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ABSTRACT

This article concerns the turbulent flow of Herschel-Bulkley slurries through circular horizontal pipes; in particular, that of concentrated domestic
slurry obtained upon separation of domestic waste water and reduction in the use of water for domestic purposes. Experiments with a rheologically
equivalent clay (kaolin) slurry indicated a non-Newtonian behaviour of the Herschel-Bulkley type. A modified wall function was developed to enable
the Reynolds-averaged Navier—Stokes simulation of Herschel-Bulkley slurries to estimate the wall shear stress. Despite the accuracy achieved, the
use of Reynolds-averaged Navier—Stokes models for an entire waste water system is impractical. Therefore, this article assesses the accuracy of
semi-empirical models in estimating frictional losses. It also discusses possible modifications of existing models to encompass Herschel-Bulkley
behaviour. An evaluation suggests that most existing models deliver estimates of comparable accuracy; however, the probability of these estimates
being reliable, while accounting for experimental errors in quantifying the actual frictional losses, is rather low.

Keywords: Domestic slurry; Herschel-Bulkley; non-Newtonian; pipe flow; Reynolds-averaged Navier—Stokes; urban hydraulics

1 Introduction drop and the relationship it bears with the slurry’s rheology,

volume flow rate and temperature, a prerequisite for design.

Domestic slurry can be concentrated by in-house separating
concentrated streams from more diluted streams and by reducing
the volume of water used for domestic appliances, particularly
for the flushing of toilets, for example, by using vacuum as
a means of transport. Doing so not only saves water but also
increases the concentration of the nutrients and biomass in the
slurry, facilitating their onsite recovery through downstream
waste water treatment (Thota-Radhakrishnan et al., 2018; Zee-
man & Kujawa-Roeleveld, 2011). An important parameter in
the design of a waste water transport system for concentrated
domestic slurry, is the pressure drop due to the frictional losses
incurred by the slurry. This makes the knowledge of the pressure

The co-authors conducted experiments on clay (kaolin) slurries
that were established as being rheologically similar to concen-
trated domestic slurry. It was noticed that these slurries showed
a non-Newtonian behaviour of the Herschel-Bulkley (HB) type
(Thota-Radhakrishnan et al., 2018).

1.1 Non-Newtonian fluids

For a Newtonian fluid, the shears stress is directly proportional
to the strain rate, where the constant of proportionality depends
only on the temperature and pressure. The relation reads:

T=uy (1)
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where pu is the molecular viscosity that depends on the temper-
ature and pressure, T is the stress tensor and y is the strain rate
tensor defined as:

y=Vu+vu' ()

where U is the velocity vector and Vu its gradient tensor or
du; /0x; and T denotes a transpose. A non-Newtonian fluid, on
the other hand, follows a relationship that reads:

©=n(yDy 3)

wherein the function n(]y|) is not related to y but its second
invariant |y|, called the shear rate. One can obtain the shear rate
from the strain rate tensor using:

) I ..
Yl =4/ E{Y-Y} “4)
VY =ty Q)

In Eq. (3) n is the apparent viscosity that, unlike the molecular
viscosity, depends not only on the fluid’s temperature and pres-
sure but also the flow conditions such as the shear rate and even
the duration of the shear (Chabbra & Richardson, 1999).

Herschel and Bulkley (1926) report the behaviour of certain
non-Newtonian fluids that show two irregular properties. Firstly,
these fluids require a threshold stress, called the yield stress, to
flow at all. Secondly, once the yield stress is exceeded, causing
the fluid to flow, the apparent viscosity of the fluid reduces with
increasing shear rate; a property now called pseudoplasticity or
shear-thinning. Owing to the mentioned properties, the fluids
studied by Herschel and Bulkley (1926) are now known as HB
or yield pseudoplastic fluids. Equation (3) in the case of an HB
fluid reads (for an isotropic fluid):

T=1 +my" (6)

where Ty is the yield stress, m is the fluid consistency index, n
is the fluid behaviour index and = is the magnitude of the shear
stress. For details on these parameters, the readers are referred
to Chabbra and Richardson (1999). It is important to note that
the stress and shear rate terms in Eq. (6) are scalars and given
that an HB fluid only flows once the yield stress is exceeded, the
equation is only valid when |t| = T > 1y; else if T < 1y, |¥| =
Y = 0. Equation (6) can also be expressed in three dimensions
in full tensor notation as Oldroyd (1947):

o (emi )y ™)
Iyl

Experiments conducted by the co-authors suggested that the

slurry possesses an HB behaviour. Mehta et al. (2018) proposed

how experimentally-determined rheological parameters could

be used in combination with CFD to estimate the wall shear

stress experienced by an HB slurry in turbulent flow through a
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Figure 1 A schematic of the longitudinal section of circular horizontal
pipe (Chabbra & Richardson, 1999)

pipe. This article, however, concentrates on alternatives to CFD
for estimating the wall shear stress using the same rheological
information.

1.2 Pipe flow of HB fluids

Figure 1 is a longitudinal section of a circular pipe with its wall
shown as the thick black lines. The pipe has a radius R (and a
diameter D). An arbitrary distance from the pipe’s centreline is
r. The flow is from the left to right along the axis marked as z .
Consider a cylinder of radius r <R of length L that is coaxial to
the pipe and inside it; its longitudinal section is shown with the
dotted line.

The pressure drop across this imaginary cylinder is Ap. This
pressure drop is the result of the shear stress acting along the
curved surface of the cylinder against the direction of the flow,
indicated in Fig. 1 as 1y,.

One can derive:
Ap\r
=[— )= 8
Trz ( L )2 (8

Further, using Eq. (8) one can obtain the shear stress at the
wall or T, by replacing r with R. An important quantity that
determines the shear stress is the flow velocity V that is defined
as:

v= 2 ©)

T aR?

where Q is the volumetric flow rate that can be obtained by
integrating the radial distribution of the axial velocity or V;(r)
across incremental annuli of radius r and thickness dr as:

R
Q:/ 2V (r) dr (10)
2

For a laminar flow of an HB fluid, Eqs (6), (8) and (10) provide
an implicit relation between V(r) and T, (Skelland, 1967) :!

R A\ (n+1)/n
0= 3555) oo 9™

(11

where ¢ = 1y /7. Using Eq. (11), one can calculate the wall
shear stress for a set of rheological parameters, flow velocity
and pipe diameter. However, this cannot be done for turbulent
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flows. For details on the laminar solutions and basics princi-
ples of non-Newtonian fluids, the readers are referred to Bird
et al. (1987, 1983).

2 Semi-empirical models

Various semi-empirical methods have been proposed that enable
the quantification of wall shear stress for non-Newtonian fluids
of various types, in turbulent flows. Heywood and Cheng (1984)
and Assefa and Kaushal (2015) provide a review of vari-
ous semi-empirical pipe flow models for both laminar and
turbulent regimes of various non-Newtonian fluids. This arti-
cle considers the models proposed by Tomita (1959), Dodge
and Metzner (1959) (DM), Torrance (1963), Thomas and Wil-
son (1987); Wilson and Thomas (1985) (WT) and Slatter (1995).
Of these models only WT, Torrance and Slatter included the
yield stress in their formulations. Tomita and DM derived their
models for power-law fluids, which do not possess a yield stress
but have a behaviour index that is not unity.? For brevity, refer-
ences will not be repeatedly quoted. More details on the topics
discussed here are well-summarized in Skelland (1967).

2.1 Tomita

Tomita (1959) derived two models, one for power-law (PL) flu-
ids and the second for Bingham plastic (BP) fluids, which have
a behaviour index n = 1 but possess a non-zero yield stress.> In
either case, Tomita assumed that certain properties of laminar
flows of these fluids (velocity profile), also hold for turbulent
flows. Based on this assumption, Tomita derived a relationship
between the frictional loss and the flow properties. This section
describes the derivation and its extension to HB fluids.

Before proceeding with the description of Tomita’s models,
it is imperative to have a good understanding of what happens
when a circular pipe carries a fluid with a non-zero yield stress
(either HB or BP). Figure 2 depicts a possible velocity profile of
fluid with a non-zero yield stress. As per Eq. (8), at the centreline
where r = 0, the shear stress is also 0. Further, Eq. (8) dictates
that the shear stress is directly proportional to the radial distance
from the centreline. Therefore, the shear stress reduces from its
maximum value at the wall to zero at the centreline. In doing
so, there would exist a region near the centreline, within which
the shear stress would be less than the yield stress of the fluid.
As a result, an unyielding region is formed near the centreline
and the fluid within this region is transported as a plug, thereby
reducing the amount of energy lost in turbulence friction when
compared to a “Newtonian” velocity profile.

The radial distance at which the plug is formed, rp, can be
obtained by setting T, as Ty at r =1, and T; as Ty at r = R,
which results in:

T M
= . )

(12)
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Figure 2 The velocity profile of a fluid with a non-zero yield stress
inside a circular pipe

Tomita’s approach begins with the laminar equations to find a
relationship between the average flow velocity V and the rhe-
ological properties of the fluid in question (PL and BP, in this
case). For a BP fluid:

Rty ¢*—4¢+43

12¢
—— ——

V= (13)

Further, the velocity of the plug or v, in the region 0 < r <1,
is:

Ry
L Ry (-0

P 22 (14)

whereas the velocity at a radial distance r in the region r, < r <
R is:

Ty 2 2
v(r) = ——(R* = 2Rry, +2rrp —r 15
0 = 5 p + 211 — 1) (15)
Next, the total shear stress at a distance r, which must equal
the pressure gradient, is expressed as the sum of the laminar
and turbulent contributions, in keeping with Prandtl’s theory
(Prandtl, 1933). For a BP fluid:

S Ap\r
Ty MYy + pU'V = <Tp)§ (16)

where p is the density of the fluid and pu'v’ is the Reynolds
stress. When integrated for a laminar flow (hence, neglecting the
Reynolds stress), Eq. (16) leads to the following relationship for
pressure loss (see Assefa and Kaushal (2015) for details):

A 2Vm
Sl (17)
L /g R«
After normalizing Eq. (16), two non-dimensional numbers were

obtained, which for the laminar flow of BP fluids are related
through:

oVZ  pVR
L b

(18)

The right-hand side of Eq. (18) holds similarity to the Reynolds
number. Tomita used this similarity to analyse the turbulent flow
of a BP fluid as an imaginary laminar flow with an average flow
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velocity V equal to that of a turbulent flow. This led to the deduc-
tion of a suitable friction factor for BP fluids. For brevity, the
analysis is described here in brief.

The pressure gradient in case of a Newtonian fluid can be
related to V, D and p through:

1 Ap 4fN )
—— ==V 19
o L 2D (19)

where fy is the Fanning friction factor for a Newtonian fluid.
Tomita further proposed that the energy dissipation for a BP,
as opposed to a Newtonian fluid, is only due to the viscosity
acting outside the plug region; therefore, V? (formally V|V|) in
Eq. (19) should represent the average velocity outside the plug.
As aresult, Eq. (19) is modified as:

1 Ap  4f, ,
—=E =2V (20)
o L 2D

V2 is obtained by integrating the square of Eq. (15) in the region
Ny <r<Ras:

V2 — 2w
*7 nR2 o

2p2
RAA(r) dr = ¥

oz (1= 06+ 6z —11¢%)

e2y)

Further, using { = 1y /ty in Eq. (13), one can relate V2 and V2
through:
V2=

*

. 2
4 9 (5+60-11%) )
35

B +2¢+1¢%)?
—_—
F©)

Therefore, the friction factor can now be defined on the basis of
similarity as:
1 Ap 4fB >
—— = —VF 23
ST = 3pVFO (23)
where fg is the friction factor for a BP fluid. Tomita considered
simplifying F (¢) as (1 — ¢). Further, Fanning’s relationship for
a Newtonian fluids implies:

fyRe = 16 (24)

which Tomita proposed must also be satisfied by BP fluids
described using an appropriate friction factor and Reynolds
number. Therefore, using Eqs (17) and (22)~24), Tomita
obtained the following:

Tw
fom W 25
T IVF© =
_ pDV _pDV_ (¢t -4 +3)
Repg = T4§04F(§) = F() 3 (26)

As mentioned earlier, F (¢) in Eqs (25) and (26) was simplified
as (1 —¢) (Tomita, 1959). Tomita also carried out the above
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procedure for a PL fluid to obtain fp and Rep such that:

foo 4@2n+1 @
1pV233n+1)

1
G

D"V2" /3n+1\'""/ n 1
() (58 )

n 2n+1/2n
1 pD"V2" 3"

=——@GM)i{4 — — 28
S <>{ G(n)} (28)

A 1\" v"
(_p) =2n+2m<3n_+) (29)

L /s n DN+l
foRep = 16 (30)

The final step involves finding a relation between the mean flow
velocity and the wall shear stress. This is done using Eq. (16),
in which the turbulent stress is rewritten in terms of the mixing
length introduced by Prandtl (1933). Equation (16) then reads:

, v\ [/Ap\(R-—
Ty+my+p/<2y2(@> :(Tp)( 2y) 31)

my is neglected (for turbulent flows and to permit the use of the
term (1 — ¢) for simplicity) and the right-hand side is rewritten
in terms of the wall shear stress leading to:

v\ >
Tyﬂmzyz(@) =TW<1 - %) (32)

Equation (12) can be used to modify ty and rewrite it in terms
of Ty,. Another modification needed here for the term (1 — y/R).
Near the wall, this term is close to unity, so Eq. (32) could be
written as:

8 2
pszZ(a_D = (1 - 0) (33)

Although the reasoning followed here should ideally hold only
when y <« R, Eq. (33) correlates well with experimental data in
turbulent regions away from the wall, at least for Newtonian flu-
ids. Tomita made the same assumption for BP fluids and, upon
integrating Eq. (33), obtained:

vp—v=«/1—§ln{R(l—§)} (34)

Ve K y

For succinctness, the steps that follow are not detailed but can
be found in Tomita (1959). On integrating Eq. (34), one finds
a relation between V, and V. Further, Eq. (34) is modified as
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follows:
Vo — - y V2u*
y, =AVI-C+BY “H{REBRU —;)vx/_F(;)}
(35)

which, when rewritten using the relationship between v, and V,

reads:
L—(A_ (1—;><;+3)> [FOU -0
N 2K 2
+8,/7 00 1n(Reg ) (36)

Finally, with the assumption that for a turbulent flow with high
flow velocities V, the wall shear stress would be high enough
for ¢ « 1, implying that the term /F(Z)(1 — ¢) becomes close
to 1, Eq. (36) was regressed against experimental data points in
Tomita (1959) to obtain :

1
— =4log(Reg/fa) — 0.38 (37)
B

which when 1y = 0, coincides with the relationship for a New-
tonian fluid that was proposed by Nikuradse (1933). Similarly,
starting with Prandtl’s equation for a PL fluid:

2
my" + pK2y2<g—;/> - TW<1 - %) (38)

while making the assumptions made for BP fluids earlier,

Tomita obtained:
% 1 R
— =—In|— 39
Vi K ! (y> 39

Integrating Eq. (39) for a relationship between vy and V, and
following the steps for Eqs (35) and (36), Tomita proposed the
PL equivalent for Eq. (36) as:

L _(p_3)[60 g [C0)
ﬁ_<A 2K) > TBY— In(Rep/fp)  (40)

which, upon regression against experimental data, was pre-
sented by Tomita as:

M+ D*3Bn+2+6n —On+2)¢%
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In either case (BP or PL), the friction factor, Reynolds num-
ber and the parameter ¢ (for BP only) is obtained through the
laminar relations detailed at the beginning of this section.
Tomita assumed that these laminar relations also hold for
turbulent flows. The authors followed Tomita’s procedure to
derive an equivalent expression for HB fluids. The process is

not detailed here for brevity but is similar to what is mentioned
in Tomita (1959). The foremost assumption is that the equiva-

lent friction factor and Reynolds numbers (also ¢ in this case),
derived for the laminar flow of HB fluids are also assumed to be
valid for turbulent flows. These expressions are as follows (see
Chabbra and Richardson (1999) for details):

nR " 1/n r (n+1)/n
v = = (%) {(1 — <§ —z) }

(42)
1/n
n
x{3 ot 2 —§)+—c}(43)
1/n
Vo = n'ﬁ(“) (=g (44)
av\2  [Ap\r
T, + my" + pK?y <8y> = <T)E (45)

On removing the turbulent term from Eq. (38), replacing y as
av/dr and integrating the equation, one obtains an expression
for the pressure gradient, similar to Eq. (17) derived by Tomita:

n
<ﬂ) _ 2Vm" 1 <n+1) (46)
L )y ofR™I(1—o)m\ n

For consistency, Eq. (46) reduces to Eq. (17) for n = 1. As per
Tomita’s arguments, the pressure drop should be related to a
friction factor, such that the value of the velocity used in Eq. (20)
should in a way be obtained as an average of the flow outside the
plug, which is directly responsible for frictional losses. There-
fore, for an HB fluid, one integrates the square Eq. (42) in the
region Iy < r < R as done in Eq. (21), to obtain a suitable Vﬁ,
which can be related to Eq. (43) as:

% = 4log(Repy/fp) — 0.38 (41)
szz_t.g. 2n+1)@n+ 1) .
¥ 3 4 (3n+2)

{(2n+ DN+ 1) +2n(n + )¢ + 2n2¢2)2

(47)

H(.n
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In Eq. (47), the term H (¢, n) is a function of both the ratio of
the yield stress to the wall stress and the fluid behaviour index
for an HB fluid. By setting n = 1, one obtains Eq. (22) for a BP
fluid and for ¢ = 0, one obtains the following for a PL fluid,
indicating that Eq. (47) is a consistent extension of Tomita’s
concept:

Gn+ D),

@2n+1)
~— ——
G(n)

(43)

*

vzzf.i
3 4

Extending Tomita’s proposal that the equation fyRe =16
should also hold for HB fluids with the relevant friction factor
and Reynolds number, one obtains the following set of relations
for HB fluids:

Tw 1
fyg=—> _ - 49
" IR HE ) )
B pV3" n _ o~y 1+I/n '
Rey =8 p- H(é',n){n_i_laHR(l ¢) (50)

One can prove fyRey = 16. Next, the steps illustrated through
Eqs (32)37) are repeated using Eq. (45). For a turbulent flow,
the laminar contribution through my" can be ignored while
retaining Ty, leading to the set of equations Tomita derived for
BP fluids. However, the modification done in Eq. (35), can be
adjusted for HB fluids leading to :

L_<A_<1—c)<z+3>> @m0
N 2K 2
+8/ N0 1 Rey i) 51)

One can verify that Eq. (51) reduces to that for a PL fluid by
setting ¢ = 0 and to that for a BP fluid by setting n = 1. Further,
for { = 0 and n = 1, one must obtain the Nikuradse expression
for Newtonian fluids, as Tomita’s expression consistently did.
This helps one set the values of A and B. The final expression

reads:
1 <331 _a —C)(C+3)) [HE,m(1 —¢)
N 2k 2
4249,/ w In(Rexy/r) (52)

where x can be either of non-Newtonian fluids considered so
far (and even a Newtonian fluid with H(¢,n) =1 and ¢ = 1).
Equation (52) must now be solved iteratively to evaluate the
wall shear stress for a given non-Newtonian fluid and flow
conditions.

2.2 Dodge and Metzner

Dodge and Metzner (1959) (DM) proposed a semi-empirical
relationship between the wall shear stress and the average flow
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velocity for PL fluids based on extensive dimensional analysis
supported by experiments to determine the relevant constants.
Their aim was to relate the Fanning friction factor defined
by Eq. (19) to the generalized Reynolds number proposed by
Metzner and Reed (1955).

Chilton and Stainsby (1998) (CS) extended a part of Metzner
and Reed’s analysis on the generalized Reynolds number (origi-
nally meant for laminar flows) and proposed a relevant Reynolds
number of turbulent HB fluids. Using experimental data, CS
established that the proposed Reynolds number is physically
more representative of transitional and turbulent behaviour than
Metzner and Reed’s generalized Reynolds number.

This article will consider the approaches put forth by DM and
CS.

2.2.1 DM approach extended to HB fluids

Skelland (1967) explains the approach followed by DM in a
simple manner. First, DM used the Buckingham 7 theorem
(Buckingham, 1914) (dimensional analysis) to establish a rela-
tion between Vv at any radial location (Fig. 1) and the radius of
the pipe R, the wall shear stress and the rheological parameters.
Next, similar relations were derived between v near the wall
and the maximum velocity in the core Vp, and the rheological
parameters.

This is followed by a relationship between the velocity defect
orV, — V and the relevant parameters. Ultimately, the equations
obtained by using the Buckingham 7 theorem are combined
to relate a suitable friction factor and the flow conditions. For
brevity, only the relevant final equations for an HB fluid are
described here. The original equations for a PL fluid by DM
are described in Skelland (1967).

A major difference between the analysis of PL fluids by DM
and the HB extension here is the presence of a plug. As per
Tomita, it is important to consider the region outside the plug
as it is in this region that frictional losses actually occur, con-
tributing to the eventual wall shear stress. Therefore, instead of
relating the velocities mentioned in the previous paragraphs to
the wall shear stress, the velocities will be related to Ty — Ty.
The final equations with the symbols used by DM are:

v —— R'p R—r
= h [v&E"—Z£, ,n 53
VTH : (TH m R ) ( )
z §
—R
v
= hy (Z&",n) (54)
Va,
0<r=ry
Vp —V —~=
= hs (¢.n) (55)
VTH

In the above equations, Vq,, is a special case of the Newtonian
definition of friction velocity or vg¢ for HB fluids. It will be
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defined as:

Vg, = hy 1-¢ (56)
——

VTw/p

Further, hy, h, and h; are arbitrary functions of the non-
dimensional terms contained within the functions brackets and
deduced using the Buckingham 7 theorem. Equations (53)—55)
are combined to obtain the velocity deficit, as done by DM,
leading to:

Vyp —V
P =P, (57)

L

where P, is a dimensionless function of n. With all these equa-
tions, one obtains a relationship between the friction factor of an
HB fluid and the flow parameters as (similar to DM) as:

/izHl(Z,n)—Pn (58)
fre

In Eq. (58), H;(Z,n) is the value of hy(Z, &, n) at the centreline
(or & = 1). fyp is the friction factor for HB fluids, defined in this
case as:

Tw
1
3PV?
——
fn

1=4 (59)

fug =

Although fy is the same as previously in Eq. (19), fyg is different
from fy defined using Tomita’s procedure through Eq. (49). Fur-
ther analysis as defined in Skelland (1967) for PL fluids, when
done for HB fluids, leads to the following equation, similar to
what DM derived but with parameters defined for HB fluids
instead of PL fluids:

Dnv27n
— 1.63A, log < P )
bl m

HB

A Nie
- 0.49An<1 + E) + 50— Pn (60)
2 V2
Cn

where A, is also a function of n. For a PL fluid, the above
equation as proposed by DM contains fy instead of fyg, as the
friction factor for a fluid with zero yield stress is effectively fy,
as per Eq. (59). Nge as a modified Reynolds number produces a
family of curves depending on the value of n, instead of a unique
relationship between the Reynolds number and the friction fac-
tor for a laminar flow (Metzner & Reed, 1955). Instead, the
protocol put forth by Rabinowitsch (1929) and Mooney (1931)
was extended to PL fluids to find a suitable Reynolds num-
ber to be used in Eq. (60) (Dodge & Metzner, 1959; Metzner
& Reed, 1955).
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2.2.2 A Reynolds number for HB fluids

The Rabinowitsch—-Mooney (RM) criterion establishes that for
a laminar flow through a circular tube, the relationship between
the pseudo shear rate 8V/D and the wall shear stress is unique
as long as the shear stress is a function of the shear rate (for
time-independent fluids). Just as one uses the Newtonian vis-
cosity determined under laminar conditions for turbulent flows,
DM proposed that the unique relationship established for non-
Newtonian fluids with the RM criterion could be extended to
turbulent flows too. As per RM, the wall shear stress can be
related to 8V/D as:

DAp sv\"
= — = " — 1
Ty m(D) D)

where n' is obtained using:

DA
N=—— 7 (62)
8V

Metzner and Reed (1955) extended the RM criterion to define
the generalized Reynolds number as:

pDn’VZ—n’
NRe—Gen = (63)
w
with @ = m’8"~!. Further, the RM criterion also states that the
strain rate at the wall y,, is:

_3n’+1 8V
W= "D

(64)

DM used the above criteria to propose the following Reynolds
number for PL fluids to be used in Eq. (60):

pDMV2n n n
NRe-Gean = n = ORe( ) (65)
6n+2
— 3n+1
sr-im( 21

NRge is defined in Eq. (60). Further, to prevent the loss of general-
ity, the n is replaced with n’. For a PL fluid n’ = n. Equation (60)
when written for PL fluid (as proposed by DM) finally reads:

= A 10g (NRe-Gean : lein//z)

1/6n +2\"
+Aln10g{§( v )} (66)

Cy

P

-

DM determined the constants A;, and Cy as follows:

4 —0.4

= S o7

In
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In terms of consistency, Eq. (66) reduces to the Nikuradse
equation for N = n = 1. DM did not extend their results to HB
fluids as they demonstrated in Dodge and Metzner (1959) that
Eq. (66) also works well for fluids with a non-zero yield stress.

Using the RM criterion, one can derive n’ for an HB fluid and
obtain a NRe-Gen,s, @ procedure that is also followed in Chilton
and Stainsby (1998). n’ for an HB fluid is:

, no
n =
1 —3n6

(68)

where 6 is defined as follows (symbols are the ones used in
Chilton and Stainsby (1998) for consistency):

1 1 2n 5
0 = 1— ¢ — s
3n+1 2n+1 @2n+1H(n+1)
~—— S— e’
a b
2n?
e 69
(2n+1)(n+1)§ (©9)
[ S —

c

For brevity, the procedure used to obtain 8V/D (for laminar
flows as per RM) and m’ for a general fluid is not detailed here.
For an HB fluid these are:

VY _ 4 1, 70)
D/ MM,

, ,t3n’+1 1 ’
Mg = g7 g™ (71)

where ¢ is defined as:
¢ =n5, N1 - )" (72)

Combining the above, one obtains the Nre-gen,; as defined by
Eq. (63):

pDn/VZ—n’ 4n’ ¢
g —1 Tavn’ﬂ mn’/n

NRe—GenHB = (73)
CS (Chilton & Stainsby, 1998) suggested a simplified version of
Eq. (73), which does not contain the parameters m” and n’. Fur-
ther, Eq. (73) can also be expressed in terms of N, as proposed
by DM.

pVD 1 ;
————(4n)"(1 — ¢)

D
(4no)" (1 —¢)
8n71

NRe—GenHB =

= Nge (74)
One can verify that Eq. (74) is the same as Eq. (65) should { = 0
(PL fluid). It is fair to mention at this point that CS deemed
this Reynolds number to not be physically realistic for turbulent
flows as the entire derivation was based on a laminar velocity
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profile. Instead, they proposed a new Reynolds number based
on the wall-effective viscosity defined as the ratio of the wall
shear stress to the strain-rate at the wall:

Tw

== (75)
Yw

Nw

Yw can be calculated from Eq. (6) by setting the shear equal
to the wall shear stress, which ultimately provides a way to
calculate ny:

m‘/“'rw

w = (76)

(Tw — Ty)l/n

The procedure for deriving the Reynolds number based
on the wall-effective viscosity is illustrated in Chilton
and Stainsby (1998); the Reynolds number so obtained is:

pVD
Nw

Recs = 4no (77)

For extending Eq. (77) to HB fluids, one can use the Reynolds
number defined by Eq. (74) or the one defined by CS through
Eq. (77).

2.2.3 Dodge-Metzner equation for HB fluids

One could extend Eq. (66) to HB fluids by combining
Egs (60), (66) and (74). However, one must bear in mind that
DM replaced n with n’, which is convenient for PL fluids that
entail n = n’. DM did not provide a clear explanation as to why
every N is replaced with n” and if every replacement is justified.
DM however asserted that Eq. (66) should ideally be suitable for
non-PL fluids based on a calculation that proves that shear rates
that are less than 80% of T, account for no more than 7% of
the mean velocity that results from frictional losses. Therefore,
regions away from the wall have significantly lower (perhaps
ignorable) contributions to the mean velocity. An experimental
verification of this hypothesis along with more details can be
found in Skelland (1967).

Further, as the flow of an HB fluid becomes more turbulent,
the value of ¢ becomes smaller due to increasing wall shear
stress. As a result, 6 is nearly 1/(3n + 1), reducing n’ to n and
effectively making Eq. (66) suitable for further analyses. Bear-
ing this and DM’s assertion in mind, it is perhaps futile to extend
Eq. (66) to HB fluids, and more so for highly turbulent flows.
Nonetheless, for less turbulent HB flows where ¢ is such that it
may not be ignored, an extension of Eq. (66) is warranted.

Assuming that every n can be replaced with n’, a consistent
extension of Eq. (66) to HB fluids must read:

1 4 -n
ﬁ - Wml()g (NRe'GenHB 'le n/2)

0.4

T2 1-0 (78)
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Equation (78) shall be referred to as DM-HB. Further, CS
suggested a similar equation based on Eq. (77) as:

1 1o
7= 4log (NRecsmm\/m) —04 (79

which shall be called CS-HB from hereafter. The following sec-
tions briefly describe other approaches in literature for turbulent
HB fluids.

2.3 Torrance

As one of the older-known expressions for HB fluids, Tor-
rance (1963) proposed:

1 2.75 1.97

«/IN
1.97 3n+1\" _
+ n {ReBi'< 4n ) .le ”/2} 50

where fy is the Fanning friction factor defined using Eq. (19) as:

Tw
fN = —— 81
v (81)

Finally, the Reynolds number in Eq. (80) Reg; is the generalized
Reynolds number for a PL fluid used by Bird et al. (1987, 1983),
which can be derived from Nge-gen proposed earlier in Metzner
and Reed (1955):

Rew — 1 D> "o/ 4n \" 82)
B= g1 3n+1

It is immediately noticeable that although Torrance’s equation
includes the contribution of the yield stress that separates an HB
fluid from a PL fluid, the Reynolds number used in the equation
does not encompass the yield stress. However, it is likely that
Eq. (80) could still provide accurate results at high Reynolds
numbers, at which the effect of the yield stress would perhaps
be negligible.

2.4 Wilson and Thomas

Wilson and Thomas (1985) and Thomas and Wilson (1987)
derived Eq. (83) by relating the thickness of the viscous sublayer
(representing the dissipation of energy due to friction) with the
ratio of the area under the rheogram of an HB fluid to that of
a Newtonian fluid, for the same strain-rate and the wall shear
stress:

Vv _ 2.51n(pDV¢> +2.5{ 1-00a+ n)}
Vq Nw (1+n§)2

1+n¢

2 J—
oy (12567 +2.5¢ — 11.6) (83)

+
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where Vq is the friction velocity defined as:

ve= | (84)
o

2.5 Slatter

Slatter (1995) carried out a comprehensive series of experiments
with a wide range of HB fluids. First, the Reynolds number to
determine the transition for HB fluids was modified to:

8pV2
—
=0

The denominator of the right-hand side of Eq. (85) is similar to
the constitutive relation for an HB fluid, i.e. Eq. (6), but with the
strain-rate defined in terms of V, and D,, which are:

Reg = (85)

Q-
TR - (86)
Da=2(R—r1p) (87)

Qp is the volume flow rate through the plug, which can be
obtained using Eq. (44) in the case of an HB fluid. The above
formulae were further modified to account for the particle
roughness within the HB fluids under consideration by Slat-
ter. This roughness was related to the representative size of the
particles dgs. dgs is the diameter at which 85% of the slurry’s
sample mass is comprised on particles smaller in size than dgs.
For details on the procedure used to determine the representative
size, the readers are referred to Slatter (1995) (and Neill, 1988).
A different Reynolds number was defined to account for the
particle roughness effect as:

8pv%
g n
v
X+ m<m>

such that Rer < 3.32 pertains to a smooth pipe flow (fully-
developed turbulent) for which the following relationship holds:

Reg = (88)

\Y R
— =25In (—) + 2.5In(RegR) + 1.75 (89)
Vg dss

On the other hand, for a rough flow, i.e. Rer > 3.32:

V R
— =25In|— ) +4.75 (90)
Vt dss

The use of either Eq. (89) or Eq. (90) requires information on the
wall shear stress to calculate v¢ and, therefore, must be solved
implicitly. Thus, both of them would be used to estimate the
wall shear stress for the experimental test cases considered in
this article.
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3 Computational fluid dynamics

In contrast with the approaches mentioned in Section 2, a CFD-
based approach involves solving the modified Navier—Stokes
(NS) equations. The term modified in this context refers to a
process through which a solution to NS equations could be more
easily obtained by only solving for the most relevant turbulent
features in a flow. One such modification, known as Reynolds
averaging, provides an insight into the flow’s features averaged
over a number of instances of the flow, using what are bet-
ter known as the Reynolds-averaged Navier—Stokes (RANS)
equations.

Malin (1997, 1998) used the standard k — € and ¥ — w mod-
els to simulate non-Newtonian fluids, using the standard model
constants for Newtonian fluids. The turbulent viscosity, how-
ever, was dampened near the walls with an ad hoc function.
Both models delivered similar results for HB fluids, which were,
in fact, close to the semi-empirical predictions made by Dodge
and Metzner, for Reynolds numbers greater than 10°. Simi-
larly, Bartosik (2006) used the standard « — ¢ model with a
modification for the eddy viscosity near walls to account for
non-Newtonian viscosity. The approach was accurate for HB
fluids, even with high yield stresses (hence, a stronger deviation
from Newtonian behaviour).

The approach in this article involves using the x — € and
Reynolds stress model (RSM) for modelling the turbulence
within a 3-D pipe carrying an HB fluid. These models use a
wall function to determine the frictional forces near the pipe’s
walls that would lead to the eventual loss in pressure, without
having to resolve the actual velocity field near the pipe’s walls,
to determine the frictional loss. However, the wall function that
is most often used in such simulations is the standard Newtonian
wall function proposed by Launder and Spalding (1974).

Mehta et al. (2018) proposed an equivalent wall boundary
condition for HB fluids. This condition was validated using the
experiments defined in the next section in terms of the pressure
drop across a fixed length of a circular pipe. To make it more
comprehensive, the pressure drops were not measured for a sim-
ple straight section but for a section containing two 90° bends,
one of which was upward-facing. For the convenience of the
readers, a succinct derivation has been provided in Appendix 1.
For details, the readers are referred to Mehta et al. (2018).

Further, it is important to mention that the ability of CFD in
this article has been evaluated solely in terms of predicting the
wall shear stress. This is because of three reasons: firstly, the
experiments conducted by the authors and other researchers do
not provide information on the velocity and turbulence profiles
in a pipe carrying turbulent HB fluids. Secondly, the wall shear
stress is the parameter that is most relevant for estimating fric-
tional losses. Finally, the nature of turbulence in non-Newtonian
fluids, as regards to the fluctuations in the shear stress tensor
and the local viscosity, are not completely understood. Hence,
a modification to the Newtonian RANS approaches that only
incorporates the behaviour near the wall (viscosity) can be
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Table 1 The test-cases considered in this article

pkeg Ty D dgs
Case m~3) (Pa) m n (mm)  (pm)

KERS2408% 1061 1.04 0.014 0.8 79 28
KERS0608* 1071  1.88 0.01 0.84 79 28

Sgb 1052 0.0014 0.004 0.79 100 32
S12b 1068  0.0052 0.007 0.7 100 32
S14b 1091  0.049 0.013 0.65 100 32
s17° 1113 0.16 0.033 0.6 100 32
S21b 1146 043 0.083 0.52 100 38

 Slatter (1995).
bThota-Radhakrishnan et al. (2018).

suitable for predicting the wall shear stress but may not be
appropriate for analysing the flow towards the centre of the
pipe unless the flow is highly turbulent, in which case, the vis-
cous behaviour of the fluid is of minor consequence. Mehta
et al. (2019) demonstrated that for high Reynolds numbers,
the Newtonian RANS models are accurate for estimating fric-
tional losses, but extending them towards predicting velocity
and turbulence profiles will still need experimental verification.

Nonetheless, given that CFD incorporates more physics per-
taining to turbulence, wall effects and non-Newtonian behaviour
than simple semi-empirical models, its potential as a tool for
estimating frictional losses must be evaluated and compared
against the former.

4 Experiments

Table 1 presents an overview of the various experimental test
cases considered in this article. All cases deal with HB fluids in
turbulent flow through circular horizontal pipes. As per Eq. (6)
the unit of m for a given behaviour index n, is Pas". dgs is the
diameter of the particle that makes up 85% of the mass of the HB
fluid under consideration. This implies that 85% of the HB fluids
mass comprises particles smaller in diameter than the reported
dgs.

Details on the experimental measurements and the associated
errors are discussed in detail in Mehta et al. (2018). As regards to
the cases S8 through S21, the experimental error in measuring
the flow rate through the 100 mm pipe is 101 min~!, which
leads to an error of £0.02 ms~! in estimating the velocity V. On
the other hand, the experimentally-determined value of the wall
shear stress bears an error of £0.24 Pa that corresponds to 2o
or 95% confidence.

It is important to note that turbulent structures within pipes
carrying non-Newtonian kaolin slurries are affected not only by
the diameter of the pipe but also the yield stresses and con-
centrations of the slurries. Thus, it is fair to mention that the
experiments and the numerical methods compared in this article
must be considered along with the diameters of the pipes and
rheology of the slurries tested (Bartosik, 2011).
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Table 2 Abbreviations used for the different

models

Model Abbreviation
Tomita PL TO-PL
Tomita HB TO-HB
Dodge and Metzner PL DM-PL
Dodge and Metzner HB DM-HB
Chilton and Stainsby HB CS-HB
Torrance TR
Wilson and Thomas WT
Slatter smooth SS
Slatter rough SR
RANS CFD
Experimental data EX

5 Estimates with the semi-empirical models and CFD

This section presents the results obtained with the semi-
empirical models described in Section 2. Table 2 lists the
abbreviations used for the various models considered here.

The results are presented as plots of the wall shear stress in
Pa vs. the pseudo-shear rate 8V/D in s~!. While interpreting the
results obtained with RANS (CFD), it is important to bear in
mind the limitations of the numerical methods involved. These
are illustrated in Mehta et al. (2019) as a sensitivity analysis of
the wall boundary conditions proposed in Mehta et al. (2018).

For succinctness, only the results from S10, S17, S21 and
KERS2408 are discussed here using Figs 3 and 4. One observes
the following:

e CFD provides accurate results in all cases, deviating only
at high pseudo-shear rates. It is important to note that the
approach used for the CFD analysis must comply with
the findings of the sensitivity analysis described in Mehta
et al. (2019).

e The TO-PL and its proposed extension to HB fluids, TO-
HB, only deliver accurate results for S10 (also for S8 but not
shown here). These two cases concern HB fluids with very
low yield stress, effectively making them PL fluids. However,
in the other cases, both TO-PL and TO-HB provide similar
results with nearly overlapping plots.

e DM-PL and its proposed extension to HB fluids, DM-HB,
show a behaviour similar to TO, with the PL and HB solutions
overlapping each other.

e The CS-HB approach deviates from experimental data as the
pseudo shear rate increases.

e All the other remaining approaches, namely TR, WT, SS and
SR, produce similar results at low shear rates but tend to devi-
ate from each other as the shear increases (increasing flow
velocity). One also observes that SS and SR produce the best
results for KERS2408.

e WT and TR approaches lead to overlapping estimates.
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The accuracy of SS and SR for KERS2408 is simply
explained by the fact that these models were obtained by tuning
their parameters using experimental data, of which KERS2408
was a part (Slatter, 1995). Regarding the similarity between the
PL and HB approaches of the TO and DM models, one could
allude to the interesting hypothesis presented in the original arti-
cle by DM (Dodge & Metzner, 1959). DM explained that their
PL model was applicable to non-power law fluids such as HB
fluids too. They proved mathematically that the resulting mean
velocity in the pipe is dependent mostly on the shear rates occur-
ring a radial distances r/R > 0.8 or the shear occurring in the
immediate vicinity of the wall.

Therefore, the region away from the pipe’s walls and towards
the centreline, where the effect of the yield stress for HB fluids
is apparent due to the reducing shear stress, in fact contributes to
less than 7% of the mean flow that results. This in turn implies
that accounting for the yield stress as an extra parameter for HB
fluids as part of the DM approach may not add any value to the
DM model. By extension, the same applies to the HB extension
of Tomita’s PL model, in which the incorporation of the yield
stress does not alter the estimates of the wall shear stress. The
results presented in Figs 3 and 4 can serve as a proof of the idea
put forth by DM.

Finally, as regards to the other models, one cannot assess
their accuracy easily as the trends in the estimates they pro-
vide are not consistent across the test cases discussed here.
Thus, to gain more insight into the accuracy of all the mod-
els considered in this study, one must resort to a proper error
analysis.

6 Probability

To provide a more meaningful insight into the usability of the
various numerical models, it is essential to have knowledge of
their accuracies. In this study, various models were used to esti-
mate the wall shear stress for certain experimental conditions of
flow velocity and the resulting gradient for a range of HB flu-
ids. However, the uncertainty in the experimental determination
of the flow parameters itself was not considered. Further, the
trends in the accuracy of the estimates with the various models
cannot be assessed qualitatively using the results discussed in
the previous section.

The “accuracy” is defined as the closeness of an estimate to
the real or known value. Meanwhile, the “precision” is defined
as the closeness of the estimates to each other; in effect, a
measure of how close repeated estimates (using a model or a
apparatus) would be to each other.

Given there is an uncertainty in known value (experimentally
reported wall shear stress), one must first estimate the possi-
ble deviation in the known value itself, i.e. the precision of
the experimental method. Next, based on the values obtained
from simulations, one must calculate the distribution in the esti-
mated values and the difference of their mean from the “mean
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Figure 3  Shear stress vs. strain rate for S10 (left) and S17 (right). The graphs (a) & (d) correspond to the models WT, SS, SR & TR; (b) & (e)
correspond to DM-PL, DM-HB & CS-HB and (c¢) & (f) correspond to TO-PL, TO-HB & CFD. In each graph, EX represents the experimental data

points shown using solid black dots.

experimental value”. The latter indicates the general accuracy
of a numerical method, whereas the distribution itself will indi-
cate the precision a numerical method delivers. This analysis
could be taken further, by using the probability distributions of
the experiments and the models, to estimate the probability of

how likely is a numerical method to provide accurate measure-
ments upon repeated application (to a range of flow velocities,
diameters and rheological properties), while accounting for the
precision with which an experimental set-up can provide the real
value.
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Figure 4 Shear stress vs. strain rate for S21 (left) and KERS2408 (right). The graphs (a) & (d) correspond to the models WT, SS, SR & TR; (b) &
(e) correspond to DM-PL, DM-HB & CS-HB and (c) & (f) correspond to TO-PL, TO-HB & CFD. In each graph, EX represents the experimental

data points shown using solid black dots.

This is further explained in terms of Fig. 5. The
experimentally-determined wall shear stress is shown as EX
with the dotted Gaussian curve representing the precision of the
apparatus. Next for the entire set of experimental data points,
i.e. every relation between wall shear and flow velocity across

the different HB fluids, one calculates the average of the dif-
ference between the experimental and numerical estimates and
the standard deviation in this difference. Using these data, one
obtains a Gaussian distribution for any model under considera-
tion (shown as “Model” in Fig. 5 with the dashed line). This
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EX Model

Figure 5 A schematic representation of the uncertainty analysis

Table 3 Probability of prediction

Model Probability
CFD 0.27
Dodge and Metzner 0.22
Slatter 0.21
Torrance 0.14
Wilson and Thomas 0.13
Tomita 0.07

is the precision that a numerical method can deliver (see For-
nasini, 2008 for the mathematics underlying such analyses and
possible applications).

Using the above, one can estimate the probability with
which a numerical method can correctly estimate the wall
shear stress within experimental bounds, by calculating the
area common to the two Gaussian curves shown in Fig 5. The
experimental bounds for the HB fluids S10 through S21 are
mentioned in Section 4. Slatter (1995) also contains details on
the errors incurred while studying the HB fluids KERS0608 and
KERS2408. However, the error is not reported in terms of the
standard deviations it represents.

Therefore, the error analysis detailed in this section is only
carried out using the experimental data for S10 through S21, for
which the experimental error corresponds to 2 standard devia-
tions or 95% confidence. Using this approach, one obtains the
probabilities listed in Table 3.

Although the probability is best with CFD, the overall val-
ues of all the numerical methods discussed in this article are, in
fact, very low, with 0.27 being the maximum. It is interesting
to note that the Dodge and Metzner approach based on dimen-
sional analysis is nearly as accurate as CFD. Further, Slatter’s
approach, despite being tuned for a dataset which is not included
in this error analysis, is as accurate as Dodge and Metzner’s
approach. All the other semi-empirical models demonstrate lit-
tle accuracy in their estimates. The lowest accuracy is that of the
Tomita model, which in fact is based on the treatment of turbu-
lent non-Newtonian flows as though they were mathematically
satisfying laminar flow conditions Skelland (1967).
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Table 4 Probability of prediction corrected with
the operational envelope (Mehta et al., 2019)

Model Probability
CFD 0.61
Dodge and Metzner 0.27
Slatter 0.26
Torrance 0.19
Wilson and Thomas 0.18
Tomita 0.11

Despite the above results, it is fair to mention that the
CFD approach proposed in Mehta et al. (2018) works accu-
rately only within a well-defined envelope that is described in
Mehta et al. (2019). This operational envelope is bound by
highly turbulent flows, and hence, high flow velocities (more
than 1.5ms™! or 8V/D more than 200 s~'); and a value of
yield stress that must be comparable with the wall shear stress.
Accounting for these nuances and implementing the opera-
tional envelope to the probability analysis, one obtains the
probabilities listed in Table 4.

All numerical approaches show improved accuracy upon
restricting the range of velocities. However, CFD particularly
shows a twofold improvement. With regard to the goals of our
research, the best possible estimate of the pressure drop would
provide a better insight in the energy demands in a sewer system
designed to transport concentrated domestic slurry. Therefore,
the low probabilities achieved by semi-empirical models require
improvement. Even if one multiplies the estimates of the semi-
empirical model by a factor of 1.5-2.0, which is common
practice in engineering, the probabilities of estimating the wall
shear stress and hence, the energy demands of a transport sys-
tem, are far from being accurate and reliable for an efficient
design. This makes estimating the wall shear stress of turbulent
HB fluids a critical design parameter for systems carrying the
same.

7 Discussion

It is important to discuss the results presented here by begin-
ning with the statement that each of the numerical methods
considered in this article only represents a part of or a simpli-
fied version of the physical phenomena concerning the turbulent
flow of an HB fluid in a pipe.

Models based on simplification of the turbulent flow, such
as Tomita’s model that uses the laminar velocity profile to
determine the extent of the plug region, tend not to be very
accurate. Nonetheless, it is interesting to note that the extension
of Tomita’s PL model to HB fluids following the incorporation
of the yield stress does not alter the estimates. This is solely
because the shear stress near the wall has a greater contribution
to the velocity profile, and near a wall the behaviour of both
PL and HB fluids is dominated by their fluid behaviour indices,
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as correctly hypothesized by Dodge and Metzner (1959). But
one must bear in mind that this article considers a pipe with an
inner diameter of 100 mm. In a practical situation, this diameter
might change from 40—80 mm in households to 100200 mm in
the main transport lines, and the effects of these changes must
also be accounted for.

On the other hand, the Wilson and Thomas model based on
the fundamentals of turbulence and boundary layer thickness
is only slightly more accurate (Tables 3 and 4) than Tomita’s
model for the cases considered in this article. Slatter’s model,
which was tuned for a set of experiments not included in error
analysis, has an accuracy that is comparable with CFD.

CFD itself shows enhanced accuracy within the operational
envelope determined using a strict sensitivity analysis (Mehta
et al.,, 2019). However, it is fair to mention that the CFD
approach mostly enforces a relation that the wall shear stress
must bear with the velocity field near the wall, to satisfy the uni-
versal law of the wall modified to account for the viscosity of a
non-Newtonian HB fluid. An experimental campaign that could
support this relationship is still lacking, although the method
itself has been validated for a wide range of test-cases concern-
ing HB fluids, available in literature and for 3D flow situations
that include a horizontal circular pipe followed by two right-
angled bends (Mehta et al., 2018). Perhaps one reason why the
CFD approach works well is that it complied with Dodge and
Metzner’s idea that a more fundamental treatment of the shear
near the wall region is central to a better estimation of the flow
that results. However, when used for a Newtonian fluid, CFD is
capable of simulating the turbulent flow inside a pipe with very
high accuracy for a range of RANS methods, as seen in existing
literature.

8 Conclusions and outlook

Based on the tests outlined in this article, one can conclude that
despite a number of approaches proposed so far, the numerical
estimation of wall shear stress for turbulent HB fluids in cir-
cular pipes still remains a challenge, in contrast with the wide
range of numerical methods readily available for the analysis of
Newtonian flows.

Semi-empirical models are often based on the over-
simplification of the physical aspects of non-Newtonian turbu-
lent flows. Further, the use of a restricted set of experiments
for the determination of any empirical parameters does hin-
der the ability of such models to be versatile. In this regard,
extending Slatter’s model to experiments beyond the ones con-
sidered in its formulation could perhaps make the model more
robust and accurate, and hence, is worth investigating. Further,
it is important to investigate a fundamental aspect of HB flows,
i.e. the unyielding region at the centreline of a pipe, because
some empirical models take the presence of this region into
account and others do not. Additionally, experimental details
on the velocity profile near the wall, based on a range of flow
and rheological conditions, could also be useful for determining
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a semi-empirical relationship between wall-stress, flow velocity
and rheological parameters. Further, the current studies consider
a pipe with an inner diameter of 100 mm. It would be interesting
to know the effect of a larger pipe diameter on the flow profile.

Although our results indicate that CFD holds promise in
terms of its capacity to estimate frictional losses, it requires
further development in terms of incorporating the fundamen-
tals of non-Newtonian turbulence, which themselves require
thorough experimental investigation, given the lack of ample
literature on the subject. The wall function that appears to be
accurate within a restricted envelope also requires experimental
verification and possible improvement. Finally, should CFD be
improved to the extent that it becomes more accurate and reli-
able for estimating frictional losses in HB fluids, one will still
require the computationally cheaper and simpler semi-empirical
or reduced-order models to extend the calculations on a sin-
gle circular pipe, to an entire urban sewer system, which is
the motivation behind the research that concerns this article.
The estimation of the frictional losses provides information on
the energy required to transport a concentrated HB fluid, mak-
ing it an important design parameter, and hence requiring more
accurate and reliable mathematical models.
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Appendix 1

This appendix provides details on the derivation of the wall
function used to enable a CFD-based analysis of the pres-
sure loss in a circular pipe carrying a turbulent HB fluid. As
mentioned previously, for a Newtonian fluid:

=y (A1)

Whereas, an HB fluid has a constitutive relationship of a the
following form:

=1 +my" (A2)

The standard wall function proposed by Launder and Spald-
ing (1974) took into account the shear stress in a Newtonian
fluid to estimate the velocity in a grid point close to a wall

boundary:
u 1 E 12
— = _1n{yL<T—W) } (A3)
TW> K no\p
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wherein « is a constant that is nearly 0.4 and E is about 9.973.
This was extended to account for the yield stress and the con-
sistency and behavior indices of an HB fluids, using an analysis
similar to the one followed by Launder and Spalding (1974) for
a Newtonian fluids. One ends up with (Mehta et al., 2018):

n _ (2-m/2
u :Lln{ﬂ<u> } (Ad)

<1:W—'ry>2 Nk m p
0

In the limit of vanishing yield stress and a behavior index
n = 1, the above expression reduces to Launder and Spalding’s
equation for a Newtonian fluid. As mentioned in the main text,
the above equation was validated using pressure drops across
circular pipes (with bends too) obtained from experiments on
a range of HB slurries. Further, an operating envelope wherein
this equation provides reasonable estimates was proposed, thus,
placing a limit on flow velocity, yield stress is to wall stress ratio
and behavior index. Within these limits, the proposed wall func-
tion can safely be used in combination with x — € and Reynolds
stress models.

Notation

A = model constant in Tomita’s equation

An = constants as function of n in Dodge and Met-
zner’s method (also By, C, and Py)

B = model constant in Tomita’s equation

dss = representative size of the particles in a slurry
(nm)

D = pipe diameter (mm)

Da = modified pipe diameter in Slatter’s model (m)

f, = modified friction factor

fa = friction factor for a Bingham plastic fluid

fr = friction factor for a Herschel-Bulkley fluid as

per Tomita’s method
fus = friction factor for a Herschel-Bulkley fluid as
per Dodge and Metzner’s method
= Fanning friction factor for a Newtonian fluid
friction factor for a power law fluid
function of ¢ for a Bingham plastic fluid
function of n for a power law fluid
function of ¢ and n for a Herschel-Bulkley fluid
pipe length (m)
consistency index (Pa s")
modified consistency index
behaviour index
modified behaviour index
= modified Reynolds number for a power law
fluid
NRe-Gen = generalized Reynolds number defined by Rabi-
nowitsch and Mooney

—h —h
o =
1
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generalized Reynolds number for Herschel—
Bulkley fluids

generalized Reynolds number for power law
fluids

= static pressure (Pa)

volumetric flow rate (I min—")

arbitrary radial distance

radial extent of the plug from the centreline
arbitrary pipe radius

Reynolds number for a Newtonian fluid
Reynolds number for a Bingham plastic fluid

= Bird’s generalized Reynolds number for a

power law fluid
Chilton and Stainsby’s Reynolds number for a
Herschel-Bulkley fluid

= Reynolds number for a Herschel-Bulkley fluid

Reynolds number for a power law fluid

= Slatter’s Reynolds number for a rough-walled

pipe
Slatter’s Reynolds number for a smooth-walled
pipe

= velocity fluctuation due to turbulence (also V')

velocity vector

friction velocity for a Herschel-Bulkley fluid
friction velocity

modified velocity to account for the plug
plug velocity

average flow velocity (m s™)

modified arbitrary average flow velocity

= modified average flow velocity for Slatter’s

model (ms™")

axial flow velocity at an arbitrary radial distance
r

arbitrary perpendicular distance from a pipe’s
wall

dimensionless constant in Dodge and Metzner’s
method

model constant in Tomita’s Herschel-Bulkley
model

= strain rate (s7')

strain rate at the wall
strain rate tensor
difference

= rate of dissipation of turbulence kinetic energy

per unit mass (m? s—%)

the ratio Ty /Ty

effective viscosity (Pa s)
wall effective viscosity (Pa s)

= a function of n and ¢ for a Herschel-Bulkley

fluid

turbulence kinetic energy per unit mass (m? s=2)
molecular viscosity (Pa s)

model constant in Dodge and Metzner’s model

= density (kgm™)
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o = standard deviation

T = shear stress (Pa)

T = shear stress along the pipe’s axis on a face with
the radius as the normal (Pa)

Tw = wall shear stress (Pa)

Ty = yield stress (Pa)

T = shear stress tensor (Pa)

¢ = a function of n and ¢ for a Herschel-Bulkley
fluid

w = dissipation rate per unit turbulence kinetic
energy (s7')

1) = function of m" and n’ in the Rabinowitsch and
Mooney theory

BP = Bingham plastic

CFD = computational fluid dynamics

CS = Chilton and Stainsby

DM = Dodge and Metzner

HB = Herschel-Bulkley

PL = power law

RANS = Reynolds-averaged Navier—Stokes

RM = Rabinowitsch and Mooney

RSM = Reynolds stress model

SR = Slatter rough

SS = Slatter smooth

TO = Tomita

TR = Torrance

WT = Wilson and Thomas

Notes

1. Skelland (1967) is a general reference. For details on the similar
relationships for the laminar flow of HB fluids, readers could refer
to the review article by Heywood and Cheng (1984) and literature
by Bird et al. (1987, 1983).

2. t=my", n # 1 for power law fluids.

3. T = Tty + my for Bingham plastics.
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