
D
e
l
f
t

U
n

i
v
e
r
s
i
t
y

o
f

T
e
c
h

n
o
l
o
g
y

Communication

protocols

For a wireless ECG solution

Bachelor thesis

G.A.J. Custers & S. Loen

Communication

protocols

For a wireless ECG solution

by

G.A.J. Custers & S. Loen

Student Name Student Number

Geert Anne Jan Custers 5119995

Stefan Loen 5115973

Instructor: Prof. Dr. Ir. W. Serdĳn

Project Duration: April, 2022 - June, 2022

Faculty: EEMCS, Delft

Abstract

This report is part of the WiECG project. The goal of the WiECG project is to create a prototype device

that makes it possible to perform a 12-lead ECG on patients without wires from a patient to the monitor.

The solution consists of a transmitter and receiver of which one is close or on the patients body and the

other is connected to a monitor.

This thesis describes the design and implementation process for the communication protocols. This

concerns mainly the WiFi communication from transmitter to receiver and the I2C pairing protocol.

The WiFi communication protocol was extended with retransmission and encryption to ensure the

reliability and discreteness of the data, which was indicated to be of high priority by ambulance

personnel. The channel needs to minimally support 9 samples of 16 bits with a frequency of 500 sam-

ples per second. The pairing protocol needs to enable the transmitter and receiver to pair in mere seconds.

A prototype is made which successfully pairs and transfers data from transmitter to receiver. This

prototype still needs to be tested thoroughly.

i

Preface

This thesis was completed in cooperation with two other groups. Roy van Krieken and Pelle Wiersma

took care of the hardware part. Keyvan Khalili and Sebastian Speekenbrink covered the digital signal

processing. Sebastian came up with this project, brought us together and succesfully convinced us to

tackle this problem.

We greatly appreciated the motivation of every single team member. Even though the final report is split

in 3 parts, we really did this together as a team. It sometimes made it hard to tell who’s responsibility a

certain task is, but after a while everyone just naturally picked up certain tasks. As the group worked

together in almost all cases, documenting the work in a logical flow was quite the challenge. We

therefore recommend to read the theses in the following order: Protocol, Digital Signal Processing [1]

and Hardware [2].

Special thanks go to Wouter Serdĳn who supervised but mostly supported us in our process. We thank

Leo Roos, Jim van Akkeren, Paul Broers, Jaimie Dik and Hans Schuitmaker for providing us valuable

information about the world of ambulances and ECG, and for delivering us some necessary materials

for the prototype. We appreciated the feedback of Asli Boru and Francesc Varkevisser and furthermore

thank Martin Schumacher and Ton Slats for facilitating and aiding in the assembly.

G.A.J. Custers & S. Loen
Delft, June 2022

ii

Contents

Abstract i

Preface ii

Nomenclature v

1 Introduction 1
1.1 The WiECG Project . 1

1.1.1 Basics of ECG . 1

1.1.2 Problem statement . 1

1.1.3 Proposed solution . 2

1.1.4 State of the art . 2

1.2 The scope of this subgroup . 3

2 Program of requirements 4
2.1 Reliability . 5

3 System overview 6
3.1 Dataflow overview . 6

3.2 Complete overview . 7

4 Design 9
4.1 Transmission protocol . 9

4.1.1 UWB . 9

4.1.2 WiFi . 9

4.1.3 Bluetooth . 10

4.1.4 ZigBee . 11

4.1.5 Making a choice . 11

4.1.6 ESP32 . 11

4.1.7 Compression . 12

4.1.8 Handling corrupt packets . 13

4.2 Pairing protocols . 13

4.2.1 SYNCVIBE . 15

4.2.2 Physical contact . 15

4.2.3 Protocol physical contact . 15

4.2.4 Comparison . 15

4.2.5 Confirmation . 16

4.2.6 I2C waterproof . 16

5 Implementation 18
5.1 Stability . 18

5.1.1 Error Conditions . 18

5.2 Parallel processing . 19

5.2.1 FreeRTOS . 19

5.2.2 Task . 20

5.2.3 Queues . 24

5.3 Communication . 24

5.3.1 I2C . 24

5.3.2 ESP-NOW . 25

5.4 Data structures . 25

5.4.1 Bitmap . 25

5.4.2 Associative array . 26

iii

Contents iv

5.5 Re-transmission . 27

5.6 Button debouncing . 27

6 Measurements 28
6.1 Data rate . 28

6.1.1 Modules . 28

6.1.2 ESP development boards . 28

6.2 Pairing . 29

7 Discussion 30

8 Conclusion and recommendation 32
8.1 Conclusion . 32

8.2 Recommendations . 32

References 34

A Source Code ESP32 36
A.1 Pairing code transmitter . 36

A.2 Pairing code receiver . 37

A.3 Wifi task transmitter . 39

A.4 WiFi task receiver . 42

A.5 Bitmap API . 44

A.6 Re-transmission . 44

Nomenclature

Abbreviations

Abbreviation Definition

ACK Acknowledge

API Application Programming Interface

BER Bit error rate

BSS Basic service set

CRC Cyclic redundancy check

CSMA/CA Carrier Sense Multiple Access with Collision Avoid-

ance

DHCP Dynamic Host Configuration Protocol

DSP Digital Software Processing

DSSS Direct Sequence Spread Spectrum

ECG Electrocardiogram

ESP-IDF Espressif IoT Development Framework

ESP32 The ESP32 microprocessor from Espressif

FHSS Frequency Hopping Spread Spectrum

FIFO First In First Out

FreeRTOS Free Real-time Operating System

I2C Inter-integrated circuit

IPv4 Internet Protocol version 4

LLVM Low level virtual machine

LMK Local Master Key

MAC Media Access Control, address of a NIC.

NIC Network-Interface Controller

OOB Out of Band

O-QPSK Offset Quadrature Phase Shift Keying

PMK Primary Master Key

RAM Random Access Memory

SCL Clock signal of I2C connection

SDA Data signal of I2C connection

SDK Software Development Kit

SSID Service Set Identifier

WLAN Wireless Local Access Network

WiECG Name for Wireless ElectroCardioGram project

WiFi Name for international standard IEEE 802.11

v

1
Introduction

This thesis was written in collaboration with 6 people. The project was divided in three subgroups, each

delivering their own thesis. For this reason some parts in this thesis will mimic those of other groups

(e.g. General Introduction, problem statement, proposed solution and state of the art). To preserve the

logical flow of the design, the order of reading should be as follows: Protocols, Digital Signal Processing

[1] and Hardware [2].

1.1. The WiECG Project
In the Netherlands alone, 1.3 million ambulance rides are made each year . Of these 1.3 million rides

76% are urgent [3]. After interviewing Jim van Akkeren (Operational Head Witte Kruis Ambulance

Zorg Den Haag) and Mirthe Ruĳgrok (Ambulance operator) it was concluded that in 90% of the cases

an ECG is connected to the patient being transported. An ECG is used in many cases to exclude a heart

related problem as the treatment of such should happen as fast as possible. Furthermore ECGs are used

when any form of anaesthesia or medicine is administered, to monitor the patients reaction.

As the deployment of an ECG requires wires, problems arise for the ambulance personnel in applying

them. The Wireless ElectroCardioGram project aims to replace these wires with a wireless solution.

1.1.1. Basics of ECG
An ECG is a visualization of the muscle contractions produced by a heart. This is done by measuring

the vector projection of the hearts’ electrical field on the chest of a patient. The measurement is done

using electrodes located on the body of the patient, whose potentials are caused by these contractions.

These potentials produced by the heart are then registered and visualized on a monitor.

There are two main ECG variations health workers employ [4]. One with 4 electrodes and one with

6 additional ones. The first configuration is called the extremity electrodes, which can give a general

electrical overview of the heart functions. In the second configuration 6 other electrodes are added: the

chest electrodes. These give more detailed information of the heart on which diagnoses can be made [5].

With these signals 12 signatures in total can be obtained.

1.1.2. Problem statement
As shown before, the usage of ECGs by ambulance personnel is crucial to ensure the well being of the

patients. ECGs are currently applied by usage of electrodes attached to the chest of the patient. For

regular, non emergency use, only the extremity electrodes are used. In emergency situations a full 12

lead (10 electrodes/wires) configuration is used. Currently these electrodes consist of stickers connected

to wires which are connected to a heart monitor. According to the interviewed ambulance personnel,

the wires are very annoying to work with in emergency situations. The wires get tangled, dirty and in

the way of the ambulance personnel as it obstructs the cabin.

1

1.1. The WiECG Project 2

1.1.3. Proposed solution
The proposed solution is a device where the same monitor can be used as before, but where the cables

have been replaced by a pair of wireless devices. The transmitter device has 10 electrodes which have

to be applied to the patient like before, requiring no extra actions for the operator. The receiver side

can be plugged into the monitor, also requiring no extra actions. This plug n’ play system can be used

with any ECG monitor as long as the connector for that monitor is available. To make sure that the

devices transmit and receive the right signal and not that of another pair, they can be paired easily by

having the transmitter and receiver briefly connect with each other. This solution solves the problems

mentioned in Section 1.1.2 in the following way:

• The short cables tend to tangle up way less compared to the longer ones.

• Because the transmitter device is located near the patient and the receiver lies next to the ECG

monitor, no cables are suspended through the ambulance, greatly improving the comfort/workflow

of the operator.

To achieve this goal, a self proposed electrical engineering bachelor graduation project was submitted to

Delft University of Technology. This project is executed with 6 others, and is split up into three parts (as

can also be seen in Figure 1.1):

• Protocol (PROT)

The group that deals with the wireless transmission of the ECG data

• Digital Signal Processing (DSP)

The group that process the signal digitally and forwards it to the wireless module

• Hardware (HW)

The group that prepares the measured signals for digital conversion and facilitates the aforemen-

tioned groups in creating a prototype device.

Hardware
Digital
Signal

Processing
Protocol

Transmitter

Patient

Protocol
Digital
Signal

Processing
Hardware

Receiver

ECG
Monitor

Figure 1.1: Brief overview of the solution and the separation of tasks

1.1.4. State of the art
Currently wireless heart monitoring (via ECG)is mainly used in several markets; medical and consumer.

Consumer wireless ECG systems (e.g. KardiaMobile 6L™[6]) are usually limited to 6 leads, or only one

in case of wearable devices (e.g. Apple Watch™, Galaxy Watch™), which output the data to a smartphone

or display. Furthermore, the sensors and workflow used to obtain the ECG differ majorly from those

medical personnel uses. (No stickers but handheld/wearable sensor device).

The medical market is home to devices which are purpose-made for health monitoring on a diagnostic

or treatment level. Currently, the Lifepak 15™[7] is in use in many ambulances to monitor the vitals of

the patient. This device is part of a production line which is 12 years old and is still in use - in Dutch

ambulances - due to the others1 not being reliable (slow to start up, easily breakable or simply not

working.) The connections to the monitor of these currently used monitors are however wired, leading

to the aforementioned problems.

However, there are medical wireless monitoring systems on the market that remove the wires between

patient and monitor. Some examples are the ZOLL Heart Failure Management System (HFMS)™[9] and

the Corpuls3™[10]. However, the HFMS focusses on detection of heartattacks in a non emergency setting

1Jim van Akkeren stated that since 2017 the Philips Tempus ALS™[8] monitor was in use. But most ambulance regions stopped

usage due to reliability complaints

1.2. The scope of this subgroup 3

and the Corpuls3 simply has a detachable wireless display (the relatively bulky defibrilator/patient box

of around 3 kg has to be close to the patient). None of the devices researched focused on altering the

medium of the signal like the proposed solution.

1.2. The scope of this subgroup
The solution mentioned in the previous section requires stable and reliable communication between

transmitter and receiver. The protocol subgroup deals with the wireless transmission. Besides the

wireless communication protocol, this also includes the method of pairing the receiver and transmitter.

The communication protocol subgroup is responsible for the following tasks

• Transferring data from transmitter to receiver without data loss and without inducing a high

latency.

• The transmitter and receiver need to be paired with each other to prevent unwanted connection to

an unknown and potentially malicious device.

• Handling the data securely. The data needs to be encrypted to prevent eavesdropping.

2
Program of requirements

Here the most important requirements are listed. Throughout the report, these requirements will get

referenced to ensure that the design choices that were made have value for the end result of this project.

The design described in this report and the reports of the other subgroups will attempt to completely

fulfill the following list:

• G1: The device must not employ wires from patient to monitor.

• G2: The device must allow the user to perform a 12 lead ECG.

• G3: The device must be safe for the patient

• G4: The data handled by the device must be safeguarded

• G5: The device must not induce a delay of more than 5 seconds to the workflow of the user

compared to a regular ECG wire.

• G6: The signal transferred by the device must be indistinguishable by the eye from the signal

transferred by a regular ECG wire.

• G7: The device must have a battery life of 2 hours.

• G8: The device must not be bigger than 10cm x 20cm x 5cm (a smartphone-device)

• G9: The device must be lighter than 500 gram

• G10: A prototype device must be functional within 10 weeks from the start of the project.

• G11: The prototype must not cost more than 500 euros.

From this list, the following requirements were specified which specifically apply to the protocol part of

this project.

• G1P: The device uses a digital wireless communication protocol.

• G2P: The communication protocol must handle 9 concurrent signals.

• G4P.a: The communication channel must be protected from eavesdropping.

• G4P.b: The device must ensure safe connection between transmitter and receiver

• G4P.c: The pairing must be easy to confirm.

• G5P.a: The pairing of the device must work within 2 seconds.

• G5P.b: The transmitter and receiver must be interchangeable.

• G6P.a: The device must transfer all signals lossless.

• G6P.b: The communication must not induce a delay of more than 0.5 seconds.

• G10P: The communication module must be available within the timespan.

On top of this list, some requirements come from the other subgroups, but apply to the protocol part.

These requirements are listed here:

• G6D.a: An input signal must be sampled at 500 Hz

• G6D.b: An input signal must be sampled at 16 bits resolution

• G10H.a: The utilized microprocessor must be hand-solderable.

4

2.1. Reliability 5

2.1. Reliability
One of the most important design goals of the final product is reliability. State of the art ECG monitor

designs have seen minimal adoption because they aren’t reliable enough. I.e., when the device is powered

on, there is uncertainty if the device will function correctly. This problem is further substantiated in the

introduction of the report.

Therefore, to differentiate our final product from other existing solutions, throughout the project there is

an emphasis on reliability. The product must always work, and any failing conditions must be analysed

and handled appropriately. However, this requirement cannot be reasonably tested within the 10 week

time frame that is allocated to the BAP. Hence, it is not included in the list of requirements. Regardless,

reliability is an important design principle throughout the project.

3
System overview

The proposed solution in Section 1.1.3 can, in accordance to the program of requirements, be further

specified as shown in Figure 3.1. This also depicts a high-level overview of the contributions of each

subgroup. This report relates to the protocol part. Refer to the report of DSP [1] and hardware[2] for a

broader understanding of the WiECG project. In Section 3.1 a detailed overview is given of the dataflow

from transmitter to receiver, which is of interest for the protocol subgroup. Finally, in Section 3.2, the

complete system is shown where the detailed overviews are connected to the detailed overviews of

other subgroups.

Transmitter

Shield

ESP32

Nucleo

Filters & ADC

Signal connection
I2C connection
WiFi Connection

Hardware DSP

Protocol

Shield

Nucleo

Filters & DACESP32

Receiver

Electrodes
Heart

monitor

Figure 3.1: Brief overview of the solution and the separation of tasks

3.1. Dataflow overview
Figure 3.2 provides a complete overview of the different modules on the ESP32. The inputs of this

subsystem are an I2C connection with ECG data and a button on the transmitter side. The outputs are a

buzzer and I2C connection with ECG data on the receiver side.

The design of ECG data transmission and receival is discussed in Section 4.1. More about the imple-

mentation of the queue, bitmap, buffer and timer can be found in section 5.2.3, 5.4.1, 5.4.2 and 5.5

respectively.

6

3.2. Complete overview 7

The design of the pairing mechanism is discussed in Section 4.2 and the implementation is discussed in

Section 5.2.2.

ECG data
transmission

Message
queue

Pairing Pairing
Buzzer

I2CData
receival

I2C

RX
buffer

TX
buffer

ESPNOW
queue

WiFi TX
I2C

Bitmap

ECG data
transmisson

Timer

RX
buffer

I2CTX
buffer

ESPNOW
queue

Buzzer

Data
receival

Transmitter

Receiver

Button

WiFi RX

Figure 3.2: Overview dataflow from transmitter to receiver

3.2. Complete overview
Figure 3.3 shows the protocol subgroup’s responsibility placed in the complete overview of the system.

For complete understanding of this figure, refer to the report of DSP[1] and Hardware[2]

3.2. Complete overview 8

STM32

Power system

Lowpass
Filter

Highpass
Filter Attenuator

Power system

Instrumentation
Amplifier

Highpass
Filter

Lowpass
Filter

Offset
Circuit

Transmitter
Signal connection
Power connectionHardware

DSP

Protocol

Filters ECG data
transmission

Message
queue

Pairing Pairing Buzzer

Data
receival

ESP32 ESP32

ADC

STM32

DAC

Button

Receiver

Electrodes
connection

Heart monitor
connection

Figure 3.3: Complete overview of the WiECG project

4
Design

4.1. Transmission protocol
This section discusses several transmission protocols that comply with the most important requirement

G1P (The device uses a digital wireless communication protocol.). These protocols were all taken into

consideration when choosing a protocol for the device. Of every protocol, the specifications, pros and

cons are stated. A short summary is found in the following list.

• UWB - Ultra Wide Bandwidth transmits data using very short pulses and therefore over a very

large bandwidth. An advantage is low power density (in the order of 𝜇W), and high data rate.

UWB is mainly used in high data rate applications.

• WiFi - IEEE 802.11b (WiFi) operates in the 2.4Ghz band, supporting a high data rate. Latency is

relatively low, making it suitable for carrying multi-lead ECG real-time ECG signals. A drawback

is high transmission power, of 10-100 mW.

• Bluetooth - Bluetooth operates in the 2.4Ghz band, supports a generally low transmission range

and low data throughput of less than 1 Mbps. Power usage depends on transmission range but can

vary from 1-100 mW. One drawback is that other 2.4GHz emitters might compete for transmission

time and significantly increase latency, and reduce throughput.

• Zigbee - Zigbee also operates in the 2.4Ghz band , supporting a low data rate of < 250 Kbps,

at a low range of 1-10m. It has low power requirements of <1 mW, therefore being suited to

applications with relaxed latency requirements.

4.1.1. UWB
UWB is a transmission protocol that uses very short pulses for transmission, occupying a very large

bandwidth (typically 500 MHz) [11]. It operates in the 3.1 - 10.6 GHz spectrum, meaning it intrudes on

other wireless communication technologies. Hence, it’s transmission power is very low, namely at -41.6

dBm/MHz, which is the level at which other wireless technologies classify a signal as noise. Because of

this low transmission power, UWB is best suited for short range applications. O. Flink [11] describes

that various modulation and multiple access schemes can be used with UWB.

4.1.2. WiFi
WiFi is an umbrella term for a set of standards defined by the IEEE under IEEE802.11. The standards

define a wide variety of applications of wireless communication, at different transmission speeds.

Hence it is difficult to provide a comprehensive overview of the entire technology. WiFi acts in multiple

frequency bands, but focus is on the 2.4 GHz band since the hardware is more common. In the 2.4 GHz

band there are 14 communication channels defined, each having a separation of 5 MHz. To divide access

to each channel, CSMA/CA is used. With CSMA/CA WiFi stations first assess whether the channel

is available. If the channel is busy, the station waits, and then waits for a random back-off interval, to

avoid a race on transmission when the channel is available again.

9

4.1. Transmission protocol 10

To harness itself from interference, WiFi makes use of DSSS. In DSSS, a binary code known by both the

transmitter and receiver is overlayed on top of the modulated signal, to increase the signal’s bandwidth.

When the receiver de-spreads this signal using the same binary code, the original signal will be intact,

while interference will be suppressed. As concluded by E. McCune [12], DSSS is successful at reducing

in-band interference. A property that is very beneficial, since interference in the 2.4 GHz band is

expected.

Traditional WiFi
Traditionally, the communication protocol of WiFi utilises BSSs [13]. This provides the service of

a WLAN, meaning that there is a principle of locality (i.e. some devices are and some devices are

not members of the network). This scheme is usually supported by a Network Layer protocol such as IPv4.

When utilising WiFi this way, devices cannot simply start sending to each other, they first need to

perform an association procedure. This procedure requires sending an "Association Request" frame,

and receiving an "Association Response" frame. This requires several round trips, before data can be

sent. After association, IP addresses must be allocated, which is usually done with a DHCP server. This

adds considerable overhead, while the added functionality of WLANs are not required for the simple

case of transmitting data from one device to another.

ESP-NOW
ESP-NOW [14] is a connectionless communication protocol implemented on top of WiFi. The protocol

implements communication on the Data Link Layer, using WiFi as a carrier. The main advantage of

the protocol is that it is connectionless, which means that there is no context in which a packet is

sent. An ESP-NOW packet is addressed to a particular MAC address, meaning there is no concept of a

"network" that a device needs to connect to. This vastly reduces the amount of complexity required for

communicating, as there is very little overhead involved. Since this communication protocol also does

not require a Network Layer implementation, there is no need to run a DHCP server, or to allocate IP

addresses.

ESP-NOW also natively supports encryption. The encryption scheme uses two keys, the PMK (Primary

Master Key) and LMK (Local Master Key). The PMK is used to encrypt the LMK with the AES-128

encryption algorithm. The LMK is then used in the CCMP encryption scheme. CCMP is a block

cipher, data is encrypted in fixed-size blocks. Each block depends on the previous block, creating

an interdependence between encrypted blocks. Devices need to agree on both the PMK and LMK to

successfully transmit encrypted data to each other. The inclusion of encryption in the protocol satis-

fies requirements G4P.a and G4P.b, which are both about safe and protected transmission of the ECG data.

Additionally, ESP-NOW peering can easily be performed out of band. Quick, easy and reliable pairing

falls under requirement G5P.a. To pair two devices, the devices need only to exchange their MAC

addresses, PMK and LMK. After this, the two devices are paired, and can immediately transfer data.

This method of pairing is simple, and does not include many round trips or handshake procedures,

meaning there are limited error conditions, fitting in a reliability-conscious design.

4.1.3. Bluetooth
Bluetooth is a popular communication protocol used for embedded devices. It operates in the 2.4GHz

band, with 79 bluetooth channels allocated. Each channel is separated by 1 MHz. As opposed to WiFi,

bluetooth uses FHSS to accomplish interference hardness. Where DSSS is interference suppression,

FHSS acts more as interference avoidance. FHSS spreads the modulated signal by hopping through a

pre-selected sequence of channels, at different frequencies. E.g. a packet can be sent on channel 6, and

the next one can be sent on channel 18. This way the receiver can apply a narrow bandpass filter on the

channel, blocking interference. However, if a channel with interference is chosen for transmission, the

interference falls within the passband of the bandpass filter. Hence, this interference avoidance scheme

works well for out of band interference, but can be sensitive to in band interference. [12].

4.1. Transmission protocol 11

4.1.4. ZigBee
ZigBee is a very low power, low data-rate transmission protocol. [15] It is intended for similar application

as bluetooth, but where the data rate requirement is lower, and the expected battery of the device

must be high. The protocol operates in the unlicensed 2.4 GHz bandwidth. When operating at 2.4

GHz, ZigBee uses the O-QPSK binary modulation technique. To perform multiple access, ZigBee uses

CSMA-CA.

4.1.5. Making a choice

Technology OOB pairing Power Range Data Rate Interference Error Detection

IEEE 802.11b Yes 10 - 100 mW 100 m High (100 Mbps) Low CRC

Bluetooth LE Yes Low (1 - 10 mW) < 100 m up to 1 Mbps Relatively High CRC

ZigBee Yes Low (< 1 mW) 1-10 m 250 Kbps Relatively High CRC

UWB Yes Very Low 10 m Up to 200 Mbps Relatively High Not by itself

Table 4.1: Technology Analysis

Using Table 4.1 and context surrounding the technologies, a decision can be made on which wireless

protocol is used. Firstly, UWB is not a good choice for the given application. The application requires

high reliability (i.e. consistent latency and adequate data rate), and not necessarily high data rate. These

are conditions that UWB does not meet.

ZigBee is an interesting protocol because of its lower energy usage. However, out of all the protocols

its data rate is the lowest. Additionally, research has shown that the bit error rate of ZigBee increases

drastically when under interference from other Bluetooth and WiFi devices [16], a situation which is an

expected use-case. While the advertised bandwidth is adequate under ideal conditions, there seems to

be no guarantee that these ideal conditions will be reached. Under non-ideal conditions ZigBee can lose

almost half of its performance [17], which is sufficient for transmission of the ECG signal, but such large

drops in performance make ZigBee difficult to use in reliability critical situations.

Another lower energy usage protocol is Bluetooth LE (Low Energy). While having slightly higher power

requirements than ZigBee, it also has a larger data rate. However, while the advertised bandwidth is

much higher, research has shown that the maximum application layer throughput of BLE is 236.7 Kbps

[18]. Furthermore, some research has shown that under moderate error conditions application layer

throughput drops even further, in their example to 58.48 Kbps [19]. This is further supported by [16],

which shows that Bluetooth performance can drastically decrease under Wifi interference. Due to these

factors it is difficult to choose Bluetooth LE if the reliabiliy of the connection can’t be guaranteed.

Lastly, there is IEEE 802.11b, commonly known as WiFi. This is a widely used protocol, with high

bandwidth and range capabilities. The bandwidth can go up to 100 Mbps, and advertised range is

around 100m. A drawback of this technology is that the power consumption is higher compared to the

other technologies. However, the power consumption is still low enough to reach 2 hours battery life on

reasonably-sized batteries (e.g. on a 3.5Ah battery at 3.8V the battery life for the WiFi module would be

around 130 hours).

Taking into consideration requirement G2P (The communication protocol must handle 9 concurrent

signals.) and G6P.a (The device must transfer all signals lossless.) WiFi is chosen as the transmission

protocol as it is deemed to be the most robust. Research supports the robustness of the WiFi protocol, Shin

et al. demonstrating "Wi-Fi devices are scarsely affected by the presence of other wireless technologies

operating concurrently" [16]. Given the large bandwidth, there is also a large margin before interference

degrades performance to an unacceptable level. The same cannot be said for ZigBee and Bluetooth LE.

Therefore, WiFi is the best choice of transmission technology.

4.1.6. ESP32
To transmit data using the WiFi protocol, of-the-shelf hardware is selected so that the project result

complies with requirement G10P (The communication module must be available within the timespan.).

4.1. Transmission protocol 12

At the time of this project, there were not many options for a WiFi module. Due to high availability,

the ESP32 was the best option by far. Figure 4.1[20] shows a functional block diagram of this device.

According to the datasheet, ESP32 is a highly-integrated solution for Wi-Fi-and-Bluetooth IoT applica-

tions. The ESP32 implements both WiFi and Bluetooth. Although Bluetooth is not the chosen option

for the transmission, there is no harm in having it on the prototype device to test with it if the time al-

lows. On top of that, it has many peripherals which are interesting for pairing the transmitter and receiver.

Another benefit of the ESP32 is the big community surrounding it. Therefore it is easy to find

documentation and debug the device. Next to that, the ESP32 is available in stock, so requirement

G10P (The communication module must be available within the timespan.) can be fulfilled. Lastly,

one of the team members happened to already have 3 ESP32’s laying around which he kindly offered

for use immediately at the start of the project, which allowed us to quickly start prototyping with the

ESP32’s before the hardware was fully designed. This time was necessary to fullfil requirement G10 (A

prototype device must be functional within 10 weeks from the start of the project.)

As can be seen on the cover of this report, the ESP32-WROOM-32e is used. This device has the following

relevant specifications.[21]

• ESP32-D0WD-V3 embedded, Xtensa dual-core 32-bit LX6 microprocessor, up to 240 MHz.

• 520 KB SRAM

• WiFi 802.11b/g/n

• Bit rate: 802.11n up to 150 Mbps

• Center frequency range of operating channel: 2412 - 2484

• On-board PCB antenna

1 Overview

1.6 Block Diagram

Core and memory

ROM

Cryptographic hardware
acceleration

AES

SHA RSA

RTC

ULP
coprocessor

Recovery
memoryPMU

Bluetooth
link

controller
Bluetooth
baseband

Wi-Fi MAC Wi-Fi
baseband

SPI

2 �or 1� x Xtensa® 32-
bit LX6 Microprocessors

RF
receive

RF
transmit

Sw
itc

h

Ba
lu

n

I2C

I2S

SDIO

UART

TWAI®

ETH

RMT

PWM

Touch sensor

DAC

ADC

Clock
generator

RNGSRAM

Embedded
Flash or PSRAM

Timers

Figure 1: Functional Block Diagram

Note:

Products in the ESP32 series differ from each other in terms of their support for embedded flash or PSRAM and the

number of CPUs they have. For details, please refer to Section 7 Part Number and Ordering Information.

Espressif Systems 12
Submit Documentation Feedback

ESP32 Series Datasheet v3.8

Figure 4.1: Functional block diagram ESP32

4.1.7. Compression
The main limitation of any wireless communication is bandwidth. Interference causes bit error, which

effectively reduce the transmission rate. Therefore, a solution to be more resilient against interference

is simply to require sending less data. A method of achieving this is by compressing the transmitted

data before transmission. Since the chosen technology has a bandwidth much higher than is required,

compression of the data is not necessary. However, if a protocol like ZigBee or Bluetooth is picked,

then compression is an interesting solution to improve the reliability of the connection. To examine

the feasibility of compression as a solution, an experiment analysing the compressibility of the signal

data would have to be conducted. If the data is not compressible, then the solution is not useful, and

only wastes computing power. In the case of using WiFi, compression is not necessary as bandwidth is

4.2. Pairing protocols 13

abundant. Therefore to save computing power (equivalent to battery life and heat output), compression

is not implemented in the transmission protocol.

4.1.8. Handling corrupt packets
Since the data is being transmitted in an unstable medium, there is a possibility of bit errors, whereby

the packet becomes corrupt. The corruption of packets is monitored by the transmission protocol using

CRC codes, but this only tests the packet for corruption, and does not handle re-transmission of the

packets. This feature needs to be designed and implemented. In general, there are three ways to handle

a corrupt packet.

• Null packet substitution - When a packet corruption is detected, the packet is replaced with

a "null" packet, which is a packet that represents a signal of all 0s. This solution is simple

to implement, but creates artifacts on the output ECG signal that might confuse or annoy the

caretaker.

• Extrapolation - Alternatively, when a packet corruption is detected, the previously received packet

can be repeated. This is a simple solution to implement. Additionally, given that the BER is

low enough, the artifacts produced by this solution might not be visible to the human eye, so it

is transparent to the caretaker. Still, this solution involves distorting a medical signal, which is

against requirement G6P.a.

• Re-transmission - A solution that produces no artifacts on the final signal is re-transmission. Here

the corrupt packet is re-transmitted by the transmitter.

The only solution out of these options that matches requirement G6P.a is re-transmission.

Re-transmission
There are three main re-transmission strategies.

• Stop and wait - In the stop and wait re-transmission protocol, the sender will wait for the arrival

of an ACK before continuing with the next packet.

• Go-Back-N - Go-Back-N is an example of a sliding window re-transmission protocol. A window

of size N is maintained, and if a transmission error is detected (i.e. an ACK is not received on

time), the entire window is re-transmitted. When an ACK is successfully received, the window

slides forward.

• Selective Repeat - In selective re-transmission, similarly to Go-Back-N, a window is maintained.

This window is sent in one go, and the receiver is expected to send an ACK for every packet. If an

ACK for a packet has not been received by the sender on time, the sender re-transmits the packet.

Each of these protocols have different efficiency expressions. Efficiency is an expression that compares

the transmission cost of the protocol as opposed to transmitting without re-transmission. The different

re-transmission efficiencies are given by the following equations [22].

𝜂𝑆&𝑊 =
1 − 𝑝

1 + 𝐿𝑐

𝜂𝐺𝐵𝑛 =
1 − 𝑝

1 + 𝑝𝐿𝑐
𝜂𝑆𝑅 = 1 − 𝑝 (4.1)

There is a tradeoff that these equations demonstrate, which is that more complex protocols have higher

efficiency. Complex means that the protocol might incur higher memory usage, higher processing

power or is more complicated to implement. Thus, to arrive to a decision, these factors need to be

considered. Since the ESP32 is a powerful micro-controller, with enough RAM to support complex

re-transmission protocols, the decision was made to implement the "Selective Repeat" protocol.

4.2. Pairing protocols
The application requires safe pairing between receiver and transmitter according to requirement G4P.b

(The device must ensure safe connection between transmitter and receiver.) This means that the receiver

and transmitter need to find each other when the devices are turned on. This needs to happen fast,

according to requirement G5P.a (The pairing of the device must work within 2 seconds.)

4.2. Pairing protocols 14

Figure 4.2 [23] shows an extensive list of pairing methods.738 A. Kumar et al. / Pervasive and Mobile Computing 5 (2009) 734–749

Fig. 1. Feature summary of notable device pairing methods (methods resistant to ‘‘rushing user’’ behavior are marked with an asterisk (*)).

Summary of methods: To summarize our discussion of existing methods, Fig. 1 reflects and compares their prominent
features. It uses the following terminology:

• Sending Device/Receiving Device—applies to all methods where the OOB channel is used in one direction.
• Phase I: Setup—user actions to bootstrap the method.
• Phase II: Exchange—user actions as part of the protocol.
• Phase III: Outcome—user actions finalizing the method.
• User-input—any single-bit input by user, e.g., button.
• User-output—any single-bit user-perceivable output, e.g., beeper or LED.
• Methods marked with the asterisk (‘*’) in the first column offer resistance against ‘‘rushing user’’ behavior.

Figure 4.2: Summary of pairing methods

Pairing methods commonly supported by state-of-the-art protocols and devices can generally be

categorized into three types.[24] All pairing methods shown in 4.2 fall into one of these categories.

• "Just works" pairing method. This method does not use any form of authentication. It is common

for devices that have no user interface (UI). This method is vulnerable for a man-in-the-middle

attack.

• When a UI is available, somewhat more reliable pairing is possible. This is mostly done with a

random passkey generated by one of the devices, which should be verified on the other device by

4.2. Pairing protocols 15

the user. This is reasonably safe, but still has no defense for e.g. shoulder surfing. Next to that, it

is inconvenient for the user.

• The third type is out-of-band (OOB) pairing. This method uses a near field secondary channel

which should be protected from eavesdropping. This can be a physical connection or e.g. NFC.

Option 1 is not a reasonable option for this application, as the pairing should be robust and it should

not be possible for the transmitter to connect with anything other than the dedicated receiver. Option 2

is very inconvenient in life threatening situations because it takes too much time from the ambulance

personnel. OOB pairing is the best option, so next sections are devoted to different OOB pairing. One

should note that strictly speaking, a user that takes part in the pairing is also OOB. However, for now

we state that an OOB channel does not include the user.

4.2.1. SYNCVIBE
Lee, Kyuin, et al [24] proposes a improved pairing method which uses physical vibration. It is called

SyncVibe. It makes use of a vibration motor and and accelerometer. It is originally designed and tested

for smartphones and wearables. The user makes physical contact between the two devices and the

pairing is automatically done. The average pairing time with this method is 6.74 s for 150 bit pairing

information. This allows for unidirectional pairing. This method does not fulfill requirement G5P.a

(The pairing of the device must work within 2 seconds.)

4.2.2. Physical contact
Stajano and Anderson [25] discuss the security issues related to pairing methods using short range

wireless channels. They advocate that in many applications, physical contact is the best option. Pairing

bits are shared over a conducting medium, making it safe, fast, cheap and simple. There is no need for

cryptography and there is no ambiguity about which two devices are involved in the pairing.

As there is no downside with using a hardware port to pair transmitter and receiver, this method is

chosen for pairing the devices.

4.2.3. Protocol physical contact
The transmitter and receiver will be connected to each other with metal contacts. It is important that

this is waterproof, especially when the transmitter and receiver are not connected to each other. This

can be accomplished by waterproof contacts that close when disconnected. Another way is using a

protocol/circuitry that allows all lines to be shorted without implications. The speed of the protocol is

not really of interest, as the amount of data that should be transferred to pair are mere bytes (6 bytes for

MAC address and 16 bytes for encryption key[14]). Table 4.2 [26] shows a summary of common wired

protocols.

UART CAN USB SPI I2C

Pros

Well known

Simple

Secure

Fast

Secure

Fast

Plug and play

Fast

Lowcost

Universally accepted

Large portfolio

Simple

Plug and play

Cost effective

Universally accepted

Cons

Limited functionality

Point to point

Complex

Limited portfolio

Automotive oriented

Power master required

No plug and play software

Extra drivers required

No plug and play hardware

No fixed standard

Limited no. of components

due to capacitance effect

Table 4.2: Summary of common wired protocols

Another protocol not listed in the table is a one-wire protocol. This protocol uses only one wire to

communicate and a ground. These two wire connections allow for a very simple connector.[27]

4.2.4. Comparison
The one-wire protocol seems like an interesting solution. Upon further research, it seems like

this type of protocol is mostly used to power and communicate with large amounts of small sen-

sors.[28][29][30][31][32] Its usage might be extended to pairing, but this seems very experimental. In

view of requirement G10 (A prototype device must be functional within 10 weeks from the start of the

4.2. Pairing protocols 16

project.), this protocol is not chosen.

UART is especially made for communication between 2 devices only. It uses 2 wires (+ground). It

includes a start and stop bit and a parity check. Both devices need to be set at the same BAUD rate.

CAN is not widely used, mostly in automotive. It supports communication over long distance and

is mostly used when multiple devices are on the line. It is a peer-to-peer network and harder to implement.

USB is fast and safe, but needs a powerful master with extra software and drivers. It has many wires

and has a standardized connector.

SPI does not support acknowledgements of received data. This makes it not very useful as the data

transferred should arrive by all means. It is mostly used on PCB with components which are per-

manently connected. It can still be used, but then it needs an extra layer on top of it for acknowledgements.

I2C uses 2 bidirectional wires. It has acknowledgements to ensure safe communication.

UART and I2C are both widely used and most microcontrollers support both types of communication.

I2C has the preference, as it makes use of acknowledgements, which increases reliability.

4.2.5. Confirmation
Even though pairing should be robust and never fail. Users should quickly be able to see whether the

transmitter and receiver are paired in case of an error. This is stated in requirement G4P.c (The pairing

must be easy to confirm.) Therefore, both devices need a visual or audible output so a user can confirm

the pairing. Not only should the user be able to see if the devices are paired, but also that they are

without a doubt paired with each other. The (unlikely) event of the receiver being connected to an

unwanted transmitter without the knowledge of the user is unacceptable in case of the ECG application.

A way of confirmation can be accomplished in multiple ways:

• A LED on both devices. These LEDs can flicker synchronously to each other. However, there is

still the risk that 2 devices just happen to flicker synchronously even though they are not paired.

• An RGB LED on both devices that show the same color when paired. However, in a rush the user

might wrongly judge two colors to be equal.

• A numeric LED display on both devices that show the same (randomly generated) number. This

is the safest visual option.

• A button on one device, and a LED on the other device. The LED will turn on when the button is

pressed and the devices are paired. The downside is that the user is obliged to pick up the device

to see if they are paired. Next to that, there is no indication if the devices happen to disconnect.

• A button on one device, and audible buzzer on the other device. The benefit of this is that the user

does not have to focus on a visual output and both devices do not have to be in visual sight. On

top of that, hearing the sound can easily become a habit for the user.

In the end, all above options are vulnerable to hasty user behavior. The only option is to have the devices

make a sound when they are NOT paired, but this will clearly lead to annoyance of the user. Even

though this seems trivial, it can lead to the user getting creative in bypassing this important security

measurement, which is something to be avoided.

The best option seems to be the button and audible buzzer in combination with an LED. Both devices

have a button and a buzzer in combination with an LED. These give both an audible and visual

confirmation of the pairing when the button on the other device is pressed. This buzzer can also indicate

when the device happens to unpair. Because of time constraints of this group, the software is only

designed for one button on the transmitter and one button on the receiver. The hardware is designed

for both devices to implement button and receiver. They will be used in a later stage of the project.

4.2.6. I2C waterproof
When the I2C connectors are submerged in water, they run the risk of a low-impedance connection to

each other. In the worst case there is a low-impedance connection from ground to SCL or SDA, which

4.2. Pairing protocols 17

would cause a connection from the 4.7 𝑘Ω pullup resistor to ground. Using 𝑃 = 𝑉2

𝑅 , the power dis-

sipated in the resistor is 2.3 mW. So, even with a continuous short there won’t be damage to the equipment.

However, water does not cause straight shorts, it adds DC resistance of its own. An independent

measurement performed by the subgroup showed that a resistance of 250 𝑘Ω can be expected. This

means that the pulldown due to water is significantly weaker than the 4.7 𝑘Ω pullup. If the SDA and

SCL line are shorted to each other, nothing happens as they are on the same voltage. In reality, they

will also have this 250 𝑘Ω impedance between them, making sure the pulldown is always significantly

stronger. Therefore it is expected that this pairing method functions underwater.

5
Implementation

The implementation chapter describes the choices made and techniques used during implementation of

the design. Each section discusses a particular aspect of the implementation.

The whole implementation is done on an ESP32, of which the documentation [33] and datasheet [20] are

the main sources of information. The implementations were first done on two ESP32 prototype boards

which allowed the group to start immediately and do some quick prototyping before the hardware was

designed. When the hardware is designed and made, the software is transferred to the ESP32 chips on

the PCB. As both receiver and transmitter use the same concepts, the following implementations are

used for both devices unless stated otherwise.

The ESP32 is programmed with the Espressif IoT Development Framework. It provides a self-sufficient

SDK for any generic application development on these platforms, using programming languages such

as C and C++. [34]. The ESP32 comes with FreeRTOS as kernel. FreeRTOS is specifically designed for

microcontrollers. The FreeRTOS reference manual[35] and the FreeRTOS kernel documentation [36] are

used as main source for implementation.

Snippets of the code can be found in Appendix A.

5.1. Stability
Reliability is an important requirement for the project. One of the modules most vulnerable to

unreliability is the software implementation of data transmission. Complexity is the main cause of bugs

(and therefore instability). Thus, the implementation phase should always use the simplest working

solution. Unfortunately, complexity naturally arises when interacting with pre-written libraries on the

ESP32-IDF platform. Nevertheless, throughout the implementation phase attention is paid to reducing

complexity where possible.

5.1.1. Error Conditions
As with every software project, the implementation will naturally encounter error conditions. Some of

these errors are recoverable, and the implementation is expected to resolve recoverable errors without

interruption of the transmitted signal. However, some errors are unrecoverable, and for these errors

the implementation is not expected to resolve them. These unrecoverable errors are identified, and

summarised in the following list.

• Transmission link completely drops - If the WiFi transmission link between the receiver and

transmitter completely drops, then there is no possibility of transmitting a signal on time.

• Buffer takes too long to send - The implementation keeps a buffer of 0.5s worth of ECG samples.

Under stable operating conditions these samples can be transmitted in under 0.5s, meaning they are

on time and there is no loss of information. In the case that the transmission link quality degrades

such that the samples cannot be transmitted within 0.5s anymore, there is an unrecoverable error,

since the system can no longer deliver the data on time.

18

5.2. Parallel processing 19

• Physical link errors - In multiple places the system uses I2C to communicate between micropro-

cessors. If for any reason the physical link between the systems are unexpectedly destroyed, there

is an unrecoverable error.

• Other hardware errors - The ESP32 can theoretically encounter hardware errors, which is outside

the scope of what software can recover from.

The most sensible method of dealing with unrecoverable errors is to inform the user as quickly as

possible of the failure. An unrecoverable error means loss of signal information, and it is the user’s

choice how to act in such a situation. The user might simply choose to restart the device, but in a

medical emergency, a physician has many choices in case of failing equipment. The user is informed of

the failure of equipment by a continuous buzzer and an LED.

5.2. Parallel processing
The ESP32 has multiple functions. The main functions are stated in the following list.

• Pairing receiver and transmitter.

• Sending/receiving ECG-data via WiFi.

• Communicating ECG-data with the DSP chip via I2C.

All functions should be run in parallel. Even if the device is already transmitting data, the pairing

mechanism should still be active for if the devices should connect to another device. The I2C

communication should function, independent of the state of WiFi communication. Therefore, a concept

called parallel processing is implemented. FreeRTOS allows us to multitask and use both processors of

the microcontroller in an efficient way. First some general information is given about the FreeRTOS

kernel. In Section 5.2.2 and Section 5.2.3 there are explanations on how tasks and queues are used to

implement the wanted functionality.

5.2.1. FreeRTOS
FreeRTOS is a real-time kernel on which applications can be built. It uses separate threads of execution

called tasks. Only one task at a time runs per processor. The other tasks are on hold. Figure 5.1 visually

shows this concept.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

48

3.3 Top Level Task States

An application can consist of many tasks. If the processor running the application contains a

single core, then only one task can be executing at any given time. This implies that a task

can exist in one of two states, Running and Not Running. This simplistic model is considered

first—but keep in mind that it is an over simplification. Later in the chapter it is shown that the

Not Running state actually contains a number of sub-states.

When a task is in the Running state the processor is executing the task’s code. When a task

is in the Not Running state, the task is dormant, its status having been saved ready for it to

resume execution the next time the scheduler decides it should enter the Running state.

When a task resumes execution, it does so from the instruction it was about to execute before

it last left the Running state.

Not RunningNot RunningNot Running Running

All tasks that are

not currently

Running are in the

Not Running state

Only one task

can be in the

Running state at

any one time

Figure 9. Top level task states and transitions

A task transitioned from the Not Running state to the Running state is said to have been

‘switched in’ or ‘swapped in’. Conversely, a task transitioned from the Running state to the Not

Running state is said to have been ‘switched out’ or ‘swapped out’. The FreeRTOS scheduler

is the only entity that can switch a task in and out.

Figure 5.1: Top level task states and transition

The tasks are swapped in and out of the running state by the FreeRTOS scheduler. There are three

reasons for a task to be in the Not Running state which are listed below.

• The task is in a blocked state. This means that the task is waiting for 2 different types of events.

The first one being time related events. The task is waiting for a certain amount of time or waiting

for an absolute time being reached. The other event a task can be waiting for is a synchronization

event. This event can come from another task or an interrupt.

• A task of higher priority is running. Each task is given a priority on creation. When two tasks are

waiting to be swapped into the running state, the scheduler chooses the tasks with the highest

priority.

• A task of equal priority is running. When two tasks have equal priority, the task scheduler swaps

them in and out alternately, giving them equal processor time. These swaps can only happen at a

tick interrupt, of which the frequency is by default 100 ticks per second.

5.2. Parallel processing 20

FreeRTOS has different possibilities of creating synchronization events. One of them is a concept called

Queue. A queue can hold a finite amount of fixed size data items. By default a queue is used as First In

First Out (FIFO) buffer. FreeRTOS uses the queue by copy method, this means all bytes placed in the

queue are copied. This way, the data keeps existing if the original data is removed.

Queues are usually written to from multiple tasks and read from one task. A reading task can be in a

blocked state waiting for data to appear in the queue. A writing task can be in a blocked state when for

example the queue is full, waiting for it to empty.

5.2.2. Task
The transmitter and receiver both have four tasks running. They are discussed separately with the help

of flowcharts.

Pairing
This task is called i2c_task in the code. Both receiver and transmitter have an I2C port on the outside

of the device. When these are connected to each other, the MAC-address and encryption key are swapped.

When the user connects the devices together, the connection is really unreliable at the start. For example,

the data and clock lines can be connected, while ground is not. It is also possible that the lines are

connected for only a brief period of time. These abnormalities can make the system really unstable, if it

is not designed for it. Therefore, the pairing is implemented as the state machine shown in Figure 5.2.

The left and right side of the figure show receiver and transmitter respectively. The receiver is the I2C

master and the transmitter is the I2C slave. There is no particular reason for the division of master/slave

relation. The data transferred is symmetric, so the master/slave can be swapped without problems.

The state machine comprises of many error handling and checks to confirm the pairing. The master

continuously (with an interval of 20ms) sends an empty message to the slave. This time delay is there to

prevent this task from being in the running state all the time. This is to save power consumption. The

master is now waiting for a slave to be connected and respond with an acknowledgement. When the

presence of the slave is confirmed, the master writes the MAC-Address, encryption key and a calculated

cyclic rendundancy check (CRC) code to the slave. The slave confirms this and checks whether the CRC

matches with the received data. When there is a mismatch, the slave knows that there has been a failure

in the transmission and sends back an error to the master. Both master and receiver now reset and the

cycle is repeated.

If the CRC matches, the slave sends back it’s MAC-address to the master which also checks if the CRC

matches. When the addresses received by master and slave are different from the ones already known,

an event is queued that a new device is connected.

All functions have a timeout implemented of 1 second. When something unexpected happens with the

communication and nothing happened on the line for 1 second long, both devices reset to the first state

and try again. After most types of errors, the devices clears either the TX-, RX- or ring-buffer (Section

5.3.1 to make sure a new attempt of connection is made with empty buffers.

The source code for both transmitter and receiver can be found in Appendix A.1 and A.2 respectively.

5.2. Parallel processing 21

Wait 20 ms

Read pairing data
from I2C

Clear ringbuffer and
RX buffer

Clear TX buffer

Write pairing data to
I2C

Wait 20 ms

Yes

Slave is connected?

Error Write pairing data to
I2CClear TX/RX buffer

Wait 10 ms

Read pairing data
from I2C

Yes

No

Pairing data error?Clear TX buffer

Yes

No CRC match?Clear TX buffer

No

Received address same as
previous address?

Queue WIECG_QUEUE_PEER
event

Error/Timeout

Yes

Write error to I2C

No

Received address same as
previous address?

Queue WIECG_QUEUE_PEER
event

No

Yes

CRC match?

Receiver (Master) Transmitter (Slave)

Yes

No

error

Error

Figure 5.2: Flowchart of pairing task

Sending/receiving ECG data over WiFi
This task is called espnow_task in the code. This task is responsible for handling the WiFi communication.

The flowchart of this task is shown in Figure 5.3.

In the transmitter, if there is no device paired, all messages that are queued to be send are cleared.

There is simply no device to send it to. It then gets an event from the ESPNOW queue which can be of

four different types. The first option is that there is received data in the queue. This is most likely an

ACK message form the receiver. The second option is that the WiFi module is ready to send new data.

A flag is now set indicating this. The third is that the sending timer was triggered. This is an event

queued by the pairing task. The last option is that a new device is paired. This task will then take care

of configuring this new device. If the previous indicated flag is set, it will check if there is data in the

5.2. Parallel processing 22

message queue. If there is any, it will now send data from the message queue over WiFi and set this flag

false again. If there is no data in the message queue, it will get ECG data from the buffer and performs

the same operations.

In the receiver, this task waits for an event in the ESPNOW queue. If new data is received, this task first

checks if the device is paired. This prevents the receiver from processing ECG data from an unpaired

(random) device. The data received can be of two types. It can be ECG data, which will be queued so it

can be forwarded to the DSP microcontroller. It can also be button data, indicating that the button is

pressed on the transmitter and the buzzer needs to be turned on or off, depending on whether it is a

press or release.

5.2. Parallel processing 23

Empty message
queue

No

Yes

Device is paired

Wait 200ms

Yes ready_to_send?

Get event from
ESPNOW queue
with 0ms timeout

Transmitter

Get event from
ESPNOW queue with

100ms timeout

Type of event

Received data

Ready to send new data

New device paired

Set ready_to_send true

Configure new device

Get data from message
queue

Send data over WiFi

Set ready_to_send false

Receiver

Get event from
ESPNOW queue

Yes

ready_to_send?No

Received data

Ready to send new data

New device paired Configure new device

Type of event

Type of received data

ECG data

Button data Turn buzzer on/off

Queue data

Yes

Device is paired? No

Yes NoData in message queue?

Get ECG data from buffer

No

Figure 5.3: Flowchart of the WiFi task

The source code for both transmitter and receiver can be found in Appendix A.3 and A.4 respectively.

I2C communication for ECG data
This task is called i2c_task in the code.

5.3. Communication 24

The communication with the DSP microcontroller is also done with I2C like the pairing. The implemen-

tation is simpler because the connection is known to be reliable (there is a permanent connection) and

the data only goes one-way, except for the acknowledgements.

The ESP32 in the transmitter only receives data from the DSP microcontroller. Only the master can

initiate a transfer. Therefore, the ESP32 is configured to be the slave. The tasks simply waits for ECG-data

to be received and queues an event with the newly received data.

With the same reasoning the ESP32 in the receiver is configured to be the master. This task pulls

data from a queue where the received ECG-data is stored and sends it over the I2C line to the DSP

microcontroller.

Idle task
This task is part of FreeRTOS and is always active. It has the lowest priority and has no function

whatsoever. However, it needs to be run every once in a while, as this task resets the watchdog timer. In

other words, if other tasks take up 100% of the processor, the system resets after a couple of seconds.

5.2.3. Queues
The transmitter has the following queues implemented.

• espnow_queue. This queue holds all the events regarding the WiFi communication. This queue is

mostly written to from the ESPNOW callbacks. The pairing task also writes to this queue when a

new device is paired. The WiFi task (espnow_task) reads from this queue.

• message_queue. This queue holds all messages that are ready to be sent. This queue is mostly written

to from the task that receives I2C data from the DSP microcontroller (i2c_task), which writes ECG

data to this queue. When the button is pressed/released, an interrupt places a message in this

queue about the status of the button.

5.3. Communication
The following section discusses the implementation details of the different communication technologies

utilized.

5.3.1. I2C
The ESP32 includes dedicated I2C hardware and software support. To initialize the I2C driver, one needs

to choose which pins to have the SCL and SDA lines. These can be any GPIO pin on the ESP32. This is

encoded in structure passed to i2c_param_config(). Initialization is finalized using i2c_driver_install().

Communication on the master and slave side differs, and are thus split up into different sections.

Master
When the ESP32 is acting as master, the steps for communication are as follows. Firstly, a command

sequence is initialized using i2c_cmd_link_create(). This function returns a i2c_cmd_handle_t, which acts as

a buffer in which I2C commands can be stored. Next i2c_master_start() is called, which queues a START

condition (the master pulls SDA low while SCL remains high). At this point all slaves on the bus are

listening, and the master needs to write a slave address to the bus to select a particular one it wishes

to communicate with. This is accomplished using the function i2c_master_write_byte(), which queues a

command to write a single byte to the bus. Once the slave is selected, the master writes/reads the bytes

of the message, which is accomplished using the function i2c_master_write() or i2c_master_read(), which

both take as argument a buffer and buffer size, writing/reading the buffer entirely, respectively. To

finalize the communication, the master enqueues a STOP condition, accomplished using the function

i2c_master_stop(). This completes the construction of the command queue. The command queue is

executed using i2c_master_cmd_begin().

Slave
The slave communicator only has two main functions it can use to communicate with its master. Namely,

i2c_slave_read_buffer() and i2c_slave_write_buffer() for reading and writing, respectively. The slave has

a built-in hardware ringbuffer for storing the out-bound and in-bound data. Data is copied out of this

5.4. Data structures 25

ringbuffer by the ESP-IDF toolkit automatically, using interrupts, and placed into a larger userspace

buffer. The latter buffer is where the i2c_slave_* functions read and write to.

5.3.2. ESP-NOW
Figure 5.4 shows the high level overview of the execution flow of the ESP-NOW subsystem. The

execution starts by initializing ESP-NOW on the ESP32. To perform initialization, first WiFi is initialized.

On the receiver side, the Access Point interface is used, which means that extra attention must be paid.

By default, this Access Point is exposed as a conventional WiFi network, leaving the possibility for other

WiFi devices to connect to the receiver ESP32. The ESP-IDF API does not allow this functionality to

be disabled. Hence, to ensure adequate safety, the access point’s name is randomised, and hidden

(meaning it doesn’t advertise itself to other WiFi devices), and its password is randomised as well. The

name and password are renewed every boot cycle.

1. Initialize ESP-NOW

2. Wait for Queue

3. Handle event

A.1 Read callback

A.2 Submit
WIECG_QUEUE_RECEIVE

to queue

B.1 Write callback

B.2 Submit
WIECG_QUEUE_SEND to

queue

Figure 5.4: High level overview of execution flow of ESP-NOW subsystem

Once ESP-NOW is initialized, a task is created which waits for events to be pushed to a queue. Events

can be pushed to the queue using "callbacks". These are functions registered to ESP-NOW that are

called to signal a transmission event. There are two callbacks:

• A.1 Read callback - The read callback is called by ESP-NOW whenever there is data ready to be

read. The callback function will copy the read data into a buffer, and submit it to the queue for

further processing.

• B.1 Write callback - The write callback is called by ESP-NOW whenever the interface is ready to

send more data. The callback function submits an event to the queue to signal more data can be

sent.

These callbacks are run from the ESP-NOW internal WiFi task. Performing complex processing or

blocking operations in the callbacks will therefore also block the WiFi task from running. Therefore, the

callbacks only submit some work to a queue, where more complex processing is performed instead.

5.4. Data structures
5.4.1. Bitmap
To implement the Selective Repeat re-transmission protocol, an efficient data structure for keeping track

of which packets were ACK’d is required. In the implementation a bitmap was used. The ESP32 is a

32-bit processor, so the implementation uses an array of uint32_t integers to store a bitmap. The bitmap

5.4. Data structures 26

is initialized using wiecg_bitmap_init(), which takes as parameter a size. This parameter is the number of

bits that need to be stored, at a minimum. Internally, this number will be rounded up to the nearest

multiple of 32 (as a uint32_t stores 32 bits).

Bits can be set and unset using wiecg_bitmap_set() and wiecg_bitmap_unset() respectively. The status of a

single bit can be checked using wiecg_bitmap_get(). The full API can be found in Appendix A.5.

An ACK accompanies the sequence number of the packet it ACK’s. When the transmitter receives an

ACK, it uses this sequence number as an offset into the bitmap, and sets the according bit. After a

timeout of 100 ms, the transmitter checks the entire bitmap. If it encounters an unset bit, it re-transmits

that individual packet. The bitmap is a space efficient data structure for accomplishing the semantics

required for Selective Repeat.

5.4.2. Associative array
Another data structure required for Selective Repeat is a buffer that can act as a window. To design this

data structure several requirements were considered.

• Packets can arrive out of order - Some packets can never arrive, and after re-transmission they

should still be processed in order. Thus the data structure must be able to handle inserting packets

in order, and not strictly sequentially.

• Receiver: I2C transmission - The data that is received is transmitted again over I2C. At the point

of I2C transmission the data must be in order and complete.

• Transmitter: I2C source - The data that is transmitted by the transmitter arrives from the DSP

module over I2C. There must be a complete window available to transmit, before transmission

commences.

Considering all of these requirements, the decision was made to implement a doubly-buffered associative

array. An overview is shown in Figure 5.5. The data structure consists of two flat arrays. At any point in

time exactly one array is being written to, and only one is read from. The write array is addressed using

modulo-arithmetic, so if the buffer size is 𝑛 then writing to location 𝑖 writes to location 𝑖 mod 𝑛. The

buffers can be swapped when the writing buffer is full.

On the transmitter side, this array is used to receive packets from the I2C of the DSP micro-controller.

They are written to the write buffer. The read buffer is used as the window for the wireless transmission.

Once the write buffer is full, the bitmap is checked. If all of the bits of the bitmap are set, then the

buffers are swapped.

On the receive side the array is used to receive packets from the transmitter over WiFi. Because of the

modulo-arithmetic property of the array, the packets arriving out of order can be placed in the receive

array in 𝑂 (1).

5.5. Re-transmission 27

Array 0 Array 1

...

0

1

2

n
...

packet i

i

swap

Figure 5.5: Design of the associative array

5.5. Re-transmission
Re-transmission is implemented using the aforementioned data structures. Additionally, a timer is used.

The timer is armed after each window is transmitted. When a re-transmission is performed, the timer is

armed again. The timer is armed a maximum of ten times before there is unrecoverable data loss. In

the future this will be determined based on time elapsed, instead of simply ten retries. Whenever the

timer is triggered, it submits an event to the espnow_queue. The event is received in the WiFi task, where it

checks the bitmap for any packets requiring re-transmission. Appendix A.6 shows the snippet of code

that performs the bitmap check and re-transmission.

5.6. Button debouncing
A problem that was encountered when using the button was switch bouncing. This issue is not directly

related to the functionality of the ECG-device, but is something to be solved nonetheless. This is

the phenomenon that when the button is pressed or released, it quickly bounces between contact

and non-contact a couple of times before settling in its final state. This can be solved with hardware

(debounce circuits) and with software. Both options have their pros and cons. It was chosen to tackle

this problem with a software-based solution. The main reason was that the hardware was already

designed, so it required either a redesign or an add-on. This was determined to be too much effort

for a secondary project goal. If the bouncing switch problem would have been considered from the

beginning, the same decision would have been made. The extra hardware would have required extra

space on the PCB, which is unnecessary as it is a problem than can be solved with software just fine.

When the button changes state, an interrupt service is called. This interrupt either starts a timer or

resets a timer if it was already running. When this timer reaches 50ms, another interrupt service is

called, reading the final state from the button. This is enqueued to be send to the other device. The

50ms is determined experimentally, by increasing this delay until no bounces were observed anymore.

In other words, the state of the button is only enqueued when the timer hasn’t been reset for the past

50ms. This eliminates bouncing, as the button has been in a stable state for 50ms.

6
Measurements

In this chapter some measurements are done of the basic functionality of the device. The system still

needs more elaborate testing. More about this can be read in Chapter 7.

6.1. Data rate
In this section, the data rate from transmitter to receiver is measured and plotted against the distance.

The test is performed in the following way.

• The devices are paired.

• The transmitter fills a buffer with 500 (of 9 signals) random data samples.

• The transmitter starts a timer.

• The data is transmitted at a maximum rate.

• If data packages are lost, retransmissions are performed.

• The transmitter stops a timer. This will only happen when all packages have been acknowledged.

In this test, a sample size equivalent to 1000 milliseconds is send. The result of the test gives the time it

takes the devices to transfer this data. It is first tested on modules of the final prototype. Due to poor

results, it is then tested on two ESP development boards.

6.1.1. Modules
The ESPs are soldered on a PCB with a ground plane underneath the antenna. The performance of the an-

tenna is influenced by this ground plane. Tests show that the orientation also influences the performance

of the device. The following test is executed in a lab with many people with phones, so the WiFi interfer-

ence is considered to be relative high. With the ESPs facing each other (with a line of sight between them)

the devices work up to a distance of 5 meters with a transmission time of 430 ms. When the transmit-

ter is flipped, so that the ground place is between the two ESPs, the transmission stops working at 1 meter.

More about this problem of the ground plane can be read in the hardware report[2].

6.1.2. ESP development boards
The test is done on two ESPs which were used for rapid prototyping. This is done due to the problems

with the ESPs on the modules. Regarding the positioning of the antenna, the test on these devices can

be seen as an ideal situation.

A test is performed under the following circumstances.

• The receiver is placed at the beginning of a hallway in an apartment building with many other

WiFi sources.

• The transmitter is moved away from the receiver through the hallway.

• An average measurement of 5 buffers is taken per meter.

28

6.2. Pairing 29

The results of this test are shown in Figure 6.1. It can be seen that the transmission time is around 250ms

and that there is no significant decrease or increase in the transmission time. Although this is not shown

in the figure, this trend continued up to 40 meters, which was the end of the hallway. To continue

testing until failure, the stairs were taken. These stairs were around 3m away from the receiver. One

floor down resulted in an average transmission time of 1266ms, two floors down resulted in complete

failure of transmission.

Figure 6.1: Data rate measurements plotted against distance

As stated by requirements G2P, G6D.a and G6D.b, the data link should transfer 9 signals of 16 bits at a

rate of 500 Hz. This comes down to an effective rate of 72kbit/s. In line of sight circumstances, 1000ms

of data is send in about 250ms. From this information, it can be extrapolated that the maximum effective

data rate is 288 kbit/s.

6.2. Pairing
During implementation and testing, problems were encountered with the pairing. More about this can

be read in Chapter 7. When both devices were reset before pairing, it never failed and paired instantly

when the wires are connected. However, when one of the devices was already on (and paired to a

device) it sometimes failed to pair.

7
Discussion

In this chapter, the achieved results will be discussed and interpreted and possible improvements will

be proposed. The final prototype of this subgroup is yet to be integrated in the complete system, but it

works as standalone now with some problems that still need to be solved.

Data rate
Actual data rate achieved was much lower than expected beforehand. The measured effective data rate

is 72 kbit/s, which is much lower than expected. WiFi was chosen as a solution that would be more than

capable of achieving high data rates. Experiments were done with manually changing the data rate of

the ESP32 chips, but this did not result in a measureable change in effective data rate. This suggests that

the bottleneck is not in the wireless solution, but rather some implementation inefficiency.

Processor usage
The ESP32 is chosen for flexibility. It is a quite strong device. Tests need to point out whether the

processor is fully used or that the same application could be made on a device with less computation

power. One way to measure this is to measure the amount of time the idle task is scheduled. If the idle

task runs a majority of the time, it means that the ESP32 is underutilized.

Pairing
I2C was not as stable as expected and required a lot of band-aiding. Sometimes the device requires a

reboot for it to pair, which is unexpected behavior. Most likely this is due to programmatic error. Due to

the asynchronous connection of the I2C connection, the ESP32 often transmitted only part of a message.

This caused the hardware ring buffer to be filled with partial messages, instead of complete ones,

causing repeated invalid messages to be transmitted. Flushing of the hardware buffers was attempted,

however, to little success. Given this difficulty, exploring other protocols is also a sensible next step.

When pairing succeeds, it succeeds almost instantly.

Safety
The communication is implemented with ESP-NOW, which supports encryption. Further research needs

to be done about the safety of this protocol and whether it is good enough for transferring medical data.

Latency
Currently, the device is implemented with a buffer size equivalent to 0.5 seconds. It was assumed that

this delay would not be a problem for the ambulance personnel. This assumption should be verified.

Increasing this buffer would increase the reliability of the system, because it can cover up a longer

duration of lost signal.

30

31

Future measurements
While having performed transmission time vs distance measurements, there are still many important

experiments left. An extensive but not exhaustive list is given of future measurements.

• Interference testing - So far there has not been any limit testing in terms of interference. A

good experiment would be to continuously add more interference to the environment around

the devices. This can be achieved in several ways, for example continuously adding more WiFi

enabled devices into a room. Another method of testing would be to use a commercial interference

tester.

• Ambulance testing - The transmission system should also be tested in the intended environment,

which has not been done so far. This means that the system should also be tested inside of an

ambulance, which provides a different interference pattern than an apartment complex.

• Temperature measurement - Another measurement which is necessary is to perform temperature

measurements of the system under load. It needs to be ensured that the devices are operating

within their thermal limits, under all circumstances. Variations of this test could be testing at

different ambient temperatures, so that it can be ensured the devices still work in different climates.

• Pairing speed - While qualitatively pairing is instant, there should still be a rigorous measurement

of the exact amount of time that it take to pair two devices.

• Pairing fail amount - There should be an experiment in which the failure rate of pairing is

empirically determined. This experiment can be done by repeatedly pairing devices and recording

when this process fails.

• Outdoor testing - The devices have not been tested outdoor, but the transmission reliability and

rate should also be tested outdoors. The indoor distance experiment can be repeated outdoors to

perform this measurement.

• Underwater testing - The devices were not tried underwater, mainly because there were only

non-waterproof prototype boards available. However, this should still be tested once a fully

complete waterproof design is available.

8
Conclusion and recommendation

8.1. Conclusion
Concluding, this thesis described the process of designing and implementing a prototype wireless

protocol for the WiECG project. It is concluded that WiFi is the best option for this application, as

it is the least sensitive to interference relative to other common protocols. As basis for the WiFi

implementation, an ESP32 is chosen because it has the wanted functionality and flexibility necessary

for a prototype, and it was also conveniently in stock. The WiFi protocol was used with the ESP-NOW

protocol on top of it, because ESP-NOW reduces the amount of complexity, supports encryption natively

and allows out of band pairing. This protocol is upgraded with error detection and retransmission

to achieve the reliability necessary. The out of band pairing is chosen to be implemented with a

wired connection, facilitating I2C. I2C is chosen because of it’s simplicity and use of acknowledge-

ments. The ESP32 is programmed with ESP-IDF, which allows great freedom in programming the device.

With the use of WiFi, the device utilises a wireless communication protocol (G1P). By using encryption

and out of band pairing, the communication channel is protected from eavesdropping (G4P.a) and

is a safe connection ensured (G4P.b). Further research should however conclude whether this safe

connection is of medical grade. The pairing is easy to confirm (G4P.c), with the use of a button and

buzzer. Measurements have shown that the pairing works instantly for most of the time. This should

of course never fail, so more research need to be done to fulfill requirement (G5P.a). The pairing

allows any two transmitter and receiver to be paired with each other (G5P.b), this is however untested.

The retransmission and error detection ensures that all signals are transferred lossless (G6P.a) up to a

distance of at least 40 meters. Because of the way the transmission is implemented with buffers, the

delay induced is exactly 0.5 seconds, which is the set by requirement G6P.b. The communication would

be more reliable if this buffer size and thus delay would be increased.

Measurements showed that a data rate of 288kbit/s was achieved, which is 4 times more than necessary.

The communication module was delivered in time (G10P), which gave the ability to get a working

prototype before the end of the project (G10). The prototype made by this subgroup is functional, but is

yet to be integrated with the other subgroups.

8.2. Recommendations
There are several recommendations that can be made to further improve the quality of the product

presented here. Firstly, and most importantly, there needs to be much more testing performed. Currently,

the level of testing done is rudimental and limited, and certainly not adequate for medical equipment.

Some tests that should be done are for example rigorous interference testing, pairing testing, battery

life testing, temperature measurements of the chips, processor usage and testing the transmission in

ambulance environments.

32

8.2. Recommendations 33

Another aspect that needs to be verified is code reliability. The product relies heavily on software, which

is volatile and unreliable by nature. However, steps can be taken to verify that the written code is safe

and reliable. More unit testing should be done, along with integration testing of the entire system. The

ESP-IDF platform provides extensive testing facilities, which can be used to achieve the aforementioned

goals. Additionally, LLVM’s sanitizers [37] can be used to catch memory safety errors and undefined

behaviour in the written code.

Because of the unreliability of the I2C pairing, it is reasonable to also explore different wire protocols for

pairing.

References

[1] S.Speekenbrink K. Khalili. Digital Signal Processing solution for a Wireless ECG. Tech. Rep. Delft

University of Technology, 2022.

[2] P.J. Wiersma and R.G. van Krieken. Circuit Design for a Wireless ECG Device. Tech. Rep. Delft

University of Technology, 2022.

[3] Ambulancezorg nederland. Ambulancezorg Nederland sectorkompas 2020, statistieken vanuit het RIVM.

2022. url: https://www.ambulancezorg.nl/sectorkompas (visited on 05/25/2022).

[4] Maria Sejersten et al. “Comparison of EASI-derived 12-lead electrocardiograms versus paramedic-

acquired 12-lead electrocardiograms using Mason-Likar limb lead configuration in patients

with chest pain”. In: Journal of Electrocardiology 39.1 (2006), pp. 13–21. issn: 0022-0736. doi:

https://doi.org/10.1016/j.jelectrocard.2005.05.011. url: https://www.sciencedirect.
com/science/article/pii/S0022073605002219.

[5] M. Westendorp Dr. B. McGraw Dr. J. Lord. Analysis and interpretation of the electrocardiogram, E-
learning module, Queens University of Health Sci. 2022. url: https://elentra.healthsci.queensu.
ca/assets/modules/ECG/normal_ecg.html (visited on 05/15/2022).

[6] AliveCor. KardiaMobile 6L. 2022. url: https://www.kardia.com/kardiamobile6l/ (visited on

05/25/2022).

[7] Physio-control. Lifepak 12 datasheet. 2022. url: https://www.physio-control.com/uploaded
Files/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/
LIFEPAK15_OperatingInstructions_3306222-002.pdf (visited on 05/26/2022).

[8] Koninklĳke Philips N.V. Philips Tempus ALS monitor. 2022. url: https://www.philips.nl/health
care/product/HC989706000171/tempus-als-monitordefibrillator (visited on 05/30/2022).

[9] ZOLL, an Ashahi Kasei Company. ZOLL Heart Failure Management System (HFMS). 2022. url:

https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-managemen
t-system (visited on 05/30/2022).

[10] corpuls. Corpuls3 Monitor. 2022. url: https://corpuls.world/en/products/corpuls3/#Monito
ring-unit (visited on 05/30/2022).

[11] Oskar Flink. Wireless electrocardiogram transmission based on ultra wideband radio. 2018.

[12] Earl McCune. “DSSS vs. FHSS narrowband interference performance issues”. In: RF Signal
Processing Magazine (2000).

[13] “IEEE Standard for Information technology—Telecommunications and information exchange

between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”. In: IEEE Std 802.11-
2016 (Revision of IEEE Std 802.11-2012) (2016), pp. 1–3534. doi: 10.1109/IEEESTD.2016.7786995.

[14] Espressif. ESP-NOW User Guide. 1st ed. July 2016.

[15] Sinem Coleri Ergen. “ZigBee/IEEE 802.15. 4 Summary”. In: UC Berkeley, September 10.17 (2004),

p. 11.

[16] Soo Young Shin et al. “Packet Error Rate Analysis of ZigBee Under WLAN and Bluetooth

Interferences”. In: IEEE Transactions on Wireless Communications 6.8 (2007), pp. 2825–2830. doi:

10.1109/TWC.2007.06112.

[17] R Challoo et al. “An Overview and Assessment of Wireless Technologies and Co- existence

of ZigBee, Bluetooth and Wi-Fi Devices”. In: Procedia Computer Science 12 (2012), pp. 386–

391. issn: 1877-0509. doi: https://doi.org/10.1016/j.procs.2012.09.091. url: https:
//www.sciencedirect.com/science/article/pii/S1877050912006825.

34

https://www.ambulancezorg.nl/sectorkompas
https://doi.org/https://doi.org/10.1016/j.jelectrocard.2005.05.011
https://www.sciencedirect.com/science/article/pii/S0022073605002219
https://www.sciencedirect.com/science/article/pii/S0022073605002219
https://elentra.healthsci.queensu.ca/assets/modules/ECG/normal_ecg.html
https://elentra.healthsci.queensu.ca/assets/modules/ECG/normal_ecg.html
https://www.kardia.com/kardiamobile6l/
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.physio-control.com/uploadedFiles/Physio85/Contents/Emergency_Medical_Care/Products/Operating_Instructions/LIFEPAK15_OperatingInstructions_3306222-002.pdf
https://www.philips.nl/healthcare/product/HC989706000171/tempus-als-monitordefibrillator
https://www.philips.nl/healthcare/product/HC989706000171/tempus-als-monitordefibrillator
https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-management-system
https://cardiacdiagnostics.zoll.com/products/heart-failure-arrhythmia-management-system
https://corpuls.world/en/products/corpuls3/#Monitoring-unit
https://corpuls.world/en/products/corpuls3/#Monitoring-unit
https://doi.org/10.1109/IEEESTD.2016.7786995
https://doi.org/10.1109/TWC.2007.06112
https://doi.org/https://doi.org/10.1016/j.procs.2012.09.091
https://www.sciencedirect.com/science/article/pii/S1877050912006825
https://www.sciencedirect.com/science/article/pii/S1877050912006825

References 35

[18] Carles Gomez, Ilker Demirkol, and Josep Paradells. “Modeling the Maximum Throughput of

Bluetooth Low Energy in an Error-Prone Link”. In: IEEE Communications Letters 15.11 (2011),

pp. 1187–1189. doi: 10.1109/LCOMM.2011.092011.111314.

[19] Carles Gomez, Joaquim Oller, and Josep Paradells. “Overview and Evaluation of Bluetooth Low

Energy: An Emerging Low-Power Wireless Technology”. In: Sensors 12.9 (2012), pp. 11734–11753.

issn: 1424-8220. doi: 10.3390/s120911734. url: https://www.mdpi.com/1424-8220/12/9/11734.

[20] ESP32 Datasheet. 2022. url: https://www.espressif.com/sites/default/files/documentati
on/esp32_datasheet_en.pdf (visited on 06/01/2022).

[21] ESP32-WROOM-32e datasheet. 2022. url: https://www.espressif.com/sites/default/fil
es/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf (visited on

06/13/2022).

[22] P. van Mieghem. Data Communications Networking. 2nd ed. Cambridge University Press, 2011.

[23] Arun Kumar et al. “A comparative study of secure device pairing methods”. In: Pervasive and
Mobile Computing 5.6 (2009). PerCom 2009, pp. 734–749. issn: 1574-1192. doi: https://doi.org/10.
1016/j.pmcj.2009.07.008. url: https://www.sciencedirect.com/science/article/pii/
S1574119209000650.

[24] Kyuin Lee et al. “SYNCVIBE: Fast and Secure Device Pairing through Physical Vibration on

Commodity Smartphones”. In: 2018 IEEE 36th International Conference on Computer Design (ICCD).
2018, pp. 234–241. doi: 10.1109/ICCD.2018.00043.

[25] Frank Stajano and Ross Anderson. “The Resurrecting Duckling: Security Issues for Ad-hoc

Wireless Networks”. In: Security Protocols. Ed. by Bruce Christianson et al. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2000, pp. 172–182. isbn: 978-3-540-45570-7.

[26] Jayant Mankar et al. “Review of I2C protocol”. In: International journal of research in advent technology
2.1 (2014). issn: 2321-9637.

[27] Pamadi, Vishesh, and Bradford G Nickerson. “Getting Started With 1-Wire Bus Devices”. In:

TR15-235, University of New Brunswick Fredericton, NB E3B 5A3 Canada August 25 (2015).

[28] Dan Awtrey and Dallas Semiconductor. “The 1-wire weather station”. In: SENS(PETERBOROUGH,
NH) 15.6 (1998), p. 34.

[29] M Dilum R Perera, Ravinda GN Meegama, and MK Jayananda. “FPGA based single chip solution

with 1-wire protocol for the design of smart sensor nodes”. In: Journal of Sensors 2014 (2014).

[30] Ludmila Maceková. “1-wire-the technology for sensor networks”. In: Acta Electrotechnica et
Informatica 12.4 (2012), p. 52.

[31] Moi-Tin Chew, Tatt-Huong Tham, and Ye-Chow Kuang. “Electrical Power Monitoring System

Using Thermochron Sensor and 1-Wire Communication Protocol”. In: 4th IEEE International
Symposium on Electronic Design, Test and Applications (delta 2008). 2008, pp. 549–554. doi: 10.1109/
DELTA.2008.92.

[32] N Montoya, L Giraldo, A Montoya, et al. “Remote monitoring and control system of physical

variables of a greenhouse through a 1-wire network”. In: Advances in systems, computing sciences
and software engineering. Springer, 2006, pp. 291–296.

[33] ESP32 API Documentation. 2022. url: https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/index.html (visited on 06/03/2022).

[34] Official IoT Development Framework. 2022. url: https://www.espressif.com/en/products/sdks/
esp-idf (visited on 06/03/2022).

[35] FreeRTOS reference manual. 2022. url: https://www.freertos.org/fr-content-src/uploads/
2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf (visited on 06/03/2022).

[36] FreeRTOS kernel documentation. 2022. url: https://www.freertos.org/fr- content- src/
uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel- A_Hands- On_
Tutorial_Guide.pdf (visited on 06/03/2022).

[37] LLVM. google/sanitizers. url: https://github.com/google/sanitizers.

https://doi.org/10.1109/LCOMM.2011.092011.111314
https://doi.org/10.3390/s120911734
https://www.mdpi.com/1424-8220/12/9/11734
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://doi.org/https://doi.org/10.1016/j.pmcj.2009.07.008
https://doi.org/https://doi.org/10.1016/j.pmcj.2009.07.008
https://www.sciencedirect.com/science/article/pii/S1574119209000650
https://www.sciencedirect.com/science/article/pii/S1574119209000650
https://doi.org/10.1109/ICCD.2018.00043
https://doi.org/10.1109/DELTA.2008.92
https://doi.org/10.1109/DELTA.2008.92
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/index.html
https://www.espressif.com/en/products/sdks/esp-idf
https://www.espressif.com/en/products/sdks/esp-idf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://www.freertos.org/fr-content-src/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel-A_Hands-On_Tutorial_Guide.pdf
https://github.com/google/sanitizers

A
Source Code ESP32

A.1. Pairing code transmitter
1 //I2C task used for pairing in the transmitter
2 static void i2c_task(void *priv){
3 struct pair_message msg = {0}, new_msg = {0}, to_send = {0};
4 memcpy(to_send.mac_addr, own_mac_addr, ESP_NOW_ETH_ALEN);
5 to_send.crc = esp_crc32_le(0, (uint8_t*) &to_send, PAIR_MESSAGE_DATA_SIZE);
6

7 while(1) {
8 to_send.error = 0;
9 vTaskDelay(200 / portTICK_PERIOD_MS);

10 int size = i2c_slave_read_buffer(PAIR_I2C_SLAVE_NUM, (uint8_t*)
&new_msg, sizeof(struct pair_message),↩→

11 1000 / portTICK_PERIOD_MS);
12 if(size != sizeof(struct pair_message)) {
13 continue;
14 }
15

16 // Skip message if CRC32 mismatches.
17 uint32_t new_crc = esp_crc32_le(0, (uint8_t*) &new_msg,

PAIR_MESSAGE_DATA_SIZE);↩→

18 if (new_crc != new_msg.crc) {
19 ESP_LOGD(TAG, "Skipping pair message because CRC32 doesn't

match! calc: %d, recv: %d",↩→

20 new_crc, new_msg.crc);
21 to_send.error = 1;
22 i2c_slave_write_buffer(PAIR_I2C_SLAVE_NUM, (uint8_t*)

&to_send, sizeof(struct pair_message), 1000 /
portTICK_PERIOD_MS);

↩→

↩→

23 i2c_reset_rx_fifo(PAIR_I2C_SLAVE_NUM);
24

25 i2c_slave_read_buffer(PAIR_I2C_SLAVE_NUM, (uint8_t*)
&new_msg, sizeof(struct pair_message),↩→

26 0);
27 continue;
28 }
29

30 ESP_LOGD(TAG, "writing to i2c!");
31 i2c_reset_tx_fifo(PAIR_I2C_SLAVE_NUM);

36

A.2. Pairing code receiver 37

32 i2c_slave_write_buffer(PAIR_I2C_SLAVE_NUM, (uint8_t*) &to_send,
sizeof(struct pair_message),↩→

33 1000 / portTICK_PERIOD_MS);
34

35 // Skip message if it's the same as the current one.
36 if(memcmp(&msg, &new_msg, sizeof(struct pair_message)) == 0) {
37 ESP_LOGD(TAG, "Skipping pair message because it's the same as

current message!");↩→

38 continue;
39 }
40

41 memcpy(&msg, &new_msg, sizeof(struct pair_message));
42 ESP_LOGI(TAG, "Received new MAC address from master:");
43 disp_buf(msg.mac_addr, ESP_NOW_ETH_ALEN);
44

45 struct queue_event event = {0};
46 event.type = WIECG_QUEUE_PEER;
47 memcpy(event.peer_addr, msg.mac_addr, ESP_NOW_ETH_ALEN);
48 memcpy(event.pmk, msg.pmk, ESP_NOW_KEY_LEN);
49 memcpy(event.lmk, msg.lmk, ESP_NOW_KEY_LEN);
50

51 if (xQueueSend(espnow_queue, &event, WIECG_QUEUE_DELAY) != pdTRUE)
52 ESP_LOGE(TAG, "pair_i2c_slave: queue is full!");
53 }
54 }

A.2. Pairing code receiver
1 //I2C task used for pairing in the receiver
2 static void i2c_task(void *priv){
3 struct pair_message msg = {0}, new_msg = {0}, to_send = {0};
4

5 memcpy(to_send.mac_addr, own_mac_addr, ESP_NOW_ETH_ALEN);
6 // Fill key fields with initial random data.
7 esp_fill_random(to_send.pmk, ESP_NOW_KEY_LEN);
8 esp_fill_random(to_send.lmk, ESP_NOW_KEY_LEN);
9 to_send.crc = esp_crc32_le(0, (uint8_t*) &to_send, PAIR_MESSAGE_DATA_SIZE);

10

11 int slave_disconnected = 1;
12 while(1) {
13 int ret;
14 vTaskDelay(200/ portTICK_PERIOD_MS);
15 if (!i2c_slave_exists(PAIR_I2C_MASTER_NUM, ESP_SLAVE_ADDR)) {
16 slave_disconnected = 1;
17 ESP_LOGD(TAG, "no slave connected!");
18 continue;
19 }
20

21 if (!slave_disconnected)
22 continue;
23

24 slave_disconnected = 0;
25

26 ESP_LOGD(TAG, "writing to i2c...");
27 ret = i2c_master_write_slave(PAIR_I2C_MASTER_NUM, ESP_SLAVE_ADDR,

A.2. Pairing code receiver 38

28 &to_send, sizeof(struct pair_message));
29 if(ret != ESP_OK) {
30 i2c_reset_tx_fifo(PAIR_I2C_MASTER_NUM);
31 i2c_reset_rx_fifo(PAIR_I2C_MASTER_NUM);
32 ESP_LOGE(TAG, "I2C write error: %s \n",

esp_err_to_name(ret));↩→

33 continue;
34 }
35

36 vTaskDelay(100 / portTICK_PERIOD_MS);
37 ESP_LOGD(TAG, "reading from i2c...");
38 ret = i2c_master_read_slave(PAIR_I2C_MASTER_NUM, ESP_SLAVE_ADDR,
39 &new_msg, sizeof(struct pair_message));
40 if(ret != ESP_OK){
41 ESP_LOGE(TAG, "I2C read error: %s \n",

esp_err_to_name(ret));↩→

42 continue;
43 }
44

45 if (new_msg.error) {
46 ESP_LOGD(TAG, "There was an error in transmission! Flushing

buffer and trying again!");↩→

47 slave_disconnected = 1;
48 i2c_reset_tx_fifo(PAIR_I2C_MASTER_NUM);
49 continue;
50 }
51

52 // Skip message if it has an invalid CRC32.
53 uint32_t crc = esp_crc32_le(0, (uint8_t*) &new_msg,

PAIR_MESSAGE_DATA_SIZE);↩→

54 if (new_msg.crc != crc) {
55 ESP_LOGD(TAG, "Skipping pair message because CRC32 doesn't

match! calc: %d, recv: %d",↩→

56 crc, new_msg.crc);
57 slave_disconnected = 1;
58 continue;
59 }
60

61 // Skip message if it's the same as the current message.
62 if(memcmp(&msg, &new_msg, sizeof(struct pair_message)) == 0) {
63 ESP_LOGD(TAG, "Skipping pair message because it's the same as

current message!");↩→

64 continue;
65 }
66

67 memcpy(&msg, &new_msg, sizeof(struct pair_message));
68 ESP_LOGI(TAG, "Received new MAC address from slave:");
69 disp_buf(msg.mac_addr, ESP_NOW_ETH_ALEN);
70

71 struct queue_event event = {0};
72 event.type = WIECG_QUEUE_PEER;
73 memcpy(event.peer_addr, msg.mac_addr, ESP_NOW_ETH_ALEN);
74 memcpy(event.pmk, to_send.pmk, ESP_NOW_KEY_LEN);
75 memcpy(event.lmk, to_send.lmk, ESP_NOW_KEY_LEN);
76

77 if (xQueueSend(espnow_queue, &event, WIECG_QUEUE_DELAY) != pdTRUE)

A.3. Wifi task transmitter 39

78 ESP_LOGE(TAG, "pair_i2c_master: queue is full!");
79 }
80 }

A.3. Wifi task transmitter
1 //Wifi task transmitter
2 static void espnow_task(void *priv) {
3 ESP_LOGD(TAG, "espnow_task!");
4

5 int has_peer = 0;
6 esp_now_peer_info_t current_peer = {0};
7

8 struct queue_event event = {0};
9 struct message_queue_event message_event = {0};

10 int ready_to_send = 1;
11 int end_of_window = 0;
12 int started_sending = 0;
13 int tries = 0;
14 int retransmitting = 0;
15 while (1) {
16 if (!has_peer){
17 ESP_LOGI(TAG, "emptied queue");
18 xQueueReset(message_queue);
19 vTaskDelay(200 / portTICK_PERIOD_MS);
20 }
21

22 int delay = ready_to_send ? 0 : 100 / portTICK_PERIOD_MS;
23 BaseType_t recvd = xQueueReceive(espnow_queue, &event, delay);
24 if (recvd == pdFALSE)
25 event.type = WIECG_QUEUE_NONE; // No espnow_queue event
26

27 switch (event.type) {
28 case WIECG_QUEUE_NONE:
29 break;
30 case WIECG_QUEUE_RECEIVE: {
31 if (!has_peer) {
32 free(event.recv_data);
33 break;
34 }
35

36 struct wiecg_header *header = (struct wiecg_header *)
event.recv_data;↩→

37 if (header->type != TYPE_ACK) {
38 ESP_LOGW(TAG, "received packet other than

ACK!");↩→

39 free(header);
40 }
41

42 struct ack_message *ack = (struct ack_message *)
header;↩→

43 //ESP_LOGD(TAG, "received ACK for %d",
ack->sequence);↩→

44 if (retransmitting)
45 wiecg_bitmap_set(&tx_bitmap, ack->sequence);

A.3. Wifi task transmitter 40

46 else
47 for (int i = 0; i < 11; i++)
48 wiecg_bitmap_set(&tx_bitmap,

ack->sequence + i);↩→

49 free(header);
50 } break;
51 case WIECG_QUEUE_SEND: {
52 if (!has_peer)
53 break;
54

55 ready_to_send = true;
56 } break;
57 case WIECG_QUEUE_PEER: {
58 if (has_peer)
59 ESP_ERROR_CHECK(esp_now_del_peer(current_peer.peer_addr));
60

61 ESP_LOGD(TAG, "installing peer with: ");
62 ESP_ERROR_CHECK(esp_now_set_pmk(event.pmk));
63 disp_buf(event.pmk, ESP_NOW_KEY_LEN);
64

65 current_peer.channel = 0;
66 current_peer.ifidx = WIFI_IF_STA;
67 current_peer.encrypt = true;
68 memcpy(current_peer.lmk, event.lmk, ESP_NOW_KEY_LEN);
69 memcpy(current_peer.peer_addr, event.peer_addr,

ESP_NOW_ETH_ALEN);↩→

70 ESP_ERROR_CHECK(esp_now_add_peer(¤t_peer));
71 disp_buf(event.lmk, ESP_NOW_KEY_LEN);
72 has_peer = 1;
73

74 // Signal that we're ready to send now.
75 struct queue_event event = {0};
76 event.type = WIECG_QUEUE_SEND;
77 memcpy(event.peer_addr, current_peer.peer_addr,

ESP_NOW_ETH_ALEN);↩→

78 if (xQueueSend(espnow_queue, &event,
WIECG_QUEUE_DELAY) != pdTRUE)↩→

79 ESP_LOGE(TAG, "espnow_recv_cb: queue is
full!");↩→

80 } break;
81 case WIECG_QUEUE_SEND_TIMEOUT: {
82 // Timeout reached, check the bitmap if some packets

got lost↩→

83 // along the way.
84

85 if (event.buffer_count < buffer_count)
86 break;
87

88 int sent = 0;
89 if (tries == 10) {
90 ESP_LOGE(TAG, "Retransmission timeout

reached! Skipping to next window");↩→

91 wiecg_bitmap_set_all(&tx_bitmap);
92 break;
93 }
94 retransmitting = 1;

A.3. Wifi task transmitter 41

95 tries++;
96 for (int i = 0; i < WIECG_BUFFER_SIZE; i++) {
97 // Skip packets that have already been ACK'd.
98 if (wiecg_bitmap_get(&tx_bitmap, i))
99 continue;

100

101 struct ecg_data data = {0};
102 if(wiecg_associative_array_read_specific(&tx_buf,

i, &data))↩→

103 continue;
104

105 sent = 1;
106 struct ecg_message ecg_msg = {0};
107 build_ecg_message(&ecg_msg, i, data.data);
108 ESP_LOGD(TAG, "retransmitting %d", i);
109 int ret =

esp_now_send(current_peer.peer_addr,
(uint8_t*) &ecg_msg, sizeof(struct
ecg_message));

↩→

↩→

↩→

110 ready_to_send = false;
111 if (ret != ESP_OK) {
112 ESP_LOGE(TAG, "send error: %s",

esp_err_to_name(ret));↩→

113 break;
114 }
115 }
116 if (sent)
117 timer_start(TIMER_GROUP_1, TIMER_0);
118

119 } break;
120 default:
121 ESP_LOGE(TAG, "Unknown queue event type of %d!",

event.type);↩→

122 break;
123 }
124

125 if(!ready_to_send)
126 continue;
127

128 BaseType_t mes_recvd = xQueueReceive(message_queue, &message_event,
0);↩→

129 if (mes_recvd == pdTRUE) {
130 uint8_t *message = (uint8_t*) &message_event;
131 int ret = esp_now_send(current_peer.peer_addr, message + 1,

sizeof(struct message_queue_event)-1);↩→

132 ready_to_send = false;
133 if (ret != ESP_OK)
134 ESP_LOGE(TAG, "message queue send error: %s",

esp_err_to_name(ret));↩→

135

136 continue;
137 }
138

139 if (!has_peer)
140 continue;
141

A.4. WiFi task receiver 42

142 // Now we can check the tx buffer.
143 int count = 0;
144 struct ecg_message ecg_msg[11] = {0};
145 for (int i = 0; i < 11; i++) {
146 struct ecg_data data = {0};
147 uint32_t sequence = 0;
148 int data_rdy = wiecg_associative_array_read_entry(&tx_buf,

&sequence,↩→

149 &data);
150 if (data_rdy == -1) {
151 if (started_sending && !end_of_window) {
152 end_of_window = 1;
153 ESP_LOGD(TAG, "timer is turned on!");
154 tries = 0;
155 timer_start(TIMER_GROUP_1, TIMER_0);
156 }
157 vTaskDelay(10 / portTICK_PERIOD_MS);
158 break;
159 }
160 end_of_window = 0;
161

162 //ESP_LOGD(TAG, "sending ecg data with sequence %d\n",
sequence);↩→

163

164 build_ecg_message(&ecg_msg[i], sequence, data.data);
165 count++;
166 }
167 if (!count)
168 continue;
169

170 int ret = esp_now_send(current_peer.peer_addr, (uint8_t*) ecg_msg,
count * sizeof(struct ecg_message));↩→

171 ready_to_send = false;
172 if (ret != ESP_OK)
173 ESP_LOGE(TAG, "ecg send error: %s", esp_err_to_name(ret));
174 retransmitting = 0;
175 started_sending = 1;
176 }
177 }

A.4. WiFi task receiver
1 //Wifi task receiver
2 static void espnow_task(void *priv) {
3 struct queue_event event = {0};
4 uint32_t prev_seq = 0;
5

6 esp_now_peer_info_t current_peer = {0};
7 int has_peer = 0;
8

9 while (1) {
10 BaseType_t recvd = xQueueReceive(espnow_queue, &event,

portMAX_DELAY);↩→

11 if (recvd == pdFALSE)
12 continue; // Didn't receive anything, let's try again.

A.4. WiFi task receiver 43

13

14 switch (event.type) {
15 case WIECG_QUEUE_RECEIVE: {
16 if (!has_peer) {
17 free(event.recv_data);
18 break;
19 }
20 struct wiecg_header *header = (struct wiecg_header *)

event.recv_data;↩→

21

22 uint32_t sequence =
read_sequence(header->sequence_hi,
header->sequence_lo);

↩→

↩→

23 prev_seq = sequence;
24

25 switch (header->type) {
26 case TYPE_ECG_MESSAGE: {
27 struct ecg_message *ecg_msg = (struct

ecg_message *) header;↩→

28 struct ack_message resp = {0};
29

30 resp.sequence = sequence;
31 resp.header.type = TYPE_ACK;
32 int ret =

esp_now_send(current_peer.peer_addr,
(uint8_t*) &resp, sizeof(struct
ack_message));

↩→

↩→

↩→

33 if (ret != ESP_OK)
34 ESP_LOGE(TAG, "Error sending ack

response! %s",
esp_err_to_name(ret));

↩→

↩→

35 //ESP_LOGD(TAG, "Sent ACK for message %d",
sequence);↩→

36 testing_received_data();
37 } break;
38 case TYPE_BUTTON_MESSAGE: {
39 struct button_message *but_msg = (struct

button_message *) header;↩→

40 ESP_LOGI(TAG, "Received button data: %d",
but_msg->pressed);↩→

41 if (but_msg->pressed == BUTTON_PRESSED)
42 gpio_set_level(BUZZER_PIN, true);
43 else
44 gpio_set_level(BUZZER_PIN, false);
45 } break;
46 default:
47 ESP_LOGE(TAG, "Unknown message type of: %d",

header->type);↩→

48 break;
49 }
50

51 free(header);
52 } break;
53 case WIECG_QUEUE_SEND: {
54 //ESP_LOGI(TAG, "Send callback hit!");
55 } break;

A.5. Bitmap API 44

56 case WIECG_QUEUE_PEER: {
57 if (has_peer)
58

ESP_ERROR_CHECK(esp_now_del_peer(current_peer.peer_addr));↩→

59

60 ESP_LOGD(TAG, "installing peer with keys: ");
61 ESP_ERROR_CHECK(esp_now_set_pmk(event.pmk));
62 disp_buf(event.pmk, ESP_NOW_KEY_LEN);
63

64 current_peer.channel = 0;
65 current_peer.ifidx = WIFI_IF_AP;
66 current_peer.encrypt = true;
67 memcpy(current_peer.peer_addr, event.peer_addr,

ESP_NOW_ETH_ALEN);↩→

68 memcpy(current_peer.lmk, event.lmk, ESP_NOW_KEY_LEN);
69 ESP_ERROR_CHECK(esp_now_add_peer(¤t_peer));
70 disp_buf(event.lmk, ESP_NOW_KEY_LEN);
71 has_peer = 1;
72 } break;
73 default:
74 ESP_LOGE(TAG, "Unknown queue event type of %d!",

event.type);↩→

75 break;
76 }
77 }
78 }

A.5. Bitmap API
1 struct bitmap {
2 uint32_t *map;
3 size_t size;
4 size_t num_elems;
5 SemaphoreHandle_t lock;
6 };
7

8 void wiecg_bitmap_init(struct bitmap *bitmap, size_t size);
9 void wiecg_bitmap_set(struct bitmap *bitmap, size_t index);

10 void wiecg_bitmap_set_all(struct bitmap *bitmap);
11 void wiecg_bitmap_unset(struct bitmap *bitmap, size_t index);
12 void wiecg_bitmap_clear(struct bitmap *bitmap);
13 int wiecg_bitmap_get(struct bitmap *bitmap, size_t index);
14 int wiecg_bitmap_check_all(struct bitmap *bitmap);

A.6. Re-transmission
1 for (int i = 0; i < WIECG_BUFFER_SIZE; i++) {
2 // Skip packets that have already been ACK'd.
3 if (wiecg_bitmap_get(&tx_bitmap, i))
4 continue;
5

6 struct ecg_data data = {0};
7 if(wiecg_associative_array_read_specific(&tx_buf, i, &data))
8 continue;

A.6. Re-transmission 45

9

10 sent = 1;
11 struct ecg_message ecg_msg = {0};
12 build_ecg_message(&ecg_msg, i, data.data);
13 int ret = esp_now_send(current_peer.peer_addr, (uint8_t*) &ecg_msg, sizeof(struct

ecg_message));↩→

14 ready_to_send = false;
15 if (ret != ESP_OK)
16 ESP_LOGE(TAG, "send error: %s", esp_err_to_name(ret));
17 }

	Abstract
	Preface
	Nomenclature
	Introduction
	The WiECG Project
	Basics of ECG
	Problem statement
	Proposed solution
	State of the art

	The scope of this subgroup

	Program of requirements
	Reliability

	System overview
	Dataflow overview
	Complete overview

	Design
	Transmission protocol
	UWB
	WiFi
	Bluetooth
	ZigBee
	Making a choice
	ESP32
	Compression
	Handling corrupt packets

	Pairing protocols
	SYNCVIBE
	Physical contact
	Protocol physical contact
	Comparison
	Confirmation
	I2C waterproof

	Implementation
	Stability
	Error Conditions

	Parallel processing
	FreeRTOS
	Task
	Queues

	Communication
	I2C
	ESP-NOW

	Data structures
	Bitmap
	Associative array

	Re-transmission
	Button debouncing

	Measurements
	Data rate
	Modules
	ESP development boards

	Pairing

	Discussion
	Conclusion and recommendation
	Conclusion
	Recommendations

	References
	Source Code ESP32
	Pairing code transmitter
	Pairing code receiver
	Wifi task transmitter
	WiFi task receiver
	Bitmap API
	Re-transmission

