not suited to the Spinfloat architecture. The present modelling uses a chaining between preComp 

[13], a pre-processor developed by NREL that provides span-variant structural properties for composite 

blades; code_aster, a finite element solver developed by EDF, used as a beam modelling tool; and 

Dakota, an optimization and uncertainty quantification framework developed by Sandia National 

Laboratories.  

4.2.  Airfoil family 

The airfoil family for the rotor has been designed based upon the work of Ferreira and Geurts [14]. A 

multi-objective genetic algorithm has been used to maximize both the aerodynamic and structural 

properties of the airfoils. An initial airfoil population has been chosen which exhibits a wide range of 

airfoil qualities such as thickness or camber. Each of these airfoils has then been evaluated based upon 

two criteria: the aerodynamic performance, in this case the slope of the CL - α curve divided by the 

average drag of the airfoil during operation; and the structural performance, here, the area moment of 
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inertia of the airfoil assuming a thin wall structure. The aerodynamic performance has been calculated 

in both clean and soiled conditions, a weighted average has then been applied to the airfoils that 

penalizes large differences in performance between clean and soiled conditions. This in effect penalizes 

airfoils which are highly sensitive to roughness.  

The dual-objective optimisation generated a Pareto front of airfoils, trading aerodynamic and 

structural performance. This Pareto front set of airfoils then went through a series of calculations to 

determine overall turbine performance and loading. The airfoil shape which proved to provide the most 

consistent level of performance both aerodynamically and structurally has been incorporated into the 

VAWT design and has been used to determine rotor loads in the coupled simulations. The resulting 

airfoil has a 24 % relative thickness and a 1% camber toward the exterior of the rotor and is shown in 

figure 2. 

 

 

 

 

 

  
Figure 2. Shape of the selected airfoil   Figure 3. Blade pitch trajectory 

4.3.  Control system 

Elaborating on the work presented in [15, 16], a dedicated VAWT blade pitch control algorithm has 

been developed, that 1) maximizes power production below rated wind speed and 2) regulates the 

generator speed and power to nominal above rated wind speed. For the first objective of maximum 

power production, a blade pitch trajectory (blade pitch angle depending on rotor rotation, see figure 3) 

has been derived that maximizes the aerodynamic torque along the revolution. The generator torque 

controller is used to obtain variable speed, optimum power operation. For the second objective 

(regulation), a blade pitch angle offset is applied in a feedback loop working on the measured generator 

speed. Generator torque is kept constant at its nominal value.  

 

 

Figure 4. Generator power and torque curves  Figure 5. Thrust and side load curves 
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With this approach, the control strategy becomes similar to that of the conventional pitch to vane HAWT 

control. As a result, the operational curves of power and thrust (figure 4 and 5) are also similar, with 

decreasing thrust for increasing wind speed above rated. This is a clear benefit over stall regulation, 

where thrust does generally not decrease with wind speed. Another benefit of this approach is that stall 

is largely avoided, and the dynamic loads are also reduced.  

As shown in [16], a similar instability as found for floating HAWT (see e.g. [17, 18]) is also present 

for floating VAWT with active blade pitch control regulation. This instability occurs when the lightly 

damped floater Eigenmodes are present within the pitch control bandwidth. Therefore, the blade pitch 

control system has been tuned for application on the floater, aiming to minimize motions and loads, 

while maintaining operational performance (generator speed and power regulation). 

In addition to this normal production control algorithm, an active blade pitch control strategy has 

been developed to reduce the loads during survival conditions. When the wind turbine is parked or idling 

in storm with the blades locked in vane position, high sideways loads still occur due to the wind direction 

variations. To mitigate these loads, which would be design driving for the support structure, the blade 

pitch angles are actively adjusted with a feedback loop on measured blade loads. 

5.  Floating support structure design 

The floating support structure (figure 1) is a three-column semi-submersible of the GustoMSC Tri-

Floater type which is kept in position by a catenary chain mooring system. 

5.1.  Tri-Floater semi-submersible 

The Tri-Floater semi-submersible comprises three columns, which are connected by a deck box structure 

above the water. The concept was first published in 2003 [19] and further improved and validated by 

model tests in 2013 [20, 21]. The structure is built out of flat steel panels, optimized for manufacturing 

using automated welding. The floater is sufficiently stable to assemble the wind turbine in a port, using 

an onshore crane. Tow-out and hook-up to the mooring system and electrical cables is done with low-

cost vessels such as seagoing tugs. The floater dimensions have been minimized during several design 

loops, to take full advantage of the lower centre of gravity and larger allowable floater tilt angle. The 

main particulars and weights of the final design are presented in tables 4 and 5 respectively. 

 

Table 4. Tri-Floater main particulars  Table 5. Weight and loading condition 

Dimension Size [m] 

Radius to column centre 33 

Overall length 68 

Overall width  80 

Depth (keel to main deck) 25 

Operational draft  10 

Transit draft 7 
 

 Item Weight [t] 

Floater lightship 1700 

Wind turbine 550 

Subtotal: transit displacement 2250 

Water ballast 400 

Static vertical mooring load 100 

Total: operational displacement 2750 
 

5.2.  Mooring system 

A conventional three-line catenary mooring system is used to moor the Tri-Floater to the seabed. Each 

mooring line comprises of 500 m chain of grade R4 with a diameter of 89 mm. The mooring lines are 

connected to the floater at main deck level at the outer edges of the columns, in order to minimize the 

wind overturning moment on the floater and to maximize the vertical distance between anchor and 

fairlead [22]. The mooring system is secured to the seabed using conventional drag anchors. 
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6.  Coupled analysis 

Coupled simulations including hydrodynamics, mooring, aerodynamics and controls have been 

performed to analyse the strongly coupled dynamics of floater and wind turbine.  

6.1.  Simulation tools and methodology  

Existing aerodynamic and wind turbine software packages, which had up to now only been used for 

HAWT, have been modified to allow for VAWT simulations. The overall structure and the components 

are discussed below. 

6.1.1.  Overall structure and coupling. The dynamic response of the floating VAWT is calculated in the 

time domain, by which all types of non-linearities – such as from control actions and mooring lines – 

can be included. Figure 6 shows the relation between the modules in the coupled software code. The 

time increment used for the floater motions is much larger than that for the wind turbine response, which 

is handled by two intermediate modules.  

 

 

Figure 6. Coupled software for floating VAWT analysis 

 

In the coupled application, the program aNySIM is calling the other codes that are provided as 

Dynamically Linked Libraries (DLL). In the call to WTmodule, the position and motion of the floating 

support is communicated. On return WTmodule provides the loads at the tower base together with a 

matrix with inertia properties to aNySIM. These loads and the inertia matrix are then used by aNySIM 

in solving the motions of the floating support. Also the gyroscopic moments are included as part of the 

solution by aNySIM. 

6.1.2.  Wind turbine simulation tool. WTmodule is the modular version of the program Phatas [23]. Both 

Phatas and WTmodule were initially developed for horizontal axis wind turbines and had to be modified 

to deal with the geometry of a VAWT rotor [24]. The standard rotor wake aerodynamics model of 

WTmodule is dedicated to a HAWT. For a VAWT however, the rotor wake is solved in ECN-

Aeromodule using a vortex wake model, as described below. The wind field acting on the rotor is applied 

by files with the three-component wind on a 3D rectangular grid. The turbulence of the wind is generated 

with the program SWIFT following the Kaimal spectral model.  

6.1.3.  Lifting line free vortex wake method. Aerodynamic calculations have been performed by means 

of AWSM [25], a lifting-line free-vortex wake method implemented in ECN-Aeromodule [26]. In this 

approach the shape and strength of the blades’ wake evolve in time, and are estimated based on the 

induced flowfield determined by AWSM iteratively. The loads along the blades account for the local 

induced velocities, and are calculated from user-prescribed 2D lift, drag and momentum coefficients as 

a function of the angle of attack. 

6.1.4.  Floater hydrodynamics and mooring system. The response of the Tri-Floater in waves and current 

has been simulated using aNySIM (v12.2.0), a software tool developed by MARIN. In this tool, the 

wave loads are determined based on potential flow theory. They include the linear wave excitation and 

the second-order low frequent excitations for all six degrees of freedom. The potential damping and the 
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added mass are translated in time domain to a non-frequency-dependent added mass and a set of 

retardation functions. The viscous loads acting on the floater have been introduced by a quadratic 

damping matrix. The mooring lines have been modelled as a uniform catenary made of 50 lumped-

masses. At each time step the equation of motion of the floater is solved taking non-linear platform 

response and interaction effects between the floater, the mooring lines and the wind turbine into account. 

6.2.  Simulation load cases 

Typical operational and survival design load cases have been simulated using coupled software to assess 

the performance of the design in combined wind and waves. In this paper, results are only presented for 

the rated, cut-out and parked survival conditions provided in table 1, with wind, waves and current all 

acting in the positive surge direction. All simulations have a duration of 1 hour. The wind statistics for 

this 1-hour period have been derived from the 10-minute statistics. 

Two different design philosophies for the survival condition are considered. The first considers a 

survival condition without any power available to operate a blade pitch control system. The rotor and 

the blades are therefore locked in a fixed position with respect to the mean wind velocity, considering a 

rotor yaw misalignment of 8° as prescribed by IEC [27]. The second philosophy assumes a back-up 

power supply to be on board. Controlling the blade pitch is therefore still feasible in the survival 

condition, in which case the controller switches to a regime where the blade pitch is controlled based on 

the instantaneous wind load on the blades.  

6.3.  Results 

Table 6 presents the main results for the four selected load cases. The mean and maximum absolute 

values derived from a single 1-hour simulation are presented.  

 

Table 6. Mean and maximum results of the coupled simulations  

Design condition extreme operational 50-year survival 

rated cut-out blades locked active control 

mean max mean max mean max mean max 

Floater surge [m] 42.3 45.8 38.7 43.0 29.7 38.9 42.4 50.7 

Floater sway [m] -0.1 -1.0 0.3 -3.2 -10.3 -16.0 0.0 -2.7 

Floater heave [m] 0.1 1.4 0.2 1.9 -0.3 -2.9 0.2 2.1 

Floater roll [deg] 1.0 2.6 -0.3 -5.9 19.2 29.5 0.0 -3.4 

Floater pitch [deg] 7.2 11.1 2.0 5.1 -3.2 -13.1 -0.1 4.8 

Floater yaw [deg] 5.0 7.7 5.7 8.7 7.4 14.1 0.0 -5.6 

Tilt (roll & pitch) [deg] 7.3 11.2 2.5 6.3 19.6 31.2 1.6 4.8 

Hub acceleration1) [m/s2] 1.2 2.3 0.5 1.5 3.3 5.9 0.5 1.5 

Mooring tension (max) [kN] 1295 1745 1107 1745 2705 5192 1198 2211 

Rotor thrust / drag2) [kN] 861 1356 315 786 440 1082 149 235 

Generator power [MW] 6.2 7.5 6.3 7.6 0 0 0 0 

Tower base moment [MNm] 102 156 46 118 249 523 18 68 

1) Horizontal acceleration at the hub, including the gravity component. 
2) The rotor does not generate thrust in survival conditions, but is subject to a drag load. This load includes the 

drag load on the rotor struts. 
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For the operational cases, the thrust on the rotor results in a mean surge offset and a mean pitch angle. 

As shown in figure 5, the rotor also experiences a small side load, which causes some floater roll. The 

combined floater tilt angle due to roll and pitch has a mean value of 7 degrees for the rated and 3 degrees 

for the cut-out condition, well below the design value of 10 degrees set in section 3.3. The extreme tilt 

angle including dynamics reaches maximum values around 11 degrees. The horizontal accelerations at 

the hub, including the gravity component due to tilt, reach values in the order of 2.3 m/s2.  

The difference between the responses of the two survival conditions is considerable, which is further 

illustrated by figure 7. For the survival condition in which the blades are locked, high lift loads on the 

blades are introduced due to both the 8 degrees yaw misalignment and turbulence in wind direction, 

resulting in high sway motions and (especially) roll motions. Not only would this survival condition be 

the governing design condition for the VAWT, floater and mooring, it would indeed require a (much) 

larger floater and heavier mooring system in order to arrive at acceptable tilt angles and mooring safety 

factors.  

Controlling the blade pitch angles in survival conditions results in a much lower overall response, to 

such an extent that the survival condition is no longer governing the design of the floater and VAWT. 

Except for floater surge and heave (which is governed by wave loads), all responses are significantly 

lower compared to the fixed blade pitch survival condition. Whereas with the locked blades, the 

maximum floater tilt and yaw angles reach values of 31 and 14 degrees respectively, these are reduced 

to 5 and 6 degrees by utilizing the blade pitch control system. The mean roll and pitch angles are close 

to zero while mean and maximum mooring line tensions are reduced by more than 50 percent. It is 

therefore concluded that controlling the blade pitch angle during survival conditions is to be preferred 

over fixing the blades during survival conditions, even though this introduces the requirement of having 

a back-up power supply on board.  

 

 

Figure 7. Time traces of roll and mooring line tension for the two control settings during survival 

7.  Discussion of results and further work 

The main research results in terms of governing load cases and cost reduction potential are discussed 

below, followed by recommendations for future model testing. 

7.1.  Governing load cases 

As highlighted by Galinos et al [10], the design of floating vertical axis wind turbines with fixed blades 

would typically be governed by high wind loads during parked survival conditions. The results presented 

in the previous section show that the introduction of active blade pitch control during these conditions 

effectively solves this issue. Critical floater design parameters such as maximum tilt angle, hub 

acceleration and tower base moment all reach their maximum values during power production at extreme 

operational conditions rather than during parked survival conditions. Only for floater surge offset and 

mooring line tension, the parked survival case is still governing, which is similar to what is often 

observed for floating HAWT.  
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The rotor torque during power production results in a 5 to 6 degrees mean yaw angle of the floater. 

Whereas this torque has been reported by Borg and Collu [9] to be severe for some floater types, this is 

not the case for the Tri-Floater and its mooring system design. This is probably due to the fairleads being 

located at sufficient distance from each other to achieve mooring stiffness in yaw. In addition, the floater 

columns generate hydrodynamic damping, keeping the yaw motions limited. An additional explanation 

can be found in the three-bladed active blade pitch setup, which almost completely eliminates the torque 

ripple and alleviates the load (and thus also reduces the cost) of the generator. 

Applying active blade pitch control makes the design driving load cases of the floater for a VAWT 

more comparable to a HAWT. As discussed above, the rotor drag during survival is much lower than 

the thrust during power production at rated wind conditions. Also the negative slope of the thrust curve 

above rated occurs for the pitch controlled VAWT, which requires careful control system design in order 

to avoid floater-control instabilities. The thrust in the cut-out condition is greatly reduced compared to 

fixed blade pitch VAWT [15, 16], which makes the rated condition governing for the tilt angle and tower 

base moment. The largest roll and yaw motions are found during power production at cut-out wind 

velocity.  

7.2.  Cost reduction compared to floating HAWT 

The main objective of the S4VAWT project was to verify and quantify the claimed advantages of the 

VAWT for floating wind turbine applications. In this study, this has been limited to the costs of 

manufacturing the floating support structure.  

For the purpose of comparison, the required dimensions and weights of a Tri-Floater to support a 6 

MW HAWT at the same site have been determined. From this comparison, it is concluded that the floater 

for the VAWT requires about 20 percent less steel, which implies that the manufacturing costs of the 

floater are also about 20 percent lower for the VAWT than for the HAWT. Further work is needed to 

assess all costs and calculate the cost of energy of the VAWT compared to the HAWT.  

7.3.  Wave basin model test set-up design 

For future work it is recommended to perform wave basin model tests in order to verify the global 

motion response, mooring line tensions and airgap of the floater.  Furthermore, wave basin model tests 

are valuable to validate the coupled simulation tools and identify unexpected hydrodynamic behaviour 

which may not be taken into account in the simulations. 

Since the global motion response and mooring line tensions are highly dependent on both the wind 

and wave loads, it is important to model these simultaneously. The scaling of wind loads is complicated 

however, as wave testing requires Froude scaling which inevitably leads to very low Reynolds numbers 

on the airfoils. In 2014, a method for working around this scaling issue was presented by de Ridder et 

al [28] for a HAWT. A model scale turbine with performance scaled blades was constructed, meaning 

that the airfoil geometry was altered such that the model scale blades on low Reynolds number generate 

similar Froude scaled forces as the full scale blades on high Reynolds numbers. It has been investigated 

whether this approach is also feasible for the VAWT. However, it has been recognized that the individual 

blade pitch control would be most challenging to physically model, especially considering the high pitch 

speed. Also, it is expected that the gyroscopic moment of the VAWT is more relevant than for the 

HAWT, which gives strict weight restrictions on the hardware for the individual blade pitch control. 

Therefore it has been investigated to model the wind loads in an alternative way. 

As described by Sauder et al [29], state of the art force controlled winches are capable of accurately 

delivering time varying forces on a moving platform. In such an approach, the wind loads are in real 

time calculated with aerodynamic software and applied to the physical scale model with force controlled 

winches. This is a hybrid approach, where the hydrodynamics are physically modelled with scaled waves 

and current, and the aerodynamic forces are numerically modelled in a dedicated tool. As the apparent 

wind at the turbine is a resultant of the incoming wind and the floater motions, the floater motions are 

input for the numerical aerodynamic model. The calculated wind loads are real-time allocated to a set 

of force controlled winches and applied to the physical scale model. 
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One requirement of this approach is that the calculation of the aerodynamic loads needs to be fast 

enough to keep pace with the model tests. As Froude scaling leads to a time scaling with the square root 

of the model scale, the calculation needs to be in the order of 6 to 8 times faster than real time (typical 

scale range is ~1:36 to ~1:64). It has been concluded that the lifting line free vortex wake method of 

section 6.1.3 cannot presently fulfil this requirement without exceeding a reasonable cost level for model 

tests. Therefore a lower fidelity model will need to be used. 

8.  Conclusions 

The vertical axis wind turbine (VAWT) has specific features that make it highly suitable for offshore 

floating applications. Amongst these are the potential for scaling up, the low position of the centre of 

gravity and the large allowable tilt angle. However, VAWT with fixed blades typically have the 

disadvantage that the wind loads on the rotor become very large for the higher wind velocities, both 

during power production and parked survival conditions. The research described in this paper has shown 

that these design driving loads can be significantly reduced by introducing active blade pitch control for 

the VAWT. 

A 6 MW VAWT with pitch control and its semi-submersible support structure have been designed 

for deployment in the French Mediterranean Sea. The airfoil and the control system have been optimized 

specifically for this floating application. The floater dimensions have been reduced to the minimum 

required to meet the design requirements, taking full advantage of the lower centre of gravity and larger 

allowable floater tilt angles. It is concluded that approximately 20 percent less steel material is needed 

for the floater, compared to a 6 MW HAWT for the same site, with potential for further optimization. 

The final design has been verified by state-of-the-art simulations, using coupled software which has 

been developed specifically for this purpose. It is concluded that applying active blade pitch control 

makes the design driving load cases of the floater for a VAWT more comparable to a HAWT, with the 

rated condition being governing for the tilt angle and tower base moment, rather than the parked survival 

condition. Floater yaw due to rotor torque has turned out not to be an issue for the Tri-Floater, as its 

architecture provides sufficient mooring stiffness and hydrodynamic damping in yaw.  

For future work, wave basin model tests could be performed to validate the coupled simulation tools 

and hydrodynamics. Given the challenges involved in modelling a VAWT with active blade pitch 

control at scale in the wave basin, it is recommended to represent the VAWT by force controlled winches 

and a real time numerical simulation model, rather than a physical model. 

Acknowledgements 

This work has been performed as part of the S4VAWT project, which was supported financially by the 

Dutch government within the framework of the TKI Wind op Zee program.  

References 
[1] Griffith DT, Paquette JA, Barone MF, Goupee AJ, Fowler M, Bull D, Owens B. A Study of Rotor and 

Platform Design Trade-Offs for Large-Scale Floating Vertical Axis Wind Turbines. The Science of 

Making Torque from Wind (TORQUE 2016). Journal of Physics: Conference Series Vol. 753, No. 

102003, doi: 10.1088/1742-6596/753/10/102003; 2016. 

[2] Vita L, Paulsen US, Pedersen TF, Madsen HA, Rasmussen F. A novel floating offshore wind turbine 

concept. European Wind Energy Conference (EWEC). Marseille; 2009. 

[3] Berthelsen PA, Fylling I, Vita L, Paulsen US. Conceptual design of a floating support structure and mooring 

system for a vertical axis wind turbine. 31st International Conference on Ocean, Offshore and Arctic 

Engineering (OMAE). Rio de Janeiro; 2012. 

[4] Paulsen US, Madsen HA, Hattel JH, Baran I, Nielsen PH. Design optimization of a 5 MW floating offshore 

vertical-axis wind turbine. EERA DeepWind Deep Sea Offshore Wind R&D Conference, Trondheim; 

2013. 

[5] Paulsen US, Madsen HA, Kragh KA, Nielsen PH, Baran I, Hattel JH, Ritchie E, Leban K, Svendsen H, 

Berthelsen PA. DeepWind-from idea to 5 MW concept. EERA DeepWind Deep Sea Offshore Wind 

R&D Conference, Trondheim; 2014. 

  



EERA DeepWind'2018, 15th Deep Sea Offshore Wind R&D Conference

IOP Conf. Series: Journal of Physics: Conf. Series 1104 (2018) 012022

IOP Publishing

doi:10.1088/1742-6596/1104/1/012022

12

 

 

 

 

 

 

 

[6] Cahay M, Luquiau E, Smadja C, Silvert F. Use of a vertical wind turbine in an offshore floating wind farm. 

Offshore Technology Conference (OTC). Houston; 2011. 

[7] Blonk DL. Conceptual design and evaluation of economic feasibility of floating vertical axis wind turbines. 

MSc thesis Delft University of Technology; 2010. 

[8] Borg M, Manuel L, Collu M, Liu J. Long-term global performance analysis of a vertical-axis wind turbine 

supported on a semi-submersible floating platform. 34th International Conference on Ocean, Offshore 

and Arctic Engineering (OMAE). St. John’s; 2015. 

[9] Borg M, Collu M. “A comparison between the dynamics of horizontal and vertical axis offshore floating 

wind turbines”, Phil. Trans. R. Soc. A 373: 20140076; 2015. 

[10] Galinos C, Larsen TJ, Madsen HA, Paulsen US. “Vertical axis wind turbine design load cases investigation 

and comparison with horizontal axis wind turbine”. EERA DeepWind Deep Sea Offshore Wind R&D 

Conference, Trondheim; 2016. 

[11] Det Norske Veritas (DNV). Design of floating wind turbine structures. DNV-OS-J103; 2013. 

[12] Roscher B. Structural optimization of a vertical axis wind turbine with aeroelastic analysis. Wind Energy 

and Aerospace Engineering, Technical University of Denmark and Delft University of Technology. 

Denmark; 2014. 

[13] NWTC Information Portal (PreComp).  https://nwtc.nrel.gov/PreComp 

[14] Ferreira CS, Geurts B. "Aerofoil optimization for vertical-axis wind turbines," Wind Energy Vol. 18, No. 

8, 2015, pp. 1371-1385. doi: 10.1002/we.1762. 

[15] Savenije FJ, Huijs FA, Paillard B. How blade pitch control for a vertical axis wind turbine can minimize 

floating support structure weight. WindEurope Conference. Amsterdam; 2017. 

[16] Savenije FJ, Huijs FA, Paillard B. Design driving load cases for floating VAWT with pitched blades. 

DeepWind’2017 Conference. Trondheim; 2017. 

[17] Jonkman J. Infuence of control on the pitch damping of a floating wind turbine. In proceedings of the 

ASME Wind Energy Symposium in Reno, Nevada, USA; 2008.  

[18] Savenije FJ, Peeringa PM. Control development for floating wind. In prooceedings of the TORQUE2014 

conference, Journal of Physics - Conference Series 524; 2014. 

[19] Bulder BH, Henderson A, Huijsmans RHM, Peeringa JM, Pierik JTG, Snijders EJB, van Hees MT, 

Wijnants GH, Wolf MJ. Floating offshore wind turbines for shallow waters. European Wind Energy 

Conference. Madrid; 2003. 

[20] Huijs FA, Mikx J, Savenije FJ, Ridder E de. Integrated design of floater, mooring and control system for a 

semi-submersible floating wind turbine. EWEA Offshore Conference. Frankfurt; 2013. 

[21] Huijs, FA, Ridder, E de, Savenije, FJ. Comparison of model tests and coupled simulations for a semi-

submersible floating wind turbine. 33rd International Conference on Ocean, Offshore and Arctic 

Engineering (OMAE). San Francisco; 2014. 

[22] Huijs FA. The influence of the mooring system on the motions and stability of a semi-submersible floating 

wind turbine. 34th International Conference on Ocean, Offshore and Arctic Engineering (OMAE). St. 

John’s; 2015. 

[23] Lindenburg C. “FOCUS6 Wind Turbine Module, Modular Phatas versions for floating wind turbines”. 

WMC-2016-58, Knowledge Centre WMC, Wieringerwerf, The Netherlands. 

[24] Lindenburg C. “TKI-WoZ S4VAWT WTmodule for VAWT, using ‘wtmodule.dll’ for VAWT analysis”. 

WMC-2016-57, Knowledge Centre WMC, Wieringerwerf, The Netherlands. 

[25] Garrel A van. “Development of a wind turbine aerodynamics simulation module”, ECN-C--03-079; 2003 

[26] Boorsma K, Grasso F, Holierhoek JG. Enhanced approach for simulation of rotor aerodynamic loads, 

EWEA Offshore Conference. Amsterdam; 2011. 

[27] International Electrotechnical Commission (IEC). Wind turbines – Part 1: Design Requirements. IEC 

61400-1; 2005. 

[28] Ridder E de, Otto W, Zondervan G, Huijs FA, Vaz G. Development of a Scaled-Down Floating Wind 

Turbine for Offshore Basin Testing. 33rd International Conference on Ocean, Offshore and Arctic 

Engineering (OMAE). San Francisco; 2014. 

[29] Sauder T, Chabaud V, Thys M, Bachynski E, Saether L. Real-Time Hybrid Model Testing of a Braceless 

Semi-Submersible Wind Turbine. Part I: The Hybrid Approach. 35th International Conference on 

Ocean, Offshore and Arctic Engineering (OMAE). Busan; 2016. 


