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Chapter 1

Introduction

The main idea behind the Monte Carlo method is that by simulating a pro-
cess many times, the average outcome of the simulations will correspond with
the expected behaviour of our process of interest. This methodology is es-
pecially useful in settings where we can generate simulations but are unable
to perform direct calculations. These methods were developed by physicists
Nicholas Metropolis and Stanislaw Ulam in the 1940s during their work on
the Manhattan Project for the development of the first nuclear weapons.
Through simulation of neutron diffusion, they gained insights into nuclear
chain reactions that could not be obtained through exact calculations.

For many applications, it is not even possible to obtain exact simulations
of the object of interest. To address this problem, the first Markov Chain
Monte Carlo (MCMC) algorithms were introduced by Metropolis et al. [104].
The main idea is to construct a relatively simple process such that, in its
equilibrium state, the process can be used to approximate the distribution
of interest. This approximating process will be constructed such that it is
Markovian, i.e., the future evolution of the process can only depend on its
past states through its present value.

Any Markov Chain Monte Carlo algorithm can be conceptualised as a
set of rules dictating the movement of a particle through space. The im-
plied motion of the particle ensures that, over time, the particle explores the
space in accordance with the probability distribution of interest. In the long
run, the particle thus spends time in any region of the space that is pro-
portional to the probability mass assigned to that region by our distribution
of interest. The simulated path of our particle can subsequently be used to
estimate quantities related to the distribution of interest. MCMC methods
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are generally acknowledged to be the most versatile algorithms for simulat-
ing a probability distribution. MCMC algorithms are extensively applied in
a wide array of fields, ranging from statistics and machine learning to physics.

We consider the problem of sampling from the target distribution π
defined on E ⊆ RN . Typically, the objective is to generate samples from
π and compute some collection of features of this distribution that can usu-
ally be expressed as expectations with respect to π; in other words, we are
interested in

π(f) :=

∫
E

f(x)π(dx), (1.1)

for some appropriately integrable function f : E → E ′ with E ′ ⊆ Rd. We
will refer to E and E ′ as the state space and feature space, respectively.

We note that even for problems of moderate dimension, alternative de-
terministic numerical integration techniques for computing π(f) are not feas-
ible; see for example, the results of Hinrichs et al. [80] and their given ref-
erences. Hinrichs et al. [80] show that the number of required computations
in order to approximate integrals up to some given precision level will grow
super-exponentially with the dimension of the problem.

One of the largest fields that relies on MCMC is Bayesian statistics. In
Bayesian statistics, practitioners are interested in the so-called posterior dis-
tribution, which quantifies the plausibility of the underlying statistical model
after observing the data. Suppose that our data X takes values in a Polish
space (X,B(X)). Let our statistical model be parameterised with a Polish
parameter space (Θ,B(Θ)) such that it is given by a collection of probability
measures on (X,B(X)):

P = {Pθ : θ ∈ Θ}. (1.2)

We endow the parameters of our model with prior distribution Π. By treat-
ing the unknown parameter as stochastic, the Bayesian paradigm inherently
views statistical inference as the quantification of uncertainty. The prior
is often interpreted as the quantification of our initial beliefs regarding the
parameter values and, in high-dimensional settings, is practically used to
induce regularisation. In this setting, the model (1.2) is interpreted as a
collection of conditional laws of the data given the parameter. The posterior
distribution represents our beliefs regarding the parameters after taking the
observed data into consideration and is described by the conditional distri-
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bution of the parameter given the data. The posterior is the primary object
of interest in Bayesian inference. If the model is dominated by some σ-finite
measure, with {pθ : θ ∈ Θ} denoting the corresponding densities then the
posterior is given by Bayes’s formula

Π(B|X) =

∫
B
pθ(X)dΠ(θ)∫

Θ
pθ(X)dΠ(θ)

,

where B denotes a measurable subset of Θ. The posterior can thus be ob-
tained by reweighing the prior according to the plausibility of the parameter
values implied by the observed sample. MCMC algorithms are in most prac-
tical problems necessary to infer important aspects of this posterior distri-
bution, such as its mean and spread.

The fundamental idea behind MCMC is to construct a Markov chain such
that its equilibrium distribution is given by the distribution of interest. For
simplicity, we will consider discrete-time processes in this introduction. We
say that (Xk)k∈N with initial distribution ν0 is a time-homogeneous Markov
chain on some filtered probability space (Ω,F , (Fk)k∈N,Pν0) taking values
in (E, E), where E denotes the state-space and E the corresponding Borel
σ-algebra, if for all B ∈ E we have that Pν0(X0 ∈ B) = ν0(B) and for all
m,n ∈ N0 we have

Pν0 (Xn+m ∈ B|Fn) = Pm(Xn, B) Pν0–a.s.,

where Pm(x, ·) denotes the m-step transition kernel of the chain defined as

Pm(x,B) = P(Xm ∈ B|X0 = x), m ∈ N, x ∈ E,B ∈ E .

We say that π is the equilibrium distribution of the Markov chain if πP = π,
which is shorthand notation for∫

E

P (x,B)π(dx) = π(B) ∀B ∈ E .

Note that if the starting distribution is equal to the equilibrium distribution,
then so will all subsequent marginal distributions of the chain. Therefore,
the equilibrium distribution is often also referred to as the stationary or in-
variant distribution. We will choose the transition kernel of the chain so that
the equilibrium distribution coincides with our target distribution of interest.
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We refer to Chapter 2 for some concrete examples.

Under some regularity conditions, we can show that for any initial state
x ∈ E, the chain will, in the long run, explore the state space according to
its equilibrium distribution. More formally stated, it can be shown that the
law of the chain converges in total variation to the stationary measure, i.e.,

lim
k→∞

sup
B∈E

∣∣P k(x,B)− π(B)
∣∣ = 0. (1.3)

Moreover, we have that the ergodic law of large numbers holds:

π̂T (f) :=
1

T

T−1∑
k=0

f(Xk)
a.s.−−→

∫
E

f(x)π(dx) as T →∞, (1.4)

provided that π(∥f∥) < ∞. This can be interpreted as the time average of
the process converging to the space average with respect to the equilibrium
distribution. Consequently, we see that π̂T (f) is a consistent estimator of
our features of interest π(f). However, the ergodic law of large numbers does
not describe the convergence rate of π̂T (f), nor does it provide any insight
regarding the precision of the estimator in finite samples. In order to assess
the accuracy of π̂T (f), we require a central limit theorem (CLT) to hold;

√
T

(
1

T

T−1∑
k=0

f(Xk)−
∫
E

f(x)π(dx)

)
w−→ Nd(0,Σf ) as T →∞, (1.5)

where the asymptotic covariance matrix is given by

Σf = Varπ(f(X0)) +
∞∑
k=1

Covπ(f(X0), f(Xk)) +
∞∑
k=1

Covπ(f(X0), f(Xk))
T .

(1.6)

Jones [85] gives an expository survey on conditions under which the Markov
chain CLT holds. Note that due to the dependence structure of the chain,
the asymptotic variance Σf contains auto-covariance matrices, whereas if we
were able to obtain i.i.d. samples from the target distribution, the asymp-
totic covariance matrix Σf would simplify to Varπ(f(X0)).
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1.1. Mixing and Termination times

There are two practical questions that need to be addressed for every applic-
ation of MCMC. Firstly, when is it reasonable to assume that the sampling
algorithm is exploring the state space according to its stationary distribu-
tion? And when is it justified to terminate the simulation? Additionally, in
high-dimensional settings, the scale of the problem introduces further chal-
lenges to these key inquiries. In Qin and Hobert [126] and Rajaratnam
and Sparks [128] it is shown that many results regarding the convergence of
MCMC samplers, that do not explicitly take the impact of dimensionality
into consideration are inapplicable to high-dimensional scenarios. This high-
lighted the importance of the so-called convergence complexity of MCMC,
which entails understanding how these convergence properties scale as the
dimension of the problem grows.

In order to determine when the chain is sufficiently close to stationarity,
we analyse the mixing time of the chain, which is defined as

t∗(ϵ, ν0) := inf{t > 0 : D(ν0P
t, π) < ϵ}, (1.7)

where ν0 denotes the initial distribution of the chain, P t denotes the Markov
transition kernel of the chain, ϵ is the specified tolerance level, and D is
some metric on the space of probability measures, usually total variation
or Wasserstein distance. The dependence of mixing times on the dimension
of the underlying state space has been studied by Bou-Rabee and Eberle
[25]; Hairer et al. [77]; Dalalyan [43]; Durmus and Moulines [57; 58]; Qin and
Hobert [125; 127]; Yang and Rosenthal [156] among others. In the setting
of Bayesian computation Altmeyer [2]; Belloni and Chernozhukov [11]; Tang
and Yang [147]; Nickl and Wang [114] obtained dimension-dependent mixing
time results, utilising the concentration properties of posterior distributions
arising from various statistical models.

While a significant amount of research has been done to provide dimension-
dependent performance guarantees for MCMC algorithms, the focus has been
primarily on the first question. The issue of when to terminate the simulation
has not been examined as thoroughly. This dissertation seeks to fill that gap
by giving a rigorous exploration of the convergence complexity of MCMC
output analysis and providing theoretical guarantees for termination criteria
in high-dimensional settings. As noted by Gong and Flegal [75], many output
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analysis tools used for addressing the termination question, such as visual in-
spection of trace plots and classical convergence diagnostics, are only appro-
priate for low dimensional problems. Termination criteria are usually defined
as stopping times that follow a confidence set for the features of interest over
the simulation trajectory. They allow termination of the simulation when a
specified precision requirement is met. Analysing these termination criteria
in high-dimensional settings remains an unaddressed problem.

While Markov Chain Monte Carlo methods are indeed less susceptible to
the curse of dimensionality compared to deterministic integration methods,
they are not unaffected by the challenges posed by high-dimensional settings.
Since MCMC is approximate inference, both the mixing time and the termin-
ation time can potentially lead to computation times that are exponentially
increasing in dimension. In Bandeira et al. [7], it has been demonstrated
that with a worst-case initialisation, local MCMC samplers will require O(ed)
number of iterations to reach the bulk of the mass of the posterior distribu-
tion resulting from a non-linear regression model. Furthermore, it is also
well-known that multi-modal distributions present a significant challenge for
MCMC algorithms, as the time for transitioning between modes typically de-
pends exponentially on their relative difference in potential energy, as shown
in, for example Bovier et al. [27] and Monmarché [110]. Similarly, it is not
straightforward to determine whether for an arbitrary problem an estimate of
π(f) that is within some desired precision level can even be obtained within
polynomial time.
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1.2. Gaussian approximations for MCMC algorithms

Fixed running-time implementations of MCMC offer no uncertainty guaran-
tees, and prematurely terminating our simulation algorithm could even result
in inconsistency of the estimator π̂T (f). Even if the algorithm is already in
its stationary phase, if it mixes slowly, i.e., it takes a long time to explore
the state-space and move between different regions of high π-probability,
the simulation output might not adequately represent the target distribu-
tion. Therefore, it is of great importance to use termination criteria that can
give us precision guarantees. This problem is closely related to the uncer-
tainty quantification of our algorithm. In Glynn and Whitt [73], asymptotic
validity of several sequential termination rules is established under the as-
sumption of a functional central limit theorem (FCLT) for the simulation
process. Consider the rescaled partial-sum process of our Markov chain X
given by S(T ) := (S

(T )
t )t∈[0,1] where

S
(T )
t :=

1√
T

⌊Tt⌋∑
k=1

(f(Xk)− π(f)), t ∈ [0, 1], (1.8)

and let Z := (Zt)t∈[0,1] be defined as Zt := Σ
1/2
f Wt, where Σ

1/2
f denotes the

square root of the time-average covariance matrix of X and W = (Wt)t∈[0,1]
is a standard d–dimensional Brownian motion, and let D[0, 1] denote the
Skorokhod space, which consists of all Rd-valued càdlàg functions with do-
main [0, 1], and let D denote the Borel σ–algebra generated by the Skorokhod
topology. The functional central limit theorem states that 1√

T

⌊Tt⌋∑
k=1

(f(Xk)− π(f))


t∈[0,1]

w−→ (Zt)t∈[0,1],

by which we mean that for every continuity set A ∈ D of Z, we have that∣∣P (S(T ) ∈ A
)
− P (Z ∈ A)

∣∣ = o(1) as T →∞. (1.9)

In order to generalise the results of Glynn and Whitt [73] and obtain
asymptotic validity of termination criteria in high-dimensional settings, we
require quantitative Gaussian approximations of our Markov chain X. These
Gaussian approximation results quantify the rate at which the trajectories
of the partial sum process can be approximated by the appropriately scaled
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trajectories of a Gaussian process and are thus a refinement of the functional
central limit theorem, as shown in for example [123; Theorem 1.E]. We say
that a weak Gaussian approximation holds for X = (Xt)t∈N if the process
can be defined on a probability space, together with a Brownian motion W ,
such that

lim
T→∞

P

(
1

ΨT

∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ ⩽ Kψ̄Nψd

)
= 1, (1.10)

where | · | denotes the Euclidean norm, K denotes a dimension-independent
almost surely finite constant, and ψ̄N , ψd, and ΨT denote the dependence of
the approximation error on the dimension of the state space, the dimension
of the feature space, and the sampling time respectively. Similarly, we say
that a strong Gaussian approximation holds for X = (Xt)t∈N if

P

(
lim sup
T→∞

1

ΨT

∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ ⩽ Kψ̄Nψd

)
= 1. (1.11)

We use the customary notation for Gaussian approximations, i.e.,∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
ψ̄NψdΨT

)
.
Oa.s.

(
ψ̄NψdΨT

) , (1.12)

where OP and Oa.s. denote the weak and strong approximation respectively.
These Gaussian approximation results are closely related to the convergence
rate of the FCLT, as shown in Csörgö and Horváth [38; Theorem 1.16 and
Theorem 1.17]. These approximation results are powerful tools used to obtain
numerous results in both probability and statistics as seen in, e.g., Csörgö and
Hall [41] and Shorack and Wellner [139]. For applications in MCMC, these
results tell us how the trajectory of the sampling process will fluctuate around
the value it is designed to approximate. In the one-dimensional case, Gaus-
sian approximation results for MCMC were obtained by Flegal and Jones
[66]; Csáki and Csörgő [37]; Jones et al. [87] and Merlevède et al. [103].
These results were extended to multivariate setting by Banerjee and Vats [8]
and Li and Qin [95]. For a more extensive overview of Gaussian approxim-
ation results, we refer to Section 3.1 of Chapter 3. We note that Gaussian
approximations are in the literature often also referred to as strong invari-
ance principles and Gaussian embeddings.
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Since MCMC methods are only able to sample approximately from the
target distribution, quantifying the uncertainty of the simulation output is of
central importance. Stating only the point estimate π̂T (f) for an application
where we are interested in π(f) can be misleading since it does not convey
the reliability of the estimate. In order to give a standard error, we need
to estimate the asymptotic covariance matrix Σf . Gaussian approximation
results also play a central role in the analysis of estimators of the asymptotic
variance and MCMC output analysis, see for example Damerdji [44; 45];
Flegal and Jones [66]; Jones and Hobert [86]; Jones et al. [87]; Vats et al. [151;
152]. Furthermore, the asymptotic variance is also necessary for computing
many convergence diagnostics and for the implementation of commonly used
termination criteria. Convergence diagnostics are statistical tests that can
be used to assess stationarity and proper exploration of our MCMC sampler.

1.3. Contributions and organisation of the thesis

In Chapter 2, we give examples of classic MCMC algorithms and introduce
sampling algorithms based on Piecewise Deterministic Markov Processes
(PDMPs). Contrary to most commonly used MCMC algorithms, these are
non-reversible and continuous-time processes. We also introduce drift and
minorisation conditions, which are commonly used to obtain convergence
guarantees for MCMC algorithms. Furthermore, we give a more extensive
introduction to MCMC output analysis, which encompasses estimation of
the asymptotic variance and obtaining validity of termination criteria. Ad-
ditionally, we provide a brief introduction to convergence diagnostics, which
are also a significant part of MCMC output analysis. Furthermore, we also
discuss some suggestions for possible convergence diagnostics suitable for
PDMP based sampling algorithms.

In Chapter 3, we obtain novel Gaussian approximation results for a broad
class of ergodic (continuous-time) Markov processes. The arguments used to
obtain strong invariance principles for discrete-time processes do not directly
carry over to the continuous-time case. For the Zig-Zag sampler, which is a
specific PDMP, we show that the optimal Gaussian approximation rate can
be obtained. This is the first MCMC sampler, within the considered class of
problems, for which this optimal rate has been obtained. We demonstrate
how these results can be used to analyse the batch means method for sim-
ulation output of Piecewise Deterministic Monte Carlo (PDMC) samplers.
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Consequently, many results regarding uncertainty quantification now carry
over to PDMC samplers. Since previous work on estimation of the MCMC
standard error is based on strong invariance principles with limited accuracy,
our results weaken the currently available regularity conditions guaranteeing
strong convergence of the batch means estimator in any MCMC setting. We
also derive a fluctuation result for additive functionals of ergodic diffusions
using our Gaussian approximation results. The results of Chapter 3 resulted
in the publication

A. Pengel and J. Bierkens. Strong invariance principles for er-
godic Markov processes. Electronic Journal of Statistics, 18(1):191–246,
2024.

In Chapter 4, we consider the problem of uncertainty quantification for
MCMC in the high-dimensional setting. Firstly, in the high-dimensional set-
ting, it is not even clear if a Markov central limit theorem holds. The critical
challenge in the high-dimensional setting is to determine how long the simu-
lation time must be to ensure the validity of the Gaussian approximations as
the dimension of the problem grows. This dissertation contributes to the field
by introducing novel dimension-dependent bounds for the Gaussian approx-
imation of a wide class of MCMC samplers. Our obtained approximation
results provide explicit bounds for ψ̄N and ψd, the dependence of the dimen-
sion of the state space and feature space on the approximation rate. For
applications in Bayesian statistics, our results provide a direct link between
the statistical model complexity and the computational complexity of the
MCMC algorithm. Furthermore, this work obtains the first result attain-
ing the optimal approximation rate for MCMC samplers in a multivariate
setting. We also consider a wider class of ergodic processes than previously
examined in MCMC output analysis and give novel results that quantify the
effect of slower ergodicity rates on the Gaussian approximation error. Our
results provide us with explicit simulation requirements such that a Markov
CLT holds. Moreover, our results can be used to adapt the tuning paramet-
ers of the variance estimation methods considered in Vats et al. [152; 151] to
high-dimensional settings and give simulation requirements that guarantee
the validity of these variance estimation methods. Therefore, we are able
to give conditions for valid uncertainty quantification for high-dimensional
MCMC algorithms.
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Finally, our results enable us to study the convergence complexity of a
broad range of termination criteria and show that the termination rules in-
troduced in Glynn and Whitt [73] and Vats et al. [152] can be applied to
high-dimensional settings. These results explicitly describe how the termina-
tion time scales with the desired precision and the complexity of the problem.
We give conditions that guarantee that the termination time of an MCMC
algorithm scales polynomially in dimension while ensuring a desired level
of precision. The results presented in Chapter 4, resulted in the following
papers:

A. Pengel, J. Yang, and Z. Zhou. Gaussian approximation and
output analysis for high-dimensional MCMC.
arXiv preprint, arXiv:2407.05492, 2024.

A. Pengel, J. Yang, and Z. Zhou. High-dimensional Gaussian
approximation for continuous-time processes. In preparation.
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Chapter 2

MCMC and Output Analysis

The purpose of Chapter 2 is to give an overview and discussion on some
existing results related to MCMC and output analysis. In Section 2.2, we
discuss several discrete-time and continuous-time MCMC algorithms. We
also give a brief introduction to drift and minorisation conditions. In Section
2.3, we give an overview of some existing results on MCMC output analysis,
including results on termination criteria and estimation of the asymptotic
variance. Furthermore, we also briefly discuss some proposed ideas for con-
vergence diagnostics for PDMPs.

2.1. Introduction

Suppose our goal is to sample from a probability distribution π(dx) on E =
Rd, which admits Lebesgue density

π(x) =
e−U(x)∫

E
e−U(x) dx

, (2.1)

where U is referred to as the associated potential of the target π. We will
assume that U is twice continuously differentiable and can be evaluated point-
wise.

2.2. Markov Chain Monte Carlo Algorithms

The Metropolis adjusted Langevin algorithm (MALA) and the Hamiltonian
Monte Carlo (HMC) sampler, introduced by Roberts and Tweedie [134] and

13
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Duane et al. [55] respectively, are widely used MCMC samplers in high-
dimensional settings. Also the Gibbs sampler, Gelfand and Smith [69], and
slice sampler, Neal [113] and Murray et al. [111], have enjoyed widespread
use.

We give a brief introduction to MALA. The main idea originates from the
so-called overdamped Langevin diffusion, which is the process X = (Xt)t≥0

that solves the stochastic differential equation

dXt = −∇U(Xt)dt+
√

2dWt, (2.2)

where (Wt)t≥0 is a standard d-dimensional Brownian motion. Under mild
conditions on the potential U it can be shown that π is the stationary distri-
bution of the Langevin diffusion. However, since, in general, the transition
kernel of this process is intractable, we cannot simulate this process exactly.
The Euler–Maruyama discretisation, which approximates the transition ker-
nel over a time step h with a Gaussian distribution, gives us the following
Markov chain Y = (Yk)k∈N

Yk+1 = Yk − h∇U(Yk) +
√

2hZk, (2.3)

where (Zk) denotes a sequence of i.i.d standard Gaussians. However, due
to the incurred approximation error, for fixed discretisation step h > 0, the
process Y will not have π as its stationary distribution. One possible solution
to compensate for this is by adding a so-called accept-reject step. Inspired
by the classical Metropolis-Hastings algorithm, proposed by Metropolis et al.
[104] and Hastings [78], the idea is to use the chain Y as proposed steps and to
subsequently accept these steps according to some probability α(x, y) which
depends on the current and proposed state, such that the resulting stationary
distribution is π. We give the simulation scheme of MALA in Algorithm 1
below.
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Algorithm 1. Metropolis adjusted Langevin algorithm

1. Initialise X0.
4. For k = 1, 2, . . . , T do
2. Simulate a proposal Yk according to
4.

Yk ∼ Nd(Xk−1 − h∇U(Xk−1), 2hIN).

3. Simulate U ∼ Unif([0, 1])
4. If U ≤ α(Xk−1, Yk):
4 Set Xk = Yk.
5. Else:
4 Set Xk = Xk−1.

The Metropolis-Hastings acceptance probability is given by

α(x, y) = 1 ∧ π(y)q(x; y − h∇U(y), 2hId)

π(x)q(y;x− h∇U(y), 2hId)
, (2.4)

where qd(·;m,Σ) denotes the Nd(m,Σ) density function. Note that the ratio
of the evaluations of π appearing in (2.4) will tend to give a higher acceptance
probability when the proposal is in a higher π-density region and will decrease
the acceptance probability for proposals in lower π-density regions. Similarly,
the ratio of the proposal densities corrects for the asymmetry of the proposals.
It is not difficult to show that the transition kernel of MALA satisfies the
detailed balance condition, namely,

π(dx)P (x, dy) = π(dy)P (y, dx). (2.5)

Note that the detailed balance condition can be interpreted as follows: in
stationarity, the probability of the chain being in dx and subsequently moving
to dy is equal to the probability of the chain being in dy and then moving to
dx. It can be shown that this is equivalent to the chain being invariant with
respect to time reversal, i.e., under the stationary measure, we have that
(Xs)0≤s≤t ∼ (Xt−s)0≤s≤t. Hence, we say that the chain X is π-reversible. It
is easy to show that a π-reversible process leaves π invariant. However, this
reversibility can lead to diffusive behaviour and, thus slow mixing. Say we
are in a region where π stays roughly equal, for example, in the tail of a
fat-tailed distribution. Then, for any proposal, π(y) will not be substantially
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different from the current state π(x). Hence, (2.5) implies that P (x, dy) and
P (y, dx) will be closely matched, which can lead to diffusive behaviour. The
sampler will thus explore the state-space in small steps, similar to a random
walk. Consequently, it will take longer to reach distant regions and thus the
sampling algorithm will exhibit poor convergence rates.

2.2.1. Piecewise Deterministic Monte Carlo

Recently, there has been growing interest in Monte Carlo algorithms based
on Piecewise Deterministic Markov Processes (PDMPs). The main appeal of
these processes is their non-reversible nature. It has been shown that non-
reversibility can significantly improve the performance of sampling methods,
in terms of both convergence rate to equilibrium and asymptotic variance,
see for example, the results of Hwang et al. [83] and Lelievre et al. [93] regard-
ing convergence to stationarity and Duncan et al. [56] and Rey-Bellet and
Spiliopoulos [131] regarding the asymptotic variance. Furthermore, PDMPs
have piecewise deterministic paths and can, therefore, be simulated without
discretisation error, in contrast to, for example, Langevin and Hamiltonian
dynamics. The primary sampling algorithms belonging to this class are the
Zig-Zag Sampler, the Bouncy Particle Sampler, and the Boomerang sampler,
introduced in Bierkens and Roberts [20], Bouchard-Côté et al. [26], and
Bierkens et al. [23] respectively. Moreover, since these processes maintain
the correct target distribution if sub-sampling is employed, they enjoy ad-
vantageous scaling properties to large datasets, as seen in Bierkens et al. [21].

Piecewise Deterministic Monte Carlo (PDMC) samplers consist of a po-
sition and a velocity component. We will consider processes Z = (Zt)t≥0

with Zt = (Xt, Vt), where Xt and Vt denote the position and velocity com-
ponent respectively. Our process takes values in E = X × V , where X de-
notes the state-space of the position component and V denotes the space of
attainable velocities. Piecewise Deterministic Markov processes are charac-
terised by their deterministic dynamics between random event times along
with a Markov kernel that describes the transitions at events. More specific-
ally, their deterministic dynamics are described by some ordinary differential
equation. Both the Zig-Zag process and the Bouncy Particle sampler have
piecewise linear trajectories characterised by

dXt

dt
= Vt and

dVt
dt

= 0.
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Thus the rate of change of the position is described by the velocity, whereas
the velocity does not change along the deterministic dynamics. Changes in
the velocity occur according to some inhomogeneous Poisson process of rate
λ(Zt). The Poisson events consist of changes in the velocity component of our
process. The fundamental idea behind these sampling methods is to choose
the event rate and the changes in velocity such that the position component
explores the state space according to the target distribution π. The event
rate should increase in an appropriate manner as the position moves towards
regions of lower probability mass.

For the Zig-Zag process (ZZP), the set of possible velocities is given by
V = {−1,+1}d. We distinguish N types of events for the Zig-Zag Sampler.
For every dimension i of our position component, an event will consist of
flipping component i of the velocity, while keeping the other (d−1) compon-
ents unchanged. More specifically, our transition at events can be described
by Fi : V → V , which is the mapping that flips the i-th component of the
velocity, i.e., for v ∈ V we have that the k-th entry of Fi(v) is given by

(Fi(v))k =

 −vk for k = i

vk for k ̸= i,

where vk denotes the k-th entry of the velocity v for k = 1, . . . , d. A change
in the i-th component of the velocity will be governed by an inhomogeneous
Poisson process of rate λi. For the (canonical) Zig-Zag Sampler these rates
are given by

λi(x, v) = (vi∂xiU(x))+ , (2.6)

where (x)+ := max{x, 0}. Hence, for the Zig-Zag process, events occur with
rate

λZ(x, v) =
d∑
i=1

λi(x, v) =
d∑
i=1

(vi∂xiU(x))+ . (2.7)

We see that given an initial position and velocity, in components where we are
moving against the gradient of our potential U , then the switching intensity
will be low. Since the direction of this component contributes to moving
in a direction with higher probability mass relative to our current position.
Analogously, components that are moving in the direction of the gradient of
the potential will have a higher switching intensity. The simulation scheme
for Zig-Zag is given in Algorithm 2 below.
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Algorithm 2. Zig-Zag Sampler

1. Initialise (X0, V0)← (x, v) and T0 ← 0.
2. For k = 1, 2, . . . simulate τ 1k , · · · , τ dk according to
4.

Pr
(
τ ik ≥ t

)
= exp

(
−
∫ t

0

λi(Xτk−1
+ sVτk−1

, Vτk−1
)

)
ds,

4. for i = 1, . . . , d.
3. For s ∈ (0, τk) set (Xτk−1+s, Vτk−1+s)← (Xτk−1

+ sVτk−1
, Vτk−1

).

4. The time of the k-th event is given by Tk = Tk−1 + τ i0k ,
4 with i0 = mini{τ ik}di=1.
5. Update velocity of component i0 at the event time
4 VTk = Fi0(VTk−1

).

In Bierkens et al. [21] it is shown that if we have

λi(x, v)− λi(x, Fi(v)) = vi∂xiU(x), for i = 1, . . . , d,

then the Zig-Zag process has the desired invariant distribution given by
π(dx)ν(dv), where the target distribution π is the marginal distribution of
the position component and ν is a uniform distribution over the set of ve-
locities V . Consider the case when the target π is of product form, namely
π(x) =

∏d
i=1 πi(xi), where each πi is a one-dimensional probability dens-

ity. Then, the Zig-Zag process with stationary distribution π can be defined
through d independent one-dimensional Zig-Zag processes. The potential of
the product form target is given by U(x) = −

∑d
i=1 log πi(xi), and therefore

the corresponding Poisson event rates are given by

λi(x, v) =

(
−vi

∂xiπi(xi)

πi(xi)

)+

= (vi∂xiUi(x))+ , (2.8)

where Ui(x) = − log πi(xi). Because the switching intensity of every coordin-
ate only depends on its own position and velocity, we see that the corres-
ponding Poisson processes are independent. Therefore it follows that the
d-dimensional Zig-Zag process Zt with target distribution π can be decom-
posed into d independent one-dimensional Zig-Zag processes (Zi

t)
d
i=1, where

every coordinate i moves according to Zi
t which has target distribution πi for

i = 1, . . . , d.
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Bouncy Particle Sampler

For the Bouncy Particle Sampler (BPS), the state-space of the velocity is
given by V = Rd. The rate at which the BPS changes its velocity is determ-
ined by the directional derivative of the potential U along the direction of
the velocity evaluated at the current position

λB(x, v) : = (⟨∇U(x), v⟩)+ . (2.9)

If ⟨∇U(x), v⟩ < 0, then moving according to our velocity from our current
position will result in a decrease of potential energy. This corresponds to
moving to a region with higher probability mass, and therefore we desire the
switching intensity to be zero. Similarly, the larger ⟨∇U(x), v⟩, the more
increase in potential energy is gained by moving along direction v relative
to our current position. This specification of the intensity motivates the
following changes for the velocity at events:

R(x)v := v − 2
⟨∇U(x), v⟩
∥∇U(x)∥2

∇U(x). (2.10)

Note that the projection of the velocity v onto ∇U(x), the gradient of
the potential, is given by

⟨∇U(x), v⟩
∥∇U(x)∥2

∇U(x).

Therefore an application of the reflection R(x) to velocity v will result in
flipping the components of v that are in the direction of ∇U(x), whereas,
the components orthogonal to ∇U(x) remain unchanged. Flipping the velo-
city components in the direction of ∇U(x) at events, is desirable since given
our position, −∇U(x) gives the direction of the steepest descent in potential
energy.

Unfortunately, the canonical rates (2.9) can result in a reducible process
for elliptical symmetric targets and therefore, we add a refreshment rate
γ : X→ R+ to our switching intensity

λ̄(x, v) : = λB(x, v) + γ(x).

At events, we will refresh with probability determined by the relative intens-
ity of the refreshment and the canonical rate. At refreshments, we will draw
the velocity according to its stationary distribution ν. The Bouncy Particle
Sampler is given in Algorithm 3 below.
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Algorithm 3. Bouncy Particle Sampler

1. Initialise (X0, V0)← (x, v) and T0 → 0
2. For k = 1, 2, · · · simulate τk according to
4.

Pr(τk ≥ t) = exp

(
−
∫ t

0

λ̄(Xτk−1
+ sVτk−1

, Vτk−1
)

)
ds

3. For s ∈ (0, τk) set (Xτk−1+s, Vτk−1+s)← (Xτk−1
+ sVτk−1

, Vτk−1
)

4. The time of the k-th event is given by Tk = Tk−1 + τk
5. Update velocity at the event time
4 with probability λ(Xτk , Vτk)/λ̄(Xτk , Vτk) reflect the velocity VTk = R(XTk)VTk−1

4 Otherwise, refresh the velocity according to VTk ∼ ν

In the one-dimensional case the canonical BPS and ZZS are described by
the same PDMP. For a more detailed introduction to PDMP-based samplers,
we refer to Fearnhead et al. [65]. It can be shown that under very mild reg-
ularity conditions, both sampling processes admit a stationary distribution
given by

µ(dx, dv) = π(dx)υ(dv), (2.11)

where the target distribution π is the marginal distribution of the position
component, and ν is the marginal distribution of the velocity component.
Moreover, an ergodic law of large numbers holds, i.e.,

lim
T→∞

1

T

∫ T

0

g(Xs, Vs) ds =

∫
E

g(x, v)µ(dx, dv) =: µ(g),

for all µ-integrable g. Let f be a function such that π(|f |) < ∞, then
from the independence of position and velocity at equilibrium, we see that
1
T

∫ T
0
f(Xs)ds, the time average of the position component, is a natural es-

timator for π(f).

Remark 2.2.1. Both the ZZS and BPS can be simulated without discretisa-
tion error through Poisson thinning; see Lewis and Shedler [94]. However,
this requires finding a dominating function for the switching intensities, which
in some applications might be difficult. We refer to the results of Bertazzi
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et al. [15] and Bertazzi et al. [16] for discretisation schemes of PDMPs, which
at the cost of exactness, only require point-wise evaluations of the gradient
for simulating event times. △

2.2.2. Drift and Minorisation conditions

Drift and minorisation conditions are widely used for obtaining quantitative
bounds for the mixing time of Markov chains. The drift condition describes
how fast the Markov chain moves towards subsets of the state space, while
the minorisation condition controls how fast the Markov chain forgets its
past. We say that the Markov chain satisfies a geometric drift condition if
Drift Condition 1 holds.

Drift Condition 1. Let there exist a function V : E → R+, some set C,
constants λ ∈ (0, 1) and 0 < b, υC <∞ such that υC = supx∈C V (x) and

PV (x) =

∫
E

V (y)P (x, dy) ≤ λV (x) + b1C(x),

for some set C ∈ E.

More specifically, the function V in Drift Condition 1 describes how fast
the chain in expectation will move towards the set C given that the chain is
currently in state x and how long the chain is expected to stay in this set
C. An appropriate drift function should have low values in high-probability
regions of the state space. Note that Drift Condition 1 implies that while the
chain is not in C, the value of the drift function will decrease geometrically.
In many applications, we can only guarantee that the drift function decays
at a polynomial rate while the process is not in C. This corresponds to the
following polynomial drift condition.

Drift Condition 2. Let there exist a function V : E → R+, some set C,
constants 0 < c, b, υC < ∞, such that υC = supx∈C V (x) and η ∈ (0, 1) such
that

PV (x) ≤ V (x)− cV (x)η + b1C(x),

for some set C ∈ E with π(C) > 0.

We say that an associated local m0-step minorisation condition holds for
the Markov chain if the following holds.
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Minorisation Condition 1. Let ν be some probability measure defined on
C such that

Pm0(x, ·) ≥ α1C(x)ν(·),

the minorisation volume α ∈ (0, 1], m0 ∈ N and small set C with π(C) > 0.

It is known that a multi-step minorisation condition holds for all widely
used MCMC algorithms, see for example Meyn and Tweedie [107; Propos-
ition 5.4.5]. Often it can even be shown that the Markov chain satisfies a
one-step minorisation condition. The minorisation condition controls how
fast the process forgets its past. In Section 3.2 and Section 4.5.1 we give a
detailed discussion. The main idea is that every time we hit set C, we have
a probability α the m0-skeleton point of the chain will be independent of the
current state.

For continuous-time processes, we can also introduce the drift and minorisa-
tion framework. Let X = (Xt)t≥0 be a stochastic process defined on a
filtered probability space (Ω,F , (Ft)t≥0,Px), with Polish state space (E,E )
with transition semigroup given by (Pt)t≥0 with finite invariant measure π.
For continuous-time processes, the petite set will now play the role of the
small set. We say that a set C is petite if there exists some non-trivial
measure ν such that for all x ∈ C we have that∫

Pt(x, ·)a(dt) ≥ αν(·), (2.12)

with α ∈ (0, 1], π(C) > 0, and sampling scheme a, which is a probability
distribution on R+. Note that if a(dt) = δt0(dt), then we have a small set
condition for the continuous-time process. In order to define drift conditions
for continuous-time processes, we introduce the generator. We say that L is
the generator of process X with domain D if for every function f ∈ D we
have that

Lf(x) = lim
t→0

Exf(Xt)− f(x)

t
, (2.13)

where the limit is uniform with respect to the supremum norm and D is the
set of continuous functions that are vanishing at infinity such that the limit
(2.13) exists. The generator of a process thus describes the expected infin-
itesimal evolution. Note that we can extend this concept and introduce to
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so-called extended generator, which is defined as the solution of the martin-
gale problem of process X. The extended generator has a larger domain and
coincides with the generator on D. We refer to Deligiannidis et al. [50] and
Bierkens et al. [22] for a characterisation of the (extended) generator of BPS
and ZZS, respectively. We say that X satisfies an exponential drift condition
if Drift condition 3 holds.

Drift Condition 3. Let there exist a function V : E → R+, λ ∈ (0, 1),
b <∞, and petite set C such that

LV ≤ −λV + b1C(x)

Similarly, we can define a polynomial drift condition for X;

Drift Condition 4. Let there exist a function V : E → R+, α ∈ (0, 1),
ζ ∈ (α, 1), cη > 0, b <∞, and petite set C such that

LV η ≤ −cηV η−ζ + b1C(x).

Drift and minorisation conditions provide a general approach for determ-
ining the speed of convergence to stationarity. We say that a Markov process
X is ergodic with convergence rate Ψ if

∥Pt(x, ·)− π∥TV ≤ V (x)Ψ(t), for all x ∈ E and t ≥ 0, (2.14)

where V is some positive π-integrable function and Ψ some positive function
that tends to zero as t→∞. Furthermore, a process is called polynomially or
exponentially ergodic if Ψ decays at a polynomial rate (1+t)−β or exponential
rate e−γt respectively for some β, γ > 0. The definition is applicable to
both the discrete-time and continuous-time settings. For a more thorough
discussion of these definitions, we refer to Meyn and Tweedie [105].

In Deligiannidis et al. [50] and Bierkens et al. [22], exponential ergodicity
for the Bouncy Particle Sampler and the Zig-Zag process are established re-
spectively through the drift and minorisation approach of Meyn and Tweedie
[107]. Note that explicit ergodicity rates can directly be used to obtain mix-
ing time bounds. For other general bounds for the mixing time based on the
drift and minorisation framework, we refer to Rosenthal [136].
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2.3. Output Analysis

2.3.1. Termination Criteria

Because MCMC methods can only approximate the target distribution, it
is crucial to assess the uncertainty in the simulation results. Therefore, the
point estimate π̂T (f) should always be accompanied by its standard error.
However, if we keep our simulation going until the standard error is suffi-
ciently small, we are effectively using a termination rule. The same is the
case if we terminate based on another statistic. Practitioners often termin-
ate the simulation when the effective sample size is sufficiently large. The
effective sample size is defined in (2.20) and (2.23). The effective sample size
(ESS) is a measure of the efficiency of an MCMC algorithm, incorporating
the difference in magnitude between the MCMC standard error and the in-
dependent Monte Carlo error. The ESS quantifies how many independent
samples the MCMC simulation output is equivalent to. Note that the com-
putation of the ESS also requires an estimate of the asymptotic covariance
matrix Σf . Moreover, it is well known that stopping according to the effect-
ive sample size is equivalent to termination rules based on confidence sets,
see for example Vats et al. [152].

The Fixed Volume Stopping Rule (FVSR) is a sequential stopping pro-
cedure where the simulation is terminated when the volume of a confidence
set for π(f) falls below some predetermined tolerance level. By the CLT, we
can immediately construct a confidence ellipsoid C(T ) for our parameter of
interest, namely,

C(T ) = {θ ∈ Rp : T (π̂T (f)− θ)⊤Σ̂−1
T (π̂T (f)− θ) < qα}, (2.15)

where Σ̂T denotes some consistent estimator of the asymptotic covariance
matrix, which is evaluated using simulation output until time T , and where
qα denotes, depending on the choice of estimator Σ̂T , the appropriate quantile
of a Chi-squared or Hotelling’s T-squared distribution such that the coverage
of the confidence ellipsoid is (1− α).

Given some user-specified tolerance level ε, the FVSR defines the time of
termination T1(ε) for our simulation experiment as

T1(ε) = inf{t ≥ 0 : Vol(C(t))1/d + Λ(t) ≤ ε }. (2.16)



Chapter 2. MCMC and Output Analysis 25

Here Λ(t) is some sequence of order o(t−1/2). The role of Λ(t) is to prevent
early termination due to a possible inaccurate estimate of the covariance mat-
rix due to small sample size. Moreover, the minimum simulation threshold
should be chosen such that the MCMC sampler is in its equilibrium phase. A
common choice is Λ(t) = 1{t>T ∗} + 1/T , for some minimal desired simulation
sample size T ∗.

Unfortunately, since our sample size at termination is random, it cannot
be immediately guaranteed that the resulting confidence set indeed has the
correct coverage. Glynn and Whitt [73] give an example where the FVSR
is employed with an estimator of the covariance matrix that only converges
in probability to the true asymptotic covariance matrix, and the resulting
confidence interval does not have the correct coverage. If Σ̂T

p−→ Σf then we

say that Σ̂T is (weakly) consistent. If Σ̂T converges almost surely to Σf , we
say that the estimator is strongly consistent. We say that a functional weak
law of large numbers (FWLLN) holds for Σ̂T if

(Σ̂Tt)t∈[0,1]
w−→ (Σf )t∈[0,1],

here the weak convergence is in the Skorokhod topology. Note that in general
the weak law of large numbers does not imply an FWLLN, as shown in Glynn
and Whitt [71]. Conditions that result in asymptotic validity of the FVSR
are described in the following theorem.

Theorem 2.3.1. (Glynn and Whitt [73; Theorem 1; Theorem 2]) Let π̂T (f)
satisfy an FCLT and suppose that a FWLLN holds for Σ̂T or that Σ̂T is a
strongly consistent estimator of Σf . Then as ε tends to zero we have that

1. The termination time T1(ε) is asymptotically equivalent to

ε2T1(ε)
a.s.−→ c2/dα,p |Σf |

1/d
, (2.17)

where |·| denotes the determinant of a matrix and cα,p denotes the

product of q
p/2
α and the volume of a standard p-dimensional hyperball.

2. The following central limit theorem holds at the termination time

ε−1

 1

T1(ε)

T1(ε)∑
k=1

f(Xk)− π(f)

 w−→ Nd
(
0, c−4/d

α,p |Σf |−2/d Σf

)
(2.18)



2.3. Output Analysis 26

3. Asymptotic validity of the resulting confidence set

Pr (C(T1(ε)) ∋ π(f)) −→ 1− α. (2.19)

We see that it is of central importance that we have an estimator Σ̂T

of the asymptotic covariance matrix Σf that is either strongly consistent or
satisfies a functional weak law of large numbers. While a CLT is enough to
guarantee the validity of a confidence interval, for termination criteria we
follow the confidence interval over a simulation trajectory. Hence, we need
to describe how the trajectory of both the sample average and the empirical
confidence interval fluctuate around the values they are designed to estimate.

In Vats et al. [152] and Vats et al. [151], the strong consistency of the mul-
tivariate batch means and spectral variance estimator is proven under the as-
sumption of a strong Gaussian approximation. Hence Theorem 2.3.1 justifies
the use of the FVSR implemented with these estimators of the asymptotic
variance.

Part 1 of Theorem 2.3.1, can be used to show that termination according
to T1(ε) is asymptotically equivalent to termination according to the following
definition of the effective sample size

ESS1 =
T∣∣∣Σ̂f

∣∣∣1/d (2.20)

Since π̂(f) and Σ̂f are in practice often correlated, choosing a justifiable
tolerance ε is not straightforward. Therefore Vats et al. [152] propose the use
of the Relative Fixed Volume Stopping Rule (RFVSR), where our stopping
criteria takes the spread of our target distribution into account. This gives
the following termination rule

T2(ε) = inf{t ≥ 0 : Vol(C(t))1/d + Λ(t) ≤ ε |Γ̂f |1/2d}, (2.21)

where

Γ̂f =
1

T

T∑
k=1

(f(Xk)− π̂T (f)) (f(Xk)− π̂T (f))⊤. (2.22)

Under the conditions of Theorem 2.3.1, Vats et al. [152] show asymptotic
validity of this stopping rule and show that it is asymptotically equivalent to
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the following version of the effective sample size

ESS2 = T

(
|Γ̂f |
|Σ̂f |

)1/d

. (2.23)

Note that while the results of Vats et al. [151; 152] offer strongly consistent
estimators of Σf , they are based on a strong Gaussian approximation with an
implicit rate. Consequently, the results do not guarantee a convergence rate
for any of the proposed estimators. Moreover, it is noted in Glynn and Whitt
[73] that the minimum simulation threshold T ∗ should be chosen to ensure
that the estimator of the asymptotic variance is reliable. Furthermore, Glynn
and Whitt [73] assumes an FCLT for the simulation process. Therefore,
the simulation threshold should also enforce the error introduced by the
Gaussian approximation to be at least of smaller magnitude than the desired
precision level. This would require a quantitative analysis of the introduced
termination rules. In Section 4.4.2 of Chapter 4, we provide a solution to
this challenge.

2.3.2. Convergence Diagnostics for Piecewise Deterministic Monte
Carlo

Convergence diagnostics are statistical tests that can be used to assess the
convergence of our Markovian sampler to stationarity and to determine if the
algorithm is exploring the state-space properly. If our sampler is not moving
according to its stationary distribution, the simulated output will misrepres-
ent the target distribution. This can be the case if, for example, the sampler
is initialised in a low-probability region of the target. Slow mixing can also
occur when dealing with multi-modal target distributions. When the tar-
get distribution has multiple local maxima, the sampler can get ‘trapped’ in
a high probability region around a local mode. Consequently, the sampler
could not have explored the full support of the target distribution during a
specified length of simulation.

A methodological approach would be to assess the convergence of our
algorithm through statistical tests where the null hypothesis asserts that our
process is moving according to its long-run dynamics and has explored the
state space properly. Following this approach, we can never prove that our
process has reached equilibrium. Despite this shortcoming of convergence
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diagnostics, practitioners often assume that stationarity of their MCMC
sampler is reasonable if they find insufficient evidence to reject this hypo-
thesis.

We consider testing procedures for the null hypothesis, which postulates
that starting from some time t̄, we are in stationarity, i.e.,

H0 : Zt ∼ µ, for all t ≥ t̃,

where t̄ denotes the burn-in time. For an extensive overview of commonly
used convergence diagnostics in MCMC literature, we refer to Mengersen
et al. [102], Roy [137], and Cowles and Carlin [36]. Most of these methods
can also be applied to PDMC algorithms. The usefulness of this approach for
examining stationarity will depend upon the power of the employed statist-
ical tests. Note that this is a very difficult testing problem. This is a direct
consequence of the obvious but critical factor that the target distribution π
is unknown. Moreover, the positive correlation resulting from these samplers
will result in larger standard errors, which leads to a decrease in power for
most testing procedures. This will especially be the case if the sampler is
mixing slowly.

Nevertheless, convergence diagnostics are still widely used. In the PDMP
setting, we have the auxiliary velocity component at our disposal. Con-
sequently, the null of stationarity has more components, which allows the
use of more diagnostic tools. In stationarity, the distribution of the velocity
component is known. Moreover, the position and velocity components are
independent. We exploit these characteristics of existing PDMC algorithms
to construct convergence diagnostics. As cornerstones for these testing pro-
cedures, we introduce the empirical distribution for the joint and marginal
position and velocity components:

µT (A×B) =
1

T

∫ T

0

1{Xt∈A;Vt∈B}dt, (2.24)

πT (A) = µT (A× V) =
1

T

∫ T

0

1{Xt∈A}dt, (2.25)

νT (B) = µT (X×B) =
1

T

∫ T

0

1{Vt∈B}, dt (2.26)
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where A ∈ B(X) and A ∈ B(V). By the ergodic law of large numbers, it
immediately follows that these are strongly consistent estimators. Moreover,
if we have that a CLT holds, then for every C1, · · · , Cp ∈ B(E), we have that
√
T
(
µT (C1), · · · , µT (Cp))

⊤ − (µ(C1), · · · , µ(Cp))
⊤) w−→ Np(0,ΣC), (2.27)

where C denotes the sets C1, · · · , Cp and the asymptotic covariance matrix
is given given by (ΣC)ij for 1 ≤ i, j ≤ p by its entries

ΣCii = 2

∫ ∞

0

Pr (Z0 ∈ Ci;Zt ∈ Ci) dt− 2µ(Ci)
2

and for i ̸= j

ΣCij =

∫ ∞

0

Pr (Z0 ∈ Ci;Zt ∈ Cj) dt+
∫ ∞

0

Pr (Z0 ∈ Cj;Zt ∈ Ci) dt−2µ(Ci)µ(Cj),

where

Pr (Z0 ∈ D;Zt ∈ C) =

∫
D

Pt(z, C)µ(dz),

for measurable sets C and D.

Testing for equilibrium of velocity

We can immediately reject the hypothesis of stationarity of our process if the
velocity component does not possess the correct distribution. The equilib-
rium distribution of the velocity component is fully specified. Therefore, the
construction of an appropriate statistic is straightforward. For the Zig-Zag
process, the stationary distribution of the velocity component is a uniform
distribution over the velocity space {−1, 1}d. A naive approach would con-
sist of checking that the process attains every possible velocity vector for an
equal amount of time. However, it would be more efficient to consider the
components individually. Observe that under the null hypothesis of station-
arity, the probability of every velocity component being −1 or +1 must be
equal. Otherwise, it would contradict the uniform distribution of the velocity
over the set {−1, 1}d. Moreover, all the velocity components must be inde-
pendent. This motivates a diagnostic tool that detects if the amount of time
each velocity component was equal to −1 or +1 is statistically dissimilar. Let
V i
t denote the i-th velocity component at time t and introduce the following

events
Bi := {(v1, · · · , vd) ∈ V : vi = +1} (2.28)
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for i = 1, · · · , d. In order to assess the convergence of the velocity component,
we introduce the following statistic

C1
T = ((vT (B1), · · · , vT (Bd))− ι/2)⊤ Σ̂−1

B,T ((vT (B1), · · · , vT (Bd))− ι/2) ,
(2.29)

where

νT (Bj) =
1

T

∫ T

0

1{V j
t =+1}dt, for j = 1, · · · , d,

Σ̂B,T denotes a consistent estimator of the asymptotic covariance matrix of
(vT (B1), · · · , vT (Bd)), and ι denotes a d-dimensional vector of ones.

Theorem 2.3.2. Let Zt = (Xt, Vt) be a stationary d-dimensional Zig-Zag
process such that the CLT holds and that Σ̂B,T is a consistent estimator of
the asymptotic variance, given in (2.27) with C = B1, · · · , Bd, then

C1
T

w−→ χ2(d)

Proof. The proof follows immediately from the central limit theorem for a
vector of empirical probabilities as given in (2.27) with Ci = X × Bi for
i = 1, · · · , d, and the continuous mapping theorem.

Similarly, the velocity of the Bouncy Particle Sampler has a multivari-
ate normal distribution under the null hypothesis. Multiple approaches for
testing the Gaussianity of stationary data are available. In some specifica-
tions of the BPS, the velocity component has a uniform distribution over an
ellipsoid. In this situation, we can construct a moment-based test statistic,
which consists of a vector of sample moments that characterise a uniform
distribution on an ellipsoid.

Testing for independence of position and velocity

The null hypothesis of stationarity asserts that the position and velocity
component of both the Zig-Zag sampler and the Bouncy Particle sampler
are independent. This result suggests that a statistic that can measure the
dependence between the position and velocity can give us a reasonable indic-
ation if the process is not exploring the state space according to its stationary
distribution. If diagnostic test C1

T is unable to reject the stationary distri-
bution of the velocity component, a natural next step would be to consider
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the distribution of the velocity given the position of the process. This can be
done by selecting a partition {Aj}ℓj=1 of the position-space and considering
the distribution of the velocity for each subset of the position. This is, in fact,
a Pearson Chi-square test applied to stationary Markovian data. Therefore,
we introduce the test statistic

C2
T = (µT (A×B)− πT (A)/2)⊤Σ̂−1

C,T (µT (A×B)− πT (A)/2),

where µT (A×B) denotes a vector of all pairs µT (Ai×Bj) for i = 1, · · · , ℓ and
j = 1, · · · , 2d. Here {Aj}ℓj=1 denotes a partition of the position-space and
{Bi}2di=1 are defined in (2.28), with adding the complementary events where
the velocity is equal to −1 to our vector of empirical probabilities.

Theorem 2.3.3. Let Zt = (Xt, Vt) be a stationary d-dimensional Zig-Zag
process such that the CLT holds and let Σ̂C,T be a consistent estimator es-
timator of the asymptotic variance of µT (A×B) given in (2.27) then

C2
T

w−→ χ2(2d(ℓ− 1))

Proof. By the central limit theorem for a vector of empirical probabilities as
given in (2.27) we have that

(µT (C)− µ(C))⊤Σ−1
2 (µT (C)− µ(C))

w−→ χ2(2dℓ)

with Ci = Aℓ × Bi for i = 1, · · · , 2d and i = 1, · · · , ℓ. By a standard
projection argument as stated in Van der Vaart [149; Lemma 16.6] and the
continuous mapping theorem, the claim follows.

Note that under the null hypothesis, the distribution of the velocity is
fully specified and does not have to be estimated. Therefore less degrees
of freedom are lost in the asymptotic distribution of the Pearson statistic.
Unfortunately, for the implementation of both considered test statistics, we
need to estimate an asymptotic covariance matrix, which will result in a loss
of statistical power.

Remark 2.3.4. For the Pearson statistic C2
T , we have not shown that it is

allowed to choose the partition of the position variable according to simula-
tion output. Presumably, an argument along the lines of Van der Vaart [149;
Theorem 17.9] could validate this procedure. △
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Chapter 3

Gaussian Approximations for
Continuous-time Processes

While Gaussian approximation results have many applications, results for
continuous-time settings have been limited. In this chapter, we obtain strong
invariance principles for a broad class of ergodic Markov processes. As an
application, we show how many useful results regarding the estimation of
the asymptotic variance of Markov chain simulation output carry over to
PDMP-based methods.

3.1. Introduction

Let S = (St)t≥0 denote a stochastic process and let ψ = (ψt)t≥0 be a positive
sequence, we remind the reader that we write

ST = oa.s.(ψT ) and ST = Oa.s.(ψT )

to denote

P
(

lim
T→∞

ST
/
ψT = 0

)
= 1 and P

(
lim sup
T→∞

|ST |
/
ψT <∞

)
= 1

respectively. Let X = (Xk)k∈N be a stochastic sequence defined on a common
probability space and consider the partial sum process Sn, given by Sn =∑n

k=1Xk. Without loss of generality, suppose that the sequence has zero
mean and unit variance. The Komlós-Major-Tusnády approximation Komlós
et al. [89]; Komlos [90] asserts that if E|X1|p < ∞ for some p > 2, then on

33
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a suitably enriched probability space, we can construct a Brownian motion
W = {W (t), t ≥ 0} such that

Sn = W (n) + oa.s.(n
1/p) (3.1)

If we additionally assume that the moment-generating function exists in a
neighbourhood of zero, i.e., Eet|X| <∞ for some t > 0, then one can construct
a Brownian motion W such that

Sn = W (n) +Oa.s.(log n) (3.2)

Furthermore, if only existence of the the second moment is assumed, Major
[101] showed that there exists a sequence tn ∼ n such that

Sn = W (tn) + oa.s.(n
1/2) (3.3)

The error terms appearing in the strong invariance principles (3.1), (3.2), and
(3.3) are optimal. Given their broad range of applications, it is of great in-
terest to extend these results beyond the i.i.d. setting. An extensive overview
of invariance principles for dependent sequences is given in Berkes et al. [13].
In Markovian settings, strong approximation results were obtained by Cuny
et al. [42], Csáki and Csörgő [37], Vats et al. [151], and Merlevède et al. [103],
among others. The strong invariance principle of Merlevède et al. [103] at-
tains the Komlós-Major-Tusnády bound given in (3.2). The results of Csáki
and Csörgő [37] and Merlevède et al. [103] are established through an ap-
plication of Nummelin splitting, introduced in the seminal papers of Athreya
and Ney [6] and Nummelin [115]. Provided that the transition operator of
the chain satisfies a one-step minorisation condition, a bivariate process can
be constructed such that this process possesses a recurrent atom and the first
coordinate of the constructed process is equal in law to the original Markov
chain. Consequently, the chain inherits a regenerative structure and can thus
be divided into independent identically distributed cycles. By application of
the Komlós-Major-Tusnády approximations strong invariance principles can
be obtained. Strong approximation results for Markov chains are useful tools
for analysing estimators of the asymptotic variance of Markov Chain Monte
Carlo (MCMC) sampling algorithms. The results of Damerdji [44; 45], Flegal
and Jones [66], and Vats et al. [151] show strong consistency of the batch
means and spectral variance estimators for MCMC simulation output using
the appropriate strong invariance principles.
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A natural approach for obtaining a more refined strong invariance prin-
ciple would be through regenerative properties of the process. However, it
is in general not possible to show that the transition semigroup satisfies a
minorisation condition such that a regenerative structure can be obtained.
The resolvent chain, on the other hand, does satisfy a one-step minorisation
condition. Utilising this result, Löcherbach and Loukianova [98] extends the
concept of Nummelin splitting to Harris recurrent Markov processes. Hence
we can redefine the process such that it is embedded in a richer process which
is endowed with a recurrent atom. Although the resulting cycles are not in-
dependent and we therefore do not have regeneration in the classic sense,
we do obtain short-range dependence. Therefore we can utilise the approx-
imation results of Berkes et al. [12] to obtain a strong invariance principle
attaining a convergence rate of order Oa.s.(T 1/4 log T ). This result is formu-
lated in Theorem 3.3.5 and covers a wide range of Markov processes including
ergodic diffusions. Although the nearly optimal bound Oa.s.(T 1/p log(T )2) of
Berkes et al. [12] does not carry over, to the best of our knowledge, there are
currently no approaches established that lead to superior rates for the class
of processes considered in Theorem 3.3.5.

For PDMPs we are able to give a strong invariance principle with an
improved approximation error. We show that the univariate Zig-zag process
has regenerative cycles. This allows us to follow the approach of Merlevède
et al. [103] such that the optimal strong approximation error of Oa.s.(T 1/p)
can be obtained. Moreover, if the target distribution factorises into a product
of independent densities, the optimal approximation bound carries over to
the multivariate settings. Furthermore, we also show that the results of
Merlevède et al. [103] can be extended under less restrictive conditions such
that the optimal approximation error (3.2) is still attained. Finally, we dis-
cuss some applications of our obtained strong invariance principles. We
demonstrate how the obtained strong approximation results can be util-
ised for analysing the batch means estimator of the asymptotic variance
of continuous-time Monte Carlo samplers. Theorem 3.4.2 weakens the ex-
isting regularity conditions, guaranteeing strong convergence of the batch
means estimator in an MCMC setting. This is a direct consequence of the
fact that Theorems 3.3.6 and 3.3.7 obtain the optimal approximation rate
of Oa.s.(T 1/p) whereas previous work on estimation of the MCMC standard
error is based on strong invariance principles with limited accuracy, which
we further explain in Remark 3.4.3. Furthermore, we demonstrate the ap-
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plicability of our results to diffusion processes and show that the magnitude
of increments can be described with our obtained approximation results.

This chapter is organised as follows. In Section 3.2, we review Nummelin
splitting in continuous time as introduced in Löcherbach and Loukianova [98]
and discuss other relevant results. In Section 3.3, the main results of this
chapter are given. In Section 3.4, we discuss the estimation of the asymptotic
variance for PDMC simulation output. Section 3.5 illustrates the applicab-
ility of our results to diffusion processes. In Section 3.6, the proofs of the
main results are given.

3.2. Nummelin splitting in continuous time

LetX = (Xt)t≥0 be a stochastic process defined on a filtered probability space
(Ω,F , (Ft)t≥0,Px), with Polish state space (E,E ) and initial value X0 = x.
We consider the case where X is a positive Harris recurrent strong Markov
process with transition semigroup given by (Pt)t≥0 with finite invariant meas-
ure π. By definition of positive Harris recurrence, π can be normalised to be
a probability measure and we have that

π(A) > 0 =⇒ Px

(∫ ∞

0

1{Xs∈A}ds =∞
)

= 1, x ∈ E. (3.4)

The resolvent chain X̄ = (X̄n)n≥0 is obtained by observing the process
at independent exponential times, i.e., X̄n := XTn for n ≥ 0. Here (Tn)n≥0

denote the sampling times at which we observe thne process X, which are
defined as T0 := 0 and Tn :=

∑n
k=1 σk, where (σk)k≥1 denote a sequence

of i.i.d. standard exponential random variables with mean equal to one.
The resolvent chain will inherit positive Harris recurrence from the original
process, see for example Höpfner and Löcherbach [82; Thereom 1.4]. The
transition kernel of the process X̄ = (X̄n)n∈N is given by

U(x,A) =

∫ ∞

0

Pt(x,A)e−tdt, (3.5)

and satisfies the one-step minorisation condition, see for example Höpfner
and Löcherbach [82] or Revuz [130],

U(x,A) ≥ h⊗ ν(x,A), (3.6)
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where h ⊗ ν(x,A) = h(x)ν(A), with h(x) = α1C(x) for some α ∈ (0, 1), a
measurable set C with π(C) > 0, and ν(·) a probability measure equivalent
to π(· ∩ C).

The minorisation condition of the resolvent chain motivates the introduc-
tion of the kernel K((x, u), dy) : E × [0, 1]→ E given by

K((x, u), dy) =


ν(dy) for (x, u) ∈ C × [0, α]

W (x, dy) for (x, u) ∈ C × (α, 1]

U(x, dy) for x /∈ C

, (3.7)

where the residual kernel W (x, dy) is defined as

W (x, dy) =
U(x, dy)− αν(dy)

1− α
. (3.8)

Since the resolvent chain is also positive Harris recurrent, it will hit C in-
finitely often. Given that the resolvent chain has hit C, with probability α
the chain will move independently of its past according to the small measure
ν and with probability (1− α) it will move according to the residual kernel
W . By the Borel-Cantelli lemma the residual chain will move according to ν
infinitely often. Let Rk denote the k-th time that the resolvent chain moves
according to ν. The randomised stopping times (Rk)k serve as regeneration
epochs for the resolvent; for every k, X̄Rk

has law ν and is independent of
both its past and of Rk. The implied regenerative properties that the pro-
cess X obtains through its resolvent are made explicit with the approach
of Löcherbach and Loukianova [98]. Their framework requires the following
regularity conditions on the transition semigroup of the process X:

Assumption 1. (i) The semigroup (Pt)t≥0 is Feller, i.e., for every bounded
and continuous function f , the mapping x 7−→ Ptf(x) =

∫
E
Pt(x, dy)f(y)

is bounded and continuous.

(ii) There exists a σ-finite measure Λ on (E,E ) such that for every t > 0,
Pt(x, dy) = pt(x, dy)Λ(dy), with (t, x, y) 7−→ pt(x, y) jointly measur-
able.

Note that by Assumption 1 it follows that U(x, dy), the transition kernel
of the resolvent chain, also has a density with respect to Λ(dy), which we will
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denote by u(x, y). At the so-called sampling times of the process X, we can
apply the Nummelin splitting technique to the resolvent chain. We then fill
in the original process between the sampling times. Following this proced-
ure, Löcherbach and Loukianova [98] construct on an extended probability
space a process Z with state space E × [0, 1] × E, that admits a recurrent
atom. The first coordinate of Z has the same law as the original process X,
the second coordinate denotes the auxiliary variables employed in order to
generate draws from the resolvent chain via the splitting procedure, and the
third coordinate corresponds to the subsequent values of the resolvent chain.

The process Z = (Z1
t , Z

2
t , Z

3
t )t≥0 can be constructed according to the fol-

lowing procedure. Firstly, let Z1
0 = X0 = x. Independently of Z1 generate

Z2
0 ∼ U [0, 1], where U [0, 1] denotes the uniform distribution on the unit inter-

val. Given {Z2
0 = u}, draw Z3

0 according to K((x, u), dx′). Then inductively
for n ≥ 1, on Zn = (x, u, x′):

I. Choose σn+1 according to(
pt(x, x

′)

u(x, x′)
1{0<u(x,x′)<∞} + 1{u(x,x′)∈{0,∞}}

)
e−tdt on R+. (3.9)

The next sampling time Tn+1 is given by Tn + σn+1.

II. On {σn+1 = t}, put Z2
Tn+s

:= u and Z3
Tn+s

:= x′ for all 0 ≤ s < t.

III. Draw a bridge of Z1 conditioned on its starting point Z1
Tn

and end point
Z3
Tn

, so that for every 0<s < t we obtain

Z1
Tn+s ∼

ps(x, y)pt−s(y, x
′)

pt(x, x′)
1{pt(x,x′)>0}Λ(dy). (3.10)

Let Z1
Tn+s

:= x0 for some fixed x0 ∈ E on {pt(x, x′) = 0}. Moreover,
given Z1

Tn+s
= y on s+ u < t we have that

Z1
Tn+s+u ∼

pu(y, y
′)pt−s−u(y

′, x′)

pt−s(y, x′)
1{pt−s(y,x′)>0}Λ(dy′). (3.11)

Again, on {pt−s(y, x′) = 0}, let Z1
Tn+s

= x0.

IV. At jump time Tn+1 we have Z1
Tn+1

:= Z3
Tn

= x′. Draw Z2
Tn+1

in-
dependently of Zs, s < Tn+1, uniformly on the unit interval. Given
{Z2

Tn+1
= u′}, generate

Z3
Tn+1
∼ K((x′, u′), dx′′). (3.12)
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Note that in the construction of Z the inter-sampling times (σn)n≥1 are drawn
according to (3.9), their conditional distribution given the starting and en-
dpoint of the sampled chain. Equation (3.10) and (3.11), describe the dis-
tributions of points in a bridge of the process X. The first coordinate of
Z consists of bridges drawn according to the law of the original process X,
between realisations of the resolvent chain. The results of Löcherbach and
Loukianova [98; 99] that we work with are given in the following propositions.
Firstly, the first coordinate of Z has the desired distribution.

Proposition 3.2.1 (Löcherbach and Loukianova [98; Proposition 2.8]). The
constructed process Z from the simulation scheme given in (3.9)-(3.12) is a
Markov process with respect to its natural filtration F. Moreover, the first
coordinate Z1 is equal in law to our process X, namely,

L((Xt)t≥0|X0 = x) = L((Z1
t )t≥0|Z1

0 = x).

Moreover, (Tn − Tn−1)n≥1 are i.i.d exponential random variables and are in-
dependent of Z1; therefore, we also have that

L((XTn)n≥0|X0 = x) = L((Z1
Tn)n≥0|Z1

0 = x).

Moreover, the process X is embedded in a richer process Z, which admits
a recurrent atom A := C× [0, α]×E in the sense of the following proposition.

Proposition 3.2.2 (Löcherbach and Loukianova [99; Proposition 4.2]). Let
(Sn, Rn) be a sequence of stopping times defined as S0 = R0 := 0 and

Sn+1 := inf{Tm > Rn : ZTm ∈ A} and Rn+1 := inf{Tm : Tm > Sn+1}.

Then ZRn is independent of FRn−1 for all n ≥ 1 and (ZRn)n≥1 is an i.i.d
sequence with

ZRn ∼ ν(dx)λ(du)K((x, u), dx′) for all n ≥ 1.

The stopping times {Sn}n thus denote the hitting times of the recurrent
atom A for the jump process (ZTn)n, and {Rn}n denote the implied regenera-
tion epochs of the process Z. As a direct consequence, we obtain the following
regenerative structure for the original process.
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Proposition 3.2.3 (Löcherbach and Loukianova [99; Proposition 4.4]). Let
f be a measurable π-integrable function, then we can construct a sequence of
increasing stopping times {Rn}n with R0 = 0 and

ξn :=

∫ Rn

Rn−1

f(Xs) ds, n ≥ 1,

such that the sequence {ξn}n is a stationary sequence under Pν . Moreover,
for n ≥ 2, ξn is independent of FRn−2 .

The regenerative structure given in Proposition 3.2.3 was also noted by
Sigman [140]. They define a process X to be one-dependent regenerative if
there exists, on a possibly enlarged probability space, a sequence of random-
ised stopping times Rn with corresponding cycle lengths ρn = Rn+1 − Rn

such that {(XRn+t)t≥0 , (ρn+k)k≥0} has the same distribution for each n ≥ 1
and are independent of

{(ρn)k−1
n=1, (Xt)t<Rn−1}

for n ≥ 2. Note that according to this definition the initial cycle is allowed
to have a different distribution. In Löcherbach and Loukianova [98] a con-
structive approach towards this result is given, in which they explicitly define
the corresponding stopping times and the recurrent atom. By the implied
regenerative structure of X, we obtain the following characterisation of the
stationary measure.

Proposition 3.2.4 (Sigman [140; Theorem 2]). Let X be a positive recurrent
one-dependent regenerative process, then we can characterise its stationary
measure as follows

π(A) =
1

ϱ
Eν
∫ R1

0

1{Xs∈A} ds, (3.13)

where ϱ is defined as EνR1. Moreover, we have the following erdogic law of
large numbers

lim
T→∞

1

T

∫ T

0

f(Xs)ds =
1

ϱ
Eν
∫ R1

0

f(Xs)ds , (3.14)

for all f : E → Rd with π(∥f∥) <∞.



Chapter 3. Gaussian Approximations for Continuous-time Processes 41

Note that the normalisation constant 1/ϱ given in Proposition 3.2.4 is
finite and non-zero due to the positive Harris recurrence of the process.

Remark 3.2.5. The framework of Löcherbach and Loukianova [98; 99] does
not require ergodicity. Moreover, it is important to note that contrary to the
classically regenerative case, Proposition 3.2.4 does not imply convergence in
total variation to the stationary measure. For a counterexample see Sigman
[140; Remark 3.2]. △

For our applications, we will require ergodicity and hence we must ad-
ditionally impose this as stated in (2.14). These ergodicity requirements
are usually established through Foster–Lyapunov drift conditions; see Down
et al. [54] and Fort and Roberts [67] for exponential and polynomial er-
godicity respectively. These results have been applied to several classes of
diffusion processes, see for example Cattiaux et al. [31; Theorem 8.3 and 8.4]
and Stramer and Tweedie [145; Theorem 3.1 and 4.1].

For PDMPs, Bierkens et al. [22] show aperiodicity, positive Harris recur-
rence, and exponential ergodicity of the Zig-Zag process for target distribu-
tions that have a non-degenerate local maximum and appropriately decaying
tails. In Deligiannidis et al. [50] and Durmus et al. [59] conditions for ex-
ponential ergodicity of the Bouncy Particle Sampler are given. Utilising
hypocoercivity techniques, Andrieu et al. [4] establish polynomial rates of
convergence for PDMPs with heavy-tailed stationary distributions. When
we are concerned with PDMPs we will require the following regularity con-
ditions on the stationary density:

Assumption 2. Assume that the density of π is twice continuously differ-
entiable, strictly positive, has a non-degenerate local maximum and

lim
∥x∥→∞

π(x) = 0.

Moreover, assume that π has a finite set of local extrema.

These regularity conditions are often imposed in order to analyse the
ergodic behaviour of PDMPs. Assumption 2 with accompanying conditions
on the decay of the tails of the target distribution are used to show various
rates of ergodicity.
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3.3. Main Theorems

The most straightforward approach for obtaining a strong approximation
result for Markov processes would be through ergodicity requirements. In
Kuelbs and Philipp [91] it is shown that a multivariate strong invariance
principle holds for sums of random vectors satisfying a strong mixing con-
dition; see also Theorem 3.6.1. This mixing condition is satisfied when one
has an appropriate rate of ergodicity of the process. All proofs are provided
in Section 3.6.

Theorem 3.3.1. Let X = (Xt)t≥0 be polynomially ergodic of order β ≥
(1 + ε)(1 + 2/δ) for some ε, δ > 0. Then for every initial distribution and
for all f : E → Rd with π(∥f∥2+δ) < ∞, we can construct a process that is
equal in law to X together with a standard d-dimensional Brownian motion
W = (W (t))t≥0 on some probability space such that∥∥∥∥∫ T

0

f(Xt) dt− Tπ(f)− Σ
1/2
f W (T )

∥∥∥∥ = Oa.s.(ψT ) (3.15)

with

ψT = T 1/2−min(δ/(2δ+4), λ) for some λ ∈ (0, 1/2), (3.16)

and positive semi-definite d× d covariance matrix Σf given by

Σf =

∫ ∞

0

Covπ (f(X0), f(Xs)) ds+

∫ ∞

0

Covπ(f(Xs), f(X0)) ds, (3.17)

with all entries converging absolutely and integration of matrices defined
element-wise.

Remark 3.3.2. The asymptotic covariance matrix Σf given in Theorem 3.3.1
cannot be simplified. Only for the univariate case (p = 1) and for reversible
processes do we obtain that

Σf = 2

∫ ∞

0

Covπ(f(X0), f(Xs)) ds. (3.18)

As a result of the reversibility, the cross-covariance matrices in (3.17) will be
symmetric and thus the asymptotic covariance can be expressed as (3.18).

△



Chapter 3. Gaussian Approximations for Continuous-time Processes 43

The rate ψT appearing in Theorem 3.3.1 will depend on the dependence
and moment structure of the considered process. We see that if higher-order
moments exist, i.e., δ becomes larger, then ψT becomes smaller. Moreover,
Kuelbs and Philipp [91] state that λ will be influenced by the decay of de-
pendence within the process. We expect the approximation bound ψT to
be smaller for processes with faster decaying auto-dependence. This can
be interpreted as the magnitude of the difference between the centred ad-
ditive functional of the process and the approximating Brownian motion
being smaller. Although result (3.15) has useful applications for arbitrary
λ ∈ (0, 1/2), many refined limit theorems require an explicit remainder term,
where more insight is given regarding the impact of the moment and de-
pendence structure on the approximation error. In order to derive a more
refined strong invariance principle we will make us of splitting arguments.
Following the continuous time Nummelin splitting technique, as introduced
in Löcherbach and Loukianova [98] and described in Section 3, it follows
that the process can be embedded in a richer process, which admits a recur-
rent atom. Hence the process can be redefined such that it can be split in
identically distributed blocks of random variables, which are one-dependent.
Therefore we can utilise the approximation results for weakly m-dependent
sequences of Berkes et al. [12] to obtain a strong invariance principle; see also
Theorem 3.6.5.

Proposition 3.3.3. Let X = (Xt)t≥0 be an aperiodic, positive Harris recur-
rent Markov process for which Assumption 1 is satisfied. Let f : E → R, be
a given π-integrable function. Define the sequence of random times {Rn}∞n=1

and {ξn}∞n=1 as in Propositions 3.2.2 and 3.2.3. Moreover, assume that

Eν [Rq
1] <∞ for some q > 2, (3.19)

Eν
∣∣∣∣∫ R1

0

f(Xs)ds

∣∣∣∣p <∞ for some p > 2. (3.20)

Then for every initial distribution we can construct a process, on an en-
riched probability space, that is equal in law to X together with two standard
Brownian motions W1 and W2 such that∣∣∣∣∫ T

0

f(Xs)ds− Tπ(f)−W1(σ
2
T )−W2(τ

2
T )

∣∣∣∣ = Oa.s.(ψT ) (3.21)



3.3. Main Theorems 44

where {σ2
T} and {τ 2T} are non-decreasing sequences with σ2

T =
σ2
ξ

ϱ
T+Oa.s.

(
T

log T

)
,

τ 2T = Oa.s.
(

T
log T

)
as T →∞, and ψT , π(f), ϱ, and σξ are defined in equations

(3.23) to (3.26) below.

In Proposition 3.3.3 we obtain an explicit approximation error. In align-
ment with expectations, we see that the existence of higher-order moments
will result in an improved approximation error. However, the required mo-
ment conditions for Proposition 3.3.3 stated in (3.19) and (3.20) are im-
practical and would be burdensome, if not impossible, to verify directly for
most applications. For classically regenerative Markov chains this problem
also arises, see the analogous requirements of regenerative simulation given in
Mykland et al. [112] and the strong approximation result of Csáki and Csörgő
[37]. The results of Hobert et al. [81] were the first to simplify moment con-
ditions of this form and give practical sufficient conditions for regenerative
simulation. More specifically, in their main result they show that polynomial
or geometric ergodicity and moment conditions with respect to the stationary
measure are sufficient to guarantee finiteness of the second moment of a cycle.
This result was generalised to higher order cycle moments by Jones et al. [87]
and Bednorz and  Latuszyński [10]; hence simplifying the required conditions
of Csáki and Csörgő [37]. However, the aforementioned approaches are all
for Markov chains satisfying a one-step minorisation condition, i.e., for the
classically regenerative setting. Since our setting involves a more complic-
ated reconstruction of the process of interest, the results do not immediately
carry over. In Theorem 3.3.3, we show that the cycle moment conditions
(3.19) and (3.20) required for Proposition 3.3.3 can also be guaranteed with
more easily verifiable ergodicity and moment conditions.

Theorem 3.3.4. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be
polynomially ergodic of order β > 1 + p(p+ ε)/ε, for some ε > 0 then

Eν
[
(R1)

β−1
]
<∞.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ with p ≥ 1 we
have that

Eν
∣∣∣∣∫ R1

0

f(Xs)ds

∣∣∣∣p <∞.
By combining Proposition 3.3.3 and Theorem 3.3.4 we obtain the desired

strong invariance principle.
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Theorem 3.3.5. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be
polynomially ergodic of order β > 1 + p(p+ ε)/ε, for given p > 2 and some
ε > 0. Then for every initial distribution and for all measurable f : E → R
with π(|f |p+ϵ) <∞ we can, on an enriched probability space, define a process
that is equal in law to X and two standard Brownian motions W1 and W2

such that∣∣∣∣∫ T

0

f(Xs)ds− Tπ(f)−W1(σ
2
T )−W2(τ

2
T )

∣∣∣∣ = Oa.s.(ψT ) (3.22)

where {σ2
T} and {τ 2T} are non-decreasing sequences with σ2

T =
σ2
ξ

ϱ
T+Oa.s.

(
T

log T

)
,

τ 2T = Oa.s.
(

T
log T

)
, and

ψT = max
{
T 1/4 log T, T 1/p log2(T )

}
, (3.23)

π(f) =
1

ϱ
Eν
∫ R1

0

f(Xs) ds, (3.24)

ϱ = Eν [R1], and (3.25)

σξ =
√

Var
ν

(ξ1) + 2 Cov
ν

(ξ1, ξ2) . (3.26)

Proof. The assertion follows immediately from Proposition 3.3.3 and The-
orem 3.3.4.

The appearance of the second Brownian motion in Theorem 3.3.5 is in-
herited from the strong invariance principle of Berkes et al. [12]. Although
we obtain different time perturbations of the Brownian motions, all desired
properties carry over. The second Brownian motion appearing in (3.22) is
of a smaller magnitude, and will therefore be asymptotically negligible in
typical applications. Furthermore, even though the two Brownian motions
are not independent, their correlation decays over time

Corr
(
W1(σ

2
t ),W2(τ

2
s )
)
→ 0, as t, s→∞. (3.27)

Note that the nearly optimal convergence rate Oa.s.(T 1/p log2 T )) obtained
by Berkes et al. [12] does not carry over. Instead, we obtain an approx-
imation error that cannot be improved beyond Oa.s.(T 1/4 log T ). Obtaining
a superior approximation error remains an open problem for the class of
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processes considered in Theorem 3.3.5. A possible approach for attaining a
better convergence rate would be to extend to results of Berkes et al. [12] to
a multivariate setting and then follow the approach of Merlevède et al. [103].

The univariate Zig-zag process passes every point in its state-space, in
particular also the local optima of its target density, an infinite amount of
times. This allows us the define regenerative cycles of the process. Therefore
we can adapt the approach of Merlevède et al. [103] and obtain the optimal
bound of Oa.s.(T 1/p) for the strong approximation of the one-dimensional
Zig-Zag process.

Theorem 3.3.6. Let Z = (Xt, Vt)t≥0 be an aperiodic, positive Harris recur-
rent one-dimensional Zig-zag process with an invariant distribution π ⊗ υ,
where π satisfies Assumption 2. Moreover, let Z be polynomially ergodic of
order β > 1 + p(p+ ε)/ε, for given p > 2 and some ε ∈ (0, 1). Then for every
initial distribution and for all measurable f : E → R with π(|f |p+ϵ) < ∞
there exists a Brownian motion W such that∣∣∣∣∫ T

0

f(Xs)ds− Tπ(f)− σ2
fW (T )

∣∣∣∣ = Oa.s.(T 1/p) (3.28)

where σ2
f can be characterised as (3.30).

In Merlevède et al. [103] a strong invariance principle is obtained for one-
dimensional Markov chains satisfying a one-step minorization condition by
making use of the implied regenerative properties. Note that their approach
carries over for any regenerative process. However, they assume that the
chain is exponentially ergodic and that the test function f is bounded. The
boundedness of f is very restrictive for applications in MCMC, since it ex-
cludes many interesting examples such as the posterior mean and variance.
Theorem 3.3.6 extends their results by only imposing polynomial ergodicity
and only a necessary moment condition for the test function.

Furthermore, we see that if the target distribution is of product form, i.e.,
satisfies the factorisation π(x) =

∏d
i=1 πi(xi), then the optimal bound carries

over to the multivariate setting.
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Theorem 3.3.7. Let Z = (Xt, Vt)t≥0 be an aperiodic, positive Harris recur-
rent d–dimensional Zig-zag process with an invariant distribution π⊗υ, where
π is of product form and every πi satisfies Assumption 2. Moreover, let Z be
polynomially ergodic of order β > 1 + p(p+ ε)/ε, for given p > 2 and some
ε ∈ (0, 1). Then for every initial distribution and for all f : E → Rd that
can be decomposed as

∏
i fi(xi) with π(∥f∥p) < ∞, there exists a standard

d-dimensional Brownian motion W such that∥∥∥∥∫ T

0

f(Xt) dt− Tπ(f)− Σ
1/2
f W (T )

∥∥∥∥ = Oa.s.(T 1/p) (3.29)

and covariance matrix Σf = diag{σ2
f1
, · · · , σ2

fd
} with

σ2
fi

=

∫ ∞

0

Covπ(fi(X
i
0), fi(X

i
s)) ds+

∫ ∞

0

Covπ(fi(X
i
s), fi(X

i
0)) ds. (3.30)

Note that although the proof of Theorem 3.3.7 relies on the fact that the
d-dimensional Zig-Zag process Z can be decomposed into d one-dimensional
independent Zig-Zag processes, the multivariate invariance principle does
not directly follow from an application of Theorem 3.3.6, since even though
the individual coordinates have regenerative cycles, the multivariate process
Z does not possess regeneration times. Moreover, it must be guaranteed
that the approximating Brownian motions for the individual components are
defined on the same probability space.

Remark 3.3.8. From Theorem 3.3.4 we see that polynomial ergodicity of a
sufficiently high order and moments with respect to the stationary distribu-
tion guarantee the existence of the p–th order cycle moments, which in turn
determines the approximation error in our strong invariance results. In gen-
eral, if we assume polynomial ergodicity of order β > 1, then from Remark
3.6.7 and (3.76), we see that the approximation error of Theorem 3.3.6 can
in general taken to be of order Oa.s.(Tα) with

α = max{1/p′, 1/(β − 1)},

where p′ < 1
2
(
√
ε(ε+ 4(β − 1))) − ε) if p > 1

2
(
√
ε(ε+ 4(β − 1))) − ε) and

p′ = p otherwise. Therefore we see that a faster polynomial rate of con-
vergence to the stationary measure improves the approximation error, up to
the point where the approximation error from the moment conditions dom-
inates. The same conclusion can be seen to hold for Theorem 3.3.5 and 3.3.7.
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Furthermore, from Remark 3.6.8, we see that under the assumption of expo-
nential ergodicity, the conclusions of Theorem 3.3.4 and all aforementioned
strong invariance principles hold with their stated approximation error. △
Remark 3.3.9. Note that in Theorem 3.3.6, the rate function λ(x, v) =
(vU ′(x))+ guarantees the existence of regenerative cycles of the process.
Namely, for every stationary point of π we can take an appropriate velo-
city, such that they form a regeneration epoch for the process. Hence for any
PDMP with deterministic dynamics such that the process remains aperiodic,
positive Harris recurrent, and polynomially ergodic, the strong invariance
principles of Theorem 3.3.6 and 3.3.7 will hold. △

3.4. Analysis of batch means for Piecewise Determin-
istic Monte Carlo

In order to assess the accuracy of our PDMC sampler, we require a central
limit theorem to hold and estimate the corresponding asymptotic variance.
In Bierkens and Duncan [19] several conditions are given to obtain a CLT for
the univariate Zig-Zag process. In Durmus et al. [59], Deligiannidis et al. [50],
and Bierkens et al. [22] a CLT is obtained for the Bouncy Particle sampler
and Zig-Zag process respectively through geometric drift conditions, which
in turn also imply exponential ergodicity. The strong invariance principles
we obtained in Theorems 3.3.1, 3.3.5, 3.3.6, and 3.3.7 immediately imply the
following central limit theorems for polynomially ergodic Markov processes.

Corollary 3.4.1. Let (Zt)t≥0 with Zt = (Xt, Vt) be polynomially ergodic of
order β ≥ (1 + ε)(1 + 2/δ) for some ε, δ > 0. Then we have that for all
f : E → Rd with µ(∥f∥2+δ) <∞, a central limit theorem holds:

1√
T

∫ T

0

(f(Xs, Vs)− µ(f)) ds
w−→ Np(0,Σf ). (3.31)

Additionally, also a functional central limit theorem holds:(
1√
n

∫ nt

0

(f(Xs, Vs)− µ(f)) ds

)
t≥0

w−→ Σ
1/2
f W as n→∞, (3.32)

where

Σf =

∫ ∞

0

Cov
µ

(f(X0, V0), f(Xs, Vs)) ds+

∫ ∞

0

Cov
µ

(f(Xs, Vs), f(X0, V0)) ds,

(3.33)
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W = (Wt)t≥0 denotes a standard d-dimensional Brownian motion and the
weak convergence is with respect to the Skorohod topology on D[0,∞), the
space of real-valued càdlàg functions with domain [0,∞).

Proof. By Csörgö and Horváth [38; Theorem 1.17], the FCLT immediately
follows from the strong invariance principle formulated in Theorem 3.3.1.
Similarly, by Damerdji [45; Proposition 2.1] the CLT follows.

By the same argument the CLT follows for the processes considered in
Theorems 3.3.5, 3.3.6, and 3.3.7. For simplicity, we will mainly consider the
one-dimensional case, i.e. our quantity of interest is given by π(f), with
f : E → R a given π-integrable function. Let the simulation output, which
in our case consists of the position component of a PDMP, be given by
(Xt)t∈[0,T ]. Note that from Corollary 3.4.1 also a (functional) central limit
theorem follows for the position component of the process. We are interested
in estimating the asymptotic variance (3.33); which we will denote by σ2

f ,
when we are not considering the multivariate setting.

The batch means method divides the obtained sample trajectory of our
process into non-overlapping parts. The sample variance of the means of
the obtained batches gives rise to a natural estimator for the asymptotic
variance. More specifically, we divide our simulation output in kT batches
of length ℓT such that kT = ⌊T/ℓT ⌋. We proceed by computing the sample
average of each obtained batch;

Z̄i(ℓT ) :=
1

ℓT

∫ iℓT

(i−1)ℓT

f(Xs)ds, i = 1, . . . , kT . (3.34)

If a functional central limit theorem holds for our process, it follows that
the computed means Z̄i(ℓT ) are asymptotically independent and identically
distributed for each fixed amount of batches. Hence, we can heuristically
reason that the sample variance of (Z̄i(ℓT )kTi=1 will be close to Var(Z̄i(ℓT )).
Moreover, since each Z̄i(ℓT ) is also an empirical mean, it is reasonable to
expect their variance to be approximately σ2

f/ℓT . The batch means estimator
of the asymptotic variance is defined by correcting the sample variance of the
batch means (Z̄i(ℓT ))kTi=1 by a factor ℓT , namely

σ̂2
T =

ℓT
kT − 1

kT∑
i=1

(
Z̄i(ℓT )− 1

kT

kT∑
i=1

Z̄i(ℓT )

)2

. (3.35)
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Following the framework of Damerdji [45], we impose the following conditions
on the amount of batches and their length.

Assumption 3. Let the amount of batches kT and their lengths ℓT be such
that

i. kT →∞ , ℓT →∞, and ℓT/T → 0 as T →∞,

ii. ℓT and T/ℓT are both monotonically increasing,

iii. there exists a constant c ≥ 1 such that
∑∞

n=1 k
−c
n <∞.

The first requirement of Assumption 3 is a necessary condition for con-
sistency as seen from the results of Glynn and Whitt [72]. The second re-
quirement is solely for technical reasons and the third requirement ensures
that the amount of the batches grows fast enough; if we choose ℓT = Tα the
requirement holds for all α ∈ (0, 1), since we can choose c > 1/(1− α).

Theorem 3.4.2. Let Z be polynomially ergodic of order β > 1 + p(p+ ε)/ε,
for given p > 2 and some ε ∈ (0, 1) with stationary measure µ with µ(|g|p) <
∞. Assume that Assumption 3 holds and that

T 2/p

ℓT
log(T )→ 0, as T →∞, (3.36)

then for every initial distribution σ̂2
T → σ2

f as T →∞ with probability 1.

Proof. The result follows from Theorem 3.3.1, Jones et al. [87; Proposition
3], and Damerdji [45; Theorem 3.3].

Remark 3.4.3. Note that Theorem 3.4.2 weakens the currently available reg-
ularity conditions guaranteeing strong convergence of the batch means estim-
ator in an MCMC setting. This is a direct consequence of the fact that The-
orems 3.3.6 and 3.3.7 obtain the optimal approximation rate of Oa.s.(T 1/p)
whereas the results of Jones et al. [87] are based upon the strong invariance
principle of Csáki and Csörgő [37] which attains the rate Oa.s.(T γ log T ), with
γ = max(1/p, 1/4). More specifically, for f with π(|f |p) < ∞ Jones et al.
[87] requires T γ log3(T )/ℓT → 0 as T →∞. In particular for the case where
p > 4, Theorem 3.4.2 is able to significantly weaken the conditions on the
required batch length ℓT . As a direct result of the smaller batch lengths,
we are able to use a higher number of batches kT , which results in a smal-
ler variance for the batch means estimator, as seen in Theorem 3.4.4. Note
that a similar conclusion holds for the overlapping batch means and spectral
variance estimators considered in Flegal and Jones [66]. △
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We see from the required assumption (3.36) that a larger approxima-
tion error in the strong invariance principle, which corresponds to higher
orders of dependence, results in a larger required batch size ℓT . This is in
agreement with the idea behind batching methods; every batch should give
a proper representation of the dependence structure of the process. Other-
wise, a structural bias will be introduced in the estimation procedure. On
the other hand, choosing the batch size larger than necessary will result in
a lower amount of batches kT leading to a higher variance for the estimator.
Strong approximations can also be used to characterise the mean squared
error and obtain a central limit theorem for the batch means estimator.

Theorem 3.4.4. Let Z be polynomially ergodic of order β > 1 + p(p+ ε)/ε,
for given p > 2 and some ε ∈ (0, 1) with stationary measure µ with µ(|f |p) <
∞. Let the initial distribution be given by µ and assume that Assumption 3
holds and EµC2 < ∞, where C is defined in (3.112) below. Then we have
that

Eµ
∣∣σ̂2
T − σ2

f

∣∣2 = 2σ4
f

ℓT
T

+Oa.s.
(
T 1/p

√
T

log
1
2 T

)
+Oa.s.

(
ℓ−1
T T 2/p log T

)
, (3.37)

Moreover, if ℓ−1
T T 1/p(T log T )1/2 → 0 as T → ∞, then we obtain a CLT for

the batch means estimator√
kT (σ̂2

T − σ2
f )

w−→ N (0, 2σ4
f ) as T →∞. (3.38)

Proof. By the imposed conditions of the process, the strong invariance prin-
ciple formulated in Theorem 3.3.1 holds. The first claim then follows by
Damerdji [46; Theorem 1 and Lemma 3] and the second by Damerdji [46;
Proposition 2].

The first and second term in (3.37) describe the variance, whereas the
third term represents the bias. Note that the second term does not depend
on ℓT and tends to zero. The obtained bounds for the variance are sharp,
whereas, the bounds for bias have room for improvement.

In the multivariate setting, where our quantity of interest is given by π(f),
with f : E → Rd a given π-integrable function, the batch means estimator is
given by

Σ̂T =
ℓT

kT − 1

kT∑
i=1

(
Z̄i(ℓT )− 1

kT

kT∑
i=1

Z̄i(ℓT )

)(
Z̄i(ℓT )− 1

kT

kT∑
i=1

Z̄i(ℓT )

)T

,

(3.39)
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where Z̄i(ℓT ) is defined in (3.34). Given the strong invariance principle of
Theorem 3.3.1, the results of Vats et al. [152] for the multivariate batch
means estimator immediately carry over.

Theorem 3.4.5. Let Z be polynomially ergodic of order β ≥ (1+ε)(1+2/δ)
for some ε, δ > 0. Let f : E → Rd with µ(∥f∥2+δ) < ∞. Assume that
Assumption 3 holds and that

ψ2
T

ℓT
log(T )→ 0, as T →∞, (3.40)

with ψT defined in (3.16), then for every initial distribution we have that
Σ̂T → Σf as T →∞ with probability 1.

Proof. The claim follows from Theorem 3.3.1 and Vats et al. [152; Theorem
2].

Furthermore, if the target distribution is of product form and we consider
the Zig-Zag Sampler, then Theorem 3.3.7 gives a strong invariance principle
with an explicit approximation error. Therefore, we can replace condition
(3.40) of Theorem 3.4.5 with (3.36) for every component of the Zig-Zag pro-
cess. This results in a condition that can more easily be verified.

3.4.1. Discussion

Batch size selection for PDMC

In Glynn and Whitt [72] it is shown that there exists no consistent estimator
of σ2

f with fixed amounts of batches. Hence the amount of batches should
explicitly depend on the length of the simulation T . For the standard choice
ℓT = Tα we see that for α > 1/2p we obtain both strong consistency and
L2-convergence of the batch means estimator. Theorem 3.4.4 suggests that
α∗ = (2 + p)/2p would be optimal in the mean squared error sense. The
well-known results of Chien et al. [34], Goldsman et al. [74], and Song and
Schmeiser [142] obtain a bound for the bias of order Oa.s.(ℓ−1

T ), which implies
an optimal (in the MSE sense) batch size of ℓ⋄T ≍ T 1/3. However, the afore-
mentioned results require the sampling process to be stationary, uniformly
ergodic, and satisfy moment condition π(f 12) <∞. Obtaining the bias term
of order Oa.s.(ℓ−1

T ) for batch means under milder conditions remains an un-
addressed problem. Theorem 3.4.2 and 3.4.4 only require a strong invariance
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principle, which we have shown holds under polynomial ergodicity; a very
reasonable assumption for simulation output. Moreover, these results do not
require stationarity and thus hold for every initial distribution. Theorem
3.4.4 imposes more demanding conditions on ℓT than aforementioned frame-
works, however, it is quite reasonable to let the batch size depend on the
dependence structure of the process through ψT , instead of only the auto-
covariance function (γ(s))s≥0 through the constant

∫
sγ(s)ds, as is the case

in the aforementioned results. Moreover, in practice, the performance of
batch means methods with batch size ℓ⋄T are often found to be sub-optimal
whereas larger batch sizes see better finite sample performance, as noted by
for example Flegal and Jones [66]. We see that for exponentially and poly-
nomially ergodic sampling algorithms the batch size choice ℓ∗T = Tα

∗
log(T )

gives almost sure convergence, convergence in mean square, and guarantees
asymptotic normality of the BM estimator. However, the optimal tuning
parameter does depend on the number of moments of the target distribu-
tion. If no theoretical guarantees can be obtained, we can in practice also
assess the level of tail decay of our target distribution by examining the sim-
ulation output. For a survey of statistical methods for the detection of heavy
tails, estimation of the tail index, and the number of finite moments, see for
example Adler et al. [1] and all their given references. For uniformly ergodic
sampling algorithms, the aforementioned results imply an optimal batch size
of order T 1/3.

An alternative approach for determining the optimal batch size was given
by Chien [35], which obtains an optimal batch size of ℓ̃T ≍ T 1/2 by minimising
the distance between the cumulants of the studentised ergodic average and
a standard Gaussian, which suggest that the resulting confidence intervals
enjoy improved finite-sample properties.

Asymptotic normality of the batch means estimator

We see that given polynomial ergodicity, also the central limit theorem for
the batch-means estimator carries over to the PDMC setting. The results
of Sherman and Goldsman [138] require uniform ergodicity and the moment
condition π(f 12) <∞, in order to obtain asymptotic normality of the batch,
means estimator. Since uniform ergodicity is not attainable for most prac-
tical problems, less stringent conditions on the rate of ergodicity are desired.
Theorem 3.4.4 places more restrictive conditions on the batch size and ex-
cludes the choice ℓ⋄T ≍ T 1/3. In Chakraborty et al. [32] a CLT for the batch
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means estimator is obtained assuming reversibility, stationarity, geometric
ergodicity, and moment condition π(f 8) <∞. Moreover, the required batch
size must be such that kT = oa.s.(ℓ

2
T ). Hence their result is also unable

to guarantee asymptotic normality for batch size ℓ⋄T . We see that Theorem
3.4.4 gives more practical conditions for guaranteeing asymptotic normal-
ity of the batch-means estimator, in particular, the results are applicable to
non-reversible processes.

Spectral variance and overlapping batch means estimators for the
PDMC standard error

Analogous to the batch means method, given the strong invariance prin-
ciple formulated in Theorem 3.3.1, many results for other estimators of the
asymptotic variance also carry over. In Flegal and Jones [66] more convenient
alternatives are given for some of the requirements of the framework given in
Damerdji [44]. The results of Flegal and Jones [66] regarding spectral vari-
ance and overlapping batch means estimators for MCMC output are thus
also applicable for PDMC, with minor adjustments to their assumptions.
Note that the assumed minorisation condition and geometric ergodicity of
the Markov chain in Flegal and Jones [66] are only imposed such that the
strong invariance principle of Csáki and Csörgő [37] holds. Although imple-
mentation of spectral variance estimators for continuous-time output might
be impractical, these estimators are still of theoretical interest. Numerous es-
timation methods, such as overlapping batch means and certain standardised
time series methods, with feasible implementation for PDMC output, can be
shown to be (asymptotically) equivalent to spectral estimators. Furthermore,
we expect the results of Vats et al. [151] and Liu et al. [97] regarding spectral
variance and generalised overlapping batch means estimators respectively to
remain valid in the continuous-time setting. Hence also the implications for
the optimal values of the tuning parameters of these estimation methods for
the asymptotic variance remain valid. Lastly, note that our results hold for
all sampling algorithms that produce continuous-time output, and are not
restricted to the PDMP setting.

Regenerative Simulation

From the proof of Theorem 3.3.6, we see that the univariate Zig-Zag sampler
possesses a recurrent atom. Moreover, any local optimum with an appropri-



Chapter 3. Gaussian Approximations for Continuous-time Processes 55

ate velocity can be taken as a recurrent atom. Hence, regenerative simula-
tion can also be considered for the estimation of the asymptotic variance.
Let (Rk)k∈N denote the hitting times of the chosen regeneration epoch of the
process, then we can define the contribution of cycle k to the time-average
as

ξk :=

∫ Rk

Rk−1

f(Xs) ds, k ≥ 1,

and the corresponding cycle lengths as τk = Rk − Rk−1. From the strong
law of large numbers, it follows that π̂RS(f) =

∑n
j=1 ξj/Rn is a consistent

estimator of π(f). Moreover, the corresponding asymptotic variance can be
estimated by

σ̂2
RS =

∑n
j=1(ξj − π̂RS(f)τj)

2

1
n
R2
n

.

For a more detailed description of regenerative simulation, we refer to for
example Brockwell and Kadane [29] or Hobert et al. [81]. Note that σ̂2

RS

is a ratio estimator and hence can be biased for an insufficient number of
tours. Although this bias is small when the coefficient of determination of
Rn is small, as explained in for example Brockwell and Kadane [29], there
are other caveats to this approach that also need to be taken into account.
Firstly, the practicality of the regeneration-based estimator will depend on
the length of the regenerative cycles. As mentioned in the discussions of
Flegal and Jones [66] and Gilks et al. [70], it can take the chain a lot of time
to reach its regeneration epoch even in moderately large finite state-spaces
or as the dimension of the Markov chain increases. The expected time for
the Zig-zag sampler to move between modes increases proportionally to the
ratio of their density value, as seen from the results of Monmarché [110].
Thus if the chosen regeneration epoch is a local maximum of π that has a
substantially lower density value compared to the global maximum, the tours
required for regenerative simulation are expected to be long.

Moreover, regenerative simulation requires the identification of the regen-
erative states. For the case with the Zig-zag sampler, this requires that the
location of a local extremum of the target distribution is known. Note that
even though our results assume the existence of at least one local maximum,
we do not require to know its location or even that the sampler has to visit
all local optima often. Therefore, in case an appropriate maximum of the
target density is known a priori or can be obtained with low computational
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cost, regenerative simulation can be considered. In general, the batch means
or overlapping batch means methods are more widely applicable.

3.5. Increments of Additive Functionals of Ergodic
Markov processes

Strong approximation results enable various asymptotic properties of Brownian
motion to carry over to other stochastic processes. In this section, we show
that the strong invariance principle given in Theorem 3.3.5 can be used to
show that the increments of additive functionals of Markov processes are
of the same magnitude as Brownian increments, provided we have sufficient
decay of the approximation error. The following theorem describes the mag-
nitude of the fluctuations of Brownian increments over subintervals of length
aT .

Theorem 3.5.1 (Csörgö and Révész [39; Theorem 1]). Let W = (Wt)t≥0

denote a Brownian motion, and let aT be a positive non-decreasing function
of T such that 0 < aT ≤ T and T/aT is non-decreasing. Then

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤u≤aT

βT |Wt+u −Wt| = 1 , (3.41)

where

βT =

(
2aT

[
log

T

aT
+ log log T

])−1/2

.

Taking aT = T gives the law of iterated logarithm, and for aT = c log T
with c > 0, the Erdös-Rényi law of large numbers for Brownian motion is ob-
tained, as seen in for example Csörgö and Révész [40; Theorem 2.4.3]. This
fluctuation result has been extended to other processes such as integrated
Brownian motion, fractional Brownian motion, and non-stationary Gaussian
processes, see Li [96], El-Nouty [62] and Ortega [120] respectively. While
these fluctuation results are of independent interest, they are also used as
building blocks in applications, such as proving convergence properties of
kernel density estimators, see for example Révész [129] and Deheuvels [49].
These fluctuation results are also used for proving almost sure convergence
of various estimators of the asymptotic variance in simulation output set-
tings, see the references given in Section 4.1. By the Komlós-Major-Tusnády
approximation the fluctuation result immediately carries over for i.i.d. se-
quences satisfying appropriate moment conditions, as seen in Csörgö and
Révész [40; Theorem 3.1.1 and 3.2.1].
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In order to describe the fluctuations of additive functionals over an in-
terval of a specified length aT , we require an explicit remainder term for the
Brownian approximation, as given in Theorem 3.3.5. However, due to the ap-
pearance of the second Brownian motion in this invariance principle and the
perturbed time sequences, it is not immediate that the Brownian fluctuation
result carries over. In Berkes et al. [12] it is shown that the magnitude of
the increments of partial sums of weakly m-dependent sequences are indeed
given by Theorem 3.5.1, due to the smaller scaling of the second Brownian
motion. However, in our case the perturbed time sequences are random since
they depend on the amount of one-dependent regenerative cycles of the pro-
cess, hence the desired result does not follow directly from Berkes et al. [12;
Theorem 4].

Theorem 3.5.2. Let X = (Xt)t≥0 be an aperiodic, positive Harris recurrent
Markov process for which Assumption 1 is satisfied. Moreover, let X be
polynomially ergodic of order β > 3 + p/ε, for given p > 2 and some ε > 0.
Consider a function f : E → R with π(f) = 0 and π(|f |p+ε) <∞. Let aT be
a given positive non-decreasing function of T such that

i. 0 < aT ≤ T ,

ii. T/aT is non-decreasing,

iii. aT is regularly varying at ∞ with index ζ ∈ (0, 1].

Suppose that βTψT = oa.s.(1), where

βT =

(
2aT

[
log

T

aT
+ log log T

])−1/2

,

and
ψT = max

{
T 1/4 log T, T 1/p log2(T )

}
.

Then we have that

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤u≤aT

βT

∣∣∣∣∫ t+u

t

f(Xs)ds

∣∣∣∣ ≤ σ2
ξ

ϱ
(3.42)

As noted by Berkes et al. [12], the split invariance principle also implies
the distributional version of Theorem 3.5.2; with similar adaptations to their
argument this would also hold in our case. Since the approximation error ψT
of Theorem 3.3.5 cannot be guaranteed to be smaller than Oa.s.(T 1/4 log T ),
the fluctuation result given in Theorem 3.5.2 cannot describe the magnitude
of increments over slowly growing time intervals aT .



3.5. Increments of Additive Functionals of Ergodic
Markov processes 58

3.5.1. Application to diffusion processes

Diffusions are an important class of processes for which the strong approxim-
ation given in Theorem 3.3.5 and the related fluctuation result given in The-
orem 3.5.2 are applicable. Let X = (Xt)t≥0 denote a one-dimensional diffu-
sion process that is defined as the solution of the following time-homogeneous
stochastic differential equation (SDE){

dXt = b(Xt)dt+ σ(Xt)dWt

X0 ∼ µ,
(3.43)

where µ is the initial distribution of the process, X ⊆ R denotes the state-
space, b : X −→ R and σ : X −→ R denote the drift and volatility function
respectively, and the process W is a Brownian motion. We assume that all
required regularity conditions hold such that the existence and uniqueness
of a strong solution of the SDE is guaranteed. For example, we can impose
Lipschitz conditions on the drift and volatility of the SDE. For a more detailed
explanation, we refer to Rogers and Williams [135].

For diffusion processes to admit the desired ergodic properties we must
impose additional regularity conditions. Let x0 denote the initial value of
our process, then the scale function of a one-dimensional diffusion is given
by

s(u) =

∫ u

x0

exp

[
−2

∫ z

x0

b(y)

σ2(y)
dy

]
dz and must satisfy lim

u→±∞
s(u) = ±∞.

(3.44)
If condition (3.44) holds it follows that the diffusion is recurrent, that is,
the time for the process to return to any bounded subset of its state space
is a.s. finite. The speed density of the diffusion process m : X → R+,
given by m(u) = (s(u)σ2(u))

−1
, must be Lebesque integrable for the diffusion

to be positive Harris recurrent. For higher-dimensional diffusion processes
Bhattacharya [18] gives conditions that guarantee positive Harris recurrence.
The results of Lazić and Sandrić [92; Theorem 2.3] show that diffusions are
aperiodic if the drift and diffusion coefficients are Hölder continuous and the
diffusion coefficient is uniformly elliptic on an open ball. Alternatively, from
Stramer and Tweedie [144; Remark 4.3; Theorem 2.6] we see that aperiod-
icity can also be obtained under linear growth conditions on the drift, uniform
ellipticity of the diffusion coefficient, and requiring that the transition prob-
ability is positive for any set with positive Lebesgue measure. In order for the
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obtained strong invariance principles given in Theorem 3.3.1 and Theorem
3.3.5 to hold, we require polynomial or exponential convergence to station-
arity. These assumptions are usually obtained by verifying drift conditions
for the diffusion processes, see for example Cattiaux et al. [31; Theorem 8.3
and 8.4] and Stramer and Tweedie [145; Theorem 3.1 and 4.1].

In order for the strong approximation result in Theorem 3.3.5 and the
related fluctuation result of Theorem 3.5.2 to hold, the Nummelin splitting
scheme of Löcherbach and Loukianova [98] must be applicable. Therefore
we must impose regularity conditions such that Assumption 1 is satisfied,
i.e., the transition semigroup of the diffusion must be Feller and admit dens-
ities with respect to some dominating measure. Under appropriate growth
and continuity conditions on the drift and volatility, diffusion processes are
Feller, see for example Williams [155; Theorem 2.2]. Moreover, if the volatil-
ity function σ is strictly positive (positive-definite in the multivariate case),
the diffusion is elliptic and therefore admits transition densities; Stroock and
Varadhan [146; Theorem 3.2.1]. Hence, Assumption 1 is satisfied. Altern-
atively, for multivariate diffusions, we can impose the parabolic Hörmander
condition which ensures that the propagation of the noise through the dif-
ferent coordinates is sufficient, such that the transition density exists, see for
example Rogers and Williams [135; Theorem 38.16].

3.5.2. Discussion and suggestions for further research

We see that Theorem 3.3.1 and Theorem 3.3.5 are applicable to a broad
class of diffusions and extend the current results on strong approximations
for diffusion processes. In Heunis [79] and Mihalache [109] strong invariance
principles are obtained for diffusions and a complementary fluctuation result
and change point test respectively. The results of Mihalache [109] yield an
explicit approximation error comparable to that of Theorem 3.3.5, but are
only applicable to stochastic integrals with respect to Brownian motion, i.e.,
diffusion processes with no drift. The results of Heunis [79] give an implicit
approximation error and hold for singular diffusions. The strong invariance
principle of Heunis [79] is not covered by our results since singular diffusions
generally do not satisfy the mixing properties required for our framework.

The obtained strong invariance principles offer numerous applications for
diffusion processes, see for example Csörgö and Hall [41] and their given ref-
erences. Following the approach of Berkes et al. [12; Proposition 2], Theorem
3.3.5 can be used to obtain a change-point test for diffusions. If the diffusion
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process we consider has a drift that enforces mean-reversion, we could con-
struct a test for the existence of a deterministic linear trend over specified
time periods. This approach would require continuous-time output of a dif-
fusion process, and is therefore more of theoretical interest. However, it is
plausible that the asymptotic behaviour of the change-point test should carry
over to the high-frequency setting, where the diffusion is observed discretely
and it is assumed the inter-observation times tend to zero.

3.6. Proofs

3.6.1. Theorem 3.3.1

In Kuelbs and Philipp [91] a strong invariance principle is given for random
variables that satisfy certain mixing conditions. In order to state their result,
we first briefly introduce mixing coefficients. Let A and B denote two sub σ-
algebras of our probability space. The α-mixing coefficients of two σ-algebras
quantify their dependence as follows

α(A ,B) = sup{Pr(F ∩G)− Pr(F ) Pr(G) : F ∈ A , G ∈ B}.

The mixing coefficients of a stochastic process X, endowed with its natural
filtration, are defined as αX(s) := supt α(F t−∞,F∞

t+s) for s > 0, with F t−∞ =
σ(Xu : u ≤ t) and F∞

t+s = σ(Xu : u ≥ t + s). The mixing coefficients of
a process measure the dependence between events in terms of units of time
that they are apart. For a stationary Markov process the mixing coefficients
simplify to α(s) = α(σ(X0), σ(Xs)), as shown in for example Bradley [28;
page 118].

Theorem 3.6.1 (Kuelbs and Philipp [91; Theorem 4]). Let ξ = (ξk)
∞
k=1 be a

stationary sequence taking values in Rd with mean zero and supk E∥ξk∥
p ≤ 1,

for some δ ∈ (0, 1]. Moreover, let αξ the α-mixing coefficients of ξ decay
polynomially with rate n−(1+ε)(1+2/δ) for some ε > 0. Then we can redefine ξ
on a new probability space on which we can also construct a d-dimensional
Brownian motion W with covariance matrix Σξ, with absolutely converging
entries

(Σξ)ij = E[ξi1ξj1] +
∞∑
k=2

E[ξi1ξjk] +
∞∑
k=2

E[ξikξj1], for 1 ≤ i, j ≤ p,
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such that ∥∥∥∥∥
n∑
k=1

ξk −W (n)

∥∥∥∥∥ = Oa.s.(n1/2−λξ)

for some λξ ∈ (0, 1/2) depending only on ε, δ and d.

The following lemmata are useful in the proof of Theorem 3.3.1.

Lemma 3.6.2 (Douc et al. [53; Theorem F.3.3]). Let X be an ergodic Markov
process with initial distribution µ and rate of convergence to stationarity given
by Ψ, then αX(s), the α-mixing coefficients of the process X, decay according
to Ψ, i.e., for all s ≥ 0 we have that

αX(s) ≤ µ(V )Ψ(s),

where Ψ and V are as stated in (2.14).

Proof.

αZ(s) = sup
F∈σ(Z0)
G∈σ(Zs)

|Pµ(F ∩G)− Pµ(F )Pµ(G)|

= sup
A∈E
B∈E

|Pµ(Z0 ∈ A;Zs ∈ B)− Pµ(Z0 ∈ A)Pµ(Zs ∈ B)|

= sup
A∈E
B∈E

∣∣∣∣∣
∫
A

Ps(z,B)µ(dz)− µ(A)µ(B)

∣∣∣∣∣
≤ sup

A∈E
B∈E

∫
A

∣∣Ps(z, B)− µ(B)
∣∣µ(dz)

≤
∫
E

sup
B∈E

∣∣Ps(z, B)− µ(B)
∣∣µ(dz)

=

∫
E

∥Ps(z, ·)− µ(·)∥TV µ(dz)

≤ e−βs
∫
E

V (z)µ(dz) = e−βsµ(V )

Lemma 3.6.3 (Davydov [47] and Rio [132]). Let (Ω,F ,Pr) be a probability
space and A and B be two sub σ-algebras and consider random variables
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X and Y that are measurable with respect to these σ-algebras respectively.
Moreover, assume that X ∈ Lp(Pr) and Y ∈ Lq(Pr), for some p, q ≥ 1.
Then we can bound their covariance in terms of the α-mixing coefficients as
follows

|Cov(X, Y )| ≤ 8α (A ,B)1/r ∥X∥p∥Y ∥q,with p, q, r ∈ [1,∞] and
1

p
+

1

q
+

1

r
= 1.

Lemma 3.6.4 (Piterbarg and Rodionov [124; Corollary 1]). Let W denote
a d-dimensional Brownian motion and let ∥Wt∥ denote the corresponding
Bessel process, then we have that

P
(

max
T∈[0,1]

∥W (T )∥ > u

)
=

π(d−1)/2

2d/2−1Γ(d/2)
ud−2e−u

2/2(1 + o(1)),

as u→∞.

Following a traditional blocking argument it is now straightforward to show
that the result of Kuelbs and Philipp [91] also holds for continuous-time
ergodic processes.

Proof of Theorem 3.3.1

Proof. Firstly, assume that we have a stationary process, i.e., our initial dis-
tribution is equal to π. For technical convenience introduce Y = (Yt)t≥0,
where Yt := f(Xt) − π(f) for t ≥ 0, and ξ = (ξk)

n
k=1, with n := nT := ⌊T ⌋

and ξk :=
∫ k
k−1

Ytdt for k = 1, . . . , n. Note that Yt is a d-dimensional vector,

i.e., Yt = (Y1t, · · · , Ydt)⊤ and therefore also each ξk is a d-dimensional vector,
ξk = (ξ1k, · · · , ξdk)⊤. Furthermore, by definition n is a function of the sample
size T , however, for technical convenience we suppress this. Since we are in
the setting of Lemma 3.6.2, X has polynomially decaying α-mixing coeffi-
cients, which we will denote with (αX(s))s≥0. Consequently, we have that
Y and ξ are both stationary processes with polynomially decaying α-mixing
coefficients (αY (s))s≥0 and (αξ(h))h∈N respectively. This can easily be seen
by observing that σ (f(Xt)) ⊆ σ (Xt) and σ (ξk) ⊆ σ (Xs : k − 1 ≤ s ≤ k). In
order to show that a strong invariance principle holds for Y , we will show that
it holds for ξ and determine the growth rate of the corresponding remainder
terms. Moment conditions for ξ are directly inherited by the assumed mo-
ment conditions for X. By an application of Jensen’s inequality we see that
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for p = 2 + δ we have that

π (∥ξk∥p) = Eπ
∥∥∥∥∫ k

k−1

Ysds

∥∥∥∥p≤ Eπ
∫ k

k−1

∥Ys∥pds = π (∥f − π(f)∥p) <∞.

Therefore, by Theorem 3.6.1, we can redefine ξ on a new probability space
on which we can also construct a d-dimensional Brownian motion W with
covariance matrix Σξ, with absolutely converging entries

(Σξ)ij = E[ξi1ξj1] +
∞∑
k=2

E[ξi1ξjk] +
∞∑
k=2

E[ξikξj1], for 1 ≤ i, j ≤ d,

such that ∥∥∥∥∥
n∑
k=1

ξk −W (n)

∥∥∥∥∥ = Oa.s.(n1/2−λξ)

for some λξ ∈ (0, 1/2) depending only on ε, δ and d. The claim follows if we
show that for any ε > 0 we have that∥∥∥∥∥

n∑
k=1

ξk −
∫ T

0

Ytdt

∥∥∥∥∥ = Oa.s.(T 1/p+ε) a.s. for T →∞, (3.45)

∥WT −Wn∥ = oa.s.(T
1/p+ε) a.s. for T →∞, and (3.46)

Σf = Σξ. (3.47)

In order to show that (3.45) holds, we note that∥∥∥∥∥
∫ T

0

Ysds−
n∑
k=1

ξk

∥∥∥∥∥ =

∥∥∥∥∫ T

n

Ysds

∥∥∥∥ ≤ ∫ n+1

n

∥Ys∥ds. (3.48)

By a Borel-Cantelli argument, it will follow that∫ n+1

n

∥Ys∥ ds= Oa.s.(n1/p+ε) = Oa.s.(T 1/p+ε) a.s. for T →∞. (3.49)

Indeed, let ε > 0 be given and introduce the event

An,ε =

{∫ n+1

n

∥Ys∥ds > n(1+ε)/p

}
.
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By Markov’s inequality it follows that the introduced sequence of events
satisfies

∞∑
n=1

Pπ (An,ε) ≤
∞∑
n=1

Pπ
(∫ n+1

n

∥Ys∥pds > n1+ε

)
≤ π(∥f − π(f)∥)p

∞∑
n=1

1

n1+ε
<∞.

The Borel-Cantelli lemma implies that Pπ(lim supAn,ε) = 0, and consequently
that Pπ(lim inf Acn,ε) = 1, which proves (4.97). A similar Borel-Cantelli ar-
gument also shows that (3.46) holds. Introduce the sequence of events

Bn,ε =

{
sup

n≤T≤n+1
∥W (T )−W (n)∥ > n(1+ε)/q

}
,

for given ε > 0 and some q > p. Since all moments of supn≤T≤n+1∥W (T )−W (n)∥
are finite, we have by Markov’s inequality that the introduced sequence of
events satisfies

∞∑
n=1

Pr (Bn,ε) ≤
∞∑
n=1

Pr

(
sup

n≤T≤n+1
∥WT −Wn∥q > n1+ε

)
≤

∞∑
n=1

Pr

(
sup

0≤T≤1
∥WT −W0∥q > n1+ε

)
≤ E

[
sup

0≤T≤1
∥W (T )∥q

] ∞∑
n=1

1

n1+ε
<∞.

Let W denote a d−dimensional Brownian motion and let ∥Wt∥ denote the
corresponding Bessel process, then we have by Lemma 3.6.4 that for q > p

Pr

(
max
T∈[0,1]

∥W (T )∥ > u

)
=

π(d−1)/2

2d/2−1Γ(d/2)
ud−2e−u

2/2(1 + o(1)),

as u→∞. This implies the existence of all moments of the maximum of the
Bessel process, since for all q we have that for all ε′ > 0 we can find an M
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sufficiently large such that

E
[(

max
T∈[0,1]

∥W (T )∥
)q]

= E
[

max
T∈[0,1]

∥W (T )∥q
]

=

∫ ∞

0

quq−1Pr

(
max
T∈[0,1]

∥W (T )∥ > u

)
du

≤
∫ M

0

quq−1du+

∫ ∞

M

quq−1Pr

(
max
T∈[0,1]

∥W (T )∥ > u

)
du

≤M q +
qπ(d−1)/2

2d/2−1Γ(d/2)

∫ ∞

M

uq+d−3e−u
2/2du(1 + ε′) <∞.

By a Borel-Cantelli argument we see that

sup
n≤T≤n+1

∥W (T )−W (n)∥ = Oa.s.(n1/q) = oa.s.(T
1/p) a.s. for T →∞.

Therefore the term (3.46) will be asymptotically negligible. Finally, we see
that by Lemma 3.6.3 the asserted asymptotic variance Σf is finite, i.e., all
entries

(Σf )ij =

∫ ∞

0

Covπ(fi(X0), fj(Xs)) ds+

∫ ∞

0

Covπ(fi(Xs), fj(X0)) ds, (3.50)

for 1 ≤ i, j ≤ d converge absolutely. Indeed, since α-mixing sequences are
monotonically decreasing and bounded by 1/4, an application of Lemma 3.6.3
gives us∫ ∞

0

|Covπ(fi(X0), fj(Xs))|ds ≤ 8

∫ ∞

0

αX(s)δ/pπ(|Yi0|p)1/pπ(|Yjs|p)1/pds

≤ 8π(|Yi0|p)1/pπ(|Yj0|p)1/p
(

1

4
+ π(V )δ/p

∫ ∞

1

Ψ(s)δ/pds

)
,

which is finite since the integral converges due to the rate of polynomial
ergodicity: ∫ ∞

1

Ψ(s)δ/pds ≤
∫ ∞

1

(1 + s)−
δ
p
(1+ε)(1+2/δ)ds <∞,

since δ
p
(1 + ε)(1 + 2/δ) > 1. The second term of (3.50) is treated similarly. In

order to show that Σf = Σξ, we will show that all entries are equal. Firstly,
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we decompose the asymptotic covariance matrix as follows

lim
T→∞

Var
π

(
1√
T

∫ T

0

Ytdt

)
= lim

T→∞
Var
π

(
1√
T

(∫ n

0

Ytdt+

∫ T

n

Ytdt

))
=

lim
T→∞

1

T
Var
π

(∫ n

0

Ytdt

)
+ lim

T→∞

1

T
Var
π

(∫ T

n

Ytdt

)
+ (3.51)

lim
T→∞

1

T
Covπ

(∫ n

0

Ytdt,

∫ T

n

Ytdt

)
+ lim

T→∞

1

T
Covπ

(∫ T

n

Ytdt,

∫ n

0

Ytdt,

)
.

Let ΣT1,ΣT2,ΣT3 and ΣT4 denote the four terms in (3.51). We will show that
the entry-wise convergence gives us the desired result. For 1 ≤ i, j ≤ d we
obtain the following expressions for the elements of the matrices in (3.51):

(ΣT1)ij =
1

T

∫ n

0

∫ n

0

Covπ(Yit, Yjs) dtds, (3.52)

(ΣT2)ij =
1

T

∫ T

n

∫ T

n

Covπ(Yit, Yjs) dtds, (3.53)

(ΣT3)ij =
1

T

∫ n

0

∫ T

n

Covπ(Yit, Yjs) dtds, (3.54)

(ΣT4)ij =
1

T

∫ n

0

∫ T

n

Covπ(Yis, Yjt) dtds. (3.55)

We see that (ΣT1)ij tends to the asymptotic variance (Σf )ij as T →∞, since(
Var
π

(
1√
n

n∑
k=1

ξk

))
ij

=
T

n
· 1

T

∫ n

0

∫ n

0

Covπ(Yit, Yjs) dtds.

Finally, we claim that (ΣT2)ij, (ΣT3)ij and (ΣT4)ij tend to zero as T →∞.
An application of Lemma 3.6.2 and Lemma 3.6.3 gives us that

1

T

∫ n

0

∫ T

n

|Covπ(Yit, Yjs)| dtds ≤ Cf,V
1

T

∫ n

0

∫ T

n

Ψ(|t− s|)1−2/p dtds

= Cf,V
1

T

∫ n

0

∫ T

n

(1 + t− s)−βδ/p dtds,

where Cf,V = 8π(V )δ/pπ(|Yi0|p)1/pπ(|Yj0|p)1/p < ∞ and the last equality fol-
lows since we assumed polynomial ergodicity of degree β and since we always



Chapter 3. Gaussian Approximations for Continuous-time Processes 67

have t ≥ s on the considered integration region. Since βδ/p > 1, it follows
that ∫ n

0

∫ T

n

(1 + t− s)−βδ/p dtds ≤ (T − n)

∫ n

0

sup
t∈[n,T ]

(1 + t− s)−βδ/p ds

≤ (T − n)

∫ n

0

(1 + n− s)−βδ/p ds

=
(T − n)

βδ/p− 1

(
1− 1

(1 + n)
βδ
p
−1

)
.

Consequently, it follows that

1

T

∫ n

0

∫ T

n

|Covπ(Yit, Yjs)| dtds ≤ Cf,V
T − n
T

p

βδ − p

(
1− 1

(1 + n)
βδ
p
−1

)
= o(1).

By the same argument, we have that

1

T

∫ n

0

∫ T

n

|Covπ(Yis, Yjt)| dtds = o(1).

Finally, we also have that

1

T

∫ T

n

∫ T

n

|Covπ(Yit, Yjs)| dtds ≤ Cf,V
1

T

∫ T

n

∫ T

n

(1 + |t− s|)−βδ/p dtds

≤ Cf,V
(n− T )2

T
sup

(s,t)∈[n,T ]×[n,T ]

(1 + |t− s|)−βδ/p

= Cf,V
(n− T )2

T
= o(1).

Hence we have shown that (ΣT2)ij, (ΣT3)ij and (ΣT4)ij tend to zero as T tends
to infinity and thus we have that Σf = Σξ. Note that we have now proven
our result assuming stationarity, i.e., with initial distribution π. However,
by following the argument of Meyn and Tweedie [107; Proposition 17.1.6] it
follows that the strong invariance principle holds for every initial distribution.
Let

h(x) = Px

(∥∥∥∥∫ T

0

[f(Xt)− π(f)]dt dt− Σ
1/2
f W (T )

∥∥∥∥ = Oa.s.(ψT )

∣∣∣∣∣X0 = x

)
.
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We have currently shown that the strong approximation results holds for
initial distribution π, i.e., ∫

h(x)π(dx) = 1.

Now we will show that h is harmonic, i.e., h(x) = Psh(x). Indeed, for every
x in E and s ≥ 0 we have

Psh(x) =

∫
E

Ps(x, dy)h(y)

= Exh(Xs)

= E

[
Px
(∥∥∥∥∫ s+T

s

[f(Xt)− π(f)]dt− Σ
1/2
f W (T )

∥∥∥∥ = O(ψT )
∣∣∣Xs = y

) ∣∣∣∣∣X0 = x

]
By the Markov property and the tower property of conditional expectation,
we have that Psh(x) can be expressed as

E

[
Px
(∥∥∥∥∫ s+T

s

[f(Xt)− π(f)]dt− Σ
1/2
f W (T )

∥∥∥∥ = O(ψT )
∣∣∣Xs = y;X0 = x

) ∣∣∣∣∣X0 = x

]

= Px
(∥∥∥∥∫ s+T

s

[f(Xt)− π(f)]dt− Σ
1/2
f W (T )

∥∥∥∥ = O(ψT )
∣∣∣X0 = x

)
= h(x),

where the last inequality follows since for all fixed s ≥ 0 we have, by the
same argument of (4.97), that∫ s

0

[f(Xt)− π(f)]dt− Σ
1/2
f W (s) and

∫ T+s

T

[f(Xt)− π(f)]dt− Σ
1/2
f W (s)

are Oa.s.(ψT ) almost surely. By Kallenberg [88; Theorem 20.10], we have that
for ergodic Markov processes every bounded harmonic function is constant,
hence it follows that h(x) = 1 for all x ∈ E. It immediately follows that for
every initial distribution ν we have that

Pν
(∥∥∥∥∫ T

0

f(Xt) dt− Tπ(f)− Σ
1/2
f W (T )

∥∥∥∥ = O(ψT )

)
=∫

E

Px
(∥∥∥∥∫ T

0

f(Xt) dt− Tπ(f)− Σ
1/2
f W (T )

∥∥∥∥ = O(ψT )
∣∣∣X0 = x

)
ν(dx) = 1

Hence the strong invariance principle holds for every initial distribution.
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3.6.2. Proposition 3.3.3

In Berkes et al. [12] a strong invariance principle for weakly m-dependent
processes is given, which are defined as processes that can be approximated
by m-dependent processes in the Lp-sense, with a sufficiently decaying ap-
proximation error (rate function in terminology of Berkes et al. [12]). Their
strong invariance principle, stated in Theorem 3.6.5, is obtained through a
classical blocking argument for m-dependent random variables. By divid-
ing an m-dependent sequence into non-overlapping long and short blocks,
two sequences of independent random variables are obtained; these can both
be approximated by a Brownian motion. Trivially, stationary m-dependent
processes satisfying appropriate moment conditions fall into their framework.
For more details we refer to Berkes et al. [12].

Theorem 3.6.5 (Berkes et al. [12; Theorem 2]). Let ξ = (ξk)
∞
k=1 be a centered

stationary sequence with supk E|ξk|
p < ∞, for some δ > 0. Moreover, let ξ

be weakly m-dependent in Lp with an exponentially decaying m-dependent
approximation rate function κ, i.e.,

κ(m)≪ exp(−cm), for some c > 0.

Then the series

σ2
ξ =

∞∑
k=0

Eξ0ξk

is absolutely convergent, and we can redefine ξ on a new probability space
on which we can also construct two standard Brownian motions W1 and W2

such that ∣∣∣∣∣
n∑
k=1

ξk −W1(s
2
n)−W2(t

2
n)

∣∣∣∣∣ = O(n1/p log2 n)

where {sn} and {tn} are non-decreasing deterministic sequences with

s2n = σ2
ξn+O(n/ log n),

t2n = O(n/ log n),

and lim supn(s2n+1 − s2n) = lim supn(t2n+1 − t2n) = σ2
ξ .

The m-dependent approximation rate function κ appearing in Theorem
3.6.5 describes how well the process can be approximated by an m–dependent
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process in terms of Lp–distance. For a more detailed definition, we refer to
Berkes et al. [12; Definition 1]. As noted by Berkes et al. [12], the per-
turbed time sequences {sn} and {tn} are deterministic and can be explicitly
calculated.

Proof of Proposition 3.3.3

Proof. Firstly, assume that the initial distribution of X is equal to ν. By
Proposition 3.2.1 we see that we can redefine our process such that it is
embedded in a richer process Z. We will identify X as the first coordinate
of the process Z. Following Proposition 3.2.2, we introduce the sequence of
stopping times (Sn, Rn) defined as S0 = R0 := 0 and

Sn+1 := inf{Tm > Rn : ZTm ∈ A} and Rn+1 := inf{Tm : Tm > Sn+1}.

Then ZRn is independent of FRn−1 for all n ≥ 1 and (ZRn)n≥1 is an i.i.d
sequence with

ZRn ∼ ν(dx)λ(du)K((x, u), dx′) for all n ≥ 1,

where λ denotes the law of a standard Uniform random variable. As a direct
consequence, the sequence {ξn}n defined as

ξn :=

∫ Rn

Rn−1

{f(Xs)− π(f)} ds, n ≥ 1, (3.56)

is stationary under Pν . Moreover, by Proposition 3.2.3 for n ≥ 2, ξn is in-
dependent of FRn−2 . Let N(T ) denote the number of regenerations of the
resolvent chain up to time T , namely

N(T ) = max{k : Rk ≤ T}.

It immediately follows that∫ T

0

{f(Xs)− π(f)} ds =

N(T )∑
k=1

ξk +

∫ T

RN(T )

{f(Xs)− π(f)} ds.

Consequently, we have that∣∣∣∣∣
∫ T

0

{f(Xs)− π(f)} ds−
N(T )∑
k=1

ξk

∣∣∣∣∣ ≤
∫ T

RN(T )

|f(Xs)− π(f)|ds. (3.57)
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By an argument analogous to the one given in Theorem 3.3.1 for the re-
mainder term defined in (3.48), we will show that∫ T

RN(T )

|f(Xs)− π(f)|ds = Oa.s.(T 1/p) a.s. for T →∞. (3.58)

In order to show that (3.58) holds, we note that∫ T

RN(T )

|f(Xs)− π(f)|ds ≤
∫ RN(T )+1

RN(T )

|f(Xs)− π(f)|ds. (3.59)

By a Borel-Cantelli argument it will follow that∫ RN(T )+1

RN(T )

|f(Xs)− π(f)|ds = Oa.s.(T 1/p) a.s. for T →∞. (3.60)

Indeed, introduce the event

An =

{∫ Rn+1

Rn

|f(Xs)− π(f)|ds > n1/p

}
.

By the stationarity of {ξn}n∈N under Pν it follows that the introduced se-
quence of events satisfies

∞∑
n=1

Pν (An,ε) =
∞∑
n=1

Pν
(∣∣∣∣∫ Rn+1

Rn

|f(Xs)− π(f)|ds
∣∣∣∣p > n

)
=

∞∑
n=1

Pν
(∣∣∣∣∫ R1

0

|f(Xs)− π(f)|ds
∣∣∣∣p > n

)
≤ Eν

∣∣∣∣∫ R1

0

|f(Xs)− π(f)|ds
∣∣∣∣p <∞.

The Borel-Cantelli lemma states that Pν(lim supAn) = 0. Consequently, we
have that Pν(lim inf Acn) = 1. Hence it follows that∫ Rn+1

Rn

|f(Xs)− π(f)|ds = Oa.s.(n1/p) . (3.61)

Moreover, since N(T ) is almost surely increasing and N(T ) = Oa.s.(T ), as
shown in (3.65), it follows that∫ RN(T )+1

RN(T )

|f(Xs)− π(f)|ds = Oa.s.(N(T )1/p) = Oa.s.(T 1/p) .
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Hence proving the claim formulated in (3.60) and as a direct consequence also
the bound stated in (3.58). Furthermore, by Proposition 3.2.3, the sequence
{ξk}∞k=1 is a stationary m-dependent sequence. By the imposed moment
conditions and stationarity, we have by the reasoning given in Berkes et al.
[12; Section 3.1] that {ξk}∞k=1 is also a weakly m-dependent process with a
rate function κ(m) equal to zero for m ≥ 1. Hence by Theorem 3.6.5, we can
redefine (ξk)k on a new probability space on which we can also construct two
standard Brownian motions W1 and W2 such that∣∣∣∣∣

n∑
k=1

ξk − nEνξ1 −W1(s
2
n)−W2(t

2
n)

∣∣∣∣∣ = Oa.s.(n1/p log2 n) (3.62)

where {sn} and {tn} are increasing deterministic sequences with s2n = σ2
ξn+

Oa.s.(n/ log n) and t2n = Oa.s.(n/ log n). Note that by Proposition 3.2.4 we
have that

π(f) =
1

ϱ
Eν
∫ R1

0

f(Xs)ds.

Hence

Eνξ1 = Eν
∫ R1

0

{f(Xs)− π(f)} ds = ϱ · π(f − π(f)) = 0.

Furthermore, by definition of big O in (3.62), there exists an almost surely
finite random variable C such that for almost all sample paths ω we have
that for all n ≥ N0 ≡ N0(ω) we have that

1

n1/p log2 n

∣∣∣∣∣
n∑
k=1

ξk(ω)−W1(s
2
n, ω)−W2(t

2
n, ω)

∣∣∣∣∣ < C(ω) (3.63)

Since we have that EνRq
1 < ∞, by Csörgö and Horváth [38; Theorem 2.4]

with q = β − 1, we can construct a Brownian motion W̃ such that∣∣∣∣N(T )− T

ϱ
− Varν(R1)

ϱ3/2
W̃T

∣∣∣∣ = oa.s.(T
1/q). (3.64)

By the law of iterated logarithm for Brownian motion we obtain

N(T ) =
T

ϱ
+Oa.s.(

√
T log log T ) a.s. (3.65)
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Since N(T ) is almost surely increasing and tends to infinity, we have that for
almost every sample path ω there exists a T0 ≡ T0(ω) such that N(T )(ω) ≥
N0 for all T ≥ T0. Hence we obtain from (3.63) that

lim sup
T→∞

∣∣∣∑N(T )
k=1 ξk −W1(s

2
N(T ))−W2(t

2
N(T ))

∣∣∣
N(T )1/p log2(N(T ))

< C a.s. , (3.66)

where s2N(T ) and t2N(T ) are almost surely increasing sequences, which given

N(T ) are deterministic with

s2N(T ) = σ2
ξN(T ) +Oa.s.(N(T )/ logN(T ))

t2N(T ) = Oa.s.(N(T )/ logN(T )).

We see that (3.66) can be reformulated as∣∣∣∣∣∣
N(T )∑
k=1

ξk −W1(s
2
N(T ))−W2(t

2
N(T ))

∣∣∣∣∣∣ = Oa.s.(N(T )1/p log2N(T ))) a.s.

(3.67)

= Oa.s.(T 1/p log2 T )) a.s. (3.68)

Here the second equality follows by (3.65). Furthermore, the asymptotic
behaviour of N(T ) motivates the introduction of σ2

T , τ
2
T defined as

σ2
T = s2n/ϱ, for T ∈ [n, n+ 1),

τ 2T = t2n/ϱ, for T ∈ [n, n+ 1).

By Theorem 3.5.1 (see also Theorem 1.2.1 of Csörgö and Révész [40]) we
see that∣∣W1(s

2
N(T ))−W1(σ

2
T )
∣∣ and

∣∣W2(t
2
N(T ))−W1(τ

2
T )
∣∣ are both Oa.s.(T 1/4 log T ) a.s.

(3.69)
with

σ2
T =

σ2
ξ

ϱ
T +Oa.s.(T/ log T ) and τ 2T = Oa.s.(T/ log T ).

Combining results (3.58), (3.67), and (3.69) concludes the proof. By the
same arguments given in the proof of Theorem 3.3.1, the strong invariance
principle holds for every initial distribution.
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Furthermore, we have by Berkes et al. [12; Proposition 1] that

Corr(W1(sn),W2(tm))→ 0 as m,n→∞.

Hence (3.27) immediately follows.

3.6.3. Theorem 3.3.4

For this proof, we will rely on the following properties of the resolvent chain.
Granted that the process X is aperiodic and positive Harris recurrent, then
also the resolvent X̄ will inherit these properties, as seen in Meyn and
Tweedie [107; Propostion 5.4.5] and Tweedie [148; Theorem 3.1] respect-
ively. Moreover, by Down et al. [54; Theorem 5.3], exponential convergence
to stationarity is equivalent for X and X̄. The split chain of the resolvent
in turn obtains aperiodicity and positive Harris recurrence from X̄, as seen
in for example Nummelin [116]. Following a co-de-initialising argument of
Roberts and Rosenthal [133], we see that the split chain inherits the rate of
convergence of the resolvent chain. To conclude, we see that the split chain
inherits aperiodicity, positive Harris recurrence, and the rate of ergodicity
from the process X.

Note that by Proposition 3.2.1 (Z1
Tn
, Z2

Tn
)n, the jump chain of the first

two coordinates of Z, has the same distribution as the split chain of the
resolvent. From (3.6) and (3.7) we see that (Z1

Tn
, Z2

Tn
)n is a Markov chain

taking values in E ′ := E × [0, 1] that moves according to the kernel

U ′((x, u), (dy, dv)) = ν(dy)λ(dv)1{u≤α1C(x)} +W (x, dy)λ(dv)1{u>α1C(x)},
(3.70)

where λ denotes Lebesgue measure on the unit interval. Observe that the
kernel of the split chain of the resolvent also satisfies a one-step minorisation
condition U ′ ≥ s⊗ ν ⊗ λ, i.e.,

U ′((x, u), (dy, dv)) ≥ s(x, u)ν(dy)λ(dv), (3.71)

where
s(x, u) = 1{u≤α1C(x)}.

Moreover, the split chain of the resolvent is aperiodic, positive Harris recur-
rent and inherits the rate of convergence to stationarity from X.
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Lemma 3.6.6 (Hobert et al. [81; Lemma 1]). Let (Xt)t≥0 be a positive Harris
recurrent Markov process with invariant distribution π. Let U denote the
transition kernel of the resolvent chain of X and assume that the following
minorisation condition holds:

U(x, dy) ≥ α1C(x)ν(dy). (3.72)

Then for any π-integrable function g : E[0,∞) → R we have the following
inequality holds

Eπ|g| ≥ c Eν |g|, (3.73)

where c = απ(C).

Proof. Since the resolvent chain has the same stationary distribution as the
process X, i.e., π = πU , the claim follows with the identical argument of
Hobert et al. [81; Lemma 1].

Proof of Theorem 3.3.4

Proof. Firstly, by the construction of the randomised stopping times (Sn)n
and (Rn)n we see that Rn = Sn+σn+1, where σn+1 has a standard exponential
distribution. Hence, by the triangle inequality in Lq(π) we only need to show
that Eπ[S1

q] <∞, with

S1 = inf{Tn : ZTn ∈ C × [0, α]× E}

Let Z̄ = (Z̄n)n denote the jump chain of the process Z, i.e., Z̄n = ZTn ,
where the (Tn)n denote the jump times. Let X̄ = (X̄n)n≥0 again denote the
resolvent chain. Let Nt denote the number of jumps up to time t. Let τ̄A
denote the hitting time of the recurrent atom for jump chain Z̄, i.e.,

τ̄A : = inf{n ≥ 0 : Z̄n ∈ A} = inf{n ≥ 0 : Z̄n ∈ C × [0, α]× E}.

For technical convenience, we introduce q := β − 1, note that by the as-
sumed ergodicity assumptions we have that q > p(p+ε)/ε. From the relation
between the expectation of positive random variables and tail probabilities
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we can express the expectation of interest as follows

EπSq1 =

∫ ∞

0

qtq−1Pπ (S1 > t) dt

=

∫ ∞

0

qtq−1

∞∑
m=0

Pπ (τ̄A > m;Nt = m) dt

=

∫ ∞

0

qtq−1

∞∑
m=0

Pπ
(
τ̄A > m;Nt = m; Z̄0 ∈ A

)︸ ︷︷ ︸
=0

+ Pπ
(
τ̄A > m;Nt = m; Z̄0 /∈ A

) dt

=

∫ ∞

0

qtq−1

∫
E′

∫
E′

∞∑
m=0

tm

m!
e−t

∞∑
k=m+1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)π(dx)dt

=

∫
E′

∫
E′

∞∑
m=0

∫ ∞

0

tm+q−1

m!
qe−t

∞∑
k=m+1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)dtπ(dx)

=

∫
E′

∫
E′

∞∑
k=1

(U ′ − ν ⊗ λ⊗ s)k (x, dz)1A(z)q
k−1∑
m=0

Γ(m+ q)

m!
π(dx)

=

∫
E′

∫
E′

∞∑
k=1

Γ(k + q)

Γ(k)
(U ′ − ν ⊗ λ⊗ s)k (x, dz)s(z)π(dx).

Here we obtained the last equality by using

k−1∑
m=0

Γ(m+ q)

m!
=

Γ(k + q)

qΓ(k)
,

which can easily be proven by mathematical induction and the fact that
for every k > 0 we have that Γ(k + 2) = kΓ(k + 1) + Γ(k + 1). Note that
Γ(k + q)/Γ(k − 1) can be dominated by some polynomial ψ(k) with a leading
term of order kq+1. By Nummelin and Tuominen [118; Proposition 1.6] we
have that ∫

E′

∫
E′

∞∑
k=0

ψ(k) (U ′ − ν ⊗ λ⊗ s)k (x, dz)s(z)π(dx) <∞.

It follows that EπSq1 <∞.
For the second statement of Theorem 3.3.4 we follow the argument of

Bednorz and  Latuszyński [10; Theorem 2] with some minor adaptations. We



Chapter 3. Gaussian Approximations for Continuous-time Processes 77

give the proof for completion.

[Eπξp1 ]1/p ≤
[
Eπ
∣∣∣∣∫ R1

0

|f(Xs)|ds
∣∣∣∣p]1/p

=

[
Eπ
∣∣∣∣∫ ∞

0

|f(Xs)|1{R1≥s}ds

∣∣∣∣p]1/p
≤
∫ ∞

0

[
Eπ
(
|f(Xs)|p1{R1≥s}ds

)]1/p
≤
∫ ∞

0

[
Eπ|f(Xs)|p+ε

]1/(p+ε) [Eπ1{R1≥s}
]ε/p(p+ε)

ds

≤ π
(
|f |p+ε

)1/(p+ε) ∫ ∞

0

[Pπ(R1 ≥ s)]ε/p(p+ε) ds

≤ π
(
|f |p+ε

)1/(p+ε)(
1 + π(Rq

1)
ε/p(p+ε)

∫ ∞

1

s−εq/p(p+ε)ds

)
<∞.

Here the inequalities follow by Minkowski’s integral inequality, Hölder’s
inequality, stationarity, and Markov’s inequality. Note that the integral on
the last line is finite due to the imposed condition on the rate of polynomial
ergodicity since q = β − 1 > p(p + ε)/ε. An application of Lemma 3.6.6
concludes the proof.

Remark 3.6.7. Note that if we assume polynomial ergodicity of rate β > 1,
without any further requirements, then we can only guarantee the exist-
ence of moments up to order p′ where p′ < 1

2
(
√
ε(ε+ 4(β − 1))) − ε) if

p > 1
2
(
√
ε(ε+ 4(β − 1)))− ε) and p′ = p otherwise. △

Remark 3.6.8. For the exponentially ergodic case we would make use of Num-
melin and Tuominen [117; Lemma 2.8] which states that for an exponentially
ergodic Markov chain there exists an r > 1 such that∫

E′

∫
E′

∞∑
k=0

rk (U ′ − ν ⊗ λ⊗ s)k (x, dy)1C(y)π(dx) <∞.

△

3.6.4. Theorem 3.3.6 and 3.3.7

Lemma 3.6.9 (Merlevède et al. [103; Lemma 2.4]). Let B be a standard
Brownian motion and N be a Poisson process with intensity λ, independent of
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B. Then there exists a standard Brownian motion W that is also independent
of N such that ∣∣∣∣B(n)− 1√

λ
W (N(n))

∣∣∣∣ = Oa.s.(log(n))

Proof. The claim immediately follows from Merlevède et al. [103; Lemma
2.4] and a Borel-Cantelli argument.

Proof of Theorem 3.3.6

Proof. We will first assume that our initial distribution is equal to the sta-
tionary distribution. Let x0 denote the smallest local optimum of the density
π, i.e.,

x0 = min{x : π′(x) = 0}.

Since the tails of π are diminishing, we must have that x0 is a local maximum.
Moreover, for some M > 0, define the set A as follows

A = [x0 −M,x0]× {+1}.

Note that on (−∞, x0) the density on π is increasing, and therefore the
potential U = − log π is decreasing and thus the derivative of U is negative.
Consequently, for all (x, v) ∈ (−∞, x0) × {+1} we have that the switching
intensity λ(x, v)= (U ′(x))+ = 0, since the process is moving toward a higher
density region. If the process moves from (−∞, x0 −M)× {+1} to A, the
process will thus not switch and move deterministically from A to x0×{+1}
in time M . If the process hits A from [x0 −M,x0] × {−1}, i.e., when the
position component is in [x0 −M,x0] and the velocity switches from −1 to
+1, then the point x0 × {+1} will be reached in time at most M. Note that
these are the only possibilities for reaching the set A. We see that when the
process hits A, the process must move deterministically for time at most M
until the point x0 × {+1} is reached and the probability of a velocity switch
becomes positive. This motivates the introduction of the stopping times Rn

defined as

R0 = inf{t ≥ 0 : (Xt, Vt) = (x0, 1)}

and

Rn = inf{t ≥ Rn−1 : (Xt, Vt) = (x0, 1)}.
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By the Markov property, the sequence {ξn} defined as

ξn :=

∫ Rn

Rn−1

{f(Xs)− π(f)} ds, n ≥ 1,

is i.i.d under Pν , with ν a Dirac measure at the point x0 × {+1}. Note that
this argument holds for any local optimum by the smoothness assumptions
on π. Note that we also have that Rn ≤M + τA with τA again denoting the
hitting time of set A. Since we have that

{τA > t} ⊂
∞⋃
m=1

{τ̄A > m;Nt = m},

where τ̄A again denotes the hitting time of the resolvent chain, we can follow
the argument of Theorem 3.3.4 to obtain that

Eν [(R1)
β−1] <∞.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ where p ≥ 1
and β > (p+ 2ε)/ε, we have that

Eπ
∣∣∣∣∫ R0

0

[f(Xs)− π(f)]ds

∣∣∣∣p <∞ and Eν
∣∣∣∣∫ R1

R0

[f(Xs)− π(f)]ds

∣∣∣∣p <∞.

Thus we see that ξ0 :=
∫ R0

0
[f(Xs) − π(f)]ds is asymptotically negli-

gible. Define (τk)k∈N as τk = Rk − Rk−1 and let ϱ and σ2
τ denote the

mean and variance of this random variable. The sequence of random vec-
tors (ξk, τk) are independent and identically distributed. If we choose α =
Covν(ξ1, τ1)/Varν(τ1), then it immediately follows that ξk−α(τk− ϱ) and τk
are uncorrelated.

Applying the multivariate Komlós-Major-Tusnády approximation given
in Einmahl [60; Theorem 1] and Csörgö and Horváth [38; Theorem 2.1], there
exists two independent Brownian motions B1 and B2 such that∣∣∣∣∣

n∑
k=1

ξk − α(
n∑
k=1

τk − ϱ)− σ̃B1

∣∣∣∣∣ = oa.s. (ψn) (3.74)

|Rn − nϱ− στB2(n)| = oa.s. (ψn) , (3.75)
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with
ψn = nmax( 1

β−1
, 1
p). (3.76)

Note that in (3.74) we have that Eνξ1 = 0 by Theorem 3.2.4 and that
σ̃2 = Varν(ξ1 − α(τ1 − ϱ)). From the assumptions on the rate of ergodi-
city, we see that the approximation error simplifies to oa.s.(n

1/p). By Komlos
[90; Theorem 1(ii)], a Poisson Process N with intensity λ = ϱ2/σ2

τ can be
constructed from the Brownian motion B2 such that∣∣∣∣N(n)− ϱ

γ
n− στ

γ
B2(n)

∣∣∣∣ = Oa.s.(log n) , (3.77)

where γ = σ2
τ/ϱ and N is constructed increment-wise from B2 in a determ-

instic way and is therefore also independent of B1. From (3.75) and (3.77) it
follows that

|Rn − γN(n)| = oa.s.(n
1/p) (3.78)

We claim that it therefore follows that∣∣∣∣∣
∫ Rn

0

[f(Xs)− π(f)]ds−
∫ γN(n)

0

[f(Xs)− π(f)]ds

∣∣∣∣∣ = O(n1/p) (3.79)

Indeed, we have that∣∣∣∣∣
∫ Rn

0

[f(Xs)− π(f)]ds−
∫ γN(n)

0

[f(Xs)− π(f)]ds

∣∣∣∣∣ =

∣∣∣∣∫ cn

bn

f(Xs)− π(f)ds

∣∣∣∣,
(3.80)

where bn := min{Rn, γN(n)} and cn := max{Rn, γN(n)}. Therefore we
can introduce the positive sequence αn as follows

αn := cn − bn = |Rn − γN(n)|.

From (3.78) it follows that αn = oa.s.(n
1/p) , hence for almost every ω it holds

that for all ε1 > 0 there exists an N1 := N1(ω) such that for all n ≥ N1 we
have that αn < ε1n

1/p and hence cn = bn + αn ≤ bn + ε1n
1/p. Note that

the stopping times (Rk)k≥0 are regeneration epochs of the process, and hence
the corresponding cycles Ck := (Xs : Rk ≤ s < Rk+1) are independent and
identically distributed. Let η(T ) := max{k : Rk ≤ T} denote the number of
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regenerative cycles up to time T and let Yk =
∫ Rk+1

Rk
|f(Xs)− π(f)|ds. Then

we see that for n > N1(ω) we have that∣∣∣∣ 1

n
1
p

∫ cn

bn

f(Xs)− π(f)ds

∣∣∣∣ =
1

n
1
p

∣∣∣∣∫ cn−bn

0

f(Xbn+u)− π(f)du

∣∣∣∣
≤ 1

n
1
p

∫ αn

0

|f(Xbn+u)− π(f)|du

≤ 1

n
1
p

∫ ε1n1/p

0

|f(Xbn+s)− π(f)|ds

≤ 1

n
1
p

η(bn+ε1n1/p)∑
j=η(bn)

Yj +
1

n
1
p

∫ bn+ε1n1/p

R
η(bn+ε1n

1/p)

|f(Xs)− π(f)|ds

(3.81)

From (3.65) we see that η(T ) tends to infinity as T →∞ and limT→∞ η(T )/T =
1/ϱ almost surely. Also for every positive sequence mT that tends to infinity
as T → ∞ we have that limT→∞ η(mT )/mT = 1/ϱ almost surely. By an
application of the law of iterated logarithm to (3.75) and (3.77) we obtain
Rn = n/ϱ + Oa.s.(

√
n log log n) a.s. and Nn = n/λ + Oa.s.(

√
n log log n) a.s.

respectively. Hence we have that bn = Oa.s.(n) a.s., and consequently η(bn) =
Oa.s.(n) almost surely. Note that η(bn + ε1n

1/p), the number of regenerations
until time bn + ε1n

1/p is equal to the number of generation until time bn
and the number of regenerations in the time interval (bn, bn + ε1n

1/p), i.e.,
η(bn+ε1n

1/p) = η(bn)+η(bn+ε1n
1/p)−η(bn). Since η(T ) is a renewal process

it is clear that we should have

η(bn + ε1n
1/p)− η(bn) = Oa.s.(η(ε1n

1/p)) a.s. (3.82)

Indeed, since we have that EνRq
1 <∞, by Csörgö and Horváth [38; Theorem

2.4] we can construct a Brownian motion B̃2 such that∣∣∣∣η(T )− T

µη
− σηB̃2(T )

∣∣∣∣ = oa.s.(T
1/q) a.s., (3.83)

for some constants µη and ση. Hence for almost all sample paths ω there
exists a T1(ω) such that for all T ≥ T1(ω) we have that

1

T 1/q

∣∣∣∣η(T )− T

µη
− σηB̃2(T )

∣∣∣∣ < ε. (3.84)
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Since bn is non-decreasing and tends to infinity almost surely, it follows that
for all sample paths ω there exists a N2(ω) such that η(bn)(ω) ≥ T1(ω) for
all n ≥ N2(ω) and hence

1

b
1/q
n

∣∣∣∣η(bn)− bn
µη
− σηB̃2(bn)

∣∣∣∣ < ε. (3.85)

Since bn = Oa.s.(n) almost surely, it follows that∣∣∣∣η(bn)− bn
µη
− σηB̃2(bn)

∣∣∣∣ = oa.s.(b
1/q
n ) = oa.s.(n

1/q) (3.86)

Let an := ε1n
1/p, then by the triangle inequality, we obtain

η(bn + an)− η(bn) ≤
∣∣∣η(bn + an)− (bn + an)/µη − σηB̃2(η(bn) + an)

∣∣∣
(3.87)

+ an/µη +
∣∣∣−η(bn) + bn/µη + σηB̃2(bn)

∣∣∣ (3.88)

+ ση

∣∣∣B̃2(bn + an)− B̃2(bn)
∣∣∣ (3.89)

By (3.86) the rhs of (3.87) and the second term in (3.88) are both oa.s.(n
1/q)

and thus oa.s.(n
1/p). Furthermore, by Csörgö and Révész [39; Theorem 2] we

have that

lim sup
n→∞

sup
0≤s≤an

∣∣∣B̃2(n+ s)− B̃2(n)
∣∣∣

[an(log(n/an) + log log n)]1/2
= 1 a.s. (3.90)

Since we have an = ε1n
1/p it follows that

sup
0≤s≤an

∣∣∣B̃2(n+ s)− B̃2(n)
∣∣∣ = Oa.s.

(
n1/2p log(n)

)
= oa.s.

(
n1/p

)
(3.91)

Moreover, since η(bn) = Oa.s.(n) a.s. and almost surely non-decreasing we
also have that

sup
0≤s≤an

∣∣∣B̃2(η(bn) + s)− B̃2(η(bn))
∣∣∣ = oa.s.

(
η(bn)1/p

)
= oa.s.

(
n1/p

)
(3.92)

Hence, we have shown that

η(bn + an)− η(bn) ≤ an/µη + oa.s.
(
n1/p

)
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almost surely. Therefore there exists a K > 0 such that for almost all sample
paths there exits an N3(ω) sufficiently large such that η(bn + an) − η(bn) <
Kn1/p almost surely. Hence we have shown that the claim formulated in
(3.82) indeed holds.

For technical convenience let ãn be defined as Kn1/p. Since (Yk)k≥0 form
an i.i.d sequence with Eν |Y1|p < ∞ we have by the Komlós-Major-Tusnády
approximation that there exists a Brownian motion B3 such that∣∣∣∣∣

n∑
k=0

Yk − nµY − σYB3(n)

∣∣∣∣∣ = oa.s.(n
1/p) , (3.93)

where µY and σY denote the mean and standard deviation of Y1 respectively.
It immediately follows that we also have∣∣∣∣∣∣

η(bn)∑
k=0

Yk − η(bn)µY − σYB3(η(bn))

∣∣∣∣∣∣ = oa.s.(η(b1/pn )) = oa.s.(n
1/p) (3.94)

By the triangle inequality, we obtain∣∣∣∣∣∣
η(bn)+ãn∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
η(bn)+ãn∑
k=0

Yk − (η(bn) + ãn)µY − σYB3(η(bn) + ãn))

∣∣∣∣∣∣ (3.95)

+ ãnµY +

∣∣∣∣∣∣−
η(bn)∑
k=0

Yk + η(bn)µY + σYB3(η(bn))

∣∣∣∣∣∣ (3.96)

+ σy|B3(η(bn) + ãn)−B3(η(bn))| (3.97)

≤ ãnµY + oa.s.(n
1/p) (3.98)

The last inequality follows, since by (3.94) both the term in (3.95) and the
second term in (3.97) are oa.s.(n

1/p) almost surely. Furthermore, by (3.92)
the last inequality also follows. Hence it follows that

Pν

lim sup
n→∞

1

n1/p

∣∣∣∣∣∣
η(bn+an)∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤ KµY

 = 1. (3.99)
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Hence the first term in the upper bound (3.81) is Oa.s.(1) almost surely. For
the second term, we see that from (3.61), it follows that

Yn =

∫ Rn+1

Rn

|f(Xs)− π(f)|ds = Oa.s.(n1/p) (3.100)

Therefore∫ bn+an

Rη(bn+an)

|f(XRn+s)− π(f)|ds ≤
∫ Rη(bn+an)+1

Rη(bn+an)

|f(XRn+s)− π(f)|ds (3.101)

= Yη(bn+ε1n1/p) (3.102)

= Oa.s.
(
(η(bn + ε1n

1/p))1/p
)

(3.103)

= Oa.s.
(
(n+ n1/p)1/p

)
= Oa.s.

(
n1/p

)
(3.104)

Hence our claim (3.81) follows, and consequently we have also shown (3.79).
Combining (3.74), (3.78), and (3.79) it follows that∣∣∣∣∣
∫ γN(n)

0

[f(Xs)− π(f)]ds− αγN(n) + αϱn− σ̃B1(n)

∣∣∣∣∣ = oa.s.

(
n

1
p

)
(3.105)

Let (Γs)s≥0 be defined as Γ0 := 0 and Γs := N−1(s), the right-continuous
inverse of the Poisson process. Recall that N is a Poisson process with
intensity λ = ϱ2/σ2

τ . Taking n = Γn′ in (3.105) and subsequently making the
substitution n = γn′, it follows that∣∣∣∣∫ n

0

[f(Xs)− π(f)]ds− αn+ αϱΓn/γ − σ̃B1(Γn/γ)

∣∣∣∣ = oa.s.

(
Γn

1/p
)

= oa.s.
(
n1/p

)
, (3.106)

where we used the fact that Γ is a non-decreasing process that tends to
infinity. Moreover, since Γn has a Gamma distribution it follows from the
Komlós-Major-Tusnády approximation [90; Theorem 1] that there exists a
Brownian motion B4 such that∣∣∣∣Γn − n

λ
− 1

λ
B4(n)

∣∣∣∣ = Oa.s.(log n) (3.107)

Note that the Poisson process N and therefore its corresponding event time
process Γ are independent of B1. Therefore by an application of Lemma
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3.6.9 with n = Γn it follows that there exists a standard Brownian motion
B5 independent of N and Γ such that∣∣∣∣B1(Γn)− 1√

λ
B5(n)

∣∣∣∣ = Oa.s.(log n) (3.108)

Applying the obtained approximations given in (3.107) and (3.108) to (3.106)
it follows that∣∣∣∣∫ n

0

f(Xs)− π(f)ds−
(

σ̃√
λγ
B5(n)− αϱ

λ
√
γ
B4(n)

)∣∣∣∣ = oa.s.
(
n1/p

)
(3.109)

Note that since B4 and B5 are independent we have that

Wn =
1

σf

(
σ̃√
λγ
B5(n)− αϱ

λ
√
γ
B4(n)

)
(3.110)

is a standard Brownian motion since

σ̃2

γλ
+
α2ϱ2

γλ2
=

Eνξ21
ϱ

= σ2
f . (3.111)

Furthermore, by definition of big O, there exists an almost surely finite
random variable C such that for almost all sample paths ω we have that
for all n ≥ N0 ≡ N0(ω) we have that

1

n1/p

∣∣∣∣∫ n

0

f(Xs(ω))ds− Tπ(f)− σ2
fWn(ω)

∣∣∣∣ < C(ω). (3.112)

It immediately follows that (3.112) also holds for T sufficiently large and
hence carries over for T → ∞. By the same argument given in the proof of
Theorem 3.3.1, the strong invariance principle holds for every initial distri-
bution.

Proof of Theorem 3.3.7

Proof. From Bierkens et al. [21; Proposition 2.8] we see that the Zig-Zag
process with a stationary distribution of product form π(x) =

∏d
i=1 πi(xi) can

be decomposed into d independent Zig-Zag processes, each with stationary
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distribution πi. Since we have that∥∥∥∥∫ T

0

f(Xt) dt− Tπ(f)− Σ
1/2
f W (T )

∥∥∥∥ ≤
√
dmax

i

∣∣∣∣∫ T

0

fi(X
i
t) dt− Tπi(fi)− σfiW i(T )

∣∣∣∣,
the theorem follows if we can show that a strong invariance principle holds
for every component on the same probability space. Firstly, assume that the
initial distribution of Z is π.

In order to obtain a Brownian approximation for every coordinate we will
use a regenerative argument along the lines of Theorem 3.3.6. For every com-
ponent i = 1, . . . , d we define the following: xi0 the smallest local maximum
of the density πi, i.e., xi0 = min{x : π′

i(x) = 0} and corresponding set set
Ai = [xi0 −M,xi0] × {+1}, and the sequences of stopping times {Ri

n}n∈N as
follows

Ri
0 = inf{t ≥ 0 : (X i

t , V
i
t ) = (xi0, 1)},

and

Ri
n = inf{t ≥ Rn−1 : (X i

t , V
i
t ) = (xi0, 1)}.

Furthermore, we also introduce for every coordinate i the sequence {ξin}
defined as

ξin :=

∫ Ri
n

Ri
n−1

{f(Xs)− π(f)} ds, n ≥ 1.

Note that for all components {ξin}n is i.i.d under Pνi , with νi a Dirac measure
at the point xi0 × {+1}. We can follow the argument of Theorem 3.3.4 to
obtain that

Eνi
[
(Ri

1)
β−1
]
<∞ for i = 1, . . . , d.

Moreover, for all measurable f : E → R with π(|f |p+ε) < ∞ where p ≥ 1
and β > 2 + p/ε, we have that

Eνi

∣∣∣∣∣
∫ Ri

1

Ri
0

fi(X
i
s)− π(f)ds

∣∣∣∣∣
p

<∞ for i = 1, . . . , d.
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Note that for every coordinate i we have that∣∣∣∣∫ T

0

fi(X
i
t) dt− Tπi(fi)− σfiW i(T )

∣∣∣∣ ≤
∣∣∣∣∣
∫ Ri

1

0

fi(X
i
t)− πi(fi)dt

∣∣∣∣∣ (3.113)

+

∣∣∣∣∣
∫ T

Ri
1

fi(X
i
t)− πi(fi)dt− σfiW i(T )

∣∣∣∣∣.
(3.114)

By assuming that the process starts at its stationary distribution, it follows

by the argument in the proof of Theorem 3.3.4 that
∣∣∣∫ Ri

1

0
fi(X

i
t)− πi(fi)dt

∣∣∣
is almost surely finite and hence asymptotically negligible.

Define (τ ik)k∈N as τ ik = Ri
k−Ri

k−1 and let ϱi and σ2
ϱi

denote the mean and
variance respectively. The sequence of random vectors (ξik, τ

i
k) are independ-

ent and identically distributed. If we choose αi = Covν(ξ
i
1, τ

i
1)/Varν(τ

i
1),

then it immediately follows that ξik − αi(τ
i
k − ϱi) and τ ik are uncorrelated.

By applying the multivariate Komlós-Major-Tusnády approximation given
in Einmahl [60; Theorem 1] and Csörgö and Horváth [38; Theorem 2.1] to
the sequence of random vectors

zk = (z1k, · · · , zdk)T = ((ξ1k − α1(τ
1
k − ϱ1), τ 1k ), · · · , (ξdk − αd(τ dk − ϱd), τ dk ))T ,

it follows that there exists a 2d-dimensional Brownian motion such that∣∣∣∣∣
n∑
k=1

zk − Eνz1 − Σ̃zBn

∣∣∣∣∣ = oa.s.
(
n1/p

)
, (3.115)

where Σ̃z = diag(Varν(z1), · · · ,Varν(zk)). All components of zk are inde-
pendent and therefore also the corresponding components of the Brownian
motion are independent. Note that we have that for every component zik of
zk we have that there exists two independent Brownian motions B1 and B2

such that ∣∣∣∣∣
n∑
k=1

ξik − αi

(
n∑
k=1

τ ik − ϱi

)
− σ̃iBi1

∣∣∣∣∣ = oa.s.
(
n1/p

)
(3.116)

∣∣Ri
n − nϱi − στiBi2(n)

∣∣ = oa.s.
(
n1/p

)
(3.117)
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Note that in (3.116) we have that Eνξi1 = 0 by Theorem 3.2.4 and that
σ̃i = Varν(ξ

i
1 − αi(τ

i
1 − ϱi)) . By following the argument of the proof of

Theorem 3.3.6 for every component, we see that∣∣∣∣∣
∫ n

Ri
1

fi(X
i
t)− πi(fi)ds− σfiW i

n

∣∣∣∣∣ = oa.s.
(
n1/p

)
for i = 1, . . . , d. (3.118)

By combining (3.113), (3.114) and (3.118) the claim follows. By the argument
given in the proof of Theorem 3.3.1, the strong invariance principle holds for
every initial distribution.

3.6.5. Proof of Theorem 3.5.2

Proof. Firstly, by Proposition 3.3.3 there exist two standard Brownian mo-
tions W1 and W2 such that∣∣∣∣∫ T

0

f(Xs)ds−W1(σ
2
T )−W2(τ

2
T )

∣∣∣∣ = O(ψT )

where {σ2
T} and {τ 2T} are non-decreasing sequences with

σ2
T =

σ2
ξ

ϱ
T +O(T/ log T ) and τ 2T = Oa.s.(T/ log T ).

as T →∞, where σ2
ξ and ϱ are defined in Theorem 3.3.3. An application of

our strong invariance principle gives the following

lim sup
T→∞

max
0≤t≤T−aT

max
0≤u≤aT

βT

∣∣∣∣∫ t+u

0

f(Xu)du−
∫ t

0

f(Xu)du

∣∣∣∣
≤ lim sup

T→∞
max

0≤t≤T−aT
max

0≤u≤aT
βT
∣∣W1(σ

2
t+u)−W1(σ

2
t )
∣∣

+ lim sup
T→∞

max
0≤t≤T−aT

max
0≤u≤aT

βT
∣∣W2(τ

2
t+u)−W2(τ

2
t )
∣∣

+ βTOa.s.(ψT )

=: A1 + A2 + A3.

Since βTψT = o(1), it immediately follows that lim supT A3 = 0 almost surely.
In order to use the arguments of Berkes et al. [12; Theorem 4] for the terms
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A1 and A2, we require the following properties of the sequence σ2
T ; for any

ε > 0 there exists some T0 such that for all T ≥ T0

σ2
T ≤

(
σ2
ξ

ϱ
+ ε

)
T and sup

u≥0
{σ2

u+aT
− σ2

u} ≤
(
σ2
ξ

ϱ
+ ε

)
aT . (3.119)

Since σ2
T =

σ2
ξ

µ
T + O(T/ log(T )), the first required property described in

(3.119) follows directly. From the proof of Theorem 3.3.5 we have that

σ2
T = s2n/ϱ, for T ∈ [n, n+ 1). (3.120)

Note that (3.120) is equivalent to σ2
T = s2⌊T ⌋/ϱ and therefore lim supu→∞(σ2

⌊u⌋+1−
s2⌊u⌋) ≤ lim supk→∞(s2k+1−s2k)/ϱ = σ2

ξ/ϱ, where the last equality follows since

by Theorem 3.6.5 we have that lim supk(s
2
k+1 − s2k) = σ2

ξ . Since aT tends to
infinity, we have for T and U0 sufficiently large that

sup
u>U0

{σ2
u+aT

− σ2
u} = sup

u>U0

{σ2
⌊u+aT ⌋ − σ2

u}

≤ sup
u>U0

{σ2
⌊u+aT ⌋ − σ2

⌊u⌋}

≤ lim sup
u→∞

⌊aT ⌋∑
j=1

(σ2
⌊u⌋+j − σ2

⌊u⌋+j−1)

≤ 1/ϱ

⌊aT ⌋∑
j=1

lim sup
k→∞

(s2⌊u⌋+j − s2⌊u⌋+j−1)

≤ (σ2
ξ/ϱ+ ε)⌊aT ⌋ ≤ (σ2

ξ/ϱ+ ε)aT , (3.121)

where the first equality follows from (3.120), the first inequality due to the
fact that (σu)u≥0 is a non-decreasing sequence. Note that for all U0 > 0 we
have that

sup
u
{σ2

u+aT
− σ2

u} = max

{
sup
u≤U0

{σ2
u+aT

− σ2
u}, sup

u>U0

{σ2
u+aT

− σ2
k}
}

(3.122)

Since (σ2
n)n≥0 is a non-decreasing sequence and aT tends to infinity we have

that for sufficiently large T that

sup
u≤U0

{σ2
u+aT

− σ2
u} ≤ σ2

U0+aT
≤ (σ2

ξ/ϱ+ ε)aT . (3.123)
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Combining (3.121) and (3.123) gives (3.122). Consequently, we have also
shown that the required properties given in (3.119) hold. Hence for T ≥ T0
we obtain almost surely

max
0≤t≤T−aT

max
0≤u≤aT

βT
∣∣W1(σ

2
t+u)−W1(σ

2
t )
∣∣

≤ sup
0≤t≤σ2

T−aT

sup
0≤u≤(σ2

ξ/ϱ+ε)aT

βT |W1(t+ u)−W1(t)|

≤ sup
0≤t≤(σ2

ξ/ϱ+ε)(T−aT )

sup
0≤u≤(σ2

ξ/ϱ+ε)aT

βT |W1(t+ u)−W1(t)|

= sup
0≤t≤T̃ε−ãT,ε

sup
0≤u≤ãT,ε

βT |W1(t+ u)−W1(t)|,

where T̃ε and ãT,ε are defined as (σ2
ξ/ϱ+ ε)T and (σ2

ξ/ϱ+ ε)aT respectively.
Introduce

β̃T,ε :=

(
2ãT,ε

[
log

T̃ε
ãT,ε

+ log log T̃ε

])−1/2

,

then by Theorem 3.5.1 we have that almost surely

lim sup
T→∞

sup
0≤t≤T̃ε−aT,ε

sup
0≤u≤aT,ε

β̃T,ε|W (t+ u)−Wt| ≤ σ2
ξ/ϱ

Similarly, it can be shown that lim supA2 = 0 almost surely, which completes
the proof.



Chapter 4

Gaussian Approximations for
High-dimensional MCMC

The widespread use of Markov Chain Monte Carlo (MCMC) methods for
high-dimensional applications has motivated research into the scalability of
these algorithms with respect to the dimension of the problem. Despite this,
numerous problems concerning output analysis in high-dimensional settings
have remained unaddressed. We present novel quantitative Gaussian ap-
proximation results for a broad range of MCMC algorithms. Notably, we
analyse the dependency of the obtained approximation errors on the dimen-
sion of both the target distribution and the feature space. We demonstrate
how these Gaussian approximations can be applied for MCMC uncertainty
quantification. This includes determining the simulation effort required to
guarantee Markov chain central limit theorems and consistent variance estim-
ation in high-dimensional settings. We give quantitative convergence bounds
for termination criteria and show that the termination time of a wide class of
MCMC algorithms scales polynomially in dimension while ensuring a desired
level of precision. Our results offer guidance to practitioners for obtaining
appropriate standard errors and deciding the minimum simulation effort of
MCMC algorithms in both multivariate and high-dimensional settings.

4.1. Introduction

Markov Chain Monte Carlo (MCMC) methods are widely applied in vari-
ous high-dimensional settings, such as those encountered in computational
Bayesian statistics and machine learning, see for example Brooks et al. [30];

91
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Gawlikowski et al. [68]; Springenberg et al. [143]; Welling and Teh [154]. We
consider the problem of sampling from a high-dimensional probability distri-
bution π defined on E ⊆ RN and we are interested in estimating π(f) for
some appropriately integrable function f : E → E ′ with E ′ ⊆ Rd. We will
refer to E and E ′ as the state space and feature space, respectively.

We follow the framework of Qin and Hobert [125]; Yang and Rosenthal
[156]; Zhou et al. [161] where a drift-and-minorisation approach is used to
obtain quantitative convergence bounds in high-dimensional settings. A drift
condition describes how fast the Markov chain moves through the state space,
while the minorisation condition controls how fast the Markov chain forgets
its past. Our analysis considers both geometric and polynomial drift condi-
tions, which characterise the varying speeds at which the Markov chain can
move towards subsets of the state space. We also consider both the one-step
and multi-step minorisation case, which covers all widely used MCMC al-
gorithms, see Meyn and Tweedie [107; Proposition 5.4.5] and Orey [119].

We remind the reader that a weak Gaussian approximation holds for
X = (Xt)t∈N if the process can be defined on a probability space, together
with a Brownian motion W , such that

lim
T→∞

P

(
1

ΨT

∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ ⩽ Kψ̄Nψd

)
= 1, (4.1)

where | · | denotes the Euclidean norm, K denotes a dimension-independent
almost surely finite constant, and ψ̄N , ψd, and ΨT denote the dependence of
the approximation error on the dimension of the state space, the dimension
of the feature space, and the sampling time respectively. Similarly, we say
that a strong Gaussian approximation holds for X = (Xt)t∈N if

P

(
lim sup
T→∞

1

ΨT

∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ ⩽ Kψ̄Nψd

)
= 1. (4.2)

We use the customary notation for Gaussian approximations, i.e.,∣∣∣∣∣
T∑
t=0

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
ψ̄NψdΨT

)
.
Oa.s.

(
ψ̄NψdΨT

) , (4.3)
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where OP and Oa.s. denote the weak and strong approximation respect-
ively. We will further impose some regularity conditions on the asymptotic
covariance matrix Σf and mainly consider component-wise moment condi-
tions of the form supi∈{1,··· ,d} π(|fi|p+ϵ) <∞ for given p > 2 and ϵ > 0. Table
4.1 summarises the results of Theorems 4.3.1 and 4.3.2 which describe the
dependence of the Gaussian approximation rate on the simulation time.

one-step minorisation multi-step minorisation

geometric drift T 1/p log(T ) T 1/4+1/4(p−1) log(T )

polynomial drift T 1/p0 log(T ) T 1/4+1/4(p0−1) log(T )

Table 4.1: Gaussian approximation rate ΨT

Here p0 is specified in Equation (4.8) of Theorem 4.3.1 and depends ex-
plicitly on both the moment condition and the degree of polynomial drift.
Our Gaussian approximation results cover a larger class of polynomially er-
godic Markov chains than aforementioned works and are the first to quantify
the influence of the polynomial drift on the approximation rate. Further-
more, we note that besides the result of Merlevède et al. [103], we are the
first to obtain the optimal rate in a Markov chain setting. The proof of the
Gaussian approximation for the one-step minorisation case builds upon the
approach of Merlevède et al. [103]. Merlevède et al. [103] also utilises the re-
generative structure obtained from the one-step minorisation condition and
subsequently applies the Gaussian approximation of Zaitsev [159]. However,
that result is not applicable to our setting since it requires the existence of
the moment-generating function. Furthermore, the result of Merlevède et al.
[103] assumes geometric ergodicity and bounded one-dimensional functions
f . Currently, under the moment condition π(|f |p), the best-known Gaus-
sian approximation error for MCMC algorithms is max

{
T 1/p, T 1/4

}
log(T ),

see the results of Csáki and Csörgő [37]; Flegal and Jones [66]; Jones et al.
[87] and Banerjee and Vats [8]; Li and Qin [95] for the one-dimensional and
multivariate setting respectively. Under the same moment conditions, we
now obtain the optimal Komlós–Major–Tusnády approximation rate, up to
a logarithmic factor, for the one-step minorisation case. For the multi-step
minorisation case, we do not recover the optimal rate; however, to the best
of our knowledge, our rate is the best rate currently available for the class of
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processes considered.

Additionally, our Gaussian approximation results provide explicit bounds
for ψ̄N and ψd, the dependence of the dimension of the state space and feature
space on the approximation rate. For the weak Gaussian approximation, we
obtain ψd = d3/2 in all settings, however, this can be greatly improved under
growth conditions on the moments of |f | under π. This is reasonable in
settings with sparsity and regularisation. The dependence of the dimension
of the state space is expressed in terms of the parameters of the drift and
minorisation conditions and properties of the asymptotic covariance matrix.
Let q denote the speed of polynomial drift, given stability conditions on the
drift and minorisation, our obtained weak Gaussian approximation results
guarantee a CLT for Markov processes, provided that the dimension of the
feature space grows as given in Table 4.2 for any ε̄ > 0.

one-step minorisation multi-step minorisation

geometric drift o
(
T 1/3−ε̄

)
o
(
T 1/6−ε̄

)
polynomial drift o

(
T

q−2
3q

−ε̄
)

o
(
T

q−2
6(q−1)

−ε̄
)

Table 4.2: Growth rate d such that CLT holds for sufficiently large p

As the speed of polynomial drift tends to the geometric case, which cor-
responds to q → ∞, we show that the corresponding approximation errors
in Table 4.1 coincide and consequently also the growth conditions of the di-
mension given in Table 4.2.

In order to construct valid confidence ellipsoids for our features of in-
terest, we require the weak Gaussian approximation to hold. However, the
usual approach in statistics, where the dimension is allowed to grow with
the sample size, which in this context corresponds to the simulation time, is
not appropriate. In the MCMC setting, the dimension of the target distri-
bution and the set of features of interest are known prior to the simulation.
Consequently, the critical question becomes how large the simulation time
needs to be to ensure that the Gaussian approximations remain reliable in
the setting where the dimension of the problem grows. In Table 4.3 below,
we see how the simulation time is required to grow with the dimension of the
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feature space in order to guarantee a CLT. For two sequences (an) and (bn)
we write an = Ω(bn) if lim supn→∞

an
bn
> 0.

one-step minorisation multi-step minorisation

geometric drift Ω
(
d3+ε̄

)
Ω
(
d6+ε̄

)
polynomial drift Ω

(
d

3q
q−2

+ε̄
)

Ω
(
d

6(q−1)
q−2

+ε̄
)

Table 4.3: Simulation time T such that CLT holds given sufficiently large p

For applications in Bayesian statistics, our results provide a direct link
between the statistical model complexity and the computational complex-
ity of the MCMC algorithm. Any theoretical guarantees for the posterior
distribution, such as large-sample concentration results and prior induced
regularisation, have direct implications on the required running times for
sampling algorithms. We note that under additional assumptions on the tar-
get distribution, the growth rates presented in Table 4.1 and Table 4.2 can
be greatly improved, see Remark 4.3.4 for a more extensive discussion on this
result.

By taking the dimensionality into account, multiple insights that do not
arise in the finite-dimensional setting are revealed. In the high-dimensional
setting, a good initialisation of the Markov chain is crucial, as improper ini-
tial states can lead to exponentially increasing bounds. Additionally, also the
minorisation volume plays a vital role, since contrary to the low-dimensional
setting, a naive minorisation lower bound can cause to the Gaussian ap-
proximation error rate to increase exponentially in dimension. For the mix-
ing time of high-dimensional MCMC algorithms, similar observations have
been made, see for example Qin and Hobert [125]; Rajaratnam and Sparks
[128]; Yang and Rosenthal [156] Furthermore, also the isometry of the asymp-
totic covariance matrix plays a larger role, since for isotropic target distribu-
tions we are able to give better convergence guarantees. Our obtained results,
only have an additional

√
d penalty compared to the currently best-known

weak Gaussian approximation results for independent random vectors satis-
fying only p moments given in Bonis [24]; Eldan et al. [63]; Mies and Steland
[108].
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Through our obtained Gaussian approximation results, we are able to
extend various results concerning output analysis to a wider array of ap-
plications. Firstly, we consider the estimation of the asymptotic covariance
matrix. Many key aspects of output analysis for MCMC depend on the un-
certainty quantification of our sampling algorithm. Estimating the Monte
Carlo standard error is essential for ensuring the credibility of our simulation
results and for computing many convergence diagnostics. In Vats et al. [151]
and Vats et al. [152], the consistency of the spectral variance and batch means
estimator are proven, respectively, under the assumption of a Gaussian ap-
proximation with an implicit rate. Consequently, our results are immediately
applicable and can be used to adapt the tuning parameters of the considered
variance estimation methods to high-dimensional settings. In accordance
with empirical findings, we observe noteworthy differences between the sim-
ulation requirements for the polynomial and geometric drift cases, as well as
between low and high-dimensional scenarios. These findings are summarised
in Table 4.8 and Table 4.9 respectively.

Our results enable us to study the convergence complexity of a broad
range of termination criteria and show that the termination rules intro-
duced in Glynn and Whitt [73] and Vats et al. [152] can be applied to high-
dimensional settings. These results also provide us with insights regarding
the choice of termination rule. The analysis of these termination rules relies
on the FCLT and consistency of variance estimators. Our results allow us
to take the error of the Gaussian approximation and the convergence rate of
the variance estimator into account and thus generalise the analysis of afore-
mentioned results. Finally, we obtain novel requirements for the minimum
simulation threshold that guarantee the validity of variance estimation and
termination criteria in high-dimensional settings. We give conditions that
guarantee that the termination time of an MCMC algorithm scales polyno-
mially in dimension while ensuring a desired level of precision.

This chapter is organised as follows. In Section 4.2, we review some
preliminary results regarding MCMC. In Section 4.3, we give our obtained
Gaussian approximation results. In Section 4.4, we apply our results to
MCMC output analysis and provide guarantees for the termination time. In
Section 4.5, we present the proofs of our results.
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Notation: In this chapter, we will denote the Euclidean norm of a vector
x ∈ Rd with |x|. For a matrix A, we denote the Frobenius norm and the
spectral norm with |A| and |A|∗ respectively. Furthermore, let σd(A) and
σ1(A), denote the largest and smallest eigenvalue respectively.

4.2. Drift and Minorisation conditions

We consider a Markov chain X = (Xt)t∈N on (E, E) where a E ⊆ RN denotes
the state-space and E the corresponding Borel σ-algebra, with m-step trans-
ition kernel Pm(x, ·). We follow the framework of Qin and Hobert [125]; Yang
and Rosenthal [156]; Zhou et al. [161] where a drift-and-minorisation ap-
proach is used to obtain quantitative convergence bounds in high-dimensional
settings. We say that the Markov chain satisfies a geometric drift condition
if Drift Condition 5 holds.

Drift Condition 5. Let there exist a function V : E → R+, some set C,
constants λ ∈ (0, 1) and 0 < b, υC <∞ such that υC = supx∈C V (x) and

PV (x) =

∫
E

V (y)P (x, dy) ≤ λV (x) + b1C(x),

for some set C ∈ E.

In many applications, we can only guarantee that the drift function decays
at a polynomial rate while the process is not in C. This corresponds to the
following polynomial drift condition.

Drift Condition 6. Let there exist a function V : E → R+, some set C,
constants 0 < c, b, υC < ∞, such that υC = supx∈C V (x) and η ∈ (0, 1) such
that

PV (x) ≤ V (x)− cV (x)η + b1C(x),

for some set C ∈ E with π(C) > 0.

It will also be useful to consider the geometric and polynomial drift con-
dition for the m0-skeleton of the Markov chain.

Drift Condition 7. Let there exist a function V : E → R+, some set C,
constants λ ∈ (0, 1) and 0 < b, υC <∞ such that υC = supx∈C V (x) and

Pm0V (x) =

∫
E

V (y)Pm0(x, dy) ≤ λV (x) + b1C(x).
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Drift Condition 8. Let there exist a function V : E → R+, some set C,
constants 0 < c, b, υC < ∞, such that υC = supx∈C V (x) and η ∈ (0, 1) such
that

Pm0V (x) ≤ V (x)− cV (x)η + b1C(x).

Note that we can obtain a drift condition for the m0–skeleton by iter-
ating the one-step drift condition. However, in order for the parameters of
the drift condition to remain tractable, we give some sufficient conditions.
Propositions 4.5.4 and 4.5.6 and Propositions 4.5.5 and 4.5.7 give conditions
such that the one-step drift condition implies the desired drift condition for
the skeleton chain in case of the geometric and polynomial drift condition
respectively.

We say that an associated local m0-step minorisation condition holds for
the Markov chain if the following holds.

Minorisation Condition 2. Let ν be some probability measure defined on
C such that

Pm0(x, ·) ≥ α1C(x)ν(·),

the minorisation volume α ∈ (0, 1], m0 ∈ N and small set C with π(C) > 0.

It is known that a multi-step minorisation condition holds for all widely
used MCMC algorithms, see for example Meyn and Tweedie [107; Proposi-
tion 5.4.5]. Often it can even be shown that the Markov chain satisfies a one-
step minorisation condition. For a more detailed explanation regarding the
interpretation of the drift and minorisation conditions and how they relate to
one another, we refer to Section 4.5 and the given references. In the frame-
work of Qin and Hobert [125]; Yang and Rosenthal [156]; Zhou et al. [161], it
is demonstrated that for the drift and minorisation conditions to behave well
as the dimension of the state-space increases, it is useful to consider a family
of drift functions. Let πN denote the stationary distribution of the Markov
chain and let N be the dimension of the corresponding state-space. We say
that a family of non-negative functions, {VN(·)}N∈N, is a family of drift func-
tions if for each N they all satisfy a certain class of drift conditions. We say
that a family of geometric drift conditions is stable if λ := lim supN→∞ λN < 1
and b := lim supN→∞ bN <∞. Similarly, we say that a family of polynomial
drift conditions is stable if η := lim infN→∞ ηN > 0, c := lim infN→∞ cN > 0
and b := lim supN→∞ bN < ∞. Furthermore, a minorisation condition is



Chapter 4. Gaussian Approximations for High-dimensional MCMC 99

stable provided that α := lim infN→∞ αN > 0. In high-dimensional settings,
the drift function can exhibit undesirable concentration behaviour, causing
the small set C to grow too fast, which in turn leads the minorisation volume
α to tend to zero at an uncontrolled rate. Consequently, as shown in, for
example, Rajaratnam and Sparks [128], many existing convergence bounds
deteriorate as the dimension of the state space grows large. In the remainder
of the paper, we will often simply write π and V instead of πN and VN .
However, it is important to keep in mind that when we study the behaviour
of the chain as the state-space grows, N →∞, we are considering a family of
Markov chains {XN}N∈N with a corresponding family of target distributions
and drift and minorisation conditions. Furthermore, throughout the paper,
we will consider all drift and minorisation conditions to be stable.

4.3. Gaussian approximation for MCMC samplers

We consider the following component-wise moment conditions on our fea-
tures:

Assumption 4. Let f : E → Rd be a measurable function such that either
of the following moment conditions holds

1. supi∈{1,··· ,d} π(|fi|p+ε) <∞ holds for given p > 2 and some ε ∈ (0, 1/p],

2. supi∈{1,··· ,d} π(etfi) <∞ holds for t in some neighbourhood of 0.

3. supi∈{1,··· ,d} |fi|∞ <∞,

where |·|∞ denotes the usual supremum norm.

Most of our results will rely on Assumption 4.1, which is the most reas-
onable to assume in practice. Furthermore, we will impose the following
regularity conditions on the covariance matrix of our MCMC sampler.

Assumption 5. Suppose that for every T ≥ 0 the smallest eigenvalues of

ΣfT = Covπ

(
1√
T

T∑
t=1

{f(Xt)− π(f)}

)
and Σf := limT→∞ ΣfT are larger than some constant σ0 > 0. Furthermore,
suppose that

sup
i∈{1,··· ,d}

sup
j∈{1,··· ,d}

∣∣Σfij

∣∣ <∞,
where Σfij denotes the (i, j)–th entry of the matrix Σf for 1 ≤ i, j ≤ d.
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Assumption 5 guarantees that the asymptotic covariance matrix is well
defined, and that both the empirical and asymptotic covariance matrix are
non-singular. Firstly, we state our obtained weak Gaussian approximation
results for the one-step minorisation case under both a geometric and poly-
nomial drift condition.

Theorem 4.3.1. Let (Xt)t∈N be an irreducible aperiodic stationary Markov
chain, assume that a one-step minorisation condition (M2 with m0 = 1) holds
and that drift condition 5 is satisfied. Then for all functions f for which
Assumption 4 and 5 hold we can, on an enriched probability space, define
a process that is equal in law to X and a standard d-dimensional Brownian
motion W such that

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
d3/2ψ̄

2/p
N T 1/p log(T )

)
.

Oa.s.

(
d25/4+θ0 log∗(d)ψ̄

2/p
N

(
σd
σ0

)1/2

T 1/p log(T )

) ,

(4.4)
where

ψ̄N := ψ(α, λ, b) = α−1

(
b

α(1− λ)

)1+ε/p(
p

ln(1/λ)e

)p
sup

i∈{1,...,d}
π(|fi|p+ε)

(4.5)
If we assume that drift condition 6 holds instead of 5, then we have that

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
d3/2ψ̃

2/p0
N T 1/p0 log(T )

)
.

Oa.s.

(
d25/4+θ0 log∗(d)ψ̃

2/p
N

(
σd
σ0

)1/2

T 1/p0 log(T )

) ,

(4.6)
where

ψ̃N := ψ̃N(α, b, c, υC) = α−1

(
1 +

b

cα
+
υc − c+ b

1− α

)ε/p0
sup

i∈{1,...,d}
π(|fi|p+ε)

(4.7)
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and

p0 =


pq(η)

p+q(η)+ε
, if 2p

3p−2
< η ≤ p(p+ ε)/(p(p+ ε) + ε),

p, if η > p(p+ ε)/(p(p+ ε) + ε),
q(η)− ϵ̄, if η > 1/2 and A4.2 holds,

(4.8)

with q(η) = η/(1− η) and the entries of Σf are given by

Σf = Varπ(f(X0)) +
∞∑
k=1

Covπ(f(X0), f(Xk)) +
∞∑
k=1

Covπ(f(Xk), f(X0)).

(4.9)

In Theorem 4.3.2, we formulate our obtained Gaussian approximation
results for the multi-step minorisation case under both a geometric and poly-
nomial drift condition.

Theorem 4.3.2. Let (Xt)t∈N be an irreducible aperiodic stationary Markov
chain, assume that an m0-step minorisation condition holds and that drift
condition 7 is satisfied. Then for all functions f for which Assumption 4.1
and 5 hold we can, on an enriched probability space, define a process that is
equal in law to X and a standard d-dimensional Brownian motion W such
that

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
d3/2ψ̄

2/p
N T

1
4
+ 1

4(p−1)

)
.

Oa.s.

(
d25/4+θ0 log∗(d)ψ

2/p
N

(
σd
σ0

)1/2

T
1
4
+ 1

4(p−1)

) ,

(4.10)
where

ψ̄N := ψ(α, λ, b,m0) = α−1

(
bm0

α(1− λ)

)ε/p
sup

i∈{1,...,d}
π(|fi|p+ε)

If we assume that drift condition 8 holds instead of 7, then we have that

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ =


OP
(
d3/2ψ̃

2/p
N

(
σd
σ0

)
T

1
4
+ 1

4(p0−1)

)
,

.

Oa.s.

(
d25/4+θ0 log∗(d)ψ̃

2/p
N

(
σd
σ0

)1/2

T
1
4
+ 1

4(p0−1)

)
,

,

(4.11)
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where

ψ̃N := ψ̃(α, b, c, υc,m0) = α−1m
q(η)/p20
0

(
1 +

b

cα
+
υc − c+ b

1− α

)(p−p0+ε)/p

sup
i∈{1,...,d}

π(|fi|p+ε)

p0 =


pq(η)

p+q(η)+ε
, if 2p

3p−2
< η ≤ p(p+ ε)/(p(p+ ε) + ε),

p, if η > p(p+ ε)/(p(p+ ε) + ε),
q(η)− ϵ̄, if η > 1/2 and A4.2 holds,

with q(η) = η/(1− η) and the entries of Σf are given by

Σf = Varπ(f(X0)) +
∞∑
k=1

Covπ(f(X0), f(Xk)) +
∞∑
k=1

Covπ(f(Xk), f(X0)).

(4.12)

Furthermore, we note that Gaussian approximation results for the continuous-
time setting can be obtained by a similar argument to the discrete-time
multi-step minorisation case. Note that the approach of Theorem 4.3.1 is
not applicable, since there is in general no equivalent regenerative structure
for continuous-time processess as implied by the one-step minorisaiton con-
dition in the discrete-time case. Therefore we formulate the following result.
Note that both the weak and strong approximation hold.
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Theorem 4.3.3. Let X = (Xt)t≥0 be an irreducible aperiodic stationary
Markov processs. Assume that a small set condition holds for some set C
accompanied with drift condition 5 or 6 for the corresponding Pt0–skeleton
chain. Then for all functions f for which Assumption 4.1 and 5 hold we can,
on an enriched probability space, define a process that is equal in law to X
and a standard d-dimensional Brownian motion W such that∣∣∣∣∫ T

0

f(Xt)dt− Tπ(f)− Σ
1/2
f WT

∣∣∣∣ = OP
(
d3/2ψ̄

2/p
N T

1
4
+ 1

4(p−1)

)
(4.13)

where

ψ̄N := ψ(α, λ, b, t0) = α−1

(
bt0

α(1− λ)

)ε/p
sup

i∈{1,...,d}
π(|fi|p+ε)

If we assume that drift condition 6 holds instead of 5, then we have that

∣∣∣∣∫ T

0

f(Xt)dt− Tπ(f)− Σ
1/2
f WT

∣∣∣∣ = OP
(
d3/2ψ̃

2/p
N

(
σd
σ0

)
T

1
4
+ 1

4(p0−1)

)
,

(4.14)
where

ψ̃N := ψ̃(α, b, c, υc) = α−1t
q(η)/p20
0

(
1 +

b

cα
+
υc − c+ b

1− α

)(p−p0+ε)/p

sup
i∈{1,...,d}

π(|fi|p+ε)

where p0 is the same is in the aforemention results and the entries of Σf are
given by

Σf =

∫ ∞

0

Covπ(f(X0), f(Xt)) dt+

∫ ∞

0

Covπ(f(Xt), f(X0)) dt, (4.15)

with all entries converging absolutely and integration of matrices defined
element-wise.
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Remark 4.3.4. Firstly, our obtained weak Gaussian approximation results
given in Theorems 4.3.1 and 4.3.2 guarantee a central limit theorem for
Markov chains, provided that the dimension grows at most as described in
Table 4.4 below for any ε̄ > 0.

one-step minorisation multi-step minorisation

geometric drift o
(
T

p−2
3p

−ε̄
)

o
(
T

p−2
6(p−1)

−ε̄
)

polynomial drift o
(
T

p0−2
3p0

−ε̄
)

o
(
T

p0−2
6(p0−1)

−ε̄
)

Table 4.4: Growth rate d such that CLT holds

It is important to note that the growth rates given in Table 4.4 are the
general case. However, in most applications of MCMC, there are more struc-
tural properties present such that the growth rate of the dimension can be
greatly improved. From the proofs of Theorems 4.3.1 and 4.3.2 it follows
that the dependence of the dimension of the feature space is equal to

√
dπ(|f |p0)2/p0 .

In general, we will have that π(|f |p0)1/p0 ≤
√
d supi π(|fi|p0)1/p0 , which gives

us ψd = d3/2. However, in many applications of MCMC this term can be
smaller. For example, in Bayesian statistics the prior is often used to in-
duce sparsity in the posterior or to provide regularisation, which will reduce
π(|f |p) and, in the most favourable case, allow growth rates of d = o(T ) and
d = o(

√
T ) for the one-step and multi-step minorisation respectively. Simil-

arly, the dimension dependence of the strong approximation can be improved
for specific settings. Moreover, under Assumption 4.3, it can be shown that
the rate of Theorem 4.3.1 improves to OP

(
d log2(CN) log2(T )

)
for the weak

approximation case.

Finally, in order for a central limit theorem to hold in the high-dimensional
setting, we see that the simulation time of our MCMC algorithm should scale
with the dimension of the state-space and feature space as detailed in Table
4.5 below, for any ε̄ > 0.

Hence we see that for large p the simulation time of our sampling al-
gorithm should scale as ψ2

d and ψ4
d in the one-step and multistep minorisation
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one-step minorisation multi-step minorisation

geometric drift Ω
(
d

3p
p−2

+ε̄ ψ̄
4/(p−2)+ε̄
N

)
Ω
(
d

6(p−1)
p−2

+ε̄ ψ̄
8(p−1)/(p2−2p)+ε̄
N

)
polynomial drift Ω

(
d

3p0
p0−2

+ε̄
ψ̃

4/(p0−2)+ε̄
N

)
Ω

(
d

6(p0−1)
p0−2

+ε̄
ψ̃

8(p0−1)/(p20−2p0)+ε̄
N

)
Table 4.5: Simulation time T such that CLT holds

case respectively. We note that the simulation requirements for consistent
estimation of the asymptotic variance and obtaining precision guarantees,
are given by the results in Section 4.4.

△
Remark 4.3.5. We note that for the Weak Gaussian approximation error
we can obtain a better dimension dependence in our bounds. The argu-
ment is given in detail in Pengel et al. [122] on page 36, 44 for the one-
step and multi-step minorisation case respectively. Note that it is only
a slight deviation of the proof given in this thesis. These results imply
that the weak approximation errors in Theorems 4.3.1, 4.3.2,4.3.3 hold with
ψd =

√
dπ(|f |p)1/p = O(d), which implies the following growth rate and

simulation times such that the CLT holds in high-dimensional settings.

one-step minorisation multi-step minorisation

geometric drift o
(
T

p−2
2p

−ε̄
)

o
(
T

p−2
4(p−1)

−ε̄
)

polynomial drift o
(
T

p0−2
2p0

−ε̄
)

o
(
T

p0−2
4(p0−1)

−ε̄
)

Table 4.6: Growth rate d such that CLT holds

△
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one-step minorisation multi-step minorisation

geometric drift Ω
(
d

3p
p−2

+ε̄ C
4/(p−2)+ε̄
N

)
Ω
(
d

6(p−1)
p−2

+ε̄ C
8(p−1)/(p2−2p)+ε̄
N

)
polynomial drift Ω

(
d

3p0
p0−2

+ε̄
C

4/(p0−2)+ε̄
N

)
Ω

(
d

6(p0−1)
p0−2

+ε̄
C

8(p0−1)/(p20−2p0)+ε̄
N

)
Table 4.7: Simulation time T such that CLT holds

Remark 4.3.6. Theorem 4.3.1 gives the first Gaussian approximation results
that attain the optimal Komlós–Major–Tusnády approximation rate, up to
a logarithmic factor, for MCMC samplers in the multivariate setting. We
note that these results are applicable to the high-dimensional settings con-
sidered in Qin and Hobert [125]; Yang and Rosenthal [156] and Zhou et al.
[161], where an asymptotically stable one-step minorisation condition and
family of exponential drift conditions are shown to hold. Moreover, we note
that Theorem 4.3.2 can also be proven for continuous-time processes under
a petite set condition and similar drift conditions. Furthermore, we note
that all obtained weak approximation results can also be formulated as high
probability deviation bounds.

In Gouëzel [76] a strong Gaussian approximation is obtained with rate
oa.s.(T

θ) for any θ > 1
4

+ 1
4(p−1)

, under assumptions on the dependence decay
of the process through its spectral properties. These conditions on the char-
acteristic function could be challenging to verify in MCMC settings. While
the obtained approximation error ΨT with respect to the sampling time is in-
dependent of dimension, contrary to previously obtained results mentioned
in the paper, the dimensionality of both the state-space and the feature-
space can still influence the overall approximation error. Lu et al. [100] gives
a strong Gaussian approximation with rate oa.s.

(
T 1/3+2/3(3p−2)

)
for Hilbert

space valued stochastic processes whose dependence is controlled through ex-
ponentially decaying β–coefficients. The results of Lu et al. [100] are therefore
applicable for Markov chains satisfying a geometric drift condition. Apply-
ing their Gaussian approximation result to Rd results in the approximation
rate of Gouëzel [76] with a multiplicative factor d8 log(d) introduced to the
approximation error. However, since their result requires exponential decay
of β–mixing coefficients, they are not applicable to the polynomial drift con-
dition case.
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Finally, we note that there has been quite some work on extending
dimension-dependent Berry-Esseen type results to settings with dependence,
see for example Chang et al. [33] and the given references. However, we
have not taken this approach since for most applications in MCMC output
analysis we require the FCLT and its refinements. △

Remark 4.3.7. Contrary to previously obtained Gaussian approximation res-
ults for MCMC, see Flegal and Jones [66]; Banerjee and Vats [8]; Li and Qin
[95]; Merlevède et al. [103]; Pengel and Bierkens [121]; Vats et al. [151], in
the high-dimensional setting, Gaussian approximation cannot be expected to
hold for arbitrary initial distributions. It is well known that regularity condi-
tions on the initial state are required in high-dimensional settings, since, for
example, a cold initialisation can easily lead to mixing time bounds that are
exponentially increasing in dimension, as demonstrated by Bandeira et al. [7].
The harmonic function argument of Meyn and Tweedie [107; Proposition
17.1.6] that is often used to generalise these types of results to an arbitrary
initial distribution is not applicable to the high-dimensional setting. Despite
this, stationarity is not required for any of our obtained results to hold. By
the Comparison theorem, Meyn and Tweedie [107; Theorem 14.2.2], it can
be shown that our result can be formulated for any initial condition x, as
detailed in Remark 4.5.20. However, the drift at the initial value, i.e., V (x)
would enter the obtained bounds, see (4.159) and (4.160) for the geometric
and polynomial drift case respectively. Therefore, some regularity condi-
tions, which would be similar in nature to a warm start condition, would
be required to ensure that the initialisation does not dominate our obtained
dimension-dependent bounds. △

Remark 4.3.8. In our approach, we control the decay of the dependence of
our process through both the drift and minorisation conditions. In alignment
with expectations, we see that if a polynomial drift condition holds, the
dimension of the state-space introduces a larger penalty in our approximation
rate when compared to the case where a geometric drift condition holds. Note
that for higher rates of polynomial drift, the approximation rate T 1/p0 tends
to the rate with a geometric drift.

We note that for our results to be applicable in high-dimensional set-
tings, we require the drift conditions to be asymptotically stable. Addition-
ally, we see that in contrast to the low-dimensional case where the minorisa-
tion volume is negligible, see for example Flegal and Jones [66; Remark 2], in
the high-dimensional case it plays a vital role since an improper minorisation
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lower bound can cause to the Gaussian approximation error rate to increase
exponentially in dimension. Hence, approaches like the ones given in Qin and
Hobert [125]; Yang and Rosenthal [156] are critical to ensure asymptotically
stable drift and minorisation conditions.

Furthermore, we see that the spectral condition number, which is defined
as the quotient of the largest and the smallest eigenvalue of the asymptotic co-
variance matrix, appears in our strong approximation errors. It is known that
better dimension dependence in Gaussian approximations can be obtained
for isotropic targets, see for example Fathi [64]. From the specification of the
asymptotic covariance matrix given in (4.9), we see that if the distribution
of the features under the target measure is isotropic, then the spectral con-
dition number of the first term Varπ(f(X0)) will be smaller. Furthermore, if
the auto-covariance of the process decays faster, then the second and third
terms of (4.9) will be smaller. By Rio [132; Theorem 1.1] and Douc et al. [53;
Theorem F.3.3], we see that we can control the decay of the auto-covariance
through the drift conditions. Consequently, for the geometric drift case, we
can guarantee the condition number of the asymptotic covariance matrix to
be smaller than the polynomial case. △

Remark 4.3.9. We note that Theorem 4.3.3 directly assumes a drift condition
for the resolvent chain or the skeleton chain. In practice, drift conditions of
the form 3 and 4 will be proven for the process directly. We need to show that
these imply drift conditions for the derived chains. The results of Down et al.
[54; Theorem 5.1] and Douc et al. [52; Theorem 4.9] show that this indeed
follows for the exponential and polynomial drift, respectively. Furthermore,
we note that Theorem 4.3.3 can also be shown by showing that the resolvent
chain satisfies drift condition 5 or 6. However, instead of the coordinate-
wise application of Bednorz and  Latuszyński [10; Lemma 2] to prove Lemma
4.5.2 and 4.5.3, we would have to make use of a coordinate-wise application
of Theorem 3.3.4. △

4.4. High-dimensional MCMC Output Analysis

In order to assess the accuracy of our sampling method, we need to estimate
the asymptotic variance appearing in the central limit theorem. In the high-
dimensional setting, this gives us additional requirements for the simulation
time of our algorithms. Estimation of the asymptotic auto-covariance matrix
Σf plays a central role in MCMC output analysis, specifically for comput-
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ing many convergence diagnostics, and implementing termination criteria.
Through our obtained Gaussian approximation results, we are able to ex-
tend the results on variance estimation and termination criteria for MCMC
algorithms. We illustrate the applications of our obtained Gaussian approx-
imation results to the batch means method considered in Vats et al. [152].
We use our results to adapt the tuning parameters of the considered vari-
ance estimation methods to take slower convergence rates into account due to
polynomial drift conditions or high dimensionality. Finally, our quantitative
convergence bounds for termination criteria allow us to analyse the influence
of the ergodicity and dimensionality on the appropriate running time of our
MCMC algorithms.

4.4.1. Estimation of the Asymptotic Variance

We first consider the multivariate batch estimator since it enjoys computa-
tional advantages over other variance estimation methods in MCMC settings.
The batch means method divides the simulation output into kT batches of
length ℓT such that kT = ⌊T/ℓT ⌋. The batch means estimator is then given
by

Σ̂BM
T =

ℓT
kT − 1

kT∑
i=1

(
Z̄i(ℓT )− 1

kT

kT∑
i=1

Z̄i(ℓT )

)(
Z̄i(ℓT )− 1

kT

kT∑
i=1

Z̄i(ℓT )

)T

,

(4.16)
where Z̄i(ℓT ) denotes the sample average of each obtained batch, i.e.,

Z̄i(ℓT ) :=
1

ℓT

iℓT∑
s=(i−1)ℓT

f(Xs), i = 1, . . . , kT . (4.17)

We impose the following conditions on the batch size.

Assumption 6. Let ℓT be an integer sequence such that ℓT →∞ and n/ℓT →
∞ as n→∞ where ℓT and n/ℓT are non-decreasing. Moreover, assume that
there exists a constant c ≥ 2 such that

∑
T (ℓT/T )c < ∞, (ℓT/T ) log(T ) =

o(1), ℓ−1
T log T = o(1), and T > 2ℓT .

Applying our Gaussian approximations to the results on the batch means
estimator of Vats et al. [152] gives us the following theorem.
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Theorem 4.4.1. Suppose that f : RN → Rd, with supi∈{1,··· ,d} π(|fi|p+ε) <∞
for some p ≥ 4 and let X satisfies a weak Gaussian approximation with
approximation error ψ̄NψdΨT log(T ) with ψd = da for some a > 0. Assume
that Assumption 6 holds, and that

ψ̄NdψdΨT log(T )

ℓ
1/2
T,d

= o(1) and
ψ̄2
Ndψ

2
dΨ

2
T log(T )

T
= o(1), (4.18)

then we have that Σ̂BM
T → Σf with probability 1 as T →∞. Moreover, if

we assume that

ΨT =

{
Ψ

(1)
T := T 1/p0 log(T ),

Ψ
(2)
T := T 1/4+1/4(p0−1) log(T ),

(4.19)

for some p0 > 2 and we choose the simulation time

T =


Ω

((
ψ̄Ndψd

) 2p0
(p0−2)

(1+δ̄)
)
, under rate Ψ

(1)
T

Ω

((
ψNd

1/4ψd
) p0−1

p0−2
4(1+δ̄)

)
, under rate Ψ

(2)
T ,

(4.20)

for any δ̄ > 1/(1+a) then the choice of batch size ℓT = d−(p0−2)/(2p0(1+δ̄))⌊Tα⌋
with

α =

{
1
2

+ p0−2
2p0(1+δ̄)

+ 1
p0
, under rate Ψ

(1)
T

3
4

+ 1
4(p0−1)

+ (p0−2)

4(p0−1)(1+δ̄)
, under rate Ψ

(2)
T ,

(4.21)

optimises the given convergence rate for T →∞.

Remark 4.4.2. While the result of Theorem 4.4.1 is formulated in a high-
dimensional setting, note that in an application where we can assume the
influence of the dimension to be negligible, we obtain as an immediate corol-
lary following the choice of bath size from our strong approximation results.

△
It has empirically been observed that for many practical problems, where

slower convergence rates to stationarity are expected, larger batch sizes and
truncation windows are required when applying the batch means and spectral
variance methods for MCMC simulation output. Consistency of the batch
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one-step minorisation multi-step minorisation

exponential drift T
1
2
+ 1

p0 T
3
4
+ 1

4(p0−1)

polynomial drift T
1
2
+ 1

p0 T
3
4
+ 1

4(p−1)

Table 4.8: Batch size ℓT multivariate setting

means estimator requires that each batch gives an accurate representation
of the dependence structure of the process. Naturally, in situations with
slower convergence rates, a larger batch size will be required. An immedi-
ate consequence of slower mixing, is the slower decay of the autocovariance
function. Hence also spectral variance estimators will require larger trunca-
tion points for consistent estimation of the asymptotic variance. But these
corrections for either polynomial convergence rates to stationarity or the di-
mension of the problem have been done in heuristic ways. In Table 4.9, we
give the appropriate batch sizes for the batch means estimator, which guar-
antees consistency in the polynomial drift as well as in the high-dimensional
setting.

one-step minorisation multi-step minorisation

exponential drift T
1
2
+ p−2

2p(1+δ̄)
+ 1

p T
3
4
+ 1

4(p−1)
+

(p−2)

4(p−1)(1+δ̄)

polynomial drift T
1
2
+

p0−2

2p0(1+δ̄)
+ 1

p0 T
3
4
+ 1

4(p0−1)
+

(p0−2)

4(p0−1)(1+δ̄)

Table 4.9: Batch size ℓT high-dimensional setting
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Furthermore, we note that our results are also applicable to the multivari-
ate spectral variance estimator. Let γ̂T (s) denote the sample autocovariance
function at lag s, i.e.,

γ̂T (s) =
1

T

T−s∑
t=0

(f(Xt)− π̂T (f))(f(Xt+s)− π̂T (f))T .

The spectral variance estimator is then given by

Σ̂SV
T =

ℓT−1∑
s=0

wT (s)γ̂T (s) +

ℓT−1∑
s=0

wT (s)γ̂TT (s), (4.22)

where wT and ℓT denote the lag window and truncation point respectively.
Note that the spectral variance estimator estimates the spectral density of
our process evaluated at frequency zero. It is well known that the sample
analogue of the spectral density is inconsistent due to undersmoothing. The
use of a lag window and a truncation point ensures that more weight is
given to the lower frequencies, which can be estimated with higher precision.
Whereas the higher frequencies, which are observed with a lower signal-to-
noise ratio, are assigned less weight in the estimation procedure. In [151],
it is shown how the tuning parameters of the spectral variance estimator
can be determined from the Gaussian approximation rate. Following their
approach, we impose the following conditions on the lag window.

Assumption 7. The lag window wT (·) is an even function and |wT (s)| ≤ 1
for all T and s, wT (0) = 1 for all T , and wT (s) = 0 for all |s| ≥ ℓT .

We impose the following technical conditions on the truncation point.
Furthermore, the first and second difference of the lag window are defined

as
∆1wT (s) = wT (s− 1)− wT (s)

and
∆2wT (s) = wT (s− 1)− 2wT (s) + wT (s+ 1)

respectively. [66]: It has empirically been found that high-dimensional prob-
lems require larger batches/ windows for batch means and spectral variance
methods in MCMC than theory suggests. Given our dimension-dependent
approximation results in Theorem 4.3.1 and Theorem 4.3.2, we can adapt the
tuning parameters of the spectral variance estimator to the dimension of both
the state-space of the chain and the dimension of the vector of functionals
we want to estimate.
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Theorem 4.4.3. Suppose that f : RN → Rd, with supi∈{1,··· ,d} π(|fi|p+ε) <∞
for some p ≥ 4 and let X satisfy a strong Gaussian approximation with
approximation error ψ̄NψdΨT . Assume that Assumptions 6 and 7 hold, and
that

(i)
ℓT
T

ℓT∑
s=1

s|∆1wT (s)| = o(1),

(ii) ℓT ψ̄
2
Ndψ

2
dΨ

2
T log(T )

(
ℓT∑
s=1

|∆2wT (s)|

)2

= o(1),

(iii) ψ̄2
Ndψ

2
dΨ

2
T

ℓT∑
s=1

|∆2wT (s)| = o(1),

(iv) ℓ−1
T ψ̄NdψdΨ√

T = o(1), and

(v) ℓ−1
T ψ̄NdψdΨT = o(1).

then Σ̂SV
T → Σf with probability 1 as T →∞.

Note that only the approximation error of Theorem 4.3.1 is tight enough
to ensure the consistency of the spectral variance estimator. Although, the
spectral variance estimator is better than the batch means estimator in the
mean squared error sense, the batch means estimator enjoys a computation
advantage and requires less stringent conditions on the Gaussian approxim-
ation error. Moreover, it can be easily applied to continuous time sampling
algorithms.

4.4.2. MCMC Termination Criteria

Sequential termination rules are the standard practice for determining the
appropriate running time of an MCMC algorithm. The Fixed Volume Stop-
ping Rule (FVSR) allows termination of the simulation when the volume of a
confidence region for the parameter of interest is below some predetermined
tolerance level. Firstly, note that due to the obtained weak Gaussian approx-
imation results, we can construct a confidence interval for π(f), namely,

C(T ) =
{
x ∈ Rd : T (π̂T (f)− x)⊤Σ̂−1

T (π̂T (f)− x) < qα

}
, (4.23)
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where π̂T (f) denotes the empirical average of f over the simulation output,
and Σ̂T denotes some estimator of the asymptotic covariance matrix, which is
evaluated using simulation output until time T , and qα denotes the (1− α)–
quantile of the χ2 distribution with d degrees of freedom. Given some user-
specified tolerance level ε, the FVSR defines the time of termination T (ε) for
our simulation experiment as

T (ε) = inf{t > 0 : Vol(C(t))1/d + Λ(t) ≤ ε}. (4.24)

Here Vol(·) denotes the standard volume element and Λ(t) is some positive
sequence tending to zero. The role of Λ(t) is to prevent early termination due
to an inaccurate estimate of the covariance matrix or unreliability of the CLT
from an insufficient sample size. A common choice is Λ(t) = 1{t<T ∗}+o(t

−1/2),
for some appropriate threshold T ∗.

All termination criteria, see for example Glynn and Whitt [73]; Jones
et al. [87]; Vats et al. [152] and Gong and Flegal [75], make use of some
sort of minimum simulation threshold in order to prevent early termination
due to an inaccurate estimate of the covariance matrix or unreliability of
the FCLT due to the insufficient sample size. It is often mentioned that
this minimum simulation effort should take the complexity of the problem
into account. However, the choice of this simulation threshold has always
been done in heuristic ways. Our approach for determining the simulation
threshold guarantees that the approximation rate between the estimated con-
fidence ellipsoid and its limiting quadratic form is of a smaller asymptotic
magnitude than the desired precision level ε. This results in both the error
of the Gaussian approximation and the covariance matrix estimation pro-
cedure being of a smaller magnitude than the desired precision level. In the
following theorem, we generalise Glynn and Whitt [73; Theorem 1] by giving
quantitative convergence bounds for the FVSR.

Theorem 4.4.4. Suppose that X satisfies the following strong Gaussian ap-
proximation ∣∣∣∣∣

T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ = Oa.s.
(
ψ̄NψdΨT

)
, (4.25)

with approximation error ΨT = T 1/p0 log(T ) for some p0 > 4 and ψd = da

for some a > 0. Let T1(ε) be given by

T1(ε) = inf{t > 0 : Vol(C(t))1/d + εΛ(t) < ε}, (4.26)
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with C(t) the confidence ellipsoid given in (4.23) and Λ(t) = 1{t<T ∗(ε,d,N)} +
t−1, with

T ∗(ε, d,N) =

(
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 2p0
(p0−2)

(1+δ̄1)(
1

ε

) 4p0
(p0−2)

(1+δ̄2)

∨ e
10p0
p0−2

(4.27)

for any δ̄1 > 3/(3 + a) and δ̄2 > 0. Let Σ̂T in (4.23) denote the batch
means estimator defined in (4.16), with batch size ℓT set as

ℓT = ψ̄NψdT
1/2+1/p0 . (4.28)

Suppose that Assumptions 4 and 5 hold. Then we have as ε ↓ 0 the following:

1. The asymptotic behaviour of the termination time T1(ε) is characterised
by

ε2T1(ε)

c
2/d
α,d det(Σf )

1/d
= 1 + oa.s.

(
log2(ψ̄Nd

3ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
, (4.29)

where cα,d denotes the product of q
d/2
α and the volume of a standard

d-dimensional hypersphere.

2. Asymptotic validity of the resulting confidence set

Pπ (C(T1(ε)) ∋ π(f)) −→ 1− α. (4.30)

By choosing an appropriate simulation threshold T ∗, the results of The-
orem 4.4.4 can also be guaranteed hold for the approximation rate obtained
for the multi-step minorisation case.

Theorem 4.4.5. Suppose that X satisfies the following strong Gaussian ap-
proximation ∣∣∣∣∣

T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ = Oa.s.
(
ψ̄NψdΨT

)
, (4.31)

with approximation error ΨT = T 1/4p0+1/4(p0−1) log(T ) for some p0 > 2
and ψd = da for some a > 0. Let T1(ε) be defined in (4.24) with Λ(t) =
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1{t<T ∗(ε,d,N)} + t−1, where

T ∗(ε, d,N) =

(
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 4(p0−1)
(p0−2)

(1+δ̄1)(
1

ε

) 8(p0−1)
(p0−2)

(1+δ̄2)

∨ e
16(p0−1)
(p0−2)

(4.32)

for any δ̄1 > 3/(3 + a) and δ̄2 > 0. Let Σ̂T in (4.23) denote the batch
means estimator defined in (4.16), with batch size ℓT set as

ℓT = ψ̄NψdT
3
4
+ 1

4(p−1) logδ̄3(T ), (4.33)

for any δ̄3 > 0. Suppose that Assumptions 4 and 5 hold. Then we have
as ε ↓ 0 that the conclusions of Theorem 4.4.4 regarding the asymptotic
behaviour of the termination time and the asymptotic validity of the resulting
confidence set hold.

The quantitative convergence bounds obtained in Theorems 4.4.4 and
4.4.5 offer guidelines for the implementation of the FVSR in a wide array of
settings.

Remark 4.4.6. While the result of Theorem 4.4.4 is formulated in a high-
dimensional setting, note that in an application where we can assume the
influence of the dimension to be negligible, we obtain as an immediate corol-
lary the following appropriate minimum simulation thresholds. △

one-step minorisation multi-step minorisation

geometric drift

(
1

ε

) 4p
(p−2)

(1+δ̄2)

∨ e
10p
p−2

(
1

ε

) 8(p−1)
(p−2)

(1+δ̄2)

∨ e
16(p−1)
(p−2)

polynomial drift

(
1

ε

) 4p0
(p0−2)

(1+δ̄2)

∨ e
10p0
p0−2

(
1

ε

) 8(p0−1)
(p0−2)

(1+δ̄2)

∨ e
16(p0−1)
(p0−2)

Table 4.10: Dependence of minimum simulation threshold T ∗ on precision ε

Our results also enable us to study the convergence complexity of the
FVSR and guarantee its validity in high-dimensional settings. Moreover, it
can be guaranteed that the termination time scales polynomially in dimension
while ensuring a desired level of precision. In the high-dimensional setting, we
need to impose an additional multiplicative factor on the simulation threshold
T ∗. These factors are detailed in the table below.
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one-step minorisation multi-step minorisation

geometric drift

(
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 2p
(p−2)

(1+δ̄1) (
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 4(p−1)
(p−2)

(1+δ̄1)

polynomial drift

(
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 2p0
(p0−2)

(1+δ̄1) (
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 4(p0−1)
(p0−2)

(1+δ̄1)

Table 4.11: Dimension dependence of the minimum simulation threshold T ∗

4.5. Proofs of Main Results

4.5.1. Preliminary results on drift and moment conditions

In this section, we discuss the preliminary results that are required for our
Gaussian approximation results. More specifically, we show how they follow
from the assumed drift and minorisation conditions. We briefly the splitting
procedure of Harris chains based on Asmussen [5], Meyn and Tweedie [107;
Chapter 17.3], and Sigman and Wolff [141] and we discuss the implications
of the assumed drift and minorisation conditions. Let X be an irreducible,
aperiodic, positive Harris recurrent Markov chain taking values in Polish
state space. From Meyn and Tweedie [107; Proposition 5.4.5] we know that
X satisfies the following minorisation condition

Pm0(x, dy) ≥ α1C(x)ν(dy), (4.34)

for some α ∈ (0, 1), m0 ∈ N, measurable set C with π(C) > 0, and probability
measure ν that is equivalent to π|C . Note that from (4.34) it follows that the
transition kernel of the so-called m0-skeleton chain, defined as (Xkm0)k∈N,
can be interpreted as a mixture of two transition kernels, namely

Pm0(x, dy) = s(x)ν(dy) + (1− s(x))R(x, dy), (4.35)

where s(x) = α1C(x) and the so-called residual kernel R(x, dy) is defined as

R(x, dy) =
Pm0(x, dy)− s(x)ν(dy)

1− s(x)
. (4.36)

Given that the skeleton chain has hit C, with probability α the chain will
move independently of its past according to the small measure ν and with
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probability (1 − α) it will move according to the residual kernel R. Since
the m0-skeleton chain is also positive Harris recurrent, it will hit C infinitely
often. By a Borel–Cantelli argument it follows that the chain will transition
according to ν infinitely often. Let X ′ denote the split chain of the m0-
skeleton of X, i.e. for n ∈ Z+ we define X ′

n := (Xnm0 , δn), where δn is a
Bernoulli random variable that describes the distribution of the next point
of the skeleton chain. The split chain has state space X × {0, 1} and has
transition kernel

P ′((x, δ), (dy, dδ′)) =


P (x, dy)s(y)δ

′
(1− s(y))1−δ

′
, x /∈ C,

ν(dy)s(y)δ
′
(1− s(y))1−δ

′
, x ∈ C; δ = 1,

R(x, dy)s(y)δ
′
(1− s(y))1−δ

′
, x ∈ C; δ = 0.

(4.37)
Hence if δn = 1, the next point of the skeleton chain has law ν and

otherwise its law is described by the residual kernel. Let Rk denote the k-
th time that the m0-skeleton chain moves according to ν. The randomised
stopping times (Rk)k serve as regeneration epochs for the skeleton chain,
whereas they will be semi-regeneration epochs for the process X. We say that
a process is semi-regenerative if there exists (by enlarging the probability
space if necessary) a sequence of independent and identically distributed
random variables (ρk) that define a renewal process (Rn) with Rn =

∑n
k=1 ρk

such that for each n ≥ 0 the post-Rn process

{(XRn+k)k≥0, Rn+1, Rn+2, · · · }

is independent of R0, · · · , Rn and its distribution does not depend on n.
Note that this implies that the process can be split into identically distributed
cycles, where the lengths of the cycle are described by a renewal process.
The classically regenerative definition would also impose the cycles to be
independent. If the chain X satisfies a one-step minorization condition, i.e.,
(4.34) holds with m0 = 1, that the process inherits a classical regenerative
structure, whereas for the general case where m0 > 1 the process has a semi-
regenerative structure with one-dependent cycles. In order to see this, we first
show how the state space can be enlarged to support the semi-regeneration
times of the process. Let (δn) again denote a sequence of Bernoulli random
variables which will describe the distribution of the m0-skeleton points. Let
(FXt )t, (F δt )t denote the natural filtration of the process and the auxiliary
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Bernoulli variables respectively. Consider the joint law of the chain in blocks
of size m0;

P
(
δn = 1, Xnm0+1 ∈ dx1, · · · , X(n+1)m0−1 ∈ dxm0−1, , X(n+1)m0 ∈ dy | FXnm0

,F δn−1;Xnm0

)
= P

(
δn = 1, Xnm0+1 ∈ dx1, · · · , X(n+1)m0−1 ∈ dxm0−1, X(n+1)m0 ∈ dy | Xnm0

)
= αr(Xnm0 , y)P (Xnm0 , dx1) · · ·P (xm0−1, dy), (4.38)

where all equalities hold almost surely and r denotes the Radon-Nykodym
derivative

r(x, y) = 1C(x)
ν(dy)

Pm0(x, dy)
. (4.39)

Note that we also have

P(δn = 1, X(n+1)m0 ∈ dy | FXnm0
,F δn−1;Xnm0)

=

∫
x1,··· ,xm0−1

P
(
δn = 1, Xnm0+1 ∈ dx1, · · · , X(n+1)m0−1 ∈ dxm0−1, X(n+1)m0 ∈ dy | Xnm0

)
=

∫
x1,··· ,xm0−1

αr(Xnm0 , y)P (Xnm0 , dx1) · · ·P (xm0−1, dy)

= α1C(Xnm0)
ν(dy)

Pm0(Xnm0 , dy)
Pm0(Xnm0 , dy)

= α1C(Xnm0)ν(dy),

where the third equality follows from the Chapman–Kolmogorov equations.
It easily follows that we also have

P(δn = 1 | FXnm0
,F δn−1;Xnm0) = α1C(Xnm0) (4.40)

P(X(n+1)m0 ∈ dy | FXnm0
,F δn−1;Xnm0 , δn = 1) = ν(dy) (4.41)

From (4.40) and (4.41) we see that given δn = 1 we have that

{Xk, δi : k ≤ nm0, i ≤ n} is independent of {Xk, δi : k ≥ (n+1)m0, i ≥ n+1}.

Furthermore, we also have that the process {Xk, δi : k ≥ (n + 1)m0, i ≥
n+ 1} is equal in distribution to {(Xk, δk) : k ≥ 0} with initial distribution

P(X0 ∈ dx0, δ0 ∈ dδ) = ν(dx0) Bernoulli(s(x))

Hence we see that the process X can be embedded in a richer process,
which admits a recurrent atom A := C × {1} in the sense of the following
proposition.
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Proposition 4.5.1. Let (Sn, Rn) be a sequence of stopping times defined as
S0 = R0 := 0 and

Sn+1 := inf{km0 > Rn : (Xkm0 , δk) ∈ C × {1}} and Rn+1 := Sn+1 +m0.

Then XRn is independent of Rn and FRn−1 for all n ≥ 1, (XRn , δRn)n≥1 is an
i.i.d sequence with

(XRn , δRn) ∼ ν(dx) Bernoulli(s(x)) for all n ≥ 1,

the process is semi-regenerative, the cycles lengths ρk are independent and
identically distributed, and the cycles

{Xk : Rn−1 ≤ k < Rn}

are identically distributed and one-dependent for all n ∈ N. If m0 = 1, then
the cycles are in fact independent.

Proof. Sigman and Wolff [141; Theorem 4.2] and Asmussen [5; Theorem
].

The stopping times {Sn}n thus denote the hitting times of the recurrent
atom A and {Rn}n denote the implied regeneration epochs of the chain. As
a direct consequence, of the semi-regenerative structure and the fact that
Rn forms a renewal process, we obtain the following characterisation of the
stationary measure. Moreover, introduce the following stopping time for the
m0–skeleton:

τ̄C×{1} = inf{k : (Xkm0 , δk) ∈ C × {1}} (4.42)

It is well-known that the drift inequalities are closely related to the mo-
ments of hitting times of the process. For processes satisfying a geometric
drift condition, the moment bounds for the hitting time τ̄C×{1} given in Bax-
endale [9] are to the best of our knowledge the tightest bounds that are
currently available.

Lemma 4.5.2 (Baxendale [9; Proposition 4.4] ). Let (Xt)t∈N be an irreducible
aperiodic Markov chain, assume that an m0–step minorisation condition and
drift condition 7 are satisfied. Then, for 1 < r ≤ λ−1,

Ex[rτ̄C×{1} ] ≤ αG(r, x)

1− (1− α)ra
and Eν [rτ̄C×{1} ] ≤ π(V )

(1− (1− α)ra)απ(C)
,

(4.43)
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where

a = 1 +

(
log

λυV + b− α
1− α

)
/(log

(
λ−1
)
),

and

G(r, x) ≤
{
V (x), for x ∈ C
r(λυC + b), for x /∈ C. (4.44)

Moreover, we have that

π(V ) ≤ b

1− λ
π(C). (4.45)

Proof. The claim (4.43) is a combination of Baxendale [9; Proposition 4.4]
and Lemma 4.5.12. The claim (4.45) is given in in Meyn and Tweedie [106;
Proposition 4.3 ].

For chains satisfying a polynomial drift condition, we formulate the fol-
lowing result which gives us bounds on the moments of the semi-regeneration
times.

Lemma 4.5.3. Let (Xt)t∈N be an irreducible aperiodic Markov chain, assume
that an m0–step minorisation condition and drift condition 8 are satisfied.
Then, provided that η > 1/2, we can assume that drift condition 8 holds for
some drift function V with π(V ) ≤ π(C)b/c such that

Ex[τ̄ qC×{1}] ≤ V (x) + (1− α)−1 (υC − c+ b)1C(x) (4.46)

and

Eν [τ̄ qC×{1}] ≤
π(V )

απ(C)
+
υC − c+ b

1− α
, (4.47)

with q = η
1−η . Moreover,

Ex[τC ] ≤ 1

(1− η)c

(
V 1−η(x) + (bη + b0)1C(x)

)
and (4.48)

Eν [τC ] ≤ π(V )1−η

(1− η)αcπ(C)
+

(bη + b0)

(1− η)αc
. (4.49)
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Proof. Firstly, by the Comparison theorem, Meyn and Tweedie [107; The-
orem 14.2.2], we have that π(V η) ≤ bπ(C)/c. From Jarner and Roberts [84;
Lemma 3.5] we see that V η is also a Lyapunov function satisfying drift con-
dition

PV η ≤ V η − cηV 2η−1 + (bη + b0)1C ,

for some b0 > 0. Hence provided that η > 1/2, the first assertion follows. In
order to use the hitting time bounds implied by a polynomial drift condition,
we must first show that the split-chain of the m0–skeleton also satisfies a
polynomial drift condition. Define a Lyapunov function on the extended
state space as follows: V (x, 0) = V (x, 1) = V (x). Since the transition kernel
of the split chain of the m0–skeleton is given by (4.37), we have that for
x /∈ C, the Lyapunov condition is already satisfied. For x ∈ C and δ = 1 it
immediately follows that

P̂m0V ((x, 1)) =

∫
C

V (y)ν(dy)

≤ V (x)− cV η(x) + cυηC + υC

For x ∈ C and δ = 0 we have that

P̂m0V ((x, 0)) =

∫
E

V (y)R(x, dy)

≤ (1− α)−1

∫
E

V (y)Pm0(x, dy)

≤ (1− α)−1 (V (x)− cV η(x) + b)

≤ V (x)− cV (x)η + cυηC + (1− α)−1 (υC − c+ b)

By Douc et al. [51; Proposition 2.2] we have that

Ex[τ̄ qC ] ≤ V (x) + (1− α)−1 (υC − c+ b)1C(x)

By Lemma 4.5.12 it follows that

Eν [τ̄ qC ] =
1

απ(C)
Eπ[τ̄ qC ]

=
1

απ(C)

(
π(V ) + (1− α)−1 (υC − c+ b) π(C)

)
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In order to show (4.48), we note that by Jarner and Roberts [84; Lemma
3.5]] V 1−η is also a Lyapunov function satisfying drift condition

PV 1−η ≤ V 1−η − c(1− η) + (bη + b0)1C .

By the Comparison theorem, Meyn and Tweedie [107; Theorem 14.2.2], we
have that the first claim follows. The second part again follows from Lemma
4.5.12 and Jensen’s inequality.

Note that the bounds obtained in Lemma 4.5.3 are quite general and
therefore for specific situations tighter bounds could be obtained, see for ex-
ample Andrieu et al. [3] obtain quantitative bounds for subgeometric markov
chains under the assumptions of a lower bound on the Lyapunov function
V outside of C and a minorisation condition for all skeleton chains of the
process. Andrieu et al. [3] show that if we assume a lower bound on the Lya-
punov function: infx/∈C V (x) ≥ b(1−ε)−1, for some ε > 0 and that a one-step
minorisation condition holds for the original chain and all its skeletons, then
the bounds presented in Lemma 4.5.3 can be improved.

Note that we can obtain a drift condition for the m0–skeleton by iterating
the one-step drift condition, namely,

Pm0V (x) ≤ λm0V (x) + b

m0−1∑
i=0

P i
1C(x) ≤ λV (x) + bm01C(m0)(x),

where C(m0) is a small set for the skeleton chain and C ⊆ C(m0). Under ad-
ditional regularity conditions, we can obtain a drift condition for the skeleton
chain towards the set C.

Proposition 4.5.4. Let (Xt)t∈N be an irreducible aperiodic Markov chain,
assume that an m0–step minorisation condition holds and that drift condition
7 holds for some C0 ⊋ C such that either there exists some ᾱ > 0 such that

Pm0(x,C) ≥ ᾱ1C0\C(x) or inf
x∈C0\C

V (x) > b(1− λ)−1. (4.50)

Then there exists a function V̂ : E → R+ and λ̂ ∈ (0, 1) and b̂ > 0 such that

Pm0V̂ (x) ≤ λ̂V̂ (x) + b̂1C(x).
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Proof. Let z1 := infx∈C0\C V (x) > b(1 − λ)−1. Then for x ∈ C0\C we have
that

PV (x) ≤ V (x)− cV (x)η + b

≤ λ̂V (x),

provided that we choose λ̂ = b+z1λ
z1

. Note that since λ < λ̂ < 1, it follows

immediately that for x ∈ C we have PV ≤ λV+b ≤ λ̂V+b. Hence the desired
claim immediately follows. Under the assumption Pm0(x,C) ≥ ᾱ1C0\C(x),
the claim follows completely analogously to the proof of Meyn and Tweedie
[106; Theorem 6.1].

Proposition 4.5.5. Let (Xt)t∈N be an irreducible aperiodic Markov chain,
assume that an m0–step minorisation condition holds and that drift condition
8 holds for some C0 ⊋ C such that either there exists some ᾱ > 0 such that

Pm0(x,C) ≥ ᾱ1C0\C(x) or inf
x∈C0\C

V (x) > (1 + b/c)1/η. (4.51)

Then there exists a function V̂ : E → R+ and η̂ ∈ (0, η) and ĉ > 0 such that

Pm0V̂ (x) ≤ V̂ (x)− ĉV̂ η̂(x) + b̂1C(x).

Proof. Under the assumption Pm0(x,C) ≥ ᾱ1C0\C(x), the claim follows com-
pletely analogously to the proof of Proposition 4.5.7. For the second case,
we will take ĉ = c and V̂ = V . Let z1 := infx∈C0\C V (x) > (1 + b/c)1/η and
η̂ = ln(zη1 − b/c)/ ln(z1). Then for x ∈ C0\C we have that

PV (x) ≤ V (x)− cV η(x) + b

≤ V (x)− cV η̂(x),

since we have that η̂ < η and therefore

c

V η−η̂(x)
+

b

V η(x)
≤ c

zη−η̂1

+
b

zη1
≤ c,

which is equivalent to cV η̂(x) + b ≤ cV η(x).

Hence, Propositions 4.5.4 and 4.5.5 give conditions such that the one-
step drift condition implies the desired drift condition for the skeleton chain.
Furthermore, we note that in order for a drift condition towards C to hold,
it is sufficient to show that it holds on some appropriate subset of C. This
might be a useful property for T -chains, where every closed set is petite and
hence a small set.
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Proposition 4.5.6 (Meyn and Tweedie [106; Theorem 6.1] ). Let (Xt)t∈N
be an irreducible aperiodic Markov chain, assume that an m0–step minorisa-
tion condition holds and that drift condition 7 holds for some C0 ⊊ C with
π(C0) > 0. Then there exists a function V̂ : E → R+ with V ≤ V̂ ≤
V + b/αν(C0) such that

Pm0V̂ (x) ≤ λ̂V̂ (x) + b̂1C(x),

with

λ̂ =
λαν(C0) + b

αν(C0) + b
and b̂ = b+ b/αν(C0).

We can easily prove an analogous lemma for chains satisfying a polyno-
mial drift condition.

Proposition 4.5.7. Let (Xt)t∈N be an irreducible aperiodic Markov chain,
assume that an m0–step minorisation condition holds and drift condition 8
is satisfied for some C0 ⊆ C with π(C0) > 0, then there exist a function
V̂ : E → R+ with V ≤ V̂ ≤ V + (1 ∧ b)/αν(C) such that

Pm0V̂ (x) ≤ V̂ (x)− ĉV (x)η̂ + b̂1C(x),

with

ĉ ∈
(

c

(1 ∧ b)/αν(C)η + 1
,
c

2

)
,

b̂ = b+
(1 ∧ b)
αν(C)

(1− αν(C)) and η̂ =
ln
(
c−ĉ
ĉ

)
ln((1 ∧ b)/αν(C))

Proof. For some B to be determined at a later point in the proof, let

V̂ (x) =

{
V (x), x ∈ C
V (x) +B, x /∈ C.

Now we see that

Pm0V̂ (x) =

∫
E

V̂ (y)Pm0(x, dy) =

∫
C

V (y)Pm0(x, dy) +

∫
Cc

(V (y) +B)Pm0(x, dy)

= Pm0V (x) +BPm0(x,Cc)

For x /∈ C we have that

Pm0V̂ (x) ≤ V (x)− cV (x)η +B
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Hence if B > 1, ĉ ∈
(

c
Bη+1

, c
2

)
, and η̂ ∈

(
0, ln

(
c−ĉ
ĉ

)
/ ln(B)

]
, we see that

η̂ < η and thus

V η̂−η +
Bη̂

V η
≤ 1 +Bη̂ ≤ c

ĉ
.

Therefore it also follows that

(V +B)η̂ ≤ V η̂ +Bη̂ ≤ c

ĉ
V η.

Note that 1 + Bη̂ ≤ c/ĉ gives η̂ and the restriction 0 < η̂ < η gives the
restriction on ĉ. It follows that

Pm0V̂ (x) ≤ V̂ (x)− ĉV̂ (x)η̂,

as desired. For x ∈ Cc ∩ C ′, we have that Pm0(x,C) ≥ αν(C) and hence

Pm0V̂ (x) = Pm0V (x) +B(1− Pm0(x,C))

≤ V (x)− cV (x)η + b+B − αν(C)B

≤ V̂ (x)− cV (x)η

≤ V̂ (x)− ĉV̂ (x)η̂,

given that we choose B = (1 ∧ b)/αν(C). For x ∈ C we see that

Pm0V̂ (x) ≤ V (x)− cV (x)η + b+B(1− αν(C))

≤ V̂ (x)− ĉV̂ (x)η̂ + b+B(1− αν(C))

In Jones et al. [87] and Bednorz and  Latuszyński [10] it is shown that
geometric ergodicity and moment conditions with respect to the stationary
measure are sufficient to guarantee moment conditions of functionals over
regenerative cycles. These results easily carry over to the continuous-time
and multivariate setting as seen in Pengel and Bierkens [121] and Baner-
jee and Vats [8] respectively. We generalise these results using the explicit
bounds given in Lemma 4.5.2 and 4.5.3. We note that the proofs essentially
follow the argument of Bednorz and  Latuszyński [10; Lemma 2] coordinate-
wise. These results are of independent interest, see for example Bertail and
Cio lek [14], who assume that explicit bounds for moments of hitting times
and blocks are given. Lemma 4.5.8 and 4.5.9 could for example be used to
obtain dimension-dependent Bernstein inequalities, see Bertail and Cio lek
[14]. Note that all the constants C0, C1 and C3 in Lemmas 4.5.8 and 4.5.9
can be given explicitly.



Chapter 4. Gaussian Approximations for High-dimensional MCMC 127

Lemma 4.5.8. Let (Xt)t∈N be an irreducible aperiodic Markov chain, assume
that an m0-step minorisation condition holds and that drift condition 7 is
satisfied. Then for any t with |t| ≤ ln(1/λ)/m0 we have that

Eν [etR1 ] <∼
b

αλ(1− λ)
(4.52)

Moreover, under Assumption A4.1, we have that

sup
i∈{1,...,d}

Eν

[(
R1∑
t=0

|fi(Xt)|

)p]
<∼ α−1

(
b

αλ(1− λ)

)ε/p
sup

i∈{1,...,d}
π(|fi|p+ε),

(4.53)
and

Eν

[∣∣∣∣∣
R1∑
t=0

f(Xt)

∣∣∣∣∣
p]
<∼ α−1dp/2

(
EνetR1

)ε/p
sup

i∈{1,...,d}
π(|fi|p+ε), (4.54)

If we can additionally assume that Assumption A4.3 holds, we also have that

sup
i∈{1,...,d}

Eν

[
exp

(
R1∑
t=0

|fi(Xt)|

)]
<∼ Eν [etR1 ]. (4.55)

Lemma 4.5.9. Let (Xt)t∈N be an irreducible aperiodic Markov chain, assume
that an m0–step minorisation condition holds and that drift condition 8 is
satisfied for some Lyapunov function. Then

Eν [Rq
1] <∼ 2q−1mq

0

(
1 +

b

cα
+
υc − c+ b

1− α

)
. (4.56)

where q(η) = η
1−η . Moreover, for all f : E → Rd such that Assumption

A4.1 holds, we have that

sup
i∈{1,...,d}

Eν

[(
R1∑
t=0

|fi(Xt)|

)p0]
<∼ α−1 (EνRq

1)
ε/p0 sup

i∈{1,...,d}
π(|fi|p+ε), (4.57)

where

p0 =


pq(η)

p+q(η)+ε
, if p

2p−1
< η ≤ p(p+ ε)/(p(p+ ε) + ε),

p, if η > p(p+ ε)/(p(p+ ε) + ε),
q(η)− ϵ̄, if η > 1/2 and A4.2 holds,

(4.58)

for any fixed ϵ̄ ∈
(

0,min{1
2
, 2η−1

1−η }
)
.
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Proof of Lemma 4.5.8

Proof. Firstly, we show that R1 admits an exponential moment in some
neighborhood of zero. Note that from Proposition 4.5.1 we see that R1 =
m0 +m0τ̄C×{1}. Hence for any t with |t| < ln(1/λ)

m0
we have that

Eν [etR1 ] = Eν [et(m0+m0τ̄C×{1}))]

≤ Eν [e
ln(1/λ)

m0
(m0+m0τ̄C×{1}))] ≤ 1

λ
Eν
[(

1

λ

)τ̄C×{1}
]

By an application of Lemma 4.5.2 we obtain that

Eν [etR1 ] ≤ b

αλ(1− λ)

Note that

R1∑
t=0

f(Xt) =

(
R1∑
t=0

f1(Xt), . . . ,

R1∑
t=0

fd(Xt)

)T

,

with fi : E → R for i = 1, . . . , d. By Lemma 4.5.12 and a coordinate-
wise application of Bednorz and  Latuszyński [10; Lemma 2], we see for all
ı = 1, . . . , d we have that

Eν

[(
R1∑
t=0

|fi(Xt)|

)p]
≤ (απ(C))−1Eπ

[(
R1∑
t=0

|fi(Xt)|

)p]

≤ (απ(C))−1π(|fi|p+ε)
p

p+ε

(
∞∑
k=1

Pπ (R1 > k)
ε

p(p+ε)

)p

By an application of Markov’s inequality we have that

≤ (απ(C))−1π(|fi|p+ε)
p

p0+ε

(
∞∑
k=1

e−
tε

p(p+ε)
k

)p (
EπetR1

)ε/(p+ε)
≤ (απ(C))−1π(|fi|p+ε)

p
p+ε
(
etε/p(p+ε) − 1

)−p( b

αλ(1− λ)

)ε/p
.
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The second claim follows directly from the equivalence of norms,

Eν

[∣∣∣∣∣
R1∑
t=0

f(Xt)

∣∣∣∣∣
p]

= Eν


 d∑

i=1

(
R1∑
t=0

|fi(Xt)|

)2
p/2


≤ Eν

d1/2−1/p

(
d∑
i=1

∣∣∣∣∣
R1∑
t=0

|fi(Xt)|

∣∣∣∣∣
p)1/p

p
= dp/2−1Eν

[
d∑
i=1

∣∣∣∣∣
R1∑
t=0

|fi(Xt)|

∣∣∣∣∣
p]

= dp/2−1

[
d∑
i=1

Eν

∣∣∣∣∣
R1∑
t=0

|fi(Xt)|

∣∣∣∣∣
p]

≤ dp/2 sup
i∈{1,...,d}

Eν

∣∣∣∣∣
R1∑
t=0

|fi(Xt)|

∣∣∣∣∣
p

,

which gives (4.60).

Proof of Lemma 4.5.9

Proof. Firstly, we show that R1 has an exponential moment. From Proposi-
tion 4.5.1 we see that

EνRq
1 = Eν [(m0 +m0τ̄C×{1})

q] ≤ 2q−1(mq
0 +mq

0Eν τ̄
q
C×{1}),

where the first equality follows since S1 = m0τ̄C×{1}. The first claim (4.56)
now follows for drift conditions 7 and 8 by an application of Lemma 4.5.2
and Lemma 4.5.3 respectively. Note that

R1∑
t=0

f(Xt) =

(
R1∑
t=0

f1(Xt), . . . ,

R1∑
t=0

fd(Xt)

)T

,

with fi : E → R for i = 1, . . . , d. By Lemma 4.5.12 we see that for any p0 ≤ p
and for all i = 1, . . . , d we have that

Eν

[(
R1∑
t=0

|fi(Xt)|

)p0]
≤ (απ(C))−1Eπ

[(
R1∑
t=0

|fi(Xt)|

)p0]
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Following the argument of Bednorz and  Latuszyński [10; Lemma 2] for
every coordinate, we see that

Eπ

[(
R1∑
t=0

|fi(Xt)|

)p0]
≤ π(|fi|p0+ε)

p0
p+ε

(
∞∑
k=1

Pπ (R1 > k)(1−
p0
p+ε

)

)p0

≤ π(|fi|p0+ε)
p0

p0+ε

(
∞∑
k=1

k
− q(η)

p0
(1− p0

p+ε)

)p0 (
EνRq(η)

1

)(1− p0
p+ε)

.

Note that in each of the following cases the series
∑∞

k=1 k
− q(η)

p0
(1− p0

p+ε)

converges. Firstly, consider p
2p−1

< η ≤ p(p + ε)/(p(p + ε) + ε) we have

that q(η) ≤ p(p + ε)/ε and hence for a given value of p, the largest value p0
such that the series converges is p0 = pq(η)

p+q(η)+ε
. Note that impose η > p

2p−1

in order to have p0 > 1. We also see that if η > p(p + ε)/(p(p + ε) + ε),
then q(η) > p(p + ε)/ε and we can take p0 = p. Finally, we see that under
Assumption 4.2, we can take p > q(q− ϵ̄)/ϵ̄, since f has moments of all orders
with respect to π, and hence for any ϵ̄ > 0 such that q(η) − ϵ̄ > 1 we can
take p0 = q(η) − ϵ̄. The remaining claims follow completely analogously to
Lemma 4.5.8.

Lemma 4.5.10. (Marcinkiewicz—Zygmund inequality; De la Pena and Giné
[48; Lemma 1.4.13.]) Suppose z1, . . . , zd are one-dimensional independent
zero-mean random variables with finite p-th moment, then there exist con-
stants cp and Cp such that

cpE

(∑
i

z2i

)p/2
 ≤ E

[∣∣∣∣∣∑
i

zi

∣∣∣∣∣
p]
≤ CpE

(∑
i

z2i

)p/2


By the Marcinkiewicz—Zygmund inequality, we can describe the growth
of the moments of sums in terms of the bounds given in Lemmata 4.5.8 and
4.5.9.

Lemma 4.5.11. Let {ξk}k∈N be d-dimensional one-dependent zero-mean ran-
dom vectors with

sup
k∈N

sup
i∈{1,··· ,d}

E[|ξk,i|p] ≤ Cξ,
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then we have that

E

∣∣∣∣∣∣
⌊m/2⌋∑
k=0

ξ2k

∣∣∣∣∣∣
p <∼ Cξ d

p/2mp/2.

Proof. Let Z := (z1, . . . , zd)
T :=

∑⌊m/2⌋
k=0 ξ2k which is a d-dimensional random

vector. Note that

|Z| :=

√√√√ d∑
k=1

z2i

By the equivalence of norms we see that

E [|Z|p] = E

( d∑
i=1

z2i

)p/2
 = E

( d∑
i=1

z2i

)1/2
p

≤ E

d1/2−1/p

(
d∑
i=1

|zi|p
)1/p

p = dp/2−1E

[
d∑
i=1

|zi|p
]
≤ dp/2 sup

{i∈1,··· ,d}
E[|zi|p]

Now note that zi =
∑⌊m/2⌋

k=0 ξ2k,i is a sum of one-dimensional independent
random variables. From an application of the Marcinkiewicz—Zygmund in-
equality, see Lemma 4.5.10, and the equivalence of norms we obtain

E[|zi|p] = E

∣∣∣∣∣∣
⌊m/2⌋∑
k=0

ξ2k,i

∣∣∣∣∣∣
p ≤ CpE


⌊m/2⌋∑

k=0

ξ22k,i

p/2


= CpE



⌊m/2⌋∑

k=0

ξ22k,i

1/2

p ≤ CpE


m1/2−1/p

⌊m/2⌋∑
k=0

|ξ2k,i|p
1/p


p

= Cpm
p/2−1E

[∑
k

|ξ2k,i|p
]
≤ Cpm

p/2 sup
k

E[|ξ2k,i|p].

Overall, we have that

sup
i∈{1,··· ,d}

E[|zi|p] <∼ mp/2Cξ,

and hence the claim follows.
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4.5.2. Auxiliary results

Note that an immediate consequence of Minorisation condition 2 is that
the small measure ν is absolutely continuous with respect to the stationary
measure π. Furthermore, from the minorisation condition it also follows that
we can bound the expectations with respect to the measures as formulated
in Hobert et al. [81; Lemma 1].

Lemma 4.5.12 (Hobert et al. [81; Lemma 1]). Let (Xt)t∈T be a positive
Harris recurrent Markov process with invariant distribution π. Then for any
π-integrable function g : ET → Rd we have the following inequality holds

Eπ|g| ≥ απ(C) Eν |g|, (4.59)

where α and C are defined in (4.34).

Note that Lemma 4.5.12 was stated by Hobert et al. [81; Lemma 1] in
a one-dimensional setting, and a one-step minorisation condition. However,
the claim can mutatis mutandis be stated for the general multidimensional
m0–step local minorisation case.

4.5.3. Preliminary results on Gaussian approximation

Firstly, we will consider the following weak Gaussian approximation for
bounded independent random vectors.

Lemma 4.5.13 (Eldan et al. [63; Theorem 1]). Suppose x1, . . . , xn ∈ Rd

are independent identically distributed mean-zero bounded random vectors,
i.e., |xi| ≤ τ, for i = 1, . . . , n for some τ > 0. Let σd denote the maximal
eigenvalue of Cov( 1√

n

∑
i xi). Then one can construct independent random

vectors (xci)i and (yi)i in a richer probability space such that xci
D
= xi and

Yn ∼ Nd(0,Cov(
∑
xi)) such that for all θ0 > 0 we have that,

lim
n→∞

P

(∣∣∣∣∣
n∑
i=1

xi − Yn

∣∣∣∣∣ ≤ τd1/2(32 + log(n))

)
= 1,

Note that this lemma is an immediate consequence of Eldan et al. [63;
Theorem 1] and the fact that convergence in the Wasserstein metric implies
convergence of moments, see for example Villani et al. [153; Theorem 6.9].
Furthermore, note that we also have the following weak coupling inequality,
which is a corollary of either Zaitsev [158; Theorem 1.1] or Zaitsev [157;
Theorem 1.1].
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Lemma 4.5.14 (Einmahl and Mason [61; Fact 2.2]). Suppose x1, . . . , xn ∈
Rd are independent random vectors that E[xi] = 0 and xi = (xi,1, . . . , xi,d)

T ,
in which |xi| are bounded such that |xi| ≤ τ, i = 1, . . . , n. Let Xn =

∑n
k=1 xk,

then one can construct Xc
n and Y c

n in a richer probability space such that

xcn
D
= xn and for all ϵ ≥ 0,

P (|Xc
n − Y c

n | > ϵ) ≤ C2d
2 exp

(
− ϵ

C3d2τ

)
,

where Y c
n is sum of n i.i.d Gaussian vectors with the same mean and covari-

ance matrix as Xc
n and C2, C3 are positive dimension-independent constants.

Note that Zaitsev [158; Theorem 1.1] and Zaitsev [157; Theorem 1.1] give
us a dimension dependence of d5/2 and d2 respectively in Lemma 4.5.14. As
shown in Einmahl and Mason [61; Fact 2.2], both results apply to bounded
vectors. Furthermore, we will also consider the following strong Gaussian
approximation for bounded independent random vectors.

Lemma 4.5.15 (Zaitsev [160; Corollary 3]). Suppose x1, . . . , xn ∈ Rd are in-
dependent mean-zero bounded random vectors, i.e., |xi| ≤ τ, for i = 1, . . . , n
for some τ ≥ 1. Let σd denote the maximal eigenvalue of Cov( 1√

n

∑
i xi).

Then one can construct independent random vectors (xci)i and (yi)i in a richer

probability space such that xci
D
= xi and yi ∼ Nd(0,Cov(xi)) such that for all

θ0 > 0 we have that,

P

(
lim sup
n→∞

1

log(n)

∣∣∣∣∣
n∑
i=1

xci −
n∑
i=1

yi

∣∣∣∣∣ ≤ Kθ0τd
23/4+θ0

√
σd log∗(d)

)
= 1,

where Kθ0 depends only on θ0 and log∗(d) := max(1, log(d)).

Lemma 4.5.16 (Merlevède et al. [103; Lemma 2.4]). Let B be a standard
Brownian motion and L be a Poisson process with intensity λ, independent of
B. Then there exists a standard Brownian motion W that is also independent
of L such that ∣∣∣∣B(n)− 1√

λ
W (L(n))

∣∣∣∣ = Oa.s.(log(n))

Proof. The claim immediately follows from Merlevède et al. [103; Lemma
2.4] and a Borel–Cantelli argument.
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Lemma 4.5.17 (Ando–van Hemmen’s inequality; van Hemmen and Ando
[150; Corollary 4.2]). Let Σ1,Σ2 be two positive definite matrices with the
smallest eigenvalue bounded below by σ0 > 0. Then for every 0 < r ≤ 1 we
have that

|Σr
1 − Σr

2| ≤
(

1

σ0

)1−r

|Σ1 − Σ2|.

We will show that the strong approximation for bounded vectors given
in Lemma 4.5.15 can be extended to independent vectors with only p finite
moments. Furthermore, we obtain as an immediate consequence also the
corresponding weak Gaussian approximation. The weak Gaussian approx-
imation result for independent random vectors is comparable to the result of
[108], which they obtain through martingale embeddings.

Theorem 4.5.18. Let {ξk} be a sequence of independent and identically dis-
tributed mean zero random vectors in Rd such that supk∈N supi∈{1,··· ,d} E[|ξk,i|p] ≤
Cξ, for some finite Cξ, and for some p > 2 and such that the smallest eigen-
value of Cov( 1√

n

∑n
k=1 ξk) is larger than some constant σ0 > 0. Then

∣∣∣∣∣
n∑
k=1

ξk −
n∑
k=1

Yk

∣∣∣∣∣ =


OP
(
d3/2C

2/p
ξ n1/p log(n)

)
.

Oa.s.

((
d25/4+θ0 log∗(d)C

1/p
ξ ∨ d3/2C2/p

ξ

)(σd
σ0

)1/2

n1/p log(n)

) ,

where
∑n

k=1 Yk has a Gaussian distribution with the same mean and co-
variance matrix as

∑n
k=1 ξk.

Proof. We will first prove the almost sure bound. Let τn := n1/p, δ = 1/2
and define the truncated sequence ξ̃k as follows

ξ̃k := ξk1{|ξk|≤dδC1/p
ξ τn}

− E[ξk1{|ξk|≤dδC1/p
ξ τn}

].

Clearly, we have |ξ̃k| ≤ 2d1/2τn and E[ξ̃k] = 0. Then by triangle inequality,
we have∣∣∣∣∣

n∑
j=1

ξj −
n∑
j=1

ξ̃j

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
j=1

ξj1{|ξj |>dδC1/p
ξ τn)}

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

E[ξj1{|ξj |>dδC1/p
ξ τn}

]

∣∣∣∣∣ .
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Since supk supi E[|ξk,i|p]] ≤ Cξ it follows from the equivalence of vector
norms that

sup
k

E[|ξk|p] <∼ dp/2 sup
k

sup
i

E[|ξk,i|p] <∼ dp/2Cξ. (4.60)

For r ∈ [1, p) we have that

E|ξj|r1|ξj |>dδC1/p
ξ τn

= r

∫ ∞

dδC
1/p
ξ τn

sr−1P(|ξj| > s)ds+ dδrC
r/p
ξ τ rnP(|ξj| > dδC

1/p
ξ τn)

≤ r

∫ ∞

dδC
1/p
ξ τn

E|ξj|p

sp−r+1
ds+ dδrC

r/p
ξ τ rn

E|ξj|p

dpδτ pnCξ

=
r

(p− r)
E|ξj|p

(dδC
1/p
ξ τn)(p−r)

+ dδrC
r/p
ξ τ rn

E|ξj|p

dpδτ pnCξ

<∼ dδrτ r−pn C
r/p
ξ . (4.61)

Taking r = 1 in (4.61) it follows that
(
|ξj|1{|ξj |>dδC1/p

ξ τn}

)
j∈N

is an i.i.d. se-

quence with mean µn,d > 0 such that µn,d <∼ dδτ 1−pn C
r/p
ξ . We claim that

n∑
j=1

|ξj|1{|ξj |>dδC1/p
ξ τn)}

= Oa.s.(dδC1/p
ξ nτ 1−pn ) (4.62)

Note that since d−δC
−1/p
ξ µn,d tends to zero for any τn that tends to infinity,

the claim does not follow by a standard law of large numbers for triangular
arrays. We will prove (4.62) by following a truncation and sub-sequence
argument. Firstly, note that for any θ > 1/p we have that

n∑
j=1

|ξj|1{|ξj |>dδC1/p
ξ τn)}

=
n∑
j=1

|ξj|1{dδC1/p
ξ τn≤|ξj |≤dδC

1/p
ξ nθ)}+

n∑
j=1

|ξj|1{|ξj |>dδC1/p
ξ nθ)}.

(4.63)

For the second term in (4.63), we see that if we choose

θ >
2p− 1

p(p− 1)
, (4.64)
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then for every ε > 0 we have that

∞∑
n=1

P

(∣∣∣∣∣
n∑
j=1

|ξj|1{|ξj |>dδC1/p
ξ nθ}

∣∣∣∣∣ > εdδC
1/p
ξ n1/p

)
≤

∞∑
n=1

nE[|ξj|1{|ξj |>dδC1/p
ξ nθ}]

εdδC
1/p
ξ n1/p

<∼
1

ε

∞∑
n=1

nθ(1−p)+1−1/p <∞,

since we have mutatis mutandis to (4.61) that E[|ξj|1{|ξj |>dδC1/p
ξ nθ}]

<∼
dδC

1/p
ξ nθ(1−p) for p > 2. Hence by the Borel–Cantelli Lemma we have that

n∑
j=1

|ξj|1{|ξj |>dδC1/p
ξ nθ)} = Oa.s.(dδC1/p

ξ n1/p). (4.65)

Note that the first term in the RHS of (4.63) is bounded above by∣∣∣∣∣
n∑
j=1

(
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)} − E

[
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)}

])∣∣∣∣∣
+

n∑
j=1

E
[
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)}

]
(4.66)

From (4.61) it also follows that

n∑
j=1

E
[
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)}

]
= O(dδC

1/p
ξ nτ 1−pn ) (4.67)

Now we will show that∣∣∣∣∣
n∑
j=1

(
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)} − E

[
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)}

])∣∣∣∣∣ = oa.s.(d
δC

1/p
ξ n1/p).

(4.68)
Which is equivalent to showing that∣∣∣∣∣ 1

n1/pC
1/p
ξ dδ

n∑
j=1

(
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)} − E

[
|ξj|1{dδC1/p

ξ τn≤|ξj |≤dδC
1/p
ξ nθ)}

])∣∣∣∣∣
(4.69)
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tends to zero almost surely as n → ∞. We will first show that (4.69) holds
for a subsequence. Fix any λ > 1 and define n(ℓ) = ⌊λℓ⌋. Then, we claim
that as ℓ→∞, we have that∣∣∣∣∣∣ 1

n(ℓ)1/pC
1/p
ξ,d d

δ

n(ℓ)∑
j=1

(
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)} − E
[
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)}

])∣∣∣∣∣∣
(4.70)

tends to zero almost surely. For any ε > 0 let B := 1

n(ℓ)1/pC
1/p
ξ,d d

δ
then we have

that

∞∑
ℓ=1

P

∣∣∣∣∣∣B
n(ℓ)∑
j=1

(
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)} − E
[
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)}

])∣∣∣∣∣∣ > ε


≤ 1

ε2

∞∑
ℓ=1

1

n(ℓ)2/pC
2/p
ξ,d d

2δ

n(ℓ)∑
j=1

Var
(
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)}

)
≤ 1

ε2

∞∑
ℓ=1

n(ℓ)1−2/p

d2δC
2/p
ξ,d

E
[
|ξ1|21{dδC1/p

ξ,d τn(ℓ)≤|ξ1|≤dδC1/p
ξ,d n(ℓ)

θ)}

]
.

By Tonelli’s theorem, we have that

∞∑
ℓ=1

n(ℓ)1−2/p

d2δC
2/p
ξ,d

E
[
|ξ1|21{dδC1/p

ξ,d τn(ℓ)≤|ξ1|≤dδC1/p
ξ,d n(ℓ)

θ)}

]
= E

[
|ξ1|2

∞∑
ℓ=1

n(ℓ)1−2/p

d2δC
2/p
ξ,d

1{dδC1/p
ξ,d τn(ℓ)≤|ξ1|≤dδC1/p

ξ,d n(ℓ)
θ)}

]

Since we have that

∞∑
k=1

n(ℓ)1−2/p
1{dδC1/p

ξ,d n(ℓ)
1/p≤|ξ1|≤dδC1/p

ξ,d n(ℓ)
θ)}

=
∞∑
k=1

n(ℓ)1−2/p
1{d−δ/θC

−1/pθ
ξ,d |ξ1|1/θ≤n(ℓ)≤ d−δpC−1

ξ,d |ξ1|
p}

≤
∞∑
k=1

λ(1−2/p)ℓ
1
{d−δ/θC

−1/pθ
ξ,d |ξ1|

1
θ ≤λℓ≤ d−δpC−1

ξ,d |ξ1|
p+1}

.
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This gives

∞∑
ℓ=1

λ(1−2/p)ℓ
1
{d−δ/θC

−1/pθ
ξ,d |ξ1|

1
θ ≤λℓ≤ d−δpC−1

ξ,d |ξ1|
p+1}

≤
∞∑
ℓ=1

λ(1−2/p)ℓ
1
{⌊ln

(
d−

δ
θ C

−1/pθ
ξ,d |ξ1|

1
θ

)
/ ln(λ)⌋≤ℓ≤ ⌈ln

(
d−

p
2C−1

ξ,d |ξ1|
p+1

)
/ ln(λ)⌉}

=

⌈ln(d−δpC−1
ξ,d |ξ1|

p+1)/ ln(λ)⌉∑
ℓ=⌊ln

(
d−δ/θC

−1/pθ
ξ,d |ξ1|1/θ

)
/ ln(λ)⌋

e(1−2/p)ℓ) ln(λ)

≤
∫ ln(d−δpC−1

ξ,d |ξ1|
p+1)/ ln(λ)+2

ln
(
d−δ/θC

−1/pθ
ξ,d |ξ1|1/θ

)
/ ln(λ)

e(1−2/p)x) ln(λ)dx

=
1

ln(λ)

∫ ln(d−δpC−1
ξ,d |ξ1|

p+1)+2 ln(λ)

ln
(
d−δ/θC

−1/pθ
ξ,d |ξ1|1/θ

) e(1−2/p)xdx

≤ C1(d
−δpC−1

ξ,d |ξ1|
p + 1)1−2/p − C2(d

−δ/θC
−1/pθ
ξ,d |ξ1|1/θ)(1−2/p)

≤ 2C1d
δ(2−p)C

2/p−1
ξ,d |ξ1|p−2 − C2d

−(1−2/p)δ/θC
−(p−2)/p2θ
ξ,d |ξ1|(1−2/p)/θ,

with C1 = pλ2(1−2/p)

(p−2) ln(λ)
and C2 = (lnλ)−1p/(p − 2). Here the last inequality

follows since on the event {|ξ1| ≥ dδC
1/p
ξ,d τn(ℓ)}, we have that |ξ1|pC−1

ξ,dd
−δp ≥ 1

and hence (d−δpC−1
ξ,d |ξ1|

p + 1)α ≤ 2d−αδpC−α
ξ,d |ξ1|

αp for any α > 0. From (4.61)
it follows that for p > 2 and θ satisfying (4.64) we have that

∞∑
ℓ=1

n(ℓ)1−2/p

C
2/p
ξ,d d

2δ
E
[
|ξ1|21{dδC1/p

ξ,d τn(ℓ)≤|ξ1|≤dδC1/p
ξ,d n(ℓ)

θ)}

]
≤ 2C1d

−δpC−1
ξ,dE|ξ1|

p

+ C2d
−(1−2/p)δ/θ−2δC

−(p−2)/p2θ−2/p
ξ,d E|ξ1|2+(1−2/p)/θ < C̄,

where C̄ is some universal constant, since by (4.60) the first term can be
bounded by a universal constant and since for θ satisfying (4.64) and p > 2
we have that 1 < 2 + (1 − 2/p)/θ < p, and thus by Jensen’s inequality we
can also bound the second term with a universal constant. Consequently, the
claim (4.70) follows from the Borel–Cantelli lemma. Moreover, from (4.67)
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we also have that∣∣∣∣∣∣
n(ℓ)∑
j=1

(
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)}

)∣∣∣∣∣∣
= oa.s.(d

δC
1/p
ξ,d n(ℓ)1/p) +

n(ℓ)∑
j=1

E
[
|ξj|1{dδC1/p

ξ,d τn(ℓ)≤|ξj |≤dδC
1/p
ξ,d n(ℓ)

θ)}

]
= oa.s.(d

δC
1/p
ξ,d n(ℓ)1/p) +Oa.s.(dδC1/p

ξ,d n(ℓ)τ 1−pn(ℓ) )

= Oa.s.(dδC1/p
ξ,d n(ℓ)1/p) = Oa.s.(dδC1/p

ξ,d λ
ℓ/p).

Since for any n there exists an ℓ such that λℓ < n ≤ λℓ+1, we have that

n−1/p

n∑
j=1

|ξj|1{dδC1/p
ξ,d n

1/p≤|ξj |≤dδC
1/p
ξ,d n

θ)} ≤ λ−ℓ/p
λℓ+1∑
j=1

|ξj|1{dδC1/p
ξ,d λ

(ℓ+1)/p≤|ξj |≤dδC
1/p
ξ,d λ

(ℓ+1)θ}

lim sup
n→∞

n−1/p

n∑
j=1

|ξj|1{dδC1/p
ξ,d n

1/p≤|ξj |≤dδC
1/p
ξ,d n

θ)} ≤
λ1/p

λ(ℓ+1)/p

λℓ+1∑
j=1

|ξj|1{dδC1/p
ξ,d λ

(ℓ+1)/p≤|ξj |≤dδC
1/p
ξ,d λ

ℓθ}

<∼a.s. d
δC

1/p
ξ,d .

Thus we have proven the claim (4.68) and consequently also (4.62) im-
mediately follows. Putting all the obtained results together, we have that∣∣∣∣∣

n∑
j=1

ξj −
n∑
j=1

ξ̃j

∣∣∣∣∣ = Oa.s.(dδC1/p
ξ,d nτ

1−p
n )

= Oa.s.(d1/2C1/p
ξ,d n

1/p). (4.71)

Next, since E[ξ̃j] = 0 and
∣∣∣ξ̃j∣∣∣ ≤ 2d1/2C

1/p
ξ,d τn, by Lemma 4.5.15 there exists

a sequence of Gaussian random variables ỹ1, . . . , ỹn with ỹj ∼ Nd(0,Cov(ξ̃i))
such that for all θ0 > 0 we have that

∣∣∣∣∣
n∑
j=1

ξ̃j −
n∑
j=1

ỹj

∣∣∣∣∣ = Oa.s.((d23/4+δ+θ0 log∗ d)
√
σdC

1/p
ξ τnlog n))

= Oa.s.((d25/4+θ0 log∗ d)
√
σdC

1/p
ξ n1/plog n)), (4.72)
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for any θ0 > 0. Hence by (4.71) and (4.72) it follows that∣∣∣∣∣
n∑
k=1

ξk − Ỹn

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

ξk −
n∑
j=1

ξ̃j

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

ξ̃j − Ỹn

∣∣∣∣∣
= Oa.s.(d1/2C1/p

ξ,d n
1/p) +Oa.s.((d25/4+θ0 log∗ d)

√
σdC

1/p
ξ n1/plog n)),

(4.73)

where Ỹn :=
∑n

j=1 ỹj has the same covariance matrix as
∑n

j=1 ξ̃j. Note
that we can write ỹj in terms of a standard multidimensional Gaussian as

ỹj =
(

Cov(ξ̃1)
)1/2

zj for j = 1, . . . , n,

where z1, . . . , zn ∼ Nd(0, Id) are all independent and identically distributed.
Similarly, using the same Gaussian sequence z1, . . . , zn, we can define for
j = 1, . . . , n the following

yj := (Cov(ξ1))
1/2 zj.

Now it follows that∣∣∣∣∣
n∑
j=1

ỹj −
n∑
j=1

yj

∣∣∣∣∣ =
∣∣∣Cov (ξ1)

1/2 − Cov(ξ̃1)
1/2
∣∣∣∣∣∣∣∣

n∑
j=1

zj

∣∣∣∣∣
≤ 1
√
σ0

∣∣∣Cov (ξ1)− Cov(ξ̃1)
∣∣∣∣∣∣∣∣

n∑
j=1

zj

∣∣∣∣∣
≤

∣∣∣∑n
j=1 zj

∣∣∣
√
σ0

[
2
√
E
[
|ξ1|2

]√
E
[∣∣∣ξ1 − ξ̃1∣∣∣2]+ E

[∣∣∣ξ1 − ξ̃1∣∣∣2]] ,
where the first inequality follows by Lemma 4.5.17; Ando–van Hemmen’s
inequality.
By a component-wise application of the law of iterated logarithm we have
that ∣∣∣∣∣

n∑
j=1

zj

∣∣∣∣∣ = Oa.s.
(√

dn log log n
)
.

Note that E[|ξ1|2] ≤ tr(Σ) ≤ dσd. Furthermore, from (4.61) we see that
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E
[∣∣∣ξ1 − ξ̃1∣∣∣2] ≤ E

[
|ξ1|21{|ξ1|>dδC1/p

ξ,d τn}

]
<∼ d2δC

2/p
ξ,d τ

2−p
n .

We see that∣∣∣∣∣
n∑
j=1

ỹj −
n∑
j=1

yj

∣∣∣∣∣ = Oa.s.

(
d(1+δ)∧(2δ+1/2)

(
σd
σ0

)1/2

C
2/p
ξ,d τ

2−p
n

√
n log log n

)

= Oa.s.

(
d3/2

(
σd
σ0

)1/2

C
2/p
ξ,d n

2/p−1
√

log log n

)
, (4.74)

where the last equality follows from the choice τn = n1/p and δ = 1/2. From
(4.74) and (4.76) it follows that∣∣∣∣∣
n∑
j=1

ξj −
n∑
j=1

yj

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
j=1

ξj −
n∑
j=1

ỹj

∣∣∣∣∣+

∣∣∣∣∣
n∑
j=1

yj − Yn

∣∣∣∣∣
= Oa.s.

((
d25/4+θ0 log∗(d)C

1/p
ξ ∨ d3/2C2/p

ξ

)(σd
σ0

)1/2

n1/p log(n)

)
.

This finishes the proof for the strong Gaussian approximation case. For
the weak Gaussian approximation case the proof follows completely ana-
logously up to some minor differences. Firstly, we consider an application
of Lemma 4.5.13 instead of Lemma 4.5.15 for approximating the truncated
sequence (ξ̃k)k∈N. This gives us∣∣∣∣∣

n∑
j=1

ξ̃j − Ỹn

∣∣∣∣∣ = OP (dδ+1/2C
1/p
ξ τnlog n)

= OP (dC
1/p
ξ n1/plog n), (4.75)

where Ỹn has a mean-zero Gaussian distribution with covariance matrix
Cov(

∑n
j=1 ξ̃j). Furthermore, the difference between the Gaussian approxim-

ation for the truncated sums and the Gaussian approximation for the true
sums can now be obtained with the following argument. Z ∼ N (0, Id) as
follows:

Ỹn := Cov

(
n∑
j=1

ξ̃j

)1/2

Z.
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Similarly, using the same Z, we define

Yn := Cov

(
n∑
k=1

ξk

)1/2

Z,

We see that

|Y − Ỹn| =

∣∣∣∣∣∣
Cov

(
n∑
k=1

ξk

)1/2

− Cov

(
n∑
k=1

ξ̃k

)1/2
Z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Cov

(
n∑
k=1

ξk

)1/2

− Cov

(
n∑
k=1

ξ̃j

)1/2
∣∣∣∣∣∣ |Z|

≤ |Z|
(σ0n)1/2

∣∣∣∣∣Cov

(
n∑
k=1

ξk

)
− Cov

(
n∑
k=1

ξ̃k

)∣∣∣∣∣
≤ |Z|

(σ0n)1/2

2

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk −
n∑
k=1

ξ̃k

∣∣∣∣∣
2
+ E

∣∣∣∣∣
n∑
k=1

ξk −
n∑
k=1

ξ̃k

∣∣∣∣∣
2



Here the first inequality follows since |Ax| ≤ |A||x|, the second by Ando–van
Hemmen’s inequality using the assumption that the smallest eigenvalue of
1√
n

∑n
k=1 ξk is bounded below by σ0.

Furthermore, since Z ∼ N (0, Id) we have by the Komlós–Major–Tusnády
approximation [90; Theorem 1] that there exists a Brownian motion B1 such

that
∣∣∣∑d

k=1 Z
2
i − d−

√
2B1(d)

∣∣∣ = Oa.s.(log d). By the law of iterated log-

arithm, we see that |Z|2 = d + Oa.s.(
√
d log log d) and consequently |Z| =

Oa.s.(
√
d). By following the argument of Lemma 4.5.11 and an application

of Jensen’s inequality it follows that

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2
 <∼ d1/2C

1/p
ξ,d n

1/2.
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Furthermore, by (4.61) we also have that

E

∣∣∣∣∣
n∑
k=1

ξk −
n∑
k=1

ξ̃k

∣∣∣∣∣
2
 ≤ n∑

k=1

E[|ξk|21{|ξk|>dδC1/p
ξ,d τn}

]

<∼ d2δC
2/p
ξ,d nτ

2−p
n

This gives

|Yn − Ỹn| ≤
|Z|

(σ0n)1/2

2

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2

√√√√√E

∣∣∣∣∣
n∑
k=1

(ξk − ξ̃k)

∣∣∣∣∣
2
+ E

∣∣∣∣∣
n∑
k=1

(ξk − ξ̃k)

∣∣∣∣∣
2



=
Oa.s.(

√
d)

(σ0n)1/2

[
O(d1/2C

1/p
ξ,d n

1/2)

√
O(d2δC

2/p
ξ,d nτ

2−p
n ) +O(d2δC

2/p
ξ,d nτ

2−p
n )

]
Now since τn = n1/p and δ = 1/2 we see that

E

∣∣∣∣∣
n∑
k=1

(ξk − ξ̃k)

∣∣∣∣∣
2
 = O(dC

2/p
ξ,d n

2/p),

and consequently

|Yn − Ỹn| = OP (d3/2C
2/p
ξ,d n

1/p) +OP (d3/2C
2/p
ξ,d n

2/p−1/2) = OP (d3/2C
2/p
ξ,d n

1/p),

(4.76)

where the last equality holds since p > 2. From (4.73) and (4.76) it follows
that∣∣∣∣∣

n∑
k=1

ξk − Yn

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

ξk − Ỹn

∣∣∣∣∣+ |Y − Ỹn| = OP
(
d3/2C

2/p
ξ n1/p log(n)

)
.

Finally, writing Yn as
∑n

k=1 yk completes the proof. Note that we can al-
ways, on a possibly extended probability space, do this since all conditional
distributions of (y1, . . . , yn, Yn) are known.

Theorem 4.5.19. Let {ξk} be a one-dependent identically distributed zero-
mean sequence such that finite p-th moment for each element supk supi E[|ξk,i|p] ≤
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Cξ for some p > 2 and that the smallest eigenvalue of Σξ := Var(ξ) +
Cov(ξ1, ξ2)+Cov(ξ1, ξ2)

T is larger than some constant σ0 > 0 and supi,j
∣∣Σξij

∣∣ <
∞ then there exists a Brownian motion W such that

∣∣∣∣∣
n∑
k=1

ξk − Σ
1/2
ξ W (n)

∣∣∣∣∣ =


OP
(
d3/2C

2/p
ξ n

1
4
+ 1

4(p−1) log(n)
)

.

Oa.s.

((
d25/4+θ0C

1/p
ξ ∨ d3/2C2/p

ξ

)(σd
σ0

)1/2

n
1
4
+ 1

4(p−1) log(n)

) .

Proof. Let m be an integer such that m > 1 and m < n. We define

xj :=

jm−1∑
i=1+(j−1)m

ξi, j = 1, . . . , ⌊n/m⌋.

We further define

x⌊n/m⌋+1 := 1{m⌊n/m⌋<n}

 n∑
i=1+m⌊n/m⌋

ξi

 .

Clearly, if m⌊n/m⌋ = n we have x⌊n/m⌋+1 = 0. Note that {xj} is an inde-
pendent sequence.

Then it is easy to verify that

n∑
k=1

ξk =

⌊n/m⌋∑
j=1

xj + x⌊n/m⌋+1 +

⌊n/m⌋∑
j=1

ξjm.

By triangle inequality∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

xj

∣∣∣∣∣∣ ≤ 1{m⌊n/m⌋<n}

∣∣∣∣∣∣
n∑

i=1+m⌊n/m⌋

ξi

∣∣∣∣∣∣+

∣∣∣∣∣∣
⌊n/m⌋∑
j=1

ξjm

∣∣∣∣∣∣
Note that (ξjm)j∈N are a zero mean independent sequence with

sup
k

sup
i

E[|ξk,i|p] < Cξ,

hence by Proposition 4.5.18 there exists a Brownian motion B such that∣∣∣∣∣∣
⌊n/m⌋∑
j=1

ξjm − Σ
1/2
1 B(⌊n/m⌋)

∣∣∣∣∣∣ = Oa.s.

(
dθ log∗(d)C

2/p
ξ

(
σd
σ0

)1/2

⌊n/m⌋)1/p log(⌊n/m⌋)

)
,
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where θ = 25/4 + θ0 for some θ0 > 0 in the strong approximation case, Σ1

is the covariance matrix of ξm. By applying the law of iterated logarithm to
every coordinate of B, it follows that∣∣∣∣∣∣
⌊n/m⌋∑
j=1

ξjm

∣∣∣∣∣∣ ≤
∣∣∣Σ1/2

1 B(⌊n/m⌋))
∣∣∣+Oa.s.(dθC2/p

ξ (log d)(⌊n/m⌋)1/p(log⌊n/m⌋))

≤
∣∣∣Σ1/2

1

∣∣∣( d∑
i=1

B2
i (⌊n/m⌋))

)1/2

+Oa.s.(dθC2/p
ξ (log d)(⌊n/m⌋)1/p(log⌊n/m⌋))

= Oa.s.(d1/2
√

tr(Σ1)⌊n/m⌋ log log⌊n/m⌋)
+Oa.s.(dθC2/p

ξ (log d)(⌊n/m⌋)1/p(log⌊n/m⌋)).

Note that since
√

tr(Var(ξ)) =
√

E|ξ|2 ≤ (E|ξ|p)1/p <∼ d1/2C
1/p
ξ , we have that∣∣∣∣∣∣

⌊n/m⌋∑
j=1

ξjm

∣∣∣∣∣∣ = Oa.s.(dθ log∗ dC
2/p
ξ (n/m)1/2 log(n/m)). (4.77)

Similarly, we can use the same argument for the term 1{m⌊n/m⌋<n}

∣∣∣∑n
i=1+m⌊n/m⌋ ξi

∣∣∣.
The only additional step is to split the sequence of ξi by its odd and even
indices and use triangle inequality to divide the sum into two sums of inde-
pendent sequences, each having O(n/m) terms. Then by applying the same
argument, we obtain∣∣∣∣∣∣1{m⌊n/m⌋<n}

 n∑
i=1+m⌊n/m⌋

ξi

∣∣∣∣∣∣ = Oa.s.(dθC2/p
ξ (log d)(n/m)1/2 log(n/m)).

Therefore, we have shown∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

xj

∣∣∣∣∣∣ = Oa.s.(dθC2/p
ξ (log d)(n/m)1/2 log(n/m)).

Similarly, by an application of the weak Gaussian approximation, we can
show
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∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

xj

∣∣∣∣∣∣ = OP (d1/2C
1/p
ξ (n/m)1/2 log(n/m)). (4.78)

Let τn = nγ log(n) and m := mn = ⌊nα⌋, for some α, γ > 0, that will be
determined later in the proof. Define

x̃j := xj1{|xj |≤d1/2C1/p
ξ τn}

− E[xj1{|xj |≤d1/2C1/p
ξ τn}

].

Clearly, we have |x̃j| ≤ 2d1/2C
2/p
ξ τn and E[x̃j] = 0. Then by triangle inequal-

ity, we have∣∣∣∣∣∣
⌊n/m⌋∑
j=1

xj −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌊n/m⌋∑
j=1

xj1{|xj |>d1/2C1/p
ξ τn)}

∣∣∣∣∣∣+

∣∣∣∣∣∣
⌊n/m⌋∑
j=1

E[xj1{|xj |>d1/2C1/p
ξ τn}

]

∣∣∣∣∣∣ .
Since we can decompose xj into sums of sub-sequences of even and odd

indices, this implies that by Lemma 4.5.11 we have for all j that E[|xj|p] <∼
dp/2Cξm

p/2. Then we have

∣∣∣∣∣∣
⌊n/m⌋∑
j=1

E[xj1{|xj |>d1/2C1/p
ξ τn}

]

∣∣∣∣∣∣ ≤ d1/2C
1/p
ξ τn

⌊n/m⌋∑
j=1

E

[
|xj|

d1/2C
1/p
ξ τn

1{|xj |>d1/2C
1/p
ξ τn}

]

≤ d1/2C
1/p
ξ τn

⌊n/m⌋∑
j=1

E
[
|xj|p

dp/2Cξτ
p
n
1{|xj |>d1/2C

1/p
ξ τ}

]
<∼ d1/2C

1/p
ξ nmp/2−1τ 1−pn .

Note that (|xj|1|xj |>d1/2C1/p
ξ τn

)j∈N is an i.i.d sequence with mean µn,d with

0 < µn,d <∼ d1/2C
1/p
ξ mp/2τ 1−pn . Let sn = ⌊n/m⌋, we claim that

sn∑
j=1

|xj|1{|xj |>d1/2C1/p
ξ τn)}

= Oa.s.(d1/2C1/p
ξ nmp/2−1nγ(1−p)). (4.79)

This is equivalent to showing that
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∣∣∣∣∣nγ(p−1)m1−p/2

nd1/2C
1/p
ξ

sn∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ τn)}

∣∣∣∣∣ a.s.−−→ 0 as n→∞. (4.80)

We will first show that (4.80) holds for a subsequence. Fix any λ > 1 and
define n(ℓ) = ⌊λℓ⌋. Then, we claim that

∣∣∣∣∣∣n(ℓ)γ(p−1)m
1−p/2
n(ℓ)

n(ℓ)C
1/p
ξ d1/2

⌊sn(ℓ)⌋∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ τn(ℓ))}

∣∣∣∣∣∣ a.s.−−→ 0 as ℓ→∞. (4.81)

For every ε > 0 we have that

∞∑
ℓ=1

P

∣∣∣∣∣∣
⌊sn(ℓ)⌋∑
j=1

|xj|1{|xj |>d1/2C1/p
ξ τn(ℓ)}

∣∣∣∣∣∣ > εd1/2C
1/p
ξ n(ℓ)m

p/2−1
n(ℓ) n(ℓ)γ(1−p)


≤

∞∑
ℓ=1

E[|x1|1{|x1|>d1/2C1/p
ξ τn(ℓ)}

]

εd1/2C
1/p
ξ m

p/2
n(ℓ)n(ℓ)γ(1−p)

<∼
1

ε

∞∑
ℓ=1

τ
(1−p)
n(ℓ)

n(ℓ)γ(1−p)

<∼
1

ε

∞∑
ℓ=1

1

ℓ(p−1)
<∞,

since E[|x1|1{|x1|>d1/2τn}] <∼ d1/2mp/2τ
(1−p)
n and p > 2. Consequently, the

claim (4.81) follows from the Borel–Cantelli lemma. We will choose α and γ
such that

1 + α(p/2− 1) + γ(1− p) > 0. (4.82)

Since for any n there exists a ℓ such that λℓ < n ≤ λℓ+1, we have that

n−1+α(1−p/2)+γ(p−1)

⌊n1−α⌋∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ τn)}

≤ λℓ(−1+α(1−p/2)+γ(p−1)

⌊λ(ℓ+1)(1−α)⌋∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ λγ(ℓ+1)ℓ ln(λ)}
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Therefore it immediately follows that

lim sup
n→∞

n−1+α(1−p/2)+γ(p−1)

n∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ τn)}

≤ λ−1+α(1−p/2)+γ(p−1)

λ(ℓ+1)(−1+α(1−p/2)+γ(p−1))

λℓ+1∑
j=1

|xj|1{|xj |≥d1/2C1/p
ξ λℓγ}

<∼a.s. d
1/2C

1/p
ξ .

Thus we have proven the claim (4.79). Consequently, we have∣∣∣∣∣
sn∑
j=1

xj −
sn∑
j=1

x̃j

∣∣∣∣∣ = Oa.s.(d1/2C1/p
ξ λℓγnmp/2−1τ 1−pn )

Overall, we have shown that if τn and m are chosen such that mp/2τ 1−pn → 0
then∣∣∣∣∣
n∑
j=1

ξj −
sn∑
j=1

x̃j

∣∣∣∣∣ = Oa.s.(dθC2/p
ξ (log d)(n/m)1/2 log(n/m))+Oa.s.(d1/2C1/p

ξ nmp/2−1τ 1−pn ).

Similarly, for the weak approximation we have that∣∣∣∣∣
n∑
j=1

ξj −
sn∑
j=1

x̃j

∣∣∣∣∣ = OP (d1/2C
1/p
ξ (n/m)1/2 log(n/m)) +OP (d1/2C

1/p
ξ nmp/2−1τ 1−pn ).

(4.83)

Next, since E[x̃j] = 0 and |x̃j| ≤ 2d1/2C
1/p
ξ τn, by Lemma 4.5.14 there exists

a sequence of independent Gaussians (ỹj)j such that ỹj ∼ Nd(0,Cov(x̃j)) for
j = 1, . . . , sn and∣∣∣∣∣

sn∑
j=1

x̃j −
sn∑
j=1

ỹj

∣∣∣∣∣ = Oa.s.(dθ log∗(d)C
1/p
ξ τnlog n).

Furthermore, since a Brownian motion at integer times coincides with a sum
of i.i.d. Gaussian random variables, there exists a standard Brownian motion
B such that∣∣∣∣∣∣

sn∑
j=1

x̃j − s−1/2
n Cov

(
sn∑
j=1

x̃j

)1/2

B(sn)

∣∣∣∣∣∣ = Oa.s.(dθ log∗(d)C
1/p
ξ τnlog n),
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where we also used the fact that (x̃j) is an i.i.d. sequence. Note that by scale
invariance of Brownian motion, W := (

√
m B(n/m)) is also a Brownian

motion. Now let Ỹn and Yn be defined as follows:

Ỹn :=
1√
n

Cov

(
sn∑
j=1

x̃j

)1/2

W (n).

Using the same Brownian motion we also define

Yn :=
1√
n

Cov

(
n∑
k=1

ξk

)1/2

W (n),

Thus we have that∣∣∣∣∣
n∑
j=1

ξj − Ỹn

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
j=1

ξj −
sn∑
j=1

x̃j

∣∣∣∣∣+

∣∣∣∣∣
sn∑
j=1

x̃j − Ỹn

∣∣∣∣∣ (4.84)

= Oa.s.(dθC2/p
ξ (log d)

( n
m

)1/2
log(n/m)) (4.85)

+Oa.s.(d1/2C1/p
ξ nmp/2−1τ 1−pn ) (4.86)

+Oa.s.(dθ log dC
1/p
ξ τnlog n). (4.87)

Therefore we have that

|Yn − Ỹn| =

∣∣∣∣∣∣
Cov

(
n∑
k=1

ξk

)1/2

− Cov

(
sn∑
j=1

x̃j

)1/2
 1√

n
W (n)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣Cov

(
n∑
k=1

ξk

)1/2

− Cov

(
sn∑
j=1

x̃j

)1/2
∣∣∣∣∣∣ 1√

n
|W (n)|

≤ 1

(σ0n)1/2

∣∣∣∣∣Cov

(
n∑
k=1

ξk

)
− Cov

(
sn∑
j=1

x̃j

)∣∣∣∣∣ 1√
n
|W (n)|,

where the second inequality follows by Ando–van Hemmen’s inequality, Lemma
4.5.17, using the assumption that the smallest eigenvalue of 1√

n

∑n
k=1 ξk is
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bounded below by σ0. Following the proof of Proposition 4.5.18, we see that∣∣∣∣∣Cov

(
n∑
k=1

ξk

)
− Cov

(
sn∑
j=1

x̃j

)∣∣∣∣∣
≤ 1

(σ0n)1/2
2

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2

√√√√√E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2

+
1

(σ0n)1/2
E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2 .

Note that by a coordinate-wise application of the law of iterated logarithm
we obtain

|W (n)| =

(
d∑
i=1

W 2
i (n)

)1/2

= Oa.s.(
√
dn log log(n)). (4.88)

By Lemma 4.5.11 and Jensen’s inequality we obtain√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2
 <∼ d1/2C

1/p
ξ n1/2.

Furthermore, we have

E

∣∣∣∣∣∣
⌊n/m⌋∑
j=1

xj −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣
⌊n/m⌋∑
j=1

(
xj1{|xj |>d1/2C1/p

ξ τn)}
− E[xj1{|xj |>d1/2C1/p

ξ τn}
]
)∣∣∣∣∣∣

2
=

⌊n/m⌋∑
j=1

E
[∣∣∣xj1{|xj |>d1/2C1/p

ξ τn)}
− E[xj1{|xj |>d1/2C1/p

ξ τn}
]
∣∣∣2]

≤
⌊n/m⌋∑
j=1

E
[
|xj|2 1{|xj |>d1/2C1/p

ξ τn)}

]
.
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Hence it follows that

E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2 ≤ 2

⌊n/m⌋∑
j=1

E[|ξjm|2] + 2

⌊n/m⌋∑
j=1

E[|xj|21{|xj |>d1/2C1/p
ξ τn}

]

≤ 2

⌊n/m⌋∑
j=1

E[|ξjm|2] + 2C
2/p
ξ dτ 2n

⌊n/m⌋∑
j=1

E
[
|xj|p

dp/2Cξτ
p
n
1{|xj |>d1/2C

1/p
ξ τn}

]
= O(dC

2/p
ξ nm−1) +O(dC

2/p
ξ nmp/2−1τ 2−pn ).

This gives

|Yn − Ỹn| ≤ (4.89)

|W (n)|
n(σ0)1/2

2

√√√√√E

∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣
2

√√√√√E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2+ E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2


=
Oa.s.(

√
d log(n))

(σ0n)1/2

[
O(d1/2C

1/p
ξ n1/2)

√
O(dC

2/p
ξ nm−1) +O(dC

2/p
ξ nmp/2−1τ 2−pn )

]
+
Oa.s.(

√
d log(n))

(σ0n)1/2

[
O(dC

2/p
ξ nmp/2−1τ 2−pn ) +O(dC

2/p
ξ nm−1)

]
= Oa.s.(d3/2C2/p

ξ n1/2m−1/2 log(n)) +Oa.s.(d3/2C2/p
ξ n1/2mp/4−1/2τ

2−p
2

n log(n))

(4.90)

+Oa.s.(d3/2C2/p
ξ n1/2mp/2−1τ 2−pn log(n))

= Oa.s.(d3/2C2/p
ξ n1/2m−1/2 log(n)) +Oa.s.(d3/2C2/p

ξ n1/2mp/4−1/2τ
2−p
2

n log(n)).

Here the first inequality follows from (4.88) and the last equality follows
since τn and m should be chosen such that mp/2−1τ 2−pn tends to zero and

hence mp/2−1τ 2−pn ≪ mp/4−1/2τ
1−p/2
n .

Now choosing the block size m and the truncation level τn as follows

m = ⌊nα⌋, α :=
p− 2

2(p− 1)
, τn := nα/2−α/p+1/p,
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we have

E

∣∣∣∣∣∣
n∑
k=1

ξk −
⌊n/m⌋∑
j=1

x̃j

∣∣∣∣∣∣
2 = O(dC

2/p
ξ n

p
2(p−1) )

and consequently

|Yn − Ỹn| = Oa.s.(d3/2C2/p
ξ n1/2m−1/2 log(n)) +Oa.s.(d3/2C2/p

ξ n1/2mp/4−1/2τ
2−p
2

n log(n))

= Oa.s.
(
d3/2C

2/p
ξ n

1
4
+ 1

4(p−1) log(n)
)

+Oa.s.
(
d3/2C

2/p
ξ n

1
2(p−1) ) log(n)

)
= Oa.s.

(
d3/2C

2/p
ξ n

1
4
+ 1

4(p−1) log(n)
)
. (4.91)

Note that since p > 2 also we have that for the specified choice of τn and m
that (4.82) is satisfied. Furthermore, from (4.85)-(4.87) we see that∣∣∣∣∣

n∑
k=1

ξk − Ỹn

∣∣∣∣∣ = Oa.s.(C1/p
ξ d3/2n

1
4
+ 1

4(p−1) log n) (4.92)

Note that since {ξk} is a one dependent identically distributed sequence,
we have that Cov (

∑n
k=1 ξk) = nVar(ξ1)+(n−1)

(
Cov(ξ1, ξ2) + Cov(ξ1, ξ2)

T )
)
.

Consequently,

Yn =

(
Var(ξ1) +

n− 1

n

(
Cov(ξ1, ξ2) + Cov(ξ1, ξ2)

T
))1/2

W (n).

Furthermore, we have that the asymptotic covariance matrix is given by
Σξ = Var(ξ1) + Cov(ξ1, ξ2) + Cov(ξ1, ξ2)

T . This gives us∣∣∣Yn − Σ
1/2
ξ W (n)

∣∣∣ ≤ 1

n(σ0)1/2
∣∣Cov(ξ1, ξ2) + Cov(ξ1, ξ2)

T
∣∣|W (n)|

=
Oa.s.(

√
d log(n))

(σ0n)1/2
|Cov(ξ1, ξ2)|, (4.93)

where the first inequality follows by Ando–van Hemmen’s inequality, Lemma
4.5.17. We note that since (4.93) is of smaller asymptotic magnitude that
the other approximation terms.

Overall, from (4.91), (4.92), (4.93) we have∣∣∣∣∣
n∑
k=1

ξk − Σ
1/2
ξ W (n)

∣∣∣∣∣ = Oa.s.

((
d25/4+θ0C

2/p
ξ

)(σd
σ0

)1/2

n
1
4
+ 1

4(p−1) log(n)

)
.
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This finishes the proof for the strong Gaussian approximation case. The
weak Gaussian approximation case follows from the same argument with
minor differences. The key point is that instead of applying Lemma 4.5.15 for
approximating the truncated sequence (x̃k)k∈N, we now make use of Lemma
4.5.13 instead.

4.5.4. Proofs of Section 4.3

Proof of Theorem 4.3.2

Proof. Since the minorisation condition holds for some m0 > 1, we have by
Proposition 4.5.1 there exists a sequence of randomized stopping times {Rk}
such that we can define

ξk :=

Rk−1∑
t=Rk−1

(f(Xt)− π(f)), k ≥ 1,

such that (ξk)k∈N is a stationary one-dependent sequence under Pν . Further-
more, by Asmussen [5; Theorem 3.2], we have that

Eνξ1 = Eν
R1∑
t=0

{f(Xt)− π(f)} = µϱ · π(f − π(f)) = 0.

Moreover, under Assumption A4.1, we have that

sup
i∈{1,...,d}

Eν

[(
R1∑
t=0

|fi(Xt)|

)p0]
<∼ α−1 (Eν [h(R1])

ε/p0 , (4.94)

where h(x) = xq with q = η/(1− η) and p0 is defined in (4.58) in the case of
a polynomial drift condition and h(x) = etx with |t| < − ln(λ)m0 and p0 = p
in the case of an exponential drift condition. By Theorem 4.5.19, we can
redefine (ξk)k on a new probability space on which we can also construct a
standard d-dimensional Brownian motion W such that

∣∣∣∣∣
n∑
k=1

ξk − nEνξ1 −W (n)

∣∣∣∣∣ =


OP
(
d3/2C̃

2/p
N

(
σd
σ0

)
T

1
4
+ 1

4(p0−1)

)
,

.

Oa.s.

(
d25/4+θ0 log∗(d)C̃

2/p
N

(
σd
σ0

)1/2

T
1
4
+ 1

4(p0−1)

)
,

,

(4.95)
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where
CN = α−1 (Eν [h(R1])

ε/p0 .

In the remainder of the proof, we will consider the strong Gaussian ap-
proximation case, since the weak approximation case follows from similar and
slightly easier arguments. Note, that since we assume that X0 ∼ π, we need
to discard the first cycle. Similarly, in order to apply (4.95), we will need to
discard the last cycle. Let η(T ) denote the number of regenerations of the
m0–skeleton chain up to time T , namely

η(T ) = max{k : Rk ≤ T}.

It immediately follows that∣∣∣∣∣∣
T∑
t=0

(f(Xt)− π(f)) − ξ0 −
η(T )∑
k=1

ξk

∣∣∣∣∣∣ = |ξ0|+

∣∣∣∣∣∣
T∑

t=Rη(T )

(f(Xt)− π(f))

∣∣∣∣∣∣, (4.96)

where

ξ0 :=

R0∑
t=0

(f(Xt)− π(f)).

By a Borel–Cantelli argument, we will show that∣∣∣∣∣∣
T∑

t=Rη(T )

(f(Xt)− π(f))

∣∣∣∣∣∣ = Oa.s.
(
α−1/pd1/2n1/p0h(R1)

ε/p20

)
(4.97)

and
|ξ0| = Oa.s.

(
d1/2n1/p0h(R1)

ε/p20

)
. (4.98)

In order to show (4.97), note that∣∣∣∣∣∣
T∑

t=Rη(T )

(f(Xt)− π(f))

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
Rη(T )+1∑
t=Rη(T )

g(Xt)

∣∣∣∣∣∣, (4.99)

where g(x) = (|f1(x)− π(f1)|, . . . , |fd(x)− π(fd)|)T . Now let ε > 0 be
given and introduce the event

An =

{∣∣∣∣∣
Rn+1∑
t=Rn

g(Xt)

∣∣∣∣∣ > α−1/pd1/2n1/p0h(R1)
ε/p20

}
.
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By Markov’s inequality, it follows that the introduced sequence of events
satisfies

∞∑
n=1

Pν (An) ≤
∞∑
n=1

Pν

(∣∣∣∣∣
Rn+1∑
t=Rn

g(Xt)

∣∣∣∣∣ > α−1/pd1/2n1/p0h(R1)
ε/p20

)

=
∞∑
n=1

Pν

(∣∣∣∣∣
R1∑
t=0

g(Xt)

∣∣∣∣∣
p0

> α−1dp0/2nh(R1)
ε/p0

)

≤ Eν

[∣∣∣∣∣
Rn1∑
t=0

g(Xt)

∣∣∣∣∣
p]

(α−1dp0/2nh(R1)
ε/p0)−1 < C,

where C is some universal constant and the one for the last inequality follows
by (4.54) of Lemma 4.5.8 and 4.5.9 in the case of a geometric and polynomial
drift condition respectively. By the Borel–Cantelli lemma it follows that
Pν(lim supAn) = 0. Consequently, we have that Pν(lim inf Acn) = 1. Hence
it follows that ∣∣∣∣∣

Rn+1∑
t=Rn

g(Xt)

∣∣∣∣∣ = Oa.s.(α−1/pd1/2n1/p0h(R1)
ε/p20). (4.100)

Moreover, since η(T ) is almost surely increasing and η(T ) = Oa.s.(T ), it
follows that∣∣∣∣∣
Rn+1∑
t=Rn

g(Xt)

∣∣∣∣∣ = Oa.s.(α−1/pd1/2η(T )1/p0h(R1)
ε/p20) = Oa.s.(α−1/pd1/2n1/p0h(R1)

ε/p20).

Hence the claim formulated in (4.97) directly follows. The claim (4.98) fol-
lows completely analogously to (4.100). Since we have that EνRp0

1 < ∞, by
Csörgö and Horváth [38; Theorem 2.4] we can construct a Brownian motion
W̃ such that ∣∣∣∣∣η(T )− T

µϱ
− σϱ

µ
3/2
ϱ

W̃T

∣∣∣∣∣ = oa.s.(T
1/p0), (4.101)

By the law of iterated logarithm for Brownian motion we obtain

η(T ) =
T

ϱ
+Oa.s.(

√
T log log T ) a.s. (4.102)
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Furthermore, by (4.95), there exists an almost surely finite random variable C
such that for almost all sample paths ω we have that for all n ≥ N0 ≡ N0(ω)
we have that

1((
d25/4+θ0 log∗(d)C̃

2/p
N

(
σd
σ0

)1/2)
n

1
4
+ 1

4(p0−1) log n

)∣∣∣∣∣
n∑
k=1

ξk(ω)−W (n)

∣∣∣∣∣ < C(ω)

(4.103)
Since η(T ) is almost surely increasing and tends to infinity, we have that for
almost every sample path ω there exists a T0 ≡ T0(ω) such that η(T )(ω) ≥ N0

for all T ≥ T0. Hence we obtain from (4.103) that

lim sup
T→∞

∣∣∣∑η(T )
k=1 ξk − Σ

1/2
ξ W (η(T ))

∣∣∣(
d25/4+θ0 log∗(d)C̃

2/p
N

(
σd
σ0

)1/2)
η(T )

1
4
+ 1

4(p0−1) log η(T )

< C a.s. .

(4.104)
We see that (4.104) can be reformulated as∣∣∣∣∣∣

η(T )∑
k=1

ξk − (Σξ)
1/2W (η(T ))

∣∣∣∣∣∣ (4.105)

= Oa.s.

(
d25/4+θ0 log∗(d)C̃

2/p
N

(
σd
σ0

)1/2

η(T )
1
4
+ 1

4(p0−1) log η(T )

)

= Oa.s.

(
d25/4+θ0 log∗(d)C̃

2/p
N

(
σd
σ0

)1/2

T
1
4
+ 1

4(p0−1) log T

)
(4.106)

Here the second equality follows by (4.102). By a coordinate-wise application
of Csörgö and Révész [40; Theorem 1.2.1]) it follows that

∣∣W (η(T ))−W (T/µϱ)
∣∣ ≤ ( d∑

i=1

|Wi(η(T ))−Wi(T/µϱ)
∣∣2)1/2

= Oa.s.(
√
dT 1/4 log T ). (4.107)

From (4.96) and combining results (4.97), (4.98), (4.105), and (4.107) the
asserted theorem follows.
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Proof of Theorem 4.3.1

Proof. We will first assume that X0 ∼ ν and consider the case where the
geometric drift condition holds. Since the minorisation condition holds with
m0 = 1, we have by Proposition 4.5.1 there exists a sequence of randomized
stopping times {Rk} such that we can define

ξk :=

Rk−1∑
t=Rk−1

(f(Xt)− π(f)), k ≥ 1,

such that (ξk)k∈N is a mean-zero independent and identically distributed
sequence under Pν .

By Lemma 4.5.8 we have that for any t with |t| ≤ ln(1/λ)/m0 we have
that

Eν [etR1 ] <∼
b

αλ(1− λ)
(4.108)

and

sup
i∈{1,...,d}

Eν

[(
R1∑
t=0

|fi(Xt)|

)p0]
<∼ α−1 (Eν [h(R1])

ε/p0 , (4.109)

Note that from (4.108) we also have that

Eν [Rp
1] ≤

(
p

ln(1/λ)e

)p(
b

αλ(1− λ)

)
.

Define (ϱk)k∈N as ϱk = Rk − Rk−1. Note that this is an i.i.d sequence and
let µϱ and σ2

ϱ denote the respective mean and variance. The sequence of
(d + 1)-random vectors (ξk, ϱk) are independent dependent and identically
distributed. Introduce the sequence (ξ̃k)k∈N as ξ̃k = ξk−β(ϱk−µϱ). Note that
the sequence of random vectors (ξ̃k, ϱk) are also independent and identically
distributed. If we choose β = Covν(ξ1, ϱ1)/σ

2
ϱ, then it immediately follows

that ρk and every component of ξ̃k are uncorrelated. Let Σ̃ denote the limiting
covariance of 1

n

∑
k(ξ̃k, ϱk). We see that Σ̃ is given by

Varν

(
ξ̃1
ϱ1

)
= Varν

(
ξ1 − β(ϱ1 − µϱ)

ϱ1

)
=

(
Vξ 0
0T σ2

ϱ

)
, (4.110)
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where by definition of β we see that the off-diagonal entries of block matrix
(4.110) are 0, which denotes a d-dimensional vector of zeros, and Vξ is given
by

Varν(ξ1 − β(ϱ1 − µϱ)) = Varν(ξ1) + ββTσ2
ϱ − 2ββTσ2

ϱ = Varν(ξ1)− ββTσ2
ϱ.

(4.111)
By Sigman [140; Theorem 9], we have that

Varν(ξ1)

µϱ
= Σf . (4.112)

Hence, we see that the conditions of Theorem 4.5.18 are satisfied with

sup
i∈{1,...,d}

Eν ξ̃p1i ≤
(

1 +

(
p

ln(1/λ)e

)p(
b

αλ(1− λ)

))
α−1

(
b

α(1− λ)

)ε/p
sup

i∈{1,...,d}
π(|fi|p+ε)

≤ 2α−1

(
b

α(1− λ)

)1+ε/p(
p

ln(1/λ)e

)p
sup

i∈{1,...,d}
π(|fi|p+ε) =: Cξ

Applying the multivariate Gaussian approximation given in Theorem 4.5.18,
we have that ∣∣∣∣∣

n∑
k=1

(
ξ̃k
ϱk

)
−

n∑
k=1

(
Y 1
k

Y 2
k

)∣∣∣∣∣ = Oa.s. (CξΨn) ,

where

Ψn = n1/p log n,

and

C̃ξ,d :=
(
d25/4+θ0 log∗(d)C

1/p
ξ ∨ d3/2C2/p

ξ

)(σd
σ0

)1/2

,

and
∑n

k=1

(
Y 1
k

Y 2
k

)
has a Gaussian distribution with the same mean and covari-

ance matrix as
∑n

k=1

(
ξ̃k
ϱk

)
. Given the block structure of Σ̃ given in (4.110),

we see that Y k
2 is independent of all components of Y 1

k . By the Skorohod
embedding theorem, two independent Brownian motions B1 and B2 can be
constructed, where B1 is a d-dimensional Brownian motion and B2 is one-
dimensional, such that they coincide with the Gaussian sequences at all in-
teger time points. Therefore we have that
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∣∣∣∣∣
n∑
k=1

ξk − β(
n∑
k=1

ϱk − µϱ)− V
1
2
ξ B1

∣∣∣∣∣ = Oa.s.
(
C̃ξ,dΨn

)
(4.113)

and
|Rn − nµϱ − σϱB2(n)| = Oa.s.

(
C̃ξ,dΨn

)
. (4.114)

By Komlos [90; Theorem 1(ii)], a Poisson process L with intensity λ = µ2
ϱ/σ

2
ϱ

can be constructed from the one-dimensional Brownian motion B2 such that∣∣∣∣L(n)− µϱ
γ
n− σρ

γ
B2(n)

∣∣∣∣ = Oa.s.(log n), (4.115)

where γ = σ2
ϱ/µϱ and L is constructed increment-wise from B2 in a determ-

instic way and is therefore also independent of B1. From (4.114) and (4.115)
it follows that

|Rn − γL(n)| = Oa.s.(C̃ξ,dΨn). (4.116)

We claim that it therefore follows that∣∣∣∣∣∣
n∑
k=1

ξk −
γL(n)∑
k=1

ξn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
Rn∑
k=0

(f(Xk)− π(f))−
γL(n)∑
k=0

(f(Xk)− π(f))

∣∣∣∣∣∣ = Oa.s.(C̃ξ,dΨn)

(4.117)

We see that∣∣∣∣∣∣
Rn∑
k=0

(f(Xk)− π(f))−
γL(n)∑
k=0

(f(Xk)− π(f))

∣∣∣∣∣∣ =

∣∣∣∣∣
cn∑
bn

(f(Xk)− π(f))

∣∣∣∣∣ (4.118)

where bn := min{Rn, γL(n)} and cn := max{Rn, γL(n)}. Therefore we can
introduce the positive sequence κn as follows

κn := cn − bn = |Rn − γL(n)|.

From (4.116) it follows that κn = Oa.s.(Cξ,N,dΨn), hence it follows that there
exists some universal almost surely finite C such that for almost every ω
it holds that there exists an N1 := N1(ω) such that for all n ≥ N1 we
have that κn < C(ω)Cξ,N,dΨn and hence cn = bn + κn ≤ bn + κ̄n, with
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κ̄n = ⌈C(ω)Cξ,N,dΨn⌉. Note that the stopping times (Rk)k≥0 are regeneration
epochs of the process, and hence the corresponding cycles Ck := (Xs : Rk ≤
s < Rk+1) are independent and identically distributed. Let η(T ) := max{k :
Rk ≤ T} denote the amount of regenerative cycles up to time T and let
(Yk)k∈N be defined as

Yk =

∣∣∣∣∣
Rk+1−1∑
t=Rk

g(Xt)

∣∣∣∣∣, (4.119)

where g(x) = (|f1(x)− π(f1)|, . . . , |fd(x)− π(fd)|)T . Then we see that for
n > N1(ω) we have that∣∣∣∣∣Ψ−1

n

cn∑
bn

(f(Xk)− π(f))

∣∣∣∣∣ = Ψ−1
n

∣∣∣∣∣
cn−bn∑
k=0

(f(Xbn+u)− π(f))

∣∣∣∣∣
≤ Ψ−1

n

κn∑
k=0

g(Xbn+u)

≤ Ψ−1
n

κ̄n∑
k=0

g(Xbn+k)

= Ψ−1
n

η(bn+κ̄n)∑
j=η(bn)

Yj + Ψ−1
n

bn+κ̄n∑
t=Rη(bn+κ̄n)

|f(Xt)− π(f)|

(4.120)

From (4.102) we see that η(T ) tends to infinity as T →∞ and limT→∞ η(T )/T =
1/µϱ almost surely. Also for every positive sequence mT that tends to infinity
as T → ∞, we have that limT→∞ η(mT )/mT = 1/µϱ almost surely. By an
application of the law of iterated logarithm to (4.114) and (4.115), we see
that

Rn = n/µϱ +Oa.s.(
√
n log log n)

and
Ln = n/λ+Oa.s.(

√
n log log n).

Consequently, we have that have that bn = Oa.s.(n) and η(bn) = Oa.s.(n).
Note that η(bn + κ̄n), the amount of regenerations until time bn + κ̄n is equal
to the amount of generation until time bn and the amount of regenerations
in the time interval (bn, bn + κ̄n), i.e., η(bn + κ̄n) = η(bn) + η(bn + κ̄n)− η(bn).
Since η(T ) is a renewal process it is clear, that the amount of events should



Chapter 4. Gaussian Approximations for High-dimensional MCMC 161

be proportional to the time interval and the intensity, i.e., that we should
have η(bn + κ̄n) − η(bn) = O(κ̄n/µϱ) almost surely. We will now prove this
claim. Since we have that EνRp

1 <∞, by Csörgö and Horváth [38; Theorem
2.4] we can construct a Brownian motion B̃2 such that∣∣∣∣η(T )− T

µη
− σηB̃2(T )

∣∣∣∣ = oa.s.(T
1/p), (4.121)

for some constants µη and ση. Hence for almost all sample paths ω there
exists a T1(ω) such that for all T ≥ T1(ω) we have that

1

T 1/p

∣∣∣∣η(T )− T

µη
− σηB̃2(T )

∣∣∣∣ < ε. (4.122)

Since bn is non-decreasing and tends to infinity almost surely, it follows that
for all sample paths ω there exists a N2(ω) such that η(bn)(ω) ≥ T1(ω) for
all n ≥ N2(ω) and hence

1

b
1/p
n

∣∣∣∣η(bn)− bn
µη
− σηB̃2(bn)

∣∣∣∣ < ε. (4.123)

Since bn = O(n) almost surely, it follows that∣∣∣∣η(bn)− bn
µη
− σηB̃2(bn)

∣∣∣∣ = oa.s.(b
1/p
n ) = oa.s.(n

1/p). (4.124)

Then by the triangle inequality, we obtain

η(bn + κ̄n)− η(bn) ≤
∣∣∣η(bn + κ̄n)− (bn + κ̄n)/µη − σηB̃2(η(bn) + κ̄n)

∣∣∣
(4.125)

+ κ̄n/µη +
∣∣∣−η(bn) + bn/µη + σηB̃2(bn)

∣∣∣ (4.126)

+ ση

∣∣∣B̃2(bn + κ̄n)− B̃2(bn)
∣∣∣ (4.127)

≤ κ̄n/µη + oa.s.(n
1/p). (4.128)

The last inequality follows, since by (4.124) the term in (4.125) and the
second term in (4.126) are o(n1/p). Furthermore, by Csörgö and Révész [39;
Theorem 2] we have that for any an ≪ n that

lim sup
n→∞

sup
0≤s≤an

∣∣∣B̃2(n+ s)− B̃2(n)
∣∣∣

[an(log(n/an) + log log n)]1/2
= 1 a.s. (4.129)
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Since we have κ̄n = O(n1/p), it follows that

sup
0≤s≤κ̄n

∣∣∣B̃2(n+ s)− B̃2(n)
∣∣∣ = Oa.s.

(
n1/2p log(n)

)
. (4.130)

Moreover, since η(bn) = Oa.s.(n) and almost surely non-decreasing we also
have that

sup
0≤s≤κ̄n

∣∣∣B̃2(η(bn) + s)− B̃2(η(bn))
∣∣∣ = oa.s.

(
η(bn)1/2p

)
= oa.s.

(
n1/2p

)
.

(4.131)

Hence, the inequality in (4.128) follows and we have shown that η(bn+ κ̄n)−
η(bn) ≤ κ̄nµη + o

(
n1/p

)
almost surely. Therefore there exists a K > 0 such

that for almost all sample paths there exits an N3(ω) sufficiently large such
that η(bn + κ̄n) − η(bn) < Kn1/p almost surely. For notational convenience
let ãn be defined as Kn1/p. Since (Yk)k≥0 form an i.i.d sequence we have by
Lemma 4.5.8 and Theorem 4.5.18 that there exists a Brownian motion B3

such that ∣∣∣∣∣
n∑
k=0

Yk − nµY − Σ
1/2
Y B3(n)

∣∣∣∣∣ = Oa.s.(C̃ξ,dΨn). (4.132)

where µY and Σ
1/2
Y denote the mean and square root of the covariance matrix

of Y1 respectively. It immediately follows that we also have∣∣∣∣∣∣
η(bn)∑
k=0

Yk − η(bn)µY − Σ
1/2
Y B3(η(bn))

∣∣∣∣∣∣ = Oa.s.(C̃ξ,dΨη(bn)) = Oa.s.(C̃ξ,dΨn).

(4.133)

By the triangle inequality, we obtain∣∣∣∣∣∣
η(bn)+ãn∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
η(bn)+ãn∑
k=0

Yk − (η(bn) + ãn)µY − Σ
1/2
Y B3(η(bn) + ãn))

∣∣∣∣∣∣ (4.134)

+ ãnµY +

∣∣∣∣∣∣−
η(bn)∑
k=0

Yk + η(bn)µY + Σ
1/2
Y B3(η(bn))

∣∣∣∣∣∣ (4.135)

+
∣∣∣Σ1/2

Y

∣∣∣|B3(η(bn) + ãn)−B3(η(bn))| (4.136)

≤ ãnµY +Oa.s.(C̃ξ,dΨn). (4.137)
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The last inequality follows, since by (4.133) both the term in (4.134) and the
second term in (4.136) are o(Cξ,N,dn

1/p) almost surely. By again applying
Csörgö and Révész [39; Theorem 2] to every coordinate of B3 we see that

∣∣B3(η(bn) + ãn)−B3(η(bn))
∣∣ =

(
d∑
i=1

(B3i(η(bn) + ãn)−B3i(η(bn)))2
)1/2

(4.138)

= Oa.s.(d1/2n1/2p log n). (4.139)

Furthermore, by (4.131) the last inequality also follows. Hence it follows that

Pν

lim sup
n→∞

1

Cξ,N,dn1/p

∣∣∣∣∣∣
η(bn+an)∑
k=η(bn)

Yk

∣∣∣∣∣∣ ≤ KµY

 = 1. (4.140)

Hence the first term in the upper bound (4.120) is O(1) almost surely. For
the second term, we see that by a Borel–Cantelli argument that is the same
as the one given to obtain (4.100) that

Yn =

Rn+1∑
Rn

|f(Xk)− π(f)| = Oa.s.(α−1/pd1/2C
1/p
ξ n1/p). (4.141)

Therefore

bn+κ̄n∑
Rη(bn+κ̄n)

|f(XRn+s)− π(f)|ds ≤
Rη(bn+κ̄n)+1∑
Rη(bn+κ̄n )

|f(XRn+s)− π(f)|ds (4.142)

= Yη(bn+κ̄n) (4.143)

= Oa.s.
(
α−1/pd1/2C

1/p
ξ (η(bn + κ̄n))1/p

)
(4.144)

= Oa.s.
(
d1/2C

1/p
ξ (n+ C(ω)Cξ,N,dΨn)1/p

)
(4.145)

= Oa.s.
(
d1/2C

1/p
ξ n1/p

)
(4.146)

Hence our claim (4.120) follows, and consequently we have also shown
(4.117). Combining (4.113), (4.116), and (4.117) it follows that
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∣∣∣∣∣∣
γL(n)∑
k=1

ξk − βγL(n) + βϱn− V
1
2
ξ B1(n)

∣∣∣∣∣∣ = Oa.s.
(
C̃ξ,dn

1/p
)

(4.147)

Let (Γs)s≥0 be defined as Γ0 := 0 and Γs := L−1(s), the generalised inverse
of the Poisson process. Taking n′ = Γn in (4.147) and subsequently making
the substitution n = n′/γ, it follows that∣∣∣∣∣
n∑
k=1

ξk − βn+ βϱΓn/γ − V
1
2
ξ B1(Γn/γ)

∣∣∣∣∣ = Oa.s.
(
C̃ξ,dΓn

1/p
)

= Oa.s.
(
C̃ξ,dn

1/p
)

(4.148)
Since Γn has a Gamma distribution, it follows from the Komlós–Major–
Tusnády approximation [90; Theorem 1] that there exists a Brownian motion
B4 such that ∣∣∣∣Γn − n

λ
− 1

λ
B4(n)

∣∣∣∣ = Oa.s.(log n). (4.149)

Since the Poisson process N is constructed deterministically from B2 we have
that N and its corresponding event time process Γ are independent of B1.
Moreover, the components of a standard d-dimensional Brownian motion are
all independent. Therefore by a componentwise application of Lemma 4.5.16
it follows that there exists a standard d-dimensional Brownian motion B5

independent of N and Γ such that∣∣∣∣B1(n)− 1√
λ
B5(L(n))

∣∣∣∣ =

(
d∑
i=1

|B1i(n)− 1√
λ
B5i(L(n))|2

)1/2

= Oa.s.(
√
d log n).

(4.150)
Furthermore, by (4.150), there exists an almost surely finite random variable
C such that for almost all ω we have that for all n ≥ N0 ≡ N0(ω) we have
that

lim sup
n→∞

1

d log n

∣∣∣∣B1(n)− 1√
λ
B5(L(n))

∣∣∣∣ < C(ω) (4.151)

Since Γn is an increasing process and tends to infinity, we have that for almost
every ω there exists a N ′

0 ≡ N ′
0(ω) such that Γn(ω) ≥ N0 for all n ≥ N ′

0.
Hence we obtain from (4.151) that

lim sup
n→∞

1

d log Γn

∣∣∣∣B1(Γn)− 1√
λ
B4(n)

∣∣∣∣ < C(ω) a.s. , (4.152)
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where we used that L(Γ(n)) = n. Therefore we see that∣∣∣∣B1(Γn)− 1√
λ
B5(n)

∣∣∣∣ = Oa.s.(d log Γn) = Oa.s.(d log n). (4.153)

Here the last equality follows since we can apply the law of iterated logarithm
for Brownian motion to (4.149) which gives

Γn =
n

λ
+Oa.s.(

√
n log log n).

Applying the obtained approximations given in (4.149) and (4.153) to (4.148)
we see that∣∣∣∣∣∣

n∑
k=1

ξk −

 V
1
2
ξ√
λγ
B5(t)−

βϱ

λ
√
γ
B4(t)

∣∣∣∣∣∣ = Oa.s.
(
C̃ξ,dΨn

)
. (4.154)

Note that since B4 is independent of all components of B5 we have that

Wt = Σ−1
f

 V
1
2
ξ√
λγ
B5(t)−

βϱ

λ
√
γ
B4(t)

 (4.155)

is a standard d-dimensional Brownian motion since

Ṽξ
γλ

+
ββTϱ2

γλ2
=

Varν(ξ1)

µϱ
= Σf , (4.156)

where the last equality follows from Sigman [140; Theorem 9]. Note that
by the same argument as given in Theorem 4.3.2, if we assume that the
initial distribution is π, it can shown that the initial cycle is asymptotically
negligible. Furthermore, in the case where the polynomial drift condition
holds, Lemma 4.5.9 gives us the required moment conditions and the proof
of the Theorem follows analogously.

Remark 4.5.20. Note that we can extend Theorem 4.3.1 and Theorem 4.3.2 to
arbitrary initial distributions, provided that the first cycle, until the first draw
from the small measure ν, is asymptotically negligible. For g : E → R we
can define the norm |g|V := supx∈E

g(x)
V (x)

. Then if we assume that a geometric

drift condition holds, we have for any f such that supi=1,··· ,d |fi|V <∞ by an
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application of the Comparison theorem; Meyn and Tweedie [107; Theorem
14.2.2] that ∣∣∣∣∣

R1∑
t=0

f(Xk)

∣∣∣∣∣ ≤ d sup
i=1,··· ,d

R1∑
t=0

|fi(Xk)| (4.157)

≤ d
supi=1,··· ,d |fi|V

1− λ
(V (x) + bExR1) , (4.158)

where we used the fact that if |g|V < ∞ then g(x) ≤ V (x)|g|V . By Lemma
4.5.2 and an application of Jensen’s inequality, we have that

∣∣∣∣∣
R1∑
t=0

f(Xk)

∣∣∣∣∣ ≤ d
supi=1,··· ,d |fi|V

1− λ

(
V (x) + b logr

(
αG(r, x)

1− (1− α)ra

))
,

(4.159)

where

G(r, x) = V (x)1C(x) + r(λυC + b)1Cc(x)

and

a = 1 +

(
ln
λυV + b− α

1− α

)
/(ln

(
λ−1
)
).

Similarly, if we assume that a polynomial drift condition holds, from
Lemma 4.5.3 we see that,

Ex[τC ] ≤ 1

(1− η)c

(
V 1−η(x) + (bη + b0)1C(x)

)
.

A similar argument with the comparison theorem gives us∣∣∣∣∣
R1∑
t=0

f(Xk)

∣∣∣∣∣ ≤ d
supi=1,··· ,d |fi|V η

c

(
V (x) +

1

(1− η)c

(
V 1−η(x) + (bη + b0)

))
,

(4.160)

provided that supi=1,··· ,d |fi|V η <∞. △
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4.5.5. Proofs of Section 4.4

Proof of Theorem 4.4.1

Theorem 4.5.21. Suppose that f : RN → Rd, with supi∈{1,··· ,d} π(|fi|p+ε) <
∞ for some p ≥ 4 and let X satisfy a strong Gaussian approximation with
approximation error ψ̄NψdΨT log(T ) with ψd = da for some a > 0. Assume
that Assumption 6 holds, and that

ψ̄NdψdΨT log(T )

ℓ
1/2
T,d

= o(1) and
ψ̄2
Ndψ

2
dΨ

2
T log(T )

T
= o(1), (4.161)

then we have that Σ̂BM
T → Σf with probability 1 as T →∞. Moreover, if

we assume that

ΨT =

{
Ψ

(1)
T := T 1/p0 log(T ),

Ψ
(2)
T := T 1/4+1/4(p0−1) log(T ),

(4.162)

for some p0 > 2 and we choose the simulation time

T =

{ (
ψ̄Ndψd

) 2p0
(p0−2)

(1+δ̄)
under rate Ψ

(1)
T(

ψNd
1/4ψd

) p0−1
p0−2

4(1+δ̄)
under rate Ψ

(2)
T ,

(4.163)

for any δ̄ > 1/(1+a) then the choice of batch size ℓT = d−(p0−2)/(2p0(1+δ̄))⌊Tα⌋
with

α =

{
1
2

+ p0−2
2p0(1+δ̄)

+ 1
p0
, under rate Ψ

(1)
T

3
4

+ 1
4(p0−1)

+ (p0−2)

4(p0−1)(1+δ̄)
, under rate Ψ

(2)
T ,

(4.164)

optimises the given convergence rate for T →∞.

Proof. In Vats et al. [152; Theorem 2] it is shown that for every i, j we have

∣∣∣Σ̂BM
Tij
− Σf

∣∣∣ = Oa.s.

((
ℓT,d
T

)1/2
)

+Oa.s.
(
ψ̄NψdΨT log(T )ℓ

−1/2
T,d

)
+Oa.s.

(
ψ̄2
Nψ

2
dΨ

2
T log(T )

T

)
.
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Since we have that

∣∣∣Σ̂BM
T − Σf

∣∣∣ =

√√√√ d∑
i=1

d∑
j=1

∣∣∣Σ̂BM
Tij
− Σfij

∣∣∣2
= Oa.s.

(
d

(
ℓT,d
T

)1/2
)

+Oa.s.
(
ψ̄NdψdΨT log(T )ℓ

−1/2
T,d

)
+Oa.s.

(
ψ̄2
Ndψ

2
dΨ

2
T log(T )

T

)
= oa.s.(1).

Firstly, note that if

T =
(
ψ̄Ndψd

) 2p0
(p0−2)

(1+δ̄)
,

we have that for T →∞ that

Oa.s.
(
ψ̄2
Ndψ

2
dΨ

2
T log2(T )

T

)
= Oa.s.

(
d−1

(
ψ̄Ndψd

)−2δ̄
log3(ψ̄Ndψd)

)
= oa.s.(1).

Note that in order to find the optimal batch size ℓT = ⌊Tα⌋ such that∣∣∣Σ̂BM
T − Σf

∣∣∣ tends to zero at the fastest rate, we equate the error terms

Oa.s.
(
d
(
ℓT,d

T

)1/2)
and Oa.s.

(
ψ̄NdψdΨT log(T )ℓ

−1/2
T,d

)
. This gives us that the

optimal batch size, up to a logarithmic factor, should be of an asymptotic
magnitude

ℓT ≍ ψ̄NψdΨTT
1/2

≍ d−(p0−2)/(2p0(1+δ̄))T 1/2+1/p0+(p0−2)/(2p0(1+δ̄))

≍ d−(p0−2)/(2p0(1+δ̄))
(
ψ̄Ndψd

)1+ p0+2
p0−2

(1+δ̄)
,

which gives us

∣∣∣Σ̂BM
T − Σf

∣∣∣ = Oa.s.

(√
ψ̄Nd2ψd
T 1/2−1/p0

)
.

With our choice for the simulation time T =
(
ψ̄Ndψd

) 2p0
(p0−2)

(1+δ̄)
we see that
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∣∣∣Σ̂BM
T − Σf

∣∣∣ = Oa.s.
(√

dT
−δ̄(p−2)

4p0(1+δ̄)

)
= Oa.s.

(√
d
(
ψ̄Ndψd

)−δ̄/2)
= Oa.s.

(
ψ̄

−δ̄/2
N d1/2−(a+1)δ̄/2

)
= oa.s.(1),

where the last equality follows since δ̄ > 1/(1 + a).

Remark 4.5.22. In the case that ΨT = T 1/4+1/4(p0−1) and ψd = da for some
given a > 0 we require

T =
(
ψNd

1/4ψd
) p0−1

p0−2
4(1+δ̄)

,

with δ > 1/(1 + a) and consequently

ℓT ≍ ψ̄NψdΨTT
1/2

≍ T
3
4
+ 1

4(p0−1)
+

(p0−2)

4(p0−1)(1+δ̄)

△

Proof of Theorem 4.4.4

Theorem 4.5.23. Suppose that X satisfies the following strong Gaussian
approximation∣∣∣∣∣

T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣ = Oa.s.
(
ψ̄NψdΨT

)
, (4.165)

with approximation error ΨT = T 1/p0 log(T ) for some p0 > 4 and ψd = da

for some a > 0. Let T1(ε) be given by

T1(ε) = inf{t > 0 : Vol(C(t))1/d + εΛ(t) < ε}, (4.166)

with C(t) the confidence ellipsoid given in (4.23) and Λ(t) = 1{t<T ∗(ε,d,N)} +
t−1, with

T ∗(ε, d,N) =

(
ψ̄N

(
tr(Σf )

σ0

)2

d3ψd

) 2p0
(p0−2)

(1+δ̄1)(
1

ε

) 4p0
(p0−2)

(1+δ̄2)

∨ e
10p0
p0−2

(4.167)
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for any δ̄1 > 3/(3 + a) and δ̄2 > 0. Let Σ̂T in (4.23) denote the batch
means estimator defined in (4.16), with batch size ℓT set as

ℓT = ψ̄NψdT
1/2+1/p0 . (4.168)

Suppose that Assumptions 4 and 5 hold. Then we have as ε ↓ 0 the following:

1. The asymptotic behaviour of the termination time T1(ε) is characterised
by

ε2T1(ε)

c
2/d
α,d det(Σf )

1/d
= 1 + oa.s.

(
log2(ψ̄Nd

5/2ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
, (4.169)

where cα,d denotes the product of q
d/2
α and the volume of a standard

d-dimensional hyper-sphere.

2. Asymptotic validity of the resulting confidence set

Pπ (C(T1(ε)) ∋ π(f)) −→ 1− α. (4.170)

Proof. To prove the first claim, we first show that the difference between ter-
mination rules based on the volumes of the ellipsoids based on the estimated
and asymptotic covariance matrix tends to zero at an appropriate rate. Note
that the volume of the confidence ellipsoid is given by

Vol(CT (α)) = T−d/2q
d/2
α,d

2πd/2

dΓ(d/2)
det
(

Σ̂
1/2
T

)
. (4.171)

Furthermore under Assumption 5, we have that σ
1/2d
0 Id ≼ Σ

1/2d
f ≼ σ

1/2d
d Id,

where the matrix inequalities hold in the positive semi-definite sense. Fur-
thermore, by Jacobi’s formula, we have that

∂ det(Σ)

∂Σ
= det(Σ)Σ−1. (4.172)

Note that the choice Σ = σ
1/2d
d Id maximises the function det(Σ)|Σ−1| sub-

ject to the constraint σ
1/2d
0 Id ≼ Σ ≼ σ

1/2d
d Id. Hence we have the following

Lipschitz property for the determinant on this domain∣∣∣det
(

Σ̂
1/2d
T

)
− det

(
Σ

1/2d
f

)∣∣∣ ≤ σ
1/2−1/2d
d

√
d
∣∣∣Σ̂1/2d

T − Σ
1/2d
f

∣∣∣. (4.173)
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By Ando–van Hemmen’s inequality given in Lemma 4.5.17, we have under
Assumption 5, that∣∣∣Σ̂1/2d

T − Σ
1/2d
f

∣∣∣ ≤ ( 1

σ0

)1−1/2d ∣∣∣Σ̂T − Σf

∣∣∣. (4.174)

By Theorem 4.4.1 it follows that
∣∣∣Σ̂T − Σf

∣∣∣ = RT with

RT = Oa.s.

(
d

(
ℓT,d
T

)1/2
)

+Oa.s.
(
ψ̄NdψdΨT log(T )ℓ

−1/2
T,d

)
+Oa.s.

(
ψ̄2
Ndψ

2
dΨ

2
T log(T )

T

)
.

(4.175)

Combining (4.173) and (4.174), and since det
(

Σ
1/2d
f

)
≥ σ

1/2
0 we see that∣∣∣∣∣∣

det
(

Σ̂
1/2d
T

)
det
(

Σ
1/2d
f

) − 1

∣∣∣∣∣∣ ≤
(
σd
σ0

)1/2−1/2d
√
d

σ0
RT ≤

(
σd
σ0

)1/2
√
d

σ0
RT . (4.176)

Under Assumption 5, we have by the Gershgorin circle theorem that σd
is bounded by

σd ≤ sup
i∈{1,...,d}

Σfii + sup
i∈{1,...,d}

∑
j ̸=i

∣∣Σfij

∣∣ <∼ d2. (4.177)

Let cα,d := q
d/2
α,d

2πd/2

dΓ(d/2)
, then from (4.171), (4.176), and (4.177) we see that

√
T

Vol(CT (α))1/d

c
1/d
α,d det(Σf )1/2d

=
det
(

Σ̂
1/2d
T

)
det
(

Σ
1/2d
f

)
= 1 +

(
σd
σ0

)1/2
√
d

σ0
Oa.s.(RT )

= 1 +Oa.s.(d3/2RT ).

Let

T̃ ∗(ε, d,N) :=
(
ψ̄Nd

3ψd
) 2p0

(p0−2)
(1+δ̄1)

(
1

ε

) 4p0
(p0−2)

(1+δ̄2)

∧ e
8p0
p0−2
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,
then for T ≥ T̃ ∗(ε, d,N) we have that

d3/2RT = Oa.s.
(
ψ̄

−δ̄1/2
N ψ

−δ̄1/2
d d1−3/2δ̄1ε1+δ̄2 log2(T̃ ∗(ε, d,N))

)
= Oa.s.

(
ψ̄

−δ̄1/2
N d−1/2ε1+δ̄2 log2(T̃ ∗(ε, d,N))

)
= Oa.s.

(
ψ̄

−δ̄1/2
N d−1/2ε1+δ̄2

(
log2(ψ̄Nd

3ψd) + log2(1/ε)
))

= oa.s.

(
log2(ψ̄Nd

3ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
, (4.178)

where the second equality follows since δ̄1 > 3/(3+a) and subsequent inequal-
ities follow by definition of T̃ ∗(ε, d,N), the fact that loga(x)/xb is decreasing
on x ≥ ea/b for any a, b > 0, and some basic computations. Therefore we see
that

√
T

Vol(CT (α))1/d

c
1/d
α,d det(Σf )1/2d

= 1 + oa.s.

(
log2(ψ̄Nd

3ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
(4.179)

and consequently

√
T

Vol(CT (α))1/d

c
1/d
α,d det(Σf )1/2d

a.s.−−→ 1 as ε ↓ 0. (4.180)

The remainder of the first part of the proof now follows by the argument
of Glynn and Whitt [73; Theorem 1]. Let V (T ) = Vol(CT (α))1/d+a(T ), then
by definition of T1(ε) we have that V (T1(ε)− 1) > ε and that there exists a
random variable Z(ε) ∈ [0, 1] such that V (T1(ε) + Z(ε)) ≤ ε. This gives us

lim sup
ε↓0

εT
1/2
1 (ε) ≤ lim sup

ε↓0
V (T1(ε)− 1)T

1/2
1 (ε).

Since T1(ε)→∞ almost surely as ε tends to zero it follows from (4.179) that

lim sup
ε↓0

εT
1/2
1 (ε)(

cα,d det
(

Σ
1/2
f

))1/d ≤ lim sup
ε↓0

V (T1(ε)− 1)T
1/2
1 (ε)(

cα,d det
(

Σ
1/2
f

))1/d
= 1 + oa.s.

(
log2(ψ̄Nd

3ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
.
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By a similar argument, we also have that

lim inf
ε↓0

εT
1/2
1 (ε)

(c2α,d det(Σf ))1/2d
≥ lim inf

ε↓0

V (T1(ε) + Z(ε))T
1/2
1 (ε)

(c2α,d det(Σf ))1/2d

= 1 + oa.s.

(
log2(ψ̄Nd

3ψd)ψ̄
−δ̄1/2
N d−1/2ε

)
.

This proves the first part of the Theorem. To prove the second claim, we first
bound the difference between the confidence ellipsoids based on the estimated
and asymptotic covariance matrix. Recall that π̂T (f) = T−1

∑T
t=1 f(Xt) and

let

ET :=
∣∣∣T (π̂T (f)− π(f))TΣ−1

f (π̂T (f)− π(f))− T (π̂T (f)− π(f))T Σ̂−1
T (π̂T (f)− π(f))

∣∣∣
Then by Cauchy–Schwarz’s inequality we have that

ET ≤ T
∣∣∣Σ̂−1

T − Σ−1
f

∣∣∣|π̂T (f)− π(f)|2. (4.181)

Since Σ−1
f (Σ̂T −Σf )Σ̂−1

T = Σ−1
f − Σ̂−1

T , we have by sub-multiplicativity of
the Frobenius norm that

T
∣∣∣Σ̂−1

T − Σ−1
f

∣∣∣|π̂T (f)− π(f)|2 ≤ T
∣∣∣Σ̂T − Σf

∣∣∣∣∣∣Σ̂−1
T

∣∣∣∣∣Σ−1
f

∣∣|π̂T (f)− π(f)|2.

From our assumed Gaussian approximation result and the law of iterated
logarithm, we see that

T |π̂T (f)− π(f)|2 ≤ 2T
∣∣∣π̂T (f)− π(f)− T−1Σ

1/2
f WT

∣∣∣2 + 2T−1
∣∣∣Σ1/2

f WT

∣∣∣2.
By a coordinate-wise application of the law of iterated logarithm, we have
that ∣∣∣Σ1/2

f WT

∣∣∣2 ≤ tr(Σf )|WT |2 = Oa.s(tr(Σf )dT log log T ). (4.182)

This gives us

T |π̂T (f)− π(f)|2 = Oa.s.
(
ψ̄2
Nψ

2
dΨ

2
T

T

)
+Oa.s. (d tr(Σf )log log T )
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Let σ̂1 and σ1 denote the smallest eigenvalues of Σ̂T and Σf respectively.
Then by the equivalence of the Frobenius and spectral norm that

∣∣∣Σ̂−1
T

∣∣∣ ≤ √d∣∣∣Σ̂−1
T

∣∣∣
∗
≤
√
d

σ̂1
.

Therefore we have that∣∣∣Σ̂−1
T

∣∣∣ ≤ √d
σ1

+
√
d

∣∣∣∣ 1

σ̂1
− 1

σ1

∣∣∣∣
≤
√
d

σ1
+

√
d

σ2
0

|σ̂1 − σ1|,

where the last inequality follows since by Assumption 5 we have that σ1, σ̂1 ≥
σ0 > 0. By Weyl’s Perturbation Theorem, see Bhatia [17; Corollary III.2.6],
we have that for all Hermitian matrices Σ1,Σ2 that

max
i
|σi(Σ1)− σi(Σ2)| ≤ |Σ1 − Σ2|∗,

where σi(Σ) denotes the i-th eigenvalue of Σ for i = 1, · · · , d. Hence the
eigenvalues of Σ̂T converge at the same rate as the matrix itself, see also
Vats et al. [151; Theorem 3]. This gives us

|σ̂1 − σ1| ≤
∣∣∣Σ̂T − Σf

∣∣∣
∗
≤ RT .

Furthermore, we also have that
∣∣Σ−1

f

∣∣ ≤ √d/σ1. Therefore it follows that

∣∣∣Σ̂−1
T − Σ−1

f

∣∣∣|π̂T (f)− π(f)|2 ≤
∣∣∣Σ̂T − Σf

∣∣∣Oa.s.(d2 tr(Σf )

σ2
0

log log T

)
≤ RTOa.s.

(
d2

tr(Σf )

σ2
0

log1/2 T

)
. (4.183)

Given the specification of RT given in (4.175) we have that

ET ≤ E1T + E2T + E3T ,

where
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E1T = Oa.s.

(
d3

tr(Σf )

σ2
0

(
ℓT,d
T

)1/2

log1/2(T )

)
(4.184)

E2T = Oa.s.

(
ψ̄Nd

3 tr(Σf )ψdΨT log3/2(T )

σ2
0ℓ

1/2
T,d

)
(4.185)

E3T = Oa.s.

(
ψ̄2
Nd

3 tr(Σf )ψ2
dΨ

2
T log3/2(T )

σ2
0T

)
(4.186)

Note that for T ≥ T ∗(ε, d,N) =

(
ψ̄N

tr(Σf)
σ2
0
d3ψd

) 2p0
(p0−2)

(1+δ̄1) (
1
ε

) 4p0
(p0−2)

(1+δ̄2) ∨

e
10p0
p0−2 we have that E3T = oa.s.(ψ̄

−2δ̄1
N ψ−2δ̄1

d d−3−6δ̄1ε4(1+δ̄2) log3/2(T ∗(ε, d,N))).
Note that by the choice of ℓT it follows that E1T and E2T are almost surely
of the same asymptotic magnitude up to a log factor. By the same ar-
gument as given in (4.178) it follows that both E1T and E2T are of order

oa.s.(log5/2(ψ̄Nd
3ψd)ψ̄

−δ̄1/2
N d3/2−(3+a)δ̄1/2ε) and consequently, it follows that

ET = oa.s.(log5/2(ψ̄Nd
3ψd)ψ̄

−δ̄1/2
N d3/2−(3+a)δ̄1/2ε). (4.187)

Now we show that the confidence ellipsoid based on Σf has the asymptotically
correct coverage. Note that

∣∣T (π̂T (f)− π(f))TΣ−1
f (π̂T (f)− π(f))− T−1⟨WT ,WT ⟩

∣∣
=

∣∣∣∣∣∣T−1/2

(
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

)T

Σ−1
f T−1/2

(
T∑
t=1

f(Xt)− Tπ(f) + Σ
1/2
f WT

)∣∣∣∣∣∣
≤
√
d

σ0T

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣
2

+
2
∣∣∣Σ−1/2

f

∣∣∣
T

∣∣∣∣∣
T∑
t=1

f(Xt)− Tπ(f)− Σ
1/2
f WT

∣∣∣∣∣|WT |,

where the last inequality follows from Cauchy–Schwarz and since we have
by the equivalence of the Frobenius and spectral norm that

∣∣Σ−1
f

∣∣ ≤ √d/σ0.
Moreover, by the assumed weak Gaussian approximation and (4.182) we
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obtain ∣∣∣∣T (π̂T (f)− π(f))TΣ−1
f (π̂T (f)− π(f))− ⟨WT ,WT ⟩

T

∣∣∣∣ (4.188)

= Oa.s.

(
ψ̄N

2√
dψ2

dΨ
2
T

T

)
+Op

(
ψ̄Nd

3/2ψdΨ
′
T√

T

)

= Oa.s.

(
ψ̄Nd

3/2ψdΨT log1/4(T )√
T

)

= oa.s.

(
log
(
ψ̄Nd

3/2ψd
)

(ψ̄Nd3/2ψd)δ̄3
ε

)
, (4.189)

with Ψ′
T = ΨT (log log T )1/2 and for all T ≥

(
ψ̄Nd

3/2ψd

ε

) 2p0
(p0−2)

(1+δ̄3)

∨e
5p0

2(p0−2)

for any δ̄3 > 0. Finally, given (4.187) and (4.188), we can use the argument
of Glynn and Whitt [73; Theorem 1] to show that at termination time T1(ε)
the empirical confidence interval also has the correct coverage as ε ↓ 0.

Proof of Theorem 4.4.5

Proof. The proof follows completely analogous to the proof of Theorem 4.4.4.
Note that we now obtain∣∣∣T (π̂T (f)− π(f))T Σ̂−1

f (π̂T (f)− π(f))− T−1⟨WT ,WT ⟩
∣∣∣

= Oa.s.

(
ψ̄Nd

3 tr(Σf )ψd log2(T )

σ1T
p0−2

8(p0−1)

)
.



Chapter 5

Conclusion

The main contribution of this thesis are the obtained novel Gaussian ap-
proximation results and their application to uncertainty quantification and
the analysis of termination criteria. Firstly, we obtain strong invariance prin-
ciples for a broad class of ergodic Markov processes. For the Zig-Zag sampler,
which is a specific PDMP, we show that the optimal Gaussian approximation
rate can be obtained. This is the first MCMC sampler, within the considered
class of problems, for which this optimal rate has been obtained. We demon-
strate how these results can be used to analyse the batch means method
for simulation output of PDMC samplers. Consequently, many results re-
garding uncertainty quantification now carry over to PDMC samplers. Since
previous work on estimation of the MCMC standard error is based on strong
invariance principles with limited accuracy, our results improve the currently
available regularity conditions guaranteeing strong convergence of the batch
means estimator in any MCMC setting. Furthermore, we also discuss mul-
tiple convergence diagnostics suitable for PDMP based sampling algorithms.

The largest contribution of this thesis are the novel quantitative bounds
on (functional) Markov central limit theorems in both multivariate and high-
dimensional settings, given in Chapter 4. Our results provide the first Gaus-
sian approximation result for multivariate MCMC samplers, for which the
optimal rate is attained. Furthermore, our results cover a larger class of
polynomially ergodic Markov chains than previous works and are the first to
quantify the influence of polynomial ergodicity on the Gaussian approxima-
tion rate.
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Another key contribution of our paper is obtaining the dependence of the
approximation errors on the dimension of both the target distribution and
the feature space. For applications in Bayesian statistics, our results provide
a direct link between the statistical model complexity and the computational
complexity of the MCMC algorithm. Our results provide us with explicit sim-
ulation requirements such that a Markov CLT holds. The results can also
be used to adapt the tuning parameters of widely used variance estimation
methods for MCMC simulation output. Moreover, in high-dimensional set-
tings they imply simulation requirements that guarantee the validity of these
variance estimation methods. Therefore, we are able to give conditions for
valid uncertainty quantification for high-dimensional MCMC algorithms.

Another key contribution of our work is the application of these results to
MCMC output analysis. Our Gaussian approximations enable us to extend
results on the estimation of variance and effective sample size to a broader
class of multivariate and high-dimensional settings. Furthermore, we provide
quantitative convergence bounds for termination criteria and show that the
termination time of a wide class of MCMC algorithms scales polynomially
with dimension while ensuring a desired level of precision. Our results offer
guidance to practitioners in obtaining appropriate standard errors, as well as
determining the minimum simulation effort and termination time for MCMC
algorithms in high-dimensional applications.
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[76] S. Gouëzel. Almost sure invariance principle for dynamical systems by
spectral methods. The Annals of Probability, 38(4):1639–1671, 2010.



Bibliography 186

[77] M. Hairer, A. M. Stuart, and S. J. Vollmer. Spectral gaps for a
Metropolis–Hastings algorithm in infinite dimensions. The Annals of
Applied Probability, 24(6), 2014.

[78] W. K. Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 1970.

[79] A. J. Heunis. Strong invariance principle for singular diffusions.
Stochastic processes and their applications, 104(1):57–80, 2003.

[80] A. Hinrichs, E. Novak, M. Ullrich, and H. Woźniakowski. The curse
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Summary

Markov Chain Monte Carlo (MCMC) methods are generally acknowledged
to be the most versatile algorithms for simulating from a probability distribu-
tion of interest. MCMC methods are extensively applied in an array of fields,
ranging from statistics and machine learning to physics. The main idea is to
construct a relatively simple process such that, in its equilibrium state, the
process can be used to approximate the distribution of interest. Any MCMC
algorithm can be conceptualised as a set of rules dictating the movement of
a particle through space. The implied motion of the particle ensures that,
over time, the particle explores the space in accordance with the probability
distribution of interest. In the long run, the particle thus spends time in any
region of the space that is proportional to the probability mass assigned to
that region. The simulated path of our particle can subsequently be used to
estimate quantities related to the probability distribution of interest. Most
quantities of interest can naturally be expressed as high-dimensional integ-
rals with respect to the distribution of interest, and are estimated using the
corresponding time-averages of the particle trajectory.

For every application of MCMC it must be assessed when it is justi-
fied to terminate the simulation. Prematurely terminating our simulation
algorithm, i.e., the exploring particle, could lead to inaccurate sample stat-
istics or even to output that does not resemble the equilibrium distribution.
This problem is closely related to the uncertainty quantification of our al-
gorithm. Since MCMC methods are only able to sample approximately from
the target distribution, quantifying the uncertainty of the simulation output
is of central importance. Termination rules are the gold standard for de-
termining the appropriate running time of an MCMC algorithm. These rules
allow termination of the simulation when the uncertainty of our estimation
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process is below some predetermined tolerance level.

In order to quantify the uncertainty of our sampling algorithms, it is re-
quired that a so-called Gaussian approximation holds. These quantitative
invariance principles tell us how the trajectory of the time-average of the
sampling process will fluctuate around the value it is designed to approxim-
ate. Moreover, they justify the construction of confidence ellipsoids which are
required for the implementation of various termination criteria. A confidence
ellipsoid provides a range of values such that, if the sampling process were
repeated infinitely often, the proportion of ellipsoids containing the quantity
of interest would equal the pre-determined confidence level.

In Chapter 3, novel Gaussian approximation results for a wide range of
continuous-time Markov processes are presented, particularly achieving the
optimal approximation rate for the Zig-Zag sampler, a Piecewise Determ-
inistic Markov Process (PDMP). These processes enjoy favourable scaling
properties in modern big-data settings. Our obtained results improve rular-
ity conditions for standard error estimation of PDMP-based algorithms.

In Chapter 4, we obtain novel dimension-dependent Gaussian approxima-
tion results which allow us to adapt and justify methods for uncertainty quan-
tification and termination criteria in high-dimensional settings. Moreover, for
a large class of processes, our Gaussian approximation results attain the op-
timal approximation rate.



Samenvatting

Markov Chain Monte Carlo (MCMC)-methoden worden erkend als de meest
toepasbare algoritmen voor het simuleren van kansverdelingen. MCMC-
methoden worden op grote schaal toegepast in verschillende vakgebieden,
variërend van statistiek en machine learning tot natuurkunde. Het achterlig-
gende idee is om een relatief eenvoudig proces te construeren, zodat dit proces
in zijn evenwichtstoestand kan worden gebruikt om de gewenste kansverdel-
ing te benaderen. Elk MCMC-algoritme kan worden geconceptualiseerd als
een reeks instructies die de beweging van een deeltje (partikel) door de ruimte
beschrijven. De motie van het deeltje is geconstrueerd zodat het deeltje na
verloop van tijd de ruimte verkent volgens de gewenste waarschijnlijkheids-
verdeling. Op de lange termijn brengt het deeltje tijd door in elk gebied
van de ruimte die evenredig is met de kansmassa die aan dat gebied is
toegewezen. Het gesimuleerde pad van het deeltje kan vervolgens worden
gebruikt om grootheden te schatten die gerelateerd zijn aan de gewenste
waarschijnlijkheidsverdeling. De meeste grootheden van belang kunnen op
natuurlijke wijze worden uitgedrukt als hoog-dimensionale integralen met be-
trekking tot de gewenste kansverdeling, en kunnen worden geschat met de
bijbehorende tijdsgemiddelden van het deeltjestraject.

Voor elke toepassing van MCMC moet worden beoordeeld wanneer het
gerechtvaardigd is om de simulatie te beëindigen. Het voortijdig beëindigen
van ons simulatie-algoritme, het verkennende deeltje, kan ons onnauwkeur-
ige steekproefstatistieken of zelfs gesimuleerde waarden die niet overeenko-
men met de evenwichtsverdeling opleveren. Dit probleem hangt nauw samen
met de onzekerheidskwantificatie van ons algoritme. Aangezien MCMC-
methoden per constructie alleen in staat zijn om de gewenste kansverdeling te
benaderen, is het kwantificeren van de onzekerheid van de simulatie-uitkomst
van essentieel belang. Terminatiecriteria zijn de gouden standaard voor het
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bepalen van de juiste looptijd van een MCMC-algoritme. Deze regels maken
het mogelijk om de simulatie te beëindigen wanneer de onzekerheid van ons
schattingsproces onder een vooraf bepaald tolerantieniveau ligt.

Om de onzekerheid van onze simulatie-algoritmen te kwantificeren, is het
vereist dat een zogenoemde Gaussische benadering geldt. Deze kwantitatieve
invariantieprincipes vertellen ons hoe het traject van het tijdsgemiddelde van
het simulatieproces zal fluctueren rond de waarde die het moet benaderen.
Bovendien rechtvaardigen Gaussische benadering de constructie van betrouw-
baarheidsellipsöıden die nodig zijn voor de implementatie van verschillende
terminatiecriteria. Een betrouwbaarheidsellipsöıde bescrhijft een verzamel-
ing van waarden zodat, als het simulatieproces oneindig vaak herhaald zou
worden, het aandeel ellipsöıden dat de gezochte grootheid bevat gelijk zal
zijn aan het vooraf bepaalde betrouwbaarheidsniveau.

In Hoofdstuk 3 worden nieuwe Gaussische benaderingsresultaten gepres-
enteerd voor een breed scala aan tijdscontinue Markovprocessen, waarbij
met name de optimale benaderingsfout voor de Zig-Zag-simulatie-algoritme,
een Piecewise Deterministic Markov Process (PDMP), wordt aangetoond.
Deze processen hebben gunstige schaalbaarheidseigenschappen in moderne
big data-applicaties. Onze verkregen resultaten verbeteren de regulariteits-
voorwaarden voor het schatten van standaardfouten voor PDMP-gebaseerde
algoritmen.

In Hoofdstuk 4 verkrijgen we nieuwe dimensie-afhankelijke Gaussische
benaderingsresultaten, waarmee we methoden voor onzekerheidskwantificer-
ing en terminatiecriteria in hoog-dimensionale toepassingen kunnen rechtvaar-
digen. Bovendien bezitten onze aangetoonde Gaussische benaderingsres-
ultaten voor een grote klasse van processen de optimale benaderingsfout.
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