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Abstract. Daily household tasks involve manipulation in cluttered and unpre-
dictable environments and service robots require complex skills and adaptability
to perform such tasks. To this end, we developed a teleoperated online learn-
ing approach with a novel skill refinement method, where the operator can make
refinements to the initially trained skill by a haptic device. After a refined trajec-
tory is formed, it is used to update a probabilistic trajectory model conditioned to
the environment state. Therefore, the initial model can be adapted when unknown
variations occur and the method is able to deal with different object positions and
initial robot poses. This enables human operators to remotely correct or teach
complex robotic manipulation skills. Such an approach can help to alleviate short-
ages of caretakers in elderly care and reduce travel time between homes of dif-
ferent elderly to reprogram the service robots whenever they get stuck. We per-
formed a human factors experiment on 18 participants teaching a service robot
how to empty a dishwasher, which is a common daily household task performed
by caregivers. We compared the developed method against three other methods.
The results show that the proposed method performs better in terms of how much
time it takes to successfully adapt a model and in terms of the perceived workload.

Keywords: Learning from Demonstration · Teleoperation · Online Learning

1 Introduction

Due to an ageing society and shortages of the workforce, elderly care at homes and in
nursing homes is becoming one of the key societal challenges [7]. To mitigate the lack of
caregivers with respect to the increasing numbers of elderly, we see service robots and
teleoperation as one of the most promising solutions. We envision deploying multiple
robots to various locations, while caregivers can teach and correct them remotely when
they get stuck, thus eliminating travel time.

Most of the existing Learning from Demonstration (LfD) is done by humans kinaes-
thetically guiding the robot on how to perform manipulation tasks [2,8,14], which
requires physical presence of the teacher and thus does not fit with our vision. On the
other hand, robot teaching can also be done through teleoperation, where the teacher
performs demonstration remotely through various interfaces [12,15]. Skills for complex
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manipulation tasks are typically encoded by trajectories such as Dynamic Movement
Primitives (DMPs) [13]. However, the deterministic nature of DMPs offers limited gen-
eralisation with respect to unpredictable situations. On the other hand, probabilistic
trajectories such as Probabilistic Movement Primitives (ProMPs) [9] use a probability
distribution inferred from multiple demonstrations for improved generalisation.

A general LfD approach is to train a skill model offline and expect it to perform
well afterwards. However, problems arise when the trained model is incorrect, either
due to insufficient training or unknown variations that have occurred in the environ-
ment. This demands methods that are able to refine the initially trained model, of which
the state-of-the-art can be divided into online [1,4,11,14] and active learning [3,8].
In online learning, the operator is able to refine the motion during the execution time,
while active learning uses an uncertainty measurement to query the operator for a new
demonstration. In care scenarios, we want to adapt the model towards unknown changes
in the environment, and since active learning needs to encode the environment to deter-
mine the uncertainty in the prediction, these methods are not well suited. On the other
hand, in online learning, the operator has the role to intervene when the model needs to
be adapted, and is, therefore, better suited in an unknown environment. State-of-the-art
online learning methods mainly use kinaesthetic teaching to refine the motion [4,14],
which are not suitable for the remote elderly care service.

Teleoperated online teaching is preferred in the home-care scenario, because it
does not require an operator to be constantly physically present at the robot and thus
enables easy switching between teaching multiple robots at different locations. The
methods in [10,15] enabled teleoperated teaching, however, the learning process was
done offline. The method in [12] enabled online teaching by encoding the variance
indirectly through a separate deterministic stiffness trajectory. However, encoding vari-
ance indirectly through deterministic methods makes the skill model less rich and less
generalisable. The method examined in [6] used probabilistic encoding in combination
with teleoperated teaching, however, they offered no online refinement mode for spe-
cific corrections/updates of the trained trajectory. Some online teleoperated teaching
methods used a shared control approach to arbitrate the level of autonomy between the
robot skill and the human teacher [1,11]. Since we want humans to be readily in control
when needed and to quickly adapt the motion in order to deal with unknown/changing
parts of the environment, these types of methods are also not well suited for our prob-
lem. Therefore, the existing literature is missing a teleoperated online learning method
that allows for quick refinements of the executed predicted motion of a probabilistic
skill model to deal with changing environment.

To close this gap we develop a teleoperated online learning approach with a novel
refinement method that can quickly adapt the executed predicted motion using a haptic
device. The method is based on ProMP, where the detected object is an input and the
probabilistic trajectory is an output. To analyse the usability of the proposed method,
we conduct an extensive human factors experiment.

2 Method Design

To achieve the desired teleoperated online learning, we built an LfD framework by
using ProMPs (see Fig. 1). Inspired by work in kinaesthetic teaching [4], we conditioned
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Fig. 1.Overview of the proposed framework. Initial demonstrations are used to train a skill model
offline using conditioned-ProMPs. This model generates an action, which is adapted online using
the proposed novel teleoperated online refinement method, and is used to updated the model.

ProMPs on an external state variable s (in our case different object positions and initial
robot poses). After using the conditioned-ProMPs to train an initial skill model offline,
the predictions were refined in an online manner by the proposed novel teleoperated
online refinement method. The refinements were then used to update the skill model.

To enable the operator to effectively adapt the executed trajectory online via teleop-
eration, we developed a novel online refinement method, where both visual and haptic
feedback was provided to the human operator. The online learning started with an ini-
tial skill model from ProMPs that produces a desired reference trajectory τd, which
was used by the robot controller to produce the actually executed trajectory τa (in the
case of ideal controller τa = τd). Then the operator was able to adapt this trajectory
in a shared control manner (Fig. 1), resulting in human refinement trajectory τhr. To do
this, the operator moved the master (haptic) device in the desired adaptation direction
and, while doing so, he/she felt a force proportional to the magnitude of the refinement.

Rather than adapting the position at the current time step, we adapted the position of
the executed trajectory at the next time step by using the current master position (Fig. 2).
To achieve this, we calculated the position vector in the next step i + 1 relative to the
current step i (called the i + 1 and i frame, respectively) as ipi+1 =i Rb(bpi+1 −b

pi), where position vector is p = [x, y, z]T and iRb is a rotation matrix between
the base frame and the current frame. The master position was normalised so that the
zero position was approximately in the middle of the workspace, which can be seen
in Fig. 2. To get the position of the human intervention (green dot in Fig. 2) combined
with the reference position, we added this normalised master position ipm to ipi+1 as
ipi+1,new =i pi+1+ipm. The end-effector position expressed in the base frame, which
was used for the robot control, was obtained by bpi+1,new =b pi +b Ri(ipi+1,new).

After the operator created τhr, which is bpi+1,new at every time step, the reference
τd was updated using τ new

d = τ old
d + α(τhr − τa), where α ∈ [0, 1] defined how much

the difference between τhr and τa changes τ old
d . This value can be adapted based on

the confidence of the operator in its refinement, but in this application, α is set to 1, as
in [4]. This loop continued until the prediction was successful. Visual feedback to the
operator was provided through the wrist and head camera views, and additionally, the
point cloud of the environment was shown, enabling visualisation of the execution (τa)
and refined trajectory (τ new

d ) with respect to the environment.
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Fig. 2. Illustration of corrections to the executed trajectory. The green and red dots represent the
master and slave (remote) robot positions, respectively. When the master and slave are in the same
position, the dot has a brown colour. The white dots represent the reference trajectory, where the
executed trajectory converges if the operator does not apply any input. (Color figure online)

After refining the trajectory, τ new
d was used to update the conditioned-ProMPs. First,

new ProMPweightsw were calculated from τ new
d , after which a vectorxwas created by

appending condition s (i.e., different object positions and initial robot poses) to ProMP
weights w as x = [wT , sT ]. x was then used with Welford’s method for updating the
mean and covariance incrementally, which means that one data sample was used [4].
This method was able to quickly update the mean and covariance, without having to
store all previous data. To align demonstrated trajectories with different time durations,
we employed Dynamic Time Warping.

3 Human Factors Experiment

Eighteen participants volunteered for this experiment and signed an informed consent
form prior to participation. The participants were asked about their gaming and teleop-
eration experience since this information was relevant to the analysis. The research was
approved by the Human Research Ethics Committee of Delft University of Technology.

3.1 Experiment Setup

The experiment setup is shown in Fig. 3. The goal of the human factors experiment was
to compare the proposed method against three other methods for adapting a trained skill
model. These methods were obtained by a combination of two learning mechanisms
(online or offline learning) and two teaching devices (haptic interface or teach pen-
dant), leading to four experimental conditions. In online learning, the refinement was
done during the trajectory execution, while in offline learning the trajectory had to be
recreated as a whole prior to execution. The developed online learning combined with
a haptic stylus interface (Geomagic Touch) is the proposed method (OnStyl). The teach
pendant is still the most common device used in the industry and was emulated with a
generic PC keyboard and employed either in offlineOffKey) or online (OnKey) learning.
The teleoperated offline LfD was performed using a haptic stylus interface (OffStyl),
where demonstrated trajectories were recorded and then ProMP weights were recalcu-
lated offline. Before starting each experiment condition (method), the participants went
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through familiarisation trials to minimise the human learning effect on the results. We
counterbalanced the effects of the order in which the participants are presented with
different experiment conditions by using a balanced Latin Square experimental design.

Fig. 3. Experiment setup with the teaching devices (purple), as well as graphical user interface
(GUI) for visual feedback and a monitor to fill in the subjective questionnaire (NASA TLX).

We hypothesised that the proposed method, which is a combination of online learn-
ing and haptic stylus, has the lowest refinement time and workload. To test the hypoth-
esis, we used an experiment task of moving dishes out of a dishwasher, which is one
of the common daily tasks performed by caregivers. The complexity of this task comes
from a cluttered and unpredictable environment with many environmental constraints.
The participants had to operate a service humanoid robot to teach and refine the skill
model for the given task in a simulated environment. Each participant had to adapt the
model for one object, where its positions differed among the participants. Three initial
models (i.e., reaching trajectories) had to be adapted with each of the four methods
per participant. For each model, the participant had eight attempts to update the model,
and per update ten refinement attempts. A refinement was defined as the creation of an
adaptation of the trajectory (or previous refinement). If the participant failed to adapt
the model within these attempts, we classified it as a failure and excluded this specific
participant data from the refinement time hypotheses testing.

We analysed the performance in terms of how much time it takes the human users to
successfully adapt a model (refinement time). Additionally, we analysed the perceived
workload by the participants, which was evaluated using NASA TLX [5]. Finally, after
the experiment, each participant was asked which method they liked the most and why.
We analysed the significance of the results with a statistical test. Because both the
refinement time and the workload data were not normally distributed, we usedWilcoxon
signed rank test instead of a one-sided t-test. The level of significance was set to 0.05.

3.2 Results

An example of reaching for four different object positions is shown in Fig. 4. Refine-
ments were only necessary for the first two object positions, after which the model was
able to generalise for the other two object positions without further refinements.
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Fig. 4. Reaching for four different object positions inside the dishwasher. The executed (red) and
refined (green) trajectories are indicated with point clouds. (Color figure online)

Fig. 5. Left four graph: main results. Right graph: refinement time per model. Blue, orange and
green colours represent models 1, 2 and 3, respectively. The boxplots report the median (M), first
quartile (25) and third quartile (75) of the refinement time and workload. The statistical signif-
icance of the difference between conditions is indicated by p-values below the graphs. (Color
figure online)

Out of 18 participants, six failed either in the training or to adapt a model in one
of the methods. This means that in total 12 participants were used for the data analysis
of the refinement time hypothesis, thus 36 models were evaluated per each method
(experiment condition). Figure 5 shows the experiment results, where the distribution
of this data and the refinement time per model and per method are depicted. The online
methods performed much better compared to the offline methods in both refinement
time and workload (i.e., lower values indicate better in both cases). The difference in
refinement time was statistically significant both online (p < 0.001) and offline (p <
0.001). However, there was no statistically significant difference in refinement time
(p = 0.755) and workload (p = 0.302) between the keyboard and stylus.

No Wilcoxon signed rank test can be performed on any background parameter
except the gaming experience since the sample sizes are not equal. The participants
with high gaming experience perceived a lower workload for all methods compared to
having low gaming experience. The difference was statistically significant (p = 0.048).
On the other hand, there was no statistically significant difference between having high
or low gaming experience in terms of the refinement time (p = 0.189).

The results of the questionnaire regarding the method preference showed a strong
preference for the proposed method (OnStyl), where 8 out of 18 participants voted for it.
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The second most popular was the online learning method using teach pendant (OnKey)
with 4 votes. The least popular were offline methods (OffKey and OffStyl), both receiv-
ing 3 votes each.

4 Discussion

Results show that, by using the developed method, human operators are able to adapt an
initially trained model to account for unknown variations: goal deviation and an unfore-
seen obstacle. The method was able to update the model for different object positions.
It should be noted that the amount of conditions to refine is dependent on the number
of initial trajectories used to train the initial model, and how complex the motion is.

The significant difference in refinement time and workload in favour of online meth-
ods can most likely be attributed to the operator only performing small adjustments to
the executed trajectory in online learning, instead of completely teaching a new one as
in offline learning. This means that online methods are inherently faster in creating a
single refinement and a lower amount of input from the operator is needed, possibly
resulting in a lower workload as well. Interestingly, there is also a lower variability in
refinement time in the online compared to offline methods (Fig. 5).

Another influence on the refinement time is the task execution strategy, which
tended to change within and between the methods. The within change can be explained
by the right graph of Fig. 5, where the refinement time decreases as a function of the
model number. This gives an indication that either the operator has a constant strategy
in its mind and is figuring out how to translate this strategy to a demonstration using the
specific method, or the strategy changes and the operator is figuring out what strategy
works best. Since the offline methods have a higher slope in the medians of the refine-
ment time compared to online methods and the method exposure was counterbalanced,
it seems more reasonable that the participants had a more or less constant strategy, but
had more trouble using the offline methods to convey this strategy. This suggests that
more operator training is needed to use offline methods effectively.

No significant difference in the type of teaching device (stylus or keyboard) in both
refinement time and workload could be because the intuitiveness of the interface is
person dependent. Some participants reported OnKey to be easy and less sensitive than
OnStyl and preferred the limited degrees of freedom (DoF). On the other hand, others
felt that they could easily press the wrong buttons on the teach pendant and found it hard
to figure out the axes. Another explanation could lie in the complexity of the corrections,
wherein in the examined cases the corrections were mostly in one DoF, i.e., movement
along the vertical axis to avoid the dishwasher basket. Increasing the complexity of
correction might favour OnStyl but additional study is required to provide that insight.

Another explanation for finding no significant difference between using the stylus
and keyboard is that there is a difference in the implementation of the offline methods.
In OffKey the participants could take their time, as it did not matter what was done
between the waypoints as long as the waypoints are correctly specified. OffStyl, on
the other hand, continuously tracked the demonstrated motion, and when the operator
made a small mistake this could translate into an unsuccessful demonstration more
easily. Therefore, OffStyl could be implemented similarly as the teach pendant, where
the operator can specify waypoints and interpolate between them. This is expected to
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show statistical results in favour of the stylus since the definition of offline will be more
similar between the stylus and the keyboard implementation.

The proposed method was tested on one representative task in elderly care, i.e.,
emptying a dishwasher. In future, other common daily tasks found in elderly care should
be examined, such as setting the table for breakfast and cleaning it afterwards. The
method itself could be improved by enabling robots to also learn cognitive skills.
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