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Preface
Current hospital protocols dictate patients be turned at least every three hours in the effort
of preventing pressure ulcers. To reduce the workload of nurses, Momo Medical has created
an embedded sensing device to track the patient’s posture and notify nurses when it is time
to turn them. The challenge presented and the focus of this thesis is classifying the posture
of the patient based on the sensor data sampled, specifically, utilizing neural networks on an
embedded platform. Furthermore an optimization inspired by recurrent neural networks and
ensemble neural networks is proposed, implemented, and compared against vanilla neural
networks and pruned variants.
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1
Introduction

Healthcare solutions have evolved in recent years to take advantage of the advances in tech-
nology. Specifically, improvements in telecommunication and embedded systems have al-
lowed for a rapidly growing network of connected and smart healthcare systems. This has
made it easier for more diagnostic information to be available to healthcare providers. How-
ever, it has raised the demand for automated diagnostic tools that can use the abundance of
information, perform primary analysis on the data, and potentially alert healthcare providers.

Figure 1.1: Common locations of pressure ulcers [1]

Neural networks have seen significant popularity in recent research projects dealing with
medical diagnosis. They perform well because they can generalize and capture underlying
relationships between diagnostic parameters and medical conditions that may not be ex-
pressly obvious through simple linear relationships. Since the the diagnostic information
is usually recorded using embedded platforms it is beneficial to have a neural network that
can run on the same embedded systems and perform on-site analysis of sensory data to
provide real time diagnostic information rather than having to rely on remote computation
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2 1. Introduction

platforms. It is therefore the aim of this thesis to find optimizations in the implementation
of neural networks that makes them suitable for use on embedded platforms.

Analysis and diagnostic tools that can augment the work of healthcare providers is one of
the motives behind which Momo Medical was founded. Momo Medical is a startup that has
designed a sensory platform that assists nurses by detecting the posture of patients lying
on a bed in a hospital environment. Posture detection is vital for preventing pressure ulcers
in patients which can occur in locations on the body shown in Figure 1.1. This thesis was
performed in conjunction with Momo Medical to explore neural networks as an approach to
classifying the posture of the patient lying on the bed using the data from sensors.

This thesis will be broken down into seven chapters. In the next chapter, on background,
the problem statement will be expanded on and the scope of the thesis will be defined. Chap-
ter 3 explores research relating to neural networks that are the inspiration of this thesis.
Chapter 4 will explain the design of the proposed optimization. Chapter 5 discusses chal-
lenges and choices made during implementation. Chapter 6 examines the experiments and
analyzes the results. Finally, the thesis will conclude in chapter 7 and briefly touch on po-
tential avenues for future work.



2
Background

This chapter will explain the background information that will lay the foundation for the
problem statement and provide the motivation for this thesis work.

2.1. Problem Requirements
This section is a brief introduction to the problem of pressure ulcers from a medical stand-
point and discusses the challenges in solving this problem.

2.1.1. Need for Posture Detection
Pressure ulcers occur due to a number of factors. The largest being the application of con-
stant pressure on the skin over a long duration. This condition prevelant with patients who
are bedridden and lack mobility. Cell death occurs due to the weight of the body on cer-
tain pressure points leading to death of tissue under the areas of high mechanical loading
[24]. Pressure ulcers worsen the condition of the patient, prolonging the recovery process,
increasing the likelihood of developing further pressure ulcers, resulting in a vicious cycle.

To combat pressure ulcers, preventative clinical procedures rely on the presence of hos-
pital caregivers that can reposition patients to relieve the pressure on the body on a single
side and evenly distribute it over time across the patient. Determining if this method of pres-
sure ulcer prevention is effective requires studying the relationship between repositioning
and reduction in pressure ulcers. However, the data indicating how often the patients were
repositioned or repositioned themselves is based purely on input from the nurses and is thus
subject to human bias and error. A major factor of bias is that the nurses more strictly fol-
low protocol when they are asked to record information for a study. This skews the result as
recorded data deviates from ordinary behavior.

Due to the nurses incredibly busy schedules, they find it difficult to accurately track and
remember all patients. This is compounded when the shifts change as the nurses may not
pass all the necessary information along to the new shift. This opens up the possibilities for
an automated system to assist the nurses in adhering to the protocol.

2.1.2. Restrictions
Momo Medical in this pursuit must comply to the restrictions of the environment that they
operate in. These restrictions come from four main sources, the hospital, the patients, the
nurses, and Momo Medical. It is beneficial to both the hospital and Momo Medical if the costs
to manufacture the sensor system are kept low. For the comfort of the patient and to ease
installation by the nurses the sensor plate is placed below the mattress and must maintain a
low profile. As the beds in a hospital are mobile, the entire system will be run from an internal
battery not relying on constant grid power. Therefore in-order to maximize battery lifetime
the sensor plate utilizes as few sensors as possible, designed to sample in a single dimension
across the width of the bed and the micro-controller is selected with limited computational
power and intended for low-power usage. The previously mentioned requirements limiting
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4 2. Background

Figure 2.1: From left to right, top row: top-down view of back posture showing the position of the sensor plate in relation to the
patient and mattress, side view with mattress elevated to ኽኺ∘ seated posture, side view with mattress elevated to ዀኺ∘ seated
posture; bottom row: ዃኺ∘ left laying posture, ኽኺ∘ left laying posture with support pillow, back posture, ኽኺ∘ right laying posture
with support pillow, ዃኺ∘ right laying posture

Figure 2.2: Silicon dome placement above piezo-resistive sensor to increase area sensed.

the hardware place restrictions on the software such that if it is able to be executed more
quickly, with fewer instructions, it may be possible to change the processor to a cheaper and
lower-powered version, reducing costs and extending battery life.

2.2. Sensor Based Solutions
There have been a number of previous attempts at posture classification. Not only for pres-
sure ulcer prevention but also sleep analysis. The sensor systems used in the literature
utilize a two-dimensional sensor arrays, for example Yousefi et al. [43], Heydarzadeh et al.
[12], Yip et al. [42], Boughrobel et al. [32], and Hsia et al. [13]. These two-dimensional sen-
sor arrays create a heat-map detailing the pressure exerted by the person laying on them.
This heat-map is similar to an image and thus image recognition algorithms could easily be
applied to determine the posture. On the other hand, Momo Medical arranges the sensors in
a single array across the width of the bed to reduce the number of sensors and complexity
of the system lowering the cost. Another difference between the aforementioned papers and
Momo Medical’s sensor plate is the use of silicon domes to increase the surface area affecting
each pressure sensor an shown in Figure 2.2. In addition to the pressure sensors, Momo
Medical also utilizes piezoelectric sensors and an accelerometer to capture motion and the
angle of the backrest for seated postures.

Other possibilities besides pressure sensing arrays under the patient also exist. For exam-
ple a sensor could be attached on the patient’s body. However, this solution is uncomfortable
to the patient. Another possibility is a camera focused on the bed and image recognition to
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determine patient posture. The cameras will need to be adjusted for changes in bed layout,
can not be easily moved to another bed, and are perceived as an invasion of privacy.

Momo Medical aims to use their sensor system to assist hospital caregivers by providing
feedback on the repositioning of patients in regards to pressure ulcer prevention. However,
the sensor plate requires an algorithm that can translate the given sensor values to a posture.
This problem is more complex than can be modeled with a simple linear relationship when
factors such as mattress types, patient height, and patient weight effect the sensor output.

2.3. Scope of Thesis
Given the background information, the thesis question can be formalized as: Can neural
networks be used for posture classification of the Momo Medical sensor data on an embedded
platform?

In addition to the quest for the answer to this question, a deeper goal was defined: to
optimize neural network execution for this problem scope.

2.3.1. Why Neural Networks
Seeing the complexity of the problem of classifying postures from the non-linear sensor in-
puts, Momo Medical wanted to investigate neural networks as a possible solution. Thus this
thesis started along this path of inquiry and found a grasp in optimization. Data analysis
is available in section 4.1 for additional support for why neural networks are an applicable
approach.





3
Related Work

This chapter covers topics that relate to the thesis and which this thesis builds upon in the
pursuit of using neural networks for posture classification on an embedded platform.

3.1. Floating vs Fixed Point for Neural Network Computations
Low-powered and low-cost micro-controllers very rarely have hardware floating point oper-
ations. When they do, the floating point operations are much slower compared to the fixed
point or integer versions. In the absence of floating point hardware there are two options.
Software to emulate floating point or use integer arithmetic and bit shifting to implement
fixed point. Obviously, the software version will require many instructions to execute as it
must manipulate the inputs and outputs multiple times. This will cause programs using
floating point arithmetic to slow down considerably. For the quickest execution a fixed point
version is the best compromise.

It is therefore important that neural networks can be executed with fixed point arithmetic
using integer operations on an embedded system. Gupta et al. explores explores reducing the
size of fixed point integers to 16-bit representation [37], Warden states that neural networks
can be run using as few as 8 bits [40], Lai et al. utilize a combination of floating and fixed
point numbers [19], Langroudi et al. propose using the posit number system [20], and in an
extreme case Courbariaux et al. use binary weights and bit-wise operations instead of other
arithmetic operations [8].

The ability to use less precise connection weights comes from the idea that the neural
network is making generalizations.Thus minor differences in the input should result in the
same or very similar outputs. So the lowered precision of the calculations used to produce the
output have a minimal consequence. Taking this one step further Binas et al. implement
neural networks in analog circuits to reduce the power consumption [3], while others use
FPGAs, DSPs, and GPUs as hardware based solutions and optimizations for executing neural
networks more efficiently [16] [17] [27] [44]. However, these solutions are beyond the scope
of this thesis.

3.2. Ensemble Neural Networks
Ensemble neural networks are the combination of multiple neural networks used together
to achieve the desired output. Similar to a musical ensemble the ensemble neural networks
can each play a different role or there can be some redundancies to backup and reinforce the
primary. For example, in image recognition, there may be a neural network that can detect
house cats as the main subject in the image. Another neural network may be able to detect
larger cats like lions and tigers. By combining these with other networks that can detect
other animals accurately a result is produced if there is a cat, or other animal present in the
image. This method can be more accurate than a single more generalized neural network
which may confuse more similar subjects like cats and dogs from the example above.

7



8 3. Related Work

Figure 3.1: Example ’black box’ ensemble neural network for posture classification

Figure 3.2: Example of pruning connections, in red, from a neural network. Also as one of the nodes would have no outgoing
connections it is pruned.

The results of all of the separate classifications can summed together to generate a simple
output or as shown by Rogovaa [31], the results can be analyzed to find the strengths of
each classifier to further increase the accuracy with probabilities and beliefs. In searching
for a good combination of classifiers, Lee et al. have provided some basic properties and
conditions, for example reducing the redundant portions [22]. Zhou et al. narrow down
ensembles of neural networks from all of the available ones to a selection that is able to
generalize better with a smaller size [45].

Figure 3.1 shows an example ensemble of neural networks, with the internals left as
a ’black box’, working together to classify posture. In this example the networks are all
specialized for a single posture.

3.3. Pruning Neural Network Connections
Pruning neural networks removes connections with weights that have the least significance
to the resulting output. For example, in Figure 3.2, the red connections are deemed to
be unimportant and are thus pruned. Also as one of the nodes would no longer have any
outgoing connections it is pruned resulting in the network shown on the right.

Usually the pruned connections have weights which are very close to zero and thus when
multiplied by the previous node’s value result in a subsequently small value which will have
very little effect on the the next node’s output. In some cases like with Babaeizadeh et al.,
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Figure 3.3: General idea of recurrent neural networks where new inputs come in and ouputs are given but also some information
is retained as it is fed back into the network.

there is more focus to prune the redundancies [2], while Bondarenko et al. use pruning to
reduce over-fitting, improve generalization, and decrease the size of the network [4]. Golub
et al. and Manessi et al. continuously prune during training for maximal reduction of the
connections and maximizing the possible accuracy of the network [10] [25].

The method of pruning chosen in this thesis is outlined further in subsection 5.2.3 and
follows the work of Han et al. to train a neural network, then reduce the unnecessary con-
nections in the network, and finally continue to train the network to reinforce the remaining
connections and retain accuracy [11].

3.3.1. Sparsity of Connections
In relation with pruning connections from neural networks, initializing networks with sparse
connections can be a useful tool to help train more efficient networks. Various papers discuss
methods for structuring sparsity in neural networks along with the potential gains [5] [35]
[36] [41]. Though the neural network library chosen, discussed further in subsection 5.1.2,
already implements a function to deal with sparsity during initialization of the connections
and weights before training so none of the mentioned techniques needed to be implemented.

3.4. Recurrent Neural Networks
Recurrent neural networks are interesting because they can remember information from
previous inputs and correlate how that affects the current inputs. Thus they are not focused
on a single sample but they work through time and can utilize the history of events to better
determine an output. Recurrent neural networks achieve this with connections that flow in
the opposite direction of input to output as shown in Figure 3.3.

The downsides are that they are much more difficult to train properly, require an immense
amount of labeled training data, and require many more resources for computing the results.
This sentiment can be found in the literature [6] [15] [30] [14]. Solutions to simplify the
training process of recurrent neural networks exist [6] [7] [18] [28] [30].

Finite-state automata can be modeled in recurrent neural networks as shown by Omlin et
al. and Siegelmann and would be very applicable to posture classification [29] [34]. Finally,
Shin et al. use fixed point in recurrent neural networks to reduce the hardware complexity
[33].

Despite the applicability of recurrent neural networks to the problem of posture clas-
sification as a finite-state automata capable of capturing the time-series aspect of posture
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changes, the complexity of combining multiple techniques from some of the mentioned pa-
pers outweighs the potential benefits. Therefore this thesis will only draw inspiration from
the information feedback and time-series aspects of recurrent neural networks.



4
Design

This chapter covers the analysis of the sensor data and how it relates to the classification of
postures using neural networks, proposes the design for the optimization at the core of this
thesis, and touches on the theoretical bounds.

4.1. Data Analysis
The first step was to analyze the data provided by the sensor system at Momo Medical. At
the beginning of the thesis the sensor data was incredibly noisy and inconsistent. This can
be seen in Figure 4.1 where the sensor value is the milli-volt reading from an ADC that
corresponds to the force exerted on the sensor. The output values from the piezo-resistive
sensors vary drastically with weights from 10 grams up to 500 grams. A portion of this
can be attributed to the differences in the sensors themselves, however, the majority of the
inconsistency is due to the design and manufacturing process of the sensor plates.

The minor differences with the sensors is exacerbated by compounding the inconsistency
due to the use of a silicon dome placed over the sensor to increase the surface area being
sensed. These silicon domes could vary in stiffnesses and could be tightened down on the
sensor to create tension or could be left loose leaving an air-gap between the sensor and the
dome as shown in Figure 2.2. Thus some sensors would be preloaded with tension from the
silicon dome and have high zero-weight values while other sensors with the air-gap between
the dome and sensor resulting in lower sensitivity. In addition the silicon domes could move
around slightly in their socket and end up not perfectly oriented over the sensor, further
causing varying results even with the same sensor and weight value.
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Figure 4.1: Selection of 16 sensors loaded with weight showing inconsistent results
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Figure 4.2: Selection of 8 sensors loaded with weight beyond specifications

It was possible to measure the offsets of each sensor and to measure the differences in
slopes of the sensor as more weight was applied to create calibration values that could be
used to map the sensors to a more similar normalized scale. Unfortunately the calibration
values are only valid for a single set of tests. The sensor plates were vulnerable to being
jostled, changing the positions, orientation, and contact patches of the sensors and silicon
domes. Additionally the sensors are also only rated to work linearly up to 1𝑙𝑏, approximately
ኻ
ኼ𝑘𝑔, while they were under potential loads up 12𝑙𝑏𝑠, approximately 5ኻኼ𝑘𝑔𝑠 [39]. This can be
partially seen in the curve of Figure 4.2 as the sensors become less sensitive to increasing
weight beyond approximately 1𝑘𝑔.

After obtaining the calibration values for a sensor plate a few simple tests were run. Using
some care, results were manageable. Figure 4.3 shows two samples of three people across an
air mattress and foam mattress laying on their back. Figure 4.4 shows a single sample of two
people laying in the back posture and 90∘ right posture on both the air mattress and foam
mattress. These showed indications that a classification between the three main postures,
90∘ right, 90∘ left, and back, would be possible, as for a single person, on a single mattress,
laying in the same position of the bed, the postures were distinct. However, when combining
one person’s samples with samples of other people using a variety of mattress types the
distinctions become much less clear.

A few observations of these initial samples are listed below. The foam mattress and air
mattress react differently to the same person laying with the same posture. In general the
foam mattress slightly dampens the pressure exerted on the sensors compared to the air
mattress. The 90∘ right side and 90∘ left side postures are close mirrors around the center of
the bed, thus only the 90∘ right side posture is shown. The 90∘ side postures generally have
a slightly higher peak than the back posture as can be seen in three of the four samples of
Figure 4.4. The 90∘ side postures have an asymmetrical shape while the back posture has a
more symmetrical curve.

The initial sensor data appears optimistic and shows promise that neural networks could
successfully classify postures. With the promise of improvements to the sensor plate and
sensor consistency and hope for a labeled dataset, work continued forwards.

4.2. Optimization Design
Inspiration was drawn from the research performed and applied to the problem at hand to
create an optimization.

During the analysis of the problem of determining a patients posture, it is noted that
in the expected case the patient’s posture changes very rarely, approximately once every
three hours, compared to the sampling rate of 10𝐻𝑧. This allows for a very simple predictive
solution that will be correct much more often than it is incorrect. In short, predict that the
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Figure 4.5: Example breakdown of neural network for optimization

patient’s posture is unchanged, using the answer from the previous sample. This can be
further expanded to check the patients posture over the last few seconds or minutes and use
that as a prediction for increased stability. So, until the patient’s posture is changed, after
possibly three hours or approximately 108, 000 samples, the heuristic will remain correct.
Then when the posture of the patient does change the prediction will be incorrect for a few
moments, depending on the stability of the prediction, before becoming correct again if there
is a proper classification to verify.

Combining this prediction idea to the ensemble neural network shown in Figure 3.1, would
allow for computing only the network corresponding to the predicted posture. This output
of the computed network could then be compared against a threshold. A result above the
threshold and the prediction is accepted as correct. If the output is below the threshold then
the remaining branches of the ensemble neural network can be processed and the result
from the entire neural network is used. In the vast majority of samples, compute time could
be reduced as the remaining networks would not be needed, however, in the case where the
patient changes posture, it would still be possible to determine the new posture by computing
all of the networks.

Incorporating the sparsity of connections for a single neural network would result in a
similar optimization as with the ensemble neural network but reduces the penalty for the
prediction being incorrect as some nodes, and therefor computations, overlap between the
output classes. Figure 4.5 shows an example where red, blue, and yellow nodes and con-
nections represent each of the three output classes, purple, orange, and green represent the
overlap between two output classes, and grey represents the overlap between all three output
classes. Then if the back posture was predicted then the grey, purple, orange, and red nodes
would need to be computed to check against the threshold. If the prediction threshold is not
met then the optimization only needs to fill in the nodes that were skipped over previously,
in this example it would be the remaining green, blue, and yellow nodes.

Teerapittayanon et al. and Leroux et al. mention similar principles in trying to reduce the
number of computations during execution by trying to avoid portions of the neural network
[38] [23]. Though Teerapittayanon et al. exit the evaluation early based on thresholds and
Leroux et al. ignore some nodes at the loss of accuracy.

4.3. Optimization Theory
To see how viable the potential optimization theoretically could be, a few equations were
used. As the main interest is the connectivity of nodes in the neural network the equations
used are similar to the equations of the Erdős-Rényi model of random graphs [9]. However
the nomenclature used here differs so that the terms are more relatable to the structure and
application of neural networks.
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Figure 4.6: Example Neural Network with Connection Rate of ኺ%

First 𝐶𝑅 is the connection rate of nodes from one layer to the next in the neural network,
𝑃ፂ(𝑙) is the probability that a node 𝑙 layers away is connected to an output node, 𝑇፥ is the total
number of nodes in layer 𝑙, and 𝑃ፃ(𝑙, 𝑛) is the probability that 𝑛 nodes in layer 𝑙 are connected
to the same output node.

Then the probability that a node is connected one layer away is

𝑃ፂ(1) = 𝐶𝑅.

Exploring further to a node in the second layer away gives

𝑃ፂ(2) = 1 − (1 − 𝐶𝑅 ⋅ 𝑃ፂ(1))ፓኻ .

As the connectivity of nodes in the first layer must also be accounted for. The generalized
recursive form is

𝑃ፂ(𝑙) = 1 − (1 − 𝐶𝑅 ⋅ 𝑃ፂ(𝑙 − 1))ፓ፥ዅኻ ,
where 𝑇ኺ = 1 to fulfill the base case. Applying these equations, so far, with a randomly con-
nected neural network constrained by a constant sparsity or connection rate, the probability
of a node connected to an output can be calculated.

Note these equations only consider some of the most basic rules of neural network struc-
ture, that it is formed of nodes in layers with connections going from one layer to the next.
In this model it is possible for a node to not be connected to a previous layer or a following
layer or both. These equations are not meant to model a perfect representation but to give
a close estimation. Figure 4.6 illustrates an example neural network and shows how layers
are counted from the output layer.

Using the previous formulas a probability distribution can be generated to view the range
of how connected a neural network is as nodes and layers are varied. The following equation
is for calculating the probability distribution of 𝑛 nodes in layer 𝑙 connected to an output with
connection rate 𝐶𝑅 and connection probabilities as shown in the previous equations,

𝑃ፃ(𝑙, 𝑛) = 𝑃ፂ(𝑙)፧ ⋅ (1 − 𝑃ፂ(𝑙))ፓ፥ዅ፧ ⋅ (
𝑇፥
𝑛),

where 𝑛 ≤ 𝑇፥.
The more completely connected the neural network, the less effective the potential opti-

mization will become, as the optimization takes advantage of the disconnect of nodes. On
the flip side, however, the more connected the neural network is the less the penalty is for
incorrect predictions because there would be more overlapping nodes already computed for
the prediction.

These equations can also be used to generate large tables representing the probability
distribution of how many nodes in a particular layer are theoretically connected to an output
based on the layers and number of nodes in a network and the connection rate. From these
tables, three main factors increase the chance of nodes being connected to an output. They
are an increase in the number of layers or depth of the network, the increase in the number of
nodes in the layers, and the connection rate. In general, the accuracy of a neural network is
also dependent on these same factors so they must be balanced such that the neural network
can capitalize on the optimization and yet maintain proper results.





5
Implementation

This chapter provides insight into decisions made and steps taken during the initial stages
of this thesis project, the creation and training of neural networks, the implementation of the
optimization, and generation of the final dataset used.

5.1. Initial Choices
This section briefly delves into the reasoning behind two of the major initial choices that
needed to be made to begin working.

5.1.1. Dataset
Finding an alternative dataset was critical as the sensor plate was under constant develop-
ment and a large, labeled dataset did not yet exist. The MNIST dataset [21], a set of numeric
handwritten characters arranged near the center of a 28 by 28 pixel greyscale image, was
chosen. Other datasets were available elsewhere online, however, the MNIST dataset was
sufficient. The MNIST dataset is used in benchmarks and teaching neural networks, it con-
tains more than two distinct output classes, and it is sufficiently complex with some similar
output classes yet is simple enough that learning about the training process does not over-
whelm the thesis project. Also, the order of the data can easily be rearranged to mimic the
expected data stream of a patient’s posture. For example a sequence of 0’s can be followed
by a sequence of 1’s, and then 2’s, etc., imitating a patient moving from laying on their back,
to their left side, to their right side. This will allow testing of the optimization using a pre-
diction that is computed from the previous samples rather than feeding it in as additional
information.

5.1.2. Neural Networks Library
The neural network library selected is a community driven, open source fork of Fast Artificial
Neural Network (FANN) [26]. The decision was based on the facts that FANN is built in C, it
is fairly lightweight but contains the necessary set of features, works for both floating point
and fixed point, and contains an algorithm to convert floating point to fixed point. Thus
this library can easily be modified to run the optimization and ported to a micro-controller
platform.

5.2. Training Neural Networks
Training neural networks took tremendous effort, patience, and trial and error. There were
four initial variants of neural networks to train, test, and compare. The following section
will discuss the training of the neural networks used and explore the major differences and
similarities between them. First, vanilla neural networks, the simplest form of neural net-
works. Second, ensemble neural networks, a combination of neural networks working to-
gether. Third, pruned neural networks, removing connections from vanilla neural networks.
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And finally, generating the necessary dependency sets from the vanilla neural network, for
use in the proposed optimization.

5.2.1. Vanilla

Figure 5.1: Example vanilla neural network with ’black-box’ for hidden layers

Figure 5.2: Example vanilla neural network with two hidden layers

Vanilla neural networks are the basic form of neural networks. Containing layers of nodes
that feed information forward to compute an output. Generally the hidden nodes of a neural
network are not examined as in Figure 5.1 though looking into the hidden layers Figure 5.2
could appear. The neural networks trained at the beginning were simple, utilizing back
propagation training on a small network. As the size and complexity of the neural networks
increased so to did the knowledge put into training them. A forced connection sparsity,
L2 regularization, and a validation dataset for determining when best to stop training were
included in stages. Using a forced connection sparsity means randomly reducing the con-
nections down to a specified limit, while L2 regularization is a technique for keeping the
connection weights low.
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The vanilla neural networks form the basis of two of the other alternatives, namely the
pruned and optimization variants.

5.2.2. Ensemble
This implementation of an ensemble neural network was done by training individual neural
networks for each of the output classes then utilizing them together to compute a complete set
of output values for each sample input, see Figure 3.1. It is also possible to use the ensemble
neural networks in a rough version of the prediction optimization by computing the predicted
output’s respective neural network and only if the resulting output is not above a threshold
then computing the remaining neural networks to complete the output. This showed in an
early test the advantage of the predictive nature of the problem but has a larger overhead
as there is no overlap between the ensemble neural networks and thus if the prediction fails
every node in the remaining ensemble must be computed.

5.2.3. Pruned

Figure 5.3: Histogram of initial connection weights from [11].

Figure 5.4: Histogram of pruned and retrained connection weights from [11]. Note 10x smaller scale than Figure 5.3

The implementation of the pruned neural networks follows the steps of Han et al. [11].
By training a fully connected vanilla neural network some connections will have a low im-
portance. Then by analyzing the the connection weights a bell curve centered around 0 is
created in the connection weight histogram, like in Figure 5.3. Next step is removing the
least important connections, those closest to 0. Followed by further training, or retraining,
the neural network to strengthen the remaining connections and possibly reveal additional
weak connections. Figure 5.5 is the plot of the histogram of the connection weights for one
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Figure 5.5: Histogram of connection weights of a neural network before pruning, after pruning, and after retraining

of the pruned networks used in this thesis. This is similar to the results shown in the differ-
ence between Figure 5.3 and Figure 5.4. Thus a large neural network is pruned down. The
benefits being the number of computations needed to evaluate the network has been reduced
and also the memory footprint has been made smaller though potentially at the cost of some
accuracy.

5.2.4. Generating Dependency Sets
One of the highlight aspects of training neural networks for the proposed optimization is
that it is just like training any other neural network so long as the connection rate is well
below 100%. Once the network is trained, the sets of dependent nodes for each output need
to be found. This is done by treating the neural network backwards as a tree with each
output node as a separate root. Then a breadth-first traversal will discover all the nodes
that the particular output is dependent on. Creating these lists of dependencies is the only
additional step in preparing for the optimization. It is possible to generate these lists as the
neural network is loaded during runtime, however, for this thesis they were precomputed
and loaded separately.

5.3. Optimization
There were a few design choices to be made in implementing the optimization. First, how the
predictive execution knows which nodes to execute.

An option was to explore the nodes during execution, starting from the predicted output
with a breadth-first traversal on the connections until reaching the input layer then going
backwards through the discovered nodes computing the result. This, however, has the down-
sides of adding complexity to the already complicated computation of the neural network, has
a limit of how many nodes can be recursively explored due to a limited recursive stack, and
will need to be run through every time the neural network is executed. It also becomes more
complex to determine the remaining nodes to be calculated if the prediction does not reach
the threshold.

An alternative is to maintain lists of nodes which each output is dependent on and based
on the prediction iterate through the appropriate list for the nodes to compute. The lists
would ideally need to be precomputed either once after training is completed or when loading
the neural network and will take additional memory. If the prediction fails it is simple to
iterate through the entire neural network and skip computing the nodes that are in the list.
A possible option, depending on the connectivity of the neural network could also be to use
the list of nodes not in the dependency set based on which set is smaller.

The decision was made to precomute the dependencies due to the less restrictive limita-
tions. The additional memory constraint of the second option is not a large concern as the
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number of nodes in the neural networks will be well below 65, 535. Thus the lists of depen-
dent nodes can be stored using unsigned 16 bit integers. If the neural network size is below
255 then it could be possible to store the listed values with 8 bit integers, however, as the
initial dataset, the MNIST dataset, contains 784 inputs, 16 bit integers were used. The lists
can also ignore the input nodes, as no computations need to be made and they only need
to be loaded into memory. Also, as evidenced by the theory and backed up by most neural
networks trained, the output nodes usually have a dependent connection to most or all of
the input nodes. It may be possible, but unlikely, to further optimize by including the input
nodes in the dependency lists but that was not investigated.

// algorithm inputs : nn − the neural network ,
// data_inputs − the input values from the sample ,
// predict ion_id − the id of the output that is being predicted ,
// dependency_lists − dependency l i s t s in an array by output node ids ,
// predict ion_threshold − the threshold to compare against the output

load data_inputs to input_nodes of nn
for node_id in dependency_lists [ prediction_id ] :

compute (nn[ node_id ] )
i f output [ prediction_id ] >= prediction_threshold : // predict ion succeeds

return outputs // predicted output wi l l retain value , others wi l l be 0
else : // the predict ion fa i led

for node_id not in dependency_lists [ prediction_id ] :
compute (nn[ node_id ] )

return outputs // a l l outputs are computed

Listing 5.1: Pseudo-code of optimization algorithm

Now that the optimization has been implemented from the pseudo-code provided in List-
ing 5.1, there are a few things to consider for executing on an embedded platform. If this
optimization was run on a real-time operating system, it would finish before its maximal
deadline when the prediction is correct, and would run until the maximal deadline when the
prediction fails. This jitter introduced by the optimization task may be unacceptable for the
task scheduler and complicates the computation-cost analysis for the system.

In regards to the initial problem of classifying patient posture, an analysis through time of
the sensor data will likely provide more accurate results than examining each, single sample.
Unfortunately, with neural networks, this becomes too resource expensive for an embedded
platform. Thus the neural network chosen does not utilize all available sensors in the sensor
plate provided by Momo Medical. Only the piezo-resistive, force sensors were used, as a
single sample of these sensors provides a snapshot of the pressure exerted by the patient.
The piezo-electric sensor is useful in detecting motion and movements of the patient and can
even be used to detect breathing and heartbeats in a time analysis. The accelerometer was
also excluded from the neural network as it is used to detect the seated posture and angle,
while the backrest of the bed is raised, with simple thresholds.

5.4. Generating Momo data
As the end of the thesis approached the expected labeled dataset from Momo Medical still did
not exist. Thus there was a decision to either continue to use the MNIST dataset or generate
a dataset based on some characteristics of the actual Momo sensor plate. In respect to the
initial problem of patient posture classification the decision was made to move forward with
creating a dataset based on samples from the sensor data.

The first step was to analyze the current sensor’s data and find characteristics that could
be reproduced programmatically. The sensors and samples have become much more consis-
tent as shown in Figure 5.6, where the two subjects got in and completely out of bed between
each sample, compared to the previous data in Figure 4.4. The curves are now much more
similar and appear to be shifted or displaced in both the x and y axes.
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Figure 5.6: Samples of two people laying on Back from the new sensor plate.
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Figure 5.7: The base samples from which the dataset is programmatically generated from

Some minor features of the data are that it is sampled at 10𝐻𝑧, there are occasional minor
spikes for patient adjustments and small movements, transitions between postures generally
last between ኻ

ኼ − 4𝑠𝑒𝑐𝑜𝑛𝑑𝑠 but could be longer, and the patient is located near the center of
the bed.

Due to the similarities between subjects and tests of the same posture, the data generated
is based on samples taken from a single person laying on a single type of mattress shown in
Figure 5.7. Only three postures will be tested, left side 90∘, right side 90∘, and back. Upon
these three base samples a variety of translations can be applied as shown in Figure 5.8,
similar to how the curves in Figure 5.6 seem to be shifted. The translations include a vertical
shift, up or down, a horizontal shift, towards sensor 1 or towards sensor 8, a horizontal flip,
mirrored across the x-axis, or a combination.

Next noise is added to the generated data. Figure 5.9 shows a noisy 10 seconds and clean
10 seconds from the data gathered. As the noise on the sensors comes from both physical
changes, like breathing, minor movements, and electrical disturbances, for example 50𝐻𝑧 AC
interference, the noise is time dependent. However, as the neural network only focuses on a
single sample per execution, the noise added to the generated signals, shown in Figure 5.10,
is a random value, up to 5% of the original, added or subtracted. The real-world data also
shows some drift as either the patient, mattress, sensor, or a combination, settles. Again
this was not added to the generated data as again the neural network only works on a single
sample.
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Finally transitions are added between changes in posture. Figure 5.11 shows that tran-
sitions go to zero briefly as imitating actual transition programatically was difficult.

One additional note is that all the data generated and used for generation has been nor-
malized to be between 0.0 and 1.0.





6
Experiments and Results

This chapter will cover the experiments performed to test and compare the optimization to
known methods and the results from those experiments.

6.1. MNIST Experiments
The experiments in this first section were performed with the MNIST dataset on a PC using
floating point. The purpose being to test that the accuracy is acceptable, verify that the
optimization works as designed, and to obtain an early indication of execution times.

An accurate vanilla network with a connection rate well below 100% trained on the MNIST
dataset was chosen. It had a single hidden layer with 200 nodes and a connection rate of
60%. Further information on the training of this network can be found in subsection 5.2.1.

Ensemble neural networks were trained and were chosen for having a high accuracy with
a small number of hidden nodes However, as there is a neural network for each of the ten
possible outputs, the exact details will not be discussed though more information can be
found in subsection 5.2.2.

A separate vanilla network was chosen for the pruning. In this case a neural network with
a 100% connection rate and a lower number of hidden nodes to keep the computation time
more similar was chosen. In this case the network contained 100 nodes. This network was
then pruned following subsection 5.2.3

Finally, the dependency sets were calculated for the vanilla neural network so a direct
comparison between the vanilla execution and the optimization could be made. This was
done according to subsection 5.2.4. It is therefore critical that the vanilla neural network
have a connection rate below 100% to be able to take advantage of the optimization.
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Figure 6.1: Comparison between the average execution time for the four neural network methods using the MNIST dataset
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Vanilla Ensemble Pruned Optimized
Average Execution Time (Microseconds) 70.7256 65.0387 11.6468 43.3975
Accuracy (%) 97.17 94.88 94.78 97.44

Table 6.1: The average execution time and accuracy for the four methods used on the MNIST dataset.

These four methods or sets of neural networks were then tested on the same 10000MNIST
data samples on a PC running at 2.2𝐺𝐻𝑧 using a single dedicated core. The timing results
are shown in Figure 6.1 while Table 6.1 shows both the average execution time and accuracy
together. The vanilla neural network acts as a baseline with the hopes that each of the other
methods can show improvement upon the execution time while retaining a similar accuracy.

As is evident from Table 6.1 the ensemble neural networks is overall the worst, having
the second slowest average execution time and the second worst accuracy. The ensemble
neural networks were also the most laborious to train and do not guarantee that they will all
use the same decimal place for the eventual fixed point execution. This would then require
additional complexity and computations to the inputs of each of the networks in the ensemble
further negating any execution time advantage. Thus it was decided not to continue testing
the ensemble neural networks in the following experiments.

Unlike the ensemble both the pruned neural network and the optimization show promise.
The pruned network executes quickest with an approximate speedup of 6.07𝑥 but has the
lowest accuracy, losing by nearly 3%, while the optimization provides an approximate 1.63𝑥
speedup and improves slightly on the accuracy of the vanilla neural network. However, that
is not the full story for the optimization.

As mentioned during the design and implementation when the prediction threshold is not
met the optimization must go back and calculate the nodes that were initially skipped over.
A threshold of 70% of the maximum output was used, or 0.7 in this case as the maximum
output is 1. Thus for some samples there is overhead in comparison to the computation time
of the vanilla neural network. For this subset of test cases the optimization had an average
execution time of 69.7188𝜇𝑠 while the vanilla neural network for the same subset of samples
had an average execution time of 67.2422𝜇𝑠. Thus the overhead of the failed optimization is
2.4766𝜇𝑠 or approximately 3.7% of the vanilla neural network execution time. However, as
mentioned before the optimization’s average execution time is much lower at 43.3975𝜇𝑠. This
shows that usually the threshold is being met and thus the optimization is able to take an
advantage in most cases.

The flip side to this threshold is that when using a correct prediction the accuracy can
increase for the optimization. This is already clear from Table 6.1 where the accuracy is
increased by 0.27% or 27 samples from the test set. While this is a very small fraction of
the total test set, it is still a significant result and changing the threshold could affect the
accuracy and average execution time. By increasing it, the neural network must be more
sure that the result is correct and may default more frequently, however, by decreasing the
threshold, if the predictions are inaccurate, then the accuracy may fall.

6.2. Generated Momo Medical Data Experiments
The experiments in the following section were performed with neural networks trained on the
generated Momo Medical sensor data from section 5.4. The purpose of these experiments is
to further explore the comparison in computation time of the various neural network options
as well as comparing floating point and fixed point on PC and fixed point on the micro-
controller. As the sample data can be considered fairly sterile and simple, accuracy will not
be discussed in great detail.

New neural networks were trained on this generated Momo Medical dataset following the
steps in section 5.2. As mentioned in section 6.1 the ensemble neural networks will not be
included in the following experiments.

For this new dataset two vanilla neural networks were chosen to have an additional set of
parameters to compare. The two differences were the number of nodes in the single hidden
layer and the connection rate. The first neural network, A, had 350 hidden nodes and a
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Figure 6.2: Comparison between the average execution time for different neural networks and implementations in both floating
point and fixed point on PC

Vanilla-A Vanilla-B Pruned-A Pruned-B Optimized-A Optimized-B
Floating (𝜇𝑠) 8.383 3.159 6.604 2.671 5.181 2.654
Fixed (𝜇𝑠) 6.766 2.597 4.940 2.232 3.962 2.179

Table 6.2: The average execution time for the six neural networks in both floating point and fixed point on the PC.

connection rate of 50%, the second network, B, was smaller at 100 hidden nodes but had a
higher connection rate of 70%. Additional prefixes will be added to further specify additional
distinctions. Both neural networks had very similar accuracies over the 9000 test samples of
99.45% and 99.5% respectively, a difference of only four failed test cases.

The idea behind choosing these two different neural networks is to see if they react to
the optimization differently. As one network is much larger than the other but has a lower
connection rate while the smaller network has a higher connection rate and may not see as
much benefit from the optimization.

Another difference for these sets of experiments is that both the pruned networks and the
optimization networks will be based off the two different vanilla neural networks. This will
allow for a more direct comparison of execution times.

The pruned networks took the two vanilla neural networks mentioned and followed the
pruning method outlined in subsection 5.2.3. However, with the goal that accuracy after the
pruning and retraining is much closer to the accuracy of the vanilla networks at the sacrifice
of removing fewer connections resulting in a potentially higher than necessary computation
time and memory size. Still, approximately half of the connections were able to be pruned
away from both vanilla networks. In the case of A the number of connections went from
2278 to 1093 while with B they went from 873 to 445. After retraining the accuracies of both
pruned networks remained in the 99.45 − 99.5% range.

The optimized networks remain unchanged from the vanilla networks while the depen-
dency lists are generated for each output according to subsection 5.2.4. The prediction value
is based on only the single, immediate, previous iteration though as mentioned in section 4.2
this could be expanded to include more samples. However, for these tests, using only the
previous output worked well and was very simple.

6.2.1. PC Floating and Fixed Point
These floating point tests on the PC were to see how the generated data and new neural
networks worked while the fixed point tests were used to show that the converted fixed point
versions of the neural networks worked properly. The tests were executed on the same PC
as before with the MNIST experiments. As mentioned in section 3.1 the fixed point version
of a neural network is a close estimate on the floating point thus the accuracy from floating
to fixed point for the same dataset should remain very close to the original.
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Figure 6.3: Comparison of average execution time on the micro-controller of the different neural networks and implementations.

Vanilla-A Vanilla-B Pruned-A Pruned-B Optimized-A Optimized-B
Average
Execution
Time (𝜇𝑠)

1103.387 339.306 885.743 276.408 481.858 200.461

Speedup
Over

Respective
Vanilla

N/A N/A 1.246 1.228 2.290 1.673

Table 6.3: The average execution time for the six neural networks in fixed point on the micro-controller and the speedup over
the respective vanilla network.

Figure 6.2 shows the average execution time for the six neural networks examined com-
paring both floating point and fixed point execution. The first item of note is that across the
board the fixed point calculations are faster than the floating point. This is completely ex-
pected as generally integer math requires fewer compute cycles compared to single precision
and double precision floating point arithmetic.

The next noticeable trait is that the B networks require about half the execution time of
the A networks and can be further seen in Table 6.2. This is mainly due to B having less
than half the connections that A has as most of the calculations performed in evaluating a
neural network are due to the connections. While the number of nodes in a network also
plays a role, with fewer nodes requiring fewer computations.

Another characteristic from this test is that the optimized networks are quickest with a
speedup of 1.618𝑥 and 1.190𝑥 for floating point and 1.708𝑥 and 1.192𝑥 for fixed point with
respect to the vanilla A and B. Second is the pruned networks with speedups of 1.269𝑥 and
1.183𝑥 for floating point and 1.370𝑥 and 1.164𝑥 for fixed point over the respective vanilla net-
works.

These results also show that A optimized network was able to gain more of an advantage
compared to the B optimized network as the less connected network, A contains relatively
fewer nodes in the dependency sets for each output. However in the grand-scheme of execu-
tion time the B networks still perform quicker.

6.2.2. Micro-controller Fixed Point
The final experiment was to run the neural networks on an embedded platform to see if the
results still held up. The embedded device contained an ARM Cortex M4 processor running
at 120𝑀𝐻𝑧 and the timing was taken from the cycle count register of the Data and Watch
Trace peripheral (DWT) and is thus cycle accurate.

Figure 6.3 shows the average execution time for the different neural networks and follows
a similar spread to the results from the previous experiments in Figure 6.2 with a different
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Figure 6.4: Graphical comparison of average execution times of differing scenarios of the optimization between two neural
networks on the micro-controller. pc-cc -> Prediction Correct, Calculation Correct; pc-cf -> Prediction Correct, Calculation
Failed; pf-cc -> Prediction Failed, Calculation Correct; pf-cf-s -> Prediction Failed, Calculation Failed, Prediction and Calculation
are Same; pf-cf-d -> Prediction Failed, Calculation Failed, Prediction and Calculation are Different

pc-cc pc-cf pf-cc pf-cf-s pf-cf-d
Optimized-A

(𝜇𝑠) 480.244 1212.967 1008.265 481.595 1009.406

Optimized-B
(𝜇𝑠) 200.099 446.133 314.178 201.934 313.515

Table 6.4: Table comparison of average execution times of differing scenarios of the optimization between two neural networks
on the micro-controller. pc-cc -> Prediction Correct, Calculation Correct; pc-cf -> Prediction Correct, Calculation Failed; pf-cc
-> Prediction Failed, Calculation Correct; pf-cf-s -> Prediction Failed, Calculation Failed, Prediction and Calculation are Same;
pf-cf-d -> Prediction Failed, Calculation Failed, Prediction and Calculation are Different

scale. Numerical values for the execution time and speedup over the vanilla networks can
be found in Table 6.3. Once again the optimized execution for both the A and B networks is
quickest with the pruned networks coming in second.

More in-depth timing was performed on the optimized networks to explore the distribution
of execution time across five different conditions. These are when the prediction is correct
and the calculation is also correct (pc-cc), the prediction is correct but the calculation fails
(pc-cf ), the prediction fails but the calculations is correct (pf-cc), the prediction fails and the
calculation fails and both the prediction and calculation are the same output (pf-cf-s), and the
prediction fails, the calculations fails, but the prediction and calculation are different outputs
(pf-cf-d). These scenarios are interesting as they give further insight into the performance of
the optimization. Figure 6.4 and Table 6.4 show the results of this experiment.

If the predictive threshold is not met then the remaining nodes must be computed and
additional calculations need to be made in order to provide a complete output. Thus when the
prediction is different from the calculated result, as in pc-cf, pf-cc, and pf-cf-d, the execution
time is greater. While in pc-cc and pf-cf-s the prediction and calculation are the same so
the prediction threshold has very likely been met and the execution time significantly is less.
Therefore in the interest of obtaining the maximum performance from the optimization the
ideal scenarios are pc-cc and pf-cf-s, while keeping the occurrences of pc-cf, pf-cc, and
pf-cf-d to a minimum. For the sake of maintaining accurate results, pc-cc and pf-cc are
preferred.

6.3. Discussion of results
From these experiments some conclusions can be drawn using the vanilla neural networks
as a baseline to improve upon. Ensemble neural networks appear to be the worst method
tested. It had a poorer combination of execution speed and accuracy than any of the other
techniques tested, hardly improving the execution time over the vanilla neural network. The
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pruned networks were able to find some speedup, at the cost of accuracy. Though through
pruning they also reduce the memory requirements needed to run them which can be a major
advantage in reducing costs. The optimization retains the accuracy of the vanilla neural
networks and has the quickest average execution time, though this is dependent on the
accuracy of the prediction and the threshold. In the worst case the optimization only requires
a small computational overhead of around 3−4%. Thus for posture classification using Momo
Medical’s sensor plate, from the options explored, the optimization shows positive results and
good potential.



7
Conclusion

Based on the experiments tested and presented in chapter 6, an answer can be provided for
the questions at the core of this thesis. With a sufficiently large labeled dataset, I am confident
that neural networks can be trained to accurately classify posture from the sensor data
provided by Momo Medical’s sensor-plate using a low-cost and low-powered micro-controller.
Also, the optimization proposed does reduce the average execution computational time of a
neural network without any deterioration to the accuracy of the classification by utilizing the
predictability of the fairly static data.

Looking beyond the posture classification problem presented by Momo Medical the opti-
mization proposed quickly loses value. While there are numerous other problems this opti-
mization could also be applied to, such as predictive maintenance monitoring of machinery,
in a more general investigation of neural networks for embedded platforms, of the methods
tested, pruning would clearly have the most advantages. While reducing the execution time
of evaluating the neural network, pruning also reduces the size of the network in memory
allowing for lower cost hardware in more generalized applications of neural networks.

Finally a conclusion directed towards Momo Medical. While neural networks are a valid
technique to classify postures from the sensor data, I believe that the time spent gathering
and labeling a large dataset and training neural networks is better put towards improving
the capabilities of the sensor system and investigating other, simpler classification methods.
Because the other tasks performed by the embedded platform are fairly simple, a neural
network would take the largest overhead for such a system. Thus if another method can be
found that moves away from the paradigm of neural networks, it would significantly reduce
the computational requirements of the embedded platform and allow migrating to a lower
cost and lower power platform.

7.1. Future Work
As the proposed optimization has novelty, there are a number of parameters that can be
explored further. First, applying the optimization to the pruned networks could yield further
reductions in both execution time and network size. Second, investigating the number of
previous samples the prediction is based on would affect the stability and may skew the
average execution time depending on the original accuracy of the neural network. Perhaps
in coordination with the prediction, changing the threshold value with a less precise neural
network could also be examined. Next, a waterfall style selection of predictions could be
implemented for problems with larger number of classification outputs, such that if the first
prediction fails then the optimization would only compute the nodes necessary for the second
prediction rather than the remainder of the network and so on for further predictions. Finally,
including additional postures, for example those in Figure 2.1 like 30∘ left, 30∘ right, 30∘ or
60∘ seated, or stomach could be attempted though some of the postures may be easier to
classify, like sitting, using the accelerometer and a threshold.
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