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A R T I C L E I N F O

Keywords:
Enriched finite element analysis
Discontinuity-Enriched Finite Element Method
(DE-FEM)
Intersecting discontinuities
Weak and strong enrichments
Branched cracks
Polycristalline materials

A B S T R A C T

We extend the Discontinuity-Enriched Finite Element Method (DE-FEM) to simulate intersecting
discontinuities, such as those encountered in polycrystalline materials, multi-material wedge
problems, and branched cracks. The proposed hierarchical enrichment functions capture weak
and strong discontinuities at junctions within a single formulation. Several numerical applica-
tions to branched cracks and polycrystalline microstructures under both thermal and mechanical
loads are presented to demonstrate the proposed method. Results indicate that DE-FEM can
accurately capture complex discontinuous primal and gradient fields and attain convergence
rates comparable to those of standard FEM using fitted meshes. The main advantages of DE-
FEM equipped with the proposed junction enrichment functions lie in the method’s ability to
model intersecting discontinuities using meshes that are completely decoupled from them and its
robustness in reproducing correct displacement and strain jumps across them, as demonstrated
by a patch test. This work thus highlights the potential of DE-FEM for applications to problems
characterized by the presence of multiple intersecting discontinuities, posing a valid alternative
to traditional FEM and eXtended/Generalized Finite Element (X/GFEM) Methods.

1. Introduction

Modeling problems with intersecting discontinuities, such as material junctions and branched cracks, has been extensively
nvestigated using both the standard Finite Element Method (FEM) [1–5] and, more recently, the eXtended/Generalized Finite
lement Method (X/GFEM) [6–8]. While standard FEM requires geometry matching (fitted) meshes to model the discontinuous field
temming from intersecting discontinuities, X/GFEM allows for decoupling the mesh from all discontinuities. Although both methods
re effective in reproducing the kinematics of multiple intersecting discontinuities, remeshing in standard FEM and imposing
ssential boundary conditions in X/GFEM pose challenges [9]. The Discontinuity-Enriched Finite Element Method (DE-FEM) [10]
as been introduced as a solution to these challenges, offering advantages over both standard FEM and X/GFEM. In this work, we
xtend DE-FEM to address problems involving multiple intersecting discontinuities.

This paper deals with the numerical approximation of problems characterized by discontinuous fields, commonly encountered
n fractured solids or materials with spatially variable properties such as polycrystalline aggregates. These problems share similar
eatures in the sense that the numerical approximation of those discontinuous fields can be obtained by means of intersecting
iscontinuities. Mathematically, these problems result in 𝐶0-continuous and/or 𝐶−1-continuous fields, referred henceforth as weak
nd strong discontinuities, respectively. The modeling of such problems has progressed significantly since the use of discrete springs
o represent cohesive forces across discontinuities (refer for instance to the work of Yutaka and Che [11]). Recent applications
xtend to problems involving intersecting discontinuities, such as grain boundary problems [12–14], crack branching [15,16], and
ragmentation [17]. Despite approaches that make use of non-body-fitted grids [18,19], in practical applications, standard FEMs
emain the de facto choice despite their intricate meshing procedures. Conversely, X/GFEMs have shown promise in academic
cenarios, leveraging special enrichment functions to address meshing challenges for both stationary and evolving discontinuities.
or instance, Daux et al. [6] used XFEM to model arbitrarily branched cracks, where cross and star shaped cracks were modeled with
nfitted meshes by using a junction enrichment that is built upon step functions. The accuracy of the method was demonstrated by
omparing the stress intensity factors (SIFs) of a series of tests consisting of different branched crack configurations with reference
olutions. The method was later extended by Belytschko et al. [20] to model dynamic crack branching. Simone et al. [7] used
FEM to model strong discontinuities in polycrystalline aggregates, with an accuracy similar to that of standard FEM with fitted
eshes; the utilization of a uniform grain enrichment function proved to be significantly simpler when compared to the junction

nrichment of Daux et al. [6]. Aragón et al. [8] proposed the use of the distance function as an enrichment to model weakly
iscontinuous junctions and showed that, while linear approximations require a correction to recover the accuracy lost in blending
lements [21], quadratic approximations were optimal without the need for the correction. Nevertheless, X/GFEM approaches come
ith inherent drawbacks, such as the loss of accuracy in blending elements with non-constant enrichment functions [21], the need

or special techniques to enforce non-homogeneous Dirichlet boundary conditions when enrichments do not vanish at Dirichlet
oundaries [9,22], and the need for a stable generalized finite element method (SGFEM) to control the condition number of system
atrices when discontinuities get arbitrarily close to nodes of the original discretization [23,24]. Although these issues could be

ircumvented, to date it is not possible to recover smooth tractions in embedded Dirichlet boundaries (reactions), even with the use
f stabilization techniques [25].

Another family of discontinuity-enriched methods emerged to address the challenges posed by X/GFEM. The Interface-enriched
eneralized Finite Element Method (IGFEM) [26–28], first proposed to solve problems with weak discontinuities, was later
eneralized to the Discontinuity-Enriched Finite Element Method (DE-FEM) [10,29] to solve problems containing both weak and
trong discontinuities. These techniques place enriched nodes directly along discontinuities instead than to nodes of the original
esh as in X/GFEM. There are numerous advantages to this since many properties of standard FEM that are lost in X/GFEM due

o the use of enrichments are recovered, including (i) Enrichment functions are local to cut elements by construction so there are

o blending element issues; (ii) Enrichments are exactly zero at nodes of the original mesh, and thus standard degrees of freedom
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Fig. 1. A two-dimensional domain 𝛺 composed of disjoint subdomains 𝛺𝑖 such that 𝛺 = ∪𝑖𝛺𝑖 and 𝛤𝑖𝑗 = 𝛺𝑖 ∩ 𝛺𝑗 (𝑖 ≠ 𝑗). Dirichlet and Neumann boundary
onditions are prescribed on 𝛤D

𝑖 and 𝛤N
𝑖 , respectively. The zoomed-in inset shows the unfitted mesh intersected by discontinuity segments, forming a triple

unction. The red circles indicate new nodes with enriched degrees of freedom. The background mesh is depicted with thin solid lines, while the integration
lements in the elements cut by the discontinuities are shown with dashed lines.

DOFs) retain their physical meaning; (iii) Prescribing non-homogeneous essential boundary conditions is as straightforward as in
tandard FEM, even on immersed boundaries [27]; (iv) Discontinuity-enriched formulations are so far the only enriched FEMs that
llow for the transfer of smooth cohesive tractions across internal boundaries [10], smooth tractions for problems that couple non-
onforming discretizations and contact [30], and the recovery of smooth reactive tractions from Dirichlet boundaries [27]; and (v)
he condition number of stiffness matrices grows at the same rate as in standard FEM, i.e., as (ℎ−2)—this is accomplished either by
caling enrichments as discontinuities approach standard mesh nodes or by using a simple Jacobi-like diagonal preconditioner [28].
herefore, discontinuity-enriched formulations, while decoupling the mesh from discontinuities, recover many of the properties of
tandard FEM that are lost in X/GFEM due to the use of enriched spaces. In the context of strong discontinuities, DE-FEM was
ntroduced for 2-D fracture problems [10]. Since then the methodology has been developed for 3-D problems [29], combined with
iscontinuities described by Non-Uniform Rational B-Splines (NURBS) [31], and developed as an immersed boundary (fictitious
omain) technique for modeling embedded discontinuities [27]. Nevertheless, the current DE-FEM formulation lacks the capability
o represent the kinematics of intersecting discontinuities. This deficiency is addressed in this work.

In this paper we introduce a junction enrichment for the discontinuity-enriched finite element method, presenting a versatile
ormulation capable of effectively handling problems featuring multiple intersecting discontinuities. The junction enrichment
ontains both weak and strong contributions, constructed using a linear combination of Lagrange shape functions in integration
ubdomains, ensuring vanishing enrichment at the original mesh nodes. A notable feature of the enrichment scheme, as in the
riginal DE-FEM [10] for single discontinuities, is the ability to switch off the strong enrichment contribution. This allows for
he recovery of IGFEM [26] approximation spaces and enables the modeling of problems characterized solely by the presence of
iscontinuous gradient fields. Through numerical examples we demonstrate the robustness and accuracy of our method, achieving
imilar accuracy to X/GFEM while preserving all the aforementioned advantages of DE-FEM.

. Problem description and formulation

Consider a domain 𝛺 ⊂ R2 as shown in Fig. 1. The domain is partitioned into distinct, non-overlapping subdomains 𝛺𝑖 (𝑖 ∈ 𝜄𝑔 ,
ith 𝜄𝑔 the index set for the subdomains) with the domain closure 𝛺 = ∪𝑖𝛺𝑖. The domain is bounded by 𝛤 = 𝛺∖𝛺 with the outward

unit normal vector denoted by 𝒏. Boundary 𝛤 is decomposed into disjoint parts 𝛤D
𝑖 and 𝛤N

𝑖 where essential (Dirichlet) and natural
(Neumann) boundary conditions are prescribed, respectively. The intersection 𝛤𝑖𝑗 = 𝛺𝑖 ∩ 𝛺𝑗 (𝑖 ≠ 𝑗) represents either a weak or
strong discontinuity at the interface between subdomains 𝑖 and 𝑗. With reference to subdomain 𝑖, vector 𝒏𝑖𝑗 (= −𝒏𝑗𝑖) indicates the
utward unit normal vector to boundary 𝛤𝑖𝑗 pointing towards subdomain 𝑗.

In this work we examine the application of the method to heat conduction and elastostatics boundary value problems. For heat
onduction, we seek to find the primal (temperature) field 𝑢 ∈  (𝛺) such that

𝑎 (𝑢, 𝑣) = 𝐿 (𝑣) ∀𝑣 ∈  (𝛺) , (1)

here bilinear and linear forms are, respectively, given by

𝑎 (𝑢, 𝑣) =
∑

𝑖∈𝜄𝑔
∫𝛺𝑖

𝛁𝑣𝑖 ⋅
(

𝜿𝑖𝛁𝑢𝑖
)

d𝛺 and 𝐿 (𝑣) =
∑

𝑖∈𝜄𝑔

[

∫𝛺𝑖
𝑣𝑖𝑓𝑖 d𝛺 + ∫𝛤N

𝑖

𝑣𝑖𝑞𝑖 d𝛤

]

. (2)

n (2) we denote by 𝑢𝑖 the restriction of the temperature field to the 𝑖th subdomain, i.e., 𝑢𝑖 ≡ 𝑢|𝛺𝑖 , and the same holds for other
subscripted quantities; we also denote by 𝜿𝑖 the conductivity tensor, 𝑓𝑖 the heat source, and 𝑞𝑖 and 𝑢̄𝑖 the prescribed heat flux and
temperature, respectively. Trial solution and test function are taken, respectively, from the sets

 (𝛺) =
{

𝑢 ∈ 𝐿2 (𝛺) , 𝑢 ∈ 1(𝛺 ), 𝑢| = 𝑢̄
}

and  (𝛺) =
{

𝑣 ∈ 𝐿2 (𝛺) , 𝑣 ∈ 1(𝛺 ), 𝑣| = 0
}

, (3)
𝑖 𝑖 𝛤D
𝑖 𝑖 𝑖 𝑖 𝛤D

𝑖

3 
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where 1 (𝛺𝑖
)

is the first-order Sobolev space. In the heat conduction problem discussed in Section 5.5 we restrict the analysis to
weak discontinuities, and therefore no jump of the primal field is included in (2).

For the elastostatics problem, we seek to find the vectorial displacement field 𝒖 ∈  (𝛺) such that

𝑎 (𝒖, 𝒗) = 𝐿 (𝒗) ∀𝒗 ∈  (𝛺) , (4)

where, as in the reference DE-FEM paper [10],

𝑎(𝒖, 𝒗) =
∑

𝑖∈𝜄𝑔
∫𝛺𝑖

𝝐𝑖
(

𝒗𝑖
)

∶ 𝝈𝑖
(

𝒖𝑖
)

d𝛺 and 𝐿(𝒗) =
∑

𝑖∈𝜄𝑔

[

∫𝛺𝑖
𝒗𝑖 ⋅ 𝒃𝑖 d𝛺 + ∫𝛤N

𝑖

𝒗𝑖 ⋅ 𝒕̄𝑖 d𝛤

]

+
∑

𝑖≠𝑗
∫𝛤𝑖𝑗

[[𝒗𝑖]] ⋅ 𝒕𝑐𝑖𝑗 d𝛤 , (5)

ith 𝝐𝑖
(

𝒖𝑖
)

= 1
2

(

𝛁𝒖𝑖 + 𝛁𝒖⊺𝑖
)

the linearized strain tensor, 𝝈𝑖 the Cauchy stress tensor, 𝒃𝑖 the body force vector, 𝒕𝑐𝑖𝑗 the vector of
cohesive tractions across a discontinuity 𝛤𝑖𝑗 , and 𝒖̄𝑖 and 𝒕̄𝑖 prescribed displacements and tractions, respectively. Stress and strain
tensors are related through Hooke’s law by 𝝈𝑖 = 𝑪 𝑖 ∶ 𝝐𝑖, where 𝑪 𝑖 is the fourth-order linear elasticity tensor. The symbol [[ ⋅ ]] denotes
the jump operator across a discontinuity. The vector-valued trial solution 𝒖 and test function 𝒗 are taken, respectively, from

 (𝛺) =
{

𝒖 ∈
[

𝐿2 (𝛺)
]2 , 𝒖𝑖 ∈

[

1(𝛺𝑖)
]2 , 𝒖|𝛤D

𝑖
= 𝒖̄𝑖

}

and  (𝛺) =
{

𝒗 ∈
[

𝐿2 (𝛺)
]2 , 𝒗𝑖 ∈

[

1(𝛺𝑖)
]2 , 𝒗|𝛤D

𝑖
= 𝟎

}

. (6)

Eq. (5) is used to model problems with cohesive strong discontinuities (a 𝐶−1-continuous field) in Sections 5.1 and 5.4. The last term
is, however, neglected in problems with only weak discontinuities (Section 5.2) or traction-free strong discontinuities (Sections 5.3.1
and 5.3.2).

To solve the finite dimensional forms of (1) and (4), the domain is discretized into 𝐸 finite elements so that the discretized
domain 𝛺ℎ = int

(

∪𝐸𝑖=1𝑒𝑖
)

≈ 𝛺 such that 𝑒𝑖 ∩ 𝑒𝑗 = ∅ ∀𝑖 ≠ 𝑗. We follow a Galerkin procedure, whereby trial and weight functions
are chosen from a discontinuity-enriched finite element space that incorporates the kinematics of discontinuities in the primal field
and its gradient. This space, which is endowed with characteristic features of the discontinuous field, is defined for elastostatics by
extending the definition in [10], resulting in

ℎ𝑒
(

𝛺ℎ) =
{

𝒖ℎ(𝒙)||
|

𝒖ℎ (𝒙) =
∑

𝑖∈𝜄ℎ

𝜑𝑖 (𝒙) 𝒖𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
standard

+

weak
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝜄𝑤

𝜓𝑖 (𝒙)𝜶𝑖 +

strong
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝜄𝑠

∑

1≤𝑘<𝑛
𝜒𝑖𝑘 (𝒙) 𝜷𝑖𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
enrichment

, 𝒖𝑖,𝜶𝑖, 𝜷 𝑖𝑘 ∈ R2
}

⊂  (𝛺) , (7)

where indices 𝜄ℎ, 𝜄𝑤, and 𝜄𝑠 represent index sets of standard, weak, and strong nodes, respectively. In (7) the standard finite element
component is spanned by linear Lagrange shape functions 𝜑𝑖 associated to standard DOFs 𝒖𝑖. This space is augmented by enrichment
terms that incorporate information about the discontinuities. In the latter, the behavior at weak discontinuities is captured by weak
enrichment functions 𝜓𝑖 associated with weak enrichment DOFs 𝜶𝑖. When dealing with strong discontinuities, in addition to the
weak term that captures the jump in the primal field gradient, the jump in displacement is captured by means of strong enrichment
functions 𝜒𝑖𝑘 associated with strong enrichment DOFs 𝜷𝑖𝑘. Noteworthy, as discussed in Appendix A, the DE-FEM approximation of
an 𝑛-fold junction necessitates 𝑛 − 1 strong enrichments: a triple junction (𝑛 = 3) therefore requires one weak enrichment and two
strong enrichments (𝑘 = {1, 2})—we recall that an 𝑛-fold junction is defined as the point where 𝑛 discontinuities meet. Therefore, two
discontinuities crossing at a point define a 4-fold junction, also known in the literature as a quadruple point. The expression in (7)
is general since in fully split elements that do not contain a junction the standard DE-FEM approximation is recovered (i.e., 𝑛 = 2
and thus 𝑘 = {1}). We note in passing that (7) is no different from the approximation proposed by Aragón and Simone [10].
This formulation is indeed also applicable to our model problem, provided adequate enrichment functions for resolving multiple
intersecting discontinuities are defined.

It is worth noting that, in the absence of strong discontinuities, the third term in (7) drops out and thus we recover the Interface-
enriched Generalized Finite Element Method (IGFEM) [26]. IGFEM was in fact proposed to model problems with discontinuous
gradient fields alone, and DE-FEM was build to inherit the approximation properties of IGFEM. DE-FEM can therefore seamlessly
model both weak and strong discontinuities within a unified formulation. Consequently, IGFEM spaces are recovered in problems
where strong discontinuities are absent. IGFEM spaces are used in the convergence test discussed in Section 5.2 and the solution of
the heat conduction example in Section 5.5.

For the heat conduction problem, the 𝑒th finite element local conductance matrix and local thermal load vector are given,
respectively, by

𝒌𝑒 = ∫𝑒
𝛁𝒙𝝋⊤𝜿𝛁𝒙𝝋 d𝑒 = ∫ 𝛁𝒙𝝋⊤𝜿𝛁𝒙𝝋𝑗 d , (8)

nd

𝒇 𝑒 = ∫𝑒
𝝋⊤𝑓 d𝑒 + ∫𝜕𝑒∩𝛤N

𝝋⊤𝑞 d𝜕𝑒 = ∫ 𝝋⊤𝑓𝑗 d + ∫𝜕𝑒∩𝛤N
𝝋⊤𝑞𝑗 d𝜕 , (9)

where numerical quadrature is conducted on the master element = { (𝜉, 𝜂)| 𝜉 ≥ 0, 𝜂 ≥ 0, 𝜉 + 𝜂 ≤ 1} (with Jacobian 𝑗), and 𝝋 is the
hape function vector. Similarly, for elastostatics the stiffness matrix and force vector are computed, respectively, as

𝒌𝑒 = 𝑩⊤𝑪𝑩 d𝑒 + 𝑴⊤
𝜕𝒕𝑐𝑖𝑗 𝑴 d𝜕𝑒 = 𝑩⊤𝑪𝑩𝑗 d + 𝑴⊤

𝜕𝒕𝑐𝑖𝑗 𝑴𝑗 d𝜕 , (10)
∫𝑒 ∫𝜕𝑒∩𝛤𝑖𝑗 𝜕[[𝒖]] ∫ ∫𝜕 ∩𝛤𝑖𝑗 𝜕[[𝒖]]

4 
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Fig. 2. A mesh element (in orange) cut by a discontinuity (in red). Three integration elements are created, one of which is shown in blue (dashed line).
Quadrature points (×) are displayed. Integration over the integration elements involves not only their own mapping but also that of the parent element (in
orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and

𝒇 𝑒 = ∫𝑒
𝜱⊤𝒃 d𝑒 + ∫𝜕𝑒∩𝛤N

𝜱⊤ 𝒕̄ d𝜕𝑒 + ∫𝜕𝑒∩𝛤𝑖𝑗
𝑴⊤𝒕𝑐𝑖𝑗 d𝜕𝑒 = ∫ 𝜱⊤𝒃𝑗 d + ∫𝜕 ∩𝛤N

𝜱⊤ 𝒕̄𝑗 d𝜕𝑒 + ∫𝜕𝑒∩𝛤𝑖𝑗
𝑴⊤𝒕𝑐𝑖𝑗𝑗 d𝜕 (11)

In (10), 𝑩 is the strain–displacement matrix and 𝑪 the constitutive matrix, and in (11) 𝜱 = 𝝋⊙𝑰 is the shape function matrix—here
it is expanded for 2 degrees of freedom per node by means of the Kronecker product ⊙ with the 2 × 2 identity matrix 𝑰). In Eq. (10)
and Eq. (11) the terms involving 𝑴 =

[

1−𝜉
2

1+𝜉
2

]

⊙𝑰 essentially perform a 1-D integration along the crack to account for the effect
of the cohesive traction [10].

While Eqs. (8)–(11) are computed in a standard manner in elements not crossed by discontinuities, cut elements deserve special
attention. One such element is shown schematically in Fig. 2, where a mesh triangular element with coordinates

{

𝒙𝑖
}3
𝑖=1 is crossed by

a straight discontinuity (in red). Such element is subdivided in so-called integration elements, which serve the purpose of integrating
smooth functions, since the discontinuity introduces non-smoothness. The quadrature of an integration element follows closely the
formulation of Eqs. (8)–(11) with a small modification: The shape function vector is now augmented by weak and strong enrichments
as

𝝋 =
[

𝜑1 𝜑2 𝜑3
|

|

|

𝜓1 ⋯ 𝜓𝑚
|

|

|

𝜒1 ⋯ 𝜒𝑛
]

, (12)

for 𝑚 weak and 𝑛 strong enrichments acting in the integration element.
Accordingly, the strain–displacement matrix 𝑩 is also augmented considering the contributions of enrichment functions, i.e.,

𝑩 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝜑1
𝜕𝑥 0 𝜕𝜑2

𝜕𝑥 0 𝜕𝜑3
𝜕𝑥 0

0 𝜕𝜑1
𝜕𝑦 0 𝜕𝜑2

𝜕𝑦 0 𝜕𝜑3
𝜕𝑦

𝜕𝜑1
𝜕𝑦

𝜕𝜑1
𝜕𝑥

𝜕𝜑2
𝜕𝑦

𝜕𝜑2
𝜕𝑥

𝜕𝜑3
𝜕𝑦

𝜕𝜑3
𝜕𝑥

|

|

|

|

|

|

|

|

|

|

𝜕𝜓1
𝜕𝑥 0 𝜕𝜓𝑚

𝜕𝑥 0

0 𝜕𝜓1
𝜕𝑦 ⋯ 0 𝜕𝜓𝑚

𝜕𝑦
𝜕𝜓1
𝜕𝑦

𝜕𝜓1
𝜕𝑥

𝜕𝜓𝑚
𝜕𝑦

𝜕𝜓𝑚
𝜕𝑥

|

|

|

|

|

|

|

|

|

|

𝜕𝜒1
𝜕𝑥 0 𝜕𝜒𝑛

𝜕𝑥 0

0 𝜕𝜒1
𝜕𝑦 ⋯ 0 𝜕𝜒𝑛

𝜕𝑦
𝜕𝜒1
𝜕𝑦

𝜕𝜒1
𝜕𝑥

𝜕𝜒𝑛
𝜕𝑦

𝜕𝜒𝑛
𝜕𝑥

⎤

⎥

⎥

⎥

⎥

⎦

. (13)

In addition, it is important to note that two geometry mappings are involved in the numerical quadrature of integration elements: the
mapping of the integration element itself (blue mapping) and that of the parent cut element (orange mapping), as shown in Fig. 2.
It is worth noting that the same procedure is used when an element contains a junction: The parent cut element is partitioned into
integration elements and local arrays are augmented depending on the number of enrichments active on each integration element.

Eqs. (8)–(11) are integrated using numerical Gauss integration with 𝑛GP quadrature points with coordinates 𝝃𝑖 and weights 𝑤𝑖.
Note that a single Gauss point is shown in Fig. 2, which is enough to integrate the arrays exactly. In addition, we note that boundary
integrals are implemented as line integrals and are computed only once. This is important because the boundaries of integration
elements are often shared by two elements (e.g., when integrating the cohesive traction term). More details on the quadrature of
local arrays are given later in Section 4.

The contributions of all local arrays are then assembled in their global counterparts. Denoting by A the standard finite element
assembly operator, the global stiffness (or conductance) matrix, and the global force (or thermal load) vector are given by

𝑲 =
𝐸

A
𝑒=1

𝒌𝑒 and 𝑭 =
𝐸

A
𝑒=1

𝒇 𝑒, (14)

respectively. This leads to the discrete linear system of equations 𝑲𝑼 = 𝑭 . Noteworthy, due to the presence of enrichments, the
system can be written as

⎡

⎢

⎢

⎢

⎣

𝑲𝑢𝑢 𝑲𝑢𝛼 𝑲𝑢𝛽

𝑲⊺
𝑢𝛼 𝑲𝛼𝛼 𝑲𝛼𝛽

𝑲⊺
𝑢𝛽 𝑲⊺

𝛼𝛽 𝑲𝛽𝛽

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝒖

𝜶

𝜷

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝒇 𝑢
𝒇 𝛼
𝒇 𝛽

⎤

⎥

⎥

⎥

⎦

, (15)

where subscripts 𝑢, 𝛼, and 𝛽 make explicit reference to standard, weak enrichment, and strong enrichment contributions, respectively.
The expression for the heat conduction problem is a subset of (15) in which strong enrichment terms are neglected.

In DE-FEM, since enrichment functions are nonzero only in cut elements and exactly zero at mesh nodes, non-homogeneous
essential boundary conditions can be strongly enforced by directly specifying the values of weak and strong enriched DOFs. Consider
in Fig. 3 a mesh element crossed by a discontinuity 𝛤 . One of the edges of the element lies along the Dirichlet boundary 𝛤D, and
𝑖𝑗

5 
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Fig. 3. Finite element crossed by a discontinuity 𝛤𝑖𝑗 and with an edge on the Dirichlet boundary 𝛤D (hatched region).

hus an essential boundary condition needs to be prescribed at mesh nodes 𝒙1 and 𝒙2, and at enriched node 𝒙4. Since the enrichment
unctions are exactly zero at mesh nodes 𝒙1 and 𝒙2, prescribing the primal field at these locations is done as in standard FEM. As for
he enriched node 𝒙4, when dealing with a weak discontinuity, we need to solve a local problem since the element shape functions
1 and 𝜑2 are nonzero at that location. The local problem simply consists in the evaluation of

𝜶4 =
1
𝜓4

(

𝒖̄
(

𝒙4
)

− 𝜑1
(

𝒙4
)

𝒖̄
(

𝒙1
)

− 𝜑2
(

𝒙4
)

𝒖̄
(

𝒙2
))

. (16)

n this equation, obtained from (7), 𝒖̄ is the prescribed displacement field. The last two terms of the equation then represent the
tandard finite element contribution that results from the linear interpolation of nodal values within the support of the enriched
ode. The enriched DOFs 𝜶 obtained through (16) thus represent the missing continuous contribution that needs to be added to the
nfitted finite element approximation as discussed next in Section 3. In contrast, when dealing with a strong discontinuity, the strong
OFs at the Dirichlet boundary represent the displacement jump at that location. After determining the values of these enriched
OFs, they are prescribed in the same manner as in standard FEM. This straightforward manner of prescribing non-homogeneous
ssential boundary conditions can also be done on immersed boundaries, as discussed in van den Boom et al. [27]. A side benefit
f placing enriched nodes along discontinuities is that reactive tractions on immersed Dirichlet boundaries are smooth, whereas in
/GFEM they show oscillations even with the Barbosa–Hughes stabilization [25].

As a final remark, it is important to mention that the issue of stability has not been addressed in this study, and none of the
pproaches discussed in van den Boom et al. [27], Aragón et al. [28], and Zhang et al. [29] (i.e., scaling of the enrichment functions
r using a Jacobi-like preconditioner) have been considered.

For more details on the formulation and implementation aspects of the discontinuity-enriched finite element method, the reader
s referred to Aragón and Duarte [32].

.1. Stress intensity factors

Stress intensity factors are crucial parameters in fracture mechanics since they can accurately quantify the stress field near a
rack tip. According to LEFM, SIFs 𝐾I and 𝐾II for opening mode I and sliding mode II, respectively, are defined as

𝐾I = lim
𝑟→0

√

2𝜋𝑟𝜎𝑦𝑦 at 𝜃 = 0,

𝐾II = lim
𝑟→0

√

2𝜋𝑟𝜎𝑥𝑦 at 𝜃 = 0,
(17)

here (𝑟, 𝜃) is the polar coordinate from the crack tip, 𝜎𝑦𝑦 is the normal stress perpendicular to the crack plane, and 𝜎𝑥𝑦 the shear
tress in the crack plane.

In this work we compute SIFs as in our first work on DE-FEM [10], whereby we use the integration integral [33]

𝐼 (1,2) = ∫𝐴

[(

−𝜎(1)𝑖𝑘 𝜀
(2)
𝑖𝑘 𝛿1𝑗 + 𝜎

(1)
𝑖𝑗

𝜕𝑢(2)𝑖
𝜕𝑥1

+ 𝜎(2)𝑖𝑗
𝜕𝑢(1)𝑖
𝜕𝑥1

)

𝜕𝑞1
𝜕𝑥𝑗

]

d𝐴 , (18)

where all quantities refer to a coordinate system placed at the crack tip that is aligned with the crack plane, quantities superscripted
with (1) refer to the actual state in the domain due to applied loads, and quantities superscripted with (2) refer to the auxiliary or
reference state, typically corresponding to pure mode I or mode II. The latter are given in Appendix B for completeness. The weight
function 𝑞1 has a unit magnitude in finite elements completely enclosed by a circle of radius 𝜌, which delineates the area of the
integral, and ramps linearly to zero at the outer nodes of elements intersected by the circle. Therefore, elements fully contained in
the area do not contribute to the interaction integral since 𝜕𝑞1

𝜕𝑥𝑗
= 0.

SIFs are related to the interaction integral through

𝐼 (1,2) = 2
𝐸∗

(

𝐾 (1)
I 𝐾 (2)

I +𝐾 (1)
II 𝐾

(2)
II

)

with 𝐸∗ =

⎧

⎪

⎨

⎪

⎩

𝐸 for plane stress,
𝐸

1 − 𝜈2
for plane strain,

(19)

where 𝐸 denotes Young’s modulus and 𝜈 Poisson’s ratio. We obtain SIFs by setting an auxiliary state and then computing (18). For
instance, by setting 𝐾 (2)

I = 1 and 𝐾 (2)
II = 0 we can solve (19) for 𝐾 (1)

I . Similarly, we calculate 𝐾 (1)
II by setting 𝐾 (2)

I = 0, 𝐾 (2)
II = 1. More

details are provided by Aragón and Simone [10].
6 



D. Liu et al.

a

3

e
w
b

3

i

w
w
e
𝛷
n

w
t
i
i
f

a
p
s

f
c
t

3

s
d
t

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117432 
Fig. 4. Two equivalent procedures to construct a 𝐶0-continuous approximation. The standard finite element method is used on the left of the equal sign, whereas
hierarchical procedure is used on the right.

. DE-FEM formulation for weak and strong intersecting discontinuities

The formulation for a single discontinuity has already been thoroughly discussed by Aragón and Simone [10] and Zhang
t al. [29]. In the following we outline the construction of the enrichment strategy for intersecting discontinuities. We start with the
eak enrichment, which describes intersecting discontinuities in a 𝐶0-continuous field. We then use this enrichment as a building
lock for deriving the strong discontinuity enrichment in a 𝐶−1-continuous field.

.1. Weak enrichment

Without loss of generality, we consider three weak discontinuities intersecting within a single triangular domain 𝑒 partitioned
nto six linear triangular elements (see Fig. 4). The standard finite element approximation for a vector-valued field is given by

𝒖ℎ (𝒙) =
7
∑

𝑖=1
𝜑𝑖 (𝒙) 𝒖𝑖, (20)

here 𝜑𝑖 is the Lagrange basis associated with standard DOF 𝒖𝑖. Because of the nature of the basis functions, (20) is a piece-
ise linear interpolation. This field can also be hierarchically constructed by employing an alternative basis, where we expand an
xisting basis with functions that are designed to reproduce the kinematics of weak discontinuities. Taking Lagrange shape functions
′ =

{

𝜑′
𝑖
}3
𝑖=1 such that ∀𝜑′

𝑖 ∈ 𝛷′, supp𝜑′
𝑖 =

⋃7
𝑗=1 supp𝜑𝑗 and enrichment functions 𝜓𝑖 = 𝜑𝑖, 𝑖 = {4⋯ 7} (in essence just a change in

otation), the linear field in (20) can be written as

𝒖ℎ (𝒙) =
3
∑

𝑖=1
𝜑′
𝑖 (𝒙) 𝒖𝑖 +

7
∑

𝑖=4
𝜓𝑖 (𝒙)

(

𝒖𝑖 − 𝒖′𝑖
)

⏟⏞⏟⏞⏟
𝜶𝑖

, (21)

here 𝒖′𝑗 =
∑3
𝑖=1 𝜑

′
𝑖
(

𝒙𝑗
)

𝒖𝑖, 𝑗 = {4⋯ 7}, i.e., the value of the field at location 𝒙𝑗 that is interpolated by the basis 𝛷′. Noteworthy,
he hierarchical representation of the field given by (21) inevitably entails that the partition of unity property of all functions
n the triangular domain 𝑒 no longer holds. However, functions 𝜑′

𝑖 still satisfy the Kronecker-𝛿 property among themselves,
.e., 𝜑′

𝑖
(

𝒙𝑗
)

= 𝛿𝑖𝑗 , 𝑖, 𝑗 = {1⋯ 3}, and similarly for the enrichment functions 𝜓𝑖
(

𝒙𝑗
)

= 𝛿𝑖𝑗 , 𝑖, 𝑗 = {4⋯ 7}. The two piece-wise linear
ields (20) and (21) are equivalent (cf. Fig. 4), i.e.,

7
∑

𝑖=1
𝜑𝑖 (𝒙) 𝒖𝑖 ≡

3
∑

𝑖=1
𝜑′
𝑖 (𝒙) 𝒖𝑖 +

7
∑

𝑖=4
𝜓𝑖 (𝒙)𝜶𝑖, (22)

s long as 𝒖𝑖 = 𝒖′𝑖 , 𝑖 = {1⋯ 3} and 𝒖𝑗 = 𝜶𝑗 +
∑3
𝑖=1 𝜑

′
𝑖
(

𝒙𝑗
)

𝒖𝑖, 𝑗 = {4⋯ 7}. This can be trivially shown by taking a single element in the
atch and verifying that the difference between (20) and (21) is zero. This is tantamount to stating that both sets of basis functions
pan the same finite element space, i.e., span

{

𝜑1 …𝜑7
}

= span
(

𝜑′
1 …𝜑′

3, 𝜓4 …𝜓7
)

.
It is worth noting that the foregoing discussion leaves out of consideration a scaling parameter that is used to scale enrichment

unctions so as to improve the condition number of stiffness matrices. Notice, however, that scaling enrichment functions does not
hange the finite element space that is spanned. For more details about how to improve the stability of the enriched formulation,
he reader is referred to Aragón et al. [28] and references therein.

.2. Strong enrichment

We now derive the strong enrichment by considering three strong discontinuities. The resulting 𝐶−1-continuous field corre-
ponds to three completely independent kinematic fields. In standard FEM this is accomplished by duplicating nodes across the
iscontinuity—note that three nodes need to be added to the triple junction. For a fitted mesh (see Fig. 5(a)), there are therefore a
otal of twelve nodes. The standard finite element interpolation in the triangular domain 𝑒 is therefore written as

𝒖ℎ (𝒙) =
12
∑

𝜑𝑖 (𝒙) 𝒖𝑖, (23)

𝑖=1

7 
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Fig. 5. (A) Triangular domain comprised of six triangular elements. Note that 𝒙4 = 𝒙10, 𝒙5 = 𝒙11, 𝒙6 = 𝒙12, and 𝒙7 = 𝒙8 = 𝒙9; (B) Decomposition of the
discontinuous field into non-smooth continuous and non-smooth discontinuous components. The non-smooth continuous component, which is also shown on the
left of Fig. 4, is given by (21).

which can be recast into

𝒖ℎ (𝒙) = 𝒖̃ℎ (𝒙) + ̄̄𝒖ℎ (𝒙) , (24)

i.e., as the sum of a non-smooth continuous (𝐶0-continuous) function and a non-smooth discontinuous (𝐶−1-continuous) function
as demonstrated next.

Consider, for instance, the lower edge of the triangular domain with nodes 𝒙1,𝒙2,𝒙4, and 𝒙10. The field along this edge, due to
the fact that other shape functions are zero, can be written as

𝒖ℎ (𝒙) = 𝜑1 (𝒙) 𝒖1 + 𝜑2 (𝒙) 𝒖2 + 𝜑4 (𝒙) 𝒖4 + 𝜑10 (𝒙) 𝒖10. (25)

The displacement jump along the edge is simply [[𝒖ℎ]] = 𝒖ℎ
(

𝒙10
)

− 𝒖ℎ
(

𝒙4
)

= 𝒖10 − 𝒖4 ≡ 𝜷4. We decompose the field along this edge
in continuous and discontinuous components as

𝒖ℎ (𝒙) = 𝜑1 (𝒙) 𝒖1 + 𝜑2 (𝒙) 𝒖2 + 𝜑4 (𝒙)
(

𝒖4 + 𝛾𝜷4
)

+ 𝜑10 (𝒙)
(

𝒖10 − (1 − 𝛾) 𝜷4
)

(continuous)
− 𝛾𝜑4 (𝒙) 𝜷4 + (1 − 𝛾)𝜑10 (𝒙) 𝜷4, (discontinuous)

(26)

where 𝛾 is an arbitrary scalar parameter that serves the purpose of splitting the field in continuous and discontinuous parts.
Consequently, there is an infinite number of ways to decompose the function in continuous and discontinuous components. Note
that 𝜑4 (𝒙)

(

𝒖4 + 𝛾𝜷4
)

= 𝜑10 (𝒙)
(

𝒖10 − (1 − 𝛾) 𝜷4
)

at 𝒙4 = 𝒙10, and that (26) can be simplified straightforwardly to (25).
This edge analysis can be generalized to describe the field in the entire triangular domain 𝑒. Similar to (26), the field is

decomposed into continuous and discontinuous components:

𝒖ℎ (𝒙) = 𝒖̃ℎ (𝒙)
⏟⏟⏟

continuous

+ ̄̄𝒖ℎ (𝒙) ,
⏟⏟⏟

discontinuous

(27)

where

𝒖̃ℎ (𝒙) =
3
∑

𝑖=1
𝜑𝑖 (𝒙) 𝒖𝑖 + 𝜑4 (𝒙)

(

𝒖4 + 𝛾4𝜷4
)

+ 𝜑10 (𝒙)
(

𝒖10 −
(

1 − 𝛾4
)

𝜷4
)

+ 𝜑5 (𝒙)
(

𝒖5 + 𝛾5𝜷5
)

+ 𝜑11 (𝒙)
(

𝒖11 −
(

1 − 𝛾5
)

𝜷5
)

+ 𝜑6 (𝒙)
(

𝒖6 + 𝛾6𝜷6
)

+ 𝜑12 (𝒙)
(

𝒖12 −
(

1 − 𝛾6
)

𝜷6
)

+ 𝒖̃ℎ𝑗 , (28)
̄̄𝒖ℎ (𝒙) = −𝛾4𝜑4 (𝒙) 𝜷4 +

(

1 − 𝛾4
)

𝜑10 (𝒙) 𝜷4 − 𝛾5𝜑5 (𝒙) 𝜷5 +
(

1 − 𝛾5
)

𝜑11 (𝒙) 𝜷5 − 𝛾6𝜑6 (𝒙) 𝜷6

+
(

1 − 𝛾6
)

𝜑12 (𝒙) 𝜷6 + ̄̄𝒖ℎ𝑗 (𝒙) , (29)
8 
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with 𝒖̃ℎ𝑗 and ̄̄𝒖ℎ𝑗 the continuous and discontinuous field components at the junction, respectively. At the junction there are three
verlapping nodes, i.e., 𝒙7, 𝒙8, and 𝒙9 (see Fig. 5). By defining the displacement jump at the junction between nodes 𝒙7 and 𝒙8 as

𝒖ℎ
(

𝒙8
)

− 𝒖ℎ
(

𝒙7
)

= 𝒖8 − 𝒖7 ≡ 𝜷7, and similarly between nodes 𝒙8 and 𝒙9 as 𝒖ℎ
(

𝒙9
)

− 𝒖ℎ
(

𝒙8
)

≡ 𝜷8, the jump between nodes 𝒙7 and
𝒙9 is simply 𝒖ℎ

(

𝒙9
)

− 𝒖ℎ
(

𝒙7
)

≡ 𝜷7 + 𝜷8—a linear combination of the former two jumps. By using this linear dependency and the
continuity constraint of the continuous component (see detailed derivation in Appendix A), we can write the junction components
as

𝒖̃ℎ𝑗 = (𝒖7 + 𝛾7𝜷7)(𝜑7 (𝒙) + 𝜑8 (𝒙) + 𝜑9 (𝒙)), (30)

̄̄𝒖ℎ𝑗 = −𝛾7𝜑7 (𝒙) 𝜷7 +
(

1 − 𝛾7
)

𝜑8 (𝒙) 𝜷7 + (1 − 𝛾7)𝜑9 (𝒙) 𝜷7 + 𝜑9 (𝒙) 𝜷8. (31)

Once again, it can be verified that by replacing (30) and (31), respectively, in (28) and (29), (27) reduces to the standard finite
element approximation 𝒖ℎ (𝒙) =

∑12
𝑖=1 𝜑𝑖 (𝒙) 𝒖𝑖. Now we simplify the above continuous and discontinuous components at the junction

by defining enrichment functions. First, we define the weak enrichment function at the junction as

𝜓7(𝒙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜑7 (𝒙) for 𝒙 ∈
{

𝑒1, 𝑒6
}

,

𝜑8 (𝒙) for 𝒙 ∈
{

𝑒2, 𝑒4
}

,

𝜑9 (𝒙) for 𝒙 ∈
{

𝑒3, 𝑒5
}

,

(32)

and the weak enriched DOFs as 𝜶7 = 𝒖7 − 𝒖′7 + 𝛾7𝜷7. Besides, it is worth noticing that 𝜶7 can also be expressed using 𝒖8 or 𝒖9. These
different ways of expressing the weak enriched DOFs are equivalent, as discussed in Appendix A. With the definition of the weak
enrichment function, the continuous part at the junction is expressed as

𝒖̃ℎ𝑗 = 𝜓7(𝒙)𝜶7. (33)

Next, with the definitions of the strong enrichments

𝜒7(𝒙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝛾7𝜑7 (𝒙) for 𝒙 ∈
{

𝑒1, 𝑒6
}

,

(1 − 𝛾7)𝜑8 (𝒙) for 𝒙 ∈
{

𝑒2, 𝑒4
}

,

(1 − 𝛾7)𝜑9 (𝒙) for 𝒙 ∈
{

𝑒3, 𝑒5
}

,

and 𝜒8(𝒙) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝒙 ∈
{

𝑒1, 𝑒6
}

,

0 for 𝒙 ∈
{

𝑒2, 𝑒4
}

,

𝜑9 (𝒙) for 𝒙 ∈
{

𝑒3, 𝑒5
}

,

(34)

the field ̄̄𝒖ℎ𝑗 (𝒙) is expressed as

̄̄𝒖ℎ𝑗 (𝒙) = 𝜒7 (𝒙) 𝜷7 + 𝜒8 (𝒙) 𝜷8. (35)

While in (34) the value of 𝛾7 is arbitrary, in this work we follow the original approach for computing it based on the relative distance
to the intersection location [10].

Finally, similarly to the weak discontinuity case, the approximated field can be expressed as
12
∑

𝑖=1
𝜑𝑖 (𝒙) 𝒖𝑖 ≡

3
∑

𝑖=1
𝜑′
𝑖 (𝒙) 𝒖1

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
smooth

continuous

+
7
∑

𝑖=4
𝜓𝑖 (𝒙)𝜶𝑖

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
non-smooth
continuous

+
12
∑

𝑖=7, 𝑖≠9
𝜒𝑖𝜷 𝑖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
non-smooth

discontinuous

, (36)

and therefore span
{

𝜑1 …𝜑12
}

= span
(

𝜑′
1 …𝜑′

3, 𝜓4 …𝜓7,
{

𝜒𝑖
}12
𝑖=7, 𝑖≠9

)

, where 𝜒10, 𝜒11, 𝜒12 are enrichment functions with displacement
jumps at edges, which can be already described by the strong enrichments as defined in the reference DE-FEM paper [10]. The
absence of 𝜷9 in (36) is noteworthy; this omission is a deliberate choice made to avoid linear dependency in the equation, given that
𝜷9 = 𝜷7 + 𝜷8. This particular form of (36), without the presence of 𝜷9, is just one of the possible enrichments that can be derived to
eliminate the linear dependency issue. Indeed, we could, for example, have used 𝜷9 and 𝜷8 to express 𝜷7. The three-term expression
on the right-hand side of (36), which is comprised of smooth continuous, non-smooth continuous, and non-smooth discontinuous
components, is the approximation used in DE-FEM (see Eq. (7)) for a triple junction. This procedure is now generalized to an 𝑛-fold
junction, as explained in the next section.

3.3. Generalization to an arbitrary number of intersecting discontinuities

The enrichment functions for an arbitrary number of intersecting discontinuities are derived by analogy and deduction from the
triple junction case discussed in the previous section. The derivation of the triple junction enrichments highlights that the solution
field in an element with three discontinuities meeting at a point (i.e., the triple junction) can be described by means of (36). The
necessary enrichment functions for a triple junction consist of a single weak and two strong enrichment functions. To prevent linear
dependency issues, one of the three potential strong enrichment functions had to be excluded, as detailed in Appendix A. In the
following, this enrichment scheme is generalized to the case of an 𝑛-fold junction, where an arbitrary number 𝑛 of discontinuities
converge at a point.
9 
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Fig. 6. A triangular domain split by five discontinuities forming a five-fold junction.

In the case of a triple junction, the weak enrichment function is characterized as a non-smooth continuous function (i.e., 𝐶0-
continuity), while the strong enrichment functions exhibit a non-smooth discontinuous function (i.e., 𝐶−1-continuity). Both the

eak and strong enrichments are defined by the collection of three piece-wise continuous functions, each defined within one of
he subdomains generated by the intersecting discontinuities; these functions are constructed using the standard Lagrange basis
unctions of integration elements. In other words, the non-smooth nature of each component of the enrichment functions within
ts respective subdomain stems from the triangulation of the element containing the triple junction and the utilization of the basis
unctions associated with the triangular integration subdomains as building blocks. The enrichment functions for a domain with an
rbitrary number of intersecting discontinuities at a point are defined accordingly.

As an illustrative example, the weak enrichment for the five-fold junction (i.e., 𝑛 = 5) in Fig. 6 can be expressed as

𝜓𝑖 (𝒙) = 𝜑𝑖 (𝒙) for 𝒙 ∈ 𝛺𝑘, 𝑘 = {1,… , 𝑛} , (37)

here we note that the domain𝛺𝑘 is composed of its corresponding integration subdomains—e.g.,𝛺4 = int
(

𝑒6 ∪ 𝑒7
)

. This enrichment
function, as in (32) for instance, is therefore constructed by the aid of Lagrange basis functions 𝜑𝑖 of their corresponding integration
elements.

For the strong enrichment functions, we can generalize those defined in (34). The first strong enrichment function 𝜒𝑖1 (𝒙), has a
structure similar to 𝜒7 (𝒙) in (34), i.e.,

𝜒𝑖1 (𝒙) =
⎧

⎪

⎨

⎪

⎩

−𝛾𝑖1𝜑𝑖 (𝒙) for 𝒙 ∈ 𝛺1 = int
(

𝑒1 ∪ 𝑒2
)

(1 − 𝛾𝑖1)𝜑𝑖 (𝒙) for 𝒙 ∈ 𝛺𝑗 , 𝑗 = {2,… , 𝑛} .
(38)

The other 𝑛 − 2 strong enrichment functions are defined analogously to 𝜒8 (𝒙) in (34) as in

𝜒𝑖𝑘 (𝒙) =
⎧

⎪

⎨

⎪

⎩

𝜑𝑖 (𝒙) for 𝒙 ∈ ∪𝑛𝑗=𝑘+1𝛺𝑗 ,

0 otherwise.
(39)

Noteworthy, although 𝜒𝑖𝑘 could also be defined in other ways, here we construct it as a special case of the original DE-FEM strong
enrichment function (similarly to (38)) but with 𝛾𝑖𝑘 = 1. The enrichment thus conforms with what we have derived in our previous
section in (34). This way of defining the enrichment is also beneficial when considering a hierarchical implementation [34], where
for instance branched cracks are considered as a new discontinuity meeting an existing junction.

These derivations are based on a counter-clockwise numbering of subdomains, as shown in Fig. 6. For the jumps between
subdomains at the junction, two distinct scenarios arise: the jump between the last subdomain and the first subdomain, and the
jumps between other adjacent subdomains at either side of the discontinuity. Referring back to Fig. 6, the latter subdomains 𝛺2
to 𝛺5 can be directly expressed with 𝜷𝑖𝑘 due to the form of the associated enrichment functions (39)—i.e., the first enrichment
is continuous in 𝛺2 through 𝛺5. As a consequence, the jump between the last and the first subdomains is defined analogously to
𝜷9 = 𝜷7 + 𝜷8 in Section 3.2. Defining [[𝒖ℎ(𝒙𝑗 )]]5,1 ≡ 𝒖ℎ(𝒙𝑗 )

|

|

|𝛺5
− 𝒖ℎ(𝒙𝑗 )

|

|

|𝛺1
, the displacement jump is [[𝒖ℎ(𝒙𝑗 )]]5,1 = 𝜷𝑖1 + 𝜷 𝑖2 + 𝜷𝑖3 + 𝜷 𝑖4.

In general, enrichment functions (37) to (39) are generalized for an 𝑛-fold junction by using the actual number of subdomains,
i.e., by replacing 5 with 𝑛. For an 𝑛-fold junction there will thus be 𝑛−1 strong enrichments. The relationship between the enriched
DOFs and the displacement jumps can therefore be written as

𝜷 𝑖1 = [[𝒖]]1,2, 𝜷𝑖2 = [[𝒖]]2,3, ⋯ 𝜷𝑖(𝑛−1) = [[𝒖]]𝑛−1,𝑛,
∑

𝜷 𝑖𝑘 = [[𝒖]]𝑛,1. (40)

𝑘={1…𝑛−1}

10 
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Finally, the displacement field for an 𝑛-fold junction is expressed as

𝒖ℎ(𝒙) =
∑

𝑖∈𝜄ℎ

𝜑𝑖(𝒙)𝒖𝑖

⏟⏞⏞⏞⏟⏞⏞⏞⏟
standard

+

weak
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝜄𝑤

𝜓𝑖(𝒙)𝜶𝑖 +

strong
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑖∈𝜄𝑠

∑

1≤𝑘<𝑛
𝜒𝑖𝑘(𝒙)𝜷 𝑖𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
enrichment

. (41)

The original DE-FEM formulation is recovered in elements that do not contain a junction: in such a case there are only two
subdomains, i.e., 𝑛 = 2, and only one strong enrichment function is assigned to each enriched node.

4. Computer implementation

In this section, we discuss the computational implementation details of DE-FEM with the aid of pseudo-code. First, in Algorithm 1
we present the overall structure of an enriched finite element code. It is worth noting that the code structure does not differ
significantly from a standard displacement-based finite element code. The main differences lie in the interaction between a finite
element mesh and a set of discontinuities , which creates new enriched nodes and integration elements.

Following the structure of the algorithm, the input and initialization stages are similar to those of a standard FEM code. At
this step, most of the information needed to solve the boundary value problem is loaded, typically from a file. This results in a
mesh data structure consisting of a set of standard nodes,  , and a set of elements,  . At this stage, we also define the boundary
value problem to be solved (governing partial differential equation, boundary conditions, material laws, etc.), denoted by  in
the algorithm. We then process all the discontinuities in the set . To achieve this, we rely on a computational geometric engine,
the details of which are beyond the scope of this work but have been thoroughly described by Zhang et al. [35]. In essence, the
geometric engine identifies all original mesh elements that are intersected by the discontinuities in , denoted by the set 𝑐 , creates
new enriched nodes 𝑒 located at the intersections between discontinuities and edges of the mesh elements, and subdivides the cut
elements into integration elements 𝑞 . It is worth noting that the same data structure that is used to store standard FEM nodes is
augmented to accommodate for new enriched nodes. However, a more specialized data structure is needed for elements, since the
original cut elements are removed (or simply masked), and new integration elements are added. A straightforward way to manage
mesh elements and their integration elements is by using an ordered tree data structure [32]. It is also important to note that the
geometric engine is responsible for determining the number of enriched nodes to be added.

In problems with weak discontinuities, a single enriched node is placed at every intersection between the discontinuity and the
edges of finite elements, as well as at every junction. For strong discontinuities, both weak and strong enrichment nodes are placed
at each intersection with the edges of an element, except at crack tips, where only a weak enrichment node is used (since there is
no displacement jump at tips). This is tantamount to placing both weak and strong enriched nodes but setting the strong enriched
DOFs to zero as a Dirichlet boundary condition [10]. Finally, strongly discontinuous junctions require a single weak enriched node
and a number of strong enriched nodes that depend on the number of junction subdomains.

After all operations by the geometric engine have been performed, the global stiffness matrix and the global force vector are
assembled. Notice that the total number of DOFs can readily be determined by the number of nodes in the set  and the number
of DOFs per node for the given problem (e.g., 𝑑 for 𝑑-dimensional elastostatics or 1 for heat conduction). The global arrays are
then assembled by accounting for the contributions of all elements in the mesh. While the procedure for uncut elements follows
the standard finite element method, the quadrature in integration elements requires special attention and will be discussed in detail
later in this section.

Once the global stiffness matrix and the global force vector are assembled, we prescribe the boundary conditions. The degree of
freedom vector is then obtained by solving the linear system of equations 𝑲𝑼 = 𝑭 . With the solution vector determined, we can
compute post-processing quantities such as stress, strain, among others, and write the results to an output file.

The quadrature of an integration element is described in Algorithm 2, where we denote the integration element as 𝑒 and the
parent cut element as 𝑒. It is important to note that each element has its own isoparametric mapping and therefore we need to
select carefully the appropriate components for the numerical quadrature. In essence, the standard shape function vector and the
strain–displacement matrix of the parent element are augmented by the contributions of weak and strong enrichment functions.
This procedure ensures that the augmentation is performed correctly while also conducting integration on the (smaller) integration
element. Therefore, the determinant of the Jacobian matrix of the integration element is used.

Making reference to Algorithm 2, we first determine the element DOF table which is used to map local elements of the arrays to
their actual locations in the global stiffness matrix and force vector. To achieve this we can simply use the IDs of the mesh nodes of
the parent cut element 𝑒 and those of the enriched nodes of the integration element. Note that the number of enriched nodes in an
integration element will depend on the types of discontinuities and whether the integration element belongs to a fully split parent
element or one containing a junction. With the element DOF table, we determine the total number of local DOFs 𝑛, which is then
used to initialize the local stiffness matrix and the local force vector. The nodal coordinates of both the integration and the parent
cut elements are needed to compute quantities related to their corresponding mappings, namely the inverse of the Jacobian matrix
and its determinant.

We use standard Gauss quadrature with weights 𝜸 and coordinates 𝝃, and therefore we start a loop over the total number of
auss quadrature points 𝑛GP. Within the loop, we can discriminate operations related to the integration element and those related

o the parent element. Regarding operations related to the integration element, we first compute the Lagrange shape functions and
11 



D. Liu et al.

p

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117432 
Algorithm 1 Structure of an enriched finite element code

Input: A file handle 𝑓in with input data, which includes mesh data (i.e., set of nodes  and elements ), boundary value problem
data  (equation to be solved, boundary conditions, constitutive laws, material properties, etc.), and a discontinuity set 

function EnrichedFEM
– input and initialization stage
{

 ,  ,
}

← ReadInput(𝑓in) – get nodes, elements, and BVP data
– process discontinuities
for 𝑑𝑖 ∈  do – loop over discontinuities

𝑐 ← Intersect(𝑐 , 𝑑𝑖) – find cut elements
{

𝑒, 𝑞
}

← GeometricEngine(𝑐 , 𝑑𝑖) – create enriched nodes and integration elements
 ←  ∪𝑒 – add enriched nodes
 ←

(

 ⧵ 𝑐
)

∪ 𝑞 – mask cut elements and add integration elements
– assembly stage
𝑛𝐷 ← |

|

 |

|

× DOFsPerNode () – get total number of DOFs
{𝑲 ,𝑭 } ←

{

𝟎𝑛𝐷×𝑛𝐷 , 𝟎𝑛𝐷×1
}

– initialize global array data structures

for 𝑒 ∈  do
{

𝒌𝑒,𝒇 𝑒,
}

← Quadrature(𝑒, ,) – obtain local element arrays and EFT
𝑲 ← Assemble

(

𝒌𝑒,
)

– assemble contribution to stiffness matrix
𝑭 ← Assemble

(

𝒇 𝑒,
)

– assemble contribution to force vector
– solution stage
{𝑲 ,𝑭 } ← PrescribeBCs (𝑲 ,𝑭 ) – apply boundary conditions
𝑼 ← 𝑲−1𝑭 – solve for unknown field
– post-process solution and output
{𝝈, 𝝐,…} ← PostProcess (𝑼 ) – get stress, strain, and other quantities
𝑓out ← WriteOutput( ,  ,𝑼 ,𝝈, 𝝐,…) – write results to file

end function

their derivatives with respect to master coordinates, the inverse of the Jacobian matrix, and its determinant. These are then used to
compute the enrichment functions and their derivatives through a loop over enriched node locations. Noteworthy, at each location
𝒙𝑒 there is a single weak enrichment and a single strong enrichment, unless the location is that of a junction—in which case there
is a single weak enrichment but multiple strong enrichments. It is also worth noting that enrichment functions can be multiplied by
scaling factors 𝛾𝑤 and 𝛾𝑠, which help control the condition number of stiffness matrices when discontinuities lie arbitrarily close to
standard mesh nodes [27–29]. The inverse of the Jacobian matrix corresponding to the integration element is then used to compute
the derivatives of the enrichment functions with respect to global coordinates.

Once computed, enrichment functions and their derivatives are expanded and added to arrays 𝜱 and 𝑩, respectively. In the
pseudo-code, the expansion to account for multiple DOFs is done for the shape function array 𝛷 by means of the Kronecker product,
denoted by the symbol ⊙. Also, 𝜟

(

𝛁𝒙𝜓𝑒
)

is used to denote the proper arrangement of the derivatives in the strain–displacement
matrix; for instance, when using Voigt notation in 2-D we have

𝜟
(

𝛁𝒙𝜓𝑒
)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝜓𝑒
𝜕𝑥 0

0 𝜕𝜓𝑒
𝜕𝑦

𝜕𝜓𝑒
𝜕𝑦

𝜕𝜓𝑒
𝜕𝑥

⎤

⎥

⎥

⎥

⎥

⎦

.

Once the matrices 𝛷 and 𝑩 contain all elements corresponding to enriched functions and their derivatives, respectively, we
roceed with operations at the parent cut element 𝑒. First, we find the master coordinate 𝝃𝑝 corresponding to the global coordinate

𝒙 = 𝑿⊤𝝋⊤. Once this is known, the shape functions of the parent element and their derivatives are determined as in standard FEM
and are subsequently added to the corresponding arrays.
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Algorithm 2 Numerical quadrature in integration elements

Input: Triangular integration element 𝑒 , parent element 𝑒, node set  , and problem data  , number of integration points 𝑛GP
Output: Local element arrays 𝒌𝑒, 𝒇 𝑒, and element freedom table 

function Quadrature
 ← Connectivity(𝑒) – get standard and enriched node IDs
 ← DOFs (,DOFsPerNode ()) – get element freedom table
𝑛 ← | | – get total number of local DOFs
{

𝒌𝑒,𝒇 𝑒
}

←
{

𝟎𝑛×𝑛, 𝟎𝑛×1
}

– initialize local arrays

𝑿⊤ ←

[

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

]

– get nodal coordinates of integration element

𝑿⊤ ←

[

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3

]

– get nodal coordinates of parent element

– loop over integration points
{𝒘, 𝝃} ← QuadratureRule(𝑛GP) – weights and master coordinates
for 𝑖 ←

{

1… 𝑛GP
}

do
𝜱 ← ∅ – shape function array
𝑩 ← ∅ – strain-displacement array
– operations related to integration element
{

𝝋 ,𝛁𝝃𝝋
}

← Shapes
(

𝝃𝑖, 𝑒
)

– get Lagrange shape functions/derivatives
{

𝑱−1, 𝑗
}

← Jacobian
(

𝑿 ,𝛁𝝃𝝋
)

– Jacobian inverse and determinant
𝒙 ← 𝑿⊤𝝋⊤ – compute global coordinate
– loop over enrichments
for

{

𝒙𝑒
}

∈ 𝑒 ∩ 𝑒 do
{

𝛾𝑤, 𝛾𝑠
}

← GetWeights
(

𝒙𝑒, 𝑒
)

– get scaling factors
{

𝜓𝑒,𝛁𝝃𝜓𝑒
}

← Weak
(

𝛾𝑤,𝝋 ,𝛁𝝃𝝋
)

– weak enrichments/derivatives
{

𝜒𝑒,𝛁𝝃𝜒𝑒,
}

← Strong
(

𝛾𝑠,𝝋 ,𝛁𝝃𝝋
)

– strong enrichments/derivatives
{

𝛁𝒙𝜓𝑒,𝛁𝒙𝜒𝑒,
}

←
{

𝑱−1𝛁𝝃𝜓𝑒,𝑱−1𝛁𝝃𝜒𝑒
}

– derivatives w.r.t. global coordinates
𝜱 ←

[

𝜱 𝜓𝑒 ⊙ 𝑰 𝜒𝑒 ⊙ 𝑰
]

– stack enrichment functions
𝑩 ←

[

𝑩 𝜟
(

𝛁𝒙𝜓𝑒
)

𝜟
(

𝛁𝒙𝜒𝑒
)]

– stack derivatives
– operations involving parent element
𝝃𝑝 ← InverseMapping(𝒙) – find master coordinate
{

𝝋,𝛁𝝃𝝋
}

← Shapes
(

𝝃𝑝, 𝑒
)

– shape functions/derivatives
𝑱−1 ← Jacobian(𝑿,𝛁𝝃𝝋) – Jacobian inverse
𝛁𝒙𝝋 ← 𝑱−1𝛁𝝃𝝋 – derivatives w.r.t. global coordinates
𝜱 ←

[

𝜱 𝝋⊙ 𝑰
]

– stack enrichment functions
𝑩 ←

[

𝑩 𝜟
(

𝛁𝒙𝝋
)]

– stack derivatives
– add contributions to local arrays
𝑪 ← Constitutive (𝒙) – constitutive law
𝒌𝑒 ← 𝒌𝑒 +𝑤𝑖 𝑗 𝑩⊤𝑪 𝑩 – update stiffness matrix
𝒇 𝑒 ← 𝒇 𝑒 +𝑤𝑖 𝑗 𝜱⊤ 𝒃 – update force vector

return
{

𝒌𝑒,𝒇 𝑒,
}

end function

Finally, we add the contribution of the Gauss integration point to the local stiffness matrix (for which the constitutive matrix
is evaluated) and the local force vector. The function returns these arrays along with the element DOF table, which is required

o properly integrate their contributions into their global counterparts. It is worth noting that the primary difference from the
riginal DE-FEM implementation is the need to determine the number of enrichments at a junction based on the number of junction
ubdomains. This can be achieved straightforwardly through the correct bookkeeping strategy.
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Fig. 7. Discontinuous patch test (A). The same structured discretization (5 × 5 triangulated rectangular grid) is employed in (B), where the triple junction is
ocated within an element (𝑎 = 0.1), and in (C), where it is placed on an element edge (𝑎 = 0). Each circle in (B, C) represents the location of an enriched node

defined at the intersection between a discontinuity line and an element edge, as well as at the intersection between the two discontinuities.

5. Numerical examples

DE-FEM’s performance and capability in handling problems with multiple discontinuities meeting at a point are investigated
through several numerical examples. For elastostatics problems, we assume a plane strain linear elastic material behavior under
the assumption of small deformations. Across discontinuities, we assume either perfectly bonded domains as in the three-material
wedge example in Section 5.2, linear elastic behavior governed by a cohesive law—leading to elastic interface behavior in the
discontinuity cohesive patch test in Section 5.1 and sliding grain boundaries in the anelasticity of polycrystalline material example
in Section 5.4—or a traction-free interface as in the branched crack examples in Section 5.3. For the heat conduction application in
Section 5.5, the bulk material has constant thermal conductivity, and discontinuities behave as material interfaces. This indicates that
both weak and strong enrichments are employed in the examples in Sections 5.1, 5.3, and 5.4, whereas only the weak enrichment
was used in the examples in Sections 5.2 and 5.5.

Unless otherwise stated, quantities are dimensionless so they can be understood under any consistent unit system, and domains
are discretized using structured meshes of linear triangular elements similar to those depicted in Fig. 7.

5.1. Discontinuous cohesive patch test

This test demonstrates the effectiveness of the proposed enrichment scheme in reproducing independent strain fields across
discontinuities and around a junction irrespective of the discretization. Consider in Fig. 7(a) a square plate of size 2𝑙 (𝑙 = 1) divided
nto three subdomains 𝛺𝑖 by discontinuities 𝛤𝑖𝑗 (𝑖, 𝑗 = {1, 2, 3}). Each subdomain has elastic modulus 𝐸𝑖 = 10𝑖 and Poisson’s ratio
𝑖 = 0. The test is designed to produce independent horizontal elongations in the upper (𝛺1∪𝛺2) and lower (𝛺3) blocks of the plate.
o this end, the plate is constrained by prescribing 𝒖 (0, 𝑦) = 𝟎 to the left edge, 𝑢𝑦 (2𝑙, 𝑦) = 0 to the right-edge, and 𝑢𝑦 (𝑙, 𝑦) = 0 to
he mid-side node on the upper edge. These boundary conditions are prescribed using standard procedures for both standard and
nriched DOFs, since the latter are also zero. Tractions 𝒕̄ = 1𝒆𝑥 and 2𝒕̄ are applied to the top and bottom sides of the right edge as
hown in Fig. 7(a). A linear elastic cohesive law is used along interfaces between subdomains. For discontinuity 𝛤12, tangential and
ormal stiffnesses are 𝑡𝑡𝑡 = 0 and 𝑡𝑛𝑛 = 10, respectively. Normal and tangential stiffnesses along discontinuities 𝛤13 and 𝛤23 are set
o zero.

To evaluate the necessity of incorporating both weak and strong enrichment functions, we conducted a test where weak
nrichment functions are excluded. Figs. 8(c) and 8(d) show the contour plots of the strain field in the deformed configuration.
t is apparent that while the discontinuous displacement field can be reproduced to some extent (though inaccurately when the
iscontinuity is placed within an element), the strain field cannot be reproduced. In contrast, as illustrated in Figs. 8(a) and 8(b),
ncorporating both weak and strong enrichment functions enables the accurate reproduction of the expected solution, irrespective
f the location of the junction (i.e., within an element or along an element edge). This solution corresponds to three distinct strain
ields in 𝛺1, 𝛺2, and 𝛺3, with values 𝑡𝑥∕𝐸1 = 1∕10, 𝑡𝑥∕𝐸2 = 1∕20, and 2𝑡𝑥∕𝐸3 = 1∕15, respectively. Notably, we show the strain
ield rather than the stress field to emphasize the jump in strain at the upper part of the domain (plotting the stress would have
esulted in a uniform field). Furthermore, the figure shows both displacement and gradient jumps, demonstrating that our proposed

nrichment scheme effectively reproduces independent kinematic fields.
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Fig. 8. Strain field superimposed on the deformed configuration obtained with the proposed DE-FEM formulation, which comprises both weak and strong
enrichments (A, B), and contrasted with a solution that neglects the weak enrichments (C, D). Integration elements are also plotted for post-processing purposes.
The discretization used is shown in Fig. 7.

5.2. Convergence analysis for a three-material wedge problem

The convergence properties of the method are now investigated. An infinite plate with three wedge regions, perfectly bonded
o one another, is analyzed by prescribing the asymptotic displacement field as essential boundary conditions on the computational
quare domain shown in Fig. 9(a). The actual displacement field values correspond to 𝐾I = 𝐾II = 1, i.e., identical mode I and mode II
tress intensity factors (SIFs), as described by Akhondzadeh et al. [36].

The square plate domain of size 𝑙 = 4 consists of three different materials with elastic modulus 𝐸𝑖 = 10𝑖−1 for the 𝑖th subdomain
and equal Poisson’s ratio 𝜈 = 0.3. Fig. 9 shows the meshes used to obtain the first points in the error curves reported in Fig. 10 for
unfitted DE-FEM and fitted FEM discretizations. Across two neighboring domains, the displacement field remains continuous (due to
the perfect bonding between the wedges), albeit with discontinuous field gradients. The continuous nature of the displacement field
across a material interface allows us to either disregard or set the values of the DOFs associated with strong enrichment functions
to zero. In this case, we disregard them and employ only the weak enrichment.

For the enforcement of essential boundary conditions on the weak enrichment DOFs located on the boundary, the boundary
condition values are obtained by solving a local problem as discussed in Section 2. Due to the test configuration, the analytical
solution presents a strain singularity at the junction point.

The convergence properties of DE-FEM are demonstrated by computing the error of the approximate solution 𝒖ℎ with respect to
the analytical solution 𝒖 in the energy norm, according to

‖

‖

𝒖 − 𝒖ℎ‖
‖(𝛺)

‖𝒖‖(𝛺)
=

√

∫𝛺(𝜺 − 𝜺ℎ)⊤𝑪(𝜺 − 𝜺ℎ) d𝛺
√

∫𝛺 𝜺⊤𝑪𝜺 d𝛺
, (42)

with 𝜺ℎ and 𝜺 their corresponding strain tensors, and 𝑪 is the tensor of elastic constants.
Convergence results are summarized in Fig. 10. Convergence rates obtained for DE-FEM and standard FEM using structured

eshes are 0.35 and 0.32, respectively. For unstructured meshes, the convergence rates for DE-FEM and standard FEM are 0.40
nd 0.35, respectively. It is worth noting that, while the optimal convergence rate of 0.5 is not attained, the results obtained follow
losely those of standard FEM on fitted meshes. The low convergence rate is attributed to the fact that the enrichment functions
mployed in this work only capture the kinematics of the discontinuities and therefore cannot reproduce the singularity at the
unction.

.3. Branched cracks

A series of illustrative cases, inspired by those reported by Daux et al. [6], are solved to showcase the modeling capability of
E-FEM in accurately generating results for any number of branched cracks. Initially, the focus is on branched cracks. Subsequently,

wo specific scenarios involving cross-shaped and star-shaped cracks are examined. Results are obtained with Young’s modulus and
oisson’s ratio taken as 10.0 and 0.0, respectively. Additionally, the magnitude of the normal traction vector is set to one.
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Fig. 9. (A) Three-material wedge problem: geometry and boundary conditions; DE-FEM discretizations with unfitted (B) unstructured and (C) structured meshes;
EM discretizations with fitted (D) structured and (E) unstructured meshes. The first points of each line in Fig. 10 have been obtained using these discretizations.

Fig. 10. Convergence of the relative error of the energy norm with respect to the number of DOFs using structured and unstructured meshes.

.3.1. Symmetric branched crack
To assess the accuracy of DE-FEM regarding the calculation of stress intensity factors, we study a symmetric branched crack

n an infinite plate subject to uniaxial loading perpendicular to the axis of symmetry. Geometry and boundary conditions of the
omputational domain are reported in Fig. 11. We first consider a configuration with 𝑙 = 16, 𝑤 = 20, 𝑎 = 𝑏 = 1 and 𝜃 = 𝜋∕4. While

the solution obtained with a semi-analytical approach is available for an infinite domain [37], we follow Daux et al. [6] and take
a sufficiently large rectangular domain for the analysis. Since the dimensions of this domain substantially exceed the length of the
crack branches, it effectively functions as a representative model of an infinite plate.

The normalized SIFs at crack tips A and B are computed as

𝐾𝐴
I = 𝐾𝐴

I ∕𝜎
√

𝜋𝑐, 𝐾𝐵
I = 𝐾𝐵

I ∕𝜎
√

𝜋𝑐, 𝐾𝐵
II = 𝐾𝐵

II ∕𝜎
√

𝜋𝑐, (43)

here 𝐾I and 𝐾II are the calculated mode I and II SIFs, respectively (refer to the procedure outlined in § 2.5 of Aragón and
imone [10]). Table 1 presents the results of a mesh refinement study conducted using DE-FEM with unstructured graded meshes of
inear triangular elements, an example of which is shown in Fig. 11. These results are compared to those obtained by Daux et al. [6]
16 
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Fig. 11. (A) Symmetric branched crack in a plate subject to uniaxial tension [6] (𝑙 = 16, 𝑤 = 20, 𝑎 = 𝑏 = 1, 𝜃 = 𝜋∕4; crack not to scale); (B) underlying
unstructured graded mesh used to obtain the first column of results in Table 1 with mesh size ℎ∕𝑎 = 0.25 and (C) zoomed view around the crack.

Table 1
DE-FEM normalized SIFs for various values of the ratio ℎ∕𝑎 (ℎ is the mesh size around the crack).

ℎ∕𝑎

0.25 0.21 0.18 0.09 0.05 0.05 (XFEM [6]) *

𝐾𝐴
I 1.0384 1.0385 1.0400 1.0446 1.0451 1.044 1.044

𝐾𝐵
I 0.4949 0.4986 0.4989 0.4981 0.4959 0.496 0.495

𝐾𝐵
II 0.5018 0.5081 0.5089 0.5091 0.5091 0.508 0.506

* Reference solution by Chen and Hasebe [37, Table 4].

Fig. 12. Normalized SIFs at points A (left) and B (middle,right) for the branched crack problem in Fig. 11, and for various ratios of 𝑏∕𝑎 and branched angles 𝜃.

using XFEM with an unstructured mesh refined around the crack and to the results by Chen and Hasebe [37] obtained using a semi-
analytical approach. We notice that the normalized SIFs converge to the reference values as the mesh is refined; acceptable results
can be obtained even with coarse discretizations.

While the results in Table 1 are obtained for a fixed value of 𝑎, Fig. 12 shows the normalized SIFs for varying values of 𝑏∕𝑎 and
the branching angle 𝜃, namely 𝑎∕𝑏 = [0.2, 0.4, 0.6, 0.8, 1.0] and 𝜃 = [15◦, 30◦, 45◦, 60◦, 75◦]. The results, also tabulated in Appendix C
(Table 2), are compared to those obtained numerically via XFEM by Daux et al. [6] (dashed lines) and by Chen and Hasebe [37]
(dotted lines) using a semi-analytical approach. It is worth noting that our results are in good agreement to those obtained by XFEM
that uses singular enrichments around crack tips.

5.3.2. Cross- and star-shaped cracks
To illustrate the ability of the method to accurately represent discontinuous fields around intersecting cracks in more complex

scenarios, the plates with cross- and star-shaped cracks in Fig. 13 are analyzed. Both problems are solved using structured
discretizations with an equal number of elements in the vertical and horizontal directions, employing a 51 × 51 triangulated
rectangular grid. This discretization is similar to that used by Daux et al. [6], who employed a uniform mesh of 40 × 40 bilinear
quadrilateral elements to solve the star-shaped crack problem. Due to the regular distribution of mesh points and the geometry
17 
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Fig. 13. Cross-shaped (A) and star-shaped (𝜃 = 𝜋∕3) (B) crack problems, along with (C) the underlying 51 × 51 triangulated rectangular grid for the 𝑎∕𝑤 = 0.8
configuration of the star-shaped crack problem in (B). The same background mesh is used for the cross-shaped crack problem in (A).

Fig. 14. Stress intensity factor 𝐾𝐴
I (top) as a function of the crack length to specimen size ratio 𝑎∕𝑤, and normalized von Mises stress on the deformed

configuration (bottom) for the cross-shaped cracks (A, C) and the star-shaped cracks (B, D) with 𝑎∕𝑤 = 0.8. The results are obtained using a structured
discretization (51 × 51 triangulated rectangular grid).

of the cracks (see Fig. 13(c)), the junction is located along an element edge in both cases, similar to the one clearly depicted in
Fig. 7(c).

The normalized SIFs at crack tip A, 𝐾𝐴
I = 𝐾𝐴

I ∕𝜎
√

𝜋𝑎, are shown in Figs. 14(a) and 14(b) for various ratios 𝑎∕𝑤. These results are
also tabulated in Appendix C (Tables 3 and 4). DE-FEM results closely resemble those obtained with a semi-analytical approach by
Cheung et al. [38] and numerical results obtained with XFEM by Daux et al. [6]. Additionally, the von Mises stress field (normalized
by the maximum stress) is also illustrated on the deformed configuration for 𝑎∕𝑤 = 0.8 in Figs. 14(c) and 14(d).

5.4. Freely sliding grain boundaries in polycrystalline material

We now show an application of DE-FEM to a polycrystalline material composed of regular hexagonal grains. This example was
first proposed by Ghahremani [39] and studied by Simone et al. [7] using GFEM on the periodic unit cell shown in Fig. 15(a). Grain
boundary sliding is the primary mechanism behind the anelastic deformation of polycrystalline materials. When these materials
are subject to constant stress over time and at high temperatures, failure occurs along grain boundaries. At low stress levels, as
18 
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Fig. 15. (A) Periodic unit cell used in the grain boundary sliding example: 𝑙 is the side length of a grain, 𝑠 is the relative location along the grain boundary,
and 𝐿 = 3𝑙 is the length of the unit cell; (B) one of the structured discretizations (41 × 27 triangulated rectangular grid) used to obtain the results in Fig. 16
and (C) zoomed view around a triple junction.

a limiting case, individual grains behave elastically, the viscous resistance of grain boundaries can be neglected, and they can be
effectively considered as freely sliding against each other. In this so-called ‘‘relaxed state’’, a body has lower rigidity compared to
the unrelaxed state, where shear tractions are transmitted across the grain boundaries. The relaxed Young’s modulus is, therefore,
a key parameter in predicting these time-dependent deformations.

In the spirit of DE-FEM [10], the periodic unit cell domain is discretized using a structured mesh of linear triangular elements,
a typical example of which is shown in Fig. 15(b). Discontinuities, representing grain boundaries, are decoupled from the
discretization, as illustrated in Fig. 15(c). To enable free boundary sliding, we employ a linear elastic cohesive law that governs
the interaction between neighboring grains. The cohesive law comprises tangential and normal stiffness parameters denoted as
𝑡tt and 𝑡nn, respectively. We set 𝑡tt = 0 to enable unrestricted sliding between grains, while 𝑡nn = 5 × 104 is chosen to prevent
grain separation. These cohesive law parameters ensure that grains can freely slide past each other while remaining connected. We
consider the polycrystalline aggregate to be composed of linear elastic grains with Young’s modulus 𝐸 = 10. The application of
periodic boundary conditions is achieved using the methodology outlined in Appendix D.

To verify the accuracy of our approach, we compute the relaxed Young modulus

𝐸̄ =
(

𝜖𝑥
𝜎̄𝑥

+ 𝜈2

𝐸

)−1
, (44)

f the unit cell subject to uniaxial tension and compare the results with those obtained using GFEM [7] and with the findings
eported by Ghahremani [39]. In (44) 𝜀̄𝑥 and 𝜎̄𝑥 represent relaxed strain and stress values in the horizontal direction, respectively.
s we impose a unit horizontal displacement along the right boundary, the relaxed strain 𝜀̄𝑥 is calculated as 1∕𝐿, where 𝐿 denotes

he length of the unit cell. The relaxed stress 𝜎̄𝑥 is determined as the horizontal component of the resultant reaction force along the
ight boundary divided by the cross-sectional area 𝐴. The cross-sectional area is simply the product of the thickness (equal to unity)
nd the height of the unit cell.

Fig. 16(a) shows the normalized relaxed Young’s modulus 𝐸̄∕𝐸 for different discretizations and across a range of Poisson’s ratio
alues. The results exhibit a good agreement with those reported by Ghahremani [39] and Simone et al. using GFEM [7]. The local
esponse in terms of tangential displacement jump [[𝑢𝑠]] along an inclined grain boundary is reported for 𝜈 = 0.3 in Fig. 16(b). The
esults, similar to those obtained with GFEM [7], indicate that both methods quickly converge to the same displacement profile.
astly, the normalized von Mises stress is depicted in Fig. 17. Upon comparing it with the GFEM solution, a similar pattern is
bserved, with some minor differences at certain locations. Apart for the different enrichment approaches in DE-FEM and GFEM,
he differences between results, seen in Figs. 16 and 17, can also be attributed to the different discretizations used in the two
ethods. Both methods employ a structured 𝑚 × 𝑛 discretization of the rectangular unit cell; in DE-FEM each grid element is split

nto two triangular elements, whereas in GFEM bilinear quadrilateral elements are used.

.5. Heat conduction in a polycrystalline material

The last application deals with the heat conduction problem in the polycrystalline aggregate depicted in Fig. 18(a). This problem
as studied by Aragón et al. [8]. A polycrystalline material is subject to a uniform heat flux 𝑞 = 100 W/m on the top edge, while

he bottom edge serves as a convective boundary and the vertical edges are insulated. For the convective boundary, the ambient
emperature and heat transfer coefficient are set to 293K and 100W∕(mK), respectively. The grains have different conductivity values
qual to (in W∕(mK)) 𝑘1 = 2, 𝑘2 = 4, 𝑘3 = 8, and 𝑘4 = 380. As these grains are perfectly bonded to each other, no temperature
iscontinuities are present; therefore, only the weak enrichment function has been utilized. Figs. 18(b) and 18(c) show the discretized
omain and zoomed views around representative junctions. The resulting temperature field is plotted in Fig. 19(a) and mirrors the
esult obtained via GFEM [8].

. Summary and conclusions

In this work we introduced a discontinuity-enriched finite element method for modeling an arbitrary number of intersecting

iscontinuities. Our approach, which uses enrichments only to address the kinematics of both weak and strong discontinuities
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Fig. 16. Mesh convergence of (A) the variation of the relative normalized relaxed modulus with respect to the Poisson’s ratio, and (B) the displacement jump
in the tangential direction along an inclined grain boundary (𝜈 = 0.3).

Fig. 17. Normalized von Mises stress field 𝜎vM∕𝜎̄𝑥 (𝜈 = 0.3): (A) DE-FEM and (B) GFEM [7] results are obtained using a structured 240 × 136 discretization
of the rectangular unit cell.

Fig. 18. (A) Heat conduction problem in a polycrystalline material. (B) Simulation domain consisting of a 39 × 39 triangulated rectangular structured grid.
(C) Green squares in (B) annotate specific junctions; the junctions are reported in the same order, starting from the bottom left box and proceeding in a clockwise
direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. The DE-FEM temperature distribution (A) matches the field reported in (B) from Aragón et al. [8] using GFEM. (C) The flattened view of the reference
solution does not clearly reveal the discontinuous temperature gradients along grain boundaries, which are visible in the three-dimensional renderings in (A)
and (B).
20 
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with a three-term unified formulation, is effective in addressing weak discontinuities in material interface problems and strong
discontinuities in branched cracks and discontinuous grain boundary problems. It bears emphasis that the proposed enrichment
functions align with those proposed in the original DE-FEM approach [10], which significantly reduced the complexity of the
computer implementation when compared to GFEM/XFEM; the DE-FEM enrichment scheme therefore enables the modeling of weak
discontinuity problems à la IGFEM [26] and strong discontinuity problems within a unified formulation.

Utilizing DE-FEM as the foundation of our approach capitalizes on its inherent advantages. Our method provides improvements
ver the methodologies employed by Daux et al. [6] and Simone et al. [7] in terms of simplicity, implementation of Dirichlet
oundary conditions, and post-processing of results. Simultaneously, it enables accurate modeling of various types of intersecting
iscontinuities. Regarding computational cost, it is worth noting that, since discontinuities are lower-dimensional geometric
anifolds—i.e., lines in 2-D and surfaces in 3-D—the additional enriched DOFs needed to capture their kinematics constitute only
small fraction of the total DOFs associated with bulk elements [40]. This difference is more pronounced as problems become

symptotically large, e.g., for higher mesh resolutions.
The numerical examples presented in Section 5 demonstrate comparable convergence properties to standard FEM when using

itted meshes. No crack tip singular enrichments are adopted in our formulation and therefore suboptimal convergence rates are
ttained. We recall that the error in energy norm is bounded by

‖

‖

‖

𝒖 − 𝒖ℎ‖‖
‖(𝛺)

≤ 𝐶ℎmin(𝑝,𝜆)
‖𝒖‖(𝛺),

where 𝐶 is a constant, 𝑝 is the polynomial order, and 𝜆 the singularity exponent. In the problems investigated herein singularities
arise at crack tips in cohesive and traction-free cracks, and at junctions in the case of perfectly-bonded interfaces. For a traction-free
crack 𝜆 = 1∕2 and thus both FEM and DE-FEM converge suboptimally at a rate 

(

ℎ1∕2
)

. For junctions, however, there is a less
severe singularity—e.g., 𝜆 = 0.7256 [36, § 5.1] for the example in § 4.2, making less stringent the need for singular enrichments.
In addition, we also note that there is a large set of problems for which addressing the singularity is not as critical as in LEFM
problems, e.g., in cohesive crack models where the singularity is inherently regularized by the cohesive zone. For these models the
focus should be placed on accurately capturing the kinematics (displacements jumps and gradients) within the cohesive zone rather
than on the singularity itself.

Despite not using singular enrichments, we note that accurate stress intensity factors are still obtained, as first shown in the
original DE-FEM formulation [10]. Herein we again show that DE-FEM recovers SIFs that are as accurate as those computed in
XFEM using singular enrichments by Daux et al. [6] (see results in Section 5.3.1, Section 5.3.2, and Appendix C). This is because
SIFs converge with mesh size ℎ at a rate  (ℎ), which is twice as fast as the rate of convergence for the finite element solution (error
in energy norm) without addressing the singularity, i.e., 

(

ℎ1∕2
)

—functionals, as the interaction integral in (18), converge at twice
the rate of their argument [41]. However, our formulation does not preclude the possibility of incorporating additional singular
enrichment functions to yield optimal convergence rates and even more accurate SIFs. The increased accuracy would come at the
expense of a more intricate computer implementation, as large areas around singularities would need to be enriched (i.e., geometrical
rather than topological enrichments). Additionally, special techniques would be required to address the loss of accuracy in blending
elements and the quadrature of singular functions [32].

We achieved satisfactory results for both thermal and mechanical problems in polycrystalline materials, demonstrating effective
handling of complex scenarios involving multiple junctions even with a coarse mesh. Furthermore, we showed that when dealing
with displacement jumps, incorporating weak enrichments becomes essential for obtaining fully-independent kinematic fields and
ensuring the proper fulfillment of the patch test. In the examination of the stress intensity factors for branched cracks, our results
align with reference solutions.

While all our examples considered straight discontinuities, results presented herein can readily be extrapolated to problems
where curved discontinuities are represented piece-wise linearly. It is important to note that enhancing the geometry of curved
discontinuities beyond a piecewise linear representation is ineffective, as demonstrated by De Lazzari et al. [31], who combined
DE-FEM with a NURBS parameterization of curved discontinuities. In that work we concluded that improving the geometry of curved
discontinuities to minimize the geometry discretization error does not justify the complexities associated with the formulation and
implementation. In fact, accurately modeling curved interfaces is not necessary as long as the primal field remains linear, since it
is well-known that superparametric formulations induce artificial stresses even with rigid-body motions [31,42].

The methodology presented in this work therefore opens a relatively simple venue to simulate discrete crack propagation
including branching and merging. Finally, although the method has been derived in a two-dimensional context, its extension to three
dimensions is straightforward. The extension requires the help of a robust geometric engine, as described by Zhang et al. [29]. The
only potential issue may lie in determining an efficient way of cutting elements crossed by multiple intersecting discontinuities. Yet,
recent published work by Zhang et al. [35] shows that such operations can be performed robustly on complex 3-D polycrystalline
microstructures discretized using structured tetrahedral meshes.
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ppendix A. Derivation of the junction enrichment

Following on the discussion of Section 3.2, and making reference to Fig. 5, the continuous component of the field at the junction
an be written as

𝒖̃ℎ𝑗 = 𝜑7 (𝒙)
(

𝒖7 + 𝛾7𝜷7
)

+ 𝜑8 (𝒙)
(

𝒖8 + 𝛾8𝜷8
)

+ 𝜑9 (𝒙)
(

𝒖9 + 𝛾9𝜷9
)

, (45)

where we recall that 𝜷9 = 𝜷7 + 𝜷8. Since this function is continuous, at the junction coordinate 𝒙7 = 𝒙8 = 𝒙9 we have
𝒖
(

𝒙7
)

= 𝒖̃
(

𝒙8
)

= 𝒖̃
(

𝒙9
)

. Since at this coordinate 𝜑7
(

𝒙7
)

= 𝜑8
(

𝒙8
)

= 𝜑9
(

𝒙9
)

= 1, from (45) we have

𝒖7 + 𝛾7𝜷7 = 𝒖8 + 𝛾8𝜷8 = 𝒖9 + 𝛾9
(

𝜷7 + 𝜷8
)

, (46)

which can be written as
𝒖7 + 𝛾7𝜷7 = 𝒖8 + 𝛾8𝜷8,

𝒖8 + 𝛾8𝜷8 = 𝒖9 + 𝛾9
(

𝜷7 + 𝜷8
)

,

𝒖7 + 𝛾7𝜷7 = 𝒖9 + 𝛾9
(

𝜷7 + 𝜷8
)

,

(47)

and cast into matrix form as

⎡

⎢

⎢

⎢

⎣

𝜷7 −𝜷8 0

0 𝜷8 −
(

𝜷7 + 𝜷8
)

𝜷7 0 −
(

𝜷7 + 𝜷8
)

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨

⎡

⎢

⎢

⎢

⎣

𝛾7
𝛾8
𝛾9

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝜷7

𝜷8

𝜷7 + 𝜷8

⎤

⎥

⎥

⎥

⎦

, (48)

where we employed 𝒖8 − 𝒖7 = 𝜷7 and 𝒖9 − 𝒖8 = 𝜷8. The coefficient matrix is in fact rank deficient, i.e., rank (𝑨) = 2, and thus there
is an infinite number of solutions. However, if one of the variables 𝛾𝑖 is fixed, the other two can be determined. Fixing for instance
𝛾7 yields

𝛾8 =
𝜷7

(

𝛾7 − 1
)

𝜷8
, 𝛾9 =

𝜷7
𝜷7 + 𝜷8

𝛾7 − 1. (49)

We now replace 𝛾8 and 𝛾9 in (49), and 𝒖8 = 𝒖7 + 𝜷7 and 𝒖9 = 𝒖7 + 𝜷7 + 𝜷8 in (45) to get

𝒖̃ℎ𝑗 =
(

𝜑7 (𝒙) + 𝜑8 (𝒙) + 𝜑9 (𝒙)
) (

𝒖7 + 𝛾7𝜷7
)

. (50)

The discontinuous components at the junction, following the above derivations, can then be written as

̄̄𝒖ℎ𝑗 (𝒙) = −𝛾7𝜑7 (𝒙) 𝜷7 − 𝛾8𝜑8 (𝒙) 𝜷8 − 𝛾9𝜑9 (𝒙) 𝜷9

= −𝛾7𝜑7 (𝒙) 𝜷7 +
(

1 − 𝛾7
)

𝜑8 (𝒙) 𝜷7 + (1 − 𝛾7)𝜑9 (𝒙) 𝜷7 + 𝜑9 (𝒙) 𝜷8.
(51)

ppendix B. Asymptotic fields

For completeness, here we provide the asymptotic fields for the calculation of the interaction integral (18). The displacement
ield is given by

𝒖 =

[

𝑢𝑥
]

=
𝐾I
2𝐸

√

𝑟
2𝜋

(1 + 𝜈)

[

(2𝜅 − 1) cos 𝜃2 − cos 3𝜃
2

𝜃 3𝜃

]

+
𝐾II
2𝐸

√

𝑟
2𝜋

(1 + 𝜈)

[

(2𝜅 + 3) sin 𝜃
2 + sin 3𝜃

2
𝜃 3𝜃

]

, (52)

𝑢𝑦 (2𝜅 + 1) sin 2 − sin 2 (3 − 2𝜅) cos 2 − cos 2
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Table 2
Normalized SIFs for various ratios 𝑏∕𝑎 and 𝜃 for the branched crack example..
𝑏∕𝑎 𝜃 15◦ 30◦ 45◦ 60◦ 75◦

DE-FEM * DE-FEM * DE-FEM * DE-FEM * DE-FEM *

0.2
𝐾𝐴

I 1.004 – 1.010 1.012 1.012 1.015 1.016 1.018 1.021 1.021
𝐾𝐵

I 0.731 – 0.681 0.667 0.535 0.528 0.333 0.335 0.122 0.122
𝐾𝐵

II 0.063 – 0.235 0.247 0.412 0.405 0.477 0.492 0.472 0.497

0.4
𝐾𝐴

I 1.009 1.011 1.015 1.018 1.021 1.023 1.026 1.028 1.036 1.037
𝐾𝐵

I 0.753 0.729 0.672 0.659 0.506 0.504 0.295 0.295 0.064 0.066
𝐾𝐵

II 0.078 0.078 0.301 0.295 0.423 0.460 0.545 0.546 0.524 0.542

0.6
𝐾𝐴

I 1.013 1.014 1.021 1.023 1.028 1.029 1.038 1.039 1.058 1.060
𝐾𝐵

I 0.754 0.732 0.666 0.657 0.499 0.497 0.286 0.284 0.055 0.054
𝐾𝐵

II 0.099 0.095 0.318 0.319 0.482 0.485 0.509 0.568 0.538 0.554

0.8
𝐾𝐴

I 1.016 1.016 1.026 1.026 1.036 1.036 1.053 1.053 1.086 1.087
𝐾𝐵

I 0.748 0.735 0.667 0.658 0.495 0.495 0.283 0.281 0.058 0.056
𝐾𝐵

II 0.104 0.107 0.314 0.333 0.482 0.498 0.560 0.567 0.542 0.551

1.0
𝐾𝐴

I 1.019 1.018 1.030 1.030 1.043 1.044 1.068 1.069 1.116 1.117
𝐾𝐵

I 0.744 0.737 0.664 0.658 0.497 0.495 0.282 0.281 0.064 0.061
𝐾𝐵

II 0.112 0.114 0.330 0.343 0.505 0.506 0.574 0.577 0.514 0.541

1.5
𝐾𝐴

I 1.026 – 1.042 – 1.065 – 1.108 – 1.145 –
𝐾𝐵

I 0.755 – 0.666 – 0.497 – 0.284 – 0.057 –
𝐾𝐵

II 0.121 – 0.353 – 0.516 – 0.504 – 0.300 –

2.0
𝐾𝐴

I 1.033 – 1.053 – 1.084 – 1.143 – 1.175 –
𝐾𝐵

I 0.754 – 0.669 – 0.492 – 0.289 – 0.073 –
𝐾𝐵

II 0.131 – 0.355 – 0.463 – 0.510 – 0.317 –

* Reference solution by Chen and Hasebe [37, Table 4].

Table 3
Normalized SIFs for various ratios 𝑎∕𝑤 for the cross-shaped crack example.
𝑎∕𝑤 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DE-FEM 0.8685 0.8868 0.9117 0.9582 1.0247 1.125 1.2843 1.5958 2.2487
XFEM* 0.8653 0.8844 0.9147 0.9572 1.0253 1.1348 1.3170 1.6388 2.4395
† 0.8641 0.8800 0.9092 0.9537 1.0223 1.1300 1.2866 1.4857 –

* XFEM solution by Daux et al. [6, Table IV].
† Reference solution by Cheung et al. [38, Table 1].

and the stress field (in Voigt notation) by

𝝈 =

⎡

⎢

⎢

⎢

⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

⎤

⎥

⎥

⎥

⎦

=
𝐾I

√

2𝜋𝑟
cos 𝜃

2

⎡

⎢

⎢

⎢

⎢

⎣

1 − sin 𝜃
2 sin

3𝜃
2

1 + sin 𝜃
2 sin

3𝜃
2

sin 𝜃
2 cos

3𝜃
2

⎤

⎥

⎥

⎥

⎥

⎦

+
𝐾II

√

2𝜋𝑟

⎡

⎢

⎢

⎢

⎢

⎣

− sin 𝜃
2

(

2 + cos 𝜃2 cos
3𝜃
2

)

sin 𝜃
2 cos

𝜃
2 sin

3𝜃
2

cos 𝜃2
(

1 − sin 𝜃
2 sin

3𝜃
2

)

⎤

⎥

⎥

⎥

⎥

⎦

. (53)

In (52) and (53) 𝜅 is Kolosov’s constant, given by

𝜅 =

⎧

⎪

⎨

⎪

⎩

3 − 𝜈
1 + 𝜈 for plane stress,

3 − 4𝜈 for plane strain.
(54)

Derivatives of the asymptotic displacement fields are obtained by the chain rule, i.e.,

𝜕𝑢𝑥
𝜕𝑥

=
𝜕𝑢𝑥
𝜕𝑟

𝜕𝑟
𝜕𝑥

+
𝜕𝑢𝑥
𝜕𝜃

𝜕𝜃
𝜕𝑥

and
𝜕𝑢𝑦
𝜕𝑥

=
𝜕𝑢𝑦
𝜕𝑟

𝜕𝑟
𝜕𝑥

+
𝜕𝑢𝑦
𝜕𝜃

𝜕𝜃
𝜕𝑥
. (55)

Appendix C. SIFs for branched cracks

See Tables 2–4.
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Table 4
Normalized SIFs for various ratios 𝑎∕𝑤 for the star-shaped crack example.
𝑎∕𝑤 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

𝐾𝐴
I 0.7588 0.7712 0.7949 0.8389 0.8941 0.9668 1.0907 1.3382 1.8737

𝐾𝐴
I * 0.7511 0.7670 0.7931 0.8287 0.8864 0.9673 1.0971 1.3432 1.9037

𝐾𝐴
I
† 0.7408 0.7570 0.7846 0.8255 0.8815 0.9758 1.1142 – –

𝐾𝐵
I 0.7521 0.7694 0.8071 0.8543 0.9241 1.0455 1.2348 1.5181 1.9865

𝐾𝐵
I * 0.7690 0.7683 0.7983 0.8466 0.9255 1.0445 1.2367 1.5624 2.1927

𝐾𝐵
I
† 0.7408 0.7578 0.7884 0.8365 0.9087 1.0182 1.1936 – –

𝐾𝐵
II −0.0062 0.0001 −0.0002 0.0060 0.0158 0.0303 0.0505 0.0857 0.0533

𝐾𝐵
II* 0.0001 0.0005 0.0021 0.0080 0.0184 0.0364 0.0593 0.0864 0.0868

𝐾𝐵
II
† 0.0000 0.0004 0.0022 0.0070 0.0168 0.0338 0.0529 – –

* XFEM solution by Daux et al. [6, Table V].
† Reference solution by Cheung et al. [38, Table 3].

Fig. 20. Schematic diagram to illustrate the enforcement of periodic boundary conditions.

ppendix D. Periodic boundary conditions for discontinuous fields

We describe the procedure for applying periodic boundary conditions to enriched boundaries. As shown in Fig. 20, an unfitted
esh is intersected by a discontinuity segment (red line). Enrichment functions are associated with enriched nodes collocated at

he intersections, i.e., 𝒙𝑖, 𝑖 = {10…14}. With reference to the displacement field, to prescribe periodicity between top and bottom
edges, original mesh nodes follow standard procedures, i.e.,

𝒖1 = 𝒖7, 𝒖2 = 𝒖8, 𝒖3 = 𝒖9. (56)

For enriched nodes 10 and 14, it is necessary that the continuous and discontinuous components of the displacement be the same
n the left sides of the discontinuity for both the top and bottom nodes, as well as on the right side for both the top and bottom
odes. For the discontinuous component, this condition is fulfilled when the displacement jumps at nodes 10 and 14

[[𝒖
(

𝒙14
)

]] = 𝒖
(

𝒙14
)

|𝛤+ − 𝒖
(

𝒙14
)

|𝛤− = 𝜒14
(

𝒙14
)

|𝛤+𝜷14 − 𝜒14
(

𝒙14
)

|𝛤−𝜷14 = [[𝜒14]]𝜷14,

[[𝒖
(

𝒙10
)

]] = 𝒖
(

𝒙10
)

|𝛤+ − 𝒖
(

𝒙10
)

|𝛤− = 𝜒10
(

𝒙10
)

|𝛤+𝜷10 − 𝜒10
(

𝒙10
)

|𝛤−𝜷10 = [[𝜒10]]𝜷10,
(57)

are the same. Given that the (unit) jump of the strong enrichment functions [[𝜒14]] and [[𝜒10]] can be either positive or negative
depending on how the discontinuity is defined, the constraint is expressed as

sign
(

[[𝜒14]]
)

𝜷14 = sign
(

[[𝜒10]]
)

𝜷10. (58)

For the continuous part, the condition 𝒖̃
(

𝒙10
)

= 𝒖̃
(

𝒙14
)

leads to

𝜑8
(

𝒙14
)

𝒖8 + 𝜑9
(

𝒙14
)

𝒖9 + 𝜶14 = 𝜑2
(

𝒙10
)

𝒖2 + 𝜑3
(

𝒙10
)

𝒖3 + 𝜶10. (59)

Since 𝒖2 = 𝒖8, 𝒖3 = 𝒖9 and due to the partition of unity property along the edge, 𝜑8
(

𝒙14
)

+𝜑9
(

𝒙14
)

= 1 and 𝜑2
(

𝒙10
)

+𝜑3
(

𝒙10
)

= 1,
the above equation reduces to

𝜶14 = 𝜶10. (60)

In summary, applying periodic boundary conditions to a discontinuous field on enriched nodes involves equating the signed
strong enriched DOFs and the weak enriched DOFs.
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