

Delft University of Technology

The Impact of Test Case Summaries on Bug Fixing Performance
An Empirical Investigation
Panichella, Sebastiano; Panichella, Annibale; Beller, Moritz; Zaidman, Andy; Gall, Harald C.

DOI
10.1145/2884781.2884847
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings - 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion,
ICSE 2016

Citation (APA)
Panichella, S., Panichella, A., Beller, M., Zaidman, A., & Gall, H. C. (2016). The Impact of Test Case
Summaries on Bug Fixing Performance: An Empirical Investigation. In Proceedings - 2016 IEEE/ACM 38th
IEEE International Conference on Software Engineering Companion, ICSE 2016 (pp. 547-558). IEEE.
https://doi.org/10.1145/2884781.2884847
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1145/2884781.2884847

The Impact of Test Case Summaries on Bug Fixing
Performance: An Empirical Investigation

Sebastiano Panichella,1 Annibale Panichella,2 Moritz Beller,2
Andy Zaidman,2 Harald C. Gall1

1University of Zurich, Switzerland
2Delft University of Technology, The Netherlands

panichella@ifi.uzh.ch {a.panichella,m.m.beller,a.e.zaidman}@tudelft.nl gall@ifi.uzh.ch

ABSTRACT
Automated test generation tools have been widely investi-
gated with the goal of reducing the cost of testing activities.
However, generated tests have been shown not to help de-
velopers in detecting and finding more bugs even though
they reach higher structural coverage compared to manual
testing. The main reason is that generated tests are diffi-
cult to understand and maintain. Our paper proposes an
approach, coined TestDescriber, which automatically gener-
ates test case summaries of the portion of code exercised by
each individual test, thereby improving understandability.
We argue that this approach can complement the current
techniques around automated unit test generation or search-
based techniques designed to generate a possibly minimal set
of test cases. In evaluating our approach we found that (1)
developers find twice as many bugs, and (2) test case sum-
maries significantly improve the comprehensibility of test
cases, which is considered particularly useful by developers.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Code Inspections and Walk-throughs, Testing Tools;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation, Enhancement

Keywords
Software testing, Test Case Summarization, Empirical Study

1. INTRODUCTION
Software testing is a key activity of software development

and software quality assurance in particular. However, it
is also expensive, with overall testing consuming as much as
50% of overall project effort [8, 36], and programmers spend-
ing a quarter of their work time on developer testing [6].

Several search-based techniques and tools [16, 21, 40] have
been proposed to reduce the time developers need to spend
on testing by automatically generating a (possibly minimal)
set of test cases with respect to a specific test coverage cri-
terion [11, 21, 25, 28, 41, 43, 51, 54]. These research efforts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 May 14–22, 2016, Texas, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1. . . $15.00

DOI:

produced important results: automatic test case generation
allows developers to (i) reduce the time and cost of the test-
ing process [5, 11, 13, 54]; to (ii) achieve higher code coverage
when compared to the coverage obtained through manual
testing [10, 22, 41, 43, 51]; to (iii) find violations of auto-
mated oracles (e.g. undeclared exceptions) [16, 22, 35, 40].

Despite these undisputed advances, creating test cases
manually is still prevalent in software development. This
is partially due to the fact that professional developers per-
ceive generated test cases as hard to understand and difficult
to maintain [18, 44]. Indeed, a recent study [23, 24] reported
that developers spend up to 50% of their time in understand-
ing and analyzing the output of automatic tools. As a con-
sequence, automatically generated tests do not improve the
ability of developers to detect faults when compared to man-
ual testing [12, 23, 24]. Recent research has challenged the
assumption that structural coverage is the only goal to op-
timize [1, 56], showing that when systematically improving
the readability of the code composing the generated tests,
developers tend to prefer the improved tests and were able
to perform maintenance tasks in less time (about 14%) and
at the same level of accuracy [18]. However, there is no
empirical evidence that such readability improvements pro-
duce tangible results in terms of the number of bugs actually
found by developers.

This paper builds on the finding that readability of test
cases is a key factor to optimize in the context of automated
test generation. However, we conjecture that the quality of
the code composing the generated test cases (e.g., input pa-
rameters, assertions, etc.) is not the only factor affecting
their comprehensibility. For example, consider the unit test
test01 in Figure 1, which was automatically generated for
the target class Option2. From a bird’s-eye view, the code
of the test is pretty short and simple: it contains a con-
structor and two assertions calling get methods. However,
it is difficult to tell, without reading the contents of the tar-
get class, (i) what is the behavior under test, (ii) whether
the generated assertions are correct, (iii) which if-conditions
are eventually traversed when executing the test (coverage).
Thus, we need a solution that helps developers to quickly
understand both tests and code covered.

Paper contribution. To handle this problem, our pa-
per proposes an approach, coined TestDescriber, which is
designed to automatically generate summaries of the por-
tion of code exercised by each individual test case to pro-

1The test case has been generated using Evosuite [21].
2The class Option has been extracted from the apache com-

mons library

1| public class TestOption {
2|
3| @Test
4| public void test0() throws Throwable {
5| Option option0 = new Option("", "1W|^");
6| assertEquals("1W|^", option0.getDescription());
7| assertEquals("", option0.getKey());
8| }
9| }

Figure 1: Motivating example

vide a dynamic view of the class under test (CUT). We argue
that applying summarization techniques to test cases does
not only help developers to have a better understanding of
the code under test, but it can also be highly beneficial to
support developers during bug fixing tasks, improving their
bug fixing performance. This leads us to the first research
question:

RQ1: How do test case summaries impact the
number of bugs fixed by developers?

Automatically generated tests are not immediately con-
sumable since the assertions might reflect an incorrect be-
havior if the target class is faulty. Hence, developers should
manually check the assertions for correctness and possibly
add new tests if they think that some parts of the target
classes are not tested. This leads us to our second research
question:

RQ2: How do test case summaries impact devel-
opers to change test cases in terms of structural
and mutation coverage?

The contributions of our paper are summarized as follows:
• we introduced TestDescriber a novel approach to auto-

matically generate natural language summaries of JU-
nit test cases and the portion of the target classes they
are going to test;
• we conducted an empirical study involving 30 human

participants from both industry and academia to in-
vestigate the impact of test summaries on the number
of bugs that can be fixed by developers when assisted
by automated test generation tools;
• we make publicly available a replication package3 with

(i) material and working data sets of our study, (ii)
complete results of the survey; and (iii) rawdata for
replication purposes and to support future studies.

2. THE TESTDESCRIBER APPROACH
This section details the TestDescriber approach.

2.1 Approach Overview
Figure 2 depicts the proposed TestDescriber approach,

which is designed to generate automatically summaries for
test cases leveraging (i) structural coverage information and
(ii) existing approaches on code summarization. In partic-
ular, TestDescriber generates summaries for the portion of
code exercised by each individual test case, thus, providing a
dynamic view of the code under test. We notice that unlike
TestDescriber, existing approaches on code summarization
[19, 20, 34, 37, 48] generate static summaries of source code
without taking into account which part of the code is ex-
ercised during test case execution. Our approach consists
of four steps: 1 Test Case Generation, 2 Test Coverage

Analysis, 3 Summary Generation, and 4 Summary Aggre-
gation. In the first step, namely Test Case Generation, we
generate test cases using Evosuite [21]. In the second step
Test Coverage Analysis, TestDescriber identifies the code ex-
ercised by each individual test case generated in the previous

3
http://dx.doi.org/10.5281/zenodo.45120

Figure 2: Overview TestDescriber

step. To detect the executed lines of code we rely on Cober-
tura4 a tool based on jcoverage5. The goal of this step is to
collect the information that will be summarized in the next
steps, such as the list of statements tested by each test case,
the used class attributes, the used parameters and the cov-
ered conditional statements etc. During the step Summary
Generation, TestDescriber takes the collected information
and generates a set of summaries at different levels of gran-
ularity: (i) a global description of the class under test, (ii) a
global description of each test case, (iii) a set of fine-grained
descriptions of each test case (describing for example state-
ments and/or branch executed by the test case). Finally,
during the Summary Aggregation step the extracted infor-
mation and/or descriptions are added to the original test
suite. An example of tests summaries generated by TestDe-
scriber, for the test case showed in Figure 1, which tests the
Java Class Option of the system Apache Commons CLI 6,
can be found in Figure 3. The complete example of gener-
ated test suite for such class is available online 7.

2.2 Test Suite Generation
Researchers have proposed several methods capable of au-

tomatically generating test input based on the source code of
the program under test based on different search strategies,
such as genetic algorithms [21, 41], symbolic execution [10],
etc. Among them, we have selected Evosuite [21], a tool that
automatically generates JUnit test cases with JUnit asser-
tions for classes written in Java code. Internally, Evosuite
uses a genetic algorithm to evolve candidate test suites (in-
dividuals) according to the chosen coverage criterion where
the search is guided by a fitness function [21], which con-
siders all the test targets (e.g., branches, statements, etc.)
at the same time. In order to make the test cases produced
more concise and understandable, at the end of the search
process the best test suite is post-processed to reduce its
size while preserving the maximum coverage achieved. The
final step of this post-processing consists of adding test as-
sertions, i.e., statements that check the outcome of the test
code. These assertions are generated using a mutation-based
heuristic [25], which adds all possible assertions and then
selects the minimal subset of those able to reveal mutants
injected in the code. Consequently, the final test suite serves

4
http://cobertura.github.io/cobertura/

5
http://java-source.net/open-source/code-coverage/jcoverage-gpl

6
https://commons.apache.org/proper/commons-cli/

7
http://www.ifi.uzh.ch/seal/people/panichella/TestOption.txt

as starting point for a tester, who has to manually revise the
assertions. It is important to note that the use of Evosuite
is not mandatory in this phase of the TestDescriber, indeed,
it is possible to rely on other existing tools such as Randoop
8 to generate test cases. However, we select Evosuite since
(1) it generates minimal test cases with the minimal set of
test assertions reaching high structural coverage [23, 24] and
(2) it reached top-2 in last 3 SBST tool competitions.

2.3 Test Coverage Analysis
Once the test cases are generated, TestDescriber relies

on Cobertura, to find out which statements and branches
are tested by each individual test case. However, with the
aim at generating tests summaries for the covered informa-
tion we need more fine-grained information regarding the
code elements composing each covered statement, such as
attributes, method calls, the conditions delimiting the tra-
versed branches, etc. In the next step TestDescriber ex-
tracts keywords from the identifier names of such code ele-
ments, to build the main textual corpus required for gener-
ating the coverage summaries. Therefore, on top of Cober-
tura we built a parser based on JavaParser9 to collect the
following information after the execution of each test case:
(i) the list of attributes and methods of the CUT directly
or indirectly invoked by the test case; (ii) for each invoked
method our parser collects all the statements executed, the
attributes/variables used and calls to other methods of the
CUT; (iii) the Boolean values of branch decisions in the if-
statements to derive which conditions are verified when cov-
ering a specific true/false branch of the CUT. The output
of this phase is represented by the list of fine-grained code
elements and the lines of code covered by each test case.

2.4 Summary Generation
The goal of this step is to provide to the software developer

a higher-level view of which portion of the CUT each test
case is going to test. To generate this view, TestDescriber
extracts natural language phrases from the underlying cov-
ered statements by implementing the well known Software
Word Usage Model (SWUM) proposed by Hill et al. [30].
The basic idea of SWUM is that actions, themes, and any
secondary arguments can be derived from an arbitrary por-
tion of code by making assumptions about different Java
naming conventions, and using these assumptions to link
linguistic information to programming language structure
and semantics. Indeed, method signatures (including class
name, method name, type, and formal parameters) and field
signatures (including class name, type, and field name) usu-
ally contain verbs, nouns, and prepositional phrases that can
be expanded in order to generate readable natural language
sentences. For example, verbs in method names are consid-
ered by SWUM as the actions while the theme (i.e., subjects
and objects) can be found in the rest of the name, the formal
parameters, and then the class name.

Pre-processing. Before identifying the linguistic ele-
ments composing the covered statements of the CUT, we
split the identifier names into component terms using the
Java camel case convention [30, 48], which splits words based
on capital letters, underscores, and numbers. Then, we ex-
pand abbreviations in identifiers and type names using both
(i) an external dictionary of common short forms for English

8
https://github.com/randoop/randoop

9
https://github.com/javaparser/javaparser

words [45] and (ii) a more sophisticated technique called
contextual-based expansion [29], that searches the most ap-
propriate expansion for a given abbreviation (contained in
class and method identifiers).

Part-of-speech tagging. Once the main terms are ex-
tracted from the identifier names, TestDescriber uses Lan-
guageTool 10, a Part-of-speech (POS) tagger to derive which
terms are verbs (actions), nouns (themes) and adjectives.
Specifically, LanguageTool is an open-source Java library
that provides a plethora of linguistic tools (e.g., spell checker,
POS tagger, translator, etc.) for more than 20 different lan-
guages. The output of the POS tagging is then used to de-
termine whether the names (of method or attribute) should
be treated as Noun Phrases (NP), Verb Phrases (VP), and
Prepositional Phrases (PP) [30]. According to the type of
phrase, we used a set of heuristics similar to the ones used
by Hill et al. [30] and Sridhara et al. [48] to generate natural
language sentences using the pre-processed and POS tagged
variables, attributes and signature methods.

Summary Generation. Starting from the noun, verb
and prepositional phrases, TestDescriber applies a template-
based strategy [34, 48] to generate summaries. This strategy
consists of using pre-defined templates of natural language
sentences that are filled with the output of SWUM, i.e.,
the pre-processed and tagged source code elements in cov-
ered statements. TestDescriber creates three different types
of summaries at different levels of abstractions: (i) a gen-
eral description of the CUT, which is generated during a
specific sub-step of the Summary Generation called Class
Level Summarization; (ii) a brief summary of the struc-
tural code coverage scores achieved by each individual JUnit
test method; (iii) a fine grained description of the statement
composing each JUnit test method in order to describe the
flow of operations performed to test the CUT. These fine-
grained descriptions are generated during two different sub-
steps of the Summary Generation: the Fine-grained State-
ments Summarization and the Branch Covered Summariza-
tion. The first sub-step provides a summary for the state-
ments in the JUnit test methods, while the latter describes
the if-statements traversed in the executed path of the CUT.

Class Level Summarization. The focus of this step is
to give to a tester a quick idea of the responsibility of the
class under test. The generated summary is especially useful
when the class under test is not well commented/documented.
To this end we implemented an approach similar to the one
proposed by Moreno et al. in [37] for summarizing Java
classes. Specifically, Moreno et al. defined a heuristics based
approach for describing the class behavior based on the most
relevant methods, the superclass and class interfaces, and
the role of the class within the system. Differently, during
the Class Level Summarization we focus on the single CUT
by considering only its interface and its attributes, while a
more detailed description of its methods and its behaviour
is constructed later during the sub-step Fine-grained State-
ments Summarization. Specifically, during this sub-step are
considered only the lines executed by each test case using the
coverage information as base data to describe the CUT be-
havior. Figure 3 shows an example of summary (in orange)
generated during the Class Level Summarization phase for
the class Option.java. With this summary the developer
has the possibility to have a quick understanding of the CUT

10
https://github.com/languagetool-org/languagetool

1| /** The main class under test is Option. It describes
2| * a single option and maintains information regarding:
3| * - the option;
4| * - the long option;
5| * - the argument name;
6| * - the description of the option; 3.a
7| * - whether it has required;
8| * - whether it has optional argument;
9| * - the number of arguments;
10| * - the type, the values and the separator of the option;**/
11| public class TestOption {
12| /** OVERVIEW: The test case "test0" covers around 3.0% 3.b
13| * (low percentage) of statements in "Option" **/
14| @Test
15| public void test0() throws Throwable {
16| // The test case instantiates an "Option" with option 3.c
17| // equal to "", and description equal to "1W|^".
18| Option option0 = new Option("", "1W|^");
19| // Then, it tests:
20| // 1) whether the description of option0 is equal to 3.c
21| // "1W|^";
22| assertEquals("1W|^", option0.getDescription());
23| // 2) whether the key of option0 is equal to ""; 3.c
24| // The execution of the method call used in the assertion 3.d
25| // implicitly covers the following 1 conditions:
26| // - the condition "option equal to null" is FALSE;
27| assertEquals("", option0.getKey());
28| }
29| }

Figure 3: Example of summary generated by Test-
Describer for a JUnit test method exercising the
class Options.java

without reading all of its lines of code.
Test Method Summarization. This step is respon-

sible for generating a general description of the statement
coverage scores achieved by each JUnit test method. This
description is extracted by leveraging the coverage informa-
tion provided by Cobertura to fill a pre-defined template.
An example of summary generated by TestDescriber for de-
scribing the coverage score is depicted in Figure 3 (in yel-
low): before each JUnit test method (test0 in the example)
TestDescriber adds a comment regarding the percentage of
statements covered by the given test method independently
from all the other test methods in TestOption. This type of
description allows to identify the contribution of each test
method to the final structural coverage score. In the future
we plan to complement the statement coverage describing
further coverage criteria (e.g. branch or mutation coverage).

Fine-grained Statement Summarization. As describ-
ed in Section 2.3 TestDescriber extracts the fine-grained list
of code elements (e.g. methods, attributes, local variables)
composing each statement of the CUT covered by each JU-
nit test method. This information is provided as input to the
Fine-grained Statements Summarization phase, thus, Test-
Describer performs the following three steps: (i) parses all
the instructions contained in a test method; (ii) it uses the
SWUM methodology for each instruction and determines
which kind of operation the considered statement is per-
forming (e.g. if it declares a variable, it uses a construc-
tor/method of the class, it uses specific assertions etc.) and
which part of the code is executed; and (iii) it generates a set
of customized natural-language sentences depending on the
selected kind of instructions. To perform the first two steps,
it assigns each statement to one of the following categories:

• Constructor of the class. A constructor typically im-
plies the instantiation of an object, which is the im-
plicit action/verb, with some properties (parameters).
In this case, our descriptor links the constructor call to
its corresponding declaration in the CUT to map for-
mal and actual parameters. Therefore, pre-processing
and POS tagger are performed to identify the verb,
noun phrase and adjectives from the constructor sig-
nature. These linguistic elements are then used to fill
specific natural language templates for constructors.

Figure 3 contains an example of a summary generated
to describe the constructor Option(String, String),
i.e., the lines 16 and 17 (highlighted in green).

• Method calls. A method implements an operation and
typically begins with a verb [30] which defines the main
action while the method caller and the parameters de-
termine theme and secondary arguments. Again, the
linguistic elements identified after pre-processing and
POS tagging are used to fill natural language templates
specific for method calls. More precisely, the summa-
rizer is able to notice if the result of a method call is
assigned as value to a local variable (assignment state-
ment), thus, it adapts the description depending on
the specific context. For particular methods, such as
getters and setters, it uses ad-hoc templates that differ
from the templates used for more general methods.

• Assertion statements. This step defines the test oracle
and enables to test whether the CUT behaves as in-
tended. In this case the name of an assertion method
(e.g. assertEquals, assertFalse, notEquals etc) defines
the type of test, while the input parameters represent
respectively (i) the expected and (ii) the actual be-
havior. Therefore, the template for an assertion state-
ment is defined by the (pre-processed) assertion name
itself and the value(s) passed (and verified) as param-
eter(s) to the assertion. Figure 3 reports two exam-
ples of descriptions generated for assertion methods
where one of the input parameters is a method call,
e.g., , getKey() (the summary is reported in line 23
and highlighted in green).

Branch Coverage Summarization. When a test meth-
od contains method/constructor calls, it is common that
the test execution covers some if-conditions (branches) in
the body of the called method/constructor. Thus, TestDe-
scriber, after the Fine-grained Statements Summarization
step, enriches the standard method call description with a
summary describing the Boolean expressions of the if condi-
tion. Therefore, during the Branch Coverage Summarization
step TestDescriber generates a natural language description
for the tested if condition. When an if condition is com-
posed of multiple Boolean expressions combined via Boolean
operators, we generate natural language sentences for the in-
dividual expressions and combine them. Thus, during the
Branch Coverage Summarization, we adapt the descriptions
when an if-condition contains calls to other methods of the
CUT. In the previous example reported in Figure 3, when
executing the method call getKey() (line 27) for the ob-
ject option0, the test method test0 covers the false branch
of the if-condition if (opt == null), i.e., it verifies that
option0 is not null. In Figure 3 the lines 24, 25 and 26,
(highlighted in red) represent the summary generated dur-
ing the Branch Coverage Summarization for the method call
getKey().

2.5 Summary Aggregation
The Information Aggregator is in charge of enriching the

original JUnit test class with all the natural language sum-
maries and descriptions provided by the summary generator.
The summaries are presented as different block and inline
comments: (i) the general description of the CUT is added
as a block comment before the declaration of the test class;
(ii) the brief summaries of the statement coverage scores
achieved by each individual JUnit test method is added as

Table 1: Java classes used as objects of our study
Project Class eLOC Methods Branches
Commons Primitives ArrayIntList 65 12 28
Math4J Rational 61 19 36

block comments before the corresponding test method body;
(iii) the fine-grained descriptions are inserted inside each test
method as inline comments to the corresponding statements
they are summarizing.

3. STUDY DESIGN AND PLANNING
3.1 Study Definition

The goal of our study is to investigate to what extent the
summaries generated by TestDescriber improve the compre-
hensibility of automatically generated JUnit test cases and
impact the ability of developers to fix bugs. We measure
such an impact in the context of a testing scenario in which
a Java class has been developed and must be tested using
generated test cases with the purpose of identifying and fix-
ing bugs (if any) in the code. The quality focus concerns
the understandability of automatically generated test cases
when enriched with summaries compared to test cases with-
out summaries. The perspective is of researchers interested
in evaluating the effectiveness of automatic approaches for
the test case summarization when applied in a practical test-
ing and bug fixing scenario. We therefore designed our study
to answer the following research questions (RQs):

RQ1 How do test case summaries impact the number of
bugs fixed by developers? Our first objective is to ver-
ify whether developers are able to identify and fixing
more faults when relying on automatically test cases
enriched with summaries.

RQ2 How do test case summaries impact developers to chan-
ge test cases in terms of structural and mutation cover-
age? The aim is assessing whether developers are more
prone to change test cases to improve their structural
coverage when the summaries are available.

3.2 Study Context
The context of our study consists of (i) objects, i.e., Java

classes extracted from two Java open-source projects, and
(ii) participants testing the selected objects, i.e., professional
developers, researchers and students from the University of
Zurich and the Delft University of Technology. Specifically,
the object systems are Apache Commons Primitives and
Math4J that have been used in previous studies on search-
based software testing [23, 24, 44]. From these projects, we
selected two Java classes: (i) Rational that implements a
rational number, and (ii) ArrayIntList, which implements
a list of primitive int values using an array. Table 1 details
characteristics of the classes used in the experiment. eLOC
counts the effective lines of source code, i.e. source lines
without purely comments, braces and blanks [33]. For each
class we consider a faulty version with five injected faults
available from previous studies [23, 24]. These faults were
generated using a mutation analysis tool, which selected the
five mutants (faults) more difficult to kill, i.e., the ones that
can be detected by the lowest number of test cases [23, 24].
These classes are non-trivial, yet feasible to test within an
hour; they do not require (i) to learn complex algorithms
and (ii) to examine other classes in the same library [23].
To recruit participants we sent email invitations to our con-

Table 2: Experience of Participants
Programming Experience Absolute # Frequency

1-2 years 1 3.3%
3-6 years 20 66.6%
7-10 years 8 26.6%
>10 years 1 3.3%

Σ 30 100%

tacts from industrial partners as well as to students and re-
searchers from the Department of Computer Science at the
University of Zurich and at Delft University of Technology.
In total we sent out 44 invitations (12 developers and 32
researchers). In the end, 30 subjects (67%) performed the
experiment and sent their data back, see Table 2. Of them,
7 were professional developers from industry and 23 were
students or senior researchers from the authors’ Computer
Science Departments. All of the 7 professional developers
have more than seven years of programming experience in
Java (one of them more than 15 years). Among the 23 sub-
jects from our departments, 2 were Bachelor’s students, 5
were Master’s students, 14 PhD students, and 2 senior re-
searchers. Each participant had at least three years of prior
experience with Java and the JUnit testing framework.

3.3 Experimental Procedure
The experiment was executed offline, i.e., participants re-

ceived the experimental material via an online Survey plat-
form11 that we use to collect and to monitor time and ac-
tivities. An example of survey sent to the participants can
be found online12. Each participant received an experiment
package, consisting of (i) a statement of consent, (ii) a pre-
test questionnaire, (iii) instructions and materials to perform
the experiment, and (iv) a post-test questionnaire. Before
the study, we explained to participants what we expected
them to do during the experiment: they were asked to per-
form two testing sessions, one for each faulty Java class.
They could use the test suite (i.e., JUnit test cases) gen-
erated by Evosuite to test the given classes and to fix the
injected bugs. Each participant received two tasks: (i) one
task included one Java class to test plus the corresponding
generated JUnit test cases enriched WITH the summaries
generated by TestDescriber ; (ii) the second task consisted
of a second Java class to test together with the correspond-
ing generated JUnit test cases WITHOUT summaries.

The experimental material was prepared to avoid learning
effects: each participant received two different Java classes
for the two testing tasks; each participant received for the
first task test cases enriched with corresponding summaries,
while for the second task they received the cases without
the summaries. We assigned the tasks to the participants in
order to have a balanced number of participants which test
(i) the first class with summaries followed by the second class
without summaries; and (ii) the first class without summary
followed by the second class with summaries. Since Evosuite
uses randomized search algorithms (i.e., each run generates
a different set of test cases with different input parameters),
we provided to each participant different starting test cases.

Before starting the experiment, each participant was asked
to fill in the pre-study questionnaire reporting their pro-
gramming and testing experience. After filling in the ques-
tionnaire, they could start the first testing task by opening

11
http://www.esurveyspro.com

12
http://www.ifi.uzh.ch/seal/people/panichella/tools/TestDescriber/

Survey.pdf

the provided workspace in the Eclipse IDE. The stated goals
were (i) to test the target class as much as possible, and (ii)
to fix the bugs. Clearly, we did not reveal to the partici-
pants where the bugs were injected, nor the number of bugs
injected in each class. In the instructions we accurately ex-
plain that the generated JUnit test cases are green since Evo-
suite, as well as other modern test generation tools [16, 40],
generate assertions that reflect the current behavior of the
class [21]. Consequently, if the current behavior is faulty,
the assertions reflect the incorrect behavior and, thus, must
be checked and eventually corrected [23].

Therefore, participants were asked to start reading the
available test suite, and to edit the test cases to (eventually)
correct the assertions. They were also instructed to add new
tests if they think that some parts of the target classes are
not tested, as well as to delete tests they did not understand
or like. In each testing session, participants were instructed
to spend no more than 45 minutes for completing each task
and to finish earlier if and only if (i) they believe that their
test cases cover all the code and (ii) the found and fixed all
the bugs. Following the experiment, subjects were required
to fill in an exit survey we used for qualitative analysis and
to collect feedback. In total, the duration of the experiment
was two hours including completing the two tasks and filling
in the pre-test and post-test questionnaires.

We want to highlight that we did not reveal to the par-
ticipants the real goal of our study, which is to measure the
impact of test case summaries on their ability to fix bugs. As
well as we did not explain them that they received two dif-
ferent tasks one with and the other one without summaries.
Even in the email invitations we use to recruit participants,
we did not provide any detail to our goal but we used a more
general motivation, which was to better understand the bug
fixing practice of developers during their testing activities
when relying on generated test cases.

3.4 Research Method
At the end of the experiment, each participant produced

two artifacts for each task: (i) the test suite automatically
generated by Evosuite, with possible fixes or edits by the
participants, e.g., adding assertions to reveal faults; and (ii)
the original (fixed) target class, i.e., without (some of) the
injected bugs. We analyze the target classes provided by
the participants in order to address RQ1: for each class
we inspect the modifications applied by each participant in
order to verify whether the modifications are correct (true
bug fixing) or not. Thus, we counted the exact number of
seeded bugs fixed by each participant to determine to what
extent test summaries impact their bug fixing ability.

For RQ2 we computed several structural coverage met-
rics for each test suite produced when executed on the orig-
inal classes, i.e., on the target classes without bugs [23, 24].
Specifically, we use Cobertura to collect statement, branch,
and method coverage scores achieved. The mutation score
was computed by executing the JUnit test suite using PIT13,
a popular command line tool that automatically seeds a Java
code generating mutants. Then, it runs the available tests
and computes the resulting mutation score, i.e., the per-
centage of mutants detected by the test suites. As typical in
mutation testing, a mutant is killed (covered) if the tests fail,
otherwise if the tests pass then the mutation is not covered.

Once we have collected all the data, we used statistical

13
http://pitest.org/

●

0

1

2

3

4

5

ArrayIntList Rational

N
. F

ixe
d

Bu
gs

With Summaries Without Summaries
Figure 4: RQ1: Bugs fixed with and without sum-
maries.

tests to verify whether there is a statistical significant dif-
ference between the scores (e.g., the number of fixed bugs)
achieved by participants when relying on tests with and
without summaries. We employed non-parametric tests since
the Shapiro-Wilk test revealed that neither the number of
detected bugs, nor the coverage or mutation measures follow
a normal distribution (p � 0.01). Hence, we used the non-
parametric Wilcoxon Rank Sum test with a p-value thresh-
old of 0.05. Significant p-values indicate that there is a sta-
tistical significant difference between the scores (e.g., num-
ber of fixed bugs) achieved by the two groups, i.e., by partici-
pants using test cases with and without summaries. In addi-
tion, we computed the effect-size of the observed differences
using the Vargha-Delaney (Â12) statistic [52]. The Vargha-

Delaney (Â12) statistic also classifies the obtained effect size
values into four different levels (negligible, small, medium
and large) that are easier to interpret. We also checked
whether other co-factors, such as the programming experi-
ence, interact with the main treatment (test summaries) on
the dependent variable (number of bugs fixed). This was
done using a two-way permutation test [4], which is a non-
parametric equivalent of the two-way Analysis of Variance
(ANOVA). We set the number of iterations of the permuta-
tion test procedure to 1,000,000 to ensure that results did
not vary over multiple executions of the procedure [4].

Parameter Configuration. There are several parame-
ters that control the performance in terms of structural cov-
erage for Evosuite; in addition, there are different coverage
criteria to optimize when generating test cases. We adopted
the default parameter settings used by Evosuite [21], since
a previous empirical study demonstrated [2] that the de-
fault values widely used in the literature give reasonably
acceptable results. For the coverage criterion, we consider
the default criterion, which is branch coverage, again similar
to previous experiments [23, 24]. The only parameter that
we changed is the running time: we run Evosuite for ten
minutes in order to achieve the maximum branch coverage.

4. RESULTS
In the following, we report results of our study, with the

aim of answering the research questions formulated in Sec-
tion 3.

4.1 RQ1: Bug Fixing
Figure 4 depicts the box-plots of the number of bugs fixed

by the participants, divided into the (i) target classes to
fix and (ii) the availability of TestDescriber-generated sum-
maries. The results indicate that for both tasks the number

of bugs fixed is substantially higher when to the participants
had test summaries at their disposal. Specifically, from Fig-
ure 4 we can observe that for the class ArrayIntList par-
ticipants without TestDescriber summaries were able to cor-
rectly identify and fix 2 out of 5 bugs (median value; 40%
of injected bugs) and no participant was able to fix all the
injected bugs. Vice versa, when we provided to the par-
ticipants the TestDescriber summaries, the median number
of bugs fixed is 3 bugs and about 30% of the the partici-
pants were able to fix all the bugs. This result represents an
important improvement (+50% of bugs were fixed by par-
ticipants) if we consider that in both the scenarios, WITH
and WITHOUT summaries, the amount of time given to the
participants was the same. Similarly, for Rational, when re-
lying on test cases with summaries, the median number of
bugs fixed is 4 out of 5 (80%) and 31% of participants were
able to fix all the bugs. Vice versa, using test cases with-
out summaries the participants fixed 2 bugs (median value).
Hence, when using the summaries the participants were able
to fix twice as many number of bugs (+100%) with respect
to the scenario in which they were provided test cases with-
out comments.

The results of the Wilcoxon test highlight that the use
of TestDescriber summaries significantly improved the bug
fixing performance of the participants in each target class
achieving p-values of 0.014 and < 0.01 for ArrayIntList

and Rational respectively (which are smaller than the sig-

nificance level of 0.05). The Vargha-Delaney Â12 statistic
also reveals that the magnitude of the improvements is large
for both target classes: the effect size is 0.76 and 0.78 for
ArrayIntList and Rational respectively. Finally, we used
the two-way permutation test to check whether the number
of fixed bugs between the two groups (test cases with and
without summaries) depends on and interacts with the par-
ticipants’ programming experience, which can be a potential
co-factor. The two-way permutation test reveals that (i) the
number of bugs fixed is not significantly influenced by the
programming experience (p-values ∈ {0.5736, 0.1372}) and
(ii) there is no significant interaction between the program-
ming experience and the presence of test case summaries (p-
values ∈ {0.3865, 0.1351}). This means that all participants
benefit from using the TestDescriber summaries, indepen-
dent of their programming experience.

This finding is particularly interesting if we consider that
Fraser et al. [23, 24] reported that there is no statistical dif-
ference between the number of bugs detected by developers
when performing manual testing or using automatically gen-
erated test cases to this aim. Specifically, in our study we
included (i) two of the classes Fraser et al. used in their ex-
periments (ArrayIntList and Rational), and for them we
(ii) considered the same set of injected bugs and (iii) we gen-
erated the test cases using the same tool. In this paper we
show that the summaries generated by TestDescriber can
significantly help developers in detecting and fixing bugs.
However, a larger sample size (i.e., more participants) would
be needed to compare the performances of participants when
performing manual testing, i.e., when they are not assisted
by automatic tools like Evosuite and TestDescriber at all.
In summary, we can conclude that

RQ1 Using automatically generated test case sum-
maries significantly helps developers to identify and fix
more bugs.

Table 3: Statistics for the test suites edited by the
participants for ArrayIntList

Variable Factor Min Mean Max p-value A12

Method Cov. With 0.36 0.63 0.86 0.83 -
Without 0.50 0.65 0.86

Statement Cov. With 0.52 0.68 0.85 0.83 -
Without 0.61 0.68 0.85

Branch Cov. With 0.55 0.68 0.82 0.87 -
Without 0.59 0.67 0.82

Mutation Score With 0.13 0.29 0.45 0.45 -
Without 0.13 0.30 0.52

Table 4: Statistics for the test suites edited by the
participants for Rational

Variable Factor Min Mean Max p-value A12

Method Cov. With 0.89 0.95 1.00 0.80 -
Without 0.89 0.95 1.00

Statement Cov. With 0.92 0.97 1.00 1.00 -
Without 0.92 0.97 1.00

Branch Cov. With 0.85 0.86 0.90 0.89 -
Without 0.85 0.86 0.90

Mutation Score With 0.52 0.71 0.93 0.08 0.69 (M)
Without 0.31 0.61 0.89

4.2 RQ2: Test Case Management
To answer RQ2, we verify whether there are other measur-

able features instead of the test case summaries the might
have influenced the results of RQ1. To this aim, Tables 3
and 4 summarise the structural coverage scores achieved by
the test suite produced by human participants during the
experiment. As we can see from Table 3 there is no sub-
stantial difference in terms of structural coverage achieved
by the test suites produced by participants with and without
test case summaries for ArrayIntList. Specifically, method,
branch and statement coverage are almost identical. Similar
results are achieved for Rational as shown in Table 4: for
method, branch and statement coverage there is no differ-
ence for the tests produced by participants with and without
test summaries. Consequently for both the two classes the
p-values provided by the Wilcoxon test are not statistically
significant and the effect size is always negligible. We hy-
pothesize that these results can be due to the fact that the
original test suite generated by Evosuite, that were used by
the participants as starting point to test the target classes,
already achieved a very high structural coverage (> 70% in
all the cases). Therefore, even if the participants were asked
to manage (when needed) the test cases to correct wrong
assertions, at the end of the experiment the final coverage
was only slightly impacted by these changes.

For the mutation analysis, the mutation scores achieved
with the tests produced by the participants seem to be slight-
ly lower when using test summaries (-1% on average) for
Array-IntList. However, the Wilcoxon test reveals that
this difference is not statistically significant and the Vargha-
Delaney Â12 measure is negligible. For Rational we can no-
tice an improvements in terms of mutation score (+10%)
for the tests produced by participants who were provided
with test summaries. The Wilcoxon test reveals a marginal
statistical significant p-value (0.08) and the Vargha-Delaney

Â12 measures an effect size medium and positive for our test
summaries, i.e., participants provided test cases able to kill
more mutants when using the test summaries. A replica-
tion study with more participants would be need to further
investigate whether the mutation score can be positively in-
fluenced when using tests summaries.

RQ2 Test case summaries do not influence how the
developers manage the test cases in terms of structural
coverage.

4%

6%

14%

33%

36%

45%

32%

9%

14%

6%

0% 20% 40% 60% 80% 100%

With

Without

% Count

Very Low Low Medium High Very High

Figure 5: Perceived test comprehensibility WITH
and WITHOUT TestDescriber summaries.

5. DISCUSSION AND LESSONS LEARNT
In the following, we provide additional, qualitative in-

sights to the quantitative study reported in Section 4.
Summaries and comprehension. At the end of each

task we asked each participant to evaluate the comprehen-
sibility of the test cases (either with or without summary)
using a Likert scale intensity from very-low to very-high (in-
volving all the 30 participants). When posing this question
we did not explicitly mention terms like “test summaries”
but instead “test comments” to avoid biased answers by the
participants. Figure 5 compares the scores given by partici-
pants to the provided test cases (i.e., generated by Evosuite)
according to whether the tests were enriched (WITH) or not
(WITHOUT) with summaries. We can notice that when the
test cases were commented with summaries (WITH) 46% of
participants labled the test cases as easy to understand (high
and very high comprehensibility) with only 18% of partic-
ipants that considered the test cases as incomprehensible.
Vice versa, when the test cases were not enriched with sum-
maries (WITHOUT) only 15% of participants judged the
test cases as easy to understand, while a substantial per-
centage of participants (40%) labeled the test case as diffi-
cult to understand. The Wilcoxon test also reveals that this
difference is statistical significant (p-value = 0.0050) with
a positive and medium effect size (0.71) according to the

Vargha-Delaney Â12 statistic. Therefore, we can argue that

Test summaries statistically improve the comprehensi-
bility of automatically generated test case according to
human judgments.

Post-test Questionnaire. Table 5 reports the results
to questions from the exit survey. The results demonstrate
that in most of the cases the participants considered the test
summaries (when available) as the most important source of
information to perform the tasks after the source code itself,
i.e., the code of the target classes to fix. Indeed, when an-
swering Q1 and Q2 the most common opinion is that the
source code is the primary source of information (47% in
Q1 and 43% of the opinions in Q2), followed by the test
summaries (20% in Q1 and 53% in Q2). In contrast, partic-
ipants deem the actual test cases generated by Evosuite to
be less important than (i) the test summaries and (ii) the
test cases they created themselves during the experiment.
As confirmation of this finding, we received positive feed-
back from both junior and more experienced participants,
such as “the generated test cases with comments are quite
useful” and “comments give me [a] better (and more clear)

Table 5: Raw data for exit questionnaire
(SC=Source Code, TCS=TC Summaries, TC=Test
Cases, and MTC=Manually written TC).
Questions SC TCS TC MTC Other
Q1: What is the best
source of information?

47% 20% 20% 13% 0

Q2: Can you rank the
specified sources of
information in order of
importance from 1
(high) to 5 (low)?

(rank 1) 43% 27% 27% 3% 0%
(rank 2) 17% 53% 30% 0% 0%
(rank 3) 27% 23% 33% 10% 7%
(rank 4) 17% 17% 10% 57% 0%
(rank 5) 0% 3% 13% 7% 77%

Questions
Disagree Agree

Fully Partial Partially Fully
Q3: Adding or changing the tests leads
to better tests?

0% 14% 45% 41%

Q4: Without comments, tests are
difficult to read and understand?

0% 33% 23% 43%

Q5: Adding assertions to tests WITH
comments is prohibitively difficult?

13% 60% 27% 0%

Q6: Adding assertions to tests
WITHOUT comments is prohibitively
difficult?

10% 47% 43% 0%

Q7: I had enough time to finish my task 7% 24% 52% 17%
Q8: Automatically generated unit tests
exercise the easy parts of the program.

0% 20% 73% 7%

Table 6: Raw data of the questionnaire concerning
the evaluation of TestDescriber summaries.

Content adequacy
Response category Percentage of Ratings
Is not missing any information. 50%
Missing some information. 37%
Missing some very important infor-
mation.

13%

Conciseness
Response category Percentage of Ratings
Has no unnecessary information. 38%
Has some unnecessary information. 52%
Has a lot of unnecessary informa-
tion.

10%

Expressiveness
Response category Percentage of Ratings
Is easy to read and understand. 70%
Is somewhat readable and under-
standable.

30%

Is hard to read and understand. 0%

picture of the goal of a test.”
From Table 5 we can also observe that participants mainly

considered the tests generated by Evosuite as a starting
point to test the target classes. Indeed, these tests must
be updated (e.g., checking the assertions) and enriched with
further manually written tests (Q3), since in most of the
cases they test the easier part of the program under tests
(according to 80% of opinions for Q8). Automatically gen-
erated tests are in most of cases (66% of participants) con-
sidered difficult to read and understand (Q4), especially if
not enriched with summaries describing what they are going
to test (Q5 and Q6).

Quality of the Summaries. Finally, we ask the par-
ticipants to evaluate the overall quality of the provided test
summaries, similarly as done in traditional work on source
code summarization [37, 48]. We evaluate the quality ac-
cording to three widely known dimensions [37, 48]:

• Content adequacy : considering only the content of the
comments of JUnit test cases, is the important infor-
mation about the class under test reflected in the sum-
mary?

• Conciseness: considering only the content of the com-
ments in the JUnit test cases, is there extraneous or
irrelevant information included in the comments?

• Expressiveness: considering only the way the com-
ments of JUnit test cases are presented, how readable
and understandable are the comments?

The analysis is summarized in Table 6. The results high-
light that (i) 87% of the participants consider the TestDe-
scriber comments adequate (they do not miss very impor-
tant information); (ii) 90% of them perceive the summaries
sufficiently concise as they contain no (38%) or only some
unnecessary information (52%); (iii) 100% of participants
consider the comments easy to read and/or somewhat read-
able. In summary, the majority of the participants consider
the comments generated by TestDescriber very concise and
easy to understand.

Feedback. Comments collected from the survey partic-
ipants mentioned interesting feedback to improve TestDe-
scriber summaries:

• Redundant information from test to test : developers of
our study were concerned by the fact that for similar
test cases TestDescriber generates the same comments
and, as solution, they suggested to generate, for each
assertion already tested in previous test methods, a
new inline comment which specifies that the assertion
was already tested in a previous test method.

• Useless naming of test methods: for several partici-
pants the name of the test does not give any hint about
the method under test. They suggest to (i) “...rename
the method names to useful names... so that it is pos-
sible to see at a glance what is actually being tested by
that test case” or (ii) “...describe in the javadoc of a
test method which methods of the class are tested.”.

Lessons Learnt. As indicated in Section 4.2 test suites
having high structural coverage are not necessarily more ef-
fective to help developers in detecting and fixing more bugs.
Most automatic testing tools consider structural coverage as
the main goal to optimize for, with the underlying assump-
tion that higher coverage is strongly related to a test’s ef-
fectiveness [3]. However, our results seem to provide a clear
evidence that this is not always true as also confirmed by
the non-parametric Spearman ρ correlation test: the corre-
lation between the number of bugs fixed and the structural
coverage metrics is always lower than 0.30 for ArrayIntList
and 0.10 for Rational. Only the mutation score has a cor-
relation coefficient larger than 0.30 in both the two classes.
On the other hand, the results of RQ1 provide clear evi-
dence that the summaries generated by TestDescriber play
a significant role even if they do not change the code and
the structural coverage of the original test cases generated
by Evosuite. Therefore, we can argue that comprehensibil-
ity or readability are two further dimensions that should be
considered (together with structural coverage) when system-
atically evaluating automatic test generation tools.

6. THREATS TO VALIDITY
In this section, we outline possible threats to the validity

of our study and show how we mitigated them.
Construct Validity. Threats to construct validity con-

cern the way in which we set up our study. Due to the fact
that our study was performed in a remote setting in which
participants could work on the tasks at their own discretion,
we could not oversee their behaviour. The metadata sent to
us could be affected by imprecisions as the experiment was

conducted offline. However, we share the experimental data
with the participants using an online survey platform, which
forces the participants (1) to perform tasks in the desired
order and (2) to fill in the questionnaires. Therefore, partic-
ipants only got access to the final questionnaire after they
had handed in their tasks, as well as they could not perform
the second task without finishing the first one. Furthermore,
the online platform allows us to monitor the total time each
participant spent on the experiment. We also made sure
participants were not aware of the actual aim of the study.

Internal Validity. Threats to internal validity concern
factors which might affect the causal relationship. To avoid
bias in the task assignment, we randomly assigned the tasks
to the participants in order to have the same number of data
points for all classes/treatments. To ensure that a sufficient
number of data points are collected for statistical signifi-
cance tests, each participant performed two bug fixing tasks
—one with test summaries and one without, on different
classes— rather than one single task, to produce 60 data
points in this study. The two Java classes used as objects for
the two tasks have similar difficulty and can easily be tested
in 45 minutes, even for intermediate programmers [23, 24].
Another factor that can influence our results is the order
of assignments, i.e., first with summaries and then without
summaries or vice versa. However, the two-way permutation
test reveals that there is no significant interaction between
the order of assignments and the two tasks on the final out-
come, i.e., the number of bugs fixed (p-value = 0.7189).

External Threats. External threats concern the gener-
alizability of our findings. We considered two Java classes
already used in two previous controlled experiments inves-
tigating the effectiveness of automated test case generation
tools compared to manual testing [23, 24]. We also use the
same set of bugs injected using a mutation analysis tool,
which is common practice to evaluate the effectiveness of
testing techniques in literature [23, 24, 25]. We plan to eval-
uate TestDescriber with a bigger set of classes, investigating
its usefulness in the presence of more complex branches. Fu-
ture work also needs to address which aspects of the gener-
ated summaries are useful. Is the coverage summary useful
to developers and if so, in what way?

Another threat can be that the majority of our study par-
ticipants have an academic background. Recent studies have
shown that students perform similarly to industrial subjects,
so long as they are familiar with the task at hand [31, 38].
All our student participants had at least 3 years of experi-
ence with the technologies used in the study, see Section 3.2.
Moreover, our population included a substantial part of pro-
fessional developers and the median programming experi-
ence of our participants is 3-6 years. Nevertheless, we plan
to replicate this study with more participants in the future
in order to increase the confidence in the generalizability of
our results.

Conclusion Threats. In our study we use TestDescriber
to generated tests summaries for JUnit test cases generated
by Evosuite. It might be possible that using different au-
tomatic test generation tools may lead to different results
in terms of test case comprehensibility. However, we notice
that (i) coverage, (ii) structure and (iii) size of test cases gen-
erated with Evosuite are comparable to the output produced
by other modern test generation tools, such as Randoop [40],
JCrasher [16], etc.

We support our findings by using appropriate statistical

tests, i.e. the non-parametric Wilcoxon test and the two-way
permutation test to exclude that other co-factors (such as
the programming experience) can affect our conclusion. We
also used the Wilk-Shapiro normality test to verify whether
the non-parametric test could be applied to our data. Fi-
nally, we used the Vargha and Delaney Â12 statistical test
to measure the magnitude of the differences between the
different treatments.

7. RELATED WORK
In this section, we discuss the related literature on source

code summarization and readability of test cases.
Source Code Summarization. Murphy’s dissertation

[39] is the earliest work which proposes an approach to gen-
erate summaries by analysing structural information of the
source code. More recently, Sridhara et al. [47] suggested
to use pre-defined templates of natural language sentences
that are filled with linguistic elements (verbs, nouns, etc.)
extracted from important method signature [19, 20]. Other
studies used the same strategy to summarize Java meth-
ods [26, 34, 48], parameters [50], groups of statements [49],
Java classes [37], services of Java packages [27] or generat-
ing commit messages [15]. Other reported applications are
the generation of source code documentation/summary by
mining text data from other sources of information, such as
bug reports [42], e-mails [42], forum posts [17] and question
and answer site (Q&A) discussions [53, 55].

However, Binkley et al. [7] and Jones et al. [46] pointed
out that the evaluation of the generated summaries should
not be done by just answering the general question “is this
a good summary?” but evaluated “through the lens of a par-
ticular task”. Stemming from these considerations, in this
paper we evaluated the impact of automatically generated
test summaries in the context of two bug fixing tasks. In
contrast, most previous studies on source code summariza-
tion have been evaluated by simply surveying human par-
ticipants about the quality of the provided summaries [7,
26, 34, 37, 47, 48].

Test Comprehension. The problem of improving test
understandability is well known in literature [14], especially
in the case of test failures [9, 57]. For example, Zhang et
al. [57] focused on failing tests and proposed a technique
based on static slicing to generate code comments describ-
ing the failure and its causes. Buse et al. [9] proposed a
technique to generate human-readable documentation for
unexpected thrown exceptions [9]. However, both these two
approaches require that tests fail [57] or throw unexpected
Java exceptions [9]. This never happens for automatically
generated test cases, since the automatically generated as-
sertions reflect the current behaviour of the class [24]. Con-
sequently, if the current behaviour is faulty the generated
assertions do not fail because they reflect the incorrect be-
havior.

Kamimura et al. [32] argued that developers might benefit
from a consumable and understandable textual summary of
a test case. Therefore, they proposed an initial step towards
generating such summaries based on static analysis of the
code composing the test cases [32]. From an engineering
point of view, our work resumes this line of research; how-
ever, it is novel for two main reasons. First of all our ap-
proach generates summaries combining three different levels
of granularity: (i) a summary of the main responsibilities
of the class under test (class level); (ii) a fine-grained de-

scription of each statement composing the test case as done
in the past [32] (test level); (iii) a description of the branch
conditions traversed in the executed path of the class un-
der test (coverage level). As such, our approach combines
code coverage and summarization to address the problem
of describing the effect of test case execution in terms of
structural coverage. Finally, we evaluate the impact of the
generated tests summaries in a real scenario where develop-
ers were asked to test and fix faulty classes.

Understandability is also widely related with the test size
and number of assertions [3]. For these reasons previous
work on automatic test generation focused on (i) reducing
the number of generated tests by applying a post-process
minimization [21], and (ii) reducing the number of asser-
tions by using mutation analysis [25], or splitting tests with
multiple assertions [56]. To improve the readability of the
code composing the generated tests, Daka et al. [18] pro-
posed a mutation-based post-processing technique that uses
a domain-specific model for unit test readability based on
human judgement. Afshan et al. [1] investigates the use of
a linguistic model to generate more readable input strings.
Our paper shows that summaries represent an important el-
ement for complementing and improving the readability of
automatically generated test cases.

8. CONCLUSION AND FUTURE WORK
Recent research has challenged the assumption that struc-

tural coverage is the only goal to optimize [1, 54], suggesting
that understandability of test cases is a key factor to opti-
mize in the contest of automated test generation. In this
paper we handle the problem of usability of automatic gen-
erated test cases making the following main contributions:

• We present TestDescriber a novel approach to gener-
ate natural language summaries of JUnit tests. Test-
Describer is designed to automatically generate sum-
maries of the portion of code exercised by each individ-
ual test case to provide a dynamic view of the CUT.

• To evaluate TestDescriber, we have set up an empirical
study involving 30 human participants from both in-
dustry and academia. Specifically, we investigated the
impact of the generated test summaries on the number
of bugs actually fixed by developers when assisted by
automated test generation tools.

Results of the study indicate that (RQ1) TestDescriber
substantially helps developers to find more bugs (twice as
many) reducing testing effort and (RQ2) test case summaries
do not influence how developers manage test cases in terms
of structural coverage. Additionally, TestDescriber could be
used to automatically document tests, improving their read-
ability and understandability. Results of our post-test ques-
tionnaire reveal that test summaries significantly improve
the comprehensibility of test cases. Future work is directed
towards different directions. We plan to further improve
TestDescriber summaries by (i) considering the feedback re-
ceived by the participants of our study, (ii) combining our
approach with recent work that improves the readability of
the code composing the generated test [18], (iii) comple-
menting the generated summaries including further coverage
criteria, such as branch or mutation coverage. Also, we aim
to replicate the study involving additional developers.

References
[1] S. Afshan, P. McMinn, and M. Stevenson. Evolving

readable string test inputs using a natural language
model to reduce human oracle cost. In Proceedings
International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 352–361. IEEE,
2013.

[2] A. Arcuri and G. Fraser. Parameter tuning or de-
fault values? an empirical investigation in search-based
software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[3] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman.
Test code quality and its relation to issue handling per-
formance. IEEE Trans. Software Eng., 40(11):1100–
1125, 2014.

[4] R. D. Baker. Modern permutation test software. In
E. Edgington, editor, Randomization Tests. Marcel
Decker, 1995.

[5] L. Baresi and M. Miraz. Testful: Automatic unit-test
generation for java classes. In Proceedings of the Inter-
national Conference on Software Engineering - Volume
2 (ICSE), pages 281–284. ACM, 2010.

[6] M. Beller, G. Gousios, A. Panichella, and A. Zaid-
man. When, how, and why developers (do not) test
in their IDEs. In Proceedings of the 10th Joint Meeting
of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE). ACM, 2015. To
appear.

[7] D. Binkley, D. Lawrie, E. Hill, J. Burge, I. Har-
ris, R. Hebig, O. Keszocze, K. Reed, and J. Slankas.
Task-driven software summarization. In Proceedings of
the International Conference on Software Maintenance
(ICSM), pages 432–435. IEEE, 2013.

[8] F. P. J. Brooks. The Mythical Man-Month. Addison-
Wesley, 1975.

[9] R. P. Buse and W. R. Weimer. Automatic documenta-
tion inference for exceptions. In Proceedings of the In-
ternational Symposium on Software Testing and Anal-
ysis (ISSTA), pages 273–282. ACM, 2008.

[10] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler. Exe: Automatically generating inputs of
death. In Proceedings of the Conference on Computer
and Communications Security (CCS), pages 322–335.
ACM, 2006.

[11] A. Cavarra, C. Crichton, J. Davies, A. Hartman, and
L. Mounier. Using uml for automatic test generation.
In Proc. of the International Symposium on Software
Testing and Analysis (ISSTA). Springer-Verlag, 2002.

[12] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen,
and P. Tonella. Do automatically generated test cases
make debugging easier? an experimental assessment
of debugging effectiveness and efficiency. ACM Trans.
Softw. Eng. Methodol., 25(1):5:1–5:38, 2015.

[13] S. Chen, H. Miao, and Z. Qian. Automatic generat-
ing test cases for testing web applications. In Proc. of
the International Conference on Computational Intelli-
gence and Security Workshops (CISW), pages 881–885,
2007.

[14] B. Cornelissen, A. van Deursen, L. Moonen, and
A. Zaidman. Visualizing testsuites to aid in software
understanding. In Proc. European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pages

213–222. IEEE, 2007.
[15] L. F. Cortes-Coy, M. L. Vásquez, J. Aponte, and

D. Poshyvanyk. On automatically generating commit
messages via summarization of source code changes. In
Proceedings of the International Working Conference
on Source Code Analysis and Manipulation (SCAM),
pages 275–284. IEEE, 2014.

[16] C. Csallner and Y. Smaragdakis. Jcrasher: An auto-
matic robustness tester for java. Softw. Pract. Exper.,
34(11):1025–1050, 2004.

[17] B. Dagenais and M. P. Robillard. Recovering trace-
ability links between an api and its learning resources.
In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 47–57. IEEE, 2012.

[18] E. Daka, J. Campos, G. Fraser, J. Dorn, and
W. Weimer. Modeling readability to improve unit tests.
In Proceedings of the 10th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). ACM, 2015. To appear.

[19] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella. Using IR methods for labeling source
code artifacts: Is it worthwhile? In IEEE 20th Inter-
national Conference on Program Comprehension, ICPC
2012, Passau, Germany, June 11-13, 2012, pages 193–
202, 2012.

[20] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella,
and S. Panichella. Labeling source code with informa-
tion retrieval methods: an empirical study. Empirical
Software Engineering, 19(5):1383–1420, 2014.

[21] G. Fraser and A. Arcuri. Whole test suite generation.
IEEE Trans. Software Eng., 39(2):276–291, 2013.

[22] G. Fraser and A. Arcuri. 1600 faults in 100 projects:
automatically finding faults while achieving high cov-
erage with evosuite. Empirical Software Engineering,
20(3):611–639, 2015.

[23] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated unit test generation re-
ally help software testers? a controlled empirical study.
ACM Trans. Softw. Eng. Methodol. To Appear.

[24] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and
F. Padberg. Does automated white-box test genera-
tion really help software testers? In Proceedings of
the International Symposium on Software Testing and
Analysis (ISSTA), pages 291–301. ACM, 2013.

[25] G. Fraser and A. Zeller. Mutation-driven generation
of unit tests and oracles. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis
(ISSTA), pages 147–158. ACM, 2010.

[26] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus. On
the use of automated text summarization techniques for
summarizing source code. In Proceedings of the Inter-
national Working Conference on Reverse Engineering
(WCRE), pages 35–44. IEEE, 2010.

[27] M. Hammad, A. Abuljadayel, and M. Khalaf. Auto-
matic summarising: The state of the art. Lecture Notes
on Software Engineering, 4(2):129–132, 2016.

[28] M. Harman and P. McMinn. A theoretical and em-
pirical study of search-based testing: Local, global, and
hybrid search. IEEE Trans. Softw. Eng., 36(2):226–247,
2010.

[29] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova,
L. Pollock, and K. Vijay-Shanker. Amap: Automat-

ically mining abbreviation expansions in programs to
enhance software maintenance tools. In Proceedings of
the International Working Conference on Mining Soft-
ware Repositories (MSR), pages 79–88. ACM, 2008.

[30] E. Hill, L. Pollock, and K. Vijay-Shanker. Automat-
ically capturing source code context of nl-queries for
software maintenance and reuse. In Proceedings of
the International Conference on Software Engineering
(ICSE), pages 232–242. IEEE, 2009.

[31] M. Höst, B. Regnell, and C. Wohlin. Using students as
subjects - comparative study ofstudents and profession-
als in lead-time impact assessment. Empirical Softw.
Engg., 5(3):201–214, Nov. 2000.

[32] M. Kamimura and G. Murphy. Towards generating
human-oriented summaries of unit test cases. In Proc.
of the International Conference on Program Compre-
hension (ICPC), pages 215–218. IEEE, May 2013.

[33] S. MacDonell. Reliance on correlation data for complex-
ity metric use and validation. ACM Sigplan Notices,
26(8):137–144, 1991.

[34] P. W. McBurney and C. McMillan. Automatic doc-
umentation generation via source code summarization
of method context. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages
279–290. ACM, 2014.

[35] B. Meyer, I. Ciupa, A. Leitner, and L. Liu. Automatic
testing of object-oriented software. In SOFSEM 2007:
Theory and Practice of Computer Science, volume 4362
of Lecture Notes in Computer Science, pages 114–129.
Springer Berlin Heidelberg, 2007.

[36] L. Moonen, A. van Deursen, A. Zaidman, and
M. Bruntink. On the interplay between software testing
and evolution and its effect on program comprehension.
In Software Evolution, pages 173–202. Springer, 2008.

[37] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pol-
lock, and K. Vijay-Shanker. Automatic generation of
natural language summaries for java classes. In Proceed-
ings of the International Conference on Program Com-
prehension (ICPC), pages 23–32. IEEE, May 2013.

[38] T. Mortensen, R. Fisher, and G. Wines. Students
as surrogates for practicing accountants: Further evi-
dence. In Accounting Forum, volume 36, pages 251–265.
Elsevier, 2012.

[39] G. C. Murphy. Lightweight Structural Summarization
As an Aid to Software Evolution. PhD thesis, 1996.
AAI9704521.

[40] C. Pacheco and M. D. Ernst. Randoop: Feedback-
directed random testing for java. In Companion to the
22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA),
pages 815–816. ACM, 2007.

[41] A. Panichella, F. Kifetew, and P. Tonella. Reformulat-
ing branch coverage as a many-objective optimization
problem. In Proceedings of the International Confer-
ence on Software Testing, Verification and Validation
(ICST), pages 1–10. IEEE, 2015.

[42] S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from de-
veloper communications. In Proceedings of the Interna-
tional Conference on Program Comprehension, ICPC,
pages 63–72. IEEE, 2012.

[43] F. Ricca and P. Tonella. Analysis and testing of web
applications. In Proceedings of the International Con-

ference on Software Engineering (ICSE), pages 25–34.
IEEE, 2001.

[44] J. M. Rojas, G. Fraser, and A. Arcuri. Automated unit
test generation during software development: A con-
trolled experiment and think-aloud observations. In
Proceedings of the International Symposium on Soft-
ware Testing and Analysis (ISSTA), pages 338–349.
ACM, 2015.

[45] P. Runeson, M. Alexandersson, and O. Nyholm. Detec-
tion of duplicate defect reports using natural language
processing. In Proc. Int’l Conference on Software En-
gineering (ICSE), pages 499–510. IEEE, 2007.

[46] K. Spärck Jones. Automatic summarising: The state of
the art. Inf. Process. Manage., 43(6):1449–1481, 2007.

[47] G. Sridhara. Automatic Generation of Descriptive
Summary Comments for Methods in Object-oriented
Programs. PhD thesis, Newark, DE, USA, 2012.
AAI3499878.

[48] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and
K. Vijay-Shanker. Towards automatically generating
summary comments for java methods. In Proceedings
of the International Conference on Automated Software
Engineering (ASE), pages 43–52. ACM, 2010.

[49] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Au-
tomatically detecting and describing high level ac-
tions within methods. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE),
pages 101–110. IEEE, 2011.

[50] G. Sridhara, L. Pollock, and K. Vijay-Shanker. Gen-
erating parameter comments and integrating with
method summaries. In Proceedigs of the International
Conference on Program Comprehension (ICPC), pages
71–80. IEEE, 2011.

[51] P. Tonella. Evolutionary testing of classes. In Proc. of
the International Symposium on Software Testing and
Analysis (ISSTA), pages 119–128. ACM, 2004.

[52] A. Vargha and H. D. Delaney. A critique and improve-
ment of the cl common language effect size statistics of
mcgraw and wong. Journal of Educational and Behav-
ioral Statistics, 25(2):101–132, 2000.

[53] C. Vassallo, S. Panichella, M. Di Penta, and G. Can-
fora. Codes: Mining source code descriptions from de-
velopers discussions. In Proceedings of the International
Conference on Program Comprehension (ICPC), pages
106–109. ACM, 2014.

[54] C. Wang, F. Pastore, A. Goknil, L. Briand, and
Z. Iqbal. Automatic generation of system test cases
from use case specifications. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis
(ISSTA), pages 385–396. ACM, 2015.

[55] E. Wong, J. Yang, and L. Tan. Autocomment: Min-
ing question and answer sites for automatic comment
generation. In Proceedings of the International Confer-
ence on Automated Software Engineering (ASE), pages
562–567. IEEE, 2013.

[56] J. Xuan and M. Monperrus. Test case purification for
improving fault localization. In Proceedings of the In-
ternational Symposium on Foundations of Software En-
gineering (FSE), pages 52–63. ACM, 2014.

[57] S. Zhang, C. Zhang, and M. Ernst. Automated doc-
umentation inference to explain failed tests. In Pro-
ceedings of the International Conference on Automated
Software Engineering (ASE), pages 63–72. IEEE, 2011.

