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SUMMARY

In the field of machine learning (ML), the goal is to leverage algorithmic models to gen-
erate predictions, transforming raw input data into valuable insights. However, the ML
pipeline, consisting of input data, models, and output data, is susceptible to various
vulnerabilities and attacks. These attacks include re-identification, attribute inference,
membership inference, and model inversion attacks, all posing threats to individual pri-
vacy. This thesis specifically targets attribute inference attacks, wherein adversaries seek
to infer sensitive information about target individuals.

The literature on privacy-preserving techniques explores various perturbative ap-
proaches, including obfuscation, randomization, and differential privacy, to mitigate
privacy attacks. While these methods have shown effectiveness, conventional perturba-
tion based techniques often offer generic protection, lacking the nuance needed to pre-
serve specific utility and accuracy. These conventional techniques are typically purpose
unaware, meaning they modify data to protect privacy while maintaining general data
usefulness. Recently, there has been a growing interest in purpose-aware techniques.
The thesis introduces purpose-aware privacy preservation in the form of a conceptual
framework. This approach involves tailoring data modifications to serve specific pur-
poses and implementing changes orthogonal to relevant features. We aim to protect
user privacy without compromising utility. We focus on two key applications within the
ML spectrum: recommender systems and machine learning classifiers. The objective
is to protect these applications against potential privacy attacks, addressing vulnerabil-
ities in both input data and output data (i.e., predictions). We structure the thesis into
two parts, each addressing distinct challenges in the ML pipeline.

Part I tackles attacks on input data, exploring methods to protect sensitive informa-
tion while maintaining the accuracy of ML models, specifically in recommender sys-
tems. Firstly, we explore an attack scenario in which an adversary can acquire the user-
item matrix and aims to infer privacy-sensitive information. We assume that the adver-
sary has a gender classifier that is pre-trained on unprotected data. The objective of the
adversary is to infer the gender of target individuals. We propose personalized blurring
(PerBlur), a personalization-based approach to gender obfuscation that aims to protect
user privacy while maintaining the recommendation quality. We demonstrate that rec-
ommender system algorithms trained on obfuscated data perform comparably to those
trained on the original user-item matrix. Furthermore, our approach not only prevents
classifiers from predicting users’ gender based on the obfuscated data but also achieves
diversity through the recommendation of (non-stereotypical) diverse items. Secondly,
we investigate an attack scenario in which an adversary has access to a user-item matrix
and aims to exploit the user preference values that it contains. The objective of the ad-
versary is to infer the preferences of individual users. We propose Shuffle-NNN, a data
masking-based approach that aims to hide the preferences of users for individual items
while maintaining the relative performance of recommendation algorithms. We demon-

ix



x SUMMARY

strate that Shuffle-NNN provides evidence of what information should be retained and
what can be removed from the user-item matrix. Shuffle-NNN has great potential for
data release, such as in data science challenges.

Part II investigates attacks on output data, focusing on model inversion attacks aimed
at predictions from machine learning classifiers and examining potential privacy risks
associated with recommender system outputs. Firstly, we explore a scenario where an
adversary attempts to infer individuals’ sensitive information by querying a machine
learning model and receiving output predictions. We investigate various attack mod-
els and identify a potential risk of sensitive information leakage when the target model is
trained on original data. To mitigate this risk, we propose to replace the original training
data with protected data using synthetic training data + privacy-preserving techniques.
We show that the target model trained on protected data achieves performance compa-
rable to the target model trained on original data. We demonstrate that by using privacy-
preserving techniques on synthetic training data, we observe a small reduction in the
success of certain model inversion attacks measured over a group of target individuals.
Secondly, we explore an attack scenario in which the adversary seeks to infer users’ sensi-
tive information by intercepting recommendations provided by a recommender system
to a set of users. Our goal is to gain insight into possible unintended consequences of
using user attributes as side information in context-aware recommender systems. We
study the extent to which personal attributes of a user can be inferred from a list of rec-
ommendations to that user. We find that both standard recommenders and context-
aware recommenders leak personal user information into the recommendation lists. We
demonstrate that using user attributes in context-aware recommendations yields a small
gain in accuracy. However, the benefit of this gain is distributed unevenly among users
and it sacrifices coverage and diversity. This leads us to question the actual value of side
information and the need to ensure that there are no hidden ‘side effects’.

The final chapter of the thesis summarizes our findings. It provides recommenda-
tions for future research directions which we think are promising for further exploring
and promoting the use of purpose-aware privacy-preserving data for ML predictions.



1
INTRODUCTION

Parts of this chapter are published as Manel Slokom. Comparing recommender systems using synthetic data.
In Proceedings of the 12th ACM Conference on Recommender Systems. 2018.
Giuseppe Garofalo, Manel Slokom, Davy Preuveneers, Wouter Joosen, Martha Larson. Machine Learning
Meets Data Modification: the Potential of Pre-processing for Privacy Enhancement. In Security and Artificial
Intelligence (pp. 130-155). Springer. 2022.
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2 1. INTRODUCTION

The huge amount of data online has played a big role in shaping artificial intelli-
gence (AI). On one side, social websites, e-commerce, and media services collect lots
of data from people every day. This data becomes a valuable resource for training and
improving algorithms. On the other side, improvements in machine learning (ML) help
create models that can understand complex patterns in these large data sets.

The mainframe of the ML pipeline, illustrated in Figure 1.1, depicts the three funda-
mental components: input data or training data, models, and output data (or predic-
tions). The ML pipeline involves collecting input data and employs optimization meth-
ods to train models capable of extracting important features and patterns from the input
training data. Then, the model is used to extract knowledge and generate predictions.

Input data Model Output data

Figure 1.1: Machine learning pipeline with three components: input data, model, and output data.

However, the advancement of ML models is not without its share of challenges. These
challenges include issues such as data quality and quantity, bias, interpretability, model
complexity, security, and privacy [1], [2]. This thesis will focus on the susceptibility of the
ML pipeline to various vulnerabilities and attacks that violate users’ privacy.

1.1. PRIVACY RISKS IN MACHINE LEARNING
Privacy risks refer to potential threats or vulnerabilities that can compromise the confi-
dentiality of sensitive information [3], [4]. These risks arise when there is a possibility of
unauthorized access, disclosure, or misuse of data, leading to violations of the privacy
of individuals. In the context of the ML pipeline, privacy risks can manifest in various
forms, such as identity disclosure, attribute disclosure, or attribute inference.

Identity disclosure refers to the risk of an individual’s identity being revealed through
the analysis of anonymized data. This occurs when an adversary successfully links some
of their information on an individual with the corresponding data in the anonymized
data set [4]. Attribute disclosure or attribute inference attack is another privacy risk. At-
tribute disclosure occurs when an adversary is able to infer specific information about
an individual. In this case, the focus shifts from revealing the identity to exposing or
inferring sensitive or personal information associated with an individual [4]–[6]. These
privacy risks manifest in various attacks, including re-identification attacks [6], [7], at-
tribute inference attacks [6], [8]–[10], membership inference attacks [11], and model in-
version attacks [12], [13]. Each poses unique challenges to individual privacy and high-
lights the need for robust privacy protection measures in ML applications.

In this thesis, we will focus on attribute inference attacks. We study attacks that
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threaten to reveal sensitive information of the users that is explicitly or implicitly present
in the input data i.e., the data used for training the algorithms. Our primary goal is to pro-
tect users’ data against potential privacy attacks that may arise across the ML pipeline.
We specifically focus on attacks that could happen to both the input data and output
prediction data. Our first research question (RQ1) looks into how can we protect sen-
sitive information when the attacker has access to the input data from inference attack
while maintaining utility? This addresses the vulnerability in input data, emphasiz-
ing the need to maintain utility despite potential attacks. For attacks on output data,
we investigate two distinct scenarios in which we aim to explore potential privacy risks
associated with the output data of machine learning classifiers and recommender sys-
tems. When considering the output data of machine learning classifiers, our focus shifts
to how can we protect sensitive information when the attacker has access to the model’s
predictions while maintaining utility? (RQ2). For (RQ1) and (RQ2), we investigate the
threat model, perform the attack, and solutions to protect sensitive information. When
considering the output data of recommender system algorithms, we investigate whether
recommender system’s output data leaks sensitive information about users (RQ3). RQ3
involves describing the threat model and conducting the attack without proposing a so-
lution. For RQ3, we focus solely on assessing potential privacy risks associated with the
output data of recommender systems.

1.2. PRIVACY-PRESERVING TECHNIQUES
Privacy-preserving techniques have been proposed in the literature as a crucial solution
to protect against different attacks [14]–[16]. In this section, we briefly present the rele-
vant literature related to privacy-preserving techniques.

Indistinguishability-based methods modify the data to prevent the identification of
individuals within a data [17]. By generalizing or suppressing specific attributes within a
data set, we can achieve properties such as k-anonymization, t-closeness, and l -diversity.
In [18], a privacy-preserving collaborative filtering method combines microaggregation
and k-anonymization for secure rating data release. Here, we also mention the Netflix
Prize data competition, an anonymization-based technique, that replaced personal de-
tails with random numbers for privacy. However, as revealed in [7], 99% of records could
be re-identified in 2008. This highlights the ongoing challenge mentioned in [19]: ensur-
ing secure data release for research purposes remains an open problem. Indistinguisha-
bility based methods are out of the scope of the thesis.

Data masking techniques use data distortion (a perturbation function) to create a
private representation of the data. Randomization based perturbation techniques were
first introduced in [20] to protect data in collaborative filtering. They showed that using
perturbed data, which has been perturbed such that no certain information about the
ratings can be derived, may still yield acceptable recommendations. One of the most
popular approaches used for data perturbation is obfuscation, where a certain percent-
age of users’ preferences is replaced by randomized values. In [21], the authors proposed
a framework for privacy-preserving recommendations using data obfuscation. In [22],
[23], the authors proposed a new method called “BlurMe”, that adds ratings to a user’s
profile to make it hard to infer the user’s gender, while causing a minimal impact on
recommendation quality. Besides perturbative masking and obfuscation, techniques
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like swapping and suppression [24] are explored. However, one of the major problems
in data perturbation techniques is that the addition of noise is inapplicable to binary
data [19]. Also, using these techniques it is difficult to calibrate the magnitude of noise
and it may hide key relationships in the data. Finally, in [25], the authors discussed that
traditional methods (perturbative and non-perturbative) like global recoding, local sup-
pression, and top-coding would yield too much loss of detail to produce protected data.

Differential privacy (DP)-based approaches provide a solution for protecting data
sets, particularly in scenarios where the data is stored in a database, and access is exclu-
sively through queries. DP was originally proposed for interactive statistical queries to a
database [26]. Authors in [27] were the first to study the application of differential privacy
to a collaborative recommendation algorithm. They used the Laplace Transform mech-
anism to add noise to the covariance matrix, protecting the original nearest neighbors.
Later, the authors of [28] proposed an approach called Private Neighbor Collaborative
Filtering (PNCF). In PNCF, the authors introduced recommendation-aware sensitivity
and re-designed differential privacy mechanisms to select the nearest neighbors. How-
ever, the major drawback of this method lies in balancing data quality and privacy level,
as the protection level is often too high to ensure data quality [29]: excessive noise can
adversely affect the output, while less noise fails to hide user contributions [19]. Simi-
larly, recent research has extended the application of DP beyond its original interactive
setting, into other use cases such as data release [30], [31]. However, applying Differen-
tial Privacy (DP) to record-level data release or collection demands a large value of ϵ. It
is recommended to use ϵ< 1 to obtain a meaningful privacy guarantee; however, in this
case, the analytical utility of DP outputs is likely to be very poor [32].

Cryptography-based approaches that have been used in machine learning include
homomorphic encryption and or secure multiparty computation to hide users’ private
data. Several protocols have been applied in different machine learning and recom-
mender system scenarios, such as a distributed setting [33], [34], a setting including a
privacy service provider [35], and a client-server setting [36]. A drawback of cryptography-
based approaches is that they require significant computational resources and time which
make these protocols suitable mainly for offline evaluation, i.e., recommendations (not
for online recommendations) [19]. In addition, unnecessary computational cost im-
pacts and limits its application by normal users [29]. Further cryptography requires a
key that can potentially be lost or stolen. Fully Homomorphic Encryption (FHE) and
Secure Multi-Party Computation (MPC) fall outside the scope of our research.

Synthetic data generation is an alternative approach to protecting data while pre-
serving the statistical properties of the original data set. Synthetic data generation meth-
ods first construct a model of the data and then generate artificial values for this model.
Recent techniques for synthetic data generation can be divided into three categories [37]–
[39], namely partially synthetic methods, fully synthetic methods, and hybrid methods.
Fully synthetic data, created entirely anew, maintains privacy by replacing the original
data set [37]. Fully synthetic data ensures a low disclosure risk. In contrast, partially
synthetic data sets combine original and synthetic values, replacing only high-risk vari-
ables [40]. Although disclosure risk is higher than fully synthetic sets, utility is typically
better. Hybrid masking combines original and synthetic data linearly, offering precise
control over individual characteristics [41].
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1.3. PURPOSE-AWARE PRIVACY-PRESERVING TECHNIQUES
While conventional privacy-preserving techniques have effectively protected users’ data,
they often struggle with the challenge of maintaining a balance between privacy and
utility. The trade-off between these measures is a popular topic under continuous re-
search [42]. Conventional privacy-preserving techniques often provide a generic level
of protection that may not guarantee to maintain the specific utility or accuracy re-
quired [43]. Moreover, these techniques are generally purpose-unaware, meaning they
are not specifically tailored to the intended purpose or context of data usage. Recog-
nizing this limitation, we have adapted conventional privacy-preserving techniques to
better align with specific purposes.

Purpose-unaware vs. purpose-aware privacy-preserving techniques. Purpose un-
aware techniques employ an indiscriminate noise, i.e., a broad and uniform applica-
tion of noise, e.g., randomization, perturbation. For instance, some randomization ap-
proaches focus on single-dimensional perturbation and assume independence between
attributes [44]. The traditional data perturbation approach distorts each data element
independently. As a result, the distance between data records is not preserved, and the
perturbed data cannot be used for many machine learning applications [45]. While ef-
fective in providing a generic level of privacy, they lack the sophistication to tailor pro-
tection according to the individual use cases [46]. Simultaneously, with the growth in the
domain of machine learning where various data types from structured to unstructured
coexist, the shortcomings of purpose-unaware methods become apparent. Take, for in-
stance, recommender system data represented as a sparse user-item matrix, where the
challenge lies in capturing hidden patterns and similarities. Applying purpose-unaware
perturbation to such data can hinder the performance of recommender systems or ma-
chine learning algorithms in general. The process of selecting the optimal perturba-
tion algorithm for a specific problem is known to be complex, involving various trade-
offs [46].

We address the challenge by proposing a conceptual framework for purpose-aware
privacy-preserving techniques that provide targeted protection against specific threats.
The protection solution is aimed at a predefined set of risks, ensuring robust protection
against a defined threat model. Purpose-aware privacy-preserving techniques use per-
turbative techniques with a predefined ‘purpose’ in mind. This purpose, representing
the desired function of the modified data, is known before the perturbation is applied.
Purpose-aware privacy-preserving techniques ensure that the modified data retains its
usefulness for the intended function. In works such as [43], [47], the authors propose
utility-aware privacy perturbation schemes that share similarities with our work and
could fit into our framework, particularly in their emphasis on specifying the purpose
of data usage. In [47], the authors propose a utility-aware data perturbation scheme
based on attribute partition and budget allocation. Their three-step procedure involves
quantifying attribute privacy and importance, attribute partitioning, and budget alloca-
tion, leveraging information entropy, and preserving attribute correlations. In [43], the
authors present a two-step perturbation-based utility-aware privacy-preserving data-
releasing framework. They apply perturbation to the original data to ensure its suc-
cessful use for an intended purpose (learning to succeed) while preserving predefined
privacy requirements.
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Rethinking the privacy-accuracy trade-off. Purpose-aware privacy-preserving tech-
niques aim to break from the traditional privacy-accuracy trade-off and offer a way to
work on solutions that can tailor both. Within purpose-aware privacy-preserving tech-
niques, we make changes (also referred to as modifications) to the data such that it is still
useful for some purpose (training a particular type of model) but with minimal privacy-
sensitive information. Changes or modifications could be any privacy-preserving tech-
nique where the focus is on protecting sensitive information that the data contains. Such
purpose-aware privacy preservation has the potential to be particularly effective by in-
troducing changes along any dimensions that are (nearly) orthogonal to the relevant fea-
tures.

A key component in our purpose-aware privacy-preserving framework is the care-
ful outlining of the threat model. Within the threat model, we define the adversary and
specify the purpose for which we apply for protection while maintaining accuracy (more
details in section 1.3.1). We note that while our framework aims to protect against spe-
cific threats, it does not claim universal protection against all possible attacks. Similarly,
it does not assure that the protected data is impervious to unintended use or repurpos-
ing. In the next sections, we first provide an overview of threat model formulation. Next,
we describe the two machine learning applications that we explore in this thesis: rec-
ommender systems and ML classifiers. Then, we follow up with the contributions and
publications related to the thesis.

1.3.1. THREAT MODEL

This thesis is built on the basis of the threat model, which is the foundation of our re-
search. The threat model serves as the guiding framework for formulating purpose-
aware privacy-preserving techniques, ensuring robust protection against privacy breaches.

A threat model is a theoretical framework defining what is considered to be a pri-
vacy violation or breach i.e., identity is linked to a record, leaking sensitive information.
In [48], the authors provided a widely used schema for defining a threat model. First,
the threat model describes the adversary, including the resources at the adversary’s dis-
posal and the adversary’s objective. In other words, the threat model specifies what the
adversary is capable of and what the goal of the adversary is. Second, it describes the
vulnerability, including the opportunity that makes an attack possible and the nature of
the countermeasures that can be taken to prevent the attack. Note that, throughout the
thesis, we use attacker and adversary interchangeably.

Adversary’s objective determines what an adversary wants to do. An adversary can
aim at different goals. For instance, given access to data, an adversary will be interested
in identifying a target individual [6], [7], or an adversary could be interested in inferring
sensitive information about target individuals [9], [10], [49]. In this thesis, we specifi-
cally focus on inference attacks. We use the term inference attack to refer to the use of an
inference algorithm to infer something that a user may consider private. For instance,
the adversary seeks to infer individuals’ sensitive information such as demographic at-
tributes i.e., gender, age, and income, or individuals’ orientation i.e., political, sexual.
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Adversary’s resources determines what an adversary can do. An adversary can have
different levels of knowledge and resources of the system. This knowledge influences
the extent to which the adversary can compromise individuals’ sensitive information.
We distinguish between different levels of knowledge of the system [12], [49], [50]. In
the worst scenario, an adversary is assumed to have full knowledge of the pipeline. This
is called a white-box scenario. In this scenario, an adversary is assumed to know about
the input training data, and the algorithm used for training including its parameters and
architecture. In a more realistic scenario, an adversary is assumed to have partial knowl-
edge of the system. This is called a gray-box scenario or black-box scenario. In a gray-box
scenario, an adversary is assumed to know the input training data and or the algorithm
and its parameters and architecture. In a black-box scenario, an adversary knows either
about the input training data or the algorithm. In this thesis, we focus on black-box sce-
narios. We consider two distinct scenarios: one in which the adversary leverages ground
truth data from social media and trains a basic classifier and another where the adver-
sary possesses black-box access to a target model.

• Ground truth collection and basic classifier training Here, we assume that for a
large enough number of users, the adversary is able to gather their demographic
attributes, i.e., gender, age, income, on social media to use as ground truth [8]. We
assume that the adversary has the ability to train a simple machine learning clas-
sifier. The availability of ground truth online is not an unrealistic assumption. We
recall the case of Netflix de-anonymization using data scraped from the Web [7].
In this thesis, we focus on a case in which the adversary has a subset of data and is
able to train a classifier. This assumption is also assumed in literature [22], [51].

• Black-box access to a target model We assume that the adversary can query a ma-
chine learning model and get its predictions output as class labels or confidence-
scores [12], [13], [52], [53].

Vulnerability- Opportunity determines what an adversary is willing to do. We distin-
guish between three different possible opportunities (or vulnerabilities in the system)
that might be available to the adversary to infer sensitive information about target indi-
viduals:

• The possession of original input data In this scenario, the adversary is assumed
to have access to the raw input data that will be used to train different models.
For instance, an obvious way in which the adversary can acquire the input data
is via unauthorized access or data breach. Also, the adversary may be internal to
the platform. In this thesis, we assume that the adversary has access to the rec-
ommender system input, i.e., called user-item matrix via a breach of the recom-
mender system platform. Then, the adversary can train a classifier on the user-
item matrix.

• The ability to query a target model to get its output data In this scenario, the
adversary is assumed to have black-box access to target machine-learning pre-
dictions. The adversary can perform model inversion attacks. Model inversion
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attacks aim to expose sensitive information inherent in the training data of a pre-
diction model [50], [54]. In this thesis, we assume that the adversary has the access
necessary to query a target machine learning model and get predictions (class la-
bels and confidence scores) about target individuals’ propensity to move. Having
access to the model parameters and architecture is out of the scope of the thesis.

• The ability to intercept output data of a recommendation system algorithm In
this scenario, the adversary cannot actively query a recommender system but has
access to the output data. The adversary is assumed to be able to intercept recom-
mendation lists generated by recommender system platforms.

Vulnerability- Countermeasure represents potential solutions that could be used to
protect against a specific attack. The potential solution can be achieved by applying
privacy-preserving techniques to the data. Throughout the thesis, we use different ter-
minology to refer to the protected data. For instance, we refer to obfuscated data, for
protected data on which we applied obfuscation techniques [22], [51], [55], [56]. We
consider masked data to be data on which we applied data masking techniques such
as shuffling [57] and swapping [58]. Perturbed data is data on which we have applied
privacy-preserving perturbation techniques such as randomization [14]. Lastly, we re-
fer to synthetic data as artificial data that reassembles the original data and mimics its
structure and property [38], [59], [60].

1.3.2. PREDICTIVE APPLICATIONS
Within the larger area of machine learning, we focus on two types of predictions: (1)
Predictions using recommender system algorithms, and (2) Predictions using machine
learning classifiers.

Predictions using recommender system algorithms Examining recommender
systems, we look at rating prediction and ranking prediction also called TopN recom-
mendation. In the former, the objective is to predict a user’s ratings on items, such as
predicting movie ratings (or stars) in movie recommendation systems like Netflix or pre-
dicting user ratings for restaurants in food recommendation apps. The latter focuses on
making personalized recommendations by providing a user with a list of top-N recom-
mendations, such as suggesting personalized playlists in music streaming services like
Spotify or recommending products in e-commerce platforms like Amazon. Our empha-
sis lies in protecting user profiles against inference attacks while maintaining the per-
formance of the recommender systems. Additionally, our investigation extends towards
achieving diversity and fairness in recommendations. We aim to achieve diverse rec-
ommendations by increasing item coverage and recommending less stereotypical items,
and we aim to promote fairness by ensuring equitable recommendation performance to
different groups of users.

Predictions using machine learning classifiers With regards to machine learning, we
look at predicting an individual’s likelihood of relocating or changing their place of resi-
dence (referred to as propensity-to-move). This case study involves different data sources
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from the Dutch System of Social Statistical Data sets (SSD) [61]. The study includes eval-
uating various machine learning algorithms for propensity-to-move prediction. The pri-
mary objective is to assess the possibility of releasing predictions of the target machine
learning without privacy concerns. This promotes transparency in the inference pro-
cess, which makes it possible to assess and address possible issues of bias in machine
learning models.

1.4. CONTRIBUTIONS OF THE THESIS
In this section, we elaborate on how the research questions outlined earlier are tackled
in various chapters throughout this thesis.

We structure this thesis into two parts focusing on different attacks targeting the ML
pipeline, attacking input data and attacking output data. Figure 1.2 shows different parts
of the thesis, the main research questions, and the corresponding chapters. The first

Figure 1.2: Thesis road-map. The figure shows our research contributions, divided into two main parts with
three main research questions: 1) Attacking Input Data, focusing on adversary access to input data, and 2)
Attacking Output Data, involving adversary access to either the model predictions via querying or recommen-
dation lists via interception a recommender system platform.
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part explores attack models attacking input data. In part I, incorporating Chapter 2 and
Chapter 3, we focus on addressing RQ1. Specifically, our focus lies in exploring methods
to protect sensitive information when the attacker has access to the input data, mitigat-
ing inference attacks while maintaining utility.

Chapter 2 explores a threat model, where an attacker can acquire the entire user–item
matrix via a breach of the recommender platform. As resources, we assume that the at-
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tacker has a gender classifier that is pre-trained on unobfuscated data. The objective
is to infer the gender of individual users. We propose PerBlur, a simple, yet effective
personalized-based approach to gender obfuscation that aims to protect user privacy
while maintaining the recommendation quality. We demonstrate that recommender
system algorithms trained on obfuscated data can achieve performance comparable to
what is achieved when they are trained on the original user-item (UI) Matrix. We show
that a classifier can no longer use the obfuscated data to predict the gender of users. This
indicates that implicit gender information has been removed from the UI matrix. Last
but not least, we demonstrate the ability of our solution to recommend more diverse
items.

Chapter 3 explores a threat model, where an attacker has access to released data
i.e., data science or recommender system challenge. The objective is to infer the prefer-
ences of individual users. We introduce a data masking approach called Shuffling Non-
Nearest-Neighbors (Shuffle-NNN) that modifies the data so that it no longer contains
precise information about which user has interacted with which item. At the same time,
Shuffle-NNN aims to maintain the usefulness of the data for the purpose of training and
testing recommender systems, which is necessary to carry out research. Shuffle-NNN
generates a masked data set by changing a large portion of the values of the preferences
in a user’s profile. Specifically, Shuffle-NNN aims to preserve item-item similarity infor-
mation, based on the assumption that this information is the most important pattern
that needs to be present in the data in order to train and test a recommender system
algorithm. Shuffle-NNN applies a data shuffling technique that hides (i.e., changes) the
preferences of users for individual items. We demonstrate that the relative performance
of a set of recommender system algorithms, which is the key property that a data science
challenge must measure, is comparable between the original data and the data masked
with Shuffle-NNN.

The second part investigates other attacks attacking two different types of output:
One output can be acquired through querying an ML classifier, while the other output
can be obtained through the interception of a recommender system platform. In part II,
we focus on answering the following research questions RQ2 and RQ3. In Chapter 4 and
Chapter 5, we focus on RQ2 which is related to protecting sensitive information when
the attacker has access to the ML’s predictions while maintaining utility. In Chapter 6,
we focus on RQ3 in which we investigate whether the recommender system’s output data
(recommendation list) leaks sensitive information about users.

Chapter 4 investigates privacy risks associated with model inversion attribute infer-
ence attacks. Specifically, we explore a case in which a governmental institute aims to re-
lease a propensity-to-move model trained machine learning model to the public (i.e., for
collaboration or transparency reasons) without threatening privacy. We investigate the
potential leaks that could be associated with releasing predictions of machine learning
models. The attack assumes that the adversary can query the model to obtain predic-
tions and that the marginal distributions of the data on which the model was trained are
publicly available. The attack also assumes that the adversary has obtained the values
of non-sensitive attributes for a certain number of target individuals. We explore how
replacing the original data with synthetic data when training the model impacts how
successfully the attacker can infer sensitive information.
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Chapter 5 extends Chapter 4 by looking at other model inversion attribute inference
attacks. To further understand the disclosure risk associated with the release of a trained
ML model, we evaluate several existing model inversion attribute inference attacks that
an attacker can use to infer sensitive information. The attack models differ in terms
of the resources and opportunities available to the attacker. Our results first show that
there is a potential leak of sensitive information, i.e., gender, age, and income when a
model is trained on original data. To address this privacy risk, we propose a data synthe-
sis + privacy preservation approach: we replace the original training data with synthetic
data on top of which we apply privacy-preserving techniques. Our results show that the
propensity-to-move model trained on protected data (data synthesis + privacy preserva-
tion) achieves performance comparable to the model trained on original training data.
By utilizing privacy-preserving synthetic data to train the target model, before its release,
we observe a reduction in the efficacy of certain model inversion attribute inference at-
tacks measured over a group of target individuals.

Chapter 6 investigates the possibility of inferring sensitive information from recom-
mender system output. We look at user attributes from the point of view of privacy and
diversity. Our aim is to gain insight into possible unintended consequences of using user
attributes as side information in context-aware recommenders. With respect to privacy,
our study seeks to understand the extent to which personal attributes of a user can be in-
ferred from a list of items recommended to that user. We are concerned about whether
the use of user attributes as side information in context-aware recommendations in-
creases the risk of exposure of users’ personal information. We experiment with several
categories of user attributes: gender, age, occupation, and location. With respect to di-
versity, we investigate the effect of user attributes on the usefulness of recommendation
lists for users. We demonstrate that using user attributes in context-aware recommen-
dations yields a small gain in accuracy. However, the benefit of this gain is distributed
unevenly among users and it sacrifices coverage and diversity.

Chapter 7 concludes the thesis and provides an outlook towards the open research
challenges that remain in the domain of purpose-aware privacy-preserving data.

1.5. PUBLICATION RELATED TO THIS THESIS
The list of papers below constitutes the body of the thesis. The content presented in
Chapter 2 to Chapter 5 is based on original publications, to which the references are
given below. Chapter 6 is currently under preparation. The used terminologies may
vary slightly across chapters. Also, the background and related work sections in different
chapters may be similar in terms of argumentation and the material they cover.

1. Manel Slokom, Alan Hanjalic, and Martha Larson. Towards User-Oriented Privacy
for Recommender System Data: A Personalization-based Approach to Gender Ob-
fuscation for User Profiles. Information Processing & Management Journal. 2021 -
[Chapter 2]

2. Manel Slokom, Martha Larson and Alan Hanjalic. Data Masking for Recommender
Systems: Prediction Performance and Rating Hiding. Late-breaking results paper,
at ACM International Conference on Recommender Systems. 2019 - [Chapter 3]
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3. Manel Slokom, Peter-Paul de Wolf, and Martha Larson. When Machine Learning
Models Leak: An Exploration of Synthetic Training Data. International Conference
on Privacy in Statistical Databases. 2022 - [Chapter 4]

4. Manel Slokom, Peter-Paul de Wolf, and Martha Larson. Exploring Privacy-Preserving
Techniques on Synthetic Data as a Defense against Model Inversion Attacks. Infor-
mation Security Conference. 2023. - [Chapter 5]

5. Manel Slokom, Jesse Brons, Özlem Özgobek and Martha Larson. A Closer Look
at User Attributes in Recommendations: Implications for Privacy and Diversity.
Under preparation - [Chapter 6]
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2. TOWARDS USER-ORIENTED PRIVACY FOR RECOMMENDER SYSTEM DATA: A

PERSONALIZATION-BASED APPROACH TO GENDER OBFUSCATION FOR USER PROFILES

In this chapter, we propose a new privacy solution for the data used to train a recom-
mender system, i.e., the user-item matrix. The user-item matrix contains implicit infor-
mation, which can be inferred using a classifier, leading to potential privacy violations.
Our solution, called Personalized Blurring (PerBlur), is a simple, yet effective, approach
to adding and removing items from users’ profiles in order to generate an obfuscated user-
item matrix. The novelty of PerBlur is personalization of the choice of items used for ob-
fuscation to the individual user profiles. PerBlur is formulated within a user-oriented
paradigm of recommender system data privacy that aims at making privacy solutions un-
derstandable, unobtrusive, and useful for the user. When obfuscated data is used for train-
ing, a recommender system algorithm is able to reach performance comparable to what is
attained when it is trained on the original, unobfuscated data. At the same time, a classi-
fier can no longer reliably use the obfuscated data to predict the gender of users, indicating
that implicit gender information has been removed. In addition to introducing PerBlur,
we make several key contributions. First, we propose an evaluation protocol that creates a
fair environment to compare between different obfuscation conditions. Second, we carry
out experiments that show that gender obfuscation impacts the fairness and diversity of
recommender system results. In sum, our work establishes that a simple, transparent ap-
proach to gender obfuscation can protect user privacy while at the same time improving
recommendation results for users by maintaining fairness and enhancing diversity.



2.1. INTRODUCTION

2

17

2.1. INTRODUCTION
The data used to train a recommender system takes the form of a user-item matrix,
where the columns represent items in the collection and the rows represent individual
users. Each row contains a user’s ratings, or interactions with items, and is referred to as
a user profile. The user-item matrix does not explicitly contain specific user attributes
such as gender. However, such information is implicit in each profile, since it can be
predicted or inferred using machine learning, specifically, a classifier. This information
represents a privacy threat for users.

As the user profiles collected and stored by online platforms increase in number and
length, classifiers have a larger amount of data available for training and inference, and
the privacy threat grows. To counter this threat, we need the right privacy solutions. Less
obviously, we need to re-examine our underlying assumptions about user privacy and to
be open to a variety of paradigms.

In this chapter, we propose a privacy protection solution for the user-item matrix
called Personalized Blurring (PerBlur)1, which applies individualized obfuscation to user
profiles. Obfuscation is a privacy protection approach that uses small changes to mask
sensitive information. Our solution is formulated within a user-oriented paradigm of
recommender system data privacy, which strives towards privacy that is understandable,
unobtrusive, and useful for the user. In Section 2.1.1, we explain the paradigm, present
a comparison and contrast with previous work, and motivate our PerBlur approach. In
Section 2.1.2, we present our threat model, which formalizes the types of scenarios to
which PerBlur applies. Specifically, PerBlur addresses privacy for cases in which an at-
tacker is able to gain control of the entire data set, as occurs with a data breach or with
drifting of goals, known as “mission creep". In Section 2.1.3, we explain the experimental
framework. Our chapter presents extensive experimental analysis of PerBlur, focusing
on its usefulness for the user in terms of recommender system performance, fairness,
and diversity. In this work, we focus on gender obfuscation, but PerBlur would also be
suited for protecting other sorts of information that can be inferred from user profiles.

The chapter makes the following contributions.

• We introduce PerBlur (Section 2.3) and demonstrate its ability to effectively obfus-
cate user profiles to protect information on user gender (Section 2.5).

• We propose an evaluation process for obfuscated recommender system data that
addresses the challenges of comparing the performance of recommender systems
trained on data that has been obfuscated in different ways (Section 2.6.1).

• We show that training recommender systems on obfuscated data leads to little,
if any, loss in the quality of the recommendations received by the user, i.e., rec-
ommendation performance and that PerBlur is particular effective at maintaining
recommender system performance (Section 2.6.2).

• We show the interplay between user-profile obfuscation and fairness (Section 2.7)
and diversity (Section 2.8) and demonstrate the potential of PerBlur to contribute
in both cases.

1GitHub Link: https://github.com/SlokomManel/PerBlur

https://github.com/SlokomManel/PerBlur
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2. TOWARDS USER-ORIENTED PRIVACY FOR RECOMMENDER SYSTEM DATA: A

PERSONALIZATION-BASED APPROACH TO GENDER OBFUSCATION FOR USER PROFILES

Taken together our experimental analysis constitutes compelling evidence that user-
oriented privacy can be achieved with an obfuscation-based method that is useful to
users, while remaining understandable and unobtrusive. To our knowledge, our work
represents the most convincing case to date for recommender system data privacy within
a strongly user-oriented paradigm that prefers simplicity and transparency over formal-
ity and complexity.

2.1.1. USER-ORIENTED PARADIGM FOR PRIVACY PROTECTION

The user-oriented paradigm for privacy protection expresses the requirements and pri-
orities underlying our approach to addressing privacy threats that arise when users share
their interaction data and recommender system platforms store these data as user pro-
files. The idea at the foundation of our paradigm is that privacy protection should center
on users, serving their needs and allowing them to maintain insight and control. The
idea of user-oriented privacy, defined in this way, has been around for at least a decade
already in a somewhat weaker form. Two key examples of user-oriented approaches to
protecting user profiles are [23], which studies the impact of obfuscation without at-
tempting to protect a specific user attribute, and [22] (BlurMe), which is designed to
protect the specific attribute or gender. These contributions make the assumption that
users should have some measure of control over the obfuscation of their own profiles.

In this work, we move the design of user-oriented privacy beyond the orientation to-
wards user control, to include other desirable, user-oriented characteristics. Specifically,
the user should find privacy protection to be understandable, unobtrusive, and useful.
The characteristics are the basis of the design of our personalization-based approach to
gender obfuscation for recommender system data.

Table 2.1: User-oriented paradigm for privacy of recommender system data. The paradigm forms the basis for
the design of our approach.

Desideratum Description
Understandable User understands why items have been added to or

removed from the profile.
Unobtrusive Obfuscation should not be pure “noise”, but rather be

consistent with the user’s own preferences.
Useful Maintain or enhance recommendation perfor-

mance, fairness, diversity

Our paradigm is summarized in Table 2.1, and next we will discuss each desirable
characteristic in turn. The discussion will shed light on the advantage offered by privacy
approaches that prefer simplicity and transparency over formality and complexity.

OBFUSCATION SHOULD BE UNDERSTANDABLE

The understandable dimension of our paradigm expresses the importance that our paradigm
places on approaches that the user can understand. The dimension is based on basic ob-
servations about how people protect their own privacy in offline environments. When
we are offline, we protect our own privacy by choosing what we reveal about ourselves
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and whom to reveal it to. Our choices are based on our intuition and experience of what
we can share without getting hurt, and we are not concerned with formal guarantees.

Our paradigm aims to maintain this natural approach to privacy in the online world.
We strive for privacy protection that is conceptually simple so that people can form intu-
itions about it, allowing them to understand, or even choose, information that has been
added to or subtracted from their profiles in order to achieve obfuscation. Our approach,
PerBlur, is based on the idea, originating from BlurMe of Weinsberg et al. [22], that to ob-
fuscate gender, we should simply extend a user’s profile with items that are indicative of
the opposite gender. For example, in the movie domain, “Gone with the Wind” is indica-
tive of female users and “Apocalypse Now” is indicative of male users. It is completely
transparent to a male user how adding “Gone with the Wind” to his profile will obfuscate
his gender.

Our work stands in contrast to paradigms which emphasize formal guarantees. An
example is Yang et al. [62], which minimizes privacy leakage under a bound of the nega-
tive impact on the recommender system ranking. In this work, minimizing privacy leak-
age is achieved at the cost of the assumption of the existence of a detailed user profile
specifying the information to be leaked. In contrast, PerBlur applies to any user profile
without detailed knowledge of the user.

Our experiments demonstrate that it is possible to achieve successful obfuscation
and simultaneously maintain recommender system performance with a “rough and ready”
choice of an operating point, i.e., by estimating the necessary amount of obfuscation at
the level of the collection rather than via a process of iterative optimization. The suc-
cess of this “rough and ready” approach is quite remarkable, since the current trend is
to immediately assume that obfuscation challenges require iterative optimization, i.e.,
using Generative Adversarial Networks (GANs). In [63], a GAN-based approach to pro-
tecting user attributes while maintaining recommender performance is proposed. The
work is not directly comparable to our own, since the authors address a different threat
model. Our own threat model, which is more formally specified in Section 2.1.2, pro-
tects information in the user item matrix. In contrast, [63] protects a combination of the
user embeddings and the recommender output. However, this paper is relevant because
it shows that we cannot assume that data obfuscated using a GAN-based approach will
be capable of enabling the level of recommendation performance achieved using orig-
inal data. Specifically, the GAN in [63] does not quite reach the precision and recall of
the system before obfuscation. With our experiments, we will show that PerBlur, using
its “rough and ready” approach to hyperparameter setting, gets very close to the perfor-
mance with the original data, and in some cases surpasses it. At the same time, PerBlur
obfuscation is understandable to the user and it also does not have to be recomputed
from scratch as the user continues to rate or interact with items and the profile grows.

We also note that [63] claims that their approach outperforms BlurMe [22]. How-
ever, the support for the claim is weak. In [22], it is shown that BlurMe can achieve the
recommendation performance achieved using the original, unobfuscated data. We also
reach this conclusion on the basis of our experiments. In contrast, [63] lacks discussion
of why their implementation of BlurMe falls very far short of the original data in ability
to maintain recommendation performance. A possible explanation is that [63] does not
adapt BlurMe for their threat model, which would be necessary in order to achieve a fair
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comparison.

OBFUSCATION SHOULD BE UNOBTRUSIVE

The unobtrustive characteristic expresses the commitment of our paradigm to approaches
that do not hamper or otherwise inconvenience or disturb the user. In other words, the
user should not perceive the protection as getting in the way. This requirement is in line
with previous work [23], [64] that has carried out user evaluation to test whether recom-
mendations using the obfuscated matrix affect the satisfaction of the users.

Here, we incorporate our concern with unobtrusivness into the design of the obfus-
cation. Specifically, we strive to make obfuscated profiles remain as natural as possible.
PerBlur goes beyond BlurMe [22] with respect to the goal of naturalness. Specifically,
PerBlur does not draw heavily on the most indicative movies of the opposite gender.
For example, “Gone with the Wind” could be used to obfuscate some user profiles, but if
every male looking to hide his gender had “Gone with the Wind” in his profile, the obfus-
cation would become obvious. PerBlur also avoids the larger issue that a male user might
not want to have a particular movie in his profile. For example, “Gone with the Wind”
romanticizes the US Civil War, and, today, its depictions of the South are understood as
racist. A user obfuscating his profile would prefer to have movies that are consistent with
his tastes.

PerBlur achieves unobtrustivenss by personalizing obfuscation so that it matches the
preferences of the user being obfuscated as well as possible. Specifically, the items that
extend a user’s profile are both indicative of the opposite gender and, at the same time,
reflective of the user’s preferences. Our paradigm stands in contrast with the paradigm
used by nearly every other research effort in the direction of obfuscation for privacy in
recommender systems, which obfuscate by introducing noise into the user data. For
example, Differential Privacy is explicitly directed at adding noise to user profiles. An
example of such an approach is [65]. We do not consider such approaches user-oriented
since they miss the chance to attempt to align obfuscation with user preferences.

OBFUSCATION SHOULD BE USEFUL

The useful dimension expresses the commitment of our paradigm to serving users needs.
First, obfuscation should strive to maintain recommender performance, i.e., the accu-
racy of the recommended items from the perspective of the user. Most other work on
recommender system privacy, agrees on this point. However, within our paradigm we
go beyond accuracy. We are also interested on maintaining the usefulness of the rec-
ommendations with respect to fairness and diversity. To our knowledge, we are the first
work to experimentally demonstrate that recommender data obfuscation can impact the
fairness and diversity of recommender systems trained on that data.

2.1.2. THREAT MODEL FOR GENDER INFERENCE
Our goal is to protect user privacy in the case that recommender system data, i.e., the
entire user-item matrix, falls into the hands of a party whose goal is to infer gender in-
formation about individual users. We call this party the attacker. In this section, we
specify our goal more formally in the form of a threat model.

We start with some general comments about the conditions under which an attack
might occur. Perhaps the most obvious way in which the attacker can acquire the en-
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tire user-item matrix is via a breach of the recommender platform. However, it is also
possible that the attacker is internal to the platform. For example, a platform might col-
lect user data without the intention to infer gender information. However, the business
strategy of the company owning the platform might change, or the company might be
bought by another company. In this case, so-called “mission creep” can occur. In other
words, the data is used for something other than the original purpose. It is important
to note that the privacy threat that we are addressing differs from that addressed by the
large portion of the literature on recommender system privacy, summarized for exam-
ple by [66]. Work such as [20], [21], [23] often aims to improve the privacy of users,
but under the assumption that the platform does not lose control of user data. Work
such as [67]–[69], adopts a federated learning approach, which assumes the existence of
clients, which can also be breached individually.

Our threat model serves to make the scenario we address concrete, and clearly dif-
ferentiate it from scenarios addressed by other work. Such a threat model is generally
used in security and privacy research, and specifies the conditions for which protection
is developed and against which protection is tested. Our model is presented in Table 2.2.

Table 2.2: Threat model: Gender inference on user-item data used for recommender systems

Component Description

Adversary:
Resources

The attacker has a gender classifier
pre-trained on unobfuscated data
or has the data necessary to train one.

Adversary:
Objective

The inference of users’ gender attribute.

Vulnerability:
Opportunity

The possession of a user-item matrix.

Vulnerability:
Countermeasure

Obfuscation of the user-item matrix
to block the inference of gender.

The threat model follows the main dimensions set out in [48]. First, it describes the
adversary, including the resources at adversary’s disposal and the adversary’s objective.
In other words, the threat model specifies what the attacker is capable of and what the
goal of the attacker is. Second, it describes the vulnerability, including the opportunity
that makes an attack possible and the nature of the countermeasures that can be taken
to prevent the attack.

Table 2.2 provides the specifications of our threat model for each of the dimensions.
As resources, we assume that the attacker has a gender classifier that is pre-trained on
unobfuscated data. The objective is to infer the gender of individual users. The data is
unobfuscated because we assume that the attack is blackbox in the sense that the at-
tacker does not have access to information about the obfuscation. In our experiments,
the gender inference classifier is trained using data drawn from the same sources as user
profiles that are subject to attack. This means that our attack is somewhat stronger than
what could be expected in the real world, where the attacker would not necessarily have
access to data from the same source.
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The opportunity for attack is the possession of the entire user-item matrix. We note
that anonymization is important but here we are not interested in whether attackers can
reconstruct the identity of the users, but rather whether they can infer a gender for each
user-ID. Finally, the countermeasure that we are investigating is obfuscation. Note that
our focus on obfuscation does not imply that other countermeasures may not be impor-
tant. For example, encryption protects privacy in the case of a data breach. However, we
focus on obfuscation because user’s data might actually be partially public, for example,
on a social media website, and because encryption does not address the issue of mission
creep.

We finish this section with some additional discussion on why we do not strive for
privacy with formal guarantees. As previously stated, privacy in the real-world does not
offer guarantees. Further, our experiments will show that the trade-off in privacy vs. pro-
tection is small, if it exists at all. The implication is that the user can have intuitive confi-
dence without needing a guarantee, circumventing the question of whether the guaran-
tee is understandable. Another interesting consideration is that formal guarantees cover
defenses but not meta-defenses. In other words, formal guarantees capture the degree to
which attacks are blocked, but do not cover the goal of motivating the attacker to give
up entirely. In a practical situation, we should be interested not only in ensuring that
attackers be unsuccessful in inferring gender, but in nudging them to abandon the effort
of inferring gender. For example, the incentive for mission creep within a recommender
system platform towards gender inference evaporates if gender inference requires large
amounts of resources and yields only low quality information. We do not consider meta-
defense further here, but mention the issue only for completeness.

2.1.3. EXPERIMENTAL FRAMEWORK

Next we present the framework that we use to carry out our analysis of gender obfus-
cation and demonstrate the properties of our PerBlur approach. As shown in Fig. 2.1
(top), gender obfuscation takes the original user-item matrix R and transforms it into
the obfuscated user-item matrix R

′
. In order to be successful, gender obfuscation must

fulfill two criteria. First, as indicated by “Evaluation of Recommendation Performance”
in Fig. 2.1 (middle), the quality of the predictions produced by the recommender system
must be comparable for the original and the obfuscated data. Second, as indicated by
“Evaluation of the Extent to Which Gender Information is Blocked” in Fig. 2.1 (bottom),
a gender classifier must no longer be able to use the obfuscated data to reliably predict
the genders of the users.

In addition to studying recommendation performance, our experiments also analyze
obfuscated data with respect to its ability to support the fairness and diversity of recom-
mendations.

2.2. BACKGROUND AND RELATED WORK
In this section, we first give a brief overview of existing work on privacy in recommender
systems. Then, we cover previous work on obfuscation for privacy. Next, we provide
background on gender inference, and, finally, we discuss related work on fairness and
diversity.
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Figure 2.1: Gender obfuscation of recommender system data (user-item matrix). Evaluation involves compar-
ing recommendation performance on original and obfuscated data and also confirming the extent to which
the inference of user gender from the obfuscated data is reduced or prevented.
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2.2.1. PRIVACY IN RECOMMENDER SYSTEMS
Privacy-preserving techniques for recommender systems can be understood as falling
into different groups [70]. Here, we discuss several key examples of those groups.
Indistinguishability-based techniques [18], such as k-anonymity, t-closeness and l-diversity,
are designed to protect against re-identification attacks. Differential privacy based tech-
niques aim to obscure the link between a users’ information in the input (the user’s pref-
erences) and output (the recommendation) [70], [71]. McSherry et al. [27], Hua et al. [72]
and Friedman et al. [65] proposed different ways to apply differential privacy to matrix
factorization that can prevent an untrusted recommender from learning any users’ pref-
erences. Hua et al. [72] added noise to item vectors to make them differentially private.
Friedman et al. [65] perturbed the input data by introducing noise prior to the data anal-
ysis. Data masking techniques [20], [73] obfuscate users’ information by perturbing the
input data. Kandappu et al. [74] proposed “Privacy Canary”, an interactive system that
enables users to interact and control the privacy-utility trade-off of the recommender
system to achieve a desired accuracy while maintaining privacy protection.

In this work, we are not interested in general privacy, but rather in protecting recom-
mender system data. Different techniques have been proposed to protect recommender
system data. Some techniques approach the problem from a security point of view. Fo-
cusing on securing the system, [75]–[77] attempt to prevent attackers from manipulating
the recommendation results through the insertion of fake user profiles called profile in-
jection attack. The objective of profile injection attack is to promote (called item push)
or demote (called item nuke) the recommendations made for specific items [76]. Bad-
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sha et al. [78] and Nikolaenko et al. [79] proposed to protect matrix factorization by ap-
plying homomorphic encryption that provides recommendations without knowing the
actual ratings. Other techniques focus on protecting recommender system data in order
to improve privacy, i.e., prevent the disclosure of users’ information. It is important to
differentiate between work that protects information implicit in the user-item matrix,
such as [80], from work that protects the information implicit in the list of recommen-
dations [63], [81]. Different disclosure attacks have been studied. Here we differentiate
between re-identification attacks [7] and inference attacks [9], [82]. In our work, we are
interested in protecting the user-item matrix against inference attacks.

2.2.2. OBFUSCATION FOR PRIVACY

DATA OBFUSCATION

Data obfuscation is a privacy preserving technique that aims to hide sensitive informa-
tion in the data by adding ambiguous, confusing, or misleading information [55] in order
to prevent inference attacks and sensitive information leakage. Obfuscation can be ap-
plied to different domains with different input data such as online social networks [64],
location-based services [83], photos [84], text [85], and recommender systems [21]–[23],
[51], [86].

In this chapter, we focus on data obfuscation for recommender systems research.
Our work is most closely related to the following papers. Berkovsky et al. [23] focused on
enhancing the privacy of recommender system users by distributing their profiles across
multiple repositories and then, obfuscating the user profiles to partially hide the actual
user ratings. Berkovsky et al. investigated three data obfuscation strategies: (1) Default
obfuscation replaces real ratings in the user profile with a predefined value, (2) uniform
random obfuscation replaces real ratings with random values chosen within the range of
ratings, (3) distribution-based obfuscation replaces real ratings with values drawn from
the distribution of ratings in the data set. In Parameswara et al. [21] a privacy preserving
framework is proposed to make it possible for multiple E-commerce services to share
data. The data sets are obfuscated by permuting sets of similar items.

We note that obfuscation is different from injection attacks. Obfuscation and injec-
tion (shilling) attacks are similar in the sense that they both manipulate the user profile
but with different goals. Obfuscation focuses on protecting users’ information existing
in the user-item matrix (a defense technique) but injection attacks are generally tech-
niques for attacking the recommender systems.

GENDER OBFUSCATION

Gender Obfuscation is a subset of data obfuscation, which aims to protect the privacy
of users, while maintaining the utility of the data. Specifically, obfuscation has the goal
of making it more difficult to infer the gender of the user from data using a classifier.
Gender obfuscation is widely studied as a surrogate for obfuscating other sensitive in-
formation such as age or profession.

Gender obfuscation for recommender system data was originally proposed by Weins-
berg et al. [22]. This work showed that a recommender system can infer binary gender of
a user with high accuracy, based solely on recommender system data (i.e., rated movies).
They then proposed an algorithm, called BlurMe, which obfuscates the user-item matrix
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in a way that blocks this inference while maintaining the performance of rating predic-
tion. The basic idea is to add fictional item ratings to every user profile that are typical
for the opposite gender. Tests of BlurMe involved only obfuscating 10% of the data at a
time, so the goal was not directly to protect the entire user-item matrix as we attempt to
do here.

After BlurMe, Feng et al. [86] introduced a privacy preserving module (called PP mod-
ule) situated between the recommender system and the user. PP module also adds a set
of extra fictitious ratings of items not rated by the given user. Although Feng et al. [86]
moves away from the one-size-fits all obfuscation used by BlurMe, it does not propose
to leverage imputation for personalized obfuscation, as we do in this chapter. Further,
Feng et al. [86] focused on rating prediction and did not propose approaches for Top-N
prediction, as we do here. In [62], an approach to obfuscating an entire user-item matrix
was proposed, however, this approach necessitates the use of detailed private data from
users to determine whether privacy is being leaked.

In previous work, notably BlurMe [22], the goal has been to reduce the accuracy as
far as possible. This goal is not particularly helpful to privacy protection. If the accuracy
of a binary gender classifier is very low, and if the attacker realizes that the data has been
protected, then it is possible to recover reliable gender predictions by simply flipping the
classifier decision. In our work, we adopt the position that once the AUC performance
has been reduced to 0.5 (where there is not benefit from a flip), then, we have succeeded
to block gender classification and it is not necessary to reduce it lower.

There have been a number of approaches to gender obfuscation related to recom-
mender systems. It is important to note, however, that these approaches differ from
our work because they are protecting an aspect of the recommender system other than
the data, as we do here. We mention these approaches here for completeness. Resh-
eff et al. [87] showed that private demographic information can be leaked via the user
representations used by latent factor recommender systems. Resheff et al. adapted an
adversarial training framework with which they simultaneously perturb the user vectors
in order to harm the readout of the private information and change the recommender
parameters until the system is optimized. As mentioned above, Hu et al. [88] adopted an
adversarial learning technique to learn a privacy-aware transfer model. The generator
represents the attacker who tries to infer the user privacy, while the discriminator is the
recommender which learns user preferences and deceives the adversary. In this work,
Hu et al. focus on perturbing the representations of the system, rather than the recom-
mender system data, as we do here. Note that in our work the obfuscation approach and
the classifier can be considered to stand in an adversarial relationship. However, we do
not optimize them together, as would be done with a GAN.

Note that there is some work on gender obfuscation outside of recommender sys-
tems. In particular, we mention Chen et al. [64], which focused on online social net-
works. Chen et al. [64] studied how the adoption of different obfuscation strategies e.g.,
addition, removal or replacement by different proportions of users affects the inference
attacks. We mention this work to demonstrate the viability of obfuscation approaches to
privacy.
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2.2.3. GENDER INFERENCE

We use the term inference attack to refer to the use of an inference algorithm to in-
fer something that a user may consider private i.e., age, gender, orientations. Most of
the users are not aware of the correlation that exists between their public and private
data [89]. For example, just from Facebook Likes [82] or ratings given to consumed
items [10], [22], [64], [90], an attacker can accurately predict a range of highly sensitive
personal attributes including [89]: sexual orientation, ethnicity, religious and political
views, age, and gender.

Some authors [91], [92] have studied the problem of inference of user attributes in
online social networks. Jia et al. [92] proposed a method called “AttriInfer” that com-
bines both friends and behaviors in a social graph. AttriInfer illustrated that even when
only a fraction of users provide publicly their profile attributes (such as location, inter-
ests), it is possible to infer these attributes among users who do not disclose them. Bi et
al. [93] showed how user demographic traits such as age, gender, and even political and
religious views can be inferred based on their search query histories. Bhagat et al. [94]
presented a new inference attack that a recommender system could use to infer demo-
graphic attributes for private user profiles. In the area of online video systems, a gender
inference algorithm [95] was used to infer viewers’ gender based on implicit watching
history.

2.2.4. FAIRNESS AND DIVERSITY

The goal of fairness is to design algorithms that make fair predictions across various (i.e.,
demographic) groups [96], [97]. There are different kinds of fairness [98]–[100]: con-
sumers fairness (C-fairness): where the recommendations should be fair towards the
users in the protected class (as defined by gender, age, nationality, ethnicity, etc.) rel-
ative to other users. Providers fairness (P-fairness) treat the providers of the items in a
fair way [101], and multi-sided fairness (CP-fairness) [99], [102] requires fairness to be
considered for both consumers and providers. Ekstrand et al. [103] looked at C-fairness
by exploring whether different user demographic groups experience similar or different
utility from the recommendation system. Ekstrand et al. proposed an empirical analy-
sis of the effectiveness of collaborative filtering recommendation strategies stratified by
the gender and age of the users. They found that not all users experience the system in
the same way. Mansoury et al. [104], explored different factors (e.g., the user profile size,
the entropy of users profiles and the anomaly in rating behavior) that could be associ-
ated with the unfairness of performance of recommendation algorithms for males ver-
sus females. They showed that neighborhood-based algorithms such as UserKNN and
ItemKNN discriminate more against female users. For the provider fairness, Ekstrand et
al. [105], [106] looked at the response of collaborative filtering recommender algorithms
to the distribution of their input data with respect to the content creator gender. In the
context of book recommendation, Ekstrand et al. investigated how recommender sys-
tems interact with author gender in book data. In the context of music recommendation,
Shakespeare et al. [107] studied the extent to which collaborative filtering recommenda-
tion algorithms may increase or decrease artist gender bias. Epps-Darling et al. [108]
studied gender representation in music streaming. They found that listeners generally
tend to stream fewer female artists than male artists.
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Here, we focus on consumer fairness (C-Fairness). Specifically, we are worried about
the recommendation system performing well for users of one gender and not for an-
other. We followed the same measures used in [103].

Diversity in recommender systems has been broadly studied in literature [109]–[113].
Generally, diversity applies to a set of items and it has to do with how different the items
are with respect to each other [109]. Hansen et al. [112] aimed at shifting users’ con-
sumption towards the tail and less familiar content in the context of music streaming.
Hansen et al. defined diversity around two factors that influence the consumption of
music. First, the taste similarity which means how similar a piece of music is to the type
of music the user has listened to previously. Second, popularity or how many users have
recently listened to the piece of music. Mansoury et al. [114] proposed a graph-based
approach, FairMatch, that works as a post-processing approach after recommendation
generation for improving the aggregate diversity. Aggregate diversity is defined in litera-
ture as long-tail recommendation which refers to the fact that the recommender systems
should recommend a wide variety of items across all users. FairMatch improved the vis-
ibility of high-quality items that have a low visibility in the original set of recommenda-
tions. Oliveira et al. [115] proposed an multiobjective optimization solution for music
recommendations that are at the same time diverse and similar to user preferences. The
recommended lists aim at balancing between the aspects that should be held fixed (max-
imize similarity with users actual items) and apects that should be diversified (minimize
similarity with other items in the recommendation list). Vargas et al. [113] defined nov-
elty and diversity based on three key concepts namely choice, discovery and relevance.
Helberger et al. [116] highlighted a number of principles designed for exposure diversity
in recommender systems.

Here we study diversity with respect to gender specificity. We look at gender speci-
ficity and investigate how to control the number of gender-stereotypical items recom-
mended to users. Our goal is preventing users from getting overrun with items that are
stereotypical for their gender. For example, a woman might want to watch one Hallmark
Christmas romance movie, and if a recommender system diversifies for gender speci-
ficity, it will prevent her recommendation list from being flooded with other Hallmark
Christmas romances. In this chapter, the study of gender-stereotypical items diversity is
different from popularity. In gender-stereotypical items we compare the recommended
items vs. items highly indicative for female (or male) users. There is no direct relation
between the list of indicative items and the popularity of items.

2.2.5. IMPUTATION FOR USER-ITEM MATRICES

Imputation approaches are approaches used to fill in the missing values of user-item
matrices [117], [118]. The goal of the approaches is to infer missing values in data set
in such a way that improves the overall performance of recommender systems trained
on that data set [119]. Su et al. [119] proposed two neighborhood based collaborative
filtering imputation algorithms called imputed nearest neighborhood CF (INN-CF) and
imputed densest neighborhood CF (IDN-CF). INN-CF first finds the most similar users
to the target user. Then, it uses the corresponding imputed rating data to make predic-
tions. IDN-CF makes predictions from the imputed densest neighbors (i.e., the users
who have rated the most number of items).
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In our work, we use imputation to personalize obfuscation. Specifically, we impute
in order to derive a confidence score that allows us to choose the items that are added
to the profile and also to (in the case of rating data) predict the rating that those items
should have. Our choice of imputation is inspired by Su et al. [119]. We point out that
our main goal is to obfuscate data, but that imputation actually has the goal of increasing
recommender performance. For this reason, we can expect that PerBlur might actually
be able to increase recommendation performance.

Evidence of the benefits of imputation has been given by Su et al. [119], who found
that imputation boosts the predictive performance for collaborative filtering recommen-
dations. Another example of a related paper that used imputation to improve perfor-
mance is Yuan et al. [120], which proposed a novel method ISVD to incorporate im-
puted data into SVD framework. For imputation, ISVD chooses effective neighbors for
the users and items based on the similarity relation among users and items. The im-
puted ratings are produced and then incorporated into the SVD model. Imputation can
also provide benefit when used for augmentation. The work in [121], [122] introduced a
sparsity-aware data-augmentation strategy that provides more item correlation patterns
and hence improves recommendation performance.

2.3. PERSONALIZED BLURRING (PERBLUR)
In this section, we present a basic skeleton for gender obfuscation and also introduce
PerBlur, our approach to gender obfuscation for recommender system data. The main
idea of PerBlur is to obfuscate the gender of a user in the user-item matrix by extend-
ing the user’s profile in a personalized manner, while simultaneously ensuring that the
extension is not typical for the user’s gender. Specifically, the standard PerBlur algo-
rithm adds ratings (or interactions) to a user’s profile that are consistent with the user’s
preferences, but are at the same time indicative for the opposite gender. PerBlur has
two variants: The standard variant just adds ratings (or interactions), and the variant
“PerBlur with removal” removes ratings (or interactions) that are indicative for the user’s
own gender.

Recall that PerBlur builds on the basic idea of BlurMe [22], which is to obfuscate by
adding indicative items for the opposite gender. In our work, BlurMe is also applied dif-
ferently from the original BlurMe paper [22]. First, we are focused on studying Top-N
recommendation, whereas [22] studies exclusively rating prediction. Second, our goal is
to protect the entire data set, and we apply obfuscation to all user profiles. In contrast,
the goal of [22] is to protect individual users and in [22] obfuscation is applied only to
10% of the data at a time. In our experiments, we show, for the first time, that the basic
BlurMe can maintain recommender system performance in the case of Top-N recom-
mendation and also in the case that the entire data set is obfuscated.

PerBlur also builds on the idea of our own previous (preliminary) work, BlurM(or)e [51],
which removes ratings to make the additional ratings less obvious and to prevent the
user-item matrix from becoming dense, resulting in more naturalistic data. PerBlur in-
troduces innovations beyond BlurMe and BlurM(or)e in two respects: It personalizes the
extension of the user profile (personalization) and it also prioritizes the items to remove
so that the most typical items for a user’s gender are removed first (greedy removal).

Before presenting the details of PerBlur, we first present the basic skeleton of the gen-
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der obfuscation, which we will use in our experiments for BlurMe and PerBlur in order
to compare the two approaches. Input to the algorithm is the level of obfuscation, p,
expressed in terms of the percentage by which the user profile is to be extended, and
two lists of indicative items: Lm is the list of indicative items for male users and L f ,
is the list of indicative items for female users. The lists are created by training a logis-
tic regression model on labeled training data (the same data that are to be obfuscated).
The coefficients β= {β0,β1, ...,βM , } of the logistic regression capture the extent to which
each item is correlated with the class attribute gender. The coefficients are used to select
the items for the two lists and order them according to the strength of the association.
The higher the coefficient is, the more strongly the item is correlated with the attribute
class. We extend user profiles by adding items until they are p percent longer than the
original profile. When we are working with rating data (as opposed to implicit data), an
added item receives either rating that is predicted for the user (using imputation, which
is explained below) or average ratings.

Once an item has doubled its frequency with respect to the original data, it is no
longer added. This mechanism is used by BlurM(or)e [51], where it was shown to work
well and, for this reason, adopted by PerBlur. We refer to this mechanism as “stop after
doubled”. The goal is to help to keep the overall distribution of items naturalistic. If “stop
after doubled” is not applied, then the items in the top ranks of Lm and L f will occur in a
large number of user profiles, creating a “spike” in the item histogram. Such spikes make
it obvious that the data set was obfuscated and conflict with our goal to design a system
in which obfuscation is unobtrusive. Such a “stop after doubled” mechanism was not
relevant in the original BlurMe [22] work, since only 10% of the data was obfuscated at a
time, so the items used for obfuscation would not be obvious in item histogram.

2.3.1. STANDARD PERBLUR
Now we will discuss the specifics of PerBlur. We start with standard PerBlur, which is
shown in Algorithm 1. First the algorithm creates personalized lists of indicative items
(Lines 1-14). PerBlur is built on the insight that if the items added to the user profile for
the purpose of obfuscation could have a close match to user preferences, then recom-
mendation performance has a better chance of being maintained when the obfuscated
data is used for training. To this end, PerBlur adds ratings (or interactions) to a user’s
profile that are consistent with the user’s preferences, but are at the same time indicative
for the opposite gender. Specifically, PerBlur uses a personalized list of indicative items
for each user, Per sonali zed u

L . This list is created by intersecting a personalized list of
preferred items for each user with the list of indicative items for the opposite gender (L f

for male users and Lm for female users). The personalized list is a list of items ranked in
order of the probability that the user will have rated the item.

To create the personalized list, we need a recommender algorithm that imputes items
(i.e., predicts ratings or interactions). In the case of rating data, this algorithm must
produce a confidence score (and not just a rating prediction or a ranking score) since
we are interested in the chance that a user will rate the item and not the user prefer-
ence. We turn to the widely used user-based collaborative filtering algorithm (userKNN).
UserKNN predicts a rating for the target user u on a given item i by calculating the set of

2We used θ = 0.6 for MovieLens, θ = 0.45 for Flixster, and θ = 0.4 for LastFM.
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Algorithm 1: Standard PerBlur
Input:

• p: percentage of obfuscation

• Users gender information

• L f (Lm ): list of indicative items for females (respectively males)

• Original user-item matrix R (N users,M items)

• Initial count: user profile size at time t = 0

Output: Standard PerBlur user-item matrix R
′

(N users,M items)
// 0. PerBlur Personalized lists of indicative items

1 Confidence score for recommendation based on UserKNN2;
2 for (user u in N) do
3 for (item i inM) do
4 Similarity computation finds nearest neighbor candidates;
5 Sort selected items based on the number of possessed neighbor candidates;

6 Li st u
NCount s contains a list of counts for each user u;

7 for (user u in N) do
8 Fix a cutoff on L f and Lm

9 // we set the cutoff to Top-50, in the rest of the
experiments

10 Create new personalized list of indicative items for u: Per sonali zedu
L ;

11 if (u is a Female) then
12 // Per sonali zedu

L = Li st u
NCount s ∩Lm

13 for item i ∈ Li st u
NCount s do

14 Per sonali zedu
L = Per sonali zedu

L . add (i ) if item i ∃ Lm

15 else
16 // Per sonali zedu

L = Li st u
NCount s ∩L f

17 Do the same steps (Line 9 to 12) but for a Male target user u

18 // 1. Obfuscation: adding extra items
19 for (user u in N) do
20 count = initial count [u] ∗ p
21 added = 0
22 while added < count do
23 i = picks the item in the first position in Per sonali zedu

L
24 if R′[u, i ] == 0 then
25 R′[u, i ] = value
26 added += 1

27 // For rating data, the rating value is either predicted
using imputation or average ratings.

28 Total added += added
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neighbors nearer than a specific distance threshold, θ, who have also rated this item. We
choose UserKNN since the count of the neighbors used to make a prediction for an item
is a straightforward choice of a confidence score. We rank the items by count from high
to low to arrive at Li st u

NCount s , our personalized list for each user. In order to make the
item list effective for obfuscation, we do not use Li st u

NCount s directly. Rather, we create a
final personalized item list (Per sonali zed u

L ) for each user u by intersecting Li st u
NCount s

with L f (if u is male) or Lm (if u is female).
This approach runs risk that the final personalized item list Per sonali zed u

L contains
items that are not particularly specific to the opposite gender (because they are too far
down the list L f or Lm). For this reason, we impose a threshold on L f and Lm . Note that
BlurMe never reaches the bottom of L f or Lm since it chooses the same items for all the
users. PerBlur, however, reaches further down the list since it is attempting to leverage
personal items. For this reason, the cutoff L f and Lm is important for PerBlur, as our
experiments will show.

Note that it is important to use an appropriate evaluation pipeline for assessing the
performance of recommender systems on obfuscated data. We will discuss this point
further in Section 2.6.1. We already state a key point here: imputation is trained and op-
erates on training data only and never predict items in the test set being used to evaluate
the recommender system.

2.3.2. PERBLUR WITH REMOVAL

Next, we move to the second variant of PerBlur, namely “PerBlur with removal” shown
in Algorithm 2. This algorithm takes data obfuscated by standard PerBlur as input, and
removes items. Removal has two goals: First, it keeps the density of the obfuscated data
close to the density of the original data. Removal is carried out so that the total number of
user ratings (or user-item interactions) for each item remains close to the total number
in the original data set. We spread out the items that need to be removed evenly over all
users. For users with very short profiles, we do not remove items. In our experiments, we
set the threshold defining very short profiles to 20, meaning that in the obfuscated data
no user can have less than 20 interactions. Our exploratory experiments demonstrated
that the success of obfuscation is not particularly sensitive to the threshold. Note that in
standard PerBlur we keep track of the number of added items so that we can remove the
same number later.

Second, removal contributes to the obfuscation. In other words, item removal can
help to mask the gender of the user. Specifically, removing gender-indicative items in a
controlled way, could potentially help to confuse the gender classifier, without unduly
impacting recommendation performance. To this end, PerBlur proposes a new removal
strategy, greedy removal, which removes items in the order of their indicativeness for
the gender of the user whose profile is being obfuscated. The greedy removal strategy
extends our previous work, BlurM(or)e, [51] which proposed random removal strategy.
The random removal strategy chooses items for removal in a random manner.

When we evaluate the ability of obfuscation to block gender inference in Section 2.5,
we apply greedy removal to BlurMe for comparison. We compare BlurMe with greedy
removal to BlurMe with random removal. We see that removal helps to reduce gender
inference and also that its contribution to recommendation lies in the area of improving
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Algorithm 2: PerBlur with removal
Input:

• Standard PerBlur user-item matrix R
′

(N users,M items)

• Removal mode = { Random, Greedy }

• Total added:total number of extra ratings (interactions) added, Interaction count: user profile size after adding p%
extra items.

• Removal threshold

Output: User-item matrix R
′′

(N users,M items)
1 // 2. Obfuscation: Removing certain items
2 for user u in N do
3 if Interaction count ≥ Removal threshold then
4 // Removal threshold is chosen by us to be 20.
5 remove count += 1

6 To be removed = Total added / remove count

7 // To be removed: contains the number of ratings (or
interactions) that will be removed from individual user profiles.

8 for user u in N do
9 if (Interaction count ≥ Removal threshold) then

10 if (u is a Female) then
11 removed = 0
12 while (removed < To be removed [u]) do
13 i = picks an item from L f

14 // i depends on the removal mode: random or greedy
15 if R′[u, i ]! = 0 then
16 R′′[u, i ] = 0
17 removed += 1

18 // R′′ is R′ after applying the removal

19 else
20 Do the same steps (Line 5 to 13) but for a Male target user u

diversity, discussed in Section 2.8.

2.4. EXPERIMENTAL SETUP

2.4.1. DATA SETS
We test our approach on three data sets. The first two are user-item matrices containing
ratings (explicit feedback): MovieLens [123] and Flixster [124]. For MovieLens, we use
the MovieLens 1 million (ML1M) release. For Flixster, we select users with at least 15 rat-
ings and movies with at least 20 ratings, which results in a subset of ratings for 2.8K items
by 2.4K users. The ratings are between [1,5] for both data sets. The third is a user-item
matrix containing interactions (implicit feedback): LastFM data [125]. We use artists as
the items. Our experimental data set contains users who listened to at least 10 artists
and artists to which at least 10 users have listened. The result is a subset of 884 users
and 56K artists. The three data sets contain binary information on user gender, i.e., the
gender of a user can be either male or female. We choose these data sets because they
contain gender information and because they are publicly available, for reproducibility
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purposes. Table 2.3 summarizes the statistics of the data sets that we used. In can be
seen that the MovieLens and LastFM data sets are quite sparse (4.47% and 0.01%, re-
spectively), and the Flixster data set is somewhat less sparse (5.49%). Note also that in
ML1M and LastFM, there are more male than female users (ML1M: 72% male vs. 28% fe-
male and LastFM: 57% male vs. 43% female), but in Flixster there are more female than
male users (38% male vs. 62% female).

Table 2.3: Summary of data sets

Data sets #Users #Items #Ratings #Sparsity (%) Gender (F/M)
ML1M 6040 3706 1000209 4.47 1709 / 4331
Flixster 2372 2835 369059 5.49 1480 / 890
LastFM 884 55686 655929 0.01 382 / 502

2.4.2. EVALUATION METRICS
The evaluation that we carry out in this chapter measures four different aspects of the
obfuscated data: (1) the success of the obfuscation (2) how well recommender system per-
formance is maintained on obfuscated data, (3) how obfuscation impacts fairness by
making the difference in the quality of the recommendations between males and fe-
males larger, and (4) how obfuscation impacts diversity of recommended items with re-
spect to gender-stereotypicality. In this section, we present the metrics that we use for
each of these aspects.

SUCCESS OF OBFUSCATION

For gender inference, we compute the Area Under the Curve (AUC) using the mean Re-
ceiver Operating Characteristic (ROC) curve computed across ten folds. For the ROC, the
true positive rate (TPR or sensitivity) is calculated as the rate of correctly classified male
users out of males in the data set and the false positive rate (FPR) is calculated as the
rate of users incorrectly classified as male out of females in the data set. The ROC curve
is plotted with TPR against the FPR where TPR is on y-axis and FPR on the x-axis. We
consider gender obfuscation to be successful when the prediction accuracy is close to
the average accuracy of random guessing, i.e., 0.5 , which means that the classifier does
not have the ability to separate the classes.

RECOMMENDER SYSTEM PERFORMANCE

In our experiments, we compare recommenders trained on the original data with recom-
menders trained on data obfuscated with different variants of BlurMe and PerBlur. We
carry out rating prediction for comparison with previous work, but our main focus is on
Top-N recommendation. The goal is to keep the performance of recommender systems
trained on the obfuscated data as close as possible to recommender systems trained on
the original data.

Here, we define the metrics that we use. For rating prediction we use mean absolute
error (MAE), the mean of the absolute difference between each prediction and rating for
all the ratings of users in the test set. If there are n held-out ratings in the test set, the
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MAE is computed as follows:

M AE = 1
n

∑
u,i

∣∣pu,i − ru,i
∣∣

where pu,i is the predicted rating for user u on item i and ru,i is the rating value of user
u on item i in the test set.

For top-N recommendation, we use Hit Ratio@10 and Top10.nDCG. To compute Hit
Ratio@10 (HR@10), we consider an item a “hit” if it is relevant and is ranked as one of
the top-N (N = 10) items that we recommend. In the case of the rating data being used
as implicit data, we threshold at 3.5, which means any predicted rating above 3.5 will be
considered as relevant (= 1) and below will not be relevant (= 0). HR@10 is defined as the
count of hits (#Hi t s) divided by the total user-item pairs in the test set (#count s).

HR = #Hi t s
#count s

Note that in order to give a ranking perspective to our rating experiments, we rank ac-
cording to rating prediction and calculate HR@10, although this method would not be
used to generated Top-N recommendations in a practical setting.

Normalized Discounted Cumulative Gain (Top10.nDCG) measures the utility that a
user is expected to obtain from a recommender based on that user’s estimated utility for
individual items and the position in the list at which those items were presented [103]. In
order to compute nDCG, first we truncate the recommendation list to 10. Then, we com-
pute the discounted cumulative gain (DCG) of the recommended order and the DCG of
the ideal order (iDCG). The DCGLRec ,u is defined as:

DCGLRec ,u =µu(l1)+∑|LRec |
i=2

µu (li )
l og2i

where li is the i-th item in the recommendation list LRec and µu(li ) is user’s u utility for
item li . We define µu(li ) as a binary utility: if a user u consumed item i then, µu(li ) = 1.
Otherwise, items for which no data is available are assumed to have a utility of 0. Then,
the nDCGLRec ,u for a recommendation list LRec generated for a target user u is the ratio
of DCG of recommended order (DCGLRec ,u) to DCG of ideal order ( i DCGu).

nDCGLRec ,u = DCGLRec ,u
i DCGu

Note that for the rating data, nDCG is also calculated with respect to thresholded ground
truth.

To illustrate the impact of obfuscated data on recommendation performance, we re-
port the gain (+) or drop (−) of the recommender performance on obfuscated data with
respect to the recommender performance on original data.

FAIRNESS

Recall that we study fairness in terms of the ability of the system to provide good recom-
mendations for both females and males. To measure fairness, we split users in the test
set into female users and male users. Then, we measure nDCGF and HRF for female
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test users and nDCGM and HRM for male test users to illustrate the overall satisfaction
obtained by each gender group and the difference between them.

For each gender, we report the gain (+) or drop (−) of the recommender performance
on obfuscated data. We also report the absolute magnitude of the difference between
the male users’ drop and the female users’ drop. If an obfuscation strategy is fair, this
difference should remain as small as possible. In cases where the obfuscation strategy
increases the performance of the recommender system, this difference should also re-
main small, but it is not as important as in cases where performance is lost.

DIVERSITY

We are interested in keeping the number of gender-stereotypical items that the recom-
mender system recommends to users under control. Our study of diversity, for this
reason, is focused on the proportion of correctly recommended items that are gender-
stereotypical. In this work, we define a gender-stereotypical recommendation as an item
that is highly typical for a particular gender.

We calculate the number of user-item pairs for which the item is correctly recom-
mended to user u and is also considered a highly typical item. For this purpose, we use
the top {10, 20, 50} items of the highly indicative items list Lm (if u is a male user) or L f

(if u is a female user).

2.4.3. ALGORITHMS AND EVALUATION SETUP

In this section, we describe the recommender system algorithms and gender inference
algorithms that we will use in our experiments.

GENDER INFERENCE ALGORITHM

For gender inference, we choose logistic regression because it is mentioned in literature,
Weinsberg et al. [22] and Chen et al. [64], as the best performing classifier for gender
inference on recommender system data. This was confirmed by our exploratory exper-
iments. We also report results here on SVM, which was the second strongest classifier
in our exploratory experiments. We apply normalization (L2-norm)3 to the user-item
matrix to scale all ratings to values in [0, 1].

To evaluate gender inference, we carry out ten fold cross-validation (using Stratified-
KFold4). In every iteration, we train the classifier on 9 folds and we test on the 10th fold.
Hyperparameters are selected from the training set with grid search (GridSearchCV5

from Sklearn). The test results for the classifier are reported in Table 2.4 in terms of AUC.
Our goal will be to reduce these scores. Recall that we consider gender inference to have
been successfully blocked once AUC has been reduced to the level of a random classifier
0.5. Scores below 0.5 show that the more we add extra ratings (interactions), the lower
the inference score is. However, scores lower than 0.5 are not ideal cases of blocking
because they could be flipped.

3https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html
4https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
5https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Table 2.4: Gender inference results measured in terms of AUC using logistic regression and SVM classifiers on:
original ML1M, Flixster and LastFM data sets. The +− represents the standard deviations of the results over
different ten folds.

AUC
Logistic regression SVM

ML1M 0.87 +− 0.02 0.82 +− 0.04
Flixster 0.87 +− 0.02 0.81+− 0.04
LastFM 0.77 +− 0.06 0.72+− 0.04

RECOMMENDER ALGORITHMS

For our recommendation experiments, we use two state-of-the-art algorithms commonly
used in collaborative filtering recommender systems: ALS [126] and BPRMF [127]. ALS
is a matrix factorization model trained with alternating least squares. We choose this al-
gorithm because it takes a user-item matrix containing ratings (explicit data) as input.
BPRMF is a matrix factorization model trained using the Bayesian Personalized Ranking
from implicit data. BPRMF is a learning-to-rank algorithm that optimizes pairwise rank-
ing. This algorithm takes a user-item matrix containing interactions (implicit data) as
input. We use the implementations of the Lenskit Python (lkpy) toolkit [128].

To evaluate recommender performance, we randomly sample (without replacement)
80% of the items in each user profile as our training set and 20% as our test set. The hy-
perparameters for each algorithm (the number of features and the number of iterations
for ALS and the number of epochs, batch size and features for BPRMF) are tuned using
cross validation on the training set. We evaluate the performance of the recommender
system algorithm using a special adaptation of 1+random, which is explained in Sec-
tion 2.6.1.

2.5. BLOCKING OF GENDER INFERENCE
In this section, we report experimental results that demonstrate the ability of gender ob-
fuscation to block gender inference. Table 2.5 presents the performance of the gender
classifier on data obfuscated with different variants of BlurMe and Table 2.6 presents
different variants of PerBlur. The classifier is trained on the original data, and tested on
obfuscated data. We test four levels of obfuscation, corresponding to adding 1%, 2%, 5%,
and 10% extra items to each user profile in the original data. Recall that the indicative
items lists L f and Lm used by BlurMe and PerBlur are selected using logistic regression.
Here, we evaluate classification results with respect to that same logistic regression clas-
sifier. We also test an SVM in order to confirm that the gender obfuscation transfers to a
classifier not used for the selection of the indicative item lists.

Tables 2.5 and 2.6 show that when data is obfuscated with any of the obfuscation
approaches, classification performance is lower than on the original data (cf. Table 2.4).
Recall that lower classification performance is our goal, since it represents improved user
privacy. We can see the impact that obfuscation has on lowering the classification perfor-
mance is evident for both logistic regression and SVM, confirming that our obfuscation
approach is not specific to the logistic regression classifier.

Comparing BlurMe results in Table 2.5, we see that BlurMe with greedy removal out-
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Table 2.5: Gender inference results measured in terms of AUC for different BlurMe obfuscations (with no re-
moval, random removal, and greedy removal) on ML1M, Flixster, and LastFM data sets. The +− are standard
deviations of the results over ten folds.

Gender Inference
Obfuscation

Strategies
Logistic Regression SVM

Extra Items Extra Items
Data Sets Personalization Removal 1% 2% 5% 10% 1% 2% 5% 10%

ML1M BlurMe None
No removal

0.76
+− 0.03

0.69
+− 0.03

0.48
+− 0.05

0.22
+− 0.06

0.74
+− 0.03

0.67
+− 0.03

0.42
+− 0.06

0.16
+− 0.06

Random
0.75

+− 0.03
0.69

+− 0.03
0.43

+− 0.05
0.13

+− 0.05
0.74

+− 0.03
0.66

+− 0.02
0.38

+− 0.08
0.10

+− 0.04

Greedy
0.59

+− 0.03
0.49

+− 0.03
0.22

+− 0.04
0.05

+− 0.02
0.53

+− 0.03
0.42

+− 0.03
0.14

+− 0.04
0.02

+− 0.01

Flixster BlurMe None
No removal

0.65
+− 0.05

0.59
+− 0.05

0.41
+− 0.05

0.19
+− 0.04

0.62
+− 0.05

0.55
+− 0.05

0.35
+− 0.05

0.14
+− 0.04

Random
0.65

+− 0.05
0.59

+− 0.05
0.38

+− 0.05
0.14

+− 0.03
0.62

+− 0.05
0.55

+− 0.05
0.32

+− 0.05
0.10

+− 0.03

Greedy
0.44

+− 0.06
0.33

+− 0.05
0.17

+− 0.03
0.06

+− 0.02
0.39

+− 0.06
0.28

+− 0.05
0.13

+− 0.03
0.04

+− 0.02

LastFM BlurMe None
No removal

0.66
+− 0.06

0.57
+− 0.07

0.35
+− 0.07

0.16
+− 0.05

0.61
+− 0.07

0.45
+− 0.08

0.15
+− 0.05

0.04
+− 0.02

Random
0.65

+− 0.06
0.55

+− 0.07
0.27

+− 0.07
0.03

+− 0.02
0.60

+− 0.07
0.43

+− 0.08
0.08

+− 0.04
0.006

+− 0.002

Greedy
0.52

+− 0.07
0.39

+− 0.07
0.17

+− 0.05
0.05

+− 0.02
0.39

+− 0.07
0.21

+− 0.05
0.03

+− 0.02
0.007

+− 0.003

performs the other approaches of BlurMe with no removal and BlurMe with random re-
moval. BlurMe with greedy removal requires less obfuscation (fewer extra items) to bring
the performance of the classifier close to 0.5 AUC. This is due to the fact that BlurMe with
greedy removal uses our proposed removal strategy which removes items in the order of
their gender indicativeness. Also, we observe that BlurMe with no removal and BlurMe
with random removal perform similarly and both require heavier obfuscation, and, as
such, can be considered less effective than BlurMe with greedy removal. For this reason,
next in Table 2.6, we omit PerBlur with random removal and we continue with PerBlur
with no removal and PerBlur with greedy removal.

Table 2.6 shows the gender inference results on PerBlur data for the case of no re-
moval and the case of greedy removal with different personalization cutoffs. The “per-
sonalization” column gives the length at which Per sonali zed u

L is truncated (see Line
7 to Line 14 of Algorithm 1). We recall that the personalization proposed by PerBlur
attempts to create a personalized list of indicative items that are close to the user pref-
erences. In Table 2.6, we see that PerBlur with no removal succeeds to lower the gender
inference score but with more obfuscation (more extra items). We note that we tested
the case in which there is no threshold for the personalization (we call it “All items”). We
do not include this results in the table, but instead mention that we found that the infer-
ence of the classifier is at the same level as it is for the original data. This is to be expected
because without the threshold there is no influence from the indicative item list.

We observe in Table 2.6 that PerBlur with greedy removal outperforms the other vari-
ants of PerBlur with no removal, since it can bring the performance of the classifier close
to 0.5 AUC with less obfuscation (fewer extra items). This demonstrates the importance
of using greedy removal strategy which removes items in the order of their gender in-
dicativeness. We consider gender obfuscation to be successful at levels of obfuscation
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Table 2.6: Gender inference results measured in terms of AUC on PerBlur (No removal and greedy removal),
for ML1M, Flixster, and LastFM data sets. The +− are standard deviations of the results over ten folds. We note
that for rating data, PerBlur with average ratings has quite similar results to PerBlur with predicted ratings. For
this reason, we only report results of PerBlur with predicted ratings.

Gender Inference
Obfuscation

Strategies
Logistic Regression SVM

Extra Items Extra Items
Data Sets Personalization Removal 1% 2% 5% 10% 1% 2% 5% 10%

ML1M

Standard
PerBlur

Top-50
Items No Remval

0.80
+− 0.02

0.76
+− 0.03

0.59
+− 0.03

0.43
+− 0.09

0.78
+− 0.03

0.73
+− 0.03

0.52
+− 0.02

0.34
+− 0.12

Top-100
Items

0.81
+− 0.02

0.78
+− 0.03

0.64
+− 0.04

0.39
+− 0.03

0.79
+− 0.03

0.75
+− 0.03

0.55
+− 0.04

0.28
+− 0.03

PerBlur
w/ removal

Top-50
Items Greedy

0.66
+− 0.03

0.53
+− 0.03

0.26
+− 0.03

0.14
+− 0.05

0.61
+− 0.03

0.46
+− 0.03

0.17
+− 0.02

0.09
+− 0.05

Top-100
Items

0.68
+− 0.03

0.56
+− 0.04

0.26
+− 0.04

0.10
+− 0.02

0.63
+− 0.03

0.48
+− 0.03

0.17
+− 0.03

0.07
+− 0.01

Flixster

Standard
PerBlur

Top-50
Items No removal

0.78
+− 0.04

0.75
+− 0.04

0.67
+− 0.04

0.57
+− 0.06

0.73
+− 0.04

0.69
+− 0.04

0.57
+− 0.04

0.45
+− 0.08

Top-100
Items

0.79
+− 0.04

0.77
+− 0.04

0.69
+− 0.04

0.55
+− 0.05

0.75
+− 0.04

0.72
+− 0.04

0.59
+− 0.05

0.41
+− 0.04

PerBlur
w/ removal

Top-50
Items Greedy

0.56
+− 0.05

0.48
+− 0.04

0.27
+− 0.03

0.13
+− 0.02

0.56
+− 0.05

0.42
+− 0.04

0.22
+− 0.03

0.10
+− 0.02

Top-100
Items

0.57
+− 0.05

0.43
+− 0.05

0.19
+− 0.04

0.08
+− 0.02

0.47
+− 0.05

0.37
+− 0.06

0.14
+− 0.04

0.06
+− 0.02

LastFM

Standard
PerBlur

Top-50
Items No removal

0.70
+− 0.06

0.63
+− 0.07

0.49
+− 0.08

0.42
+− 0.14

0.68
+− 0.06

0.56
+− 0.07

0.34
+− 0.09

0.28
+− 0.15

Top-100
Items

0.71
+− 0.06

0.64
+− 0.07

0.44
+− 0.06

0.28
+− 0.09

0.69
+− 0.06

0.58
+− 0.07

0.27
+− 0.05

0.13
+− 0.09

PerBlur
w/ removal

Top-50
Items Greedy

0.53
+− 0.06

0.39
+− 0.06

0.21
+− 0.06

0.17
+− 0.09

0.39
+− 0.06

0.21
+− 0.04

0.07
+− 0.03

0.06
+− 0.06

Top-100
Items

0.54
+− 0.07

0.36
+− 0.07

0.12
+− 0.04

0.06
+− 0.04

0.42
+− 0.06

0.18
+− 0.03

0.02
+− 0.01

0.02
+− 0.02

at which AUC is close to 0.5. As we previously mentioned, levels of classification perfor-
mance lower than 0.5 actually reveal the gender because the point reliably in the oppo-
site direction. Among the personalization levels, Top-50, Top-100 from Per sonali zed u

L ,
Top-50 items performs consistently well, and we adopt this setting for the PerBlur exper-
iments in the rest of the chapter.

It is important to remember that the ability of gender obfuscation to block the SVM
classifier seen in Table 2.5 and Table 2.6 is a demonstration of the transferrability of our
approach. Recall from Section 2.3 that the indicative items lists are chosen using logis-
tic regression. It makes sense, then, that adding these items in order to obfuscate data
would be able to prevent the classifier from making accurate predictions. The SVM re-
sults assure us that the items chosen using logistic regression actually have a general
blocking power, since using these items to obfuscate data is also able to block the ability
of the classifier to make predictions.

A different view on the gender inference performance is presented in the ROC curves
in Fig. 2.2. Here, we show ML1M, and leave out the other data sets since the pattern
is similar. These curves dramatically show the level of obfuscation (extra ratings or in-
teractions) at which the performance of the classifier collapses (i.e., the performance
approaches the diagonal). On the basis of these curves, we choose the levels of obfus-
cation for each obfuscation approach that we will investigate for each data set in the
remaining of the chapter. These settings constitute a “rough and ready” operating point
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Figure 2.2: ROC AUC of a logistic regression classifier on BlurMe (with no removal), PerBlur (with no removal)
and PerBlur (with greedy removal) for different degree of obfuscation (1%, 2%, 5% and 10%) for ML1M Data.
PerBlur data is created with Top-50 personalized list of indicative items and using predicted ratings. We ob-
serve that BlurMe and PerBlur with no removal require 5% extra items to perform like a random classifier.
PerBlur with greedy removal requires only 2% of extra items.
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at which we know that the gender prediction performance has collapsed. Specifically,
for the ML1M data set, we add 5% extra ratings to BlurMe with no removal and Standard
PerBlur data, and we add 2% extra ratings for PerBlur with greedy removal (see Fig. 2.2).
For the Flixster data set, we add 2% extra ratings to BlurMe with no removal, 10% to Stan-
dard PerBlur data, and we add 2% extra ratings to PerBlur with greedy removal. For the
LastFM data set, we add 2% extra items to BlurMe with no removal, and 5% extra items
to Standard PerBlur, and we add 1% extra items to PerBlur with greedy removal.

2.6. RECOMMENDATION PERFORMANCE
Now that we have established the effectiveness of PerBlur in blocking gender inference,
we turn to the evaluation of its ability to maintain recommendation prediction perfor-
mance.

2.6.1. EVALUATION PROCEDURE

In order to evaluate obfuscated data, it is necessary to have an evaluation procedure that
creates a fair environment to compare top-N recommendation performance between
different obfuscation techniques. Because obfuscation adds and subtracts ratings (or
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interactions), designing a procedure is non-trivial. Unless specific attention is paid to
how training and test splits are created, the addition and subtraction of ratings (or in-
teractions) to the user profiles will lead to the test set being different for the different
versions of the data that are being compared with each other. The result would be that
the test conditions are no longer directly comparable. For example, a particular condi-
tion might add easy-to-predict and remove difficult-to-predict ratings, meaning that the
prediction score no longer reflects that performance of the recommender algorithm.

We introduce a new evaluation procedure for obfuscated data that ensures that dif-
ferent conditions are comparable. Our procedure works as follows. We randomly sample
80% of each user profile for the training set and we keep the remaining 20% for the test
set. The choice of static splitting plays a key role in preventing obfuscation from adding
items into the test set. Obfuscation is applied only to the training set. The effect is that
the test set remains connected to users in the training set, and will remain the same
across all of the conditions.

For Top-N recommendation, the procedure needs to address an additional chal-
lenge. Specifically, we would like to be able to use the 1+random protocol [129], [130]
and still maintain a fair comparison across conditions. Under this protocol, a test item
is added to a set of random candidate items (here, 1000 items) that are drawn from a set
of possible candidate items. In order to maintain fairness in our evaluation procedure,
we must look not only at the test set, but also at the set of possible candidate items from
which the random items are drawn. The core of the challenge is the following. If 1+ran-
dom makes use of a candidate set drawn from the training data, that candidate set will
change from condition to condition, since each type of data obfuscation makes different
additions (and subtractions) to the data. When obfuscation adds and deletes items, it
will impact the candidate set. Specifically, it will change the set of items that compete
with the relevant item for each user across conditions. This issue does not occur with
data that is not obfuscated.

To address this problem, we adapt 1+random evaluation for use with obfuscated
data. For each user, we define a candidate set of C = 1000 items. In Fig. 2.3, we describe
our process of generating new candidate items. These items must be selected among
items that are not rated (= ?) by the user. To ensure that these items are comparable
across conditions, we create a large set of possible candidate items for each user by in-
tersecting the items that are not rated by the user in the original training set as well as
not rated by the user in all the obfuscated training sets. We then draw C random items
to create the candidate set for each user from this set of possible candidate items. Each
relevant item in the set of a user’s test items is injected in turn into the user’s candidate
set, and then recommendation is performed and the ranking metric is calculated. We
adapt this evaluation procedure for the comparison of recommendation performance
carried out in the next section.

Note that this procedure requires experiments to be planned carefully in advance.
Building the candidate set requires an intersection involving data from all conditions
that are being compared. It is not possible to compare two types of obfuscated data, and
then add a third type later because the candidate set must necessarily change.

It is important to understand why building the candidate set from the test items of
the other users is not a viable solution. For this methodology [129], the list includes for
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Figure 2.3: Generation of possible candidate items: the intersection of unrated items from the original training
set, original test set and the training sets of different obfuscation conditions.

all users, all the items having a test rating (interaction) by some user and no training
rating (interaction) by the target user. For this reason: when 1+random uses candidates
drawn from the test items of other users, it has to exclude items that are in the training
set of the target user’s profile. The training part of the profile is exactly the part that
changes from one type of obfuscation to the other. Again, we see that the candidate list
will change across comparative conditions. For this reason, we build the candidate list
for a given target user using items that are in the training data of all of the obfuscated
data sets being compared, but are not rated by (or interacted with) the target user and
are not in the test set of the target user.

It is very important to remember that only the scores of conditions that contribute
to building the candidate sets can be directly compared. In order to understand this
point in more detail, consider the impact that different types of obfuscation have on
the candidate sets. Recall that the items added by obfuscation to the training data will
not occur in the users’ individual candidate sets. Consequently, if highly personalized
obfuscation approaches are compared, then users’ candidate sets may contain less per-
sonalized items. Such candidate sets could offer less competition with the relevant item
that is being tested in 1+random evaluation, leading to higher absolute scores. The op-
posite could be true if less personalized obfuscation is used. In short, scores can only be
compared relatively within a set of conditions that all contributed to the candidate sets.



2

42
2. TOWARDS USER-ORIENTED PRIVACY FOR RECOMMENDER SYSTEM DATA: A

PERSONALIZATION-BASED APPROACH TO GENDER OBFUSCATION FOR USER PROFILES

2.6.2. COMPARING RECOMMENDATION PERFORMANCE
In this section, we compare recommendation performance in order to measure the ex-
tent to which the accuracy of a recommender is impacted when it is trained on obfus-
cated data. We use the evaluation procedure just described. The training/test split is
kept constant. In order to understand the range of variability, we repeat the evaluation
five times. Each repetition involves the selection of a new candidate set for each user. We
report the average and standard deviation of the repetitions. Recall that we are testing
obfuscation levels that we have previously determined to lead to collapse of the predic-
tive ability of the gender classifier.

First, we look at the results of the ALS algorithm, which takes rating data as input and
gives rating predictions as output. Remember that our main focus is Top-N recommen-
dation, but we test rating prediction because that was the focus of previous work, most
importantly [22]. The results are shown in Table 2.7. We report rating prediction with
MAE. We also rank items by their predicted ratings, which allows us to get a top-N view
of ALS and ranking prediction. The performance of this ranking is reported as HR@10.

Table 2.7: Rating prediction results measured in terms of MAE and HR@10 using ALS on Original, BlurMe, and
standard PerBlur Data (personalization with Top-50 indicative items) for ML1M and Flixster data sets. The
scores report the average over five repetitions of the evaluation. The standard deviation for HR@10 is around
0.0001.

ALS Obfuscation Strategies
MAE HR@10

Data Sets
Obfuscation

Level
Personalizaton

ML1M

Original 0% None 0.7534 0.0125
BlurMe 5% None 0.7477 0.0126

Standard
PerBlur

5%
Personalized w/
Average Ratings

0.7485 0.0129

5%
Personalized w/

Predicted Ratings
0.7497 0.0125

Flixster

Original 0% None 0.7584 0.0071
BlurMe 5% None 0.7400 0.0070

Standard
PerBlur

10%
Personalized w/
Average Ratings

0.7415 0.0066

10%
Personalized w/

Predicted Ratings
0.7410 0.0069

The main insight gained from Table 2.7 is that it is possible to train a recommender
on obfuscated data, and still maintain a comparable performance level as is achieved
when the recommender is trained on the original, unobfuscated data. This conclusion
is consistent with the BlurMe [22] rating prediction experiments. Recall however, that in
contrast to [22], we obfuscate the full data set, rather than just 10%. We find that the per-
formance in the case of obfuscated data can actually exceed the performance in the case
of the original data (i.e., MAE falls below the level of Original). This can be explained by
the fact that in some cases, making the profile larger gives a boost. We see that in terms of
MAE, PerBlur and BlurMe achieve approximately the same performance level, and both



2.6. RECOMMENDATION PERFORMANCE

2

43

outperform the original. In terms of HR@10 it remains close. In real-world application
scenarios, we are not particularly interested in rating prediction, nor would we choose to
carry out top-N recommendation by ranking on the basis of predicted ratings. However,
these experiments serve to give insight into how gender obfuscation works, and link our
analysis of PerBlur to the related work on BlurMe, which studied rating prediction.

Next, we look at BPRMF algorithm, which takes implicit data as input and gives a
ranked list of items as output. Recall that ML1M and Flixster are binarized via thresh-
olding and LastFM is interaction data, which is originally implicit. The results are shown
in Table 2.8. We report TopN recommendation results measured with Top10.nDCG and
HR@10.

Table 2.8: Ranking prediction results measured in terms of Top10.nDCG (∆ wrt original Top10.nDCG) and
HR@10 (∆ wrt original HR@10) using BPRMF on Original, BlurMe (no removal), and Standard PerBlur Data
(personalization with Top-50 indicative items and no removal). The scores report the average over five repe-
titions of the evaluation. The standard deviation of Top10.nDCG and HR@10 is around 0.001 on ML1M and
Flixster data sets. The standard deviation of Top10.nDCG and HR@10 is around 0.005 on LastFM data.

BPRMF Obfuscation Strategies nDCG
(∆wrt

Original)

HR@10
(∆wrt

Original)
Data Sets

Obfuscation
Level

Personalization

ML1M

Original 0% None 0.1634 0.1712

BlurMe 5% None
0.1536

(-0.0098)
0.1633

(-0.0080)

Standard
PerBlur

5%
Personalized w/
Average Ratings

0.1603
(-0.0031)

0.1675
(-0.0037)

5%
Personalized w/

Predicted Ratings
0.1637

(+0.0003)
0.1704

(-0.0009)

Flixster

Original 0% None 0.1139 0.0628

BlurMe 5% None
0.1066

(-0.0073)
0.0605

(-0.0023)

Standard
PerBlur

10%
Personalized w/
Average Ratings

0.1028
(-0.0112)

0.0602
(-0.0026)

10%
Personalized w/

Predicted Ratings
0.1099

(-0.0041)
0.0595

(-0.0033)

LastFM
Original 0% None 0.0782 0.0603

BlurMe 2% None
0.0839

(+0.0056)
0.0722

(+0.0119)

Standard PerBlur 5%
Personalized w/

Interaction
0.0752

(-0.0030)
0.0690

(+0.0087)

We see in Table 2.8 that when data obfuscated with PerBlur is used, the recommen-
dation performance comes very close to what is achieved on the original data for both
Top10.nDCG and HR@10. This observation stands in contrast to the conventional wis-
dom that privacy comes at the price of decreased recommendation performance. Recall
that the obfuscation levels used here are chosen because they collapse the AUC curve to
a random classifier. In other words, obfuscation defeats the classifier with a very small
decrease in recommendation performance, if there is a decrease at all. Overall, PerBlur
approaches the original performance more closely and more consistently than BlurMe.

Further in Table 2.8 we see that PerBlur that uses predicted ratings outperforms PerBlur
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that uses average ratings. This point is interesting since predicted ratings were not found
to be particularly helpful by [22].

2.7. MAINTAINING FAIRNESS
Next, we move to investigate the impact of gender obfuscation on fairness. Here, we are
concerned about the extent to which recommender algorithms trained on obfuscated
data are able to maintain fairness for both genders. We investigate fairness by comparing
the ranking prediction results calculated separately for males and females. These results
are presented in Table 2.9.

The first point to notice in Table 2.9 is that all of our data sets have a gap between
the performance for the two genders (see the first line of each section of the table, re-
porting results on the original data). For ML1M and Flixster, the systems perform better
for males and for LastFM the systems perform better for females. A gender performance
gap has been observed in many systems in the literature, e.g., [103].

Table 2.9: Ranking prediction results measured in terms of Top10.nDCG and HR@10 using BPRMF for female
and male users. The standard deviation of Top10.nDCG and HR@10 for female and male users is around 0.001
on ML1M and Flixster data sets. The standard deviation of Top10.nDCG and HR@10 for female and male users
is around 0.005 on LastFM data. |∆nDCGF −∆nDCGM | measures the ∆ difference with respect to the original
Top10.nDCG for both genders. |∆HRF −∆HRM | measures the ∆ difference with respect to the original HR for
both genders. The scores report the average over five repetitions of the evaluation.

BPRMF Obfuscation Strategies nDCGF

(∆w/ Orig)
nDCGM

(∆w/ Orig)
|∆nDCGF −
∆nDCGM |

HRF

(∆w/ Orig)
HRM

(∆w/ Orig)
|∆HRF −
∆HRM |

Data Sets
Obfuscation

Level
Personalizaton

M
L

1M

Original 0% None 0.1478 0.1695 0.0000 0.1575 0.1768 0.0000

BlurMe 5% None
0.1338

(-0.0140)
0.1614

(-0.0082)
0.0058

0.1474
(-0.0101)

0.1697
(-0.0071)

0.0029

Standard
PerBlur

5%
Personalized w/
Average Ratings

0.1398
(-0.0080)

0.1684
(-0.0011)

0.0069
0.1489

(-0.0087)
0.1751

(-0.0017)
0.0069

5%
Personalized w/

Predicted Ratings
0.1435

(-0.0043)
0.1716

(+0.0021)
0.0064

0.1518
(-0.0057)

0.1779
(+0.0011)

0.0068

Fl
ix

st
er

Original 0% None 0.1115 0.1179 0.0000 0.0605 0.0671 0.0000

BlurMe 5% None
0.1060

(-0.0055)
0.1077

(-0.0103)
0.0048

0.0591
(-0.0014)

0.0630
(-0.0041)

0.0027

Standard
PerBlur

10%
Personalized w/
Average Ratings

0.1042
(-0.0074)

0.1004
(-0.0175)

0.0101
0.0590

(-0.0015)
0.0624

(-0.0047)
0.0032

10%
Personalized w/

Predicted Ratings
0.1079

(-0.0037)
0.1132

(-0.0047)
0.0010

0.0576
(-0.0029)

0.0631
(-0.0040)

0.0011

L
as

tF
M

Original 0% None 0.1052 0.0570 0.0000 0.0805 0.0445 0.0000

BlurMe 2% None
0.1092

(+0.0040)
0.0639

(+0.0069)
0.0029

0.0836
(+0.0031)

0.0633
(+0.0188)

0.0157

Standard PerBlur 5%
Personalized w/
Interacted Data

0.1033
(-0.0019)

0.0532
(-0.0038)

0.0019
0.0873

(+0.0068)
0.0547

(+0.0102)
0.0034

We have previously seen that obfuscation sometimes improves recommendation,
but often causes a small drop. Here, we see that the drop is not evenly distributed over
both genders. Rather, one gender drops further than the other. The implication is that
when obfuscating it is necessary to check that the recommender system performance is
not impacted asymmetrically between the genders. This observation is new, and has not
been previously reported in the literature.

In the columns |∆nDCGF −∆nDCGM | and |∆HRF −∆HRM | in Table 2.9 we report the dif-
ference between the drop (or gain) experienced by both genders. It can be seen that
this value is the lowest for PerBlur with predicted ratings. The exception is ML1M where
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the value for BlurMe is lowest. In this case, PerBlur with predicting ratings outperforms
BlurMe for both genders, so the gap is less worrisome. In general, PerBlur appears some-
what better in preventing obfuscation from widening++ the gender performance gap. We
interpret this finding as reflecting the benefit of attempting to avoid obfuscating with
“noise”, but instead keep obfuscation as close as possible to what users might have done
themselves.

Finally we note that here again we see that PerBlur with predicted ratings is superior
to PerBlur with average ratings. In the remainder of the chapter, we examine PerBlur
using predicted ratings.

2.8. ACHIEVING DIVERSE RESULTS
In this section, we look at the impact of obfuscation on diversity. We first need an overview
of the different variants of obfuscation we will investigate. We start by looking at the con-
ditions for which we report Top-N recommendation performance. For this, the relevant
performance levels were already reported in Table 2.8. Then, we will look at obfusca-
tion with removal. For this purpose the Top-N recommendation performance is pro-
vided in Table 2.10. This table includes results for both random and greedy removal. We
include this table here because obfuscation with removal is not discussed in detail in
Section 2.6.2 due to the fact that our experiments showed that it did not have a consis-
tent influence on recommendation performance or fairness. However, we study removal
now because of its potential for enhancing diversity. Recall that the difference between
the two removal strategies is that the random removal strategy removes items randomly
from individual user profile and the greedy removal strategy removes items in the order
of their gender indicativeness (in Lm and L f ) from individual user profile. In Table 2.10,
we see that greedy removal and random removal are largely comparable. In our analysis
of diversity we will argue that the choice should be made by taking diversity, and not just
recommendation accuracy, into consideration.

Table 2.10: Ranking prediction results measured in terms of Top10.nDCG and HR@10 using BPRMF on
Original, BlurMe, and PerBlur with removal Data (personalization with Top-50 indicative items and removal
strategy). The scores report the average over five repetitions of the evaluation. The standard deviation of
Top10.nDCG and HR@10 is around 0.001 on ML1M and Flixster data sets, and 0.003 on LastFM data.

BPRMF Obfuscation Strategies
nDCG HR@10

Data Sets Personalizaton Removal

ML1M

Original None None 0.1632 0.1720

PerBlur
w/

Removal

Personalized w/
Average Ratings

Random 0.1591 0.1682
Greedy 0.1545 0.1615

Personalized w/
Predicted Ratings

Random 0.1593 0.1678
Greedy 0.1534 0.1606

Flixster

Original None None 0.1159 0.0610

PerBlur
w/

Removal

Personalized w/
Average Ratings

Random 0.1092 0.0600
Greedy 0.1056 0.0584

Personalized w/
Predicted Ratings

Random 0.1104 0.0607
Greedy 0.1073 0.0590

LastFM
Original None None 0.0882 0.0622
PerBlur

w/ Removal
Personalized w/
Interacted Data

Random 0.0764 0.0592
Greedy 0.0833 0.0576

Now that we have a complete view of recommendation performance for all the rele-
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Table 2.11: Diversity for Standard PerBlur: The proportion of correctly recommended items that are stereo-
typical for gender (female and male) using BPRMF. Three different cutoff levels (10, 20, 50) are used to define
gender-stereotypical items. Original Data and Standard PerBlur Data (personalization with Top-50 indicative
items). The scores report the average over five repetitions of the evaluation. The standard deviation is around:
0.0002 on ML1M data, 0.0005 on Flixster data, and 0.0005 on LastFM data.

BPRMF Obfuscation Strategies Stereotypical Gender Items
Data Sets Level Personalization top10F top10M top20F top20M top50F top50M

ML1M
Original 0% None 0.0021 0.0044 0.0040 0.0068 0.0083 0.0127

Standard PerBlur 5%
Personalized w/

Predicted Ratings
0.0020 0.0046 0.0036 0.0070 0.0077 0.0129

Flixster
Original 0% None 0.0056 0.0090 0.0114 0.0150 0.0244 0.0266

Standard PerBlur 10%
Personalized w/

Predicted Ratings
0.0038 0.0086 0.0083 0.0142 0.0197 0.0251

LastFM
Original 0% None 0.001 0.0000 0.001 0.0000 0.0026 0.0002

Standard PerBlur 5%
Personalized w/
Interacted Data

0.000 0.0000 0.000 0.0000 0.0003 0.0000

vant variants of obfuscation, we dive into the impact of PerBlur on diversity. Remember
that we study diversity by looking at the ability of PerBlur data to steer recommender
systems away from providing gender-stereotypical recommendations. Recall also that
we define a gender-stereotypical recommendation as an item that is highly typical for a
particular gender. Our assumption is that users will appreciate a less stereotyped rec-
ommender, i.e., that women will appreciate when recommendations do not focus on
stereotypical female items such as ‘chick flicks’. We are not looking to eliminate gender
stereotypical items from the recommendation lists, but rather to control them.

For our analysis, we assume gender-stereotypical items to be items that are specific
to a user’s gender. We make use of the lists of gender-indicative items, L f and Lm , that
we use for the gender obfuscation algorithms. Because these lists were derived before
the training/test split, test items of users occur in these lists. Refer back to Fig. 2.3 to
understand the way in which the training and test set are ensured to be disjoint. We test
three different cutoffs for defining a list of gender-specific items: top10, top20, and top50
most specific items. Recall that PerBlur removes gender specific items from the training
data. Note, however, that this does not impact the test data, which is a constant item set
over all data sets tested (Fig 2.3).

In Table 2.11 and Table 2.12, we report the proportion of correctly recommended
test-items that are gender-stereotypical. For PerBlur, these tables report the PerBlur
variant that uses predicted ratings so as not to crowd the table. We choose this vari-
ant because it generally achieves better performance. The proportions in these tables
are small because only a small number of top10, top20 or top50 items are in the ground
truth. However, the relative difference between these proportions demonstrates the ef-
fect of PerBlur.

Table 2.11 corresponds to the recommender performance in Table 2.8. In Table 2.11,
we see that PerBlur seems to lower the Top-N gender-stereotypical items that are recom-
mended to both male and female users with respect to the original data.

Table 2.12 corresponds to the recommender performance in Table 2.10. Note that
the performance on the original data is different between Table 2.8 and Table 2.10. This
difference arises because the conditions in these tables were run as two separate condi-
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Table 2.12: Diversity for PerBlur with removal: The proportion of correctly recommended items that are stereo-
typical for gender (female and male) using BPRMF. Three different cutoff levels (10, 20, 50) are used to define
gender-stereotypical items. Original Data and PerBlur Data (personalization with Top-50 indicative items us-
ing predicted ratings, and with greedy removal). The scores report the average over five repetitions of the
evaluation. The standard deviation is around: 0.0002 on ML1M data, 0.0005 on Flixster data, and 0.0005 on
LastFM data.

BPRMF Obfuscation Strategies Stereotypical Gender Items
Data Sets Personalization Removal top10F top10M top20F top20M top50F top50M

ML1M
Original None None 0.0020 0.0045 0.0038 0.0069 0.0082 0.0128
PerBlur

w/ Removal
Personalized w/

Predicted Ratings
Random 0.0017 0.0045 0.0033 0.0070 0.0075 0.0127
Greedy 0.0003 0.0005 0.0014 0.0020 0.0051 0.0073

Flixster
Original None None 0.0058 0.0084 0.0115 0.0147 0.0225 0.0255
PerBlur

w/ Removal
Personalized w/

Predicted Ratings
Random 0.0048 0.0087 0.0097 0.0149 0.0219 0.0265
Greedy 0.0006 0.0018 0.0035 0.0068 0.0149 0.0169

LastFM
Original None None 0.0013 0.0010 0.0013 0.0010 0.0026 0.0027
PerBlur

w/ Removal
Personalized w/
Interacted Data

Random 0.0013 0.0010 0.0013 0.0010 0.0013 0.0020
Greedy 0.0000 0.0000 0.0000 0.0000 0.0008 0.0012

tion sets, which means that their candidate sets are not comparable, as was described in
Section 2.6.1. In Table 2.12, we see that PerBlur with greedy removal is highly effective
in lowering the proportion of Top-N gender-stereotypical items. Random removal has
no apparent impact on diversity. This effect can be attributed to the fact that greedy re-
moval uses information about gender specificity and can guide the recommender away
from gender-typical items. In sum, these results demonstrate the potential of using ob-
fuscation to improve diversity at the same time as it is protecting users’ privacy.

2.9. CONCLUSION AND OUTLOOK
In this section, we summarize the main findings of our chapter and also provide an out-
look onto future working.

2.9.1. SUMMARY
We have introduced PerBlur, a new gender obfuscation approach for recommender sys-
tem data. PerBlur extends the state of the art with its use of personalization and also
greedy item removal.

Main finding The main contribution of the chapter is a demonstration that PerBlur
can maintain recommender system performance, and in some cases improve it, while
also blocking the inference of gender information.

We have also shown that BlurMe, an approach that does not use personalization, is
effective when applied to the entire user-item matrix, which was not previously demon-
strated in the literature. The picture that emerges is that PerBlur shows advantages over
BlurMe, but that BlurMe is also more effective than is expected.

User-oriented paradigm The PerBlur approach was formulated within a user-oriented
paradigm for user profile privacy. This paradigm requires approaches to be understand-
able to users, as well as remaining unobtrusive so that they do not get in the user’s way.
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These are two desirable characteristics informed the design of PerBlur. The paradigm
also requires that privacy look at usefulness as going beyond accuracy to encompass also
fairness and diversity aspects of recommender system data protection.

Fairness and Diversity Our experiments have shown that obfuscation interacts with
fairness and diversity. When using obfuscation it is important to check that different
user groups are impacted in the same way. In our experiments, we saw that PerBlur
appears to have an advantage over BlurMe in controlling the difference of the impact.
We also showed that PerBlur has the potential to improve recommendation diversity by
reducing the percentage of gender-stereotypical items that are recommended.

Evaluation methodology We have pointed out that fairness of experimental analysis
when testing obfuscated recommender system data is non-trivial. To address this chal-
lenge, we have proposed an evaluation procedure for obfuscated recommender system
data, and carried out our experiments using this procedure.

2.9.2. FUTURE WORK
The user-oriented paradigm for privacy protection offers a framework in which future
work can formulate new approaches to protecting user data. The formulation of PerBlur
itself is independent of the specific nature of the data and the attribute being protected.
In the future, PerBlur could be applied also to different demographic attributes such
as age, occupation, ethnicity, political orientation. Here, we elaborate further on the
insights of this chapter that are important for future work.

Obfuscation that promotes fairness and diversity Work focusing on obfuscation of
other attributes has been carried out by [63], [64], but not all of these approaches focus
on data set obfuscation, and none of them investigate the potential benefits for fairness
and diversity. In this respect, our contribution opens an important new vista for future
work.

From obfuscation to data synthesis We also mention that PerBlur can be considered
to be between obfuscation and data synthesis. Because it imputes items, PerBlur is ef-
fectively synthesizing a profile extension for each user. If obfuscation can take the data
far enough away from the original user, but still keep it faithful to underlying distribu-
tions, it could become an important tool in creating data sets that can be released for the
research community to use in the development of new algorithms.

Moving towards more sophisticated threat models Our work is based on the threat
model that is defined in Section 2.1.2. This threat model can be refined in the future
to match more closely with real-world threats, in particular data breaches. A limitation
of our current work is that we test gender classifiers with only one data set. A more so-
phisticated threat model would assume that different sources and different amounts of
labeled data may be at the disposal of the attacker.

We close by summarizing the main insights that we have found important for guiding
future work on data obfuscation.
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Obfuscation is relatively easy First, obfuscation is a simpler task than one might think.
A simple approach, fully understandable to users, works well. An approximate setting
of an operating point gives a practically useful approach. Future research should not
blindly assume that the problem of gender obfuscation requires iterative optimization
approaches. Such approaches are not only difficult for the user to understand, but they
are computationally heavy and require recomputation as users continue to rate and in-
teract with items items.

Obfuscation needs not to add noise Second, we should not assume that obfuscation
must introduce noise. In this chapter we have shown, that if we keep obfuscation close
to user preferences it has the potential to be unobtrusive for the user and also allows us
to maintain or even improve upon the performance of the original data.

Obfuscation should go beyond accuracy Third, maintaining recommender system ac-
curacy should not be the sole goal of obfuscation. Instead, fairness must also be main-
tained. We have seen that obfuscation also opens up an interesting opportunity to im-
prove recommender system diversity.
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Data science challenges allow companies, and other data holders, to collaborate with the
wider research community. In the area of recommender systems, the potential of such
challenges to move forward the state of the art is limited due to concerns about releasing
user interaction data. This chapter investigates the potential of privacy-preserving data
publishing for supporting recommender system challenges. We propose a data masking
algorithm, Shuffle-NNN, with two steps: Neighborhood selection and value swapping.
Neighborhood selection preserves valuable item similarity information. The data shuf-
fling technique hides (i.e., changes) ratings of users for individual items. Our experimental
results demonstrate that the relative performance of algorithms, which is the key property
that a data science challenge must measure, is comparable between the original data and
the data masked with Shuffle-NNN.
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3.1. INTRODUCTION TO DATA MASKING WITH SHUFFLE-NNN
We propose a masking approach, Shuffling Non-Nearest-Neighbors (Shuffle-NNN), which
changes (i.e., hides) a large proportion of the values of the ratings in the original user-
item matrix, R, to create a masked data set, R

′
. Our work is a step towards masked

data that can be publicly released for data science challenges. For this reason, we adopt
a relative-rank success criterion: given a set of recommender algorithms to be com-
pared, the relative ranking of the algorithms trained and tested on R and on R

′
must be

maintained. Shuffle-NNN is motivated by the observation that privacy-preserving tech-
niques [131] (privacy-preserving data publishing [132], privacy-preserving data mining [133])
have not yet been systematically applied to the data released for recommender system
challenges.

Shuffle-NNN generates a masked data by changing a large portion of values of the
ratings in a user’s profile. We chose a data shuffling technique because of its previous
success in masking numerical data in other domains [57]. Shuffle-NNN works as follows.
Our overall strategy is to shuffle ratings in a way that maintains key item-item similarities
in the data set. First, we determine the item neighborhoods, i.e., the most similar item
for every item, and join them, giving us an overall set of critical items. Then, we shuffle
ratings for items not in this set (non-critical items, i.e., the rest of the items). Shuffle-
NNN has two parameters. We fix the neighbhorhood size k = 40, since this value has
been shown to be effective in practice1. Given k, we set θ (a minimum threshold on
item-similarity that must be met for inclusion in a neighborhood) by running some test
rankings. Our exploratory experiments showed that a range of θ values can be effective,
and that θ can be determined using a subset of the algorithms to be ranked (meaning
that it can be set in-house before releasing data).

Recall that the goal of this chapter is not to demonstrate the absolute performance
of the algorithms, but rather to evaluate if the relative performance of algorithms is the
same on the original and on the masked data. For this purpose, we need a selection
of classic recommender algorithms, ranging from baselines that are known not to yield
state-of-the-art performance, to current algorithms. We carry out experiments on both
ranking prediction, and on classic rating prediction tasks. The algorithms for ranking
prediction are: Most Popular, KNN is user/item-based K-Nearest Neighbor. (BPRFM) [134]
and BPRMF. We followed the hyperparameters tested in [135].The algorithms for rating
prediction are: ItemKNN [136], UserKNN, SlopeOne [137],Co-clustering [138]. matrix fac-
torization (MF), Biased Matrix Factorization (BMF) [139] and (SVD++) [140]. We also test
baseline algorithms: Average-Item and Average-User which use the average rating value
of a user or item for predictions.

3.2. EXPERIMENTAL FRAMEWORK
The experiments are implemented using WrapRec [141]. We test on two publicly avail-
able data sets (cf. Table 3.1). We choose MovieLens 100k 2, since it is well understood,
and Goodbooks-10K 3, since it is larger and sparser.

1http://www.mymedialite.net/examples/datasets.html
2https://grouplens.org/datasets/movielens/
3https://www.kaggle.com/philippsp/book-recommender-collaborative-filtering-shiny/data
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Table 3.1: Statistics of the data sets used in our experiments and analysis.

data set #Users #Items #Ratings Range Av.rating Density(%) Variance
MovieLens 100k/ Random empirical /Masked 943/-/- 1682 /-/- 100.000/-/- [1,5] /-/- 3.529/2.997/3.529 6.30 /-/- 1.1256/ 1.415/ 1.125

GoodBook/ Random empirical /Masked 53424/-/- 10000/-/- 981.756/-/- [1,5]/-/- 3.8565/ 3.858/3.856 0.18/-/- 0.9839/ 0.9837/0.9838

Table 3.2: The ranking prediction performance on the original data, on the masked data and on the empirical
data. For the masked MovieLens data we used θ = 0.4 and for the masked GoodBook data we used θ = 0.15.

R@5 / R@10 for MovieLens data set R@5 / R@10 for GoodBook data
Original Masked Original Masked

UserKNN 0.093/0.177 0.093/0.178 0.434/0.595 0.433/0.594
BPRMF 0.084/0.165 0.085/0.166 0.398/0.575 0.396/0.571
BPRFM 0.082/ 0.159 0.082/0.159 0.387/0.567 0.382/0.563

ItemKNN 0.079/ 0.156 0.079/0.155 0.315/0.452 0.314/0.451

The relative
ranking of
algorithms

Popular 0.058/ 0.099 0.064/0.108 0.033/0.053 0.028/0.059

3.3. COMPARATIVE ALGORITHM RANKING

3.3.1. RANKING PREDICTION PERFORMANCE

We train and test the algorithms for ranking prediction both on the original data and and
the masked data. Results are given in Table 3.2.

It can be seen that the comparative algorithm ranking is maintained. In other words,
for all cases, the best algorithm on the masked data is also the best algorithm on the
original data and the worst algorithm on the masked data is also the worst algorithm on
the original data. These results demonstrate the success of Shuffle-NNN. In Table 3.2, we
report results for specific values of θ. However, relative ranking is actually maintained for
a range of values of θ (not shown here). In addition to Recall@5 and Recall@10, we found
also that Precision@5/ Precision@10 maintains the same relative ranking of algorithms.

Interestingly, when we tested our algorithms on empirical data (which we generate
by replacing individual values with values drawn randomly from the global distribution
of ratings in the original data), the comparative ranking was also preserved. This means
that Shuffle-NNN is sufficient, but not actually necessary in the case of Top-N recom-
mendation. Our conclusion from these results is that (at least for these data sets) the
values of the ratings are not important if the goal is a relative ranking among algorithms.
What is important is that our masked data sets maintain information on which items
were rated.

3.3.2. RATING PREDICTION PERFORMANCE

To dig deeper, we carry out rating prediction experiments. Results are reported in Ta-
ble 3.3. Here, we observe that the relative ranking is well maintained between the origi-
nal data and masked data (although not perfectly). Our focus here is on relative perfor-
mance, but it is interesting to note that the absolute RMSE on the masked data remains
within 5% of its value on the original data. In contrast to the ranking-prediction results,
we found that the empirical distribution does less well in maintaining the ranking than
Shuffle-NNN.
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Figure 3.1: Average user ratings original vs. masked data (masked using θ= 0.4 for MovieLens; θ = 0.15 for
GoodBook).

Table 3.3: The prediction performance on the original data and on the masked data and on the empirical data.
Note: Lower RMSE is better. The colors show the ranking of algorithms. For the masked MovieLens data we
used θ = 0.4 and for the masked GoodBook data we used θ = 0.15.

RMSE for MovieLens data set RMSE for GoodBook data set
Original Masked Original Masked

SVD++ (0.902) SVD++ (0.957) BMF (0.822) BMF (0.85)
BMF (0.911) BMF (0.962) SVD++ (0.825) SVD++ (0.854)
ItemKNN (0.918) MF (0.968) ItemKNN (0.826) ItemKNN (0.861)
MF (0.929) ItemKNN (0.972) MF (0.856) MF (0.873)
UserKNN (0.935) UserKNN (0.979) SlopeOne (0.865) UserKNN (0.894)
SlopeOne (0.937) SlopeOne (0.986) UserKNN (0.868) SlopeOne (0.903)
Co-Clustering (0.974) Co-Clustering (1.026) Average-User (0.883) Average-User (0.913)
Average-Item (1.023) Average-Item (1.030) Co-Clustering (0.891) Co-Clustering (0.924)

The relative
ranking of
algorithms

Average-User (1.042) Average-User (1.081) Average-Item (0.948) Average-Item (0.947)

3.4. RATING HIDING
Next, we discuss the ability of Shuffle-NNN to hide ratings. A rating is considered hidden
if its value changes between the masked data and the original data [142]. First, we look at
the global proportion of ratings hidden in the masked data. We find that at our operating
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point, Shuffle-NNN achieved a rating hiding percentage of 0.7 for MovieLens data and
0.68 for the GoodBook data.

Then, we look at the impact of masking at the user level. Figure 3.1 illustrates the
relationship between average user ratings before and after masking. Figure 3.2 shows,
for different level of hidden ratings, for how many users that level was achieved. The
average user rating of the masked data is impacted, but still correlated with the original
values. The protection varies per user, but is relatively high.
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Figure 3.2: Average user ratings original vs. masked data (masked using θ= 0.4 for MovieLens; θ = 0.15 for
GoodBook).

3.5. CONCLUSIONS AND OUTLOOK
Our overall conclusion is that data masking has great potential for data science chal-
lenges. It is possible to develop a masking approach, such that masked data can be used
to train and test algorithms with little impact on the relative performance of algorithms.
Shuffle-NNN provides valuable evidence about what information can be removed from
the user-item matrix and what information should be maintained. When the critical
items list is larger than the list of items that is shuffled, it is easier to reconstruct the
original values. Future work will investigate the difficulty of reconstructing the original
values from the shuffled data, which is an issue important to consider in cases where the
critical items are in the majority. We note that even modest levels of rating hiding can
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support deniability.
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We investigate an attack on a machine learning model that predicts whether a person or
household will relocate in the next two years, i.e., a propensity-to-move classifier. The at-
tack assumes that the attacker can query the model to obtain predictions and that the
marginal distributions of the data set on which the model was trained are publicly avail-
able. The attack also assumes that the attacker has obtained the values of non-sensitive
attributes for a certain number of target individuals. The objective of the attack is to infer
the values of sensitive attributes for these target individuals. We explore how replacing the
original data with synthetic data when training the model impacts how successfully the
attacker can infer sensitive attributes.
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4.1. INTRODUCTION
Governmental institutions charged with collecting and disseminating information may
use machine learning (ML) models to produce estimates, such as imputing missing val-
ues or inferring attributes that cannot be directly observed. When such estimates are
published, it is also useful to make the machine learning model itself publicly available,
so that researchers using the estimates can evaluate it closely, or even produce their own
estimates. Moreover, society also asks for more insight into the models that are used,
e.g., to address possible discrimination caused by decisions based on machine learning
models.

Unfortunately, machine learning models can be attacked in a way that allows an at-
tacker to recover information about the data set that they were trained on [143]. For this
reason, making machine learning models available can lead to a risk that information
from the training set is leaked. In this paper, we carry out a case study of model inversion
attribute inference attacks on a machine learning classifier to better understand the na-
ture of the risk. Model inversion attribute inference attacks aim to reconstruct the data a
model is trained on or expose sensitive information inherent in the data [50], [54]. Con-
ventionally, they only seek to infer sensitive attributes of individuals whose data are in-
cluded in the training set (Inclusive individuals). Here, we go beyond this conventional
perspective to investigate the extent to which the availability of the machine learning
model and the marginal distributions of the data it was trained on can support inferring
sensitive attributes of individuals who are not in the training set (Exclusive individuals).

The attack scenario that we study assumes that the classifier has been made acces-
sible and can be queried with arbitrary input an unlimited number of times, and also
that the marginal distributions of the data set the model was trained on have been re-
leased. The attacker has a set of non-sensitive attributes of the target individuals includ-
ing the correct value for the propensity to move attribute for “Inclusive individuals” in
the training data or “Exclusive individuals” not in the training data. The attacker wishes
to learn sensitive attributes for a group of victims, i.e., target individuals. The classi-
fier that we attack in our study predicts individuals’ tendency to move or relocate, i.e.,
whether an individual or household has the desires, expectations, or plans to move to an-
other dwelling [144] within the next two years. For this reason, it is called a propensity-to-
move classifier. Our investigation into propensity to move builds upon the work of [61],
which studies the possibility of replacing a survey question about moving desires with a
model-based prediction using a machine learning classifier.

Our experimental investigation first confirms that a machine learning classifier is
able to predict the propensity to move with an accuracy comparable to that achieved
by [61]. In contrast to [61], we report results for previously “unseen” individuals (Ex-
clusive individuals) separately from results on individuals who appeared in the training
data, which was collected two years before the test data (Inclusive individuals). We then
attack this classifier and demonstrate that an attacker can learn sensitive attributes both
for Inclusive individuals in the training data as well as for Exclusive individuals. Next,
we train the machine learning classifier on synthetic training data and repeat the at-
tacks. The resulting classifier is slightly less susceptible to attacks compared to the origi-
nal classifier, which was trained on the original data. Our findings point in the direction
that future research must pursue to investigate other model inversion attribute inference
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Table 4.1: Threat model addressed by our approach.

Component Description
Adversary: Objective Specific sensitive attributes of the target individuals.

Adversary: Resources

A set of non-sensitive attributes of the target individuals,
including the correct value for the propensity-to-move
attribute, for “Inclusive individuals” (in the training set)
or “Exclusive individuals” (not in the training set).

Vulnerability:Opportunity
Ability to query the model to obtain output plus
the marginal distributions of the data set that the
model was trained on.

Countermeasure Modify the data on which the model is trained.

attacks, as well as other synthetic data techniques that could further reduce the risk of
attacks when used to train machine learning models.

4.2. THREAT MODEL

Our goal is to be able to make publicly accessible a machine learning model that has
been trained on synthetic data such that the model maintains the same performance as
a model trained on the original data, but is less susceptible to model inversion attribute
inference attacks. In this section, we specify our goal more formally in the form of a
threat model.

Inspired by [48], we include three main dimensions in our threat model. First, the
threat model describes the adversary by looking at the resources at the adversary’s dis-
posal and the adversary’s objective. In other words, it specifies what the attacker is capa-
ble of and what the attacker’s goal is. Second, it describes the vulnerability, including the
opportunity that makes an attack possible. Then, the threat model specifies the nature
of the countermeasures that can be taken to prevent the attack.

Table 4.1 provides the specifications of our threat model for each of the dimensions.
As objective, the attacker seeks to infer specific sensitive attributes of the target individ-
uals. As resources, we assume that the attacker has collected a set of non-sensitive at-
tributes of the target individuals, i.e., previously released data or data gathered from so-
cial media. The target individuals are either in the training data used to train the released
model (“Inclusive individuals”) or not in the training data (“Exclusive individuals”). The
set of non-sensitive attributes also includes the target individuals’ corresponding true
labels concerning their propensity-to-move. The vulnerability is related to the oppor-
tunities available to the attacker, i.e., how the model is released and the access that has
been provided to the model. The attacker is able to query the model and collect the out-
put predictions of the model, for an unlimited number of arbitrary inputs. The attacker
also has information about the marginal distribution for each attribute in the training
data. Finally, the countermeasure that we are investigating is modification of the train-
ing data on which the model is trained.
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4.3. BACKGROUND AND RELATED WORK

In this section, we give a brief overview of basic concepts and related work on predicting
propensity to move, privacy in machine learning, and model inversion attribute infer-
ence attacks.

4.3.1. PROPENSITY TO MOVE

“Propensity to move” is defined as desires, expectations, or plans to move to another
dwelling [144]. Multiple factors come into play to understand and estimate the propen-
sity to move in a population. In [144], the authors have grouped those factors into two
categories: (1) Residential satisfaction, which is defined as the satisfaction with the dwelling
and its location or surroundings. Residential satisfaction is divided into housing satis-
faction and neighborhood satisfaction. (2) Household characteristics, which is related to
demographic and socioeconomic characteristics of the household. Gender and age are
indicators of a household are important demographic attributes. For instance, a male
household has different mobility patterns than a female household. Also, education and
income of the household are important socioeconomic attributes.

In [145], the authors studied the social capital and propensity to move of four dif-
ferent resident categories in two Dutch restructured neighborhoods. They define social
capital as the benefit of cursory interactions, trust, shared norms, and collective action.
Using a logistic regression model, they show that (1) age, length of residency, employ-
ment, income, dwelling satisfaction, dwelling type, and perceived neighborhood quality
significantly predict residents’ propensity to move and (2) social capital is of less impor-
tance than suggested by previous research. In [146], the authors investigate the possible
relationship between involuntary job loss and regional mobility. The authors look at
whether job loss increases the probability of relocating to a different region and whether
displaced workers who relocate to another region after job loss have better labor market
outcomes than those staying in the same area. They find that job loss has a strong pos-
itive effect on the propensity to relocate. In [147], the authors use data collected by the
British Household Panel Survey. The authors tested seven hypotheses to examine the
reasons why people desire to move and how these desires affect their moving behavior.
The results show that people are more likely to relocate if they desire to move for tar-
geted reasons like job opportunities than if they desire to move for more diffuse reasons
relating to area characteristics. In [61], the authors study the possibility of replacing a
survey question about moving desires with a model-based prediction. To do so, they use
machine learning algorithms to predict moving behavior. The results show that the mod-
els are able to predict the moving behavior about equally well as the respondents of the
survey. In [148], the authors examine the residential moving behavior of older adults in
the Netherlands. The authors of [148] use data collected from Housing Research Nether-
lands (HRN) to provide insights into the housing situation of the Dutch population and
their living needs. A logistic regression model was used to assess the likelihood that re-
spondents would report that they are willing to move in the upcoming years. They show
that older adults are more often motivated by unsatisfactory conditions in the current
neighborhood. Here, we follow up on the work of [61], as they evaluate a number of
machine learning models to predict the propensity-to-move.
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4.3.2. PRIVACY IN MACHINE LEARNING

In this section, we will discuss challenges and possible solutions for privacy in machine
learning. Existing works can be divided into three categories according to the roles of
machine learning (ML) in privacy [143]: First, making the ML model private. This cat-
egory includes keeping the ML model (its parameters) confidential and protecting the
data it was trained on to control privacy threats. Second, using ML to enhance privacy
protection. In this category, ML is used as a tool to enhance the privacy protection of
the data. Third, ML based privacy attack. The ML model is used as an attack tool by the
attacker.

Our work falls under the first category. The governmental institution that wishes to
make the model available to the public needs to protect individuals in the training data
and to make sure that by providing access to the model they are not making it easier to
infer sensitive information about individuals not in the training data. As mentioned in
Section 4.1, we approach the protection of the model by leveraging synthetic data. In
prior work [149], the authors propose a one-step approach for differential private (DP)
training of neural networks. They introduce differential private stochastic gradient de-
scent (DPSGD) that achieves differential privacy by constraining the gradients to have
a maximum l2 norm for each layer. Existing DP research mainly focuses on protecting
against membership inference attacks. In contrast, we employ a two-step approach in
which we first synthesize data and then proceed to train a machine learning model.

4.3.3. SYNTHETIC DATA GENERATION

Synthetic data generation is based on two main steps: First, we train a model to learn
the joint probability distribution in the original data. Second, we generate a new artifi-
cial data set from the same learned distribution. In recent years, advances in machine
learning and deep learning models have offered us the possibility to learn a wide range
of data types.

Synthetic data was first proposed for Statistical Disclosure Control (SDC) [37]. The
SDC literature distinguishes between two types of synthetic data [37]. First, fully syn-
thetic data sets create entirely synthetic data based on the original data set. Second, par-
tially synthetic data sets contain a mix of original and synthetic values. It replaces only
observed values for attributes that bear a high risk of disclosure with synthetic values.

In this paper, we are interested in fully synthetic data. For data synthesis, we used
an open source and widely used R toolkit: Synthpop. We use a CART model for synthe-
sis since it has been shown to perform well for other types of data [38]. Data synthesis
is based on sequential modeling by decomposing a multidimensional joint distribution
into conditional and univariate distributions. The synthesis procedure models and gen-
erates one attribute at a time, conditionally to previous attributes:

fx1,x2,..,xn = fx1 × fx2|x1 × ..× fxn |x1,x2,..xn−1 (4.1)

Synthesis using the CART model has two important parameters. First, the order in which
attributes are synthesized is called the visiting sequence. This parameter has an impor-
tant impact on the quality of the synthetic data since it specifies the order in which the
conditional synthesis will be applied. Second, the stopping rules are influenced by a limit
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set to define the number of observations that must be present in a terminal node of the
CART tree.

4.3.4. MODEL INVERSION ATTRIBUTE INFERENCE ATTACK

Model inversion attribute inference attacks try to recover sensitive features or the full
data sample based on output labels and partial knowledge of some features [13], [150].
In [12], [52], the authors introduce two types of model inversion attacks: black-box at-
tacks and white-box attacks. The difference between a black-box attack and a white-box
attack lies in the resources that are available to the adversary. In a black-box setting,
the adversary can only query the model and receive predictions [52]. The authors of
[52] show that an attacker can use a trained classifier to extract representations of the
training data. They exploit access to a model to learn information about its training data
using confidence scores revealed in predictions. In [13], the authors provide a summary
of possible assumptions about the adversary’s capabilities and resources for different
model inversion attribute inference attacks. The authors propose two types of model
inversion attacks: (1) confidence score-based model inversion attack (CSMIA) and (2)
label-only model inversion attack (LOMIA). The first attack, CSMIA, assumes that the
adversary has access to the target model’s confidence scores. The second attack, LO-
MIA, which is the basis of our work, assumes that the adversary has access to the target
model’s predictions only. The LOMIA attack uses an auxiliary machine learning model to
infer sensitive information about target individuals. In our attack, we employ LOMIA to
access the model’s predictions, but we do not use an auxiliary model. We opt for LOMIA
because it assumes the same adversary resources as in our threat model (Section 4.2).
Other attacks such as [151] assume that the attacker does not have access to target indi-
viduals’ non-sensitive attributes.

4.3.5. ATTRIBUTE DISCLOSURE RISK

In the context of statistical disclosure control, model inversion attribute inference at-
tacks pose a risk to attribute disclosure. An adversary leverages predictive models (tar-
get ML model) to infer sensitive information about individuals from known attributes,
increasing the likelihood of disclosure. Prior research on attribute disclosure risk has
looked at various metrics to measure the risk of attribute disclosure. These metrics in-
clude matching probability, where perceived match risk, expected match risk, and true
match risk are compared [152]. Additionally, a Bayesian estimation approach has been
considered, where an attacker is assumed to seek a Bayesian posterior distribution [153].
Correct Attribution Probability (CAP) is another metric used to measure the risk of dis-
closure. CAP measures the proportion of matches between records from the original
data and records from the protected data. Here, the protected data refers to the data
that the adversary has used to query the target model accompanied by the inferred in-
formation. CAP calculates the ratio of correct attributions to total matches for a given
individual [154], [155]. Methods for measurements of success are discussed in [6].

In the context of machine learning, we study attribute disclosure or attribute infer-
ence attacks as predictions. An attacker trains an auxiliary model to predict the value
of an unknown sensitive attribute from a set of known attributes given access to raw
or synthetic data [156], [157]. In this paper, we evaluate the success of our attack fol-
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lowing [13], which measures the difference between the adversary’s predictive accuracy
given the model and the accuracy that could be achieved without the model. We con-
sider our attack successful when its predictive accuracy surpasses that of a baseline us-
ing Marginals Only. This implies that using more information than just marginal data
can reveal sensitive information about target individuals.

4.4. LABEL-ONLY MIA WITH MARGINALS
In this section, we describe our label-only MIA + Marginals attack (for short LOMIA +
Marginals). LOMIA + Marginals is based on the LOMIA attack proposed by [13]. The at-
tacker aims to predict the value of an unknown sensitive attribute from a set of known
attributes. To perform the attack, the attacker needs access to the released ML model’s
predictions, the released marginal distribution representing possible values and actual
probabilities for the sensitive attributes in the training data, and a subset of data contain-
ing information about target individuals’ non-sensitive attributes. The attacker queries
the target model multiple times by replacing the missing sensitive attribute with all pos-
sible values. To determine the value of the sensitive attribute, we follow Case (1) pro-
posed in [13]. Case (1) states that when the target model’s prediction is correct only for
a single sensitive attribute value, e.g., y = y

′
0 ∧ y ! = y

′
0 or y ! = y

′
0 ∧ y = y

′
0, the attacker

selects the sensitive attribute to be the one for which the prediction is correct. For in-
stance, when the sensitive attribute is binary, i.e., K = 2, the attacker will query the model
by setting the sensitive attribute value to both yes and no and leave other attributes un-
changed. When the sensitive attribute is set to no, the returned model prediction is y

′
0.

Similarly, when the sensitive attribute is set to yes, the returned model prediction is y
′
1. If

y = y
′
1∧ y ! = y

′
0, the attacker predicts yes for the sensitive attribute. Differently, from [13],

when the attacker cannot infer the sensitive attribute (for cases where the model’s pre-
dictions vary across multiple sensitive attribute values, and cases where the model out-
puts incorrect predictions for all possible sensitive attribute values), we do not use an
auxiliary machine learning model. Instead, the attacker relies on the released marginal
distribution to predict the most probable value of the sensitive attribute.

In addition to the LOMIA + Marginals attack model, we also study an attack that
uses Marginals Only, as a baseline for comparison. The Marginals Only attack uses the
marginals to predict the most probable value of the sensitive attribute.

4.5. EXPERIMENTAL SETUP
In this section, we describe our data sets, utility measures calculated by applying differ-
ent machine learning classifiers, and adversary resources.

4.5.1. DATA SET
For our experiments, we used existing data collected by [61] related to the propensity
to move of individuals in the Netherlands. The authors of [61] linked various records
from the Dutch System of Social Statistical Datasets (SSD). The data set has around 150K
individuals including 100K individuals drawn randomly from SSD and 50K individuals
are sampled from the Housing Survey 2015 (HS2015) respondents. The resulting data
set has 700 attributes for each individual: (1) “y01” the binary target attribute indicat-
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ing whether (=1) or not (=0) a person moved in year j where j= 2013, 2015. The target
attribute “y01” is imbalanced and dominated by class 0. (2) time-independent personal
attributes, (3) time-dependent personal, household, and housing attributes, (4) infor-
mation about regional attributes.

FEATURE SELECTION

Different from [61], we applied feature selection to reduce the number of attributes.
Some attributes can be noise and potentially reduce the performance of the models.
Also, reducing the number of attributes helps to reduce the complexity of synthesis and
to better understand the output of the ML model. To do so, we applied SelectKBest from
Sklearn. We use the χ2 method as a scoring function. We selected the top K = 30 at-
tributes with the highest scores. Our final data set contains the 30 best attributes for a to-
tal of 150K individuals. In addition to the 30 attributes which include age, we added gen-
der (binary) and income (categorical with five categories) as sensitive attributes. These
sensitive attributes will be used in our model inversion attribute inference attack later
(Section 4.6.2).

DATA SPLITS

As previously mentioned, our propensity to move data was collected in 2013 and 2015.
Following [61], we use the 2013 data to train the propensity-to-move classifier and the
2015 data for testing. We call the 2013 data as “Inclusive individuals (2013)”. Recall, that
the 2015 data contains both individuals who were present in the 2013 data set (”Inclusive
individuals (2015)”) and also new “unseen” individuals (“Exclusive individuals (2015)”).
We carry out tests on both sets individually.

In the synthesis process, we are interested in protecting the training data of the tar-
get propensity-to-move model. We use the Inclusive individuals 2013 data to train our
synthesis model (cf. Section 4.3.3. The generated Inclusive individuals (2013) synthetic
data is then used as input for training the target propensity-to-move model.

4.5.2. UTILITY MEASURES
In this section, we provide a description of the machine learning classifiers used in our
experiments, as well as the metrics to evaluate the performance of these classifiers.

MACHINE LEARNING CLASSIFIERS

We selected a number of machine learning algorithms to predict the propensity to move.
The chosen machine learning techniques provide insight into the importance of the at-
tributes and are easy to interpret and understand [61].

In our experiments in Section 4.6.1, we used the following classifiers. Decision Tree
creates/learns a tree by splitting the training data into subsets based on an attribute
value test. This process is repeated on each derived subset in a recursive manner. In
Random Forest, each tree in the ensemble is built from a sample drawn with replace-
ment (i.e., a bootstrap sample) from the training set. Extra Trees fits a number of ran-
domized decision trees on various sub-samples of the data set and uses averaging to
improve the predictive accuracy and control overfitting. Extra Trees and Random Forest
are ensemble methods. Naïve Bayes is a probabilistic machine learning algorithm based
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on applying Bayes’ theorem with strong (naïve) independence assumptions between the
attributes. K-nearest neighbors (KNN) is a non-parametric machine learning algorithm.
KNN uses proximity to make predictions about the grouping of an individual data point.
We compare the performance of machine learning algorithms to the performance of a
Majority-Class classifier using the most frequent strategy as a naïve baseline.

METRICS FOR EVALUATING PERFORMANCE OF ML CLASSIFIERS

Similar to [61] and since our target propensity-to-move attribute is imbalanced, we used:
F1-score, as a harmonic mean of precision and recall score. Matthews Correlation Co-
efficient (MCC), and Area Under the Curve (AUC) measure the ability of a classifier to
distinguish between categories.

4.5.3. ADVERSARY RESOURCES
In this section, we describe different resources that are available for the attacker. As
adversary resources, we assume that the attacker has access to a set of non-sensitive
attributes of the target individuals (see our threat model in Section 4.2). We consider
three cases corresponding to three different sets of individuals:

• Inclusive individuals (2013): The attacker has access to data from the year
2013, which aligns with the data used to train the target model.

• Inclusive individuals (2015): The attacker possesses more recent data from
2015, but it corresponds to the same set of individuals used in training the target
model. The more recent nature of the data implies that certain (time-sensitive)
attributes for specific individuals may have some changes.

• Exclusive individuals (2015): The attacker’s data is from 2015, but it per-
tains to a distinct group of individuals who were not part of the training set for the
target model.

We created three different data sets for the three cases. Exclusive Individuals (2015) in-
cludes all available individuals (2904 individuals). For the Inclusive individuals (2013),
used to train the target ML model as well as to create the synthetic data, and the Inclu-
sive individuals (2015), we have randomly sampled to create data sets of the same size,
each containing 2904 individuals. The attacker has access to the correct value of the
propensity-to-move attribute for the target individuals but does not have information
about the sensitive attributes of gender, age, and income, which are the objective of the
attacker.

Understanding the vulnerability of a model to model inversion attribute inference
attacks requires using the right metric to evaluate different attack models. Since our
sensitive target attributes (gender, age, income) are balanced, we used precision, re-
call, and F1 to measure the effectiveness of the attacks. Precision measures the ability
of the classifier not to label as positive a sample that is negative. Precision is the ratio
of t p/(t p + f p) where t p is the number of true positives and f p is the number of false
positives. Recall measures the ability of the classifier to label positive samples positive
Recall is the ratio of t p/(t p + f n) where t p is the number of true positives and f n is the
number of false negatives.
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Table 4.2: Results of the performance of propensity-to-move model trained on original data and synthetic
data. The test data is used in its original (unprotected) form.

Data Sets
Machine learning

Algorithms

Test set: Inclusive individuals
(2015) and Exclusive

individuals (2015)

Test set:
Exclusive individuals (2015)

AUC MCC F1-Macro AUC MCC F1-Macro

Original
Data

Majority-Class 0.5000 0.0012 0.4924 0.5000 0.0000 0.3758
Naive Bayes 0.6815 0.2204 0.5968 0.5656 -0.0368 0.3331

Random Forest 0.7532 0.2407 0.5946 0.7881 0.3425 0.5732
Decision Tree 0.6568 0.2292 0.5767 0.7180 0.3478 0.6691

Extra Trees 0.7219 0.2099 0.5764 0.7226 0.3197 0.6325
KNN 0.6717 0.1744 0.5575 0.6723 0.2532 0.5981

Synthetic
Data

Majority-Class 0.5000 0.0000 0.4900 0.5000 0.0000 0.3758
Naive Bayes 0.6826 0.2029 0.5734 0.5657 -0.0144 0.3629

Random Forest 0.7275 0.2426 0.5946 0.7870 0.3432 0.5900
Decision Tree 0.6618 0.2125 0.5762 0.7189 0.3567 0.6728

Extra Trees 0.7177 0.2082 0.5596 0.7233 0.3144 0.6425
KNN 0.6542 0.1637 0.5418 0.6437 0.2027 0.5423

4.6. EXPERIMENTAL RESULTS
In this section, we turn to discuss our experimental results. We start by describing our re-
sults of the performance of the machine learning classifier. Then, we present the results
of model inversion attribute inference attacks.

4.6.1. PERFORMANCE OF MACHINE LEARNING CLASSIFIERS
Table 4.2 shows our results of classification performance of propensity to move. In Ta-
ble 4.2, the first column reports results on a test set that combines Inclusive Individuals
(2015) and Exclusive Individuals (2015). This test setting is similar to [61]. The second
column reports results in the case where the test set is Exclusive individuals (2015). In the
latter case, we evaluate the performance of the trained propensity-to-move on unseen
individuals who were not part of the training set.

As expected, all classifiers outperform the Majority-Class baseline, with classifiers
using trees generally being the stronger performers. We also see that when the test set
includes Inclusive individuals (2015) and Exclusive individuals (2015), the performance
is better than when it includes only “unseen” individuals (Exclusive individuals (2015)).
Note that if the data for the inclusive individuals were identical in the training and test
set, we would have expected very high classification scores. However, the data is not
identical because it was collected on two different occasions with two years intervening,
and individuals’ situations would presumably have changed.

REPRODUCING BURGER ET AL.,’S [61] RESULTS

In Table 4.2, results show that all machine learning classifiers outperform the Majority-
Class baseline. Overall we observe that our results are in line with [61] across different
metrics. This confirms that we can still predict individuals’ moving behavior at the same
level as in [61] even after reducing the number of attributes.
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In addition to reproducing [61], we looked at another prediction model where train
and test individuals are exclusive/different. We found that it is also possible to predict
the moving behavior of new individuals from 2015 based on a classifier trained on dif-
ferent individuals from 2013.

MEASURING THE UTILITY OF SYNTHETIC DATA

In order to evaluate the quality of synthetic data, we run machine learning algorithms
on a synthesized training set (2013 data). We used T ST R (train on synthetic and test on
real) [158] evaluation strategy where we train classifiers on 2013 synthetically generated
data and we test on 2015 original data. Results in Table 4.2 show that the performance
of machine learning classifiers trained on synthetic data is very close and comparable to
the performance of machine learning algorithms trained on original data. This confirms
that the synthetic training set can replace the original training set. In the remainder of
the paper, we will focus on the Random Forest model. We will assume the release of a
Random Forest model, as it outperforms other machine learning classifiers.

4.6.2. RESULTS OF MODEL INVERSION ATTRIBUTE INFERENCE ATTACK
In this section, we discuss the results of model inversion attribute inference attacks on
the propensity-to-move classifiers using gender, age, and income as the sensitive values.
For comparison purposes, we begin by taking a look at the results generated by LOMIA
Case (1) without adding the marginals, which we report in Table 4.3. Recall that LOMIA
Case (1) (cf. Section 4.3.4) involves querying the model under attack with versions of
the information of the target individual into which all possible values of the sensitive
attribute have been substituted. #Predicted individuals reports the raw number of indi-
viduals for whom this querying process generates a prediction. If there is more than one
version of the individual’s information that produces the same result from the classifier,
then that individual cannot be predicted. #Correctly predicted individuals reports the
raw number of predictions that are correct.

First, we consider attacks on the ML models trained on original data. We see that
Inclusive individuals (2013) shows the highest count of correct predictions across the
conditions (gender, age, income). The correct predictions are relatively lower for both
Inclusive individuals (2015) and Exclusive individuals (2015). This observation can be
attributed to the use of Inclusive individuals (2013) for training the target ML model.

Then, we consider attacks on the ML models trained on synthetic data. For the case
of Inclusive individuals (2013), we see that the model trained on synthetic data yields
substantially fewer predicted individuals and also fewer correctly predicted individuals
than the model trained on original data. For the case of Inclusive individuals (2015) and
Exclusive individuals (2015), the prediction scores (considering both LOMIA + Marginals
and Marginals Only) are also in general smaller for the model trained on synthetic data
than for the model trained on original data.

The comparison in Table 4.3 illustrates that the use of synthetic data to train mod-
els is contributing to mitigate leaks, since models trained on synthetic data yield fewer
correctly predicted individuals. However, it is important to note that for all models and
all attributes, the vast majority of the 2904 individuals in each test set (i.e., Attacker re-
sources) cannot be predicted with Case (1) and will be predicted using the marginals in
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the attacks we discuss below. Also note that while using LOMIA during the attack, the
attacker does not have the ground truth necessary to identify correctly predicted indi-
viduals and for this reason, the attack proceeds with the predicted individuals given in
Table 4.3.

Table 4.3: Results of predictions returned from querying the target model using LOMIA Case (1) [13]. #Pre-
dicted individuals are the number of predictions returned from querying the target model. #Correctly pre-
dicted individuals represent correctly predicted records among all target individuals.

Attacker
resources

Target ML
trained on

Sensitive
Attributes

# Predicted
individuals

# Correctly
predicted individuals

Inclusive
individual

(2013)

Original
Gender 92 92

Age 38 37
Income 37 37

Synthetic
(CART
model)

Gender 79 35
Age 17 7

Income 27 6

Inclusive
individual

(2015)

Original
Gender 86 42

Age 20 7
Income 31 5

Synthetic
(CART
model)

Gender 59 35
Age 28 8

Income 25 4

Exclusive
individual

(2015)

Original
Gender 281 148

Age 72 16
Income 58 24

Synthetic
(CART
model)

Gender 124 59
Age 47 13

Income 57 16

Next, we move to discuss the results of our LOMIA + Marginals attack. Here, we start
with the case of Inclusive individuals (2013). Table 4.4 summarizes the results of model
inversion attribute inference attacks, comparing LOMIA + Marginals and Marginals Only
attacks for Inclusive individuals (2013). Considering attacks on ML models trained on
original data, we observe that the LOMIA + Marginals attack out performs the Marginals
Only attack. Considering attacks on ML models trained on synthetic data, we see that the
LOMIA + Marginals attack outperforms the Marginals Only attack for the age attribute,
whereas it is surpassed by the Marginals Only attack for gender and income attributes.
Recall that we saw in Table 4.3 that the vast majority of the predictions for individuals
are carried out with Marginals. For this reason, we do not expect a large difference be-
tween LOMIA + Marginals and Marginals Only and it is not particularly surprising that a
Margainals Only attack might sometimes outperform LOMIA + Marginals. Turning now
to comparison, we see in Table 4.4 that the strongest attack on an ML model trained on
original data (in this case LOMIA + Marginals) is always slightly more successful than the
strongest attack on an ML model trained on synthetic data (in this case usually Marginals
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Table 4.4: Case of “Inclusive individuals (2013)” as adversary resources: Evaluation results for model inversion
attribute inference attacks using Marginals Only and LOMIA + Marginals attacks. Standard deviations, indi-
cated by ±, represent variability across ten experiment runs.

Attacker
resources

Target ML
Trained on

Attack
Models

Gender Age Income
F1-macro Precision Recall F1-macro Precision Recall F1-macro Precision Recall

Inclusive
individual

(2013)

Original
Marginals

Only
0.4976
± 0.0094

0.4977
± 0.0094

0.4977
± 0.0094

0.1237
± 0.0068

0.1238
± 0.0068

0.1238
± 0.0068

0.1982
± 0.0053

0.1982
± 0.0052

0.1983
± 0.0053

LOMIA +
Marginals

0.5155
± 0.0080

0.5157
± 0.0081

0.5157
± 0.0080

0.1335
± 0.0053

0.1336
± 0.0052

0.1337
± 0.0053

0.2105
± 0.0072

0.2105
± 0.0071

0.2106
± 0.0072

Synthetic
(CART
model)

Marginals
Only

0.5035
± 0.0072

0.5036
± 0.0072

0.5036
± 0.0072

0.1227
± 0.0054

0.1228
± 0.0055

0.1227
± 0.0053

0.2020
± 0.0081

0.2021
± 0.0081

0.2020
± 0.0081

LOMIA +
Marginals

0.4979
± 0.0086

0.4980
± 0.0087

0.4980
± 0.0087

0.1259
± 0.0057

0.1261
± 0.0057

0.1261
± 0.0057

0.1994
± 0.0082

0.1995
± 0.0082

0.1995
± 0.0082

Only). We emphasize that the difference is very small, but the fact that it is discernible
supports the conclusion that training models on synthetic data does have at least a basic
potential for fighting ML model leakage.

For completeness, we present the results of LOMIA + Marginals and Marginals Only
attacks when adversary resources are Inclusive individuals (2015) (Table 4.5) and Exclu-
sive individuals (2015) (Table 4.6). Here, on the original data, the LOMIA + Marginals
attack is not always more successful than the Marginals Only attack. However, we do
see the trend that attacks are generally slightly less successful when the model is trained
on synthetic data. We note the risk of leakage posed by the released marginals, and that,
moving forward, the danger of releasing marginals must be studied alongside the danger
of releasing the ML model itself.

Table 4.5: Case of “Inclusive individuals (2015)” as adversary resources: Evaluation results for model inversion
attribute inference attacks using Marginals Only and LOMIA + Marginals attacks. Standard deviations, indi-
cated by ±, represent variability across ten experiment runs.

Attacker
Resources

Target ML
trained on

Attack
Models

Gender Age Income
F1-macro Precision Recall F1-macro Precision Recall F1-macro Precision Recall

Inclusive
individual

(2015)

Original
Marginals

Only
0.5029
± 0.0077

0.5029
± 0.0076

0.5029
± 0.0076

0.1239
± 0.0065

0.1244
± 0.0064

0.1241
± 0.0067

0.1988
± 0.0092

0.1991
± 0.0090

0.1991
± 0.0091

LOMIA +
Marginals

0.5034
± 0.0124

0.5035
± 0.0123

0.5035
± 0.0123

0.1287
± 0.0061

0.1291
± 0.0062

0.1291
± 0.0061

0.1980
± 0.0070

0.1983
± 0.0070

0.1984
± 0.0070

Synthetic
(CART
model)

Marginals
Only

0.4937
± 0.0083

0.4938
± 0.0082

0.4938
± 0.0082

0.1222
± 0.0055

0.1225
± 0.0057

0.1225
± 0.0053

0.2031
± 0.0066

0.2033
± 0.0066

0.2035
± 0.0067

LOMIA +
Marginals

0.5001
± 0.0086

0.5003
± 0.0085

0.5003
± 0.0085

0.1278
± 0.0028

0.1282
± 0.0029

0.1281
± 0.0028

0.1969
± 0.0101

0.1972
± 0.0102

0.1972
± 0.0100

Table 4.6: Case of “Exclusive individuals (2015)” as adversary resources: Evaluation results for model inversion
attribute inference attacks using Marginals Only and LOMIA + Marginals attacks. Standard deviations, indi-
cated by ±, represent variability across ten experiment runs.

Attacker
resources

Target ML
trained on

Attack
Models

Gender Age Income
F1-macro Precision Recall F1-macro Precision Recall F1-macro Precision Recall

Exclusive
individual

(2015)

Original
Marginals

Only
0.5002
± 0.0125

0.5012
± 0.0126

0.5012
± 0.0127

0.0880
± 0.0031

0.1275
± 0.0037

0.1323
± 0.0185

0.1504
± 0.0064

0.2001
± 0.0059

0.2027
± 0.0115

LOMIA +
Marginals

0.5007
± 0.0065

0.5014
± 0.0066

0.5014
± 0.0066

0.0854
± 0.0055

0.1234
± 0.0050

0.1269
± 0.0262

0.1506
± 0.0065

0.2005
± 0.0052

0.2008
± 0.0123

Synthetic
(CART
model)

Marginals
Only

0.4966
± 0.0078

0.4979
± 0.0076

0.4979
± 0.0076

0.0839
± 0.0059

0.1233
± 0.0053

0.1264
± 0.0213

0.1447
± 0.0058

0.1980
± 0.0058

0.1952
± 0.0097

LOMIA +
Marginals

0.4975
± 0.0078

0.4989
± 0.0078

0.4989
± 0.0079

0.0852
± 0.0030

0.1252
± 0.0025

0.1242
± 0.0146

0.1461
± 0.0075

0.1985
± 0.0068

0.1992
± 0.0140
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4.7. CONCLUSION AND FUTURE WORK
In this paper, we have investigated an attack on a machine learning model trained to
predict an individual’s propensity to move i.e., whether they will relocate in the next two
years. We have studied the risk for Inclusive individuals, who are in the training data of
the model, as well as for “unseen” Exclusive individuals.

To explore the ability of synthetic data to replace original data and protect against
model inversion attribute inference attacks, we created fully synthetic data using a CART
model. The ML model trained on the synthetic data maintained prediction performance
and was found to leak in the same way or slightly less than the original classifier. This
result is interesting as it shows that training a model on synthetic data will not exacer-
bate leaks, and may actually have the potential to reduce attribute disclosure risk. Also,
our findings are interesting because until now the SDC community working with syn-
thetic data has mainly focused on measuring the risk of identity disclosure rather than
attribute disclosure [155]. In the identity disclosure literature, synthetic data has been
shown to provide protection [15], [159]. However, releasing a model trained on synthetic
data remains an open domain for research. Our work has highlighted the importance of
considering the released marginals and not just the model.

Broadening the scope of the threat model is an essential avenue for future research
(Section 4.2). Exploring additional attack scenarios, such as scenarios involving an at-
tacker with access to confidence scores or confusion matrix from the target machine
learning model or scenarios where the attacker lacks access to certain attributes within
the data, would contribute to a better understanding of potential vulnerabilities associ-
ated with making a trained model publicly available. In terms of evaluation, future work
should consider alternative metrics [157] from both statistical disclosure control (SDC)
and machine learning perspectives to evaluate and quantify the success of model inver-
sion attribute inference attacks for a given target individual. Also, it would be interesting
to explore different synthesis approaches ranging from ML and generative models. If
the inference attack is still possible, then, a second protection using privacy-preserving
techniques on sensitive attributes during synthesis, e.g., data perturbation or masking
sensitive attributes, might provide extra protection and reduce the risk of attribute dis-
closure. Furthermore, the choice of sensitive attributes is important given its impact on
the output of model inversion attribute inference attacks. This consideration extends to
understanding the nature of the relationship between sensitive attributes and the target
attribute within the machine learning model.
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In this work, we investigate privacy risks associated with model inversion attribute infer-
ence attacks. Specifically, we explore a case in which a governmental institute aims to
release a trained machine learning model to the public (i.e., for collaboration or trans-
parency reasons) without threatening privacy. The model predicts change of living place
and is important for studying individuals’ tendency to relocate. For this reason, it is called
a propensity-to-move model. Our results first show that there is a potential leak of sen-
sitive information when a propensity-to-move model is trained on the original data, in
the form collected from the individuals. To address this privacy risk, we propose a data
synthesis + privacy preservation approach: we replace the original training data with syn-
thetic data on top of which we apply privacy preserving techniques. Our approach aims to
maintain the prediction performance of the model, while controlling the privacy risk. Re-
lated work has studied a one-step synthesis of privacy-preserving data. In contrast, here,
we first synthesize data and then apply privacy-preserving techniques. We carry out ex-
periments involving attacks on individuals included in the training data (“inclusive indi-
viduals”) as well as attacks on individuals not included in the training data (“exclusive in-
dividuals”). In this regard, our work goes beyond conventional model inversion attribute
inference attacks, which focus on individuals contained in the training data. Our results
show that a propensity-to-move model trained on synthetic training data protected with
privacy-preserving techniques achieves performance comparable to a model trained on
the original training data. At the same time, we observe a reduction in the efficacy of cer-
tain attacks.
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5.1. INTRODUCTION
A governmental institute that is responsible for providing reliable statistical information
may use machine learning (ML) approaches to estimate values that are missing in their
data or to infer attributes whose values are not possible to collect. Ideally, the machine
learning model that is used to make the estimates can be made available outside of the
institute in order to promote transparency and support collaboration with external par-
ties. Currently, however, an important unsolved problem stands in the way of providing
external access to machine learning models: the models may pose a privacy threat be-
cause they are susceptible to model inversion attribute inference attacks. In other words,
they may leak information about sensitive characteristics of individuals whose data they
were trained on (“inclusive individuals”). Further, going beyond the strict definition of
model inversion, access to models may enable the inference of attributes of individuals
whose data is not included in the original training set (“exclusive individuals”).

In this paper, we investigate the potential leaks that could occur when external ac-
cess is provided to machine learning models. We carry out a case study on a model that
is trained to predict whether an individual is likely to move or to relocate within the next
two years. Such models are helpful for understanding tendencies in the population to
change their living location and are, for this reason, called propensity-to-move models.
We study the case in which an institute would like to provide access to the model by
allowing external parties to query the model and receive output predictions and by re-
leasing the marginal distributions of the data the model is trained on. Additionally, the
output might include confidence scores. Finally, access might include releasing a confu-
sion matrix of the model calculated on the training data. Attackers wish to target a cer-
tain set of target individuals to obtain values of sensitive attributes for these individuals.
We assume that for this set of target individuals, attackers possess a set of non-sensitive
attributes that they have previously obtained, e.g., by scraping social media, including
the correct value for the propensity-to-move attribute.

First, we show the effectiveness of our propensity-to-move prediction model. Then,
we evaluate a number of existing model inversion attribute inference attacks [12], [13]
and demonstrate that, if access would be provided to the model, a privacy threat would
occur. Next, we address this threat by proposing a synthesis + privacy preservation ap-
proach, which applies privacy preserving techniques designed to inhibit attribute infer-
ence attacks on top of synthetic data. This two-step approach is motivated by the fact
that within our case study, training models on synthetic data is an already established
practice and the goal is to address the threat posed by synthetic data. In our previous
work [160], we demonstrated that training on synthetic data has the potential to provide
a small measure of protection, and here we build on that result.

Our results show that a propensity-to-move model trained on data created with our
synthesis + privacy preservation approach achieves performance comparable to a propensity-
to-move model trained on original training data. We also observe that the data created
by our synthesis + privacy preservation approach contributes to the reduced success of
certain attacks over a certain group of target individuals. Last but not least, we use the
Correct Attribution Probability (CAP) metric [154] from Statistical Disclosure Control as
a disclosure risk measure to calculate the risk of attribute disclosure for individuals.

We summarize our contributions as follows:
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• Threat Model: Our attacks consider both target individuals who are included in
the data on which the model is trained (“inclusive individuals”) and target indi-
viduals who are not (“exclusive individuals”). Studying exclusive individuals goes
beyond the strict definition of model inversion and is not well-studied in the liter-
ature.

• Data synthesis + privacy preservation: We explore a two-step approach that ap-
plies privacy-preserving techniques on top of synthetic data. Our approach aims
to maintain model utility, i.e., the prediction performance of the model, while at
the same time inhibiting inference of the sensitive attributes of target individuals.

• Disclosure Risk: In contrast to measures that rely on machine learning metrics,
which often average or aggregate scores, we employ the Correct Attribution Prob-
ability (CAP) to quantify the level of disclosure risk for individual cases.

5.2. THREAT MODEL
We start characterizing the case we study in terms of a threat model [48], a theoretical
formulation that describes: the adversary’s objective, the resources at the adversary’s
disposal, the vulnerability that the adversary seeks to exploit, and the types of counter-
measures that come into consideration. Table 5.1 presents our threat model. We cover
each of the dimensions, in turn, explaining their specification for our case.

Table 5.1: Model inversion attribute inference threat model, defined for our case.

Component Description
Adversary: Objective Specific sensitive attributes of the target individuals.

Adversary: Resources

A set of non-sensitive attributes of the target individuals,
including the correct value for the propensity-to-move attribute,
for “inclusive individuals” (in the training set)
or “exclusive individuals” (not in the training set).

Vulnerability:Opportunity

Ability to query the model to obtain output plus
the marginal distributions of the data that the model was trained on.
Additionally, the output might include confidence scores and
a confusion matrix calculated on the training data might be available.

Countermeasure Modify the data on which the model is trained.

As objective, the attacker seeks to infer sensitive information about a set of target
individuals. As resources, we assume that the attacker has collected a set of data for each
target individual, i.e., from previous data releases or social media. The set contains non-
sensitive attributes of the target individuals and that includes the individual’s ID and
the corresponding true label for propensity-to-move. The target individuals are either
in the training data used to train the released model (“inclusive individuals”) or not in
the training data (“exclusive individuals”). The vulnerability is related to how the model
is released, i.e., the access that has been provided to the model. The attacker can query
the model and collect the output of the model, both predictions and confidence scores,
for unlimited number of inputs. The attacker also has information about the marginal
distribution for each attribute in the training data. The countermeasure that we study is
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a change in the model that is released, which is accomplished by modifying the training
data.

5.3. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of existing literature on data synthesis, privacy-
preserving techniques, and model inversion attribute inference attacks.

5.3.1. SYNTHETIC DATA GENERATION

Synthetic data generation methods involve constructing a model of the data and gener-
ating synthetic data from this model. These methods are designed to preserve specific
statistical properties and relationships between attributes in the original data [14], [16],
[159]. Synthetic data generation techniques fall into two categories [25]: partially syn-
thetic data and fully synthetic data. Partially synthetic data contain a mix of original and
synthetic records [37]. Techniques to achieve partial synthesis replace only observed val-
ues for attributes that bear a high risk of disclosure (i.e., sensitive attributes) [40]. Fully
synthetic data, which we use in our experiments, creates an entirely synthetic data set
based on the original data [37], [40]. Next, we discuss existing work on fully synthetic
data generation from Statistical Disclosure Control [14], [159] and deep learning [161],
[162].

Data synthesis in Statistical Disclosure Control Several approaches have been pro-
posed in the literature for generating synthetic data, such as data distortion by proba-
bility distribution [163], synthetic data by multiple imputation [164], and synthetic data
by Latin Hypercube Sampling [41]. In [38], the authors proposed an empirical evalu-
ation of different machine learning algorithms, e.g., classification and regression trees
(CART), bagging, random forests, and Support Vector Machines for generating synthetic
data. The authors showed that data synthesis using CART results in synthetic data that
provides reliable predictions and low disclosure risks. CART, being a non-parametric
method, helps in handling mixed data types and effectively captures complex relation-
ships between attributes [38].

Data synthesis using generative models A lot of research has been carried out lately
focusing on tabular data synthesis [162], [165], [166]. In [165], the authors proposed
MedGAN, one of the earliest tabular GAN-based data synthesis used to generate syn-
thetic Health Records. MedGAN transformed binary and categorical attributes into a
continuous space by combining an auto-encoder with GAN. In [166], the authors pro-
posed TableGAN, a GAN-based method to synthesize fake data that are statistically simi-
lar to the original data while protecting against information leakage, e.g., re-identification
attack and membership attack. TableGAN uses a convolutional neural network that op-
timizes the label column’s quality such that the generated data can be used to train clas-
sifiers. In [162], the authors pointed out different shortcomings that were not addressed
in previous GAN models, e.g., a mixture of data types, non-Gaussian and multimodal
distribution, learning from sparse one-hot encoded vectors and the problem of highly
imbalanced categorical attributes. In [162], a new GAN model called CTGAN is intro-
duced, which uses a conditional generator to properly model continuous and categori-
cal columns.
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5.3.2. PRIVACY-PRESERVING TECHNIQUES

In this section, we provide an overview of existing work on privacy-preserving tech-
niques. Privacy-preserving techniques can be categorized as perturbative or non pertur-
bative methods. Perturbative methods involve introducing slight modifications or noise
to the original data to protect privacy, while non perturbative methods achieve privacy
through data transformation techniques without altering the data itself [14]. These tech-
niques, which have been studied for many years, include randomization, data shuffling,
data swapping [20], [57], obfuscation [55], post-randomization [167]. We discuss the
privacy-preserving techniques that we use in our experiments in more depth:

Data swapping is a non-perturbative method that is based on randomly interchang-
ing values of an attribute across records. Swapping maintains the marginal distributions
in the shuffled data. By shuffling values of sensitive attributes, data swapping provides a
high level of utility while minimizing risk of disclosure [57].

Post-randomization (PRAM) is a perturbative method. Applying PRAM to a specific
attribute (or a number of attributes) means that the values of the record in the PRAMmed
attribute will be changed according to a specific probability. Following notations used
in [167], let ξ denote the categorical attribute in the original data to which PRAM will
be applied. X denotes the same categorical attribute in the PRAMmed data. We sup-
pose that ξ and X have K categories 1, . . . ,K . pkl = P(X = l |ξ= k) denotes the transition
probabilities that define PRAM. This means the probability that an original value ξ= k is
changed to value X = l for k, l = 1, . . . ,K . Using the transition probabilities as entries of a
K ×K matrix, we obtain P (called the PRAM-matrix).

Differential privacy has gained a lot of attention in recent years [30], [31]. Differ-
ential privacy (DP) uses a mathematical formulation to measure privacy. DP creates
differentially private protected data by injecting noise expressed by ϵ into the original
data. In [168] a differentially private Bayesian Network, PrivBayes is proposed to make
possible the release of high-dimensional data. PrivBayes first constructs a Bayesian net-
work that captures the correlations among the attributes and learns the distribution of
data. After that, PrivBayes injects noise to ensure differential privacy and it uses the noisy
marginals and the Bayesian network to construct an approximation of the data distri-
bution. In [169], the authors introduced two methods for creating differentially private
synthetic data. The first method adds noise to a cross-tabulation of all the attributes
and creates synthetic data by a multinomial sampling from the resulting probabilities.
The second method uses an iterative proportional fitting algorithm to obtain a fit to the
probabilities computed from noisy marginals. Then, it generates synthetic data from
the resulting probability distributions. A more recent work, Differentially Private CTGAN
(DPCTGAN) [170] adds a differentially private noise to CTGAN. Specifically, DPCTGAN
adds ϵ−δ noise to the discriminator D and clips the norm to make it differentially pri-
vate. We consider DPCTGAN to be a one-step synthesis approach, as it combines the
application of noise and the synthesis process. Here, we test DPCTGAN, alongside our
two-step synthesis + privacy preservation approaches.

5.3.3. MODEL INVERSION ATTRIBUTE INFERENCE ATTACKS

Privacy attacks on data [143] include identification (or identity disclosure) attacks [6],
[133], [162], membership inference attacks [11], and attribute inference attacks (or at-
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tribute disclosure) [6], [157], [171]. A lot of attention has been given to identification
attacks on synthetic data [156], [172], [173]. However, less attention has been given to
attribute inference attacks on synthetic data [172]. Attacks on data include attacks on
models aimed at acquiring information about the training data. Here we investigate a
model inversion attribute inference attack.

Model inversion attacks (MIA) aim to reconstruct the data a model is trained on or
expose sensitive information inherent in the data [50], [54]. Attribute inference attacks
use machine learning algorithms to predict, and perform attacks that infer sensitive at-
tributes, i.e., gender, age, income. In a model inversion attribute inference attack, the
attacker is interested in inferring sensitive information, e.g., demographic attributes,
about an individual [12], [13], [143].

We distinguish between three categories of model inversion attribute inference at-
tacks [50], [143]. An attack is black-box if the attacker only gets access to predictions
generated by the model, i.e., can query the model with target individuals to receive the
model’s output. An attack is gray-box if the structure of the model and or some auxil-
iary information is further known, e.g., the attacker knows that the prediction is based
on decision tree model, or attacker knows about the estimated weights of the model. An
attack is white-box if an attacker has the full model, e.g., predictions, estimated weights
or structure of model, and other information about training data.

In [12], [52], the authors showed that it is possible to use black-box access to predic-
tion models (access to commercial machine learning as a service APIs such as BigML) to
learn genomic information about individuals. In [12], the authors developed an attack
model that exploits adversarial access to a model to learn information about its train-
ing data. To perform the attack, the adversary uses the confidence scores included with
the predictions as well as the confusion matrix of the target model and the marginal
distributions of the sensitive attributes. In [13], the authors proposed two attack mod-
els: confidence score-based MIA (CSMIA) and label-only MIA (LOMIA). CSMIA exploits
confidence scores returned by the target model. Different from Fredrikson et al. [12], in
CSMIA an attacker is assumed to not have access to the marginal distributions or confu-
sion matrix. LOMIA uses only the model’s predicted labels. CSMIA, LOMIA, and Fredrik-
son et al., [12] are the attacks we study in our work. The three attacks aim to achieve
the adversary’s objective of inferring sensitive attributes about target individuals, while
assuming different resources and opportunities available to the attacker. (Further de-
tails are in Section 5.4.4). Other model inversion attacks use variational inference [54] or
imputation [174] to infer sensitive attributes.

5.3.4. ATTRIBUTE DISCLOSURE RISK

Previous work on identity and attribute disclosure risk has looked either at matching
probability by comparing perceived, expected, and true match risk [152], or at a Bayesian
estimation approach, assuming that an attacker seeks a Bayesian posterior distribu-
tion [153]. Similar to [152], other work [154], [155], [157] has looked at the concept of
Correct Attribution Probability (CAP).

CAP assumes that the attacker knows the values of a set of key attributes for an indi-
vidual in the original data set, and aims to learn the respective value of a target attribute.
The key attributes encompass all attributes within the data, excluding the sensitive at-
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tribute that is the target attribute. Correct Attribution Probability (CAP) measures the
disclosure risk of the individual’s real value in the case where an adversary has access
to protected data, and was originally proposed for synthetic data [155], [157]. The basic
idea of CAP is that an attacker is supposed to search for all records in the synthetic data
that match records in the original data for given key attributes. The CAP score is the pro-
portion of matches leading to correct attribution out of the total matches for a given indi-
vidual [155]. In [155], the authors extended their previous preliminary work [154]. They
proposed a new CAP measure called differential correct attribution probability (DCAP).
DCAP captures the effect of multiple imputations on the disclosure risk of synthetic data.
The authors of [155] stated that DCAP is well-suited for fully synthetic data. In [175], the
authors introduced TCAP, for targeted correct attribution probability. TCAP calculates
CAP value for targeted individuals that the attacker knows their existence in the original
data. In our experiments, we use the CAP measure introduced in [154].

5.4. EXPERIMENTAL SETUP
In this section, we describe our experimental setup. First, we provide an overview of
our data set. Second, we describe how we synthesize data and the privacy protection
techniques that we use. Next, we discuss target machine learning algorithms that we
will use to predict propensity-to-move. Then, we describe the model inversion attribute
inference attacks we study in our experiments.

5.4.1. DATA SET

For our experiments, we use a data set from a governmental institute. The data set was
previously collected and first used in [61]. It combines different registers from the Sys-
tem of Social Statistical Data sets (SSD). In our experiments, we use the same version
of the data set used in [160]. Our data contains 150K individuals’ records between 2013
and 2015. We have 40 attributes (categorical and numerical) containing information
about individual demographic attributes such as gender and age, and time-dependent
personal, household, and housing attributes. The target attribute “y01” is binary, indi-
cating whether (=1) or not (=0) a person moved in year j where j = 2013,2015. The target
attribute is imbalanced with 129428 0s (majority class) and 24971 1s (minority class).

We have three distinct groups of individuals within the data. The difference between
the three groups resides in the fact that there are some individuals who are in the data in
the year 2013 (called Inclusive individuals 2013). The same individuals appear again in
the year 2015 (called Inclusive individuals 2015), where they may have different values
for the time-dependent attributes than they did in 2013. The last group (called Exclusive
individuals 2015) contains individuals who are “new in the country”. We have a total of:
76904 Inclusive individuals 2013, 74591 Inclusive individuals 2015, and 2904 Exclusive
individuals 2015.

Our propensity-to-move classifier (i.e., the target model) is trained on all 2013 data
(76904 records). The classifier is tested on the 2015 data (77495 records) as in [160]. For
the target model trained on (privacy-preserving) synthetic data, we use T ST R evaluation
strategy such that we train classifiers on 2013 (privacy-preserving) synthetically gener-
ated data and we test on 2015 original data [158], [160].
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As adversary resources, we assume that the attacker has access to a set of non-sensitive
attributes of the target individuals (see our threat model in Section 5.2). As in [160], we
consider three cases:

• Inclusive individuals (2013): the attacker has access to data from the year
2013, which aligns with the data used to train the target model.

• Inclusive individuals (2015): Here, the attacker possesses more recent data
from 2015, but it corresponds to the same set of individuals used in training the
target model. The data being more recent implies that some of the (time-sensitive)
attributes for particular individuals may have changed somewhat.

• Exclusive individuals (2015): In this case, the attacker’s data is from 2015,
but it pertains to a distinct group of individuals who were not part of the training
set for the target model.

We create data sets for each of the three cases. As in [160], for Exclusive individuals (2015)
we use all 2904 individuals and for the other two cases we randomly sample to create
data sets of the same size (2904 individuals each). The attributes of the target individuals
that are in the possession of the attacker include the correct value of the propensity-
to-move attribute but do not include the sensitive attributes gender, age, and income,
which are targeted by the attack.

5.4.2. PRIVACY-PRESERVING TECHNIQUES ON SYNTHETIC TRAINING DATA
In this section, we describe how we synthesized data, and how we then applied pri-
vacy preserving approaches to it. The synthesis and privacy-preserving techniques are
applied to the training data of the target model (the 76904 Inclusive individuals 2013),
which is intended for release.

Our experiments with our two-step synthesis + privacy protection approach use a
classification and regression tree (CART) model to synthesize data since it is shown to per-
form the best in the literature [38], [176]. Recall that CART is a non-parametric method
that can handle mixed data types and is able to capture complex and non-linear rela-
tionships between attributes. We apply CART to the training data of the target model,
which includes individuals from 2013. We use the open public R package, Synthpop for
our implementation of the CART model [177]1. Within Synthpop, there are a number
of parameters that can be optimized to achieve a good quality of synthesis [177]. Vis-
iting.sequence parameter specifies the order in which attributes are synthesized. The
order is determined institute-internally by a human expert. Stopping rules parameter
dictates the number of observations that are assigned to a node in the tree. Stopping
rules parameter helps to avoid over-fitting.

Following synthesis using CART, we apply privacy-preserving techniques, data swap-
ping and PRAM (cf. Section 5.3.2), to the synthetic data. We use two data swapping ap-
proaches, referred to as Swapping and Conditional swapping. For Swapping, we perform
data swapping separately for each sensitive attribute, which includes gender, age, and
income. Specifically, for the age attribute, we interchange numerical age values among

1http://www.synthpop.org.uk/

http://www.synthpop.org.uk/
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individuals and subsequently map these values to their respective age groups. For Con-
ditional swapping, we perform simultaneous data swapping for gender, age, and income
conditioned on the propensity-to-move target attribute. Conditional data swapping en-
sures that sensitive attributes are swapped while preserving the influence of the target
attribute. Additionally, we apply Post-randomization (PRAM) independently to the at-
tributes of gender, age, and income within the synthetic data generated using CART.
Our transition matrices can be found in supplementary material.2 We use the sdcMicro
toolkit. 3 It is important to note that our evaluation includes separate testing of PRAM
and data-swapping techniques.

In addition to experiments with our two-step synthesis + privacy protection approach,
we explore a GAN-based one-step approach for generating (privacy preserving) syn-
thetic data generation. We use CTGAN, a popular and widely used GAN-based gen-
erative model [162]. The data synthesis procedure of CTGAN involves three key ele-
ments, namely: the conditional vector, the generator loss, and the training-by-sampling
method. CTGAN uses a conditional generator to deal with the class imbalance problem.
The conditional generator generates synthetic rows conditioned on one of the discrete
columns. With training-by-sampling, the conditional and training data are sampled ac-
cording to the log frequency of each category. We used open public toolkit Synthetic Data
Vault (SDV)4 implemented in Python [39]. In our implementation, hyperparameter tun-
ing is applied to batch size, number of epochs, generator dimension, and discriminator
dimension. We left other parameters set to default. We generate differentially private
CTGAN data using DPCTGAN, which takes the state-of-the-art CTGAN and incorporates
differential privacy. We chose to make a comparison with CTGAN and DPCTGAN be-
cause of the success of the two techniques reported in the literature [162].

5.4.3. TARGET MACHINE LEARNING MODEL
In this section, we discuss the target machine learning algorithm used to predict the
propensity to move. We trained and tested a number of machine learning algorithms,
including decision tree, random forest, naïve Bayes, and extra trees. We found that all
classifiers outperform the majority-class classifier, with classifiers using trees generally
being the best performers. For simplicity, in the rest of the paper, we will use random for-
est classifier as it is shown to perform the best on the original data and on the synthetic
data. We report the results of a random classifier using the most frequent (majority-class)
strategy as a naïve baseline.

Recall that we must ensure that the prediction performance of the model is main-
tained when it is trained on synthetic + privacy-preservation data. To this end, we use
the following metrics: F1-Macro, Matthews Correlation Coefficient (MCC), geometric
mean (G-mean), True Negative (TN), False Positive (FP), False Negative (FN), and True
Positive (TP). Our choice is motivated by the imbalance of the target attribute.

The macro-averaged F1 score (F1-Macro) is computed using the arithmetic mean (i.e.,
unweighted mean) of all the per-class F1 scores. This method treats all classes equally
regardless of their support values.

2Supplemental material is at this link in Section.2: PRAM
3https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
4https://github.com/sdv-dev/SDV

https://surfdrive.surf.nl/files/index.php/s/YzfuWc4qu0qmarM
https://cran.r-project.org/web/packages/sdcMicro/sdcMicro.pdf
https://github.com/sdv-dev/SDV
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The Geometric mean (G-mean) is the geometric mean of sensitivity and specificity [178].
G-mean takes all of the TP, TN, FP, and FN into account.

G-mean =
√

T P

T P +F N
∗ T N

T N +F P
(5.1)

Matthews Correlation Coefficient (MCC) metric is a balanced measure that can be
used especially if the classes of the target attribute are of different sizes [179]. It returns
a value between -1 and 1.

MCC = (T P ∗T N )− (F P ∗F N )p
(T P +F P )∗ (T P +F N )∗ (T N +F P )∗ (T N +F N )

(5.2)

5.4.4. MODEL INVERSION ATTRIBUTE INFERENCE ATTACKS
In this section, we describe three model inversion attacks that we use in our paper:
confidence-score MIA (CSMIA) [13], label-only MIA (LOMIA + Marginals), and the Fredrik-
son et al. MIA (FMIA) [12].

Confidence-Score MIA (CSMIA) [13] uses the output and confidence scores returned
when the attacker queries the target propensity-to-move model. The attacker also has
knowledge of the possible values for the sensitive attribute. For each target individual,
the attacker creates different versions of the individual’s records by substituting in for
the missing sensitive attribute all values that would be possible for that attribute. The
attacker then queries the model with each version and obtains the predicted class labels
and the corresponding model confidence scores. Then, the attacker uses the predicted
labels and confidence scores as follows [13]:

Case (1): when the target model’s prediction is correct for only a single sensitive
attribute value, then, the attacker selects the sensitive attribute value to be the one for
which the prediction is correct.

Case (2): when target model’s prediction is correct for multiple sensitive attribute
values, then the attacker selects the sensitive value to be the one for which prediction
confidence score is maximum.

Case (3): when target model’s prediction is incorrect for all sensitive attribute val-
ues, then the attacker selects the sensitive value to be the one for which prediction con-
fidence score is minimum.

Label-Only MIA with Marginals (LOMIA + Marginals) is based on the LOMIA at-
tack proposed by [13]. LOMIA + Marginals uses the output returned when the attacker
queries the target propensity-to-move model and the marginal distributions of the train-
ing data (which includes the information about the possible values of sensitive attributes).

As with CSMIA, for each target individual, the attacker queries the target model mul-
tiple times, varying the value of the sensitive attribute. To determine the value of the
sensitive attribute, the attacker follows Case (1) of CSMIA, as described in [13]. Specif-
ically, if the target model’s prediction is correct for a single sensitive attribute value, the
attacker selects that value as the sensitive attribute. Differently from [13], for cases where
the attacker cannot infer the sensitive attribute, we do not run an auxiliary machine
learning model. Instead, the attacker uses the released marginal distribution to predict
the most probable value of the sensitive attribute.
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The Fredrikson et al. MIA (FMIA) [12] uses the output returned when the attacker
queries the target propensity-to-move model and the marginal distributions of the train-
ing data. Following the threat model of [12], the attacker also has access to a confusion
matrix of the target model’s predictions on its training data. As with CSMIA and LOMIA
+ Marginals, the attacker queries the target model multiple times for each target indi-
vidual, changing the sensitive attribute to take on all possible values and obtaining the
predicted labels. Next, the attacker calculates the product of the probability that the tar-
get model’s prediction aligns with the true label and the marginal distribution for each
potential sensitive attribute value across all possibilities. Then, the attacker predicts the
sensitive attribute value for which this product is maximized.

Measuring success of attribute inference attack We use two ways to measure at-
tribute inference attacks:

(1) From a machine learning perspective, we evaluate the success of the attack by
measuring precision (also called the positive predicted value (PPV) [174]). The preci-
sion metric measures the ratio of true positive predictions considering all positive pre-
dictions. A precision score of 1 indicates that the positive predictions of the attack are
always correct.

(2) From statistical disclosure control, we use CAP to measure the disclosure risk of
the individuals. Following [155], we define Dor g as the original data and Kor g and Tor g as
vectors for the key and target sensitive attributes of the original data: Dor g = {Kor g ,Tor g }.
Similarly, we denote by Ds yn as the synthetic data and Ks yn and Ts yn as the vectors for
the key and target sensitive attributes of the synthetic data: Ds yn = {Ks yn ,Ts yn}. Note
that when we are calculating CAP, the synthetic data we use is the data reconstructed
by the attacker by inferring the missing sensitive value and adding it to the previously-
possessed non-sensitive attributes used for the attack. We consider gender, age, and
income as target sensitive attributes, evaluating CAP for each sensitive attribute sepa-
rately. Key attributes are all other attributes for an individual except for the sensitive
attribute being measured by CAP. The CAP for a record j is the probability of its target
attributes given its key attributes.

CAPor g , j = Pr (Tor g , j |Kor g , j ) =
∑M

i=1

[
Tor g ,i = Tor g , j ,Kor g ,i = Kor g , j

]∑M
i=1(Kor g ,i = Kor g , j )

(5.3)

where M is the number of records. The CAP score for the original data is considered as
an approximate upper bound. Then, the CAP for the record j based on a corresponding
synthetic data Ds yn is the same probability but derived from synthetic data Ds yn .

CAPs yn, j = (Pr (Tor g , j |Kor g , j ))s yn =
∑M

i=1

[
Ts yn,i = Tor g , j ,Ks yn,i = Kor g , j

]∑M
i=1(Ks yn,i = Kor g , j )

(5.4)

CAP has a score between 0 and 1: a low score (close to 0) indicates that the synthetic
data has a little risk of disclosure and a high score (close to 1) indicates a high risk of
disclosure.
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5.5. PERFORMANCE OF THE TARGET MODELS

In this section, we compare the performance of the target propensity-to-move models.
We evaluate whether a random forest classifier trained on protected synthetic data can
attain performance comparable to a random forest classifier trained on the original data.
Our results are reported in Table 5.2. Column “privacy-preservation” provides differ-

Table 5.2: Classification performance of the target model. We generate synthetic data using CART and CTGAN.
For privacy-preserving techniques, we used swapping, conditional swapping, PRAM, and differential privacy
(ϵ = 3). In each case, the test data is used in its original (unprotected) form.

Target MLs to be Released Data sets Privacy-preservation F1-Macro MCC G-mean TN FP FN TP

Majority-class Original data None 0.4924 0.0012 0.4924 46452 9539 17818 3686
Random Forest Original Data None 0.5946 0.2407 0.5779 61907 2363 10677 2548

Random Forest

Synthetic data
using CART

None 0.5946 0.2426 0.5793 61848 2422 10628 2597
Swapping 0.5881 0.2389 0.5742 62174 2096 10831 2394

Conditional swapping 0.4654 0.0216 0.5028 63704 566 13034 191
PRAM 0.5941 0.2415 0.5789 61844 2426 10638 2587

Synthetic data
using CTGAN

None 0.4586 0.0392 0.5021 64207 63 13155 70
Differential privacy 0.4534 0.000 0.5000 64270 0 13225 0

ent privacy-preserving techniques that we applied to synthetic training data. “Privacy-
preservation” with “None” means that there are no privacy-preserving techniques ap-
plied on top of the synthesis.

In Table 5.2, we see that random forest classifier trained on synthetic data using CART
with None (i.e., no privacy-preserving technique applied) has quite close and compara-
ble results to random forest classifier trained on original data. As a sanity check, we
observe that both outperform the majority-class classifier.

We observe that in two cases the model trained on our synthesis + privacy preserva-
tion data retains a level of performance comparable to a model trained on the original
data: CART with Swapping and CART with PRAM. Surprisingly, we find that when the
training data is created with CART synthesis and Conditional swapping or CTGAN (with
or without Differential privacy) the performance is comparable to that of a majority-class
classifier. This result suggests that the use of conditional swapping and differential pri-
vacy may not effectively preserve the utility of the propensity-to-move data. For the rest
of the paper, we will assume that we intend to release machine learning models trained
on synthetic data using CART with: None, Swapping, and PRAM as privacy-preserving
techniques.

5.6. RESULTS OF MODEL INVERSION ATTRIBUTE INFERENCE

ATTACKS

In this section, we report the performance of different model inversion attribute infer-
ence attacks. We evaluate the performance of attacks on the model when it is trained on
the original training data. Then, we investigate whether training the model on synthe-
sis + privacy preservation data can protect against model inversion attribute inference
attacks.
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5.6.1. ATTACKS ON THE MODEL TRAINED ON ORIGINAL DATA
First, we look at the performance of model inversion attribute inference attacks on the
target model trained on original training data. The results are reported in Table 5.3.
The attack models show varying performances compared to the Marginals Only Attack.

Table 5.3: Results of model inversion attribute inference attacks measured using precision (positive predictive
value) for three different target individual sets. The target propensity-to-move model is trained on original
training data. Numbers in bold and italic represent the first and second best inference scores across condi-
tions. A high precision indicates that the attack is good at correctly inferring the sensitive attribute values. We
run experiments ten times and we report average scores. The standard deviation is below 0.01.

Adversary
Resources

Inclusive individuals
(2013)

Inclusive individuals
(2015)

Exclusive individuals
(2015)

Attack models Gender Age Income Gender Age Income Gender Age Income

Marginals
Only

0.4977 0.1238 0.1982 0.5029 0.1244 0.1991 0.5012 0.1275 0.2001

CSMIA 0.3206 0.0105 0.0514 0.4660 0.0638 0.1581 0.4943 0.0721 0.1602
LOMIA

+ Marginals
0.5157 0.1336 0.2105 0.5035 0.1291 0.1983 0.5014 0.1234 0.2005

FMIA 0.7563 0.6777 0.6898 0.4647 0.0170 0.2499 0.5205 0.1091 0.1452

We observe that attribute inference scores for the attack models “LOMIA + Marginals”
and “FMIA” outperform the inference scores of the Marginals Only Attack. In particular,
FMIA for Inclusive individuals (2013) achieves the highest precision for all three sensitive
attributes gender, age, and income. It outperforms other attack models in terms of cor-
rectly predicting positive instances. LOMIA + Marginals shows moderate performance,
obtaining precision values higher than Marginals Only Attack. The fact that the attack
performance for Inclusive individuals (2013) is highest is not surprising since these in-
dividuals are in the training set of the target model. For Inclusive individuals (2015) and
Exclusive individuals (2015), we see that the performance for all attack models is rela-
tively low and comparable to the Marginals Only Attack, except for a few cases such as
FMIA on age for Inclusive individuals (2015). Recall that for FMIA, the attacker is exploit-
ing a larger opportunity for attack than for the other attacks. Specifically, the attacker can
query the model but also possesses the marginal distributions of the training data and a
confusion matrix (cf. Section 5.4.4. For this reason, it is not particularly surprising that
FMIA is the strongest attack).

5.6.2. ATTACKS ON THE MODEL TRAINED ON PROTECTED SYNTHETIC DATA
Second, we investigate whether we can counter the attack by replacing original data used
to train target model by a privacy-preserving synthetic data. The results of the model
inversion attribute inference attacks are reported in Table 5.4.

Overall we see that the effectiveness of the synthesis + privacy-preserving techniques
varies across different attributes, attack models, and adversary resources (target sets).
While some attributes have an inference score higher than the inference score of the
Marginals Only attack, others only have comparable performance to the Marginals Only
attack. We notice a decrease in the performance of attack models specifically for In-
clusive individuals (2013) compared to the performance of attack models for the same
group of individuals in Table 5.3. For Inclusive individuals (2015) and Exclusive individ-
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Table 5.4: Results of model inversion attribute inference attacks measured using precision for three different
target individual sets. The target propensity to move model is trained on privacy-preserving (PP) + synthetic
training data. Numbers in bold and italic represent the first and second best inference scores across condi-
tions. We run experiments ten times and we report average scores. The standard deviation is below 0.02.

PP+
Synthetic data

Attack
Models

Inclusive individuals
(2013)

Inclusive individuals
(2015)

Exclusive individuals
(2015)

Gender Age Income Gender Age Income Gender Age Income

Synthesis
Only

Marginals
Only

0.5036 0.1228 0.2021 0.4938 0.1225 0.2033 0.4979 0.1233 0.1980

CSMIA 0.4901 0.0675 0.1423 0.4947 0.0775 0.1544 0.5018 0.1012 0.1826
LOMIA

+ Marginals
0.4980 0.1261 0.1995 0.5003 0.1282 0.1972 0.4989 0.1252 0.1985

FMIA 0.5153 0.0498 0.3453 0.5007 0.0588 0.2772 0.5069 0.1080 0.1452

Synthesis
+ Swapping

Marginals
Only

0.4980 0.1238 0.1974 0.4979 0.1233 0.2060 0.4975 0.1248 0.1973

CSMIA 0.4958 0.1198 0.2032 0.4996 0.1175 0.1848 0.5093 0.1457 0.1986
LOMIA

+ Marginals
0.5012 0.1280 0.1984 0.4972 0.1265 0.1984 0.5032 0.1242 0.1988

FMIA 0.4473 0.0901 0.0792 0.4320 0.1362 0.3098 0.5351 0.1020 0.1452

Synthesis
+ PRAM

Marginals
Only

0.5002 0.1259 0.2010 0.5063 0.1239 0.2039 0.5002 0.1255 0.2000

CSMIA 0.4967 0.1175 0.1701 0.4913 0.1059 0.1827 0.4895 0.1371 0.2070
LOMIA

+ Marginals
0.5038 0.1274 0.1963 0.5004 0.1238 0.2002 0.5004 0.1247 0.1987

FMIA 0.4827 0.0282 0.1635 0.5286 0.1129 0.1188 0.5120 0.1019 0.1452

uals (2015) which were not part of the training of the synthesis nor the training of the
target model, we do not see a clear impact of privacy-preserving techniques on attack
models. In most cases, the leak of sensitive information is low and comparable to the
performance of the Marginals Only attack.

5.7. CORRECT ATTRIBUTION PROBABILITY
Now, we shift our focus to calculate the risk of attribute disclosure for individual target
subjects using CAP (Correct Attribution Probability). CAP captures how many specific
individuals face a high risk of attribute disclosure and how many a lower risk. We mea-
sure CAP using equation 5.4, where Dor g is the attacker’s data with key attributes Kor g

and the original target sensitive attribute Tor g (gender, age, income). Ds yn represents
the attacker’s data where Ks yn = Kor g are the key attributes and Ts yn is the outcome of
the model inversion attribute inference attacks.

Figure 5.1 and Figure 5.2 show the frequency of CAP scores for sensitive attributes age
and income, respectively. Due to space limitation, we specifically, focus on FMIA attack
because it outperformed other attack models in Table 5.3. The top row of Figure 5.1 and
Figure 5.2 shows the frequency of CAP scores on the original data (unprotected data). We
see that across all three cases, Inclusive individuals (2013), Inclusive individuals (2015),
and Exclusive individuals (2015), there is a high CAP score, signifying a high disclosure
risk. However, when we calculate CAP scores based on the outcome of the model inver-
sion attack, we observe that the risk of disclosure is relatively low, with approximately
up to 92% of individuals considered protected. Only for the remaining individuals ( 8%
individuals), we observe that an attacker can easily infer sensitive attributes age, and in-
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Figure 5.1: Frequency of CAP scores for attribute age. The total number of queries is 2904. The numbers inside
the bars represent the count of individuals with corresponding CAP scores.
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Figure 5.2: Frequency of CAP scores for attribute income. The attack model is FMIA. The total number of
queries is 2904. The numbers inside the bars represent the count of individuals with corresponding CAP scores.

come with high CAP scores. Also, the number of disclosed individuals varies depending
on the privacy-preserving technique applied. Comparing different resources, we see that
for sensitive attribute age, Inclusive individuals (2013) have the highest number of dis-
closed individuals, next are Inclusive individuals (2015), and finally, Exclusive individu-
als (2015) have the lowest number of disclosed individuals. This aligns with the findings
in Table 5.4. Notably, even though we generated privacy-preserving synthetic training
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data sets, the target model appears to retain some information about the original data,
leading to a risk of disclosure for certain individuals.

5.8. CONCLUSION AND FUTURE WORK
We have conducted an investigation aimed at protecting sensitive attributes against model
inversion attacks, with a specific focus on a case study for a governmental institute. Our
objective was to determine the feasibility of releasing a trained machine learning model
predicting propensity-to-move to the public without causing privacy concerns. To ac-
complish this, we evaluated a number of existing privacy attacks, including CSMIA, LO-
MIA + Marginals, and FMIA, each distinguished by the resources available to the attacker.
Our findings revealed that FMIA presented the highest degree of information leakage,
followed by LOMIA + Marginals, while CSMIA exhibited the least leakage.

To mitigate these privacy risks, we employed privacy-preserving techniques on top
of synthetic data utilized to train the machine learning model prior to its public release.
Our results indicated that, in specific cases, such as with Inclusive individuals (2013),
our privacy-preserving techniques successfully reduced information leakage. However,
in other cases Inclusive individuals (2015) and Exclusive individuals (2015), the leakage
remained comparable to that of a Marginals Only Attack, which uses the marginal distri-
butions of the training data. We found a high disclosure risk, measured with CAP, when
the target model is trained on original data. When the target model is trained on data
protected with our two step synthesis + privacy preservation approach a lower percent-
age of individuals risk disclosure.

Furthermore, we think that the performance of the target machine learning model,
as well as the correlation between the sensitive attribute and the target attribute, play
a key role in the success of model inversion attacks. Future work should explore other
case studies, in which this correlation might be different. Also, future work can look
at other threat models such as white-box attacks, where the model predictions, model
parameters, and explanation of the model’s output are made public.
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For over a decade, researchers have investigated the use of user attributes (gender, age, oc-
cupation, and location) to improve recommender systems. In this chapter, we take a closer
look at user attributes from the perspective of privacy and diversity. With respect to pri-
vacy, we demonstrate that it is possible to infer attributes of a user from the list of items
that a recommender system generates for that user. Since user attributes are potentially
privacy sensitive, the risk of such inference constitutes a privacy leak. We carry out ex-
tensive experiments, with a context-aware recommender system, adding one category of
user attribute at a time. Our results show that adding user attributes as side information
during training can increase the size of the leak. With respect to diversity, further experi-
ments show that adding user attributes can negatively impact diversity and coverage. In
sum, our findings demonstrate that it is important for recommender system platforms to
carefully consider their use of user attributes, since it may have unintended consequences
for privacy and diversity.
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6.1. INTRODUCTION
From the days of demographic recommender systems, mentioned in [180], researchers
have attempted to make use of user attributes to improve recommendations. Context-
based recommenders have included user attributes as side information, mixed with item
and interaction attributes [181], [182]. With the rise of Graph Neural Networks, interest
in leveraging user attributes has been recently renewed [182]–[184].

In this chapter, we look at user attributes from the point of view of privacy and di-
versity. Our aim is to gain insight into possible unintended consequences of using user
attributes as side information in context-aware recommenders.1 With respect to pri-
vacy, our study seeks to understand the extent to which personal attributes of a user
can be inferred from a list of items recommended to that user. We are concerned about
whether the use of user attributes as side information in context-aware recommenda-
tion increases the risk of exposure of users’ personal information. We experiment with
several categories of user attributes: gender, age, occupation and location. Note that
although these specific attributes may not always be perceived as privacy sensitive, our
conclusions can be expected to extend to attribute categories that clearly pose a threat
to user privacy (e.g., ethnicity, religion, and health state), which are too sensitive to re-
lease in publicly available data sets. With respect to diversity, we investigate the effect
of user attributes on the usefulness of recommendation lists for users. To the best of
our knowledge, we are the first to take a closer look at the impact of user attributes as
side information on recommender system algorithms and to investigate the user-level
implications of inferring user attributes from recommender system outputs. Taking per-
spective of privacy and diversity allows us to open the broader question of whether the
use of user attributes in context-aware recommendation is worth the unintended side
effects.

The novelty of our work is twofold. First, we provide, a systematic study of how rec-
ommendation is improved when individual categories of user side information are used
in context-aware recommendation. Previous work, e.g., [185], [186] has, to our knowl-
edge, always studied user side information in combination with item and/or interaction
side information. Isolating the impact of user attributes, as we do here, requires studying
individual categories of user side information. We carry out a series of experiments on
top-N recommender systems that make use of implicit (unary) user interactions, the cur-
rently dominant type of recommendation. Our experiments use three data sets: Movie-
Lens 100K, MovieLens 1M [123], and LastFM [125]. These are the only publicly available
data sets that we could identify at the time of writing that contain both user attributes
and the temporal data that we need for recommender experiments using temporal split-
ting. MovieLens is well-studied, but must be transformed to yield implicit interactions.
LastFM is a ‘born implicit’ data set, and we consider it more realistic for that reason.
Second, we study privacy implications of the inference of user attributes from lists of
recommendations. Previous work has also measured privacy threats in recommender
systems using a classifier that infers user attributes; however, it has involved information
internal to the system. Specifically, studies have been carried out on inferring user in-
formation from user representations [63], [187] and on inferring user information from

1Supplemental material with additional results is at this link: All_detailed_results.

https://surfdrive.surf.nl/files/index.php/s/vi7XyRUuD9WOTkZ
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a combination of recommendations and historical user data [81], [188]. In our work,
we are interested in how user information can leak into the outside world, and for this
reason, we perform inference of user attributes solely on the basis of the recommender
system output, i.e., recommendation lists. Previously, one other paper [189] has investi-
gated gender inference from recommendation lists. However, this work is substantially
different from our own since they focus on fairness with respect to items and do not
consider, as we do, user-oriented privacy or diversity.

We make the following contributions:

• We show that standard recommenders leak personal user information into the rec-
ommendation lists that they produce for a range of different user attributes.

• We report on extensive experiments with Factorization Machines, which are well
suited to isolate the contribution of user attributes to recommendations. The re-
sults reveal that the use of user attributes as user side information in context-
aware recommenders has the potential to increase the leak of personal informa-
tion about a user via that user’s recommendations.

• We demonstrate that using user attributes in context-aware recommendation yields
a small gain in accuracy. However, the benefit of this gain is distributed unevenly
over users and it sacrifices coverage and diversity.

• We discuss two possible approaches for reducing the privacy issues and their im-
plications for diversity.

The chapter is structured as follows. In Section 6.2, we introduce the threat model
under which we study recommendation list leakage. Section 6.3 covers the related work
that is most relevant to our own. Section 6.4 describes the experimental setup and Sec-
tions 6.5– 6.8 present experimental results and analysis. Finally, in Section 6.9, we con-
clude and provide an outlook on how future work can work to reduce privacy leaks in
recommender systems and maintain diversity.

6.2. THREAT MODEL
Studies of security threats and privacy leaks are carried out within a well-defined threat
model, which characterizes the attacker in terms of objectives, opportunities, and re-
sources [48]. In our case, the objective of the attacker is to infer sensitive attributes of a
user. The opportunities and resources are defined on the basis of an attack scenario.

The opportunity available to the attacker is the ability to intercept recommendations
that are provided by a recommender system to a set of users. This ability is also as-
sumed given by [81], which studies transaction inference. The attacker does not have
any knowledge of how the recommendations are generated, which makes our scenario a
black-box attribute inference attack. The only assumption we make is that the attacker
is able to listen in on an unprotected network connection. This assumption is stricter
than that used by [63], [81], [187]. The attacker collects recommendations that are used
for training a classifier capable of inferring sensitive information.

The resources available to the attacker are the ability to train a basic classifier and
the availability of ground truth. Here, we assume that for a large enough number of
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Figure 6.1: Our recommendation and inference attack general diagram. First, we generate recommendation
outputs using different Recommender system algorithms. Second, inference attack, the attacker intercepts rec-
ommendation outputs and trains a classifier on training users, i.e., data scrapped from social media. Then, the
attacker intercepts and attacks to infer sensitive information about target users.

users, the attacker is able to gather their demographic attributes on social media to use
as ground truth [8]. The availability of ground truth online is not an unrealistic assump-
tion. We recall the case of NetFlix de-anonymization uses data scraped from the Web [7].

In some work, a threat model also includes a specification for the possible counter-
measures. In our work, we are focusing on exploring the existence of privacy leaks and
discuss countermeasures in Section 6.8.

Figure 6.1 summarizes the inference attack that we study in this chapter: The input
for training the recommender system is a user-item matrix for standard recommender
system algorithms and a user-item matrix plus a category of user attribute for context-
aware recommender system algorithms. To measure the privacy leak of users’ recom-
mendation lists, we carry out an inference attack. To train the classifier used for infer-
ence, the attacker intercepts recommendation lists that are provided by a recommender
system, one list per user. For some of these users, personal information can be gathered
from social media, which serves as ground truth to train the classifier. The attacker is tar-
geting a set of users for which recommendation lists can be intercepted, but for which
no personal information is available on social media. The success of the inference attack
is measured in terms of the accuracy of the classifier. In our work, we consider a leak to
be present when a classifier is able to outperform majority-class baseline. In this way,
we avoid imposing assumptions on how large a privacy leak must be before it is consid-
ered dangerous. Note that even small leaks can be dangerous, because even uncertain
information can harm users if it can be accumulated over a large number of sources.
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6.3. RELATED WORK

In this section, we cover related work in areas that are most important for the study car-
ried out in this chapter.

6.3.1. CONTEXT-AWARE RECOMMENDATION WITH USER SIDE INFORMA-
TION

Context-aware recommenders integrate one or more of three types of side information:
information related to users (e.g., age, gender), items (e.g., genre, price), and the interac-
tion between users and items (e.g., time, location) [190], [191]. In this chapter, we study
user side information since we are concerned about its privacy implications and we have
not found another chapter that studies the isolated contribution of user attributes to
context-aware Top-N recommendation.

Use of user attributes in recommender systems dates at least back to demographic
recommender systems [180], as previously mentioned. Our experiments on context-
aware recommendations focus on Factorization Machines (FMs) [192], a tried-and-true
recommender that allows easy integration of side information via extension of the user-
item vector. A Factorization Machine models pair-wise interactions with factorized pa-
rameterization and is suited to ranking problems with implicit feedback.

Recently, Graph Neural Networks (GNNs) have gained attention in the research com-
munity. Early GNN-based recommenders such as NGCF [193] and LightGCN [194] showed
promising results. However, these recommenders, as with most of current graph-based
recommenders use a bipartite user-item graph and do not offer the possibility of in-
tegrating side information [184]. Recently, [184] extended existing GNN-based recom-
menders using a pre-training scheme, which makes it possible to leverage user and item
side information [184]. First, embeddings for entities, i.e., users and items, are pre-
trained using side information. Specifically, [184] proposed two pre-training models:
Single-P model and Multi-P model. The Single-P model learns entity embeddings on an
undirected graph in which edges reflect a single symmetric relationship. The Multi-P
model learns entity embeddings on a graph that encodes multiple, weighed relation-
ships. Then, the pre-trained embeddings are fine-tuned using an existing recommender
system algorithm such as Matrix Factorization, LightGCN [194], NGCF [193]. Since the
performance of the two pre-training models is comparable, we use Single-P due to ease
of implementation. The embeddings are integrated into LightGCN [194], which outper-
forms NGCF [193].

For completeness, we briefly cover other examples of recent context-aware recom-
menders that are not used in the experiments in this chapter, since they do not have
publicly released implementations. Variational Autoencoder approaches include [195],
which stacks denoising auto-encoders (SDAE) to integrate side information into the la-
tent factors, and [186], which uses a collective Variational Autoencoder (cVAE) for inte-
grating side information for Top-N recommendation. Recently, a clustering-based col-
laborative filtering algorithm that integrates user-side information (such as age, gender
and occupation) in a deep neural network [196] has been proposed. Also, a Gaussian
process-based recommendation framework that leverages side information [181] has
been introduced. For further examples of recent work, see [197]–[199].
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6.3.2. ATTRIBUTE INFERENCE ATTACK IN RECOMMENDER OUTPUT

Previous research has examined the issue of privacy-sensitive information leakage for
a variety of sources of user data. Research on social media has shown that based on
users’ relationships i.e., users’ friends and social circle, it is possible to infer users’ loca-
tions [92], [200]–[202]. In [82], [203], the authors showed that based solely on the users’
likes on Facebook it is possible to infer a range of sensitive attributes, such as gender, sex-
ual orientation, ethnicity, and political view. In [204], the authors applied some strategies
to estimate which of a user’s friends are likely to be the most predictive of the user’s loca-
tion. In [202], the authors showed that an adversary is able to infer users’ geolocations at
given points of time, if s/he has access to a collection of locations previously disclosed by
the users. This work is related to our own because it assumes the availability of previous
information on social media. Note that in our work, this information is not needed for
the specific users that are targeted by the attack.

Specifically regarding recommender systems, work has been carried out on the vul-
nerability of the user interaction data, used for training, to inference attack. An attacker
can infer users’ private attributes e.g., age, gender, occupation, location from the input
data used to train a recommender system [22], [56]. As with our work, these authors find
relatively small leaks important to study and are concerned about cases in which the
classifier outperforms random guessing.

In this chapter, we are interested in the privacy leak in the output of recommender
systems. In [188], the authors investigated the problem of user behavior leakage in rec-
ommender systems. Experiments showed that an attacker can infer information about
the items that a user has clicked on the basis of that user’s recommendation list. In [81],
the output of a recommender system is combined with a limited number of known
transactions to infer unknown transactions of a target user. In contrast, our work fo-
cuses on inference attacks that predict personal attributes of the user, rather than past
interactions. Previous work studying attribute inference attacks on recommender out-
put is limited, as previously mentioned. The most closely related work [63], [187] infers
user attributes based on recommendation lists combined with additional information.
In [63], the additional information is user embeddings that represent users internal to
the recommender system. In [187], the additional information is the user’s original pro-
file, which is also internal to the recommender system.

6.3.3. DIVERSITY AND FAIRNESS IN RECOMMENDER SYSTEMS

Diversity in recommender systems has drawn attention in recent years [205]. Diversity
can be defined as the potential of recommender system algorithms to recommend differ-
ent or diverse content, e.g., recommending less popular items and targeting more niche
items, while making personalized recommendations to users. In [206], the authors pro-
vide an overview of different definitions and measurements for diversity. Here, we are
interested in the impact of side information on the diversification of the recommenda-
tion output. Diversity is important for recommendations to be useful to the user. Its
importance is reflected in a surge of recent work on improving diversity, such as [207], a
multi-attribute diversification method, and [208], attribute-aware diversifying sequen-
tial recommender (SR). Other work on diversity has focused on enhancing the user ex-
perience with system, such as [209], which showed the importance of diversity. In this
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Table 6.1: Statistics of the data sets used for the experiments, including user attributes and item attributes.
Class distribution shows how imbalanced the user attributes are.

Data set #Users #Items #Interactions Sparsity (%) User attributes Item Attributes

ML100K 845 1574 80961 6.08
Gender (M: 612, F: 233), Age (0: 47, 1: 444,

2: 184, 3: 153, 4: 17)
Occupation (21), States (52)

Genres (19)

ML1M 5755 3624 831745 3.98
Gender (M: 4148, F: 1607), Age (0: 1245, 1: 2017,

2: 1664, 3: 829 )
Occupation (21), States (52)

Genres (19)

LastFM 836 12155 501827 4.93
Gender (M: 484, F: 352),

EU vs. rest (EU: 433, Rest: 403), Continent (7)
TrackIDs (500)

chapter, our focus is measuring diversity rather than attempting to improve it.

Additionally, fairness in recommender system has attracted a lot of attention re-
cently. The goal of fairness is to make fair predictions along various dimensions [96],
[210], [211]. In [103], the authors looked at pre-processing input to achieve consumer
fairness, e.g., fairness oriented towards users. They explored whether different user de-
mographic groups experience similar or different utility from the recommendation sys-
tem. In [189], as previously mentioned, the authors investigate item-oriented fairness,
seeking to ensure that items are recommended with equal frequency to both males and
females. Indirectly, this notion of fairness is intended to benefit individual users, but the
user-level effects are not measured. In our work, we analyze users with respect to the
length of the user profiles, i.e., the number of items they have interacted with. We are in-
terested in ascertaining if the use of user attributions in recommendation impacts users
with different profile lengths.

6.4. EXPERIMENTAL SETUP
In this section, we describe the data sets, recommender algorithms and classifiers used
in our experiments.

6.4.1. DATA SETS

Our experiments use two MovieLens data sets ML100K and ML1M [123] and LastFM [125],
a music data set. As mentioned, to our knowledge these are the only publicly available
data sets suit our needs for this study (i.e., contain user attributes and the timestamps
needed for temporal splitting). Table 6.1 summarizes the statistics of the data sets as they
were used in our experiments. MovieLens data sets include user gender, age, occupa-
tion, zipcode. We used zipcode to generate the State attribute. For our GNN experiment,
which also involves item side information, we use movie genre (19 categories). As com-
mon in the literature we convert MovieLens data ratings to implicit feedback [212]. Here,
we set the cutoff >= 3, such that items with ratings >= 3 are defined to be relevant, and
the rest as non-relevant. We retain the users who have at least 20 interactions, to ensure
at least two test items per user. For LastFM [125], we use artists as the items. For each
user in LastFM data, gender and country location attributes are provided. We used the
Country attribute to generate the Continent and the EU vs Rest attributes. As item side
information, we use trackID (500 categories). We retain users who listened to at least 20
artists and artists to which at least 10 users have listened.
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Our recommender system experiments use a temporal splitting strategy to mimic an
online recommender, which cannot train on data from the future. The key idea is that the
model should only learn from interactions that are available before a test instance [213].
For each user, the most recent 10% of the data is chosen as the test set, the next most
recent 10% as the validation set, and the rest as the training set.

6.4.2. RECOMMENDER SYSTEM ALGORITHMS
For our recommendation experiments, first (Section 6.5), we investigate a number of
standard collaborative filtering algorithms that are commonly used in recommender sys-
tems:

• MostPop is a non-personalized algorithm recommending most popular items.

• User-based (UserKNN) and item-based collaborative filtering (ItemKNN) [136],
and

• BPRMF is a matrix factorization algorithm using Bayesian personalized ranking
for implicit data [127].

We use Elliot and Lenskit toolkits for our implementation of standard recommender sys-
tem algorithms.2

Then (Section 6.6.2), we study context-aware recommendation using a Factorization
Machine recommendation algorithm [192], which is competitive with other approaches
and allows for easy integration of user side information. User attributes (gender, age, oc-
cupation, and location) are one-hot-encoded as user side information for use by FM. We
used the RankFM implementation,3 which includes two variants for the loss: Bayesian
Personalized Ranking (BPR) [214] and Weighted Approximate Rank Pairwise (WARP) [215]
to learn model weights via Stochastic Gradient Descent (SGD) [214]. WARP loss is often
described as performing better than BPR loss [216], [217], which was confirmed by our
exploratory experiments. We adopt WARP loss for our investigation.4

Finally (Section 6.8), we study recommendations generated by a Graph Neural Net-
work to investigate the leakage. We used GNN implementation of [184],5 which uses two
types of graph-structured data: Single-P model and Multi-P model to capture the inter-
dependent and hidden relationships between entities. The Single-P model learns the
entity embeddings on a single relational graphs using GNNs. The Multi-P model learns
the entity embeddings on a mutlti-relational graphs using Compositional based Multi-
Relational GNNs. We adopt the Single-P approach from [184], which is fine-tuned with
LightGCN to generate recommendations. Our choice of pre-train GNN model is twofold:
First, reproducibility and flexible incorporation of side information. Second, the authors
of [184] showed that pre-training the embeddings with both the users and items’ side in-
formation improved existing models in terms of both effectiveness and stability.

Our experiments use the validation set for tuning hyper-parameters including: batch
size, the learning rate (lr), user and bias regularization, and the number of latent factors.

2https://elliot.readthedocs.io/en/latest/index.html
3https://rankfm.readthedocs.io/en/latest/
4Table with results of FM with BPR loss and FM with WARP loss can be found in the online folder FM_WARP_BPR
5https://github.com/pretrain/pretrain

https://elliot.readthedocs.io/en/latest/index.html
https://rankfm.readthedocs.io/en/latest/
https://surfdrive.surf.nl/files/index.php/s/Kbx8DgpVHCyC2Wa
https://github.com/pretrain/pretrain
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For our factorization machine implementation, we search for the best: learning rate
in {0.001, ..,0.1}, number of training epochs in {5, ..,500}, and latent factor in {5, ..,200}.
We left alpha and beta parameters at default. For GNN (Single-P), we followed hyper-
parameters suggested in [184]. We adopt the Adam optimizer. We tune Single-P by vary-
ing the learning rate in [ 0.00001, 0.0001, 0.001] regularization weight in { 0.000001, ..,
0.001}, the depth of GCN based recommender is kept to 3 with each layer having a size
of 64. The maximum number of epochs is set to 500, batch size to 1000 and the latent di-
mension to 64. We use an early stopping strategy if the model on validation set does not
increase for 50 successive epochs. Last but not least, we used MAP metric for optimizing
hyper-parameters, as in [218].

In our experiments, we used AllItems methodology [129]. AllItems selects the whole
set of items except the items that the user has interacted with in the training set. Let us
assume I represents the set of items in the data set, Tru is the training set vector of user
u (in other words, Tru represents the set of items that u has interacted with). Then, the
list of candidate items for user u can be formulated as Lu = I \ Tru . For GNN, to speed
up the process, we sample 1000 candidate items for each user.

We compute common top-N recommendation metrics: Precision (P@N), Recall (R@N),
normalized Discounted Cumulative Gain (TopN.nDCG), and HR@N. In our results, we
only report TopN.nDCG for simplicity. Recommendation results of Precision (P@N), Re-
call (R@N), and HR@N can be found in our supplementary material. We test recommen-
dation lists of size N = 5 and N = 10.

The diversity of the recommendation lists is measured with item coverage, Gini in-
dex [205], and Shannon entropy. Item coverage computes the proportion of items that a
recommender system recommends from the entire item catalog, taking all recommen-
dation lists for all users into account. Gini index and Shannon entropy are two different
metrics used to measure distributional inequality [205].

The Gini index reflects the difference between a given recommender system and an
ideal system that recommends all items equally frequency. Gini index scores in the tables
are represented through a reversed scale, obtained as 1 - Gini Index: a high Gini index
score is better and a low Gini score corresponds to a scenario in which items are not
equally chosen.

The Shannon entropy is calculated over the distribution over all items of the proba-
bility that the recommender recommends each item. A Shannon entropy score is equal
to 0 if one single item is recommended and reaches l og (N ) if N items are recommended [205].
Also, we measure the log likelihood of the recommendation list for each test user. We first
calculate P (i ), as the number of times an item i was recommended to test users divided
by total number of recommendations to test users. Then, in order to get the log likeli-
hood of a user’s recommendation list for each item, we calculate:

∑N
i log (P (i ). A low log

likelihood means that a user received diverse recommendations.
Since we use different implementations of our recommendation algorithms ranging

from conventional to context-aware and GNN, we unify our evaluation of recommen-
dation performance by using ProxyRecommender which is a standard framework used
to evaluate an already computed recommendation outputs.6 In this way, we avoid mis-
match that could happen in different implementations of evaluation metrics [219].

6https://elliot.readthedocs.io/en/latest/guide/proxy_model.html

https://elliot.readthedocs.io/en/latest/guide/proxy_model.html
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6.4.3. CLASSIFICATION ALGORITHMS

We test three machine learning algorithms: Logistic Regression (LogReg), Random For-
est (RF) and Neural Network (NN) because they are widely used for inference attacks in
recommender systems literature [22], [63], [64], [187]. In our experimental results, we
found that the LogReg classifier has close and comparable results to the RF classifier and
NN classifier, with LogReg somewhat better. We report LogReg results here and the oth-
ers in the supplemental material.7 We adopt a random classifier using the most frequent
strategy as our baseline. Our classifiers take users’ top-N recommendation lists as input.
We create a user-TopN recommendation matrix, where rows represent individual users
and columns represent items that are in the catalog of items. If an item is recommended
to a user, we mark it in the matrix with 1, otherwise 0. We create a 70/30 training/test
split of the user-topN recommendation matrix for each classifier by user. We use strat-
ified splitting with respect to the attribute classes that the classifier is trained to infer
resulting in different splits for each attribute.

We carry out hyper-parameter tuning on the training data (stratified k-fold cross-
validation with k = 5). We measure the performance of classifiers using F1-score with
macro-average. We choose F1-score with macro-average because user attributes in our
data sets are highly imbalanced. We calculate Brier score that measures the accuracy
of probabilistic predictions. The Brier score measures the mean squared difference be-
tween the predicted probability of a classifier and the actual observed values [220]. The
idea is to use confidence scores generated by classifier to measure the accuracy of pre-
diction per user. A lower Brier score implies accurate predictions and vice versa.

6.5. LEAKAGE IN THE OUTPUT OF STANDARD RECOMMENDERS

In this section, we measure leakage of user attributes in five standard recommender sys-
tems (MostPop, ItemKNN, UserKNN, BPRMF, and FM) that do not use user-side infor-
mation. Recommendation performance is reported in Table 6.2.8 MostPop is outper-
formed by the other algorithms. The best algorithm is BPRMF or FM, depending on the
data set.

We analyze the leakage of the recommender algorithms in terms of the performance
of a classifier trained to predict user attributes. Results are shown in Table 6.3. Recall
that we consider recommendations to leak when the classifier beats the majority-class
baseline. According to this definition, ItemKNN, UserKNN, BPRMF, and FM leak all of
the attributes. Note that MostPop leaks in all but two cases, although it is not a person-
alized algorithm. The leak arises because the implementation removes the items in a
user’s profile from that user’s recommendation list, which introduces personal informa-
tion into the list. The results in Table 6.3 suggest that there is not a single recommender
algorithm that is more severely prone to leakage than others. We see that, with the ex-
ception of MostPop, for each recommender, there are several combinations of data set
and leaking attribute for which that recommender has the largest leak.

7Full tables of three classifiers can be found here (Section 2 and Section 3) All_Inference_results.
8Full table with results of other metrics can be found in our additional materials (Section 1)Recommendation_
Performance.

https://surfdrive.surf.nl/files/index.php/s/8CTI1Yg1nQBqH3e
https://surfdrive.surf.nl/files/index.php/s/8CTI1Yg1nQBqH3e
https://surfdrive.surf.nl/files/index.php/s/8CTI1Yg1nQBqH3e
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Table 6.2: TopN (N=5, 10) recommendation performance measured in terms of TopN.nDCG on conventional
recommender system algorithms. FM with WARP loss is trained with no side information.

Data Sets ML100K ML1M LastFM
Algorithms N = 5 N = 10 N = 5 N = 10 N = 5 N = 10

MostPop 0.0484 0.0583 0.0275 0.0383 0.2135 0.2079
ItemKNN 0.0704 0.0831 0.0342 0.0479 0.2790 0.2671
UserKNN 0.0795 0.0898 0.0334 0.0468 0.3190 0.3036
BPRMF 0.0748 0.0848 0.0561 0.0586 0.3436 0.3132

FM 0.0771 0.0905 0.0639 0.0687 0.3088 0.2888

Table 6.3: Classification results measured in terms of F1-score with macro-average. Recommendation lists
are generated using standard recommender system algorithms. Majority-class classifier uses most frequent
strategy. Values in bold represent the highest leak score. Values in italic represent cases where the LogReg
classifier does not beat the majority-class baseline.

Top-N = 5 Top-N = 10
Data Sets Recommenders Classifiers Gender Age Occupation State Gender Age Occupation State

ML100K

Majority-class 0.4330 0.1381 0.0154 0.0053 0.4330 0.1381 0.0154 0.0053
MostPop LogReg 0.4428 0.1354 0.0412 0.0081 0.4464 0.1629 0.0280 0.0087
UserKNN LogReg 0.4865 0.1923 0.0492 0.0165 0.5012 0.1847 0.0631 0.0161
ItemKNN LogReg 0.5196 0.1789 0.0674 0.0095 0.4944 0.2165 0.0599 0.0233

BPRMF LogReg 0.5334 0.1390 0.0403 0.0145 0.5642 0.1631 0.0383 0.0081
FM LogReg 0.5015 0.2012 0.0394 0.0149 0.5470 0.1884 0.0329 0.0129

ML1M

Majority-class 0.4160 0.1299 0.0104 0.0058 0.4160 0.1299 0.0104 0.0058
MostPop LogReg 0.4158 0.2257 0.0308 0.0075 0.4327 0.2623 0.0421 0.0108
UserKNN LogReg 0.5665 0.3276 0.0587 0.0165 0.5840 0.3333 0.0737 0.0161
ItemKNN LogReg 0.5758 0.3330 0.0618 0.0164 0.6077 0.3354 0.0540 0.0193

BPRMF LogReg 0.5305 0.3364 0.0627 0.0103 0.5607 0.3602 0.0615 0.0182
FM LogReg 0.6163 0.3671 0.0520 0.0171 0.6346 0.3730 0.0723 0.0154

Gender Continent EU vs. Rest Gender Continent EU vs. Rest

LastFM

Majority-class 0.3646 0.1126 0.3377 0.3646 0.1126 0.3377
MostPop LogReg 0.5035 0.1298 0.4963 0.4990 0.1321 0.4704
UserKNN LogReg 0.5323 0.1914 0.5456 0.5249 0.1897 0.5015
ItemKNN LogReg 0.5250 0.2092 0.5171 0.5275 0.1776 0.4957

BPRMF LogReg 0.5479 0.1721 0.5337 0.5595 0.1892 0.5328
FM LogReg 0.5015 0.1719 0.5111 0.5160 0.2205 0.5635

6.6. LEAKAGE IN THE OUTPUT OF CONTEXT-AWARE RECOM-
MENDERS

Now that we have established that recommender system output leaks, we turn to inves-
tigate context-aware recommenders. Our concern is that using user attributes as side
information during training of a context-aware recommender will make it easier to infer
these attributes from the recommender system output, i.e., increase the size of the leak.
For our experiments we choose the Factorization Machine (FM) recommender, which
is known for easy incorporation of side information, as previously mentioned. We have
just seen, in Section 6.5, that FM has competitive performance and is prone to the same
leakage as the other algorithms. In Section 6.6.1, we carry out experiments with individ-
ual categories of user side information, and measure the contribution of each category to
recommendation performance. In Section 6.6.2, we measure the extent to which adding
user information in the training data increases leaks.
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6.6.1. CONTEXT-AWARE RECOMMENDATION WITH USER SIDE INFORMA-
TION

The results in Table 6.4 show the difference between the performance of a recommender
that does not use user side information (‘None’) and a series of recommenders in which
individual categories of side information have been added. Our FM uses WARP loss, but
we note that results of FM using BPR loss are comparable. From the results in Table 6.4,
we observe that it is possible to obtain improvements in recommendation performance
by using user attributes as side information. However, the attribute that is most useful
and the size of the contribution differs across data sets. This variation is not surpris-
ing, since varying performance of algorithms across data sets has been observed in the
literature [221], [222].

Table 6.4: TopN (N=5, 10) recommendation performance measured in terms of TopN.nDCG on FM with WARP
loss (“None” means FM with no side information). In bold we mark recommendation with highest accuracy
score. In italics, we mark scores of FM with user side information that are lower than scores of FM with ‘None’.

Data Sets ML100K ML1M LastFM
User Attributes Top-N = 5 Top-N = 10 Top-N = 5 Top-N = 10 User Attributes Top-N = 5 Top-N = 10

None 0.0771 0.0905 0.0639 0.0687 None 0.3088 0.2888
Gender 0.0932 0.1097 0.0647 0.0688 Gender 0.3196 0.3049

Age 0.0888 0.1013 0.0644 0.0684 continent 0.3125 0.2996
Occupation 0.0903 0.1025 0.0620 0.0657 EU vs Rest 0.3188 0.3061

State 0.0933 0.1082 0.0665 0.0721

Next, we order users by profile length and compare the users with the longest and the
shortest profiles with the rest of the users. Results are provided in Table 6.5. We note that
it is expected that the 10% of the users with the longest profiles have a low nDCG. This
effect has been observed by [103], who remark that users with more items in their pro-
file have already interacted with most of the “easy” items, so recommending for them is
a harder problem. We observe that long-profile users benefit substantially from adding
user side information. The 10% of the users with the shortest profiles often do not benefit
at all. The rest of the users enjoy only a moderate benefit. These observations are inter-
esting because at first our expectation would be that users with short profiles do not have
enough information in their profiles and we would anticipate that these profiles would
experience the most change. Our comparison of the benefits of user side information
for users with different profile lengths provides first evidence that it is important to be

Table 6.5: The average TopN.nDCG on FM with WARP loss (“None” means FM with no side information) for
long, medium, and short profile users on LastFM data.

Data Sets LastFM

User Attributes
Top-N = 5

(short/ mid / long)
Top-N = 10

(short/ mid / long)
None 0.0550 0.0834 0.0450 0.0714 0.1153 0.0641

Gender 0.0529 0.0863 0.0532 0.0633 0.1202 0.0788
continent 0.0521 0.0847 0.0489 0.0693 0.1181 0.0739
EU vs Rest 0.0556 0.0840 0.0565 0.0821 0.1183 0.0817
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careful when adding user side information to a recommender system, since it may not
be helping users across the board.

6.6.2. MEASURING LEAKS IN CONTEXT-AWARE RECOMMENDERS
The results in Table 6.6 show the difference between the leak that occurs without side
information (‘None’) and the leak that occurs when each individual category of user at-
tribute is added as side information to the recommender during training. In a majority
of cases, but not in all, adding a user attribute during training increases the size of the
leak of that user attribute in the recommender output, as measured by the accuracy of
the classifier. For LastFM, which we consider more realistic, than MovieLens, adding
user attributes consistently increases the size of the leak.

Table 6.6: Classification results measured in terms of F1-score with macro-average. Recommendation lists are
generated using FM with WARP loss. Values in bold represent the highest leak score between FM with None
and FM with user side information using LogReg.

Top-N = 5 Top-N = 10

Data Sets
User

Attributes
Gender Age Occupation State Gender Age Occupation State

ML100K
None 0.5015 0.2012 0.0394 0.0149 0.5470 0.1884 0.0329 0.0129

With side
information

0.4871 0.1843 0.0476 0.0162 0.5269 0.2112 0.0533 0.0128

ML1M
None 0.6163 0.3671 0.0520 0.0171 0.6346 0.3730 0.0723 0.0154

With side
information

0.6275 0.4025 0.0531 0.0148 0.6520 0.4401 0.0704 0.0197

Gender Continent EU vs. Rest Gender Continent EU vs. Rest

LastFM
None 0.5015 0.1719 0.5111 0.5160 0.2205 0.5635

With side
information

0.5578 0.2031 0.6197 0.5427 0.2430 0.6250

In Table 6.7, we provide the raw difference in performance of the recommender be-
fore and after user side information is added (rows labeled ‘Recommendation’) juxta-
posed with the raw difference in classification performance on the recommendation
lists before and after user side information is added (rows labeled ‘Classification’). The
highlight indicates cases in which improvement in recommendation and size of the leak
move in the same direction. We can draw two conclusions from this table. First, across
data sets there is not a connection between user attributes improving recommendation
and user attributes increasing leaks. For ML1M, we see three cases (age and occupa-
tion for N = 5 and age for N = 10) in which adding user attributes increases the leak,
but does not increase the recommender performance. Recommender system platforms
should be careful to avoid this kind of use of user attributes: They are not helping the
recommender and they are increasing leaks. Second, for LastFM we see that user at-
tributes consistently improve recommendation and consistently increase the leaks. Rec-
ommender system platforms should consider carefully whether the magnitude of this
improvement is worth the added privacy threat for their users.

To gain additional insight into the case of LastFM, we plot the nDCG against the Brier
loss in Figure 6.2. The figure shows the FM with and without the user attribute ‘Gender’.
This figure reveals the lack of correlation between the performance of the recommender
and the size of the leak at the user level. The lack of correlation holds for the FM with and
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Table 6.7: Leakage and recommendation improvement reported as raw difference in classification between
recommendation without and with user side information. Recommendation lists are generated using FM with
WARP loss and values calculated using nDCG metric. The positive values in ‘Recommendation’ mean that user
attribute helps to improve recommendation performance. The positive values in ‘Classification’ mean that the
leak is larger when using user attributes. Gray marks cases where both classification and recommendation
agree + or -.

Top-N = 5 Top-N = 10
Data Sets Task Gender Age Occupation State Gender Age Occupation State

ML100K
Recommendation +0.0161 +0.0117 +0.0132 +0.0162 +0.0192 +0.0108 +0.0120 +0.0177

Classification -0.0144 -0.0169 +0.0082 +0.0013 -0.0201 +0.0228 +0.0204 -0.0001

ML1M
Recommendation +0.0005 -0.0019 -0.0019 +0.0026 +0.0001 -0.0003 -0.0030 +0.0034

Classification +0.0112 +0.0354 +0.0011 -0.0023 +0.0174 +0.0671 -0.0019 +0.0043
Gender Continent EU vs. Rest Gender Continent EU vs. Rest

LastFM
Recommendation +0.0108 +0.0037 +0.0100 +0.0161 +0.0108 +0.0173

Classification +0.0563 +0.1086 +0.0312 +0.0267 +0.0615 +0.0225

without user side information. The plots for other user attributes (included in supple-
mentary material.9) also did not show correlation. These plots support the conclusion
that future research should not assume the existence of a privacy/performance trade-off,
but rather that there is possibility that reducing recommendation leaks can be achieved
without reducing recommender system performance.
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Figure 6.2: Scatter plot of users: The potential of LogReg to infer Gender vs. recommender performance
(LastFM, Top-5 recommendation, FM with WARP loss). Blue: with user side information. Orange: without
side information. (Classification test set contains 251 users.)

To gain further insight on the user level, we plotted the distribution of the gain in

9Results of correlation plots can be found here (in Section 5): User_Analysis.

https://surfdrive.surf.nl/files/index.php/s/8CTI1Yg1nQBqH3e
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nDCG over users when the user attribute ‘Gender’ is added as side information in Fig-
ure 6.3 (left). Instead, there are a large number of users that receive a small gain from
adding user side information, but also users who do not benefit. We plot the raw change
in Brier score in Figure 6.3 (right). The users that experience a larger leak has a negative
change in Brier score. The plot shows us that users do not experience increases in leak-
age evenly. We see that there is a small group of users that experiences a large jump in
their leak when user side information is used for recommendation. Protecting privacy
should entail protecting all users. Seeking reductions in the average leak over all user
may leave some users still unacceptably threatened.
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Figure 6.3: Left: Raw change in nDCG (score of user u with Gender minus the score of user u without Gender).
A positive value in raw change in nDCG mean that adding user side information helped to improve recom-
mendation performance. (STD = 0.067) Right: Raw change in Brier score (score of user u with Gender minus
score of user u without Gender). A negative value in raw change in Brier loss means a larger leak when user
side information is added. (STD = 0.216) (LastFM, Top-5 recommendation, FM with WARP loss; Classification
test set contains 251 users.)

6.7. DIVERSITY AND COVERAGE OF THE RECOMMENDER OUT-
PUT

Now, we move to investigate the impact of user side information on coverage and diver-
sity. Coverage is reported as the percent of items recommended and, diversity is mea-
sured in Shannon entropy and Gini index (higher is more diverse). Table 6.8 contains
the results of recommendation using FM with WARP loss with and without user side in-
formation. We observe that compared to the recommender without side information
(‘None’), most user attributes depress coverage. We also observe that user attributes de-
teriorate diversity. Attribute categories with few subcategories (such as Gender and Age)
show the fewest exceptions. The results support our conclusion that user side informa-
tion has the potential to cause unintended side effects in terms of loss of coverage and
diversity.
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Table 6.8: Item coverage and diversity of recommendation lists from Factorization Machine with WARP loss.
The higher the scores the better the diversity and coverage. ↓ and ↑ indicate the change with respect to ‘None’
for the conditions with user side information.

Data Sets
User

Attributes
Top-N = 5 Top-N = 10

Item coverage Shannon Entropy Gini index Item coverage Shannon Entropy Gini index

ML100K

None 415 7.770 0.109 546 8.097 0.136
Gender 315↓ 7.275↓ 0.077↓ 422↓ 7.657↓ 0.099↓

Age 336↓ 7.075↓ 0.070↓ 461↓ 7.564↓ 0.096↓
Occupation 424↑ 7.697↓ 0.105↓ 563↑ 8.072↓ 0.134↓

State 369↓ 7.514↓ 0.092↓ 507↓ 7.888↓ 0.117↓

ML1M

None 840 7.995 0.056 1110 8.376 0.072
Gender 647↓ 7.572↓ 0.042↓ 1181↑ 8.363↓ 0.074↑

Age 687↓ 7.308↓ 0.037↓ 902↓ 7.741↓ 0.049↓
Occupation 779↓ 7.657↓ 0.047↓ 985↓ 8.058↓ 0.058↓

State 901↑ 8.031↑ 0.059↑ 1181↑ 8.363↓ 0.074↑

LastFM

None 1180 9.173 0.041 1802 9.547 0.054
Gender 1107↓ 9.167↓ 0.039↓ 1625↓ 9.543↓ 0.051↓

Continent 1152↓ 9.246↑ 0.042↑ 1668↓ 9.595↑ 0.053↓
EU vs Rest 814↓ 8.483↓ 0.025↓ 1195↓ 8.895↓ 0.033↓

6.8. COUNTERING PRIVACY LEAKS
In this section, we take a look at two approaches that are capable of countering privacy
leaks and discuss their implications for recommendion performance and diversity.

6.8.1. GNN-BASED RECOMMENDATION

In this section, we turn to investigate whether combining user and item attributes as side
information to context-aware recommenders could cause the items in recommendation
lists to be blended in such a way that it becomes more difficult to infer sensitive user
attributes.

First, we carry out an experiment with a GNN (Single-P) that combines user attributes
and item attributes [184]. Table 6.9 reports recommendation results. We compare per-
formance of FM with no side information (‘None’) and FM with all user and item at-
tributes, and GNN (Single-P) with all user and item attributes. User attributes and item
attributes are one-hot-encoded as user and item side information for use by FM and
GNN (Single-P).

Comparing FM ‘None’ and FM with all user and item attributes, we note that when
all user and item attributes are added, the performance drops. This result is surpris-
ing, since in Table 6.4 we observed that adding individual user attributes improves rec-
ommendation performance. However, the literature has previously observed that user
side information is difficult to exploit, citing this challenge as a motivation for adopting
GNN [184], Specifically, in [184], the authors state that most of existing context-aware
recommenders adopt an integration scheme for side information that could result in a
conflict or disagreement between the recommendation loss and side information-aware
loss, resulting in low recommendation performance and propose a GNN designed to ad-
dress this issue.

Second, we turn to consider the GNN [184]. Interestingly, LastFM is the only data set
on which the GNN using all available side information consistently outperforms the FM
using no side information and FM using all user and item attributes across both con-
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Table 6.9: TopN (N=5, 10) recommendation performance measured in terms of TopN.nDCG on FM with ‘None’,
FM using using all user attributes and item attributes and GNN with Single-P model using all user attributes
and item attributes.

Algorithms
Side
information

ML100K ML1M LastFM
Top-N = 5 Top-N = 10 Top-N = 5 Top-N = 10 Top-N = 5 Top-N = 10

FM
None 0.0771 0.0905 0.0639 0.0687 0.3088 0.2888

All User &
item Attributes

0.0518 0.0759 0.0444 0.0488 0.2811 0.2200

GNN
(Single-P)

All User &
item Attributes

0.0757 0.0985 0.0626 0.0800 0.4928 0.4827

Table 6.10: Classification results measured in terms of F1-score with macro-average. Recommendation lists
are generated using FM (with WARP) and GNN (using Single-P). For FM, upper row we use one attribute at a
time and bottom row we use FM with all user and item attributes. For GNN (Single-P) we use all user and item
attributes. We focus on Logistic Regression classifier (LogReg).

Classifier= LogReg Top-N = 5 Top-N = 10

Data Sets Algorithms
Side

information
Gender Age Occupation State Gender Age Occupation State

ML100K
FM

User attribute 0.4871 0.1843 0.0476 0.0162 0.5269 0.2112 0.0533 0.0128
User & Item
Attributes

0.5032 0.1604 0.0643 0.0127 0.5404 0.2202 0.0350 0.0100

GNN
(Single-P)

User & Item
Attributes

0.4807 0.1513 0.0327 0.0145 0.4823 0.2018 0.0390 0.0224

ML1M
FM

User attribute 0.6275 0.4025 0.0531 0.0148 0.6520 0.4401 0.0704 0.0197
User & Item
Attributes

0.6288 0.4176 0.0696 0.0160 0.6405 0.4625 0.0834 0.0161

GNN
(Single-P)

User & Item
Attributes

0.4179 0.1759 0.0289 0.0061 0.4234 0.2037 0.0341 0.0106

Gender Continent EU vs. Rest Gender Continent EU vs. Rest

LastFM
FM

User attribute 0.5578 0.2031 0.6197 0.5427 0.2430 0.6250
User & Item
Attributes

0.5781 0.1941 0.5458 0.5162 0.1820 0.4817

GNN
(Single-P)

User & Item
Attributes

0.4711 0.1366 0.5062 0.5164 0.1806 0.5592

ditions and all metrics. This results lead to the observation that recommender system
platforms should test carefully before assuming that the combination of GNN and all
possible side information will necessarily provide improved recommendations.

Next, we move to consider whether adding all user and item attributes can block
classifiers from inferring sensitive user attributes from recommender system output. We
report our results in Table 6.10. First, we compare FM adding only a single user attribute
with FM adding all user and item attributes. We see that using all user and item attributes
sometimes reduces the leak, but sometimes makes it worse. Moving to GNNs that add
user and item side information, we see more promise: GNNs reduce the leak across the
board, with the exception of State on ML100K. The results point to the conclusion that
the large number of different information sources added to the recommender training
data is having an obfuscating effect on the recommender list.

Unfortunately, the picture is less positive when we look at the coverage and diversity
scores, which are provided in Table 6.11. Here, again we compare the FM with no side
information to FM and the GNN with all user and item attributes. We see that adding
all user and item attributes to FM reduces the coverage and diversity scores across the
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Table 6.11: Item coverage and diversity of recommendation lists generated by FM using “None”, FM using
all user attributes and item attributes, and GNN (Single-P) model using all user and item attributes. ↓ and ↑
indicate the change with respect to ‘None’ for the conditions with side information.

Data Sets Algorithms
Side

Information
Top-N = 5 Top-N = 10

Items
coverage

Shannon
Entropy

Gini
index

Items
coverage

Shannon
Entropy

Gini
index

ML100K
FM

None 415 7.770 0.109 546 8.097 0.136
All User &

item Attributes
215↓ 6.357↓ 0.039↓ 302↓ 6.853↓ 0.0553↓

GNN
(Single-P)

All User &
item Attributes

128 ↓ 6.145↓ 0.033↓ 163↓ 6.698↓ 0.050↓

ML1M
FM

None 840 7.995 0.056 1110 8.376 0.072
All User &
item Attributes

431↓ 6.985↓ 0.027↓ 575↓ 7.448↓ 0.037↓
GNN

(Single-P)
All User &

item Attributes
125↓ 4.749 ↓ 0.005↓ 220↓ 5.650↓ 0.010↓

LastFM
FM

None 1180 9.173 0.041 1802 9.547 0.054
All User &
item Attributes

732↓ 8.365↓ 0.022↓ 1107↓ 8.816↓ 0.0296↓
GNN

(Single-P)
All User &

item Attributes
162↓ 6.034↓ 0.004↓ 299↓ 6.879↓ 0.007↓

board. Unfortunately, moving to the GNN makes the situation even worse, with even
larger reductions of diversity and coverage. These results demonstrate that combining
user and item attributes is an effective approach for addressing leaks of recommender
system output, but that more work is necessary to ensure that these combinations do
not impact coverage an diversity.

A possible way forward is GNNs such as [223], which achieves diversified GNN-based
recommendations by improving the embedding generation procedure. This GNN mainly
focuses on finding a subset of diverse neighbors to aggregate for each GNN node and
the learning of items belonging to long-tail categories. We mention it as possible future
work, but do not test it here since it is not designed to integrate side information.

6.8.2. POST-PROCESSING METHODS

Next, we discuss post-processing methods, which modify the recommender system out-
put, could be used to reduce the leak. Specifically, we take a closer look at [189], a post-
processing method is proposed that iteratively updates recommendation lists until it is
not longer possible to infer gender from recommendation lists that have been output by
a recommender system. As previously noted, the authors of [189] seek to improve item-
oriented fairness, and are not concerned with privacy or diversity. Specifically, their goal
is to balance the number of times a given item is recommended to males and to females,
making it as equal as possible. They show that blocking the ability to infer gender from
the recommendation list achieves this goal. Future work should investigate the potential
of their work for protecting privacy, but must also broaden the notion of fairness. To mo-
tivate this point, we plotted (Fig. 6.4) the Brier score against the user-level log-likelihood
of the recommendation lists, which reflects the extent to which recommendation lists
contain popular items or a mix of popular and non-popular. We see that there is no
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correlation, meaning that there is no clear impact of blocking inference of gender on
the ability of the recommender to recommend niche items. Contrary to what is implied
by [189], blocking inference of user attributes from recommender list falls short of being
a fail safe approach to achieving arbitrary forms of fairness.
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Figure 6.4: Scatter plot of users: The potential of LogReg to infer Gender vs. diversity of recommendation
(LastFM, Top-5 recommendation, FM with WARP loss). Blue: with side information. Orange: without side
information. (Classification test set contains 251 users.) A low Brier score implies accurate predictions and
vice versa.

6.9. CONCLUSION AND FUTURE WORK
In this chapter, we have looked at user attributes from a perspective of privacy and diver-
sity. In terms of privacy, we have seen that standard recommender systems leak and that
using user attributes as side information during the training of a context-aware recom-
mender system may exacerbate this leak. In terms of diversity, we have seen that using
user attributes restricts the coverage of a recommender system and lowers the diversity.
On the basis of these results, we conclude that recommender system platforms should
consider carefully whether it is actually advantageous to make use of user attributes for
training recommender systems. If platforms do not use them, it is wise not to collect and
store them in the first place, which helps to control the privacy risk should the system be
breached.

By demonstrating the presence of leaks we have opened the door for future research
on techniques to reduce them. We carried out an initial experiment (cf. Tab. 6.10) that
showed that the combination of many different pieces of side information might make
inference more difficult. However, it is important to consider whether side information
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is actually bringing a substantial benefit and to ensure that there are no hidden ‘side
effects’ of side information, such as negative implications for diversity.

Another possible approach is to obfuscate the input data. Previous work has shown
such obfuscation to be capable of blocking inference attacks on user profiles [22], [56],
and the blocking effect might transfer to recommender output. Further, perturbations
could be applied to user and item embeddings, as done by [63], [184]. These approaches
involve simultaneously optimizing for maximizing recommendation performance and
minimizing leaks by combining user interactions and user recommendations. Future
work should follow our threat model and test the leak of the recommendation list alone.

In closing, we would like to emphasize an important negative result. In Fig. 6.2 we
have seen no clear correlation between the recommender system performance (nDCG)
for individual users and the ease with which those users’ profiles can be used to infer
user attributes (Classifier Brier Loss). This observation directly contradicts the assump-
tion of [189], who assume that recommendation performance must get worse as it be-
comes more and more difficult to infer user attributes from recommendation lists. This
observation is important for future work in recommender systems in two respects. First,
we should not assume that making recommendation lists more indicative of a particular
user attribute, i.e., ‘female’ will better satisfy users with that attribute. Instead, overfitting
on user attributes risks adversely impacting diversity. Second, on the basis of this obser-
vation, we conclude that future research that develops methods to reduce privacy leaks,
should not assume that there is a trade-off between leak reduction and recommender
system performance. It seems that the best of both is worth pursuing.
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In this thesis, we have presented various purpose-aware privacy-preserving techniques
for machine learning and recommender system algorithms. Our approaches, along with
our methodologies, findings, and empirical results, have been presented across five tech-
nical chapters. In this chapter, we summarize our contributions in Section 7.1. We out-
line potential avenues for future research in Section 7.2. We close the thesis with reflec-
tions that we think are interesting and promising in the context of user privacy and ML
applications in Section 7.3 .

7.1. MAIN CONTRIBUTIONS AND DISCUSSION
Throughout the thesis, we explored distinct aspects related to purpose-aware privacy-
preserving techniques for predictive applications. Firstly, we specified the threat models
in terms of the resources at the adversary’s disposal, the adversary’s objective, the op-
portunity that makes an attack possible, and the nature of the countermeasures that can
be taken to prevent the attack. Secondly, we introduced our conceptual framework of
purpose-aware privacy-preserving techniques. Our conceptual framework extends ex-
isting privacy-preserving techniques by emphasizing the importance of “the purpose”.
The essence of purpose-aware techniques lies in the necessity to specify the intended
purpose for which data modifications are made. Thirdly, we applied purpose-aware
privacy-preserving techniques to two ML prediction applications: recommender sys-
tems and machine learning classifiers. Within these applications, we focused not only
on maintaining the accuracy performance of the models, i.e., predictions using machine
learning classifiers and recommendation performance but also on protecting individu-
als’ sensitive information. In this section, we summarize our contributions and findings.

Attacking the input data The first part of the thesis focused on answering the first re-
search question (RQ1): How can we protect sensitive information when the attacker has
access to the input data from inference attack while maintaining utility? Specifically, we
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focused on attack scenarios in which the adversary aims to infer users’ sensitive infor-
mation by attacking the input data.

In Chapter 2, we assumed that the adversary has a gender classifier that is pre-trained
on unobfuscated data or has data to train a classifier. The adversary’s objective is to
infer the gender of individual users. We proposed, PerBlur, a purpose-aware privacy-
preserving users’ gender for recommender systems. PerBlur extended state-of-the-art
data obfuscation techniques with its use of personalization and greedy item removal.
PerBlur is formulated within a user-oriented paradigm for user privacy. The paradigm
involves three dimensions: obfuscation should be understandable, obfuscation should
be unobtrusive, and obfuscation should be useful. We showed how obfuscation is a sim-
pler task than one might think. It is a very simple approach fully understandable to users.
Also, we should not assume that obfuscation must always introduce noise. If we keep ob-
fuscation close to the user preferences it has the potential to be unobtrusive for the user.
We demonstrated how obfuscation is useful as it maintains the quality of the recommen-
dation. Also, we showed how recommendation performance should not be the sole goal
of obfuscation, but instead diversity and fairness as well.

In Chapter 3, we assumed that the adversary has access to released data i.e., Data
science or RecSys Challenge. The objective is to infer the preferences of individual users.
We proposed Shuffle Non-Nearest Neighbors (Shuffle-NNN for short), a purpose-aware
privacy-preserving users’ preferences for recommender systems. Shuffle-NNN extended
state-of-the-art data masking techniques with its use of neighborhood selection and
value-swapping steps. Neighborhood selection preserved valuable item similarity in-
formation. The data shuffling technique hid ratings of users for individual items. We
demonstrated that our data masking approach has great potential for data science chal-
lenges. We showed that it is possible to develop a masking approach, such that masked
data can be used to train and test algorithms with little impact on the relative perfor-
mance of algorithms. We demonstrated that Shuffle-NNN provides valuable evidence
about what information can be removed from the user-item matrix and what informa-
tion should be maintained.

Attacking the output data The second part of the thesis was dedicated to addressing
two distinct research questions, RQ2 on how can we protect sensitive information when
the attacker has access to the model’s predictions while maintaining utility? and RQ3 on
whether recommender system’s output data leaks sensitive information about users. We
looked at attack scenarios where the adversary’s objective is to infer users’ sensitive in-
formation by targeting the output data, which comprises predictions generated using an
ML model. In RQ2, we focused on a machine learning classifier predicting individuals’
propensity to move (Chapter 4 and Chapter 5). Here, we explored how to protect sen-
sitive information when the attacker has access to the model’s predictions while main-
taining utility. In RQ3, we focused on the output of a recommender system algorithm
predicting users’ next preferred items to be consumed, commonly referred to as the rec-
ommendation list (Chapter 6). Our investigation was related to determining whether
recommendation lists leak sensitive user information.

In Chapter 4, we investigated an attack on a machine learning classifier that predicts
the propensity of a person or household to move (i.e., relocate) in the next two years. The
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attack assumes that the classifier has been made publicly available and that the adver-
sary has collected a set of non-sensitive attributes of target individuals, i.e., previously
released data or data gathered from social media. The objective of the adversary is the
inference of specific sensitive attributes of the target individuals. We investigated Label-
Only MIA + Marginals (LOMIA + Marginals) attack model, allowing unlimited queries to
the model and leveraging marginal distributions for predictions. The adversary queries
the model and collects the output predictions of the model. First, we found that the at-
tack is possible where LOMIA + Marginals outperforms the Marginals only attack. Then,
we investigated whether training the classifier on a data set that is synthesized from the
original training data, rather than using the original training data directly, would help
to mitigate the attack. Our experimental results indicated that the risk of attribute dis-
closure is somewhat comparable, and in certain cases even lower, when using synthetic
training data to train the machine learning model.

In Chapter 5, we extended the threat model of Chapter 4 by evaluating a number of
existing privacy attack models, including Label-Only, LOMIA + marginals, confidence-
score based MIA (CSMIA), Fredrikson et al. MIA (FMIA). The attack models differ based
on the opportunities available to the attacker. First, we found that FMIA presented the
highest degree of information leakage, followed by LOMIA with Marginals, while CSMIA
exhibited the least leakage when a model was trained on original data. We proposed to
replace the original data used to train the target model prior to its release with protected
data with data synthesis + privacy-preserving techniques. We demonstrated that, in spe-
cific cases, our protected data successfully reduced information leakage. However, in
other cases, the leakage remained comparable to Marginals Only attack. Also, we found
a high disclosure risk, measured with CAP, when the target model is trained on original
data. But, when the target model is trained on data protected with our two step synthesis
+ privacy preservation approach a lower percentage of individuals risk disclosure.

In Chapter 6, we assumed that the adversary is able to intercept recommendations
that are provided by a recommender system to a set of users, i.e., to listen in on an
unprotected network connection. The adversary’s objective is to infer the sensitive at-
tributes of a user. We generated recommendation lists using different recommender
systems algorithms, ranging from standard collaborative filtering techniques such as
ItemKNN, userKNN, and BPRMF, to context-aware recommenders using factorization
machine (FM) with and without user attributes as side information and graph neural
networks (GNNs). We investigated the potential of recommender system algorithms to
reveal (or leak) users’ sensitive information from the recommendation lists. We found
that standard recommender system algorithms leak and that using user attributes as
side information during the training of context-aware recommenders may increase this
leak. We also found that using user attributes reduces the coverage and lowers the di-
versity of the recommendation. We provided two countermeasure approaches that are
capable of countering privacy leaks. Firstly, we showed that the combination of user
attributes as side information might make the inference more difficult. Secondly, we
discussed post-processing methods, which modify the recommender system list before
being recommended to the users.

To summarize, in Chapter 2 to Chapter 6, we explored different threat models. The
common objective of the adversary is to infer or expose sensitive private information
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about target users. The difference between the chapters relies on the resources available
to the adversary as well as the opportunity for the adversary to make an attack possi-
ble. Then, we proposed several purpose-aware privacy-preserving techniques. We fo-
cused on two ML applications, machine learning classifiers and recommender systems.
Throughout the chapters, we studied how purpose-aware privacy-preserving techniques
are connected to protecting individuals’ sensitive or personal information within these
ML applications.

7.2. FUTURE WORK
In this section, we provide possible future work that we think promising in the context of
purpose-aware privacy-preserving data. Several future research directions could extend
the contributions proposed in this thesis.

Exploring other threat models The first potential direction involves the exploration of
other threat models. The exploration could look at any dimension of the threat model.
For instance, future research can look at other sensitive attributes, other adversary re-
sources, and capabilities.

• Other user sensitive attributes researchers can investigate other sensitive attributes
that we did not study due to the limited availability of open data. Beyond users’ de-
mographic attributes such as gender, age, and income, there exist plenty of sensi-
tive attributes that deserve examination. One direction could be to investigate the
inference of users’ orientation, e.g., sexual, or religious, based on their preferences.
Exploring other sensitive attributes can reveal other challenges and opportunities
in maintaining accurate predictions while protecting users’ private information.

• Moving beyond black-box attack models The growing evolution of ML and the avail-
ability of vast amounts of data on social media provide the adversary with extra
capabilities and resources to perform attacks. With the growth of ML, future work
has to adjust and put the focus on more sophisticated gray-box and white-box ap-
proaches. In a gray-box attack, the adversary is assumed to have knowledge either
about the data used for training a model or about the model itself including which
algorithm was used, the parameters, and the architecture. In a white-box attack,
the adversary has knowledge about both the training data and the model.

Investigating other purpose-aware privacy-preserving solutions The second poten-
tial direction involves the investigation of other purpose-aware privacy-preserving data
techniques.

• Synthetic data for testing and advancing ML applications Synthetic data is gen-
erally intended to take the place of original data. However, in order to take full
advantage of synthetic data, we must also invest research efforts in developing the
potential of synthetic data to transcend conventional data and be used for pur-
poses for which conventional data is not suited. For instance, one promising ap-
plication of synthetic data lies in facilitating the development and testing of ML
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models. Synthetic data offers an adequate environment where researchers can ex-
periment with data without any constraints. One notable benefit of synthetic data
is its utility in identifying and addressing bias in ML algorithms. By simulating
diverse scenarios, synthetic data allows researchers to proactively detect and mit-
igate bias that may emerge when these models interact with real-world data. This
approach helps to ensure that ML applications such as recommender systems are
fair and unbiased.

• Protecting the embedding With the rapid advancements in AI, particularly in the
domains of deep learning, generative networks, and Graph Neural Networks (GNNs),
we notice an extensive use of embeddings. The embeddings are a way to repre-
sent complex data into lower-dimensional representations such that it is easy for
machines to understand. However, while being important in various ML appli-
cations and domains, the embeddings have also raised concerns about potential
leakage of sensitive information [63], [187]. An example of a case study could be
that a company is interested in sharing the embeddings with external parties, i.e.,
researchers, and collaborators. It is important that future research looks at this
critical area by exploring potential attacks that may compromise the privacy of in-
dividuals through embeddings. Addressing these privacy concerns in the context
of ML embeddings is essential to ensure that the advancements in ML are in a
trustworthy and responsible manner.

• Vertically distributed (synthetic) data refers to data that is distributed across mul-
tiple locations or systems, such as different servers, databases, or even among var-
ious organizations. Our purpose-aware privacy-preserving framework can also be
extended to vertically distributed data. This approach could be employed in sce-
narios where data sharing or collaboration between different parties or organi-
zations is necessary while maintaining privacy or confidentiality for specific at-
tributes. For instance, consider a collaboration between different organizations,
such as the police and the Office of Statistics, aiming to predict whether there is
a correlation between poverty and crime. While the data is distributed between
these organizations, the ultimate goal is to generate synthetic data that protects
individuals’ sensitive information while preserving its intended purpose. In this
context, the primary objective is to make accurate predictions that enable draw-
ing correct conclusions, just as if the model were trained on real data. There are
two approaches for the vertically distributed synthetic data generation, : (1) lo-
cally distributed synthetic data generation, (2) globally distributed synthetic data
generation. As for the locally distributed synthetic data generation, the synthesis
happens locally and separately in each organization. As for the globally distributed
synthetic data generation, the synthesis happens in a trusted server.

Quantifying the risk of disclosure While working on this thesis and moving forward,
we noticed a gap in the literature on privacy-preserving techniques. Existing research on
privacy-preserving techniques has extensively focused on re-identification attacks, but
there is less literature regarding attribute inference attacks (attribute disclosure) [156],
[172], [173].
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To measure the success of inference attacks, we currently rely on two approaches.
The first involves using machine learning algorithms to quantify the attribute disclosure
risk. However, the effectiveness of this approach heavily depends on both the data and
choice of machine learning algorithm. The second approach is from statistical disclo-
sure control, which is based on matching records in the real data with records in the
synthetic data using the correct attribution probability (CAP). CAP score describes the
proportion of matches leading to correct attribution out of total matches [154], [155].
However, CAP has its limitations, particularly when no matching exists between records
in real and synthetic data, leading to a situation where CAP treats the disclosure risk as
zero or undefined [155]. In both cases, we encounter challenges in providing a quanti-
fied risk of disclosure for individual cases.

Future research should explore other methods to quantify the risk of disclosure on
an individual basis. This includes moving beyond aggregated scores that provide gen-
eralized assessments of disclosure risk, aiming instead for a more precise evaluation of
attribute disclosure risks for each individual. Such quantification of risk for individuals
would not only advance the technical understanding but also bridge the gap and facil-
itate the communication between technical and non-technical communities, including
legal and privacy officers.

Other ML applications Throughout this thesis, our primary focus has centered on ma-
chine learning focusing on classifiers and recommender system algorithms, including
standard collaborative filtering techniques, context-aware recommenders, and graph-
neural network recommenders that incorporate user attributes as side information. We
showed that as part of our purpose-aware privacy-preserving data, we always look at
protecting users’ private data while maintaining the intended purpose. Importantly,
this framework is not restricted solely to machine learning classifiers and recommender
system algorithms. It holds the potential for extension and application to a broader
spectrum of machine learning algorithms and diverse recommender system techniques.
Beyond this, the applicability of our framework could be further extended to various
other ML domains such as lifestyle (e.g., facial recognition), education (e.g., personal-
ized learning), healthcare, and more.

7.3. REFLECTIONS
In this section, we share our reflections and provide our perspectives and insights on
various facets of our framework of purpose-aware privacy-preserving data.

Reproducibility and Reliable evaluation Throughout our chapters, we have empha-
sized the need to adapt our evaluation setup to ensure the reliability of our results and
the reproducibility of experiments. Since the early age of machine learning and recom-
mender systems, researchers have pointed to the importance of completely controlling
the dimensions of an evaluation in order to achieve a fair comparison [129], [224]. This
is not new and has been reported in previous research [219].

Here, we point to two important challenges for achieving reproducibility in pub-
lished research, namely, the non-availability of data and the rigorousness of the eval-
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uation setup. Addressing the first challenge, a potential solution to mitigate this issue
could be via the use of synthetic data. It is worth noting that synthetic data serves var-
ious purposes including data release, education, testing algorithms, and testing tech-
nologies [225]. The generation of synthetic data heavily depends on the use case. We
should provide high privacy protection to the synthetic data before being released while
trying to maintain the utility. The second challenge in reproducibility is related to adopt-
ing a rigorous evaluation setup. An ideal evaluation setup involves providing the readers
with all the information related to: the splitting strategy, the candidate items selection in
recommender system, end-to-end optimization of hyper-parameter tuning, the choice
of strong baseline to compare against, and the choice of the metrics. In addition to these
design choices in the evaluation setup, extra attention should be given to develop evalu-
ation frameworks that are suitable for use in evaluating ML models when using synthetic
data. In this case, evaluating the evaluation itself must be an object of research. Such
an evaluation involves comparing the performance metrics of predictive models trained
on synthetic and real data (called model compatibility). The performance of machine
learning models trained and tested on real and or synthetic data is compared based on
different scenarios depending on the synthetic data use case [158], [226], [227]: Train
on Real and Test on Synthetic data (TRTS) Train on Synthetic and Test on Real (TSTR),
Train on Real, Test on Real (TRTR) and Train on Synthetic, Test on Synthetic (TSTS),
and lastly trained and tested on a mixture of real and synthetic data (TMTM). To sum-
up, specific attention should be paid to our evaluation setup and more specifically to the
conclusion that we can (and cannot) draw when using synthetic data.

User-oriented paradigm for privacy protection aims at making privacy solutions un-
derstandable, unobtrusive, and useful for the user. The idea of our paradigm is that pri-
vacy protection should center on users, serving their needs and allowing them to main-
tain insight and control. The understandable dimension of our paradigm expresses the
importance that our paradigm places on approaches that the user can understand. The
user must understand why a privacy-preserving solution is applied, i.e., why items have
been added to or removed from the profile in obfuscation. The unobtrusive character-
istic expresses the commitment of our paradigm to approaches that do not hamper or
otherwise inconvenience or disturb the user. In other words, our purpose-aware privacy-
preserving techniques should not be pure “noise”, but rather be consistent with the user’s
preferences. Finally, the useful dimension expresses the commitment of our paradigm
to serving users’ needs such as maintaining or improving the recommendation perfor-
mance, fairness, and diversity.

Privacy for all Privacy and fairness often appear as trade-offs in various ML applica-
tions. Achieving one may come at the expense of the other, leading to searching for the
right balance between protecting users’ private information and ensuring fair treatment.
It is important to make fair predictions as well as to protect users’ private data. So, it is
also important to make fair protection in which we make sure that all users are protected.
In this case, the privacy protection should adapt to individual needs. As mentioned in
our user-oriented privacy paradigm, privacy protections should be understandable to
users, allowing them to actively participate in the process by choosing what to hide and
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what to share. Taking recommender systems as an example, user profiles exhibit varia-
tions; while some user profiles may share certain attributes like watching the same gen-
res of movies or listening to the same genre of music. The users’ preferences differ and
evolve over time. Additionally, user profiles vary in size. A one-size-fits-all privacy bud-
get applied uniformly to all users can lead to the unintentional removal of valuable infor-
mation essential for recommender system algorithms. Consequently, this approach may
provide robust protection to some users while affording minimal protection to others.

Evaluating protection levels becomes crucial in this context. Having 80% protection
to user X and only 10% protection to user Y does not signify comprehensive user pro-
tection. Instead, it reveals disparities in the levels of protection, potentially leaving the
majority of users inadequately protected.

Rethinking the Trade-off Paradigm Traditionally, privacy and utility have been seen
as opposing forces, pulling organizations and researchers in different directions. Simi-
larly, the notions of fairness/diversity and accuracy or transparency and privacy are of-
ten seen as trade-offs in the literature. The common agreement has been that to improve
one, we must compromise the other. For instance, in the context of recommender sys-
tems, the more personalized the recommendations, the higher the demand to collect
and use the users’ private data. Also, in machine learning models, more accurate predic-
tions often necessitate the use of more sensitive data. This trade-off mindset has led to
suboptimal solutions where one part is often sacrificed to achieve the second part (pri-
vacy vs. accuracy of the predictions, accuracy of the recommendations vs. diversity or
fairness, fairness vs. privacy). However, we believe that it’s time to question this trade-off
paradigm: Why should we accept the premise that to gain one, we must lose the other?
Why not looking for a solution or agreement that could satisfy all parties?

Our purpose-aware data framework challenges the conventional trade-off by intro-
ducing a more nuanced and purpose-dependent approach. For instance, instead of ap-
plying a uniform level of privacy protection to all data, we advocate for tailoring data
protection measures to the specific purpose of data usage. This approach recognizes
that different machine learning applications have distinct objectives and, therefore, dif-
ferent privacy requirements. In practice, it means that we don’t need to choose between
privacy and utility. we can have both. Throughout our contributions, we showed that we
can provide personalized recommendations while ensuring that users’ sensitive infor-
mation remains protected. We can ensure users’ protection while achieving diverse rec-
ommendations and without impacting the users’ fairness. In machine learning models,
we showed that we can make accurate predictions without compromising the privacy of
individuals whose data contributes to the model’s training, as well as for exclusive indi-
viduals (not part of the training data).

We rather call to go from trade-offs to synergy. For example, by aligning privacy pro-
tection with the intended purpose, we can create synergy between the two objectives.
Our paradigm of “purpose-aware data” encourages future research to: First, we should
prioritize individual needs by recognizing that individuals have varying preferences and
by involving users in the protection process. Second, we should optimize data use by tai-
loring data protection (or other goals such as fairness, diversity, and explainability) to the
specific purpose of data usage. As a result, we aim to build trust with users, stakeholders,
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and the public.
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PROPOSITIONS

1. More data does not necessarily lead to a better model performance.
This proposition pertains to this thesis.

2. Privacy-accuracy trade-offs should not exist.
This proposition pertains to this thesis.

3. Every type of attack requires a careful selection of privacy protection.
This proposition pertains to this thesis.

4. Synthetic data amplifies societal harms as much as real data do.
This proposition pertains to this thesis.

5. Top-rated toolboxes fail to guarantee the reproducibility of results.

6. Perfection stifles productivity.

7. The potential of negative results needs more attention.

8. Social media distorts our perception of reality.

9. The path to self-discovery in life lies not in finding our passion but in finding our
purpose.

10. Years of experience lose value if not paired with self-doubt.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promotors prof. dr. A. Hanjalic and prof. dr. M.A. Larson.
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