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1

INTRODUCTION

The focus of this thesis is the development of theory of the multilinear and limited range
analogues of the Muckenhoupt A, weight classes and to develop methods of obtaining
sharp weighted bounds for operators satisfying sparse bounds. This is facilitated by a
quantitative study of multisublinear maximal operators which allows us to develop a
sharp multilinear extrapolation theorem.

Through the domination of multilinear operators by sparse forms, which are inti-
mately related to the multisublinear maximal operators, our techniques allow us to ob-
tain sharp weighted bounds for these operators in both the scalar-valued and vector-
valued settings. To this end we develop a multilinear analogue of the Hardy-Littlewood
and UMD properties of Banach function spaces.

In this chapter we give a general introduction into each of these topics as well as
provide a detailed outline of the thesis.

1.1. GENERAL INTRODUCTION

1.1.1. Weighted bounds for weights in the A, classes

A positive function w in R” is said to be an A, weight for p € [1,00) when the Hardy-
Littlewood maximal operator

Mf(x) —sup—f | f1dx,
sx |Ql
satisfies the weak-type bound L? (R"; w) — LP*°(R"; w). Here L” (R"; w) and LP**°(R"; w)
are the respective strong- and weak-type LP spaces over R” with respect to the measure
wdx. In this case we have the equivalence

wla, :=su w Ptdx ~ T PO (R
g p QI Jq QI Jo LP (R™;w)—LP> (R";w)

where for p =1 we use the interpretation [w] 4, = sup, (|_<12| fQ wdx) (essinfyeq w(y))—l
This equivalence was shown by Muckenhoupt in [Muc72]. He proceeded to show that
when p € (1,00), the condition [w]4, < oo is self-improving in the sense that in this case
M also satisfies the strong bound L” (R"; w) — LP (R"; w).

Not long after this it was shown that the A}, condition is not only characterized by
the strong boundedness of M, but also of certain singular integral operators. Indeed, in
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the works of Hunt, Muckenhoupt and Wheeden [HMW?73] and in a simplified approach
by Coifman and Fefferman [CF74] this was shown to be the case for the Hilbert trans-
form. The latter also proved that the A, condition is a sufficient condition to bound any
Calder6n-Zygmund operator.

A quantitative study of these bounds was initiated by Buckley in [Buc93]. He showed
that

MU o0y 10 oy S (W1
where the power of the weight constant is optimal. Moreover, he showed that if T is a
Calderén-Zygmund operator, then

I T||’L0P(R”;w)~U’(R”;w) Sp [W]Z:p'
While this bound is not optimal, he did show that the optimal power of the weight con-
stant must lie between max{p’, p} and p’ + p.

This optimality became very relevant when Petermichl and Volberg [PV02] solved
a long standing open problem on the regularity of solutions to Beltrami equations by
showing that the Beurling-Ahlfors transform—a Calderén-Zygmund operator—satisfies
this weighted bound with the sharp exponent max{p’, p}. Using a sharp version of Ru-
bio de Francia extrapolation [Rub82, GR85] they reduced the problem to showing this
bound in the case p = 2.

The problem of proving that the sharp bound with exponent max{p’, p} holds for
all Calder6n-Zygmund operators became known as the Az-conjecture. After a series of
partial results, such as [Pet08, LPR10, NTV08, CMP10, Vag10, Ler11, PTV10, HLM*12],
this conjecture was eventually settled by Hyténen in [Hyt12].

An alternative approach was developed by Lerner [Ler13], whose proof relied on
dominating Calder6n-Zygmund operators by the much simpler sparse operators. Sub-
sequently, the idea of sparse domination was developed further and was broken down
to its essentials by Lerner in [Ler16]. The literature on this topic is vast, see e.g., [BFP16,
CR16, LN18, Lac17, HRT17, LO20, Lor19], and this technique can be applied to an in-
creasingly general class of operators. By now, proving sharp weighted bounds has be-
come more or less synonymous with proving sparse domination.

1.1.2. Weighted endpoint estimates

Sparse operators seem to very precisely capture the weighted behaviour of Calderén-
Zygmund operator in the sense that any operator satisfying sparse domination also sat-
isfies the result of the A,-conjecture. At this point the question arises whether weighted
endpoint bounds known for Calderén-Zygmund operators are also true when we con-
sider the more general class of operators satisfying sparse domination.

In the work [BFP16] it was shown by Bernicot, Frey, and Petermichl that a large class
of operators beyond the framework of Calder6n-Zygmund operators satisfy sparse dom-
ination in form. The operators they considered are not necessarily bounded L? (R") —
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LP(R™) for all p € (1,00), but for a limited range p € (r,s), where 1 < r < s < co. They
showed that these operators satisfy the property that for every f, g € L (R") there is a
sparse collection of cubes . such that

U (THgdx| < Y (Nro(®y,0lQl (1.1.1)
R" Qe.s

Moreover, they showed that this implies that T is bounded LP (R"; w) — LP(R"; w) for
weights w that are in the intersection of the Muckenhoupt class Ap and the Reverse
Hoélder class RH(y/ ). This condition on the weight can be equivalently formulated as

<00, (1.1.2)

and they showed that
S wd(2).(2Y
[ TIIL,,(Rn W) LP R 10) SPITS [w]Ap'(n{ﬂ(’) () (1.1.3)
for any T satisfying (1.1.1). Note that A, ) = Ap, and in the case r = 1, s = oo the
bound (1.1.3) recovers the bound from the A;-Conjecture.

In Chapter 6 we extend weighted endpoint bounds known for Calderén-Zygmund
operators to the setting of operators satisfying the sparse domination (1.1.1)

For Calderén-Zygmund operators, weighted weak type (1,1) estimates were estab-
lished by Lerner, Ombrosi, and Pérez [LOP09a] and later improved upon by Hyténen and
Pérez [HP13], using mixed A;-A type estimates. They showed that for all Calderén-
Zygmund operators T and all p € (1,00) one has

1 1

1T e (wy— 1P (w) S PP’[W]Z;[W]ZI, (1.1.4)

where

(Wlay, = fM(WXQ) dx,

w(Q)
is the Fujii-Wilson A, constant, Wthh characterizes the class A = Upe[1,00) Ap. More-
over, in the work of Lerner, Ombrosi, and Pérez [LOP08] it was shown that for all Calderén-
Zygmund operators T and all weights w € A; one has

1T 11 R0y — L1 oo @) S (W4, log(e + [wla)). (1.1.5)

This result is related to the weak Muckenhoupt-Wheeden conjecture, stating that one
has linear dependence on [w] 4, on the right-hand side of (1.1.5), and the logarithm can
be removed. This conjecture is now known to be false [NRVV10] and in fact, the estimate
(1.1.5) is sharp for the Hilbert transform [LNO17]. The result (1.1.5) was improved by
Hytonen and Pérez [HP13] to the mixed A;—A type estimate

”T”Ll(Rn w)_,Lloo(Rn w) [W]Al lOg(e+ [w]Aoo (].].6)
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Both the proofs of (1.1.5) and (1.1.6) rely on introducing weights into the classical
argument involving a Calder6n-Zygmund decomposition f = g+ b and the vanishing
mean value property of the ‘bad’ part b in combination with the Hérmander condition
of the kernel of the operator. This is done through an argument that can already be
found in [Pér94] (namely, they use [GR85, Lemma 3.3, p. 413]).

In general, the operators satisfying (1.1.1) need not be integral operators at all and for
operators such as the Riesz transform associated to an elliptic operator, an argument by
Blunck and Kunstmann [BK03] (see also [HMO03]) proved a weak-type (r, r) boundedness
using an adapted L" Calderén-Zygmund decomposition, where a certain cancellation of
the operator with respect to the semigroup generated by the elliptic operator replaces
the regularity estimates of the kernel. Weights in the class A ,5) were then introduced
into this argument by Auscher and Martell [AMO07], but their techniques do not seem to
yield optimal bounds in terms of the constants of the weights. Therefore, in Chapter 6,
which is based on the paper [FN19] by Frey and the author, we give a different argument
to establish the corresponding bounds that are sharp in the sense that they recover the
bounds found in [HP13].

Since we are making no assumptions on our operators other than the sparse dom-
ination (1.1.1), we need to carefully adapt the arguments to these sparse forms. To
this end, we introduce weights into a weak boundedness argument for sparse opera-
tors where there exists a Calderon-Zygmund decomposition with the property that the
‘bad’ part b cancels completely. We then combine this with generalizations of the main
lemmata used in [LOP09a]. Moreover, we leave the Euclidean setting and extend the
results to more general spaces of homogeneous type in Chapter 7. This includes cer-
tain bounded domains and Riemannian manifolds that were also studied in [BK03] and
[AMO07, AMO08]. In Subsection 5.4.3 we provide examples falling outside of the class of
Calderén-Zygmund operators that our results are applicable to.

1.1.3. Rubio de Francia extrapolation

The reduction to the A case for the A,-conjecture was done through a quantitative
version of Rubio de Francia’s extrapolation theorem [Rub82, GR85]. In one of its forms,
this theorem says that if an operator T is bounded L9(R"; w) — L9(R"; w) for a fixed
q € [1,00) and for all w € A, then T is in fact bounded L” (R"; w) — L (R"; w) for all
p € (1,00) and all w € Ap. If the control of the initial bound in terms of the constant
[w] Aq is known, then a sharp control of the bound for p € (1,00) in terms of [w] A, Can
be obtained [DGPP05].

We point out that the range p € (1,00) in the conclusion of this result is sharp. In-
deed, it need not be the case that an operator satisfying weighted bounds is bounded
L®(R"™) — L*(R"), as is the case, for example, for the Hilbert transform. In particular,
it is impossible to extrapolate estimates to this endpoint. However, this opens up the
question if it is also possible to extrapolate an estimate starting from g = oo, as is the
case for g = 1. This question becomes particularly interesting in the multilinear setting.
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For example, in the bilinear setting it may very well occur that singular integral operators
are bounded L?(R") x L®°(R") — L?(R").
An example of such an operator is the bilinear Hilbert transform BHT given by

d
BHT(fi, f2) (x) := p.v.fRfl (=) folx+7) 7y

which plays a central role in the theory of time-frequency analysis. This operator was
introduced by A. Calderén [Cal77] and he conjectured that it has a bounded exten-
sion L2(R) x L°(R) — L2(R). This conjecture was finally settled by Lacey and Thiele
[LT97, LT99], where they showed that BHT is bounded LP!(R) x LP2(R) — L”(R) for all
p1, P2 € (1,00] with % < p < oo, where % = % + é. It is an open problem whether we
can obtain bounds for the remaining range % <ps< % or not. Weighted bounds for this
operator were established through sparse domination in [CDO18], which caused an in-
terest in proving a multilinear analogue of Rubio de Francia’s extrapolation theorem.
An added difficulty in this situation is the fact that only bounds in a limited range of
p1, p2 are known for a restricted class of weights, so the multilinear extrapolation result
of Grafakos and Martell [GM04] does not apply.

With an application to BHT in mind, a multilinear analogue of the limited range
extrapolation result of Auscher and Martell [AMO07] was obtained by Cruz-Uribe and
Martell in [CM18]. They showed that if there are r; € (0,00), s; € (rj,00], and g; € [r}, s;],
qj # oo, such that an m-linear operator T satisfies

m
f newy < . ,
1T (f ) La e wa) le:[lllf]IIqu(Rn;w;{]) (1.1.7)
: qj : - " L _ym 1
for all weights w;’ € Agj,(rj,sp as in (1.1.2), where w = szl Wi 4 =Xjti g then T

satisfies the same boundedness for all p; € (r},s;) and all wfj € Apj,(rjsj)» as well as
certain vector-valued bounds.

Through the helicoidal method of Benea and Muscalu [BM16], vector-valued bounds
of the form LP! (R"; ¢7) x LP2(R"; ¢%2) — LP (R"; ¢9) were established in this range of p;,
p, p for various choices of 1 < g1, g2 < 00, % < g < co with % = % + %. However, the ex-
trapolation result of Cruz-Uribe and Martell does not allow one to cover the full range of
exponents. More precisely, their result cannot retrieve any of the vector-valued bounds
involving £*° spaces. The problem seems to be that the multilinear nature of the prob-
lem is not completely utilized when one imposes individual conditions on each of the
weights rather than involving an interaction between the various weights.

In the work [LMO18] by Li, Martell, and Ombrosi an extrapolation result was pre-
sented for a limited range version of the multilinear weight condition introduced by
Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzélez [LOP*09b]. These weight classes
are characterized by boundedness of the multisublinear Hardy-Littlewood maximal op-

erator as well as by boundedness of sparse forms, meaning the theory can be applied
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to a wealth of operators including multilinear Calderén-Zygmund operators and bilin-
ear Hilbert transform. They introduced the weight class A, where pP=(p1....pm), T=
(MyeeorTme) With 1< 1< pj<oo, 1 m+1>pw1th1 —ZJ . Then @ = (wy,..., wy) €

Ag if

p
1 1 1

m L ,'r;"+1,, P mo( ,jr,,,j ’7_’%/‘
|Q|f(]:[ )m+1 dx [1 @wij dx <oo, (118

which in the case m = 1 coincides with the condition [w] 1’; (“ ) < 0o. They showed that if
(s
qm

(1.1.7) holds fora G = (q1,...,qm) with1 <r; < gj <oo, T m+1 > g and all (wfl )E
Ag > then T satisfies the same boundedness for all p = (py,..., pm) and (w{g1 . wm ") e
Apy with rj < pj <ocoand r,,  , > p. Furthermore, their result extends and reproves
some of the vector-valued bounds found by Benea and Muscalu [BM18] for BHT. This
class of weights does seem to be adapted to the situation even when p; = oo, but one
needs to be careful in how the constant is interpreted in this case. Similar to the proof of
the extrapolation result of Cruz-Uribe and Martell, their proof of this extrapolation re-
sult is based upon an off-diagonal extrapolation result, but in their work they left open
exactly what happens in the case that some of the exponents are infinite. They eventu-
ally covered these cases in [LMM™19]. Here they show that, as a feature of off-diagonal
extrapolation, it is also possible to obtain estimates that include the cases of infinite
exponents.

In this work we again prove an extrapolation result using the multilinear weight
classes, and our result includes these endpoint cases which, in particular, include the
possibility of extrapolating from the cases where in the initial assumption the exponents
can be infinite. This result was originally proven by the author in [Niel9] in the time
before the paper [LMM™*19] appeared. This proof is new and does not rely on any off-
diagonal extrapolation result. Rather, we generalize the Rubio de Francia algorithm to
a multilinear setting adapted to the multisublinear Hardy-Littlewood maximal opera-
tor. As a corollary, we are able to obtain vector-valued extensions of operators to spaces
including ¢°° spaces. Thus, applying this to BHT allows us to recover these endpoint
bounds that were obtained earlier through the helicoidal method [BM18].

Our construction is quantitative in the sense that it allows us to track the depen-
dence of the bounds on the weight constants. Such quantitative versions of extrapo-
lation results were first formalized by Dragicevi¢, Grafakos, Pereyra, and Petermichl in
the linear setting in [DGPP05], but are completely new in the multilinear setting. In
the linear setting this result is based on Buckley’s sharp weighted bound for the Hardy-
Littlewood maximal operator. This bound has been generalized to the multisublinear
Hardy-Littlewood maximal operator by Damian, Lerner, and Pérez [DLP15] to a sharp
estimate in the setting of a mixed type Aj —Ax estimates and a sharp A bound is found
in [LMS14]. In Section 3.2 we give a different proof of this result for the more general
limited range version of this maximal operator by generalizing a proof of Lerner [Ler08].
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Unlike in the linear case m = 1, our quantitative extrapolation result in the case
m > 1 is actually essential when it comes to obtaining the full range of sharp weighted
bounds for multi(sub)linear operators dominated by sparse forms. The reason for this
is that sparse domination initially yields sharp bounds for an operator for exponents
P1,-.., pm only if % =X, - < 1, where one can appeal to duality. While in the linear
setting m = 1 this covers the full range p € (1,00), in the multilinear setting m > 1 the
exponent p can also satisfy p € (%, 1). Our extrapolation result allows us to show that
the sharp bound for p = 1 obtained from sparse domination also holds when p < 1. We

elaborate on this further in Chapter 5.

1.1.4. Symmetry in the A, classes

For p € (1,00), a standard method of obtaining weighted L estimates with a weight w is
by using the duality (L (w))* = L (w'~"") given through the integral pairing

(o) = f fgdx.
Rn

This duality in reflected in the definition of the Muckenhoupt A, class, which is defined
/ __1
in terms of the weights w and w'™” = w™ 7. One way to understand this definition

' 1 ;oL
better is by noting that we can relate the weights w and w'~? through w? (w'=7)7? =1.
When we replace the weight w by the weight w? we find, using the averaging nota-

tion (hyg,0 = (b Jol 19 dx) ", that

1
(P17, =supwpotw™) .0
Q

for p € (1,00). The symmetry in this condition is much more prevalent and this condi-
tion seems to be more naturally adapted to the weighted L” theory. Indeed, defining

(w]p = (WP} |

we note that [w], = [w™] p'- We define the bisublinear Hardy-Littlewood maximal op-
erator M(;, 1) by
M1y (fi, f2)(x) == sup{fi)1,0¢{/2)1,0-
Q3x

Then, writing | f | &) = Il f wll rr mny, we have the remarkable equivalences

[wlp =M 1z @y poo nswr) = 1My | RY—LP R

v (1.1.9)

~ || M, )
I (1,1) ”LZ,(R") XLpr_l (R))— LLoo®™)
w

see Chapter 3. Another way of thinking of these equivalences is by setting w; := w,
wy = w™! and p; := p, p2 := p’ so that we have the relations

1 1
wiwy =1, —+—=1. (1.1.10)
pP1 p2
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Then one can impose a symmetric weight condition

(w1, w2l (py,ps) = Slép<wl>p1,Q<w2>p2,Q <oo

and note that
(w1, w2)l(py,ps) = [W1lp, = [W2lp,.

The equivalences (1.1.9) can now be thought of as
” M(l,l) ”L/:)l] (RM) XL’MI/ZZ (R")— L1 (RN) ~ [(WI, wZ)] (p1,p2)»
”M”L)Lgull (Rn)*,Lpl,oo(Rn;wfl) ~ [wl]pl »
”M”L’L’UZ2 (R")—LP2 R%;wh2) ™ (walp,-

We can even make sense of these expressions when p; = 1 and py = oo or p; = 00
and p, = 1, since f € L}, (R™) (or f € LP®°(R"; wP)) in the case p = oo just means that
the function fw is essentially bounded. Writing (1), = esssup x€Q |h(x)|, we see that
the condition [w)]; < oo is equivalent to the usual A; condition imposed on the weight
w; = w, while the condition [w1]e < 0o is equivalent to the condition w, = w™! € A;.
We emphasize here that our condition [w] < co is not equivalent to the condition w €
Ao = Upe(1,00) Ap and these notions should not be confused. The condition wle A
seems to be a natural upper endpoint condition and we will show that this is equivalent
to M being bounded L5 (R") — LS (R™). As a matter of fact, since M is an isometry in
L*®(R™), it behaves most naturally when p = co. Thus, even though this case was origi-
nally missed, this equivalence is the simplest case of Muckenhoupt’s characterization of
the A classes. We fill in this gap here.

Proposition 1.1.1. Let w be a weight and c = 0. Then [w]x < ¢ if and only if
IM [l mm < cll fll L mn).- (1.1.1D)
forall f € LY (R™). In particular, | M|l o ®n)— 133 R") = [W]oo-

Proof. We note that [w]e = [w™ !4, < cifand only if M(w™) < cw™!. Thus, if [w]e < ¢,
then
Mf=M(fww ™)< Mw I fllern < cw I flgern

so that (M f)w < cl| fll zomn)- This proves (1.1.11).
For the converse, set f := w™1. Then I fllzeowny = 1,80 (1.1.11) implies that Mw hws=
¢, or M(w™) < cw™L. The assertion follows. O

It also turns out that this condition allows us to extrapolate away from weighted L™
estimates. We point out that a version of this idea was used in the endpoint extrapo-
lation result of Harboure, Macias and Segovia [HMS88, Theorem 3] involving weighted
versions of the space BMO(R"). We now fill in the missing case with g = co in the Rubio
de Francia extrapolation theorem. We point out that this is the case that has the shortest
argument.
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Theorem 1.1.2. Let T be a linear operator that is bounded L33 (R"™) — LS (R") for all
weights w satisfying [w]e, < oo with

1T oo mmy— 1o ey S [WIR. (1.1.12)

Then for all p € (1,00] and all weights w with [w], < oo, T is bounded L’fu(R") — L’f,,(R”)
with
2020p

” T”LZZ(R”)—»L';(R”) ~ [W]p (1113)

Moreover, the operator T given by T(fi) ken = (T fi) ke is bounded L}, (R"; ¢*°) — LF, (R"; £°)
with /
Tl L2 s 00— 12, R0y S [w];OZOp :

Proof. Let p € (1,00], w a weight with [w], < oo, and f € L}, (R™) non-zero. We define a

weight W through

wo$ M f
io 2k M1k

Lk R —LE, R
where M°f :=|f| and M¥ f := M(M*"' f) for k€ N. Then |f| < W', ie, I flzsomn < 1.
Moreover, we have M(W™!) < 2| MllLrIL(Rn)ﬁLgvu(Rn) W1 so that [W]y < 2| M”Lﬁ’(Rn)_,Lﬁj(Rn)r
and, finally, we have || w1 PR S 20 fllp R Thus, combining these three properties
of W with (1.1.12), we have

-1 2020
” Tf”L’,L(R") = ” Tf“LOV?/(R”) ” w ”qu(R”) 5 [W]oo ”f”Lﬁ)(R")
< 2020
~ ||M||Lﬁ,(R")—>L€,(R”) ”f”le}(Rn)-
!
The result now follows from Buckley’s bound | M]| » R —L”,R") < [w]ﬁ .
w w
As for the bound of T, we note that by interchanging the suprema, forall f € L35 (R"; £*°)
we have

= 2020
T fllzso ;o0 = sup I T fiell zowmy S [wloe™ sup Il fielzoowny = I f ll 2o s e00)-
keN keN

Thus, the assertion follows by repeating the first part of the proof with T f replaced by
IT fllg~ and f replaced by || f | geo. O

The construction of W in this proof uses the classical Rubio de Francia algorithm.

We wish to view our symmetric weight condition in the context of extrapolation for
general g € [1,00]. In proving Rubio de Francia’s extrapolation theorem, one usually
starts with an estimate of the form

1T fllpg ey S 0FN2a oy (1.1.14)

for some g € [1,00] and all weights w satisfying [w] g <oo. The idea is then that given a
p € (1,00) and a weight w satisfying [w], < oo, one can construct a weight W, possibly
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depending on f, h, and w, so that W satisfies [W]; < oo as well as some additional
properties to ensure that we can use (1.1.14) with W to conclude that

” Tf”pr(R”) S ”f”pr(Rn); (1115)

proving the desired boundedness for an operator T. For the proof one usually treats
the two cases p < g and p > g separately. In the former case one can apply Holder’s
inequality to move from L” to L7 as we did in the proof of Theorem 1.1.2, and in the latter
case one can use duality and a similar technique to move from LP to LY. These cases
are essentially the same, but due to the notation we use we have to deal with the cases
separately. Here, we wish to come up with a formalization to avoid this redundancy.

The extrapolation theorem is essentially a consequence of to the following proposi-
tion:

Proposition 1.1.3. Suppose we are given p1, p2 € (1,00) satisfying% + i =1 and weights
w1, wp satisfying wyws = 1 and [(wy, w2)l(p,,p,) < 00. Moreover, assume we have fwo
functions fi € L’,j}l R and f, € L’;,Zz (R™) and q1, q; € [1,00] with % + % =1. Then there
are weights Wy, W satisfying Wi W, =1,

"fl ”L?/\}I R") ”fZ ”L(;/]l%z R) = 2||f1 ”Lﬁ}l (RM) ”fZ ”L":’ZZ (R™)

and

(5.2
qi1’ a2

[(le WZ)](ql,qg) = C[(LUI, wz)](phpz)
Indeed, the result of the extrapolation theorem follows by applying the proposition
with fi:z=f, q1:=q, Go:=q', p1:=p, p2:=p, w1 :=w, wo = w ' and Wy := W, Wy :=

W1 so that, by (1.1.14), we have

‘fRn(Tf)fgdx

<
< “ Tf”LgV(R”) ||f2 ”Lz;_l ®R") ~ ”f”L?,V(R”) ||f2 ”LZ;_l ®R™)
<
~ ”f”Lg,(R") ||f2 ”Lpl,l (Rn).
w

Thus, by duality, we obtain (1.1.15), as desired. Moreover, since by Fubini’s Theorem
we have the Bochner space equality L9(R";¢9) = ¢9(L9(R™)), as in the proof of Theo-
rem 1.1.2 one can deduce bounds T: L, (R ¢9) — L}, (R™; ¢9).

The proof of Proposition 1.1.3 uses the classical construction using the Rubio de
Francia algorithm and the novelty here is our symmetric formulation. We prove the full
multilinear limited range generalization of this result in Chapter 4. The case p < g in
the proposition takes the form p; < ¢ and p» > g» while the case p > g takes the form
p1 > g1 and p; < qo. The fact that the proposition is formulated completely symmetri-
cally in terms of the parameters indexed over {1, 2}, where we note that [(w1, w2)](p,,p,) =
[(w2, w1)](p,,p;), Mmeans that these respective cases can be proven using precisely the
same argument, up to a permutation of the indices. Thus, without loss of generality,
one only needs to prove one of the two cases.
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These symmetries become especially important in the m-linear setting where we are
dealing with parameters indexed over {1,...,m + 1} and the amount of cases we have to
consider increases. Thanks to our formulation, we will be able to reduce these multiple
cases back to a single case in our arguments again by permuting the indices.

1.1.5. Vector-valued extensions of operators

Vector-valued extensions of operators prevalent in the theory of harmonic analysis have
been actively studied in the past decades. A centerpoint of the theory is the result of
Burkholder [Bur83] and Bourgain [Bou83] which states that the Hilbert transform has
a bounded tensor extension H : L (R; X) — LP(R; X) for some, or equivalently all, p €
(1,00), if and only if the Banach space X has the so-called UMD property. From this
connection one can derive the boundedness of the vector-valued extension of many
operators in harmonic analysis, like Fourier multipliers and Littlewood-Paley operators.

In the specific case where X is a Banach function space, i.e. a lattice of functions
over some measure space, very general extension theorems are known. These follow
from the deep result of Bourgain [Bou84] and Rubio de Francia [Rub86] on the con-
nection between the boundedness of the lattice Hardy-Littlewood maximal operator
M : LP[R"™; X) — LP(R"; X) and the UMD property of X. The boundedness of the lat-
tice Hardy-Littlewood maximal operator often allows one to use the scalar-valued ar-
guments to show the boundedness of the vector-valued extension of an operator, using
very elaborate Fubini-type techniques. Moreover it connects the extension problem to
the theory of Muckenhoupt weights.

As we have seen, vector-valued extensions in sequence spaces ¢9 of operators can
be obtained from Rubio de Francia’s extrapolation theorem through an argument using
Fubini’s Theorem. Rubio de Francia showed in [Rub85, Theorem 5] that one can take
this even further. Indeed, again assuming that T is a linear operator satisfying the ini-
tial weighted estimate (1.1.14), then for each Banach function space X with the UMD
property, T extends to an operator T satisfying the Bochner space bound LP (R"; X) —
LP(R"; X) for all p € (1,00). This establishes a deep connection between the theory of
Muckenhoupt weights, the theory of UMD Banach function spaces, and the theory of
singular integral operators.

This vector-valued extrapolation result of Rubio de Francia was extended by Amenta,
Lorist, and Veraar in [ALV19] to a rescaled setting and by Lorist and the author in [LN19]
to a limited range multilinear setting.

In this latter result we proved that if there are r; € (0,00), s; € (rj,00], and a multi-
linear operator T is bounded L’Z}l R x +--x qu’fn (R — LZ,(R”) forall p; € (rj,s;), and
weights wf I e Apj,(rj, 5) forall j €{1,..., m}, then it has a vector-valued extension T that
is bounded L}, (R"; X1) x --- x Ly (R"; Xp) — LY, (R"; X) for all p; € (r},s;), all weights
wfj € Ap, (r,s;)» and all (quasi-)Banach function spaces X; satisfyinga UMDy, s; condi-
tion, which is a certain rescaled UMD condition. A version of this result with a slightly
more general condition on the spaces is proven in Section 9.1.



14 1. INTRODUCTION

In the linear case m = 1, our result extends the main result of [ALV19] in the sense
that it allows for finite s;, which can then be applied to any of the operators satisfying
the sparse form domination (1.1.1) introduced in [BFP16].

As for the multilinear case m > 1, to place this result into context we point out that
it appeared after the limited range multilinear extrapolation theorem of Cruz-Uribe and
Martell [CM18], but before the realization of Li, Martell, and Ombrosi in [LMO18] that
rather than assuming a condition on each individual weight, it is more appropriate to
consider the multilinear weight classes defined through (1.1.8). Since the space ¢ is
not a UMD space, bounds in this space can not be obtained through our vector-valued
extrapolation theorem, even though these spaces can be obtained through the extrapo-
lation techniques using multilinear weight classes [Nie19, LMM™*19].

To unify the theory, a multilinear UMD condition for tuples of Banach spaces was
introduced in the work [LN20] of Lorist and the author. We introduce these spaces in
Chapter 8 and prove a multilinear extension theorem in which we use the multilinear
structure to its fullest in Section 9.2. We impose a condition on the tuple of Banach
function spaces (Xj, ..., Xi;) rather than a condition on each X; individually. In parallel
to the weighted theory, we will introduce this condition using the boundedness of a
certain rescaled multisublinear Hardy-Littlewood maximal operator. In the linear case
m = 1 this condition reads as follows:

”M(l,l) (f; g) ||L1(R”,'Ll Q) 5 "f”Lp(R”;X) ”g“Lp’(Rn;X*)

forall fe LP(R%;X), g€ L” (R"; X*) and some p € (1,00), where M1y is the bisublinear
lattice maximal operator that we introduce in Section 8.3. In Section 8.4 we will show
that this condition is equivalent to the UMD condition for Banach function spaces and
motivated by this result, we will call our multilinear analog a multilinear UMD condi-
tion, even though our definition only makes sense for tuples of Banach function spaces.

Both the Banach function space extension principle from [Rub86, ALV19, LN19] and
the iterated L7-space extension principle using the extrapolation results in [Nie19, LMM™*19]
use the weighted boundedness of a multilinear operator

T: L) R™) x---x LI (R") — L, (R™)
to deduce the weighted boundedness of its extension

T: L) R X)) x -+ x LI (R™; X,) — LE, (R™; X).
Usually these weighted bounds for T are deduced through sparse domination. Thus, to
deduce the weighted boundedness of the vector-valued extension T of an operator T
one typically goes through implications (1) and (3) in the following diagram.
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@

Sparse domination for T ———= Weighted bounds for T
2) M 3) M
Sparse domination for T ——— Weighted bounds for T

The implications (1) and (4) are respectively treated in Section 5.3 and Section 8.2. The
vector-valued extrapolation theorem for implication (3) is proven in Section 9.1.

In Section 9.2 we will deduce the weighted boundedness of the vector-valued exten-
sion T of T through implications (2) and (4). To this end we will show that scalar-valued
sparse domination implies vector-valued sparse domination (implication (2)) with re-
spect to tuples of spaces satisfying our multilinear UMD-condition. Such a result was
established by Culiuc, Di Plinio, and Ou in [CDO17] for sequence spaces ¢7 with g = 1,
which in particular satisfy our multilinear UMD condition. We point out that even in
the linear case m = 1, the result of obtaining vector-valued extensions of operators in
UMD Banach function spaces from sparse domination without appealing to a Rubio de
Francia type extrapolation theorem is new.

The advantage of the route through implications (2) and (4) over the route through
implications (1) and (3) is that for general tuples of quasi-Banach function spaces the
Fubini-type techniques needed for implication (2) are a lot less technical than the ones
needed for implication (3). Moreover implication (4) yields quantitative and in many
cases sharp weighted estimates for T, while the weight dependence in the arguments
used for implication (3) is not easily tracked and certainly not sharp. A downside of our
approach through implications (2) and (4) is the fact that we need sparse domination
for T as a starting point, while one only needs weighted bounds in order to apply (3).
We point out that it is an open question whether it is possible to prove implication (3)
for tuples of spaces in our multilinear UMD classes, rather than for tuples of spaces that
each satisfy a UMD condition as is the case in Section 9.1.

Our proof of implication (2) relies on two key ingredients. The first is the equivalence
between sparse form and the L'-norm of the multisublinear maximal function, which
we treat in Section 3.2. This equivalence seems to have been used for the first time in
[CDO17] by Culiuc, Di Plinio, and Ou. The second ingredient is a sparse domination re-
sult for the multisublinear lattice maximal operator under the multilinear UMD condi-
tion assumption, which we present in Section 8.3. This result is an extension of the idea
of Hanninen and Lorist in [HL19], where a linear version of this result was obtained.
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1.2. OUTLINE OF THE THESIS

Part %: Introduction

In Chapter 1 we give a general introduction for this thesis. In Chapter 2 we describe the
setting as well as the notational conventions that are in force throughout the thesis.

Part % : Multilinear weight classes and Rubio de Francia extrapolation

In Chapter 3 we define the multilinear weight classes and the corresponding weight con-
stants. The main results in this chapter are Theorem 3.2.3 and Theorem 3.2.11 in which
the weight classes are characterized by the boundedness of the multisublinear maxi-
mal operator and sparse forms. Moreover, we obtain the sharp dependence of the their
bounds in terms of the weight constant. Finally, we introduce multilinear analogues of
the Fujii-Wilson constant and we prove a self-improvement property of the multilinear
weight classes.

In Chapter 4 we prove the abstract version of the sharp multilinear limited range
extrapolation theorem given in Theorem 4.1.1. This is done through the construction
of a multilinear analogue of the Rubio de Francia algorithm in Lemma 4.1.3 and heavily
utilizes the symmetry in the weight classes. A careful study of the dependence of the
parameters and weight constants is done throughout the arguments.

Part % : Quantitative estimates for multilinear operators dominated by sparse forms

This partis dedicated to applying the theory from Part % in order to obtain sharp weighted
bound for multi(sub)linear operators.

In Chapter 5 we apply the extrapolation theorem from Chapter 4 to multi(sub)linear
operators satisfying weighted bounds with respect to the multilinear weight classes.
This is done in main result in the first section in Theorem 5.1.2. In the following sec-
tion we apply Theorem 5.1.2 to prove Theorem 5.2.3, where we obtain a sharpness result
for operators through the asymptotic behaviour of their unweighted operator norms. In
the subsequent section we apply Theorem 5.1.2 to obtain the full range of sharp bounds
for operators satisfying ¢9-type sparse domination in form in Theorem 5.3.6. In the last
section of this chapter we introduce multilinear Calderén-Zygmund operators and the
bilinear Hilbert transform, and apply Theorem 5.3.6 to obtain sharp bounds for these
operators. Moreover, examples of operators satisfying sparse bounds are given in the
linear case m = 1.

In Chapter 6 we first prove that multi(sub)linear operators satisfying sparse form
domination are weakly bounded at the lower endpoint. The main results of the sub-
sequent section are given in Theorem 6.2.1, Theorem 6.2.2, and Theorem 6.2.9, where
weighted mixed type A,—Ay, endpoint bounds are proven for operators satisfying sparse
form bounds in the linear setting m = 1. A main ingredient for these results is the sharp
reverse Holder inequality for Muckenhoupt weights.
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In Chapter 7 we show that our results also hold in the setting of spaces of homo-
geneous type. To this end, we prove Calderén-Zygmund decompositions adapted to
dyadic grids in these spaces in the separate cases where the space is either bounded or
unbounded.

Part % : A multilinear UMD condition and vector-valued extensions of multilinear op-
erators

In this part we introduce a multilinear analogue of the UMD condition for tuples of
quasi-Banach function spaces, and prove vector-valued bounds for extensions of oper-
ators with respect to these spaces.

In Chapter 8 we introduce product quasi-Banach function spaces and use the ex-
trapolation result to prove sharp weighted vector-valued bounds for operators satisfying
a vector-valued sparse domination in Theorem 8.2.2. Moreover, we introduce the mul-
tisublinear lattice maximal operator and define a rescaled multilinear analogue of the
Hardy-Littlewood property for tuples of quasi-Banach function spaces. The main result
in this section is Theorem 8.3.3 in which sparse domination of the multisublinear lat-
tice maximal operator is proven for such tuples of quasi-Banach function spaces. In the
final section we introduce a limited range multilinear analogue of the UMD condition
for tuples of quasi-Banach function spaces. Moreover, we provide basic properties and
examples of these spaces.

In Chapter 9 we describe two methods of obtaining vector-valued bounds for ex-
tensions of multi(sub)linear operators. In the first section we prove a multilinear lim-
ited range analogue of Rubio de Francia’s vector-valued extrapolation theorem in The-
orem 9.1.1. A main ingredient here is a self-improvement property of our limited range
UMD condition in the linear setting m = 1 proven in Proposition 9.1.7. In the next sec-
tion we use the sparse domination result Theorem 8.3.3 for the multisublinear lattice
maximal operator to prove Theorem 9.2.1 in which we show that if an operator satisfies
sparse form domination, then it has a vector-valued extension satisfying vector-valued
sparse domination for tuples of quasi-Banach function spaces satisfying our multilin-
ear UMD condition. The results of Chapter 8 are then used to deduce sharp weighted
vector-valued bounds of these operators. In the last section we describe how our meth-
ods can be used to prove optimal weighted vector-valued bounds in concrete situations
and, in particular, we apply our results to multilinear Calderén-Zygmund operators and
the bilinear Hilbert transform.
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THE SETTING AND NOTATIONAL CONVENTIONS

Since we are working in a multilinear setting, it is helpful to set some notational conven-
tions in order to reduce the size and increase the readability of our expressions.

Throughout this work, m will denote an integer greater than or equal to 1. When
m = 1, we will refer to this setting as the linear setting, while for general m we refer
to the setting as an m-linear or multilinear setting. Moreover, we respectively refer to
operators in these settings as linear and multilinear operators. We point out that this is
somewhat inaccurate, since we are not only considering multilinear operators, but also
multisublinear operators.

For most of this work we will be working with functions defined on the metric mea-
sure space (R",|-|,dx), where n is a positive integer, |- | is the Euclidean norm, and dx is
the Lebesgue measure.

For p € (0,00], we denote by LP (R") the complex Lebesgue space of measurable func-
tions whose p-th power is integrable. We let L°(R") denote the complex space of mea-
surable functions. When we are working with a measure p different from the Lebesgue
measure on R”?, we will denote these spaces by L” (R"; u). We use a similar convention
for the weak-type spaces LP**°(R").

For an m-tuple of parameters p;,..., pm, usually appearing in some subset of (0, 0],
we will use the notation p = (py,..., pm) for the vector that has the p; as its compo-
nents. We will often introduce such an m-tuple by simply writing p € (0,00]”. Some-
times we will also write 1 = (1,...,1) and & = (o9,...,00). Moreover, for p € (0,00]™ we
will, per convention, define the parameter p € (0,00] with the index j dropped through
the Holder relation

For g € (0,00)" we write p = G if p; = q; and write p > G if p; > g forall j € {1,...,m}.
Note that p > g, p > ¢ respectively imply that p = g and p > q. We define arithmetic op-
erations on ﬁ and g coordinate wise, e.g., we may write % = (%, . p’") pe = (py,.... pm)

1
“pj

‘BI'—‘

fora>0,or 1 5= (— s pim). Moreover, we write max{p} := rnax{pl, <, Pm}-
For p € (0,00]™ we will use the shorthand notation

LP@R") := LP*(R") x --- x LPm(R™).

This way, we may write f € LP(R") to mean that f = (f1,-.., fm) is an m-tuple of func-
tions with f; € LPi(R™) for all j € {1,...,m}. When pj =ooforall je{l,..., m} we will

19
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sometimes also write L°(R™)™ rather than L®(R"). Moreover, we use similar conven-
tions when adding a subscript to the spaces, or when considering weak-type spaces e.g.,
for I (R™) and L (R"). We will later adopt similar conventions for weighted Lebesgue

spaces L’Z} (R™") and weighted mixed-norm Lebesgue spaces L’Z} (R”; X) as soon as the re-
lated notions are introduced.

As for the dependance on parameters of constants appearing in inequalities, we will
and possibly on m and the dimension n. By <, 5. we mean that there is a constant
Ca,p,... such that inequality holds and by <, we mean that both <,  and 2,5, .
hold. Whenever possible, in the proofs of our results we will keep explicit track of the
precise control of the constants other than m and the dimension n.

Finally, we set a convention on our notation for Lebesgue exponents. Since many of
our estimates rely on Holder’s inequality and related convexity results, it is more con-

venient to think in terms of the parameter % rather than p. To facilitate this, we aim to

avoid using expressions such as, e.g., q(g)', but rather write this as < 1 —. In this case,

q p
when p = g, then itis implied that + i + = oo. Similarly we may write an expression such
q
as pli L 5y A8 T L to make it clearer that we have
rP1 - P2

< |- lerr @yl 1 r2 e

T
LP17 P2 Rn)

by Hélder’s inequality. Since it often occurs that, e.g., p; = 0o, using our notational con-

vention this way we do not need to treat this case separately, since we may simply take

% = 0 in the expressions.
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3

MULTILINEAR WEIGHT CLASSES

In this chapter we introduce the multilinear Muckenhoupt weight classes. The first two
sections of this chapter are partly based on the first part of the paper

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.
Mathematische Annalen, 375(1-2):453-507, 2019.

These sections are enhanced through the inclusion of various small results from unpub-
lished drafts.

The third section contains the partial results from an original unpublished manuscript
on multilinear reverse Holder weight classes.

3.1. THE Ajp (7,5) WEIGHT CLASSES

A weight w is a measurable function w : R” — (0,00). For a weight w and p € (0,00] we
define the weighted Lebesgue space L}, (R") as the space of those measurable functions
f satisfying || fwlp@®r) < co. Note that if p € (0,00), then L'fU(R”) coincides with the
space LP(R"; w”), i.e., the L space over R” with respect to the measure w? dx. It should
be noted that our definition of L?, (R") is often denoted by L” (w”) in the literature when
p < oo, but the advantage of our definition is that we also obtain a sensible definition
when p = co.

When p < co we use the notation L), (R") := LP*®°[R"; wP) for the weak-type L?
space over R" with respect to the measure w” dx. Moreover, in the case that p = co we
set Ly (R™) := L2 (R™).

For a vector of m weights i = (w;,..., wy,), per convention we will use the dropped
index notation w := H;.": , wj for the product of the weights. Moreover, for exponents
P € (0,00]™ we will also use the shorthand notation

L7 R™:= LB} R") x - x LI (R™).

By a cube Q < R” we mean a half-open cube whose sides are parallel to the coordinate

axes. For a measurable function f € L9(R™), a measurable set E of positive finite mea-
1

sure, and q € (0,00) we will write () 4 g := (ﬁ fEIflq dx)a and (f) o, 1= €sssup, g | f(X)I.

Definition 3.1.1. Let 7 € (0,00)™, s € (0,00] and let p € (0,00]™ with p =7 and p < s.
Let i be a vector of m weights. We call i@ a multilinear Muckenhoupt weight and write

23
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e Aﬁ,(?,s) if

m
> — -1
[W0]5,,5 = sup([[(wj >ﬁ'Q)<w>ﬁ,Q < 00,
Q Jj=1 i T Pj I
where the supremum is taken over all cubes Q € R”.
If we have an additional weight v we can replace the product weight w by v in the
above definition. In this case we say that (i0, v) € A (7,5) and denote the corresponding

constant by [, V] 5 7,)-

We point out that the definition of the weight class is sensible as long as rl - % =0
7 ]

and % - % = 0. Thus, we can also make sense of it when, e.g., % is negative. Note that

p € (0,00]™ with p =7 and p < s exist only when r < s.
By comparability of cubes and balls, we can equivalently define the weight classes in
terms of balls with comparable constants.

Remark 3.1.2. The condition [i0] ) < oo coincides with (1.1.8) in the introduction

when replacing w; in that expression by wf /. Moreover, in the case m = 1 we have
1_1

[w],. s = [wP], ° , where the latter constant is defined in the introduction in (1.1.2).
pi(ns) Ap,(r,s)

1
In particular, we have [w],1,00) = [wp]f; .
p

We list some useful properties of the weight classes and weight constants.

Proposition 3.1.3. Let 7 € (0,00)™, s € (0,00] and let p € (0,001 withp =7 and p < s.
Let i € A 7,5). Then we have the following result.

@) (W5 =1

with

(3

)

(ii) Lett>0. Then '€ Aj
2,

~I~
~1

— [ ot
(] =015, 7,5)-

~IS

1

~1~

)

(iii) Let g € (0,00)™ with § =7 and q<s, 0 €(0,1], and U € Ag 5. Then %'~ €
A 1 - o With
0Lia-01 A125)
q P
=0 »1-0 =10 —11-0
(7] -9 = 015,60 W15,6,9-

Proof. For (i), note that for any cube Q < R" it follows from Holder's inequality that

1 _
Ti T Pj p=s

m
_ -1 .
1={ o= (]l:[1<wj )i vQ)<w> o = Wl

ro s

Hence, [17/],5‘(;, 5 =1, as asserted.
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We note that (ii) is a consequence of the fact that for all cubes Q we have

wWih 1 o=wiht L wh o=,

i 7P s pos

T

The result then follows from the definition of the weight constant.
For (ii) we note that

1 6—+(1 0)—) 0(i—i)+(1—0)(i—i)
I qj Pj | i Pj

ka0t oot eaa(2-2)
q p s \q s p s

so that by Holder’s inequality we have

(000 ) < (U—1>9 <w‘1>1 -9
J T 1 Q= e
Lod;a-0d; rT"W TiPf
W w0 os?y wld
o%+a- 9)1 T T e
q-s P
The result then follows from the definition of the weight constants. O

In the following result we show which power weights belong to the class Ap 7 ).

Proposition 3.1.4. Let 7 € (0,00)™, s € (0,00] and let p € (0,00]™ withp =7 and p < s.
Leta e R™ and let wj(x) := |x|*".
We have W € Ap (7,5 if and only if for all j € {1,..., m}

1 1 _——
s i Pj

(i) 1 mn 1
W5 (7s~ —_— | | —
p,(7,8) ™1, 1 a;
1+ Y7, = 1=
P joPj

whereif p; =rj or p = s, the corresponding term on the right should be replaced by 1.

1 —ajn

T.T -1
—% > 0, the weights wj(x) 7 77 =|x|"7 7i and

1
pj

1

>
0,p

Proof. Note that when % -

1 m

_1
s

Xmoaj
TEa are locally integrable if and only if aj < i - pi and 7 aj >

- (% - —) The local integrability of these weights is necessary for the condition [@] 5 (7,s) <
oo. In case p;j = r;j or p = s we note that respectively w; or w is locally bounded if and
only if respectively a; < 0 or Z;”z ,@j = 0. We will prove that these conditions are also

1 T_T
wx) P s =|x|?
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sufficient. To this end we consider the weight constants in terms of balls rather than

cubes.
Set ¢, :=|S"" 1,1 so that |B(z; R)| = %"R”. For the lower bound, note that
1_1 —ajn e
R n Trian \Posm g - T s
(W59 2| — lyl P75 dy 11— lyl "7 Pidy
B(0;1) j=1 Cn JB(0;1)
1 1
%_% T (3.1.1)
~ 1 ﬁ 1
= i ’
I+ 12,9 j=i| -1
P joPj

whereif pj = r; or p = s, the corresponding integral should be replaced by sup ¢ (g1 17l

Lorsupyep;) |y|zj=1 it =,
For the upper bound, let B(xy; r9) be a ball. We consider the two cases |xy| = 3rp and

|x0l < 3rp.
First assume that |xy| = 37ry. Then for any y € B(xp; rp) we have |y| = |xp|. Indeed,

4 2
[YI =1y —Xol +|xol < ro+|x0| < glxol, [yl = Ixol =1y —Xol > |x0|l — 1o = glxol-

Then we have

1 1 —a;n
1 275 P
T X ajn pos m T_ 1 o
. T Ny T M dy
j=1 |B(X(),r0)| B(xo;r0)

| B(x0; 70)| JB(xo;70)

m
m . .
= 1xol= =1 4" ] Ixol ™47 = 1,
J=1

where a similar computation holds when p; = r;j or p = s. Since it follows from Holder’s
inequality that any of the terms in the supremum taken to compute [i0] 5 (7 5) are at least

1, this holds in particular for the term computed in (3.1.1). Thus,

proving the desired upper bound in this case.
Finally, assume that |xg| < 3ry. Note that now B(xp; o) < B(0;4rp), since whenever
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|y — xol < ro, we have |y| < |y — x| + | xo| < 4r9. Then

1_1

1_1 —ajn i
1 T 12;"—10‘/'" r s m AL_]L rj Pj
T TXj= - T
—_ lylP~s dy [T lyl 7 Pi dy
| B(x0; 70) | JB(x0;70) j=1 |B(xo,ro)| B(x0;70)
1 1
11 —ain 1_1
1L ym g 775 P
7 P s m
< nnf IR T nnf NEEEY
CnTy JB(0;4r0) j=1\ €nTy JB(0;4ro)
1 1
1_1 ajin 7 " ps
nt i X an \ s -1\ i
_| 1 @ P l’—"[ 1 @rg P
- n 1 m . ] n aj
To 1+1-TXil @ =1l 7o 1-=z-x
p s r pj
1 1
1_1 L L
s i Pj
1.1 1 m 1
=4"(:=5) I1 - )
m i J
I+ 1), aj j=\1-7—T
P

where if p; = rj or p = s, the corresponding integral estimate should be replaced by

—ain —a; X ain rniaj . h
SUP e B(xgirg) |1V < (470) ™% OF SUP e p(xg:rg) V177 < (4rp)~J in the computa-
tion. This proves the result. O

Proposition 3.1.5. Let 7 € (0,00)™ and ﬁ € (0,00]™ with p = 7. Let .# be a partition of
1,...,m} andletS%ERwithp1 Z]EI —and 1 = Zj€1%j>s—llf0reachleﬂ.

Then, zf% =Y ey sl,' we have the lncluszon

[T Awpjenirpiensn € Ap s (3.1.2)
Iey
with
m
[0 p,7,5) = H [(wj)jEI](Pj)jsly((rj)jelvsf)' (3.1.3)
Iey

Moreover, if Z is a proper partition, then this inclusion is strict.

Note that in particular this implies that for € R™ with &~ < - for all j € {1,...,m}
] J
we have Ap, () X+ X Ap, (rp.sm) S Ap,(7,5) With a strict inclusion.

Proof. To prove the inclusion, note that it follows from Holder’s inequality that for any
cube Q < R” we have

<W>111 H(]_[w] 1

s Iey jel ,qu

where =y jel po . Thus, by the definition of the weight constants, this proves (3.1.3).
We conclude from thls that (3.1.2) holds.
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To see that the inclusion is strict when .# is a proper partition, we fix I € .# and define
6::é(l—l)+%(l—l)>i——>0ands 1 (2-1-6)>0. Setting

ry N r S rr r
116 o
)5y ifjelr
CTEYL_L_ e e
T pj m—#1 J ’
and wj(x) := |x|%", we note that aj < i - %,
J
1 1 mn 1 1 1 1
Zaj:————é ———, Yaj=——-—-(6+8)>-——.
jel T pr St P =1 r p s p

Hence, by Proposition 3.1.4 we have (wj) jer € A(p))je;,((rj)jer,sn While W € Ap 7 ). This
proves the assertion. O

The class Aj (7 5) has an alternative description in terms of individual conditions on
the m weights i combined with a condition on the product weight w.

Proposition 3.1.6. Let7 € (0,00)™, s € (0,00] and p € (0,00]™ withp =7 and p < s. Let i
be an m-tuple of weights. The following are equivalent:

) We Ap 7,5

(i) wj€ Ap, (r,,0) With 0—1] =L_(1-1)forallje{l,...mlandwe Ap.y.

Ty

Moreover, we have

maX{[Wl]pl,(rl,Ul); ceey [Wm]pm,(rm,am)) [w] p,(r,s)} <[] p,(F,8)

(3.1.4)
w]p(rs) (H wj]pj,(rj,Uj))[W]p,(r,s)-

Proof. Fix jy € {1,...,m}. We first note that # > UL so that the welght classes are well-
0

defined. Indeed, this inequality is equivalent to % - p% < % S. For the latter, note
Jo Jo
that
1 1 1 1 1 1
=il e--Z,
i Pjp T P T S
since % < %, as desired.
or (i)=(ii), note that - — UL =Ll_liym 1_.1 Thus, by Holder’s inequality,
Pjo jo P S j=17;
J#Jo
we have
1 1 3 1
{w), >¢_1¢’Q<wj°>iv0 = (wj, >¢_]¢v0<w H wj >W'Q
Tio Pio Pjo %o Tio  Plo J=1 oS =17 P
J#jo i#Jo

m
-1
S(wa >ﬁ’Q)<w>ﬁ’Q
Jj=1 TP JZ
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for all cubes Q. Taking a supremum over all cubes Q proves that (Wiolpj.rjg.oj) <
l_ym 1_1
v j=17; p so that

[@0]5,7,5)- For the assertion about w, note that 3 —
)<w>

(w™! - (1‘[<w >
”J

Q(W)
for all cubes Q. By taking a supremum over all cubes Q we conclude that [w]p (,5) <

=1

(W] 5,7,s) Thus, we have proven (ii) and the first inequality in (3.1.4)
For (i))= (i), note that if follows from Hoélder’s inequality that

-1
(H<w1 S [ MR L )
o] r p TS
and hence
T -1
(H<w o )<w> o= (TTawh o gtwp o)™, el o
7 8 j=t i P Pj77] pos
m
= (H [wj]Pj'(rijj))[w]P:(V,S)
O

for all cubes Q. Taking a supremum over Q proves (i) and the second inequalityin (3.1.4)

The result follows.
In the case m = 1, the class A, (,5) can also be described through a reverse Holder

condition.
Definition 3.1.7. Let § € (1,00] and let w be a weight. We write w € RHg when

[WRrH := sup(w) g,o{w), o < oo
where the supremum is taken over all cubes Q < R"
Proposition 3.1.8. Letr € (0,00), s€ (0,00], p € [1, 5), and let w be a weight. The following

are equivalent:

() we Ap s

(i) w € Ap (r,00) and w?P € RH 1

Sl
el

Moreover, in this case we have
1
b [w]p (roo)} = [w]p,(r,s)
(3.1.5)

p
max{[w" ]y N
P
T_

P
1
[Wp,rs < [WPIEy (W] p,(r,00)

|

1
p

</
i
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Proof. For (i)=(ii), note that by Hélder’s inequality we have (w),,q < (w) 210 for all

cubes Q so that [w]p,(,00) = [W]p,(1,5). For the other assertion, note that by Holder’s in-
equality we have 1 = (ww’l),,Q < (w)p,Q<w’1)ﬁ QSO that
TP
1
y =W Q<w > Q<w >1 o= Whprawh,
Q - 7

<=

(wh)

p

<
||

for all cubes Q. Taking a supremum over all cubes Q proves the result and the first in-
equality in (3.1.5).
For (ii)= (i), note that since
1 1
(WP o=y | Whpo
p

<w> =W <Py

1
P

<l
A
|
l—|

we have

1
P
Q = [wp]RH 1 [w]p,(r,oo)
P

olw” > oSy | (wpow™
3 p P T

(w)

5

i
|

Sl

%
for all cubes Q. Taking a supremum over Q proves the result and the second inequality
in (3.1.5), as desired. O

3.2. OPERATORS GOVERNING THE MULTILINEAR WEIGHT CLASSES

3.2.1. The multisublinear maximal operator

It is sometimes convenient to emphasize the separation of the parameter s from the r;,
as it often plays a different role from the other parameters in the proofs. The following
lemma provides a way to deal with this parameter.

Lemma 3.2.1 (Translation lemma). Let7 € (0,00)"™, s € (0,00] and p € (0,00]™ withp =7
and p < s and let i be a vector of m weights. Then W € Ap 7, if and only if there are

é,. —ERsattsfymgs < ;”lsi— S,andweAp(s),(r(s)m),where
. 1 1 L[ 1 1
pls) = T o T 1| F(s)= T oI 1
p1 S1 Pm Sm r NI 'm Sm

Moreover, in this case we have

(W] 5,75 = [0]p(s5),(7(5),00)- (3.2.1)

i) L RE

j=1

Proof. We have
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it remains to note that

(H(w;l) 1 'Q)(w) ll’Q: n(WJTl)ll),Q (W) p(s),Q-

S R R E T

Taking a supremum over all cubes Q yields (3.2.1), proving the assertion. O

We point out that the choice of the Si in the lemma is not necessarily unique if m # 1.
)

One could, for example, take % = pﬁj %, but different choices are also possible. We note
]

that this lemma can be used even if % = 0. In particular, in this case it can occur that
some of the sl are negative.

When s = oo, the weight classes are characterized by the boundedness of certain
multisublinear maximal operators.

Definition 3.2.2. For ¥ € (0,00) and f € LTOC(R") we define the m-sublinear Hardy-
Littlewood maximal operator

n
Mz(f)(x):=sup [ [(f)r;0xQ(x),  xeR"
Q j=1

where the supremum is taken over all cubes Q < R”. Similarly, for a collection of cubes
22 we define

MZ(f)(x):=sup [[(froxex),  xeR™
QeZ j=1

Note that if 22 is countable, then M? (f) is ameasurable function as it is a countable
supremum of measurable functions. If we let 2 denote the collection of cubes with
rational center points and rational side length, then it follows from the regularity of the
Lebesgue measure that My (f) = M;@ ( f ). Hence, since 2 is countable, we conclude that
M; (f) is also a measurable function.

The following proposition is the main result of this section.

Theorem 3.2.3. Let7 € (0,00)™, p € (0,001 with p = 7 and let i, v be m+1 weights. The
following are equivalent:

(ii) My is bounded L”, (R") — L)' (R").

In this case we have

| Mz 17 @) L2 @) ~r [W, V15,7 00)- (3.2.2)
Moreover, if ¥ < p and v = w, then (i) and (ii) are equivalent to

(iii) My is bounded L”, R™) — L}, (R")
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and we have

T < e aliD
| M7 ”LZ/(R”)ﬂLﬁ/(R”) TS Cp,r[w] B,(7,00) ) (3.2.3)
where )
m % T
cpr=1l| ===
J=Ir b

Moreover, the estimate (3.2.3) is optimal in the sense that the power of the weight constant
is the smallest possible one and in the unweighted case we have || M; || LF (R —LP(RN) ~r

Cﬁj.

To facilitate the proof of this result it is convenient to reduce to the case of dyadic

grids. For a € {0, %, %}n we will consider the translated dyadic grids

2%:=J {27510, 0" + m+ (-D¥a): mez"}.
kez
An important property of these grids is the fact that for each cube Q < R” there exists an
a {0, %, %}" and a cube Q' € 2% such that Q = Q' and |Q’| = 6"|Q|. This so-called three
lattice lemma will allow us to reduce our arguments to only having to consider dyadic

grids. This property as well as further properties of dyadic grids can be found in [LN18].
An immediate consequence is the following:

Lemma 3.2.4. Let 7 € (0,00)™. Then forall f € LIFOC(R”) we have the pointwise equiva-
lences
My(H~r max M (fim Y M)

12 n
a€10,3,3 ae{o,%,%

Proof. Note that the second equivalence follows from the equivalence of the £ and ¢!
norms in finite dimensions. It remains to prove the first equivalence.

The equality “=” is clear, as the supremum on the right is taken over a smaller set
of cubes. For the converse inequality, let Q = R” be a cube. By the three lattice lemma
there exists an a € {0, %, %}" and a cube Q' € 2% containing Q that satisfies |Q’| < 6"|Q].
Then

m

m
[1¢r.x0=6 [TUpnore =67 max MZ(f).
j=1

12
ae 0,§,§

j=1
The result follows by taking a supremum over all cubes Q = R". O

The fact that dyadic cubes can cover certain sets without overlapping each other
allows us to essentially replace the Vitali covering lemma in the proof of the maximal
theorem for dyadic grids. As a matter of fact, this allows us to prove bounds for weighted
maximal operators independent of their reference weight. More precisely, for r 1E (0,00),

felLl (R"), aweight w, and a cube Q, we define (f);f’Q = (#@ fQIfIrwdxy. For a

loc
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fixed dyadic grid 2 = 2% we may then define the weighted dyadic maximal operator
M?’w(f) (x) = supgeg (/) ?’QXQ(x). Letting L” (R"; w) denote the Lebesgue space over
R" with measure wdx, we then have the following result:

Lemma 3.2.5. Letr € (0,00), let w be a weight, and let 9 = 2% be a fixed dyadic grid.
Then for all p € (r,00] the operator M;@'w is bounded L R"; w) — LP (R™; w) with

2, AT
IV N L ;) — 1P R7;10) < ( 1 ) .
Ty

Moreover, M2 is bounded L (R"; w) — L' (R"; w) with |MZ"“ || 17 ®r:w0)— Lreo @) < 1.

Proof. Note that for p = co the bound is clear. If we can prove the weak-type, then the
general result follows from the Marcinkiewicz Interpolation Theorem.
Let # < 9 be a finite collection of cubes and set M‘?’w (h)(x) := SUPQeg (f);”Q)(Q(x).

Fix f € L"(R"; w) and A > 0. Per definition, for each x € R” such that M,g’w(f) (x) > A,
there is a cube Q € & containing x such that (f) f”Q > A. We pick the largest cube in &
with this property and add it to the collection 22. We claim that the hereby obtained
collection & is pairwise disjoint and satisfies

xeR“: M7V(Hio>M=J P (3.2.4)
Pezr

For the first part of the claim, note that if P;, P, € &2, then there are x,x, € R” such
that they were chosen as the maximal cube in & respectively containing x, x, € R". If
P1 N P,, then by the properties of the dyadic system, we have P; < P, or P, < P;. Without
loss of generality we assume the first. In that case P, contains xj, and by maximality of
P, this implies that P; = P,. We conclude that £ is indeed pairwise disjoint. For (3.2.4),
the inclusion “ " holds per construction. For the other inclusion, suppose P € &2 and
x € P. Then M""(W)(x) = (f), > A so that x € {x € R" : M""(f)(x) > A}, proving
(3.2.4). This proves the claim.
Now, we have

MNwlxeR": M7 () > =Y VwP)< Y. ((NH¥) wP)

Pe? Pezp
= Z |f|rwdx=f IfI"wdx
pezpJP {(xeR":MZ " () (x)> A}

< 1F 1 s

Thus, taking a supremum over A > 0 yields IIM;J;’W( Pirreomn,wy < I fllLr ®r;w). Finally,
for each j € N we let 9; € & denote a finite collection of cubes with the properties that

;i €Dj+1 and Ujen?; = 2. Then M,@j'w(f) 1 M,@'w(f) so that by monotonicity of the
measure we have

2, . Di,w
| M7 ()l oo @ns ) = jhm 1M (Dl roo @y < 1L wew)-
—00

The assertion follows. O
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Lemma 3.2.6. Ler 7 € (0,00)™, p € (0,00]™ with 7 < p and let € Ap 7, 00): Then there
exist sublinear operators Nprpiv: Lhi ) (R”)

Lp’ (R") so that forall f € Lp (R™) we have

il
M»(f)<[w

T
rp
o) Ny, rsio () (3.2.5)
Jj=1
Moreover, Ny, ;. satisfies
1
1 T
r_j J
N,. pj pj <
” P],rj.w” w]j(Rn)_,Lw]j(Rn) ~Tj

TP

jr

Proof. We first prove this result for M? , where 2 = 2% is a fixed dyadic grid, to obtain
the appropriate operators N7

_ . Then it follows from Lemma 3.2.4 that
- n m @ n
M;(f) <67 [ N, o) <67 ]"[ max
acfo.§,3}" =1

max

Pq _
n ij,rj,ﬁ/(f])'
j=1laefo,},2
The result then follows by setting

n
Ny, ;@i=67 max N7¢
IR Lon PpTh
ae 055}
1
1 T
Now, let y := max{l’l} let Q€ 2, andset v := w, £
rop
m 1
(Hj=1“’

) =1, it follows from Holder’s inequality that

"a\»—-‘l‘_‘—-

T
PI" . Since ML, wy 1

i w

> SR S
T TN -
=1 < R Ty TP T twryT P
=", o=Tlwiw o= 1Tw; wr), Wi w ),
o j=1 j=1
J=1Tj
1
" 1
+ ke += _Pi
m 2L TP L
1 L -1, L\ TP
< p . . P
=[I[wih o w?Pip witw vy, o
j=1 T Pj

= -

m f_; 1 y-—r j R
“(fiferta iy
Jj=1
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This implies that
1 17
ﬁw_)r*j [015,.00)
J71Q = 11 1
= N ) AW
(s
1 1
[w])’ m PiTy
_ p,(7,00) l—[( 1 )%7%
- 1
e (WP,
m 11 -t ! ¢
P Pj TP
qt”hojmml) o
]:
L'
P SN
<ty [ (20 ey
P, (7,00) iob (wP)1 0
Thus, forijLZ,jj(R") and x € Q, we have
m m _1 1
ri U T
H(ﬁ)rj,Qz H(EV] ]>rij<Uj>L]Q
Jj=1 j=1
1_ 1 1
"j P] ET‘ 1 1
. 17 P
. m 1nfy€QM (f,]’)(y) pff(w Twr o fpi
< r
= 105,00 i (WPi,q o
1 1 i
p vi,2 1
<[M~UwJIAfK% M (fiv; Uv 7))
J1 Pj
PjTj
(3.2.6)
Setting
Lo Bk
2D =M 2 o (o e w P w e w!
p] rj,w TP J J 7
T
Pj T

and by taking a supremum over all Q containing x in (3.2.6) we have proven (3.2.5) in
the dyadic case. We remark here that in the case that p%— =0, we use the interpretation

_1
mrﬁﬂ%wMW(ﬁ%’WWWf.

Noting that by Lemma 3.2.5 we have

~i—

1
4 logg-logr

1
lalramn,y =€ 7 lhlramew < e bl La®n;u),

w»—
Q\'—‘

U2 q
IMY7, )l = () 7

1_1
q

1
¥

=

<
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for the case i > 0, we compute

pj
1
IN? (f) =m"? ”f’ (fiv f)v W P,
pj:Tj BTN p] (R") _ J ] Lp](RVl;wp)
] ]

T 1
PiTi

L P

_1
0D e TIPS
Nr] "M (f] Uj )U] w ”ij(Rn;wp)

_1
— vj 2 Tj
”M (f]v )”Lr’](Rn’U])

1
1

IA

7
Ty
1 1 ”f] j ”ij(R”;l)j)

1
=\

T | i ey

and for the case # =0, we compute
J

_L _1

9 1D L L
||NOO, w(f])”LOO ®m) = | My S v; Ml geomny < Ifjv; N peomny = ||fj||L°u§’j(R")-

The assertion follows. O

Proof of Theorem 3.2.3. We will prove the equivalence of (i) and (ii) by proving (3.2.2).

For “ <", we note that it follows from Lemma 3.2.4 that it suffices to prove the esti-
mate for M? for a fixed dyadic grid 2 = 2%. Note that by Holder’s inequality we have
(fidrjQ=<(fj wj>pj'Q(w]Tl>ﬁ'Q for a cube Q, so that

TjioPj

m _r
l—[1<f]>r] <[w)U]p(roo)<U>pQH<f]w]>p], =, v],a,(;,oo)]_[1<]“jw1v ”UZTQ
J J=

Thus, by Holder’s inequality for weak Lebesgue spaces and Lemma 3.2.5, we have

m p
7z . P Ty
IMZ (D)l oo gny < [0, V3,00 | [T My, (fjwjv "D oo vy
“

_p
@ N
S L, vl 7,00) H ||MV Fjwjv "Dl ppjee g, p)
m
< [, V1,700 U lfj”prj.(R")’
= J
Thus, we have shown that
”M ”Lp R — Lpoo(R,,) [w V]p(r 00) *
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For the converse inequality, fixa cube Q and let f € Lp (R™). Letting0 < A < ]'[’” l(f]),] 0

we have
m

Mz (H@) = [[fro> A
j=1

forall xe Qsothat Q< {x e R": M;(f)(x) > A}. Hence,

AW o <1017 P AUP (M5 () > AN
1

mo_ 1
L 5 Pillfill ps
< ”Mr”L}:D(Rn)_’Lf:,oo(Rn) H QI *i IIJCJIIL;;]_ &’
j=1 J
Taking a supremum over such A and by replacing f; with y ¢ f}, we conclude that
m

m
(H <f,->rj,Q) ) p,Q < IM7ll 5 gy oo gy l_[1<fj Widp;.Q- (3.2.7)
w j=

j=1

‘j“._‘

_ L
J

" and assume for the moment that for those j€{l,...,m} with

1
T _1

TjPj

1
T
Now set f; = w; J

PiPi

p;j <oo the function f] = w=w, is locally integrable. Then the product on
the right-hand side of (3.2.7) is positive and finite so that we may take it to the left-hand

side. This yields

(H<w‘1>

)<v>po S L p— (3.2.8)
/

1
-k
and taking a supremum over all cubes Q yields (3.2.2). To prove that w; 771" s indeed

1
T _1

locally integrable, we choose f; such that f] Pi wf I = (wjrj Py &)~ for € > 0, the latter
expression being bounded and thus locally integrable. Again taking the product on the
right-hand side of (3.2.7) to the left, an appeal to the Monotone Convergence Theorem
as € | 0 yields (3.2.8). The assertion follows.

Since the implication (iii)= (ii) when v = w is clear, we may finish the proof of the
equivalences by showing (i)= (iii) through (3.2.3).

By Lemma 3.2.6, it follows from Hélder’s inequality that

1
max{ T }
. TP

| M7 (f)”Lp (R") < [w], P,(7,00) H IN P ij”Lﬁ)jj(Rn)

Sreprll ﬂ 51,21 oy
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as desired.
Finally, we prove optimality of (3.2.3). Let a = 0 denote the smallest possible con-
stant in the estimate

m
| M7 (f)IILr' R S [w]p(roo) 1_[1”]CJ'||L%(R")'

We have shown that a < max{ } and it remains to prove the lower bound. Fix jj €

{1,...,m}. For € € (0,1) we define

o) L - L
wjo(x):=|x|( )( Ho ”10), wj(x):=1 forje{l,...,m\{jol,

n(l-g) _n(d-¢)

fio@=1xl T ypon(),  fi):=Ixl I xpon) for je{l,...,m\{jo}

Then, by Proposition 3.1.4,

1

L p]o 1 1 1 .
~ ARSI
(W] 5,7 00) = 2 e i Pio) <g \"lo Pio),

Ao

Moreover, one computes
m 1
. pi ~ & 14
]Hl 02y
so that

. a%,%),L
IIM;(f)IILp(R,,)N[w]“(mO)H||f,|| p,(Rn)<s (fo Pio) 7. (3.2.9)

Computing

m
[T¢rpoien 2 f,o(x) H —1
j=1 j=1 __(1_ )

re . r
J#Jo

n(i-g)
setting g(x) := H;."zlfj(x) wi(x) = |x|™ o )(B(o 1 (x) yields

£ _1_
”M (f)”LF(Rn)N jO ||g||L!’(R”)’C€ L
By combining this with (3.2.9) we find that
[P L S U P
1<e a('/’o ”JO) "jo .

Letting € | 0 shows that we must have —a (rL ~ ) +-—-=<0,ie,
Jo Jo Tjo
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1
Taking a maximum over jy € {1,..., m} proves that a > max{ 5 }, as desired.
TTF
For the last result it remains to prove that "M7”Lﬁ(R")—»LP(R”) Z cp,r- Fore € (0,1) we
_n(-¢)
set fj(x):=1x| 7/ xBo;)(x) so that
1 7
H fidrBo31x) 2 H 1—o1 fix)
j=1 J=1\ 7
and hence
1 1
m % Tj iom % Tj
IMz(D)llie@ny Zr I fleen [T 5 —| ~e P[]
=\ T (1- E)p—j j
Moreover, we have

(3.2.10)

m

”M*(f)”LF’(R") =M "LP(R")—»LP(R”) l_[ ”fj”LV] R ™~ | M ”LP(R”)—vLP(R")E P
j=1

Combining this with (3.2.10) yields

m 1
YA r— b

Ty

<=

=i\ 7 - -9
The assertion follows by letting € | 0

3.2.2. Sparse forms and symmetry in the weight classes

In terms of symmetries, the definition of the weight constant [@0] 5,7, seems to be best
suited to the case where ,ly < 1. Indeed

W1 := w™!, then we have

13
=1 ) =0

=1-
! rm+1
1

< and
Sla 1
— = M)j = 1.
j=1 Pj j=1

The conditions p = 7, p < s are then equivalent to r; < p; forall j € {1,...,m+ 1} and the
constant for the weight class now takes the form

m+1 1

(W] 5,5 = Sgp H (w; 1
]:

Q= (W1, Wit D1 prns 1), (Lo Fmr)00)r (3.2.11)
TP
where the last equality follows from the fact that the term involving the product weight

in the m + 1-linear weight class is equal to 1. The symmetry of this last expression also

39
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emphasizes a certain permutational invariance. Indeed, if & € S+ is a permutation,

then, since
1 m+1 1 m+1 m+1

m+1
> = =1, [l wwp=]]wj=1,
j j j=1 j=1

we have

[ﬁ}]ﬁ,(?,S) = [(Wry, - Wr(m))] (Pnu)y.-.,Pn(m)).((rn(n,--.,rn(m)),r,',(mﬂ))'

1
I_T
ioPi

It will sometimes also be useful to redefine v; := w; for je{l1,...,m+1} so that

m+1 %_%

— ] J

(W1, s Wins DV (p1ee s ), (1o i 1),00) =sup Hl il
]:

Remark 3.2.7. While we have to restrict ourselves to the Banach range % < 1 here, we
1
p
Proposition 3.1.3(ii) applied, for example, with ¢ = r. This way we are replacing % by

% <1, allowing us to use the results in this section.

point out that even when -- > 1, we can reduce back to this case by the rescaling property

In a way, we are now viewing the m-linear Muckenhoupt weight classes as the sub-
class of the m+1-linear Muckenhoupt weight classes where the m + 1 weights satisfy the
relation that their product weight is 1. To avoid confusion between the two viewpoints,
we introduce a separate notation for m + 1-tuples of parameters. We will use the fol-
lowing convention: for m+ 1 parameters ay, ..., & ,+1 we shall use the boldface notation
a=(ay,...,am+1) for m+ 1-tuples while we will use the arrow notation @ = (ay,...,an)
for m-tuples. This means for example that the equality of the constants (3.2.11) will now
be written as

[L_D]p‘,(F,s) = [w]p,(r,oo);

1 ._q_1 1 ._7_1 R |
whereasbefore—pm+1 =1 50 Tt 1-5and w4 i=w .

As it turns out, our weight classes are governed by sparse forms.

Definition 3.2.8. Let R > 1. A collection of cubes . is called R-sparseif there is pairwise
disjoint collection (Eq)ge.» of measurable sets satisfying Eq € Q and |Q| < R|Eg|. When
R =2, we simply call such a collection of cubes sparse.

Given r € (0,00)™*!, for a sparse collection of cubes .# we define the sparse form

m+1

A= Y (TT )@

Qes  j=1
for f e LI’OC(R").

We point out here that the sparsity constant R is not too important and it can usually
be replaced by 2. More precisely, as a consequence of Proposition 3.2.10 below we have
that for any R, R>1landall fe LI’OC(R”) we have

sup Aro(f) =gz sup Ars(f).
S S

& is R-sparse & is R-sparse
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Next, we note that we can use the three-lattice lemma to pass from general sparse col-
lections to sparse collections in dyadic grids.

Lemma 3.2.9. Let R > 1 and let ¥ be an R-sparse collection of cubes. Then for each
{ 35 } there exists a 6" R-sparse collection of cubes #% such that

Ar,y (f) S_,r Z Ar,y“ (f)
acfo3)’
forall f € L (R™).
Proof. For each Q € % we use the three lattice lemma to choose an a(Q) € {0, 3 3} and

P(Q) € 2%Q) such that Q € P(Q) and |P(Q)| < 6"|Q|. We set #%:={P(Q): Q€ %, a(Q) =
a} and Ep(q) := Eg. Then the Epq) are pairwise disjoint, and

IP(Q) =6"1QI =6"RIEq| =6"RIEp(q|

so that &% is 6" R-sparse.
Finally, note that

m+1

Ars(f)= % Y ([Tne)

aE{OJ%,%}"Qey:a(Q)za j=1

m+1

<67 Y Y ([T¢nr)P@I

ocfo.4f" 0@ 1)

=67 Y Apga(f)
ac{0}.3}"

The assertion follows. O

Sparse forms are deeply connected to multisublinear maximal operators. Note that
forall f e L] (R") and any R-sparse collection of cubes # we have the estimate

Ars DR Y inf M DWIEQI<R Y, | My(fds
QerYeQ Qe YEq

< RIM; ()l -

Hence, we have
supAr . (f) < RIM ()l R") (3.2.12)
k2

where the supremum is taken over all R-sparse collections of cubes .. From Theo-
rem 3.2.3 it then follows that

1
T

max l_l}mﬂ
rTp

S;P Ar s (F) Sr Cp,r[w]p,(r o) H ||f] I Z’] (R")



42 3. MULTILINEAR WEIGHT CLASSES

for all p > r with ¥4 pL] =1, all w € Ap o0 With TI7, wj =1, and all f € L}, (R"). In
particular, we have shown that the sparse form is bounded with respect to the embed-
ded weight classes. To show that the boundedness of the sparse form characterizes the
embedded weight class, we will show that the converse estimate to (3.2.12) holds. This

follows from a sparse domination result for the multisublinear maximal operator.

Proposition 3.2.10 (Sparse domination of the multisublinear maximal operator). Let
7 € (0,00)™ and letf € LIFOC(R”). Let 9 = 2% be a dyadic grid and let & < 9 be a finite
collection of cubes. Then for all R > 1 there exists an R-sparse collection of cubes ¥ < &
such that

m
MZ () < (R)7 sup [[(fdr;.ox0- (3.2.13)
€S j=1

In particular, for allr € (0,00)"™*!, f e L], .R™, and R > 1 we have

| My (f)”Ll(Rn) ~R,r SUP Ar,y(f) (3.2.14)
S

where the supremum is taken over all R-sparse collections of cubes & .

Proof. We will define . recursively. For each Q € & we define its stopping children
chg (Q) as follows. For each dyadic child Q' of Q we check if Q' € & and

m 1 m
[T > @) [T 0 (3.2.15)
j=1 j=1
If this is the case, then we add Q' to ch# (Q). If this is not the case, then we repeat this
process to the dyadic children of Q'. The pairwise disjoint collection of cubes chz (Q)
thus obtained, are the maximal (with respect to inclusion) cubes in & strictly contained
in Q satisfying (3.2.15). Now, let # denote the maximal cubes in . Then we recursively
define F%41 := Uge.s, chz (Q) and set & := Uf:oyk‘
To see that & is R-sparse, fix Q € & and set Eg := Q\ Ugech,(Q) Q'. By (3.2.15),
Holder’s inequality, and disjointness of the cubes in chg (Q), we have

Y Q= X |Q’|H’m:1<fj W L Y 1([15may)
= m ; < ; m NG . X
Hj:1<h rj;Q/ R Hj:1<‘fj>rj,Q Qr Q, J

Q'echz(Q) Q'echz(Q) echgz (Q) j=1

<o ¥ [T <2
R’ H;”:1<f‘] ;]_'Q j:1 Q/ECh,g(Q) Q' R/

r
j

Hence, |Q| = |Egl +ZQr€Chg(Q) Q' = |Eql + |Q|/R' so that |Q| < R|Eg|. Since the Eq are
also pairwise disjoint, we conclude that .# is R-sparse.

Next, we check that (3.2.13) holds for this collection .#. For each Q' € & we let
7% (Q’) denote the minimal cube in % containing Q'. Note that such a minimal cube
exists, since any Q' € & lies in one of the cubes in %. Now, let Q € & and Q' € & with
7(Q) =Q. If Q' C Q, then Q' ¢ . and hence Q' ¢ ch(Q). Since 7(Q") = Q, Q'
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cannot be contained in any of the cubes in chg (Q). Thus, by maximality of the cubes in
chg(Q), Q' fails the estimate (3.2.15). Note that this is also the case when Q' = Q. Hence,
we conclude that if Q € . and Q' € & satisfies 7. (Q) = Q, then

m

m
[ =< @& [] (fPria (3.2.16)
j=1

j=1

Finally, note that

F=JPeF:nyP)=Q}
Qe

so that by (3.2.16) for all x € R” we have
F(F M ni 1
M7 (f)x)=sup sup [[(f)r;pxp(x)<@®R)7 sup [[{f)r;0xQ).
Qeyn P(%)g—szl Qe j=1
S =

This proves (3.2.13).

For the second assertion, we have proven one of the inequalities in (3.2.12). For the
converse inequality, note that by the inequality || - [[go < || - |1 it follows from (3.2.13)
that for any finite collection of cubes & in a dyadic grid 2 = 2 there is an R-sparse
collection . of cubes . € & so that

m
M7 Plipgn < R Y T xelnen < )T Ars(f).
Qe j=1

Now note that it follows from the monotone convergence theorem that

1
IMZ Plipgn s sup IMZ (Allpge < (RN supAr o (f),
F <. finite 2

proving the result for the dyadic maximal operator. The assertion now follows from
Lemma 3.2.4. O

The following result is a consequence of Theorem 3.2.3 and Proposition 3.2.10. For
clarity, we formulate this result here in terms of m-tuples of weights. For this we will use

.....

Theorem 3.2.11. Let 7 € (0,00), s € (1,00], and p € (0,00]" withp>7 and1<p <s.
Then the following are equivalent:

(i) WeAp, s,
(i) Mg is bounded L), R") x LV | (R") — L'*°(R");
(iii) Mg,y is bounded L”,(R") x L | (R") — L'(R");

(iv) supy A5y, is bounded LZ(R”) X L’Z:_1 (R™) — R, where the supremum is taken
over all sparse collections & ;
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(v) Ay, is bounded L’Z}(R”) X L’Z},1 (R™) — R uniformly in all sparse collections & .
In this case we have

I Miz,s ~rs [0]5,7,5)» (3.2.17)

L2 ®mxLP' | (RM—LLooR")
b w-1

M 5 ~ up A 5
I Mz,s) “L;(R")xLi:—l(R")—»Ll ®ny NS I Syp (F,S')'y”L;(R")xLZ—l(R")-»R
(3.2.18)
~rssupllAg,s),#Il 5 r' .
& L, ®RMxLP | (R —~R
Moreover, we have
1 41
maxy T, 7T
- R T PP PTS
S;p ||A(r,s’),y||L;1 ®MxL”  ®R"—R Shs Cp,r,s[w]ﬁ‘(;,s) 3.2.19)
w w1
with .
1 1
m s 1 1—=,1-1%
R J Tj S s
Cprs = (H(L_L) )(1_1) :
=1 r T p; p s

This estimate is optimal in the sense that the power of the weight is the smallest possible
one, and when v = 1, the three quantities in (3.2.18) are equivalent to Cp 7,5+

We point out that by Theorem 3.2.3, (3.2.17) holds more generallywhen p = 7and 1 <
p < s. Note that the only part of this theorem that does not follow from Theorem 3.2.3 is
(3.2.18), which we will see is a consequence of Proposition 3.2.10. We point out however,
that rather than using Lemma 3.2.6 to prove the bound (3.2.19) as was done in the proof
of Theorem 3.2.3, it is interesting in its own right to give an alternative proof of this
bound via sparse forms. It is worth noting that this alternative approach is quantitatively
worse than our previous proof in that we obtain an exponentially worse dependence in
p. Indeed, this constant appears in Lemma 3.2.13 below.

To facilitate our proof we will require two preparatory lemmata. The following is a
reformulation of the definition of the weight class.
Lemma 3.2.12. Let r € (0,00)"" and let p € (0,00]™ satisfy p > r and Z;.”;ll pi]_ =1.
Moreover, let w be an m + 1 tuple of weights satisfying H;.”;ll wj = 1 and define v; :=

1

1 1

w; TP Thenwe Ap,(r,00) if and only if for those j € {1,..., m+ 1} for which p; < oo the
weight v; is locally integrable, and there is a constant ¢ > 0 such that for all cubes Q we
have

m+1 ri m+1 1
[TwplollQlsc [T vi@.
j=1 j=1

In this case, the optimal constant ¢ in this inequality is given by (W]p,(r o) -

The next lemma allows us to deal with the sparseness condition.
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Lemma 3.2.13. Let r € (0,00)""! and let p € (0,00]™ satisfy p > r and 27”11 F}] =1

Moreover, let w be an m + 1 tuple of weights satisfying H’T‘: wj =1 and define v; :=
1

w; ’ p] . Let Q be a cube and let E < Q such that |Q| < 2|E|. Ifw € Ap,(r,cc), then

mi1 (-tmadd i |4 maf b
(]_[ i, 0 )|Q|<2 TR Wl e ]_[1 vj(E)"i. (3.2.20)
j=
Remark 3.2.14. Having Lemma 3.2.12 in mind, it seems that the larger power of the
weight constant in (3.2.20) comes from the fact that we are passing from the weighted
measure of the set Q to the measure of the smaller set E. In fact, it seems like we are only
using the full weight condition w € Ap (r,o0) 0nce and we are left with an estimate of the

form
m+1 1 m+1

[1vi@" 5 H vj(E) z

j=1
where the implicit constant depends on the weights. This estimate seems to only require
the weaker Fujii-Wilson A, condition satisfied by the weight v;, but we do not pursue
this further here. We refer the reader to Section 3.3 for a discussion on improving esti-
mates using multilinear analogues of Fujii-Wilson Ay, conditions.

1

Proof. We sety := max{ } and

1_1
rTp

sothat f; <Oforall j€{l,...,m+1}. Thus, since (v;)1,g < 2(vj)1,¢ by the assumptions

on E, we have (vpfjo < 2‘ﬁ1'<vj A Then

e

m+1 m+1 1 7 Y (m+1 m+1
H(UﬂlQ)IQI (H<VJ>1Q j) (H(U])lo)l@ p(r,oo)(HW])lQ)lQl

m+1 B
<2l [w]p (r,00) ( [1 <Uj>1,jE) |E|

j=1

=2y (nﬁl (B | 1)
] (3.2.21)
-1
Next, set a : —Zm“(r] pL)>0andk] —a(l pL,) . Then
m+l ] QmEl ] g
L5 e klyn)
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and
m+1 m+1 1 m+11 m+1
I—ZﬁJ—Z——Z—wZ[———) (r-Da
j=1 =1 Pi j=1 j
so that
m+1
1 Bj (1 ~ 1)(y_1)_ L 4
kj i pj pi

Thus, since H;”;ll v M= ]‘[;.”:*11 w; = 1, it follows from Holder’s inequality that

1- zm+1ﬁ 1a.
x g, m+l é(}—%) T s R 1 g,
B = T e Y dx s[lv® 5 =[lv®i™
E j1 j=1 j=1

By combining this estimate with (3.2.21), we obtain (3.2.20). The assertion follows. O

Proof of Theorem 3.2.11. The equivalence of (i), (ii), and (iii) follows from Theorem 3.2.3.
We will prove that (iii), (iv), (v) are equivalent by proving (3.2.18).

Set ﬁ =1- % >0, rmﬁ :=1-1 and wyn+1 := w™! so that we are back in the m +1-
tuple notation.

To prove (3.2.18), note that first equivalence follows from (3.2.14) with R = 2. For the

second equivalence we note that
s;p IAr, 12 jey—g = | s;p Ar 2l gey—ro
so that to conclude the result it suffices to show that
IMrll 2 @y gy S sup 1Ar, 1 P gy —g-

Fix a dyadic grid 2 = 29, a finite collection of cubes & < 9, and f € L, (R") of norm
1. Then just as in the proof of Proposition 3.2.10 we can find a sparse collection . < &
such that

IMZ (P Sr Arr (D < 1A 15 oy g

= sup ||Ar,5P ”LP (R")—>R'
w
&
Hence, by the monotone convergence theorem, we have

IMY Dllpen s sup M7 (Dllpgn Srsupldrsl 2 go g
F<:% finite S
The result now follows from taking a supremum over all f € L?,(R") of norm 1 and
Lemma 3.2.4.
Finally, we prove (3.2.19). Let . be a sparse collection of cubes which, by Lemma 3.2.9,
at the loss of a dimensional constant we may assume to be contained in a dyadic grid
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1

1

T
Pi forje{l,....m+1}andy:= max{ z } Then it follows

1
T

1
ri
2=2" Wesetv;:= w; J

from Lemma 3.2.13 and Lemma 3.2.5 that

|

m+1
A (fiyeeo fme1) = ) ( H (fj)rj,Q) QI

Qe
m+1 ri
Q;V( [1v; ™) ,Q<vj>1{Q) Q|

m+1

Sr, p(roo) Z H<f] v; r;yQV](EQ)

€
J

m+l v pLj
<[w]” ,(roo) f M” (fjv; J)Pfy]dx

m+1

Y vj,2
< W1 o) H M, (fiv, ; )||ij(Rn;Vj)

¥ m+1
= Cp,r [w] p,(r,OO) l_ll ||f‘] ”LZ;)] (R")’
7= 7

As this estimate is uniform in the sparse collection ., this proves (3.2.19). The assertion
follows. O

3.3. MULTILINEAR FUJII-WILSON AND REVERSE HOLDER CONSTANTS

A classical result for the A, classes is the fact that every w € A, satisfies a reverse Holder
estimate from which one can deduce that for some ¢ > 0 we have w € Ay_,. In our
notation this can be equivalently formulated by saying that if w € Ay (,5), then there is
an a > 1 such that w € Ay (ar,5). In this section we establish a multilinear analogue of
this result. Moreover, we include an open problem regarding the sharp control of the
parameter « in terms of a multilinear analogue of the Fujii-Wilson Ay, condition, as
well as an open problem regarding an improved bound in the two weight setting for the
multisublinear maximal operator with respect to this constant.

In the previous section we have established bounds for the multisublinear maximal
operators that are optimal in terms of control by powers of the weight constant [-],7,s).
In this section we define a smaller constant to try to obtain an even more precise control
in terms of the weight.

For a collection of cubes &2 and a cube Q we will write 22(Q) :={Pe€ % : P < Q}.

Definition 3.3.1. Let 7 € (0,00)™, p € (0,00]™ with p > 7, and let i0 be an m-tuple of



48 3. MULTILINEAR WEIGHT CLASSES

1

T_T
weights. Setting vj:= w; R

; , for each dyadic grid 2%, a € {0, 3 3} , we define

1
2%(Q) (., 1
<M ( lpl rery Um ))p,

1557 5= sup — T
H”’1<v,>
and ,
[*J??@“ = sup (MF .. - ”m .o
v e
Moreover, wedeﬁne[w] ‘=max {Oé,%} n[i0] FW@a,[LT)]g;:zm a€{0,3,3 [w]F,VY@a.

Note that by Hélder’s inequality we have

1
2%Q) ., Pj
e Qw0 m
]?"775 max . sup i d SH[w]']I;,‘]’,Yrj: H[Uj]:;ooy
acf0,1,2}" Q2 " (i j=1
i=13Yi10

[

73’3
where [-] 4, is the Fujii-Wilson A, constant

[w]a max  sup fM@ Q@ (w)dx,

" acfog} e 0@ Jo
which first appeared (in an equivalent form) in the works [Fuj78, Wil87, Wil89, Wil08]
and was later studied in [HPR12, HP13] in relation to a sharp reverse Holder inequality.
In this section we wish to generalize some of their results to a multilinear setting. More-
over, we give some alternative proofs or certain properties of the constant [-]?"; which
was first studied (in an alternative form) in [ZK19]. As we will see, the generally smaller
constant [- ]p seems to be better suited to study multilinear reverse Holder inequalities,
however the precise nature of this relationship remains open. We prove some partial re-
sults.

Remark 3.3.2. In a dyadic grid 2 = 29, it follows from the equivalence

1
u Lyp|? o
yp( > (HVJ(Q')p’)) =[O0l e
[ / j—
Ysﬁarse ez j=1

see Proposition 3.2.10, that the condition [11/]12/‘7"9 < oo can be equivalently formulated
through the inequality

) Hv@w<nwwm

QeZ(Q j= j=

which should be valid uniformly for all sparse collections .¥ < 2 and cubes Q € 2.
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Note that when m = 1 we have [w] [w] . In general, we have the following
properties:

Proposition 3.3.3. Let 7 € (0,00)", p € (0,001 with p > 7, and let v be an m-tuple of
weights. The following properties hold:

@ 1=<[w ] s[w]--,

i) Ifive Ap, (7,000 then [0 ], b [w] + <00 with

(@]

For the purpose of the proof of this result we extend the L"-averaging notation to
1

include the limiting case r = 0 by setting (f)¢,q := eT@ Jlo8If1dx o set Mog(f) (x) :=
Supeg (0,0x0(x). We will need the following lemma:

1
Lemma 3.3.4. Forall p € (0,00] we have | MZ || .p@®m—1r @) < €7 .

Proof. Letr € (0, p). Since MY (f) < MZ(f), it follows from Lemma 3.2.5 that

1 1
F

)"

1
Letting r — 0, the right-hand side converges to e”, proving the result. O

"MO@”LF’(Rﬂ)aLP(R") < |M?Z || o ®ny—Lp Ry < (

~ =
< =

1
1_ 1

Proof of Proposition 3.3.3. Set v;:= w; 7P andlet 2 = 2% bea dyadic grid. To prove
the first inequality in (i), note that for all Q € 2 we have

1
L) ’>p] <MJQ)(v ,vm )>pQ
- 1

H;?ilwm’”f@ M7 iy

1 1
The second inequality follows from the inequality (JT"* hi )p,Q = H (v ]>1 0 which
follows from Hélder’s inequality.

For (ii), define

]11

1

m L m - 1 m o
(7] —sup(l_[(v])lQ) l_[ >OQ—Sup(H<U]>1Q)<H y’”])ab.
1

Q<2 =1 Q<2

We note that the definition of [7] implies that for a fixed cube Q € 2 we have

2Q)

5 (v ,v,’;,m)< ([B1MZ (H v”’ XQ)-

j=1
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Hence, by Lemma 3.3.4,

1

1

<MJQ)(v ,vm D) pg < v1<M0(1"[v X po < 11QI vnM@(Hv Xl @m

1

1
e’ [7]|Q] ”||HV XQllLP(R")—e”[w (HU ]>pQr

proving that

[wll,;wse%[m.

1
p

Setting y := max{ T }, we claim that

w»\'~
'm\

(0] = [0 7 oy

Combining this with (3.3.1) then proves the desired result.
1_1

To prove the claim, fix a cube Q € 2. Since w]'[j 1 ]rj i = w]'[;”:1

m m 1 m -1 m L_L)},_L
j l’j)Y Pj_ oy (U’ Pil P

=(w]]v, v, =w' ] v} )

H = (w]] J [1v;

j=1 j=1 j=1 j=1

(3.3.1)

(3.3.2)

w]‘l =1, we have

Thus, setting % = %y+ AN (ri - #)y - p%— and using the fact that (% - pij)y -L>p

forall je{1,..., m}, it follows fril)m Holder’s inequality that

T o (ded e
(Tv; Doe=(lv; dae=@h Lo [Ty, 77 ) 1,
Bahh
T L
-<w>le‘[<v1>£Q ) "
Then we find that
m L\ m _L (;_L)Y
pj T
(jll(vj>lb)<jl:[112 ]>0Q<<W>PQH<"11Q :
Y
— -1 Y
_(<w>p,Q]'[<wj >1_11,Q) < (@1 ;-
Jj=1 T Pj

Taking a supremum over all cubes Q € & yields (3.3.2), as desired. The assertion follows.

We have the following result:

O
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Theorem 3.3.5. Let 7 € (0,00)™, p € (0,00]™ with ¥ < p, and let iv,v be m + 1 weights.
Then

- - FW
| M7 ||Lp ®M—LPRY) Srocppliv, V15,700 [W0] 57
with .
m % T
r=ll|{+—7
= T

This result was first proven in [ZK19] and we give an alternative version of this proof
here, going through a Sawyer-type testing condition.
Note that when v = w is the product weight, then Proposition 3.3.3(ii) implies that

so that Theorem 3.3.5 improves the bound for My from Theorem 3.2.3.
In view of Proposition 3.3.3(i), we propose the following conjecture:

Conjecture 3.3.6. Let7 € (0,00)"™, p € (0,00]" with 7 < p, and let i, v be m + 1 weights.
Then

| Mz]| (WD, V] (7 00) [ 0] 5 7-

L? RM)—L}R") Shi
The conjecture is true in the case m = 1, since then [- ] =[ ] +- We also provide an
alternative way of proving the case m = 1 through a sharp reverse Holder estimate.
To prove Theorem 3.3.5, we first prove the following result:

Theorem 3.3.7. Let7 € (0,00)™, P € (0,oo]m with7 < p, let iv, v be m + 1 weights, and let

LL
i Pj

2 =D be adyadic grid. Setting v := w; , we have
1
(M? (Q)(v NUTACE 1) ” (M (Q)(v vl e
P 7 =IMEN 7 oy ey S P T och 77
€ €
ML wiig M vy e
with
1 7
m - J
cpr=11
j=t fj p,—

Note that when m = 1 this result gives the equivalence

1
1
TI_T
M2 - M Ly
r Ik -8 ®m Nn,rzlelg -
(w

1
¥

1
P
1,0

I
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It is however unlikely that when m > 1 we have the equivalence

1
B (M YOl )V>pQ
1 me—rhwen AT D T
m .
Hj=1 <U]>1,Q

D
IMZ |

which would imply Conjecture 3.3.6 (as can be shown in a way analogous to the proof
of Theorem 3.3.5 below). Indeed, a counterexample by Tuomas Hyténen' shows that
this equivalence fails when the weights are replaced by more general measures and it
seems that this counterexample can be adapted to this setting of weights. Thus, if Con-
jecture 3.3.6 is true, it needs to be proven using a different method.

Proof of Theorem 3.3.7. For the first inequality we have

1
|Q|P<Mﬁ@(v ,vm)v>pQ<||Mﬁ(v1 X+ Ui X2 ey

m 1
2 "j
< oy 5 . i
S IMP N7 gy 10 e ]1_11 Qv 12 o

1

. m .
M2 Pi
PIMZ . 5 j

QI I Mz ”Lg(R”)HLf,’(R")jlj[l(l)])l,Q,

as desired.
For the second, let & < 2 be a finite collection of cubes. Then there is a sparse
collection of cubes . € % such that

m
IMZ Dl S | 2 T,
Qes j=1

P (Rny

see Proposition 3.2.10 and [Niel9, Lemma 2.9]. We proceed with a construction very
similar to the one in the proof of Proposition 3.2.10. We will recursively define a collec-
tion of cubes 9 < .. For each Q € . we define its stopping children ch »(Q) through
the following procedure. For each dyadic child Q" of Q we check if Q' € & and if

]U(f] i er>2 ]‘[(fj v; r] (3.3.3)
If this is the case, then we add Q' to chs(Q). Otherwise, we repeat this process to the
dyadic children of Q'. The pairwise disjoint collection of cubesch s (Q) thus obtained are
the cubes in . strictly contained in Q satisfying (3.3.3) that are maximal (with respect
to inclusion). Now, let 9 denote the maximal cubes in .. Then we recursively define
T+1:=UQeg, cheo(Q) and set I := U°° J

Ipersonal communication, 2019
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For a cube Q € & we let 15 (Q) denote the minimal cube in 9 containing Q. As
1

in the proof of Proposition 3.2.10 we then have [} 1<f1 I i )r = 27 [P, ¢S U;Tjﬁ;’Q
whenever Q€ 9 and 74 (Q') = Q, and . = UQea {P e g (P) Q}. Thus, setting

1
)vm )v>p,
1

<I_IJ 1 ]]>pQ

( g(Q)
M :=sup
Qo

and v,,41 := vP, we have

m mooLo L
” Slelg]l:[l<f‘j>r]‘ ,;(R") = ” Q;y]ll(f‘]l/] ]>;‘};,Q<vj]>rj'QXEQ||L5(R”)

1

= Z Z l_[ <f] ] ]> jQr<v >r],Q/) Vm+1(EQ’)

Q€T Qew j=1

77 (QN=Q
%
m -+ m L p
S| XAy D0 X (11 ne) vma o)
Qe j=1 Qe j=1
77 (QN=Q
1
" U FQ),. 7T P v
s| X TIGAy; D) X MI QWP v dx
QeT j=1 P Qe (QYEy
s 7 1 %
5( [T« ’> o) f (Q)(v .,v,’n”‘)pv”dx)
QeT j=1 J Q
mn ey mor b
SM( [1sv j>r{o)pfnvifkdx)
Qe j=1 I I 1
(S ro Tt ) foF %
=M xoll Kfiv, )] v"dx)
R" QeT j=1 17 r;,Q =l k
(3.3.4)

Now, fix a point x € R” and consider the (possibly finite) sequence of cubes Qy 2 Q; 2
Q2 2 --- with Q¢ € J% containing x. In case the sequence is finite, we denote the high-
est index by N,. Otherwise we set N, = co. By construction of the cubes, we have
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l(f]] erH ZFHT:I(fjvj rQ for k+1 < Ny so that

min(N,Ny) m

szmHm,w = tm S T )

Qe N k=0 j=1
min(N,Ny)

m

P (mi _

<limsup Y 27 r@nNO=B TT((fy i j>r QN)
N—oo k=0 j=1 I

mn m
_1—12—’5,[[1( M (fv ]’)(x)) 2]]:[1( My (fiv) )(x))

Hence, by Lemma 3.2.5 and Hélder’s inequality,

1
1

1 _’Lj v AP T pl ? M M2 (0T 77
(ﬁ"(ngx 1:[ iv J >’ij) )kl:[lvk ) “l:[ (fJ )V] ”LP(R")
m i

U:
SH” ] (f] j )”LPJ(R"U)

1
Lo

m
P
j
<[I|+— 1 IIijILz;j‘(R,,).
j

i Pj

~.
I
—

Combining this with (3.3.4) proves the assertion for M Z . The general result then follows
from the fact that ||M@(f)||Ln(R,,) < sup gco IIMQ (f) 2 gy which follows from the

Z finite
Monotone Convergence Theorem.

O

Proof of Theorem 3.3.5. By the three lattice lemma it suffices to prove this result in a
dyadic grid 2 = 2% and by the Monotone Convergence Theorem it suffices to consider

the result for finite collections &% € 2. Fix Q € & and let ¥ 3? (Q) be a sparse collection
1

of cubes such that M (Q)(vr1 LUt )NrZQ/Ey ]‘[j:1<vj l,Q’XEQ" Then

1

QUMZ QW] o0, 510 T ([T ) ey 12
Qe j=1 P
- 1
j p
0.0 i@l ([l i
1
21, vl o 1Q1 Y Mg”Q’(v e U )P dx
/ Eq
Qe 5
> 1P F(Q)
= 2[00, VI 7.0 QKM (v ,vm )>

Hence,
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1 1
<M?(Q)(U1rl, LU )0) 50 - (Mﬁ (Q) er )0

1 ~r LW, U]ﬁ,(f.OO) 1

~ - FW,2
<|w, 1/],~,'(7,oo)[w]i).'F .
Taking a supremum over Q € &%, the assertion then follows from Theorem 3.3.7. O

An alternate approach to try to prove Conjecture 3.3.6 will be through a multilinear
reverse Holder condition.

Definition 3.3.8. Let 7 € (0,00)", p € (0 oo]™ with p > 7, let i be an m-tuple of weights,

T L
and let B € [1,00]. Setting v; := w, R

i , We write weRH,,,ﬁ if there is a ¢ > 0 such
that for all cubes Q we have

H<”J CH<U]>

We denote the smallest possible constant ¢ by [LT)]RH, i

In the following result we show that if iy € RHj; 5,6 then [@]EW B < o0.

Proposition 3.3.9. Let7 € (0,00)™, p € (0,00]™ with p > 7, let i be an m-tuple of weights,
andlet e [1,00]. If i € RHp 76, then

57 (ﬁ)p Hprp°

1

1
- Pj 1
Proof. By Theorem 3.2.3 we have I M5l 165 Rny— L8» @) ~ ]‘[;?L1 [lf—fl] = (p")7. Thus,
pj Ppj

for a dyadic grid 2 = 2% and a cube Q € 2 we have
1 1 1 1 1
MV ”'"»,,, < <M@(Q)(v U D ppQ < 1QIT P IMT (W] Xy v X Lo ey
Sl L ,%j L1 ,%j
S@HYPIQL P HIIIU]- xall oo gy = (BHr lej)ﬁ'Q
Jj= Jj=

1
1 L

m .
< (BVP [WIru; l_[(Vj)i]Q-
j=1
Hence, [w] <(ﬁ)ﬂ w]RHQ?ﬁ,as desired. O

Proposition 3.3.10. Let7 € (0,00)™, p € (0,00]™ with p > ¥, let i, v be m+ 1 weights, and
letfe(1,00]. If v € RHp 7 g, then
11
Pj

| My ”Lp &™) [P @) Sr cp,r(ﬁ)ﬂ w]RH“ﬁ [0, V] 5,7 00)-
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where ] :={j€{l,...,m}: p; <oo} and

1
- 1
ﬁFH( )
=1\ 7; Pj

Proof. By the three lattice lemma, it suffices to prove the result in a dyadic grid 2 = 2¢
and by the Monotone Convergence Theorem we only need to consider finite collec-
tions & € 9. Let f € Lp (R™) and let . < & be a sparse collection of cubes such that

MF (f) SrXQes szl(f])rj,Q)(EQ. Setting vy,+1 := VP, we have

-
<=

1

> m m
||M?(f)||L€(R") 5)‘ || Z H(fj)rj,QXEQ ||L5(R") = ( Z H(f])ijQUm+l(EQ))
Qe j=1 Qe j=1

1
m P
Y I] fiwp LlﬁQ<w‘51 1 ) vmn(EQ)| (335
R
m m L 3
> H (frwp? |Q|<Vm+1>1Q(H<U]>ﬁQ ) ,
Qe j=1 ;%+%%f j=1

where whenever p; = cowe replace the estimate of (fj)rj oby (fj)rj,Q ={fj wj)oo,Q(w]TI)rj,Q
1 L_L 1
Pj

5
o -

P

-
6.0 =

so that in the final product we have (v]>1 0= (v]>1 0 instead of (v; g

1 1

Settingy::maxjgj{ 4 }wehavey——(i——)>Oandthus<v]

rji  Pj
a1 (11
Yo; (rj Pf)

”j

@iho for all j € J. Then we have
Lok (H'(UO%JY @1}, U1.<y)%JY R
H<U.>rj Pj _ JEINYI7B,0 - RHp 7,5\ H1€/NYI71,Q - H(v-)rj 5
j€J hQ yi_(i_i) - yi_(i_i) Ritjr | i1,
Pj \"j Pj p; \ti 7P
Hj€]<Vj>ﬁ,Qj o ng](l/j}LQ] o
Thus,
NG G mo Lol
<Um+1>lQ(H<VJ> / ) (H<Vj>1,]Q g ) < [w]RH,, (Um+1>1,Q(H<Uj>L]Q p])
jeJ jes ]

< @y, 0,015
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Combining this with (3.3.5) yields

1

1

IME Pl oy Sr (@1 10, v],;,(;,oo)( > ([Teswp QH<f, W)ooq) IQI)

Qe “jeJ ﬁ,% 57

- - P
<2[@)yy 1, V] 700 M . ((fjw)) jes (fjw))jenllrmn
prp ((;LJ,LL)]'EI'(OO)]'U)
BT BPj
1
1 y L l’ i
N>
Sr B [y, [0, V1,00 [ — | Ifil, 7R
I=1\ 7 7 b
where in the last step we used Lemma 3.2.5 so that
11,11 1
” ﬁ%+%pl] PIER a1 % 7j
“Milll i =TTy SR
1
11 1 % "
er I\Npi
e’ TP T
T Pj
for j € J. The assertion follows. O

In view of this result, Conjecture 3.3.6 is a consequence of the following conjecture:
Conjecture 3.3.11. Let 7 € (0,00)™, p € (0,00]™ with p > ¥, let i be an m-tuple of
weights, and let § € [1,00]. If w] z<ooandf' = 2"+1([w] )p then iv € RHp 7 g with

. 1
(@R, S2P7.
This conjecture is motivated by the following weaker result.

Theorem 3.3.12. Let7 € (0,00)"", p € (0,00]™ with p > 7, let i0 be an m-tuple of weights,

let B € [1,00], and let D = D% be a dyadic grid. If [ FW@<oocmd,6’ 2””([@]2"?/‘@)”,
then

noA o m L

q1v;ppo=2 [T

Jj=1 j=1
forallQe 2.

For the proof we require a lemma.

Lemma 3.3.13. Let7 € (0,00)", p € (0,00]™ with p > T, let i be an m-tuple of weights,
let B € [1,00], and let D = D* be a dyadic grid. For ' = 2"+! ([17/]?/;{'@)” we have

7 m
MIPW v Ve o
sup 7 <2Pr ([i0]527)F.

Q€2 rj
7L vy
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Proof. Let Qpe 2 andset Q) :={x€Qp: M-(QO)(U ,vm )(x)>/1} and

@(Qo)

du = (v ,um PP dx.

Then

1
) MIW ),,m P PP e = f (B—DpAP-DP1 0, dA.
0

€

Ifn}?il(yf)ﬁ)o > A we have Q) = Qo. Hence,

1

H;'n:1<vj)lQ0 B-1p-1 @(Q) ’% m 1 \(B-Dp
' o
fo (B-DpATP p(2p)dA = ([ (2NN ok )”dX)(l_[w])l Qg)

1 Bp
<|Qo|([w€VY9)p(1‘[<v]>1Q0) :

1

Moreover, when Hm 1(1/])1 Q= A the collection &) € 2(Qy) of cubes Q that are max-
1

imal with respect to the inequality ]'[’” (v J>1 0> A is pairwise disjoint, has each of its
members strictly contained in Q, and satisfies Q) = Ugeg, - Hence,

o0
f 1 (B-1)pAP Py, dA
e (u,>IQ0
- N (3.3.6)
:f L (B-1)pAF-irl fM?(QO)(u ., UlmyP dxdA.
Hml(v1>léo Qe
BymammalltyoftheQee@,lweﬁndthatM-(QO)(v ). ,vm )(x) @(Q)(v ). ,vm )(x)

for all x € Q. Thus, denoting the dyadic parent of Q € 22, by Q, by max1ma11ty we have

P

1 m N m
fM@(Q‘” v P dxs QRIEFDP [T v (@77 = (@13 F 9?10 [T wp
3 1
<2" AP (@157 7)P1QL.

Hence, the right-hand side of (3.3.6) can be estimated by

w,a.p [ 1 n([w]?g,@)p 2Q) . Pr o
([15"Y )Pf 2 (B DpAPP gy dd s ——— | MO v PP dx
P 7, )y g p @ *
1 1
2 M@(Q")(Vl”‘,...,vﬂ")ﬁpdx
Qo

FW@

whenever g > 2"+ ([w] )P. Collecting the results yields

N 1 \Bp
(M@(QO)(Ulmr :Vm )>ﬁpQ _([wEVY@)P(]"[w,) ) .
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Thus,
2 1 1
MFL @V Ve o
Zug + 2P ([@] 5P,
€
Hml<vl>lQo
whenever g/ >2”+1([w]FW@)"’ as asserted. O
p 1
Proof of Theorem 3.3.12. Set vp = ;"1 i /andlet Qg € 2. Since vpsM, (Q‘))(v I ALBTR

we have

1 1 ]
f Wdx < ‘?(Q")(vl’”,...,v,f{”)(ﬁ_””vﬁdxzf (ﬁ—l)pﬂt(ﬁ_l)’”_lvﬁ(QA)dﬁ
Q@ * @ P 0

3.3.7)
2(Qo) o
where Q) ={x€ Qyp: 5 0 (v yeen, UPT™)(x) > A} Then
1
IT72, (vj po n B-1p
f (- pABIP Ny () dd = |Q0|<up>1QO(]'[<v]>lQo)
0 j=1 (3.3.8)
1
|Qol(H<vJ> )7
and, with £, as in the proof of Lemma 3.3.13,
f 1 (B=1)pAB Py, dA = f L B-DpATTIP S ysQ)da,
Hml(y]>1 Qo ] 1 V] lQO Qe
(3.3.9)

where

Y Qs Y Qg gs2" ¥ 'Q'(m”f')?jé)p
i

QE@A QE(@A QG:@A

<2"\P Z Q] =2"AP1Q4.
Qe

Thus, (3.3.9) can be estimated by

o) 1
2”[ L(B-1)pAPP- N, dis S fM“@(QO)(v e, ulmyPP 4y,
Hm1<”/>1o
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Combining this with (3.3.8) and (3.3.7), it follows from Lemma 3.3.13 that
p 2n 1 1
f ﬁdX<|Q0|(H<U]>1QO) +FfQOM§<Q°’(ufl,...,u,;gmﬂvdx
L pr P(Qo) ,, P
=|Qo|(jl:[(1/]>1oo) +F|Qo|<M DIl VL

1 2n+1([w]FW,@ p

|QO|(H<V]>1 Qo)ﬁ —p’|QO|(H<v1>IQO)
SZIQOI(ﬁ v]>11Q0)

)p This proves the result. O

whenever g > 21 ([w]I; +

Note that in the case m = 1, Theorem 3.3.12 implies Conjecture 3.3.11. Indeed, in
this case we have

Corollary 3.3.14. Let r € (0,00), p € (0,00] with p > r, let w be a weight, and let €
1

[1,00]. If[ w] V< oo and f = 2" ((w ] )F’ 2”+1[w_g]Am, then w € RH,, ;, g with

(Wlkn,, 5 S < Zﬁﬂ and hence,

T “ToT
<w r ﬂ)ﬁ’QSZ(w r p>1’Q.

for all cubes Q.

This result was proven in [HPR12] and was used to obtain a sharp self-improvement
result for the Muckenhoupt classes. We show here that it can also be used to prove the
following multilinear self-improvement result:

Proposition 3.3.15 (Self-improvement of multilinear weight classes). Let i € Ap -
Then thereis an 1 < & < min{£} such that for all0 < a < & we have iv € Aj (47,5 With

[ﬁ/]ﬁ,(m’,s) ,Sr,s [II/] p,(7,s)- (3.3.10)

Proof. By Proposition 3.1.6 and Lemma 3.2.1 we have w; € A o) with Ui =
PjToj TiT9j

rij — (+-1). Hence, by Proposition 3.3.3 we have [w]]FW , < oo. Thus, since

1

TR
(wih s ,QS,ZJ i wih e
i 7

r
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11
T
— <pBjforany0<a=<

so that 1 <& <min{£} and
arj pj

1 —_——

1
We define @ := min; . —
T 1,11
By pi Pty
a. Then
[@15,ar,9 =sup(w) 1o [[<w;h 1 s<ssupw) 1+ o [Tw;h
0 g R e T 1t L-.Q
p~s j=1 ar; " p; Q p~s  j=1 %_i‘
jPj
11

a 1
Q H<wf ) T
j=1 TP

<l

1_1
<277 s sup{w) 1
Q-

The assertion follows.






4

THE MULTILINEAR RUBIO DE FRANCIA ALGORITHM
AND EXTRAPOLATION

In this chapter we prove the abstract version of the sharp multilinear limited range ex-
trapolation theorem. This is based on the main result from the paper

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.
Mathematische Annalen, 375(1-2):453-507, 2019.

4.1. MULTILINEAR EXTRAPOLATION
The main theorem of this chapter is as follows:

Theorem 4.1.1 (Quantitative multilinear limited range extrapolation). Let 7 € (0,00)™,
s€(0,00], t€(0,5), and let G € (0,00]™ satisfyingg=7,t<q<s.
Suppose we are given p € (0,00]™ satisfying p > 7, t < p <s, (or pj = q; for some
1

o = T T
jell,....m}orp=q) e Ap s, and f € L’;(R”), g€ Lu’}_]” (R™). Then there is a
We Ag (7,5) Such that

m w2 I
. X < . .
(l_[ ”f]”L;;(R"))”g” ﬁ =27 (H ”f]”LZ,].(R"))"g” i (@.1.1
Jj=1 j Lia R™) Jj=1 J LIp ®RM)
w-1 w1
and
1.1 1.1
|
- - TP g
(W] 3,07 = Cﬁ,ﬁ,?,s[w] B.(7,5) . (4.1.2)

We note that the addendum p; = g; or p = q is only relevant when we have equality
in one of the componentsin §=7or g <s,i.e., ifg=sor qj=rjforsome je{l,...,m},
and in this case we may indeed include the respective cases with p = s or p; = r;j to
the conclusions of the result. In this case one should respectively use the interpretation

1.1 1_L
T =lor{—=1
Ca
Qualitatively, one can think of this result as the inclusion
P pn P pn
U U LL®H<s N U L,®". 4.1.3)
p>T, p<s LTJ€A[,'(;YS) ﬁz?, p=s lZ)EAﬁ,(ny)

63
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After a rescaling argument, the extrapolation theorem follows from the symmetric
version of the theorem below. In this theorem we deal with m + 1-tuples as well as m-
tuples of the same parameters, which can be notationally confusing. To circumvent this
problem, we shall use the convention from Subsection 3.2.2 that for m + 1 parameters
ay,...,am+1 we shall use the boldface notation @ = (a;, ..., @;;+1) for m+ 1-tuples while
we will use the arrow notation @ = (a3, ..., @) for m-tuples.

Theorem 4.1.2. Letr € (0,00)™"! and let q € (0,00]™"! satisfyingq =r andZ’"“ L _1.

Jj=1 qj
Suppose we are given p € (0, oo]’”+1 sattsf_'ymgp >r (orpj=gqj)and 27”11 pl =1,an
m+ 1 tuple of weights w satisfying [] w] =landw € Ap (ro0), and f € LP (R™). Then

there is an m + 1-tuple of weights W satzsjj/mgl'[’wrl W;=1andW € Ag ) such that

m+1 m+1
m
H Il g e <2 ,H 1137 re (4.1.4)
and
1_1
max{; ;’}
TP

(Wlg,(r,.00) < Cp.g,r (W] (4.1.5)

p,(r,00)

The proof of this theorem relies on a multilinear generalization of the Rubio de Fran-
cia algorithm.

Lemma 4.1.3 (Multilinear Rubio de Francia algorithm). Let7 € (0,00)™, p € (0,00]™ with
T < p. Then for each @ € Ap (7, there exist operators Ry ;i : L’Zj'j R") — Lﬁ,"j (R™) satis-

Jying
@) 1fj| < Rp,r;, 0 fis

G Ry 3,0531,7)  = 25302

m
(iii) H (Rp],,]'wf]),j,Q < Cp'r[w]i)',(r,oo) J1/1615 HlRpj,,j'ﬁ,fj(y) for all cubes Q, where
j=1 j=

1
m % Tj
Cpr = H 11

J=I\ by

Remark 4.1.4. When f; # 0, then we note that R, ;. i f; is strictly positive. Setting R; :=
(Rpj,rj,i0 fj)‘l, we point out that property (iii) is then equivalent to the condition R €

AGo,(?,oo) with
1
max{ s }
Tp

P,(7,00)

B e
[Rlso, (7 ,00) St Cp,7 W]
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Proof. Letting N,

j,rj,i be as in Lemma 3.2.6, we define
e} (f]
. p] T, w
Rl’j,rjﬁfj : Z

k= 02 " PjiTj»

Ik, o
@ P) @my—1?] @)
J J

0 N £ k k-1 .
where N o (fi)=1fjland N, o (f) = Ny (N, 5 (fi)-

To prove property (i), it sufﬁces to note that the k = 0 term in the sum is equal to | fj|.
For (ii) we have

k
00 ”ij,rj.b-l'l(f-‘i)”prj‘(Rn)
J
"Rpj,rj,ﬁ/f‘j”LZ’j‘(Rn) Z
J

02KINy, 1wl ’;
Ly, R =Ly, (R")

oo V132

o
J
= ———=2|Ifjll » .
i 2k Lu; R
To prove (iii), we first note that
k+1 X
oo Np] r],w(f])
Npj,rj,oRpjry, ) < Z ok
k=0 2°IIN,

il ;
Pttt wn—f @

< . . o f.
2“ P, w"LZ,Jj(R")*LZ,]j(R”)Rpj'rj'wf]'

Thus, it follows from Lemma 3.2.6 that

1
max{ %I%} m
M(Rpl,rl,wflr pm,rm,wfm) [w]~ 7 g Hij,rj,w(Rpj,rj,wfj)

1
max{ l_il_} m
S 2"ty oo P T Ropryofis

~.
I
—

as desired. The assertion follows. O

Remark 4.1.5. We can obtain a more precise control in terms of the weight constant in
(iii) in the case m = 1. Indeed, in this case we do not need to pass to the operators Ny, ;, .
to define Ry, .y, but we can instead define

ME(f)
Bprawf:= Z 2k | M, |k
=0 "L R — LD, (R™)

\\—‘

ey

We now obtain (iii) with ¢, » (w]' i oo) replaced by || M, || 7, ®RY)—17,R")" We could then use
Theorem 3.3.5 instead of Theorem 3.2.3 to obtain a more precise control in terms of the
weight.
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Proof of Theorem 4.1.2. The proof will consist of two steps. In the first step we prove the
result for very specific q. In the second step we iterate the first step to obtain the desired
result.

Step 1. In this step we assume that there is some jj € {1,..., m + 1} such that

1 1 1 1 L.

—<—, —=— for j# jo.

Pjo  4jo pj 4j
Since none of the statements in the formulation of the proposition depend on the order
of the indices, we may assume without loss of generality that jo = m+1.

Wedeﬁne——l—r >0,1:=1--L >0, 1 =1--L1_>0, andw—w‘1 so that
m+1 14 P +1 dm+1 +1

w= ]'[j:1 w;. For an m+ 1-tuple (ay,..., @m+1) we will use the notation & = (a1,...,a;)
so that the arrow notation will always refer to an m-tuple. Thus, we have now reduced

the problem to proving that there exist m weights W € Ag 7,5 such that fj € LZ,"]. (R,
fmi1 € L;’V,l (R"), where W := [T}, W;, with

(Hnm “ (R,,))ufmﬂn =2 (Hnm pJ(Rn))nmen @y @18

and .
; o Aoy sl
Wigrs Srs (T1(—2)7 i@, 50" 7" 4.1.7)
T

Indeed, the result then follows by setting W;,,1 := W~! and by noting that

Wlg oo = Wlg s,  [Wlproeo =05,

The construction of the m weights W,..., Wy, relies on the multilinear Rubio de
Francia algorithm as well as a clever usage of the translation lemma to deal with the
parameter s. Setting

1_1 ’
5 P q
we have
(l_l)i_(l_l)L
1 P s)aq; q s)q; 1
5 S 1 _1 =
Si 2 _1
J Poa i
. el . . L__ l 1 1
with equality if and only if rrialy and so that =S pj,and
1_1)1_(1_1)1
il (p S)q (q S)rf 1
P 1_1 -
j=1 K ’
We set
1 1 1 1 1 1 1 1 1
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—_ym 1 _ 1
and 575 p(s) j=1pjs) — p
().

- %, p(s) := (p1(8),..., pm(s)), and similarly for —, gG(s), and

q(S)’

We emphasize here that —— ( ;=0 if and only if - = q— and we encourage the reader
to verify that the remaining steps in this proof remam Vahd in this particular case.

We may compute

1 1 1_ 1 1 1
p(s)  q(s) pj dj q(s) q;(s)
=, — = (4.1.8)
F20) pi(s) s pi
1 1
IR
- %
Weset gj:=|fjl 7 w; ) so that
1
ﬂj(x)
1
Igill pjo = Ifjll
8 Lfi,/js(R”) fi pf R
and, using the notation from Lemma 4.1.3, we set R; := Rpj(s)yrj(s),ﬁ,(gj)‘l and
I T
pG) q(s) q(s)
CERE
— p
44; —R]. w;
emma 4.1.3(i) we have R; < |g;|™" so tha .1.8) we have
By L 4.1.3(i) we have R; < |g;|™! so that by (4.1.8) we h
1 + L 1
P _pTay 4 9 7
FIWi<lgl 7 79w (g 71
filWj =1g; w; 8jwj
Hence,
1 il
i ‘7/
p]()
(4.1.9)

_ ”J
1f0, g = = lgjll p]j(s)(R”) Ifil N (Rn)
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Next, it follows from (4.1.8), Holder’s inequality, and Lemma 4.1.3(ii) that

-1
||fm+1|| L®n S S fmaw "l

Lr 4a

m
1wl o [(TLBpr0atep) 77 w | o
w™ j=1 L P& g

P(s) q(S)

ps)
H Ry i(9),rj(5),0(8}) HLp(s) '’

- ||fm+1||

L RY)

1 1
(s) q(s)

p(v)
= ||fm+1|| (R”) l_[ ||Rp](s) rj(s), (&l p](S)(R”)

<2™ ||fm+1|| ey H £l p] (Rn)
By combining this estimate with (4.1.9), we have proven (4.1.6).

Finally, we prove (4.1.7). By Remark 4.1.4, Proposition 3.1.3(iii), and Lemma 3.2.1,
we have

1 _1
(W15, = [Wlg,¢s00 < Rl ”“’ (i) X .

1 1 1 1 1 1 (4'1'10)
P : q(s) max{ . F(s) : } pl) 4 q(lx)
P _ )P P pls)
O wi. - .
~hS E5(s),F(s) [ ]p,(m)

Using (4.1.8), we compute

1 11 1(1_1)1+(1_1)1
ri(s) pis) W_l_m pis)  qj(s)) ri(s) i) pils)) q;(s)

1 1 _1 L 1_1)_1
ri(s)  pj(s) p(s) p(s) (E_P_j)l?](s)
1_1
_ o4
Ti_
Ti Pi

which we interpret as being equal to 1 when % = # = %, so that
] ]

L a1 1 1
o | P ]
OO e pls)

Next, we compute

~i=
Q=

}. (4.1.11)

(L_L)L_(L_L)L 1
1 1 i q; ) p® i pj q(s)<(1 1) 20

~l—
=

1
p(S) q(s)
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Hence,
1 1 1 1
P(S)lli(sl m l_L 1 1 1 11 26”4
8] i 4\ pGs) TSPl
c. P < H oA p(s
ORIC 1 _ 1
J= rj pj p(s) L](S) (4112)
m L - l 1 1
<eeli=) H(_rlf ”lf )’f aj
U

Thus, combining (4.1.11) and (4.1.12) with (4.1.10) proves (4.1.7). This concludes Step 1.
Step 2. Now suppose ¢ is arbitrary. For each j we either have # < qu T pij = qu.

J
Assume without loss of generality that there is a j; € {1,..., m} such that

1 1 1 1
—=— ifjefl,..., j1}, —<— ifjef{ji+1,....m+1}. (4.1.13)
pj 4j pj 4j

Indeed, if this is not the case then, just as in Step 1, we may permute the indices to

reduce back to this case.
The strategy will be to construct the m + 1 weights W in m — j; + 1 steps through

repeated application of Step 1.

We define
m+1 1 1
j=m-k+2q; pj . . .
0= sl T 1 ifke{l,....m—j1+1}
J=h+lqj pj
0 ifk=0,

sothat0 =06y <0y <--- <0y, j;+1 = 1. Thus, defining,

CI}C' qj pj dj
we have
1 1 1 1 1 1
TS IS TS T S T
4 4; 4; q; q; Pj
Now, we define

1o_ 1 1

6] ~—(qu---)qjquj]+1)---rqmrpm+l)
q23=(q%yu-,q?ly6/j1+1»--~yCIm—1meypm+l)

m—j1

m—ji ._ (,M=J1
q" = (q, el yGj+1 Pj1+25 -+ Pm+1)-
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First we will check that the reciprocals of the coordinates of these m + 1-tuples sum to 1.

m+1 1 m+1 1 _
Indeed, us1ngZ] o Z] I =1, we have

1 1 N1 1 m+1 1 m+1 1
> E=r kZ————Z—wk 1= 3 —|-0|1- X —
j=14; j=14j j=1Pi 4dj j=1i4 j=ph+1Pi j=q+149j
J 1 m+1 1 1 m—k+1 1 m+1 1
= Z + —_ =1 _— JE—
=149  j=m-k+29j Pj j=i+1 9 j=m-k+2 Pj
so that
J1q m—k+1 1 m+1 1
Y—+ Y —+ ) —=1,
j=1 6l] j=i+l qj j=m—k+2 pj
as desired.

Now, for k€ {1,...,m— j; + 1} we define

11
T gkt

Yki= max { ——— ¢,
j=1:~--,j1 -~ °r
r] qj

where the terms should be interpreted as being equal to 1 when 2 = rl]_, and we write
J
= (ql,...,qm) for the m-tuple given by the first m coordinates of g*, with X :=

m 1

Jj=1 ?'
— m-— 11 m 7
We may apply Step 1 with jo = ji + 1 to obtain weights W~ /1 =W W, i)
such that
m+1 m+1
IT g0 i <2m [] Il p] e (4.1.14)
Jj=1 Lf _j, ®M j=1
Wi
and
(W) iy 7,000 < Cpagr W10 (4.1.15)

Next, we apply Step 1 with jo = jj +2 to obtain weights W~/1=1 with

m+1 m+1
H Il e <2 TTUf s
Ll R j=1 L f i B

mjll
J J

and

m—ji—1 m—jiiYm-j
[W ! ]qm j1- 1(1-00)—Cpqr[W 1] m J1 (I'OO)

Combining these estimates with (4.1.14) and (4.1.15) we obtain

m+1 2m+1

[T 170 i =™ [11fil v o,
! Ly (RY)

j=1 L g R j=1 J
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and
—j1— Ym-j1Ym—-j
[Wm J1 l]qm*jlfl'(rloo) < Cp,q,r[w]p’(,go) ]1+1‘
Continuing this process, applying Step 1 with jo = ji + kfor k=3,...,m—j; +1, we

conclude, setting W := WY, that

m+1 m+1 . 1m+1
mym-—j+
[T0i0,07 = TLUS 0 < @™M™ N TT S 2 gy (4.1.16)
j=1 w;j j=1 Lo ®™M j=1 v
i
and -
m=ji
- Yk
Wlg,tr00) = [Wo]qo,(r,oo) = Cp,q,r[w]pf;,loo) . (4.1.17)

Since (2™)™~/1*1 < 2M" e note that (4.1.4) now follows from (4.1.16). Finally, we
note that (4.1.5) follows from (4.1.17), provided we can show that

m—j1+1 ri_qL

— j b
[T ve=, _max 377 (4.1.18)
= rj Py

Note that by our initial assumption (4.1.13), this maximum is attained at some j; €

{1,..., 1}
We claim that

1 _ 1
Toooqy!

Yk 1 1
Tk

J2 qu

] 11 11 1 1
e A A T TN
P LA S S U U U W B
= = r k T m—ji+1 r i
24, gy 2 Pi

proving (4.1.18).
To prove the claim, we compute

B )
rpoqf i d rioq;j i Pj
1 1 T
rj  dj
:(—‘——) (1_0k)1 1 +6k
Tj j P
i P
so that
11
e
1oL (-0t +0k 1_1
ioa TR _ T 4i
I 1 1_1 =Yk L[
=% 4 T opi
iqf (1-0p)1+—-+0 EE
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where
(1-0r_1)x+0;

(1-0r)x+0y

We note that proving the claim is equivalent to proving the equality

Yix) =

1 _ 1 1 _ 1
T dj T dj
max k =Y
j=1,... m+lw 1_1 |7 j=l.,m+1 L - L
TP rpj
The inequality

1_1 1 1 1 _1
T 4 Tia  di2 T dj

k max =Yr| 57— | = max k
Vil X T | TR T |5 YR T
rj  Pj Tip  Ph i Pj

is clear. To prove the converse inequality, it suffices to show that ¥ is an increasing
function for all k € {1,...,m — j; + 1}. Computing

(1-0k-1)((1-01)x+0) — (1 =01 ) (1 = O4—1)x+04_1)

T(y) =
Vil = (1= 6)x+6p)°
__ k=01 0,
(1-0p)x+0p)?
we have proven the desired result. This concludes Step 2. The assertion follows. O

Proof of Theorem 4.1.1. By Proposition 3.1.3(ii), the result follows from applying Theo-
Sthr— (L -4 (4 —(B (P — (it w- —(F
rem4.1.2withr = (£,($)"), = (3, (D), p= &, (D)), w= (@', w™"),and f = (IfI*,I1g.
O
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5

WEIGHTED BOUNDS FOR MULTILINEAR OPERATORS

This third part is dedicated to applying the theory we have developed so far to operators
satisfying sparse domination.
This chapter is based on parts of the papers

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.
Mathematische Annalen, 375(1-2):453-507, 2019;

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233, 2020,

with the exception of the third section, which is based on the optimality result in the
paper
D. Frey and B. Nieraeth. Weak and Strong Type A;-A., Estimates for Sparsely
Dominated Operators. Journal of Geometric Analysis, 29(1):247-282, 2019.

We point out that the result we present here is actually a new multilinear version of that
result which can be obtained through a careful tracking of the constants in the proof of
the extrapolation theorem in Chapter 4.

5.1. EXTRAPOLATION FOR MULTILINEAR OPERATORS

In this section we will be considering operators T defined on m-tuples of functions in
the weighted Lebesgue spaces L’;j (R™). For fixed 7 € (0,00)™, s € (0,00] it is a conse-
quence of the extrapolation theorem (in particular, of (4.1.3)) that if thereis a € (0,00]™
with p =7, p<s, and T is defined on L’Z}(R”) for all w e Ap 7,5, then T is actually de-
fined on LZ/(R”) for all p € (0,00]" with p> 7, p<s,and 0 € Ap 7,5+ Thus, for the
results in this section we will not need to assume any additional structure on T such as
(sub)linearity in its components. These notions will come in to play in the next section
where we will be considering operators satisfying sparse domination.

Definition 5.1.1. Let U, V be m + 1 quasi-normed linear subspaces of L°(R”) and T :
U — V. We say that T is bounded when there is a constant ¢ = 0 such that for all f € U
we have | T(f)llv < ¢[I}L, I fjllu;- The smallest possible ¢ is denoted by [ Tl 5_.,,-

Using the extrapolation result Theorem 3.2.11 we can give a detailed quantitative
bound for the operators under consideration. Using Fubini’s Theorem we can also ex-
tend the extrapolation theorem to a vector-valued setting. In the following result we are

75



76 5. WEIGHTED BOUNDS FOR MULTILINEAR OPERATORS

considering the space pr(R”;Lt(Q)) for p, t € (0,00], a weight w, and Q a o-finite mea-
sure space. This space consists of the measurable functions f : R” x Q — C such that the
function x — || f(x, )l . (o lies in L}, (R™), with || | 2RI Q) = = 11f ) Loy | 17 RY)-
In the case when p = ¢, we can use Fubini’s Theorem to find that

£, ooy = IF e, @y |2y

valid for any ¢ € (0,00], allowing us to carry over scalar-valued estimates to this vector-
valued setting.

Theorem 5.1.2 (Multilinear Rubio de Francia extrapolation). Let7 € (0,¢ 00)™, s€ (0,00],
G € (0,001 withq =7, q<s, and let T be an operator that is bounded LZ}(R”) — L7, (RM
forall € Ag 5. Moreover, suppose that there exists an increasing function ¢ such that

IITIIL%(RH)QL?U(R,‘) < ;D)5 7,s) (5.1.1)

forallw e Az ).
Then for all p € (0,00]™ with p>7, p<s, (or pj = q; forsome je{l,...,m} orp=q),
all weights W € Ap 7,5), T is bounded L’; (R™) — L}, (R™) with

11 1.1
r S
mox{ 141
. _ R . — r P
I T”L’,;(R")~Lg,(R") <27 qbq(cp”“vs[w] p.(7,9) ) (5.1.2)

Moreover, suppose (Q, i) is a o -finite measure space, © € (0,00]™ withi>7 and t < s
(ortj=gqj, t=q). Then
T(f)xw) = T(f(,0) ()
is well-defined for all f; € LZ,G (R™; L' (Q)). Moreover, for all p € (0,00]™ withp>F, p<s,
(orpj=qj, p=q), all weights i € A ), and all f; € Lﬁjj (R L (Q)) for which T(f) is
measurable,

1.1 1.1 1.1 1.1
2 masd 447 pmasd .44
1Tl <22 g (Cparsil@ sy T TSN
L, R:LHQ) = qa\*~p.q,1,st p,(F,s) i J Lw]j(R”;Ltj(Q)).
(5.1.3)

We again note that the addendum p; = gj, p = q is only relevant when we have
equality in any of the components in § =7 or g < s, i.e,, if g = s or g; = r; for some
j €{1,...,m}, in which case we may indeed include the respective cases with p = s or

p;j = rj to the conclusions of the result. In this case one should respectively use the
1.1 1_1

. o1 -
interpretation 4— =1or +—- =
P s

i)

Remark 5.1.3. In certain specific cases we have a precise control of the constant Cj g 7 s
in (5.1.2). Indeed, the proofis based on the extrapolation theorem, Theorem 4.1.2, and
in Step 1 of the proof of this result we computed a precise control of this constant in

(4.1.7). More precisely, in Step 1 of this proof we have the following situations:
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i i i R S di<l
(i) Ifthereisa joe€{1,...,m}such that <4 p =T forall j # jy, and p =5 , then
m l’l_qi 1 _1 %—% 1_1
J J\r q q s
Cﬁﬁfsg”(n(l_i)] ])(1_1) '
=17 7 p; p s

(ii) If >1 and 1 >—forall]€{1 ., m}, then

1

1
TR
oo PN R
Cp,q,r,s 5’:5 H(L L) '
7

i Pj

.
Il
—

Remark 5.1.4. We point out that the measurable assumption on T is redundant when
T is m-linear. Indeed, any element of LZ,j]. (R™) ® L (Q) is spanned by functions of the
form (fj ® &) (x,w) = f;(x)¢j(w) for fj € Lﬁ,’} (R, i€ L% (Q), and on these functions T
coincides with the tensor extension of T, i.e.,

Tfed)=T(F)e[]¢;
j=1

ismeasurable in R" xQ. Since L’,:,’} R™M®LY (Q) is dense in LZ,’} (R™; L' (Q)), measurability

of T( f ) for general f; € Lﬁ,"j (R"; L' (Q)) follows from an approximation argument, see
also Lemma 5.3.2 below.

Remark5.1.5. Let (Qq,1),...,(Qk, Ux) be o-finite measure spaces and for j € {1,---, m}
we set X := Ltfl'((QK;--- ;Ltll' Q1)) for * >7and t* < s (or t]].C =dq;j, k= q) as in the
theorem. By induction it is also possible to obtain vector-valued estimates for T in the
theorem for functions in the spaces LPi(R"; X ). We however do not pursue this fur-
ther here, since this method does not give us optimal quantitative weighted bounds.
In Chapter 9.2 we provide a different method that gives sharp vector-valued weighted
bounds for operators satisfying sparse domination and, in particular, we can replace the
exponent of the weight constant in (5.1.3) in certain instances by the smaller exponent

1_1 1_1

T g q s
el JL 472

F p p s

Proof of Theorem 5.1.2. Fix b € Ap (7,5 and fe L’!J (R, gel
orem 4.1.1 with ¢ = r we can picka W € AG.7.9) such that

1
T

_1
p

(R™). By applying The-

2% ([T151,, Il

1 1 1
LW 1‘7 R") 7= walp (R™)

j
(TT0s51 a7 o JIET 1
jor i we JIET .
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and

Hence, we obtain

1T gllraen) < b5 (Wl s))(ﬂ 157174 (Rn))ngn

e,
L, ®"
1.1 1_1
mz x| 19 }
<27 G5 (Coarsl @y (H £l (R,Z))Ilgll L
L ®m

The assertion now follows from the duality result

1 ~

IIT(f)IILp ®RM) = =NTHI", = sup 1T(f)-gllormm-
Lr,[R”) gl L =1
L P wm
For the second result, fix i € Ap,7,5) fi€ L’ij (R L% (Q)) for all jeil,...,m}, and
1

ge L (R") Then by applying Theorem 4.1.1 with g; = ¢;, £ = r, and the f; replaced

by || f] || L@ € L’Z,’j (R™), we can pick a We Aj i.s) such that, by Fubini’s Theorem,

(Huf,n , (Rm(m))ugn Shitse Mol [

Lr [(R") j=1

L - z (R")

2 m
=2 ([] b el o) 2y (R,l))llgll i
]:1 r P (R")
mfz m
=27 (H 17l il (R"LJ(Q)))”g” T
]: r ,U (R™)
(5.1.4)
and
11 1.1
masd {444
o e FTp OPS
(W] 1,(7,s) = Cﬁ,?,s,t[w]ij,(?,s) .
In particular we note that by Fubini’s Theorem, we have that w — || f; (-, )| ¢ " lies in

L'i(Q) and is therefore finite a.e. This implies that fj(-,w) € LW (R™ for a.e. w € Q and

thus T( f) is well-defined. Now, assuming that T( f) is measurable in R” x Q, it follows
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from (5.1.2) with p = 7, (5.1.4), Fubini’s Theorem, and Holder’s inequality, that

T - lrmn < lo— ITFCo) I goliolel 1
777

(R™)
1.1 1.1
L
) _ max %_Z,i{_i}
mon -3 .
<2 $3(Car sl W, . | ) (1‘[||f,( Wl (R,,)) o8l
L r—lt (R")
w
1111 1.1 1.1
m- R R e FTF OIS Fp PSS
<2" $4(Cp il o o D, ,(Rn;Lt,.(Q)))ngn
Jj= 1 Lr t(Rn)
w-1
1.1 1.1 1.1 1 1
r S T35
o2 max l,;'i:,l }ma"{ i,;';,l}
m- - T3 s 7
<27 93(Cp 5710, 1 (H 31,2 s 16
L ” ®R")
w
The assertion now follows from the duality result
1 -
I T(f)IILn ®nL = M T(f)IILt(Q) || ' = sup TN - 8ller wm-
,(Rn) lgl - =1
Ll
O

In applying the extrapolation theorem, one can obtain further results by making ap-
propriate choices for the initial operator T. The following is an extrapolation result in-
volving weak-type estimates. The trick used to obtain this result is well-known and can
be found already in [GMO04].

Theorem 5.1.6 (Weak type extrapolation). Let7 € (O,oo)’f, s € (0,00], g € (0,00]™ with
G=T7,q<s, and let T be an operator that is bounded LZ,)(R”) — LP°R™) for all iv €
A (7,5)- Moreover, suppose that there exists an increasing function ¢ such that

I TIILZ(R,%L;,U.OO(R”) < ¢5(W15,7,5) (5.1.5)

forallw e Ag ).
Then for all p € (0,00]™ with p > 7, p<s, (or pj = qj, p = q), all weights i € Ap ),
T is bounded L', (R") — L™ (R") with

1.1 1.1
_ T hlCx == Tit rp B

11,2 oy 1 ey < 2 a(Cpar.slls ) (5.1.6)

Proof. Let A>0and for f € LZ}(R”) we set Ej := {x e R :|T(f )(x)| > A}. Define

TA(f):= AxE,
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and note that by (5.1.5) we have
o 1
ITAG N L9 gy = AMwi(Ep)7 < 1T )l pacoqway < 510 5,7,5) H ||f]I| 9 @y

Thus, by applying Theorem 4.1.1 with T replaced by T we find that

mlr b g
T )Hnmm(m

j=1

1T oy = 27 b (Cpr sl

for all p € (0,00]™ with p > 7, p < s, (or pj =4qj, p = q), all weights we Ap,7, W
Ap, 7,5 and all f € L’;} (R™). As A > 0 was arbitrary, noting that sup ;. |l Tﬂ(f ) ||pr(Rn) =
ITHI 1P gn) PTOVES (5.1.6). The assertion follows. O

As a consequence we can extrapolate from weak lower endpoint estimates in cases
where strong bounds are not available. Writing 1 for the vector consisting of m compo-
nents all equal to 1, passing to the full-range case where 7 = 1 and s = co, we obtain the
following corollary:

3 1
Corollary 5.1.7. Let T be an operator that is bounded L%D (R — L{U”’OO(R") forall €
A7 i o0)- Moreover, suppose there is an increasing function ¢ such that

< T - -
| T”L}(Rﬂ)—»Lﬁ“’(Rﬂ) = #lh .00)

Jorallw e Aj 3 -
Then forallp € [1,00]™ withp <ocoand i € A B0 T 1 boundede (R") — LV R™)
with
. m3 [ Pm
”T”LZ,}(R”)HLIZ,‘OO(R”) =2 (P(C”[w]ﬁ,(ioo))'
We can also extrapolate from the upper endpoints. An application of Theorem 4.1.1
in the case s = co with § = oo, where o is the vector consisting of m components all

equal to oo, together with Remark 5.1.3 yields the following:

Theorem 5.1.8 (Upper endpoint extrapolation). Let T € (0,00)™ and let T be an operator
that is bounded LOL%’ R™") — LY R™) for all iy € Az, (7,00)- Moreover, suppose there is an
increasing function ¢ such that

I T”L‘;’(R”)—»L?‘?(R”) = (p([a)]Go,(f,oo))

forall i € Az, (7,00)-
Then for all p € (0,00]™ with p > 7,

”T”L” ®R")— L’”(R")—2 (/’ ﬁ (7,00)
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where .
o

Cpr Sr .H(L_L)

I g

=

We point out that this result is the simplest case in the extrapolation result. Indeed,
in this case we have W = R, where R are the weights from Remark 4.1.4 obtained directly
from the multilinear Rubio de Francia algorithm.

An interesting application of this result is related to the space BMO(R") of functions
of bounded mean oscillation. We define the sharp maximal operator M* by

M f= stép(lf— (FH1,oP10x0

for f e LIIOC(R”), where the supremum is taken over all cubes Q < R”. The definition of
BMO(R") in the unweighted setting can be given in terms of M* by saying a measurable
function f is in BMO(R") if M* f € L, with || fllsmo®n) := I|M” fllfeogrn). This suggests
the following definition of a weighted version of the BMO(R") space:

Definition 5.1.9. Given a weight w, we define the space BMO,,(R") as those locally
integrable functions f such that

If im0, @) = (M f) | 2o @y < 0.

Weighted BMO spaces also appeared in the work of Muckenhoupt and Wheeden in
[MW76], and they showed that the estimate

IT fllBmO, &) S I f Il 2o mry, (5.1.7)

with an explicit constant depending on w, is satisfied when T is the Hilbert transform,
if and only if w™! € A;. We recall here that the condition w™! € A; is equivalent to
the condition w € Awo,(1,00) With [W]eo,(1,00) = [W 1] 4,. Later it was shown by Harboure,
Macias and Segovia in [HMS88] that one can extrapolate from the estimate (5.1.7) for an
operator T to obtain that T is bounded on L, (R") for all w” € Ap. As a consequence of
Theorem 5.1.8 we obtain a multilinear version of this result.

Corollary 5.1.10 (Extrapolation from BMO estimates). Let ¥ € (0,00)" and let T be an
operator that is bounded L‘;’ R™") — BMO,,(R") for all v € Ag, (700)- Moreover, suppose
there is an increasing function ¢ such that

I T”L";(Rn)ﬂBMOW(R”) = (p([w]c;o,(?,oo))

forallv € Az, (7,00)-
Then for all p € (0,00]™ with p > T, there is an increasing function ¢ 5 7 such that

n
” T(f)”Ll:/(Rn) = (Pf;,?([ﬁ/]p‘,(?,oo)) l_[ ”fj”LVj (R
j=1 wj

forall v € Ap 7o) and all f € L’; (R™) for which the left-hand side is finite.
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Proof. We apply Theorem 5.1.8 with T replaced by M* T to find that for all 5 € (0,00]™

with p > 7,
1
max{ 11 }
Fp )

where

j
Cpi Sr H( 1 _ 1 )
AT
By the Fefferman-Stein inequality for the sharp maximal operator, see [FS72], we

find that

“T(f)”LZ,(R") S_,w,p ”M#(T(]_E))“L’;/(Rn))

for all f € LZ, (R™) for which the left-hand side is finite, where the implicit constant de-
pends on w only through an increasing function in the constant [w”] 4. It remains to
note that by Proposition 3.1.6,

p P, =P o~
[w ]AOO,S[W ]Ag _[w]p,(r,oo)s[w]ﬁ,(?,oo)’
see also [Gral4a, Chapter 7]. The assertion follows. O

Examples of multilinear operators satisfying weak-type and BMO endpoint estimates
are multilinear Calderén-Zygmund operators, see also [Gral4b, Section 7.4.1]. Weighted
estimates in these situations can be found in [LOP*09b].

5.2. OPTIMALITY OF WEIGHTED BOUNDS

In this section we describe a way to use the extrapolation theorem to deduce when
weighted bounds of an operator T are optimal, given a certain asymptotic behaviour
of the unweighted operator norms || Tl 5 (RM)—LP(R™)*

First we define the critical exponents we need that determine a certain asymptotic
behaviour of | T'll ;5 gny_ 1» grny-

Definition 5.2.1. Let 7 € (0,00)™, s € (0,00], G € (0,00]™ with § =7, g < s, and let T be an
operator that is bounded L? (R") — L” (R™) for all 5 € (0,00]” with # > 7, p < s (or pj=4q;
for some j € {1,...,m}, or p = q). Setting | Tl := I Tll 1 gny—pp @y, fOT j €1{L,..., m} we
define

. 1 1 \a—¢
am(T) = sup{a €[0,00):Ve>0, lulns%p(r—j — p_]) II T”(111,A-..qjofl.pjo,qjoﬂ,...,qm) = oo}
P T

with Exﬁ(T) = (ay,g(1), ., @y (1)) and

X 1 1lyo-¢
©},4(T):=sup{w e [0,00): V& >0, llI}lSlllp(;—;) L TP S oof.
ps j

5 q7p

with wﬁ(T) = MaXje(l,..,m} wj,ﬁ(T).
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Note that when m = 1, the quantities a; 5(T), w;(T) do not depend on g.

Remark 5.2.2. We note that we are considering m different ways of letting %0 - Lin
the definition of w(T), while we are only considering one way of letting ﬁ — rl in the
definition of a; 5(T). This is for notational simplicity only and our results can be refined

by also considering these other directions.

Theorem 5.2.3 (Optimality of weighted bounds for multilinear operators). Let7 € (0,00) m
s€(0,00], 4 € (0,001 withq =7, q < s, and let T be an operator that is bounded LZ,/(R”) —
LY ®R™) forall iv e A (7,5)- Moreover, suppose that there is a f§ € [0,00) such that

) <t
I T”L?p(R”)—»LZ;(R") ~ TG 6

forallw e Ag ).

Then
(_)Zg,(T) wz(T)
pzmax{ T, T},
FT§ g9 s
. (1) (1)
where we interpret ‘Eii as0 when q; =r; and wa as0 when g =s.
i dj q s

Proof. Fix j €{1,...,m}. By Remark 5.1.3, applying Theorem 5.1.2 with ﬁ = # for k # j
RS B
and 7 < a w = 1vyields

1

e % B~
j j rji T aq;
”T”(Q1,--.,q,‘-1,pj,q]'+1,.-.,r7m) ,Sr,s( T 1 ) .

TP

(5.2.1)

a—¢&
Nowlete > 0andlet a € [0,00) satisfylimsup 1 _ 1 (ri—pi) NT NGy, diorop oot ) =
pj ] 7

Tj

oo. By (5.2.1) this implies that

) 1 1 \a—e-BE-2) . 1 1 \a-¢
hmsup( ) i Zrs hmsup(— - p_) I T”(ql,-~~:qj—1;pijj+1,m,qm) =00
1,1 j

S 0o\
A j it

which implies that a — £ — f( % - qij) < 0. Since £ > 0 is arbitrary, this implies that

when % # ri and a = 0 when % = ri Taking a supremum over such @ and a maximum
7 7 ]

over j € {1,..].,m} yields

(5.2.2)
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By Remark 5.1.3, another application of Theorem 5.1.2 with # = # for k # j and

1 1 PIRTNS (PR H
— = +— 1 with > < =, W = 1yields
Pj ‘Tj—(a—g) q p
75 \p-h)
< q s) T
||T||(q1,...,qj_1,7l L G 1renm) TS (l 1
;g p) p s

With an argument analogous to our previous one, this implies that

w . -

- 5,(T)

245
q s

Taking a maximum over j € {1,..., m} and combining this result with (5.2.2), the asser-

tion follows. O

Remark 5.2.4. By using Theorem 5.1.6 instead of Theorem 5.1.2 we can obtain the same
result for weak-type bounds with an analogous argument.

In the case m = 1 this result reduces to the following:

Corollary 5.2.5. Let r € (0,00), s € (0,00], g € [r,s], and let T be an operator that is
bounded LY, (R™") — LI (R™) forall w € Ag,r,5)- Moreover, suppose that there is a 5 € [0,00)
such that

B
” T||LZ,(R")—>LZ,(R") S [w] 4,(1,9)

forallwe Ag ).

Then { o) o) }
B zmax{———,——,

where

X 1 1\a-¢
a(T) = sup {a €1[0,00): Ve >0, hmsup(; - ;) I Tl Lr ®7y—Lr R = oo},
1.1

pT

. 1 1\w—¢
w(T) = sup {w €1[0,00): Ve >0, hmsup(; - ;) I TNl Le ) —LP R 200}’
11

p s

and where we interpret 1) as0 when q = r and 2%} as0 when q = s.

1
r g 7

Finally, we present the following variant of this result:

Theorem 5.2.6. Let r € (0,00), s € (0,00], g € [1,5), and let T be an operator that is
bounded L, R™) — LI (R™) forallw € Ag,(q,5)- Moreover, suppose that thereis a f§ € [0,00)
such that

< B
” T||LZ,(R")—>LZ,(R") ~ [w] 4.(q,9)

forallwe Ag 5.
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Then
w(T)

Q=
|
@© =

where

. 1 1\w—¢
w(T) =sup {w €1[0,00): Ve >0, hmsup(; - ;) 1Tl Le ®e)—LP ®RR) = 00}-
1 1

1,1

P

We note that [w]g,,s) < [W]g,(q,5) by H6lder’s inequality, and

11
Ty
Ia

|
o=

Q|

(Wl g0 =w 15
The key observation for the proof of this result is that the Rubio de Francia algorithm in
the case m = 1 produces an A; weight.

1
Proof. Fix p € [g,s) and g € Lip (R™) of norm 1. By applying the Rubio de Francia

algorithm, Lemma 4.1.3, to g, we obtain a weight w := R a1 a8 satisfying |g| = w,

qap q°s
and
1_1, ,
_ -1 q S\q s
Wlagqn = SUPR s 118 par o(R 1 18) o0 Sr (A1)
s s S p N
Hence, forall f € LZ,(R") of norm 1 we have
l—l ﬁ(l l)
qg S q" s
ITHIgawn <NTFll g oy S w1h < ()
p s
By the duality result
1
ITflpeny =TFI97, = sup T gllramn,
L9®R" gl L =1
Ld~P R

we now obtain

1Tl @y—Lr®ry Sr (

With an argument analogous to the one in the proof of Theorem 5.2.3 this implies that

B= % The assertion follows. O

1
q s
The initial weighted boundedness that we need to apply these results can be ob-

tained through sparse domination.
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5.3. SPARSE DOMINATION OF ¢9-TYPE

There are many different variants of sparse forms and operators and there are various
ways that an operator can be bounded by them. In this section we will consider bounds
obtained for multilinear operators satisfying a general £9-type sparse form domination,
covering a variety of examples presented in the next section. Since sparse domination is
usually proven for functions of bounded support, we will first need to discuss extensions
of operators.

Typically, unlike in our assumptions on the operators in the previous sections, oper-
ators will not initially be defined on L’;} (R™). Rather, they will be defined on an m-tuple
of spaces U where each U j is an appropriately large subspace of the of measurable func-
tions L°(R™) such as the space of bounded functions with bounded support L2 (R"), the
space of simple functions with characteristic functions over finite sets, the space of com-
pactly supported smooth functions C°(R"), the space of Schwartz functions . (R"),
etc. If we then prove that T is bounded for these functions between weighted Lebesgue
spaces, we can use density to extend T to a bounded operator on these spaces, as long
as we assume some additional structure on the operator. What is noteworthy is that in
the multilinear setting this argument is slightly more technical than in the linear setting.

Definition 5.3.1. Let U , V be m+ 1 quasi-normed linear subspaces of L°R™ and T :
U — V. We say that T is m-linear if it is linear in each of its components, i.e., if for all f €
Uand j€{1,...,m} the map Uji—-V,g—T,....fi-1,8& fi+1,---» fm) is linear. We say
that T is m-sublinear if it is positive-valued and subadditive in each of its components,
i.e., if for all f € U the function T(f) takes values in the positive reals, and for all j €
{1,...,m}and g e Uj,

T(fl,---»fj—l»fj+g;fj+1,---,fm) = T(f)+T(flr---,_fj—lygyf‘j-%—lr---)fm)'

We will generally consider operators that are either m-linear or m-sublinear, which
we shorten by saying that the operator is m-(sub)linear. In the case m = 1, a bounded
(sub)linear operator satisfies a reverse triangle inequality type estimate and thus, in par-
ticular, is uniformly continuous. Therefore, if it takes values in a complete space, it ex-
tends to an operator on the closure of its domain. For m > 2 this uniform continuity
needs to be replaced by a local uniform continuity. This again suffices to extend the
operator to the closure of its domain. While this result may be straightforward, we in-
clude it here. For the definition of a quasi-Banach function space we refer the reader to
Chapter 8.

Lemma 5.3.2. Let Y be an m-tuple of quasi-normed vector spaces, let V be a quasi-
Banach function space, and let Uj € Y; be a dense subspace for each j € {1,...,m}. If
T:U — V is bounded and satisfies the pointwise a.e. estimate

|T(f)_T(§)| = Z |T(fl)---yﬁ—1’_ﬁ_gjygj+l)--'rgm)|
j=1

J (5.3.1)

+ |T(glr---ygj—l;gj _ijfj+1;-~-;fm)|
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forall f ,& € U, then T uniquely extends to a bounded operator Y — V with a comparable
bound. Moreover, if T is m-(sub)linear, then it satisfies (5.3.1), and if V has the property
that every convergent sequence has a pointwise a.e. convergent subsequence, then the
extension of T is again an m-(sub)linear operator.

The extension of T will again be denoted by T.

Proof. Bythe compatibility of the norm on V with pointwise estimates, (5.3.1) and bound-
edness of T yields for f,ge U

m
T =T@E v S Y NT v fim1, fi = &jr €j 1o+ Em)llv
j=1

+1T(g1,-.-,8j-1,8j — [i» fi+1r--0» fmdllv (5.3.2)
m m
S X (TTafiy +ngil)if - gy,
j=1'1=1
1#]

Now, iffe Y and (fjk)keN is a sequence in U; converging to f; in Yj forall j € {1,...,m},
then (5.3.2) implies that (T'( f k)) xeN is a Cauchy sequence in V. The first assertion then
follows by defining T'( f ) to be the limit of this sequence in V. Note that this is well-
defined since it follows from another application of (5.3.2) that this limit does not de-
pend on the approximating sequences of the f;. For the bound we have

m m m
I7(F)llv = pliminf | T(F*) v = fe [ limsupl £y, < BT aj)e [T 171y,

j=1 k—oo j=1 j=1
where ¢, aj, and B are respectively the bound for T, the quasi-triangle inequality con-
stant for Y}, and the quasi-triangle inequality constant for V.

For the second assertion, if T is m-sublinear, then it follows from iterating the in-
equality
T(F) <T@ foroor ) + T(fi = 81, forees fin)

for all f; in the first term on the right for j = 2 to j = m, that

m
T(f)<T@E)+ Y, T(fir--r fi-1, i — &j»&j+1r---» &m)-
j=1

By symmetry, we obtain

m
T@)<T(f)+) T 8-1,8 ~ [ fis1rer )
j=1
and by combining these two estimates we obtain (5.3.1). If T is m-linear, these first two
inequalities are actually equalities, so we can proceed analogously.
The final assertion is a consequence of the fact that m-(sub)linearity is a pointwise

property. O
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88
Note that if V = L}, (R") for a weight w and a p € (0,00}, then V satisfies the property

- w
that every convergent sequence has a pointwise a.e. convergent subsequence. More-
over, by continuity of the (quasi-)norm || - || 2R the bound of the extension T will not
only be comparable, but it will be equal to the bound of the original T.
Consider an operator T : U — L°(R"), where U is an m-tuple of quasi-normed lin-
ear subspaces of L°(R"). Let 7 € (0,00)", s € (0,00] and g € (0,s). We then impose the
(5.3.3)

&h—‘

ondition on T that for all f € U there exists a sparse collection . such that
ITGrghoan < (1)’ @7, |Q|)
Qes j=1 q

It turns out that it is convenient to reformulate this sparse domination in terms of a

domination by a multisublinear maximal operator.

q S

Proposition 5.3.3. Let 7 € (0,00)"", s€ (0,00] and q € (0, s). Then
1
o) @7, i)’

Zs;p(Z (H .

Qes j=1

Mz
q-s
1
forallfe L’ (R™),geL? * (R™), where the supremum is over all sparse collections &

1_1

Proof. Note that the left-hand side can be written as
q . q |g|4
(ALY 1 fml 18] )”Ll(Rn)

M 1
( q

[~
i

)

Q|

1

1
(1719,1g19) "
)

while the right-hand side can be written as
1

1Q1)" = (supA

s DT

qg-s

sup( ¥° (H<|f,|">r o) (81"

Qe j=

1
q

Sl
|

Thus, the result follows from Proposition 3.2.10

By this result we can write (5.3.3) as
1T )glamm < 1M

which is not only notationally convenient, but as we will see in Chapter 9.2, gives us the

right point of view to extend sparse domination to a vector-valued setting
One of the reasons we are considering sparse domination in this general form is be-

cause pointwise sparse domination by an ¢9 sparse operator implies the sparse form

domination we are considering for s =
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Proposition 5.3.4. Let7 € (0,00)"", g € (0,00) and let T be an operator defined on LY (R™")™.
Suppose that for each bounded set B and all f € LXR™™ supported in B, for each a €
{0,3,5}" there exists a sparse collection % < 9* such that

ITfHHlscr Y ( Y (ﬁ(fﬂrj,o)qm)
acfo 3" Q=7 )

Q=

(5.3.4)

Wl

pointwise a.e. in B. Then
IT(f)-gllzamn Sq Cr Mg g0 (Fr @)l awn)
forall f e L°R™)™, g € L°(R").

Proof. Let f e LPRM™, g € LX[R"). Since the set B := (U;”zlsuppfj) Usuppg is a
bounded set, letting .#% be sparse collections such that (5.3.4) holds pointwise a.e. in
B, it follows from Proposition 5.3.3 that

ITF) glamn SaCr - Y [ X (ﬁ<ﬁ>rfvo)qxo)%gi1m

S

—or Y (X ([Tna) @)’

ae{O,%,%}n Qes® j=1
Sq CrliMig,q) (f, )l Lagn-
The assertion follows. O

Remark 5.3.5. We point out that if g € (0, ], then the inequality | - [lss < | - || ;7 implies
that if (5.3.4) holds, then it also holds with g replaced by g. Thus, we actually find that
(5.3.4) implies that

- 1 -
IT(F)- gl agn <27 Cr I1Mg5 (F @)l g,

forallge (0,g] and g € L7 @®".

loc
In the following result we will deduce weighted bounds from domination by the mul-
tisublinear Hardy-Littlewood operator. We recall here that a 5,5(D), wp(T) are defined in
Definition 5.2.1.

Theorem 5.3.6. Let T be an m-(sub)linear operator initially defined on L (R"™)™. Let
7€(0,00)™, s€ (0,00] and q € (0, s) and suppose that

IT(f)- gllLamn < CrliMg, 1 (f, @) lLamn) (5.3.5)

_1
s

Ql—|

for all f e LPRM™, g € LPRM). Thenﬂfor all p € (0,00]™ with7¥ < p and p < s, all
W€ Ap,7,5), T has a bounded extension Lg./ (R") — L}, (R™) with

1 1.1
SNEREY
1Tl Criwly; .o " Pl (5.3.6)

S <. o
L’;}(R")—'Lﬁ)(Rﬂ) ~p,q,1r,s
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Ifforall je{l,...,m}

1
a5 (MNz—, wzz=—--,
D= wpDz o

then the exponent of the weight constant in (5.3.6) is the smallest possible one.

Moreover, suppose (Q, 1) is a o -finite measure space, 7€ (0,00 witht>7andt<s.
Then

T(f)(x,0) = T(f(,w0)(x)

is well-defined for all W € Ap s and fj € LZ}'], (R"; L' (Q). Furthermore, for all fj €
L’Lj,j;. (R"; LY (Q)) for which T(f ) is measurable,

1 %_l 1.1 1.1
1 5 1.1
. max{—lil,?7l }.max{—iii,—iii} m
=4 <. . -1 F T s F p P S . .
”T(f)”Lﬁ,(R";L[(Q)) ~p,q,T,s, [w]ﬁ,(F,s) ] 1||f]”LZII (R";Ltj )"
J= J

(5.3.7)

Remark 5.3.7. As was noted in Remark 5.1.4, when T is m-linear the measurability as-
sumption on T(f) is redundant and in this case we have the boundedness result

1 1.1 1.1 1.1
max{ fi%';lt]—ls_ }~max{7i_iyft_i }
T <. . - F i s rp P S
I T”Lﬁ}1 (R™;L1 (Q))X'“XL’;:Z (R™;Ltm (Q))——Lﬁ,(R";L’(Q)) ~P,q,T,st [w] P,(7,5) .

We moreover point out that the weight constant here is in general not optimal. We will
show in Section 9.2 that, at least when ¢ = 1, it is possible to replace the exponent by the
smaller exponent

— e
=

| [=u~
=
Tl

| |
o= @ =
[ —

which does not depend on 7.

Theorem 5.3.6 is essentially a consequence of Theorem 3.2.11 and, in certain cases,
the quantitative multilinear extrapolation theorem. The reason we might have to use ex-
trapolation is because sparse domination by forms yields, a priori, weighted bounds for
the range of exponents where one can dualize the operator. Typically, in the multilinear
case, this does not yield the full range of exponents where the operator satisfies weighted
bounds. To recover this full range of exponents, we will use Theorem 5.1.2. Before we
can do this however, we need to use Lemma 5.3.2 to extend T to weighted Lebesgue
spaces. Since we are working with weights that are not necessarily locally integrable, it
is not a-priori clear that the bounded functions of bounded suppose are dense in these
spaces. We prove that this density result does indeed hold.

Lemma 5.3.8. Let w be a weight and p € (0,00). Then L’;, R™ N LPRY) is dense in
Lh,R™).
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Proof. First consider the case p > 1 and suppose g € L‘Z}/ _, (R™) satisfies the property that
Janfgdx=0forall f € LY, (R") N LLR"). If f € LP(R"), then —L € L¥,(R") N LX(R™), s0

1+w

f :fRnLgdxzo,

1+w 1+w

ie., 1+ € LP'(R™) is annihilated by all f € L®(R™). Since L (R") is dense in LP (R"), we
have ; £ =0 and thus g =0. We conclude that Lp R™ N LPR"™ is dense in Lp (R™).
Now con51der the case p < 1. Fix k € N so that 2¥p > 1. If f € L" (R"), then we

k
can pick a positive g € L? 2’{ . R™) with gzk = |f|. By our previous result we can find a
w

k

sequence (g;) jen in I? ;ik (R™) N LP(R") converging to g. Setting f; := |gj|2k sgn(f) €
w

LY, (R™) N L (R™) we compute

2k ok A 2l | ol
lfi—rf1=lgil> —-g* I=ligjl-gl []llgjl* +&° |
1=0

so that by Holder’s inequality

ng,2 +g2 | 2l

n
R™ 120 2D

||ﬁ_f||Lp (R™) = ”g] g“ zk [Rn)'

. I ! ! ..
Since |llg;I* +g* IIsz ! < IIngI2 + ||g||2 is bounded in j, we con-

e ®D Lk ® k(R")
wr

clude that f; — fin qu (R™). Hence, L’Z,(R”) nL‘C’O(R") is dense in LZ(R”), asdesired. O

We are now ready to prove Theorem 5.3.6.

1,
s

~I—
[~ |—

1
1. withl= q l_z_ 1
Proof of Theorem 5.3.6. Set TRl with + = I > 1. Notlngthat = —%%_%qE
11
(E;E)r
1 1 1_1
noo_ _ _tm  _a_ s _ 1
1_177 117117 91-¢
n 4] 'm Im r s

it follows from Theorem 3.2.11 and Proposition 3.1.3(ii) that for all @ € A; ; ;; we have

IT(f)- gllramn = Cr ”M(?%i; CT”M(r (s ))(Iflq Iglq)IILl(R,,)

ffffff =1 l
(fTngi®,  Juge "y
/=1 L  (RY) L7 R

wj L4

Sq,?,s Cr [ﬁ/q]

— 1 T
= Crimy (an]n ; (Rn))llgll o
L7, ®m

(5.3.8)
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1

. T_1
forall f; € ij,j RM)NLPR"Y), ge LLZJ R NLPR"). By Lemma 5.3.8 and Lemma 5.3.2

1

L - 11
we see that (5.3.8) extends to an inequality valid forall f€ L} (R"), ge L’ " (R™).

Hence, by duality, we have

-1

1 N
“T(f)”L[w(R”) = ”|T(f)|q|| ql = sup ”T(f)'g"Lq(Rn),
qu(Rn) lIgll 111 =1
L

R")

1
we have proven (5.1.1) with § = fand (p;([ﬁ/];,(;’s)) RqT,s CT[LTJ]?I;; 9" Noting that

the asserted bounds follow from Theorem 5.1.2. Finally, the optimality assertion follows
from Theorem 5.2.3. O

5.4. EXAMPLES OF OPERATORS SATISFYING SPARSE DOMINATION AND AP-
PLICATIONS

In this section we apply Theorem 5.3.6 to multilinear Calder6n-Zygmund operators and
the bilinear Hilbert transform, both of which having an intriguing history in terms of
obtaining weighted bounds. Moreover, we give some examples of operators satisfying
limited range sparse domination in the linear case m = 1.

5.4.1. Multilinear Calderén-Zygmund operators

Let T be an m-linear operator, initially defined for m-tuples f € C°(R™™, that satisfies

meJMM=A)KmeJMHﬁMM%
nym ]:l

whenever x ¢ m}”:l supp f;, where K is akernel defined in RM™ A with A := {(Jo, ..., Ym) €
R™M™1: yy =y =--- = y,u). Suppose K satisfies the estimate

1
(Zylyy=il) ™

|K(y0)'-~)ym)|§

for all (yg,...,ym) € (R™MM+I\ A and suppose that for all [ € {0,..., m} we have

lyi =yl ) 1

|K(J/0r,J/l,;J/m)—K(J/0,;y;;;ym)|,§w( m - mn
Ljk=oVi =Y ] (£ 1y -yl
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forall (yo,..., ¥1,..., ym) € RM™ 1A, and yywith ly;—yjl < % maxgeo,..m | Vi— Yl where
w : [0,00) — [0,00) is a nondecreasing continuous doubling function. If there exist g €
(1,00]™ so that T extends to a bounded operator L7(R") — L7(R"), then T is called an
m-linear Calderon-Zygmund operator with modulus of continuity w.

Multilinear Calderén-Zygmund operators with modulus of continuity w(#) = ¢* for
some ¢ > 0 first appeared in the work [CM75] by Coifman and Meyer. Weighted esti-
mates for these operators have been considered for example by Grafakos and Torres in
[GT02] and subsequently by Grafakos and Martell in [GM04]. In the work [LOP*09b]
by Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzdlez, it was realized that the appro-
priate weight classes to study these operators are the multilinear weight classes A3 7 .,

p
associated to the multisublinear maximal operator. Sharp weighted bounds for the spe-
cific exponents p; = ... = p,, = m+ 1 were found by Damian, Lerner, and Pérez in

[DLP15]. These bounds were extended to all p € (1,00)" in the Banach range 1 < p < oo
by Li, Moen, and Sun in [LMS14]. They proved that the same bounds hold also in
the case % > 1 for multilinear sparse operators, leading them to conjecture that the
bounds for multilinear Calderén-Zygmund operators should also extend to the case
% > 1. Through a pointwise sparse domination result, this conjecture was indepen-
dently proven to be true by Conde-Alonso and Rey [CR16] and Lerner and Nazarov
[LN18] who considered moduli of continuity w satisfying a log-Dini condition. More
precisely, they proved that if

1 1dt
fw(t)log——<oo, (5.4.1)
0 tt

then for all bounded sets B and all f € LX(R™™ supported in B, for each a € {0, %, %}n
there exists a sparse collection #% € 2% such that

m
ITHl=scr Y X ( I1 (fj)rj,Q)XQ
oefol 3} 4 U
pointwise a.e. in B. We also refer the reader to [Lac17, HRT17] for the linear case m =
1, where the weaker Dini condition was assumed on w. The Dini condition was used
in the bilinear setting m = 2 by Damian, Hormozi, and Li [DHL18] where, in addition,
quantitative mixed multilinear Az—A, bounds were considered.
To see how the pointwise sparse domination can be used to obtain sharp weighted
bounds, note that by Proposition 5.3.4 we have

[ T(f) -8l (R™) 5 Cr ||M(?,1) (f, g)”Ll(Rn)

for all f € LPR™M™, g € L*(R™). Hence, by Theorem 5.3.6 and Remark 5.1.4, we obtain
the following result:

Theorem 5.4.1. Let T be an m-linear Calderén-Zygmund operator with modulus of con-
tinuity w satisfying the log—Dini condition (5.4.1). Then for all p € (1,00]™ with p < co
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and all W € Aﬁ,(T,oo)' T has a bounded extension Lﬁw (R — L’Z, (R"™) with

) <. — max{p},... Pl p}
“ T”Ll;_)(Rn)ﬁLf”(R") ~p CT [ ]f),d,oo) '

Moreover, let (0, j1) be a o -finite measure space, and let t € (1,00]™ with t < co. Then for

all v € Ap ) the tensor extension T of T is bounded L}, (R"; L' (Q)) x---x Ly (R™; L' (€)) —

L7 (R LH(Q) with

P} )
max{r,..., t;n,t}~max{ L. —’”,B}

~ t/
- [ 1
I T”Lil1 (R%L Q) x-x LI™ (R Lm (Q))— LE, (R™; LT (Q)) gﬁ,t (0] 5,

wm

We point out that the extrapolation result, Theorem 5.1.2, yields another proof of
this result using only the bound at p; =... = p;;; = m+1 obtained in [DLP15] and hence,
gives an alternative method of proving the conjecture from [LMS14] to obtain bounds
in the cases % > 1. This follows from the observation that in the proof of Theorem 5.4.1
we only require the bound at p; =...=pp, =m+1.

The exponent max{t|,..., tj,, t} - max{l;—,i,..., ’%, %} in the vector-valued bound is
not optimal and, in fact, we will see in Chalpter 9 ’;’hat it can be replaced by the sharp
bound max{p’l, ceer P p} when ¢ = 1, which coincides with the exponent in the scalar
estimate.

Finally, we note that our bounds in the cases where p; = oo are completely new.

5.4.2. The bilinear Hilbert transform

The bilinear Hilbert transform BHT, initially defined for f, f> € &#(R), is given by

d
BHT(f1, f2)(x) := p.v.fRfl x=Nfolx+y 7y

and is an integral operator falling outside of the theory of bilinear Calderén-Zygmund
operators. The reason for this is that its symbol sgn(¢; — ¢») in its representation as a
Fourier multiplier

BHT(fi, f>)(x) = —im fR ,5gn(1-&2) FENg(E) P C1He2Dx g dg,

has a singularity along the line ¢; = ¢, rather than in a single point, as is the case for
Calderén-Zygmund operators.

This operator was introduced by A. Calderén and he wanted to know if it has a
bounded extension LZ(R) x L®°(R) — L2(R). This question was answered by Lacey and
Thiele [LT97, LT99] and they showed that BHT is bounded LP! (R) x LP2(R) — LP (R) for all
p1, p2 € (1,00] with % < p <oo. Itis an open problem whether we can obtain bounds for
the remaining range % <ps % or not. However, in the range of Lacey and Thiele several
weighted bounds and vector-valued extensions have been obtained.

Let r1, 12, s € (1, 00) satisfy one of the following equivalent properties:
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@) max{;, 3} +max{L, 3} +max{}, 3} <2;

(ii)) There exist 8;,0,,03 € [0,1) with 6; + 0, + 03 = 1 so that
1 1+61 1 1+92 1 1—93

’

n 2’ Ty 2 s 2
Using characterization (i), it was shown by Culiuc, Di Plinio and Ou in [CDO18] that

IBHT(f1, £2)- gl iy S 1 Miry e,y (1 f2, ) I wy (5.4.2)

forall fi, f2, g€ L (R).
Using characterization (ii), it was later shown by Benea and Muscalu in [BM17] that
for g € (0, s) we also have the ¢9-type sparse domination

IBHT(f1, f2) - 8llLaw) S I My, p, 1y (f1, 2, 8) ey (5.4.3)

1
q

forall fi, f>, g € L (R), as well as more general vector-valued sparse domination results.
While we only require (5.4.2) to obtain bounds in the scalar-valued setting, we will see
in Section 9.3 that allowing for this smaller g in (5.4.3) is important to obtain bounds in
the vector-valued setting.

In [CDO18], it was deduced from (5.4.2) that for all p;,p2 € (1,00) with p > 7, in
the Banach range 1 < p < s and for all i@ € Aj (7 we have the weighted bounds BHT :
Lﬁ}l (R™) x L’g2 (R") — LZ,(R”). These weighted bounds were used in [CM18] to obtain
weighted and vector-valued estimates in the range p < 1 through extrapolation using
certain product Ap, (r,s;) X Ap,,(r,5,) Weight classes. This result was extended in [LMO18]
where the full multilinear weight classes A(p,,p,),((r,r,),s) were used, but only the cases
for finite p; were treated. However, as shown in [LMM™19], their methods can be used
to also obtain the cases with p; = oo . By applying Theorem 5.3.6 and Remark 5.1.4 to
(5.4.2), we obtain the following result:

Theorem 5.4.2. Letry, 12, s € (1,00) satisfy one of the equivalent conditions (i), (ii). Then
for all py, p2 € (1,00l with p > 7, p <s and all W € Ap 7,5, BHT extends to a bounded
operator L}, (R) x L}> (R) — L},,(R) with

[ BHT ||LP1 R <L R)— L R) ~ <[]

Moreover, let (Q, 1) be a o -finite measure space, and let 1, tz € (1,00] wWithi>F, t < s.
Then for all W € Ap ;s the tensor extension BHT of BHT is bounded L) (R L(Q) x
L2 (R L2(Q) — LE, (R L1(Q) with

IBHTH 21 o1 ) <122 @12 )L, R )

1 1 11 L_[L L_[L 1.1
T T2 5 . T h T2 h 7%
maxe 17— 11T 1T T_r (M1 -1 1 _1'T_1

} (5.4.4)
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As we noted in Remark 5.3.7, the quantitative bound (5.4.4) is not sharp and will be
improved in Chapter 9.

5.4.3. Examples in the linear case m = 1

There is a wealth of examples of sparsely dominated operators in the case m = 1. Going
beyond the class of Calder6n-Zygmund operators, a general class of examples associ-
ated to semigroups was found in the work of Bernicot, Frey, and Petermichl [BFP16]. A
very general sparse domination principle was established by Lerner in [Ler16] and was
further generalized by Lerner and Ombrosi in [LO20] and by Lorist [Lor19], who also
considered ¢7-type sparse domination in spaces of homogeneous type.

We point out several interesting examples here.

Example 5.4.3 (Rough homogeneous singular integral operators). Let (S?~!,0) denote
the unit sphere in R with its Euclidean surface measure. For Q € L*°(S%!) with |, ga-1Q2do =
0 we define the rough homogeneous singular integral operator Tg as

Tof@:=pv. [ foe-p= Ly

One of the main results in the work [CCDO17] of Conde-Alonso, Culiuc, Di Plinio, and
Ouis that for all s€ (1,00) and all f,g € L‘C’O(Rd) there exists a sparse collection . such
that

”(TQf)gHLl(Rd) NS"Q”LDO(Sd 1y Z <f>1 Q(g)s’Q|Q|
Qe

An alternative proof of this result was given by Lerner [Ler19].

Adapting the technique of Lerner from [Ler19], it was shown by Canto, Li, Roncal,
and Tapiola in [CLRT19, Theorem 5.1], that for all s € (1,00), g € (0,1], and all f,g €
L‘C’O(Rd) we have the ¢9-type sparse domination

”(TQf)g“Lq(Rd) ~ "Q”Lm(Sd I)HM

q s

Example 5.4.4 (Riesz transform associated with elliptic second order divergence form
operators). Let A be a complex, bounded, measurable matrix-valued function in R”
satisfying the ellipticity condition Re(A(x)&-&) = A|E|? forall € € C" and a.e. x € R”. Then
one can define a maximal accretive operator

Lf:=—div(AVf)

which generates a semigroup (e 0. If r € [1,00), s € (1,00], then if both the semi-
group and the family (v/zVe™ L) 5 satisfy L'-L* off-diagonal estimates, then it is shown
in [BFP16] that the Riesz transform R := VL~!/2 satisfies

IIRf-g||L1 R") S ||M(r s (f g) ||L1(R”)
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for all f,g € L2(R"). Moreover, if we are in dimension n = 1, then we can take r =1
and s = oo so that R satisfies sparse domination in the full range. We refer the reader to
[Aus07] for more values of r and s in other dimensions.

Example5.4.5 (Riesz transform associated to the Neumann Laplacian). Suppose A is the
Laplace operator associated with Neumann boundary conditions in a bounded convex
doubling domain U < R". As studied in [WY13], the Riesz transform R := VA2 will not
in general have a kernel satisfying pointwise regularity estimates and is thus not in the
class of Calder6n-Zygmund operators. Nonetheless, this operator satisfies

IRf-glpawy S IIM?ﬁl)(f,g)llLl(U)

for all f,g € LX(R"), where 2 is the collection of balls in U. Note that to apply our
results to this example, we need to show that they remain valid when replacing R” by
the doubling metric measure space U. We refer the reader to Chapter 7, where we show
how our results can be extended to general spaces of homogeneous type.

Example5.4.6 (The Bochner-Riesz multiplier). For each 6 = 0, the Bochner-Riesz multi-
plier Bs is defined as the Fourier multiplier .% (Bs f) = (1—|¢ Iz)ﬁﬁ~ f,where £, = max(t,0).
For § = (n—1)/2, Bs satisfies weighted bounds "B5”La,(R")HL’Z,(R”) <ooforany p € (1,00)
and any w € Ap 1,00), see [Buc93, DR86, SS92].

The situation is more complicated when 0 < § < (n —1)/2 and weighted bounds for
such é have, for example, been considered in [CDL12, Chr85, DMOS08]. The idea to
quantify weighted bounds for B for 0 < 6 < (n—1)/2 through sparse domination was
initiated by Benea, Bernicot, and Luque [BBL17]. It was shown by Lacey, Mena, and
Reguera in [LMR19] that for this range of 0 there are explicit subsets Rs , of the plane
such that for any (r, s) € Rs,, we have

IBs f- gl ey S M M,s (f, @) L1 gy

We also refer the reader to the recent work by Kesler and Lacey [KL18] containing certain
sparse endpoint bounds in dimension n = 2.

Example5.4.7 (Spherical maximal operators). Let (S"!,0) denote the unit sphere in R"
equipped with its normalized Euclidean surface measure o. For a smooth function f on
R" we denote by A, f(x) the average of f over the sphere centered at x of radius p >0,
ie.,

Apf(x):= fsd_lf(x—pw) do(w).

We respectively define the lacunary spherical maximal operator and the full spherical
maximal operator by

Miac f:=suplAyx fl,  Mpnf :=suplA,fl,
keZ p>0

the latter having been introduced by Stein [Ste76] and the former having been studied
by Calderén [Cal79]. It was shown by Lacey [Lac19] that for explicit subsets L, F, of the
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plane we have

I Miac f - 8l ey S 1My (f, @y, for (p-, p+) € La,
| Mean f - gl (R") S, | M, 51y f, 8 "Ll(Rn), for (p—, p+) € Fy.
In the recent work [RSS20] by Roncal, Shrivastava, and Shuin, the ideas of [Lac19] were

adapted to prove sparse domination result for the bisublinear analogues of Mj,. and
M.



6

WEIGHTED ENDPOINT ESTIMATES

In this chapter we will be proving mixed A;—A. type endpoint estimates as a conse-
quence of sparse domination in the case m = 1.

This chapter as well as the next one are based on the paper

D. Frey and B. Nieraeth. Weak and Strong Type A;—A~ Estimates for Sparsely
Dominated Operators. Journal of Geometric Analysis, 29(1):247-282, 2019.

6.1. WEAK-TYPE BOUNDS FOR MULTILINEAR OPERATORS FROM SPARSE DOM-
INATION

In this section we prove how one can obtain unweighted weak-type bounds from sparse
domination. In the next section we adapt this proofin the linear case m = 1 to aweighted
setting. The proofs are based on the fact that for any o-finite measure space (Q, i), any
r € (0,00) we have the equivalence

. 1_
Ifllzreo) =~ sup inf  uE M frelno (6.1.1)
EcQ E'cE
0<u(E)<oo u(E)<2u(E")

for all f € L"°(Q), see [Gral4a, Exercise 1.4.14]. This description of the L""*° quasinorm
in terms of L! norms allows us to utilize the sparse domination assumption to deduce
weak-type bounds.

We have the following result:

Proposition 6.1.1. Let T be an m-(sub)linear operator initially defined on L (R™)™. Let
7 €(0,00)™, s € (1,00], and suppose that

IT(F)glp@m < CrliMe,o) (F, @)l @y

for all f € LXRM™, g e L°R" N LY(R"). Then T has a bounded extension L” (R") —
L"°R™) with

Il T"LF(RVL)_,Lr,OO(Rn) ,Sr,s Cr.
Proof. Let f € LPR™M)M with || fill & =1 By the equivalence (6.1.1) and Lemma 3.2.4

99



100 6. WEIGHTED ENDPOINT ESTIMATES

we have

|| T(f)"Lr,OO(Rn) ~ sup Elnf |E|7_1||T(]-E)XE/ ”Ll (R")

n

E !
0<|E|<co | EI<2|E'|

r -1 / n
=Cr SSIF” EHlf |E|" ”M(rs)(f XE)||L1(R) (6.1.2)

0<|E|<oo |E|<2|E'|

_ -1 rd
~Cr sup max inf |E|r I (rs,)(f,XE/)”Ll(Rn).
EcR” {0 12 E'cE
0<|E|<oo '3°30 |E|1=2|E|

Fix a dyadic grid 2 = 2% and E < R" with 0 < |E| < co. Define

1 m

2my 7
Q;:={xe R, M2 (f)) (x)>(|E|) i, =
Then, since ||M?; ;77 @ny— 7% ey < 1 by Lemma 3.2.5, we have

m m E
|Q|sZ|Q,~|<Z—=—
j=1 j=12m

Setting E' := E\Q, we find |E| < |E'| +|Q| < |E'| + |E|/2 so that |E| < 2|E'|.
Now, using an analogous argument as in the proof of Lemma 3.2.5 we can write Q0 ; =

Upje; Pj where 2; < 9 is the pairwise disjoint collection cubes P; that are maximal
1

with respect to the inequality (fj); p; ( T ) . Note that unlike in Lemma 3.2.5 where
we had to consider finite collections of cubes, the fact that these maximal cubes exist
follows from the fact that Q; has finite measure. Indeed, since the increasing sequence
of cubes in 2 containing a point x € R" has a strictly increasing sequence of measures

converging to oo, the cubes P; in this sequence satisfying (fj)r;p; > (I EI) J must be
bounded from above as they are contained in Q}, proving that there is a maximal one.
Now, we write

gi=filxas+ X Fdrueary bii= X bipi= 3 (1= )ae,
P]'Eyj Png’j P]'Eg’]

so that Ifjlrf = g]r.j +b;. Then for all P; € 22; we have

Suppbj,pjgpj, Lbj'pjdxzo, (6.1.3)
J
n+1 1
I18jlo = ( i )7, gl =1 (6.1.4)

Here, for the first bound on g; we used the fact that on QC we have | fj| = M? () =
(fgl‘) /by the Lebesgue Differentiation Theorem, while for the parent P; jofacube Pje

2; we have (fj)rj,p]. sZTf(fj 1.5 <27i (IEI) by maximality.
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Next, we claim that
M(Q;’S,) (Ffrxe) = M(g.;.ys,) (8, x5)- (6.1.5)

Indeed, fixa cube Q€ 2. If QN E' = &, then {(xg"s,@ = 0. For the other case, suppose
QNE #0. If Pj € 2; satisfies P; N Q # @, we must have P; € Q (otherwise Q € Pj
Q;<Q,but E'nQ = @). But then, by (6.1.3), we have (bj'pj>1,Q =0. If on the other hand
PjnQ =g, then we similarly have <bj,pj>1’Q =0. Hence,

o= {8010 +ng» bjp 1= 8y o
€Pj

The claim (6.1.5) now follows from the definition of M2

(F,s")"

Finally, we note that for pij = % with 1 := % + 1 it follows from (6.1.4) that

_1
-

_L(l_l) % 1
. T P P 15 P;
||g]||ij(Rn) ,Srj |E| J J ”g]”Lrj(Rn)—|E| 7o

so that by Holder’s inequality and Lemma 3.2.5 we have

1,1\ Y m

9 = r s

”M(f,s’) (g,XEI)“Ll (R") < (E) (1—[1 ||g]||LP] (Rn))“XE/ ”LV’(R")
ros 7=

1
r

/Lr 1 1-1
Srs|ENPIEIP T <|EI'77.

The assertion now follows from (6.1.2) and (6.1.5). O

6.2. WEIGHTED ENDPOINT BOUNDS FOR LINEAR OPERATORS

We will be considering estimates for (sub)linear operators at the endpoint p = r with
weights in the class A (5. Our bounds will be in terms of the constant [w];, (.5 =
L_1_1 11

TS “EW = [w 51} which was introduced

(w73 14, * and the Fujii-Wilson constant [w 0

1
in Section 3.3. It follows from Proposition 3.1.8 that w € A, () if and only if [w’]/’41 =
[W]r(re0) <ooand w” € RH . We will establish the following weak-type bounds:

Theorem6.2.1. Let T bea (sub)linear operator initially defined on L (R"). Letr € [1,00),
s€ (1,00], and suppose that

ITf- gl < CrllM,s)(f, &)l 1 wm

forall f € L°(R"), g € L°(R") N L' (R™). Then forall we A, ), T has a bounded exten-
sion LT,(R™) — L, (R") with

Il T||L€U(Rn)HLfb°°(Rn) S,r,s Cry(w),
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where

[w] 4, log(e+ [w]a,) ifr=1,s=o00;
1 1

(w1} [w'Ty logle+[w'la,)r ifr>1,5=00;

Y(w) =4 (w4, [wla, [Wrn, ifr=1,s<oo;
1.1+ 1 1 .
(wrs], ’[wr];h[wr]{{H ifr>1,s<oo.

1
T

~iI—|

<l

We will also prove the following result:

Theorem 6.2.2. Let T bea (sub)linear operator initially defined on L (R"). Letr € [1,00),
s€ (1,00], and suppose that

ITf-gln R = CT”M(r,s’)(f» 9l (R")

forall f,g € LP(R"™). Then for all p € (1,5), w € Ay (p5), T has a bounded extension
LhRY — LF (R™ with

-1,FW
l Tf”L'Z,(R”)ﬂLZ,(R") 5;’,5 CTCp,r'g[w ]p’,s’[w]P,(p,S)» (6.2.1)

where

In particular, for all p € (,s), w € Ap (p,5) we have

1
-5
1_1

1
pTs L
” T||L§,(R”)~>L5,(R") ,Sp,r,s CT[LU] p(p,s) CT[LU P

(6.2.2)

Moreover, ifo(T) =1 - %, where

w—E&

. 1 1
o(T) =sup {w €[0,00):Ve>0, llmsup(; - ;) I TllLr r7y—LP 7y = oo},
1 1

LI 3

p s

then the exponent of the weight constant in (6.2.2) is the smallest possible one.

For the proofs of these results we will require several lemmata. Throughout these
results we will work in a fixed dyadic grid 2 = 2°.

As an analogue to [LOP08, Lemma 3.2] and [HP13, Lemma 6.1], our main lemma is
the following:

Lemma 6.2.3. Letr € (0,00), s€ (1,00], p € (1, 5) and% € (0, % —1). Then

D
MG g (F &) 1 )

1
1-1y\7 1 1-1 -5 1 1\
<( ”) ( r ( ) [q(———)]” i gl
~11 1 1 1 1 1 L” . (R") P n
) \5mu) s ps v Fyr @9

forallfel (R"),ge Lf(;C(R”) and w € Lﬁ)c(R”) non-zero on the support of g.

loc

~1=




6.2. WEIGHTED ENDPOINT BOUNDS FOR LINEAR OPERATORS 103

We point out that a similar type of result is established in [DHL17, Theorem B].

Remark 6.2.4. In the unweighted case it follows from Holder’s inequality and 3.2.5 that

1

1 rf1=1 1=5
”M?;,sr)(f;g)”[}(]{ﬂ) = (ﬁ) (l__sl) ”f"Lp(R") ”g”Lp’(Rn)-
rp p s

1

Thus, it appears that adding the weight accounts for the extra term ( i

) ' , which de-
rp

pends on p when r # 1. This extra term appears in Lemma 6.2.6 below and it causes the
additional terms in the quantitative bounds for r # 1 in Theorem 6.2.1. At this moment
it is not clear whether this term can be removed or not.

We break up the proof of the main lemma into another series of lemmata.

Lemma 6.2.5. Forall f € L{OC(R"), g€ Lls(;c(R”) and f € (0,1] we have the pointwise esti-
mate

M7, (f,8) = MY (M7 g) P F) (M2 g)P.
Proof. Fix x € R"” and let Q € 2 with x € Q. Then
(8)5.0= (@%,o(8) ¢ § = ()5 gessinfMI ('™
so that
(Pro@so=(MIQ' P ro@h o= M7 (M7 P £) 0 (M) (0P
Taking a supremum over all Q € 2 with x € Q proves the result. O

Lemma 6.2.6. Letr € (0,00), s€(1,00], p€ (1,9), and q € (p,00). Then

1-L\7( 1 \r
9 p r D
||M(,,s/)(f,g)||Ll(Rn) 5 (ﬁ) (ﬁ "f”Lp@ (R”)”Ms’ g”Lp’ (R”)’
) iy Mg w 2w

forallfeLl (R"),gelLS R™,andwelL] (R™.

loc loc
For the proof of this lemma we require two results on dyadic maximal operators. The
first is a version of a classical result of Fefferman and Stein [FS71].

Lemma 6.2.7. Letr € (0,00), and let w be a weight. Then for all p € (r,00] the operator
M? is bounded LL ?W(R”) — L, (R™) with

1 q
D T
”Mr f”LP9 (Rn)ﬁLg,(Rn) =< (i) .
MI” w T P

Moreover, M,@ is bounded L R™) — LU°R™) with ||M,@||Lr , RY—LICRY) <1
w M7 w w

7
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Proof. The proof of this result is very similar to the proof of Lemma 3.2.5. By the same
reasoning as in that proof, it suffices to prove the weak-type bound and by a rescaling
argument, it suffices to prove this in the case r = 1. Let & < 2 be a finite collection of
cubes and fix f € LYR™; MZ w), A > 0. Let 2 be the pairwise disjoint collection of cubes
P that are maximal with respect to the inequality (f); p > A so that {x e R": M7 ( x>
A} =UpespP.

Now, since

(P1pw(P) = (essintM” W) pIPI < fP FM?wdx,

we have

Aw(xeR": M7 (H)>M =Y AwP) < Y (HipwP)

Pep Pe&p
< Z ffM@wdx:f FM? wdx
Pep P {x€R™:MZ (f)(x)>A}

< I flp ;M2 wy-
Thus, taking a supremum over A > 0 yields | M7 (I preomnsy = I fllp (R":M? )+ By mono-
tonicity of the measure we have
9 F
M7 ()l preo@ny < sup IM” ()l proogn;y) < ”f”Ll(R";M@w)’
F<D
Z finite

proving the assertion follows. O

The second result we need can be found in [CR80, Proposition 2], see also [Gral4a,
Theorem 7.2.7], and states that

M?(M? f)%) < —= 6.2.3)

(M? f)°
1-6

forall§ € (0,1) and fe L} (R™).

loc

Proof of Lemma 6.2.6. We will prove the stronger assertion

1-t/ (R”),
D 1-p
(Mp w) p

T Oy

7 1 ’

r D

”f”Lp (R™) ”Msr g” p
1 _max(i,1 1-£ L
r t’p M7 w) =P

, 1
1My oy (Fr g S| 1
;

valid for all ¢ > r, generalizing a version of the result [Ler10, Theorem 1.7] in which the
1
case r =1, s = oo is treated. The result of the lemma follows with % = f

We set

11
+ 5=
ﬁ::min(p'l—{r,l)
G
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sothat0< f<1.
By Lemma 6.2.5 and by Holder’s inequality we find that

1M ) (o )y < IMF (M2 ) P £) (M2 )P s
<nm7gl’ (6.2.4)
LP

)
1-¢ (R™)

D 1P
(Mp w) 4

where
= e et os)]

1

=

=l

p

n
L AL

7

D 1-
(M‘!7 w) 4

We will consider two cases. First assume that

11,11
__/+_/_
prl‘r1 ir21
Tty
and f=1. Then
o 1)(11+11)> 11
p tr t'r)T tr
so that
1-¢ 1( t’—1)
<=1+ <1
1-p/ 2 r'—1

by the assumption r < t. Then it follows from Lemma 6.2.7 and (6.2.3) that

1\t
_ D r
I= ”Mr f”Lp L (R") = (E) ”f”Lp l—t’ (R™)
W wy 17" TP M7 (MZw 1P

I L AT
< L ”f“Lp , R™)
1-¢

~ _1-r 1_1
1-p' ro.p (M’?w)l’p’
1 1
Zl_lt P 1 T
;
< | —
il P B R Iy g R
rot rop (M_;Jw)l_pr
as desired.
For the second case we assume that
11,11 11,11
rtr’ t'r gt t'r
P11 <! and f=p——7—.
Tty G
Then, using r < ¢, we note that
1_ 1 11 _ 1l
B~ Y _ 21y 1 (1=0% 1 -1
— =7 7<- and —G——— =51+ <1.
1l 1,1 5 1_1 2 r’—
B rt p B
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Hence, we may apply Lemma 6.2.7 and (6.2.3) so that

1_1
B p

D 1—
IMIPrI
1_1

!
g 1-t/ R™)

AT (6.2.5)

~ |
|

—

=l

L

-
=

) M7 )P 3

=l

L r 1 R

7

(M? w) 1P
By Holder’s inequality we find that

3 slMZ79 P £l p -
T LP ®") 1=t

1_1 /
B p’ B-1) 1-¢
L 1y ®D MF w) 1-p/

M7 ' P rl

D 1-P
M w) =P

D 1-p’
M7 w) 1P

D 1P
” MS/ g”Lpr ®RM) ”f”Lp g (R")*
_1-r 2 1=
MZw) 1V Wy

Hence, by (6.2.5) we have

~ =

1_l T .
<|—4 Ifl,» wlIMZg|*F .
N(%_l %—lt f L Iy (R™) 58 LV’ - R")

D 1-1
MG w) 1=

D, 1-p’
(M w) P

Thus, the result follows from (6.2.4).

By combining the two cases, the assertion follows. O

Proof of Lemma 6.2.3. Since %7 < % -1 <%, we note that by Holder’s inequality we have
M?fg < (ng2 w)(M? L (gw‘l)) where gw‘1 is well-defined since w is non-zero on the
E=
1
support of g. Then, setting % := 41 we have
p s
1M gl <IM?7, (gw My
sollpp ®) =y e
Mg w1 voa
1.1 \v7%
< S,—q ” ” ’
ol U S mm (6.2.6)
p s 4q w

s' 1_1
L1
()¢ qIIgIILpr_I(R,l).
w
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Now, note that since % -

BRI U i S :
so that (§)¥ 7 < (g) " 7 By maximizing the function ¢t — ¢! for ¢ = 1, we note that

1
(ghd < ee. By combining this with (6.2.6) and Lemma 6.2.6, the result follows. O

Finally, we need the following result:

1

Lemma6.2.8. Letr € [1,00), s € (1,001, W€ Ay, letq € (1,00) withq' =2" w514,
Then

M 4 w S,r,s [w] r,(r,s) W.

~IH
i

Proof. Let Q be a cube. By applying Corollary 3.3.14 with w replaced by w™!, p = s, and
B = g, we obtain

1.1 .
<w>ﬁ'Q§mzr s(W)ﬁ'QS[w]r,(r,s)eﬁlselonfw(y).

Picking x € R" and taking a supremum over all cubes Q containing x proves the asser-
tion. O

1
!
Proof of Theorem 6.2.2. Let % € (0,% — 1) be such that [q(% —%)] = 2n*l [y -
Then it follows from Lemma 6.2.3 and Lemma 6.2.8 that

T
5] Age -

1

1-L\r L \rfq_1

p
"Tf'g”Ll(R”) Sr»S CT( l) (l Tl) (l Sl
p r.p p s

1_
;

1
s

1- 1 1
11 37
) [w ps ]Zm[w]p,(p,s) ”f”Lg,(R") ”g”Lle(Rn);

~

11
forall f,g € L (R"). Then, since [w ps ]Z = [w‘l]l;w (6.2.1) follows from duality and

/ol
)

density. For the next assertion, note that by Proposition 3.3.3(ii) we have

1
p
1_1 1

5
p — [w] p

-1i{FW -1
[LU ]p’,s’ Ns[w ]p’,(s’,oo) p,(1,5)

Since [wlp,a,s) < [Wp,(p,s) by Holder’s inequality, combining this result with (6.2.1) proves
(6.2.2). Finally, the optimality result is a consequence of Theorem 5.2.6. O

Proof of Theorem 6.2.1. The proof uses arguments similar to the ones presented in the
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proof of Proposition 6.1.1. Let f € L}, (R") with ||f||La)(Rn) =1. We have

. 1_
ITfllreogny~  sup El/ng w' (BT w yp i gn
EcR” <
O<w’ (E)<oco W (E)s2w' (E")
. 1_
<Cr sup inf w'(E)r lllM(r,s’) (f, erEr) ”Ll(Rn)
EcR" E'CE
O<w’ (E)<oco W (E)s2w' (E")
— inf r 1 PY r
~Cr max sup in w (E)r ||M(”,) (f, w" x|l gy
ae{o,%% " Ecr® E'<E \

0<w’ (E)<co W' (B)=2w' (E)
(6.2.7)
Fix a dyadic grid 2 = 2* and E < R" with 0 < w” (E) < co. We define

2[w']

Q:= {xeRn:M?f(x)>( w’ (E) )%

}

1
so that, since "M?”Lll"/(Rn)A,LZ)OO(Rn) < [wlr o0 = [w’];‘l by Theorem 3.2.3, we have

(w4, w'(B)  w'(E)
2wy 2

w'(Q) <

Setting E' := E\Q this implies that w" (E") = w"(E) — w" (Q) = w" (E)/2.
By applying Lemma 7.2.3 with | f|” € L' (R"), we obtain a pairwise disjoint collection
22 <9 of cubes so that Q = Upeo» P and functions g, b so that | f|” = g + b, where

g=1f1"xac+ Y Af1Dpxp

Pez
and e
wla
<724

8lloo S W (E)

Using Lemma 6.2.3 with the weight y g/ wi, forall p € (r,s) and é € (0, % - %) with % =
1

1 we have
p s

1
1M o (f s w" xp) ey = 1M ) (U817, w" g )l 1 gy

1-1y\7 1 % 1-1 1_% 1 .
< 14 r s ~I\ T = r
N(l_l) (1_1) (1_1) @riglly gl xely g

rp rop p s M2 WPy WP

1

1—’—17 r 17 1-1 1-3 1 1_1 11 1 1
< r s ~I\ T ryr p,.r —= P reoh o7
Sl T 1 T 1 (@)7w'l, "~w(E)? 'IIgIIng (R,,)w(E)P-

rop r.p p s M7 W xpr)

S

(6.2.8)

Note here that we have used the fact that the terms involving b cancel in the exact same
way as they do in the proof of Proposition 6.1.1.
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Similar to what is done in [Pér94, LOP08, HP13], we deal with the term involving g
as follows: We remark that for a cube P € 2 and a function ¢ € LllOC (R™) we have

M? (pype)(x) = §2£ M? (¢ pe)(y) (6.2.9)

for all x € P. Indeed, let x, y € P and let R € & so that x € R. Then either R< P or P € R.
In the first case we have (¢ pc)1,r = 0 while in the second case we have y € R and thus
(bxped1.r < MZ(¢pxpe)(y). Thus, we may conclude that M? (¢ype)(x) < MZ (pype) (),
proving (6.2.9). Using this result, we find, since E’ < P¢ for all P € &2, that

lgxaly, — @n= =y lnfM@(xpr )(y)flfl dx
q Wy pr) pep Y
P
< r
- ”fXQ”L;’VI%r W(Rn)-
5

Since g = |f|" on QF, we conclude that

gl )= <Iflyr gy (6.2.10)
M%( Xt w M;Lw
P P
1

We choose 1 € (0, 1) such that ¢/ = 271 [ 7

la,, and set

~ =
|
o =

~ | =

1
q

~ |~
< | =

1 11
so that 7€ (0, > 5) whenever

l > . (6.2.11)
PR T

Then it follows from Lemma 6.2.8 that

P
~:I>—‘

©w |—

M2 w= M@ w Sps (W, (r5) W. (6.2.12)
p

~\»~
w\»—t

Moreover, we compute

~ =
& =

1

1
T 1
2n+1[w7 E]Aoo

< =

1

1 S

= +I_
r

1 1
2+ =S, P

=

@ =
~ =

Thus, it follows from (6.2.8), (6.2.10), and (6.2.12) that

1_
wr(E)r | (TS/)(f w XE’)”LI(R'Z)
1-5 Lo\ TR (6.2.13)
r s I_1.p rr o p P
N”(l_l) (;_1) (1_;) [wr=s Ty wily, "l
r o p r o p p s
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We treat the cases % =0and % > 0 separately.
First assume % > 0. We define

11 T_1 -1, 11 11
1 _ G- wr ) #5517 1
BV 1 =77 1
p 1 1 I_1 -1, 1 T_1
(;_;)(2n+2[w, ‘]A) +; s 2n+2[w, S]Aoo
so that
1 L, 111 1
1. 1.p 11,4
(wr=sly Srslwr=sly .
Moreover, we compute
1
1-- l(l_l) 1
P _ s r) on+2 11
1_1‘”1(1_1)2 (w7 A
r p r\r S
1 1 1
r s 42, T_T
l_l:1+_ 12" (w5 ]ag,
r 14 r N
1 1 1 11,1
1-5 _1-51 = 1 1-57+5
11 1 11 “H=—717
p s s 7_31_(2n+2[w}—}]Am)1 s r s

Hence, by combining these estimates with (6.2.13), it follows from (6.2.7) that

1 r

1 1.1 r
T 1T P p
Ja) T W'y PLwl

The result follows by considering the cases + =1 and 1 < 1 separately.
Now we assume that % = 0. Note that (6.2.11) no longer imposes any restrictions on
1
ik We set
1 1

1
— - 1-—
p r log(e+[w"]a,)

and compute
1 1 1 1

=4 -
p' 1" rlogle+[w'la,)

so that .
(W} <Slw')

1
Py
Ao’
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Moreover, we compute

1-41
p r
1= 1+710g(e+[w’]A00),
rTp
1
— =logle+[w"la,),
TP
1 1
—=r|l+ S
% log(e+ (w4, ) -1

combining this with (6.2.13), we conclude from (6.2.7) that

1
r

=

L 1 1
1T fllroo ey Sr (w1 logle+[w'a,) ' (1+a- ;)log(e+ (w'a,))" (W]

.
By considering the cases % =1and % < 1 separately, the assertion follows. O

Finally, we establish a dual result of the type first studied in [LOP09a], generalizing
the result [HP13, Theorem 1.23].

Theorem 6.2.9. Let T be a (sub)linear operator initially defined on L (R"). Letr € [1,00),
se(1,00], p € (r,s), and suppose that

ITf-glpwey = CrliMe,s)(f, )l gm

forall f € L°(R"), ge L°(R™) nLL(R").
Then for allw”™ € Ay, T has an extension to L" (R") satisfying

[

1 1
Srs CT[wr]Am log(e+ [w 14) 7 I fllLr@m

Ly ° (R™)
forall fe L"(R"),

Proof of Theorem 6.2.9. Let f € L (R™) with || |l - gn) = 1. Then

T 1 _
“ 17 ~ sup inf w BT fw  yelpgn
W || Lreo®R7;w7) ECR" | E'SE
O<w’ (E)<oco W' (E)=2w" (E")
. 1_ a _
<Cr max u sup l/I'lf w' (E)r 1 ”Mtg;,s’) (f; w" IXE’) ”Ll ®)-
ae{o,%,%} ECR" E'<E

0<w’ (E)<oo W (E)s2w' (E')
(6.2.14)

Fix a dyadic grid 2 = 2% and E < R"” with 0 < w' (E) < co. We define

f

w

r r 2 1
— n.asw w r
Q:= {XER 'Mr ( )(X) > ”Mr ||L’(R";w’)—»L"°°(R";w’)(—r(E))

}
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so that
_ wr(E)

w @)= (E) ”f anS 2

which, setting E’ := E\Q, implies that w" (E") = w" (E) — w"(Q) = w’" (E)/2. We also note
here that | MY || 1 @ 1) reo@n ) < 1 by the three lattice lemma and Lemma 3.2.5.
By applying the Whitney Decomposition Theorem to Q2 we obtain a disjoint collec-
tion £ < 97 of cubes so that Q = Upcgp P with the property that for each P € & there
exists a cube Q(P) containing P so that Q(P) n Q¢ # & and |Q(P)| < |P|. Then we can
write | f|” = g+ b, where
=1f1"xac+ Y. Af1M,pxp-

PeZ»?

Fix p € (r, s) to be chosen later. By applying Lemma 6.2.3 with the weight w 7, wefind
1

~l=
I~

that for all l € (0, ———) with Z L:= -7 we have
rp
1—1} 1—]} )
| M (rs f w T xp)llpgn = ||M(s r)(w T oxes 181w
% 1= 1-1 1-5 1\r 1*1% L
< S r I 1
S 1 1 I_1 @7 lw el w1817 17wy
ps ps rp TP ]
M7 w ) woT
(6.2.15)

where the terms involving b cancel in the same way as in the previous proofs.

Let 1€ (0 - — —) be such that g’ = 2**! [w']4,,. Then it follows from Lemma 6.2.8
that

\\»—-

D Iy _ A2
Mjw 7 ) =M

mh—-

so that

1
-7

@ 71w T el

~I—

1 1_1
TTp 1 1
Nr,s[w ]A [w ]A p”w rw T XE’”L;I’(Rn)

(R™)

(6.2.16)
1 1.1 1
=[] W) "w'(E).

A

Next, since in Q¢ we have | f| < M,L”r(%)w <, w"(E)""" w, we have

~l=

I
¥

~—

1
7

S~
S~

w

—

11 1_
Ifxaelr ®n Srw BT w xocllr@n < w'(E)P 7. (6.2.17)
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T
1
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w
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Furthermore, fixing a P € 2 and x € Q(P) n QF, we have

1.1 1.1 L
T p TP TP
T cin B (D T o 5
Do’ S P pigim <MY ()0 77 ),
1_1
B
Srw'(E) P W), i
and
-3 b 1y bpo b
I 5 T 5 '
<w P >rp ~T [w ]A.D ((Mrw) p >rQ(P) [w ]Ap <w>r’Q’(}§7)
so that
1_1
Y j"u; B dx= Y (00 w b IP
Pez Pez
%% 1
- (6.2.18)

~l=
1

~I—
S~

;%
<[w',” w'E 7

Hence, by (6.2.17) and (6.2.18) we have

p
TI1
—Ilfmclli’,, — > <f> fw rp dx

1
g 1? =
g Ll’ %_% (R™) %_% =
w ¥ w T (6.2.19)
1.1
r v _;;%
Srilw'l,” wiE) v
Thus, by combining (6.2.16) and (6.2.19) with (6.2.15), we conclude that
1_
w' (E)r M (fw ™ e g
(6.2.20)

1\ 1-1 MR SN
= 1-3 s 4 \T 1 z(l,L)
p s rp e\

p s rop

~

s

By writing L :=log(e + [w"] 4,) and choosing

1 11 ( 1) 1
—=——4+|1-=]-
p Ls L)r
we have L .
2(2-1) 2(5=3) gt A 221t
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and
1 1 1
p _ s I < r
R S
p s r s r s
1 1 1
1-1 1-1 1-1
s _ Syl < s
T_1 -1 IFSTd
p s ro s ro s
1 1
r _ r
111k
r p ro s

Thus, by (6.2.14) and (6.2.20) we have

I

1
<rs Crlw'l_logle+[w'14,)7,

LR w’)

as desired. The assertion follows. O



7

EXTENSIONS OF THE RESULTS TO SPACES OF HOMO-
GENEOUS TYPE

7.1. DYADIC GRIDS IN SPACES OF HOMOGENEOUS TYPE

So far we have formulated and proven our results in R” equipped with the Lebesgue
measure. This section is dedicated to extending our results to more general quasimet-
ric measure spaces (S, d, u), commonly referred to as spaces of homogeneous type and
introduced in [CW71]. Here S is a set equipped with a quasimetric d, i.e., a mapping
satisfying the usual properties of a metric except for the triangle inequality, which is
replaced by the estimate

dx,y) < Ald(x,2)+d(z,y))

for a constant A= 1, and p is a Borel measure on S satisfying the doubling property, i.e.,
there is a C > 0 such that
W(B(x;2r)) < Cu(B(x; 1)) (7.1.1)

for all x € S, r > 0. Note that for (7.1.1) to make sense, we need to assume that y is
defined on all balls. To facilitate this we assume that all balls in S are Borel sets. Note
that this condition is restrictive, since in general quasimetric spaces balls may fail to be
Borel sets as is shown in [Stel5, Example 1.1].

Taking the smallest admissible C in (7.1.1) we set v :=log, C, which we will refer to as
the doubling dimension of S. Note that in R” we have |B(x;2r)| = 2"|B(x; r)| and hence,
its doubling dimension is 7.

We will write |E| := u(E) for all Borel sets E < S. The doubling property implies that
for x€ Sand R = r > 0 we have

R v
|B(x;R)|sC(—) |B(x;1)]. (7.1.2)
r
In turn, this implies that if y € B(x; R) for x € S, then for 0 < r <2AR we have
2ARYY
|[B(x;R)|=C — |IB(y; 7). (7.1.3)

We make the additional assumption that 0 < |B| < oo for all balls B < S. This property
ensures that S is separable [BB11, Proposition 1.6]. Moreover, this implies that the av-
erages of (f),p are well-defined and, as shown in [AM15, Section 3.3], the Lebesgue
Differentiation Theorem holds in (S, d, p).

115
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The essential structure of R” that we used so far is its decomposition into dyadic
grids. The three lattice lemma then allowed us to reduce our arguments to a single
dyadic grid. The reason we are able to extend our results to (S, d, 1) is because such
a space also admits a version of dyadic grids, as well as a version of the three lattice
lemma.

We will use the following definition of a dyadic system in (S, d, p):

Definition 7.1.1. Let 0 < ¢y < Cy <ocoand 0 < § < 1. If for each k € Z we have a pairwise
disjoint collection 2y = (Q}“) jes, of Borel subsets of S and a collection of points (z}“) el
then we call (@k)kez a dyadic system in S with parameters ¢y, Cy, 9, if it satisfies the
following properties:

(i) for all k € Zwe have

(i) for!l=k,if Q€ 2; and Q' € @y, we have that either QN Q' = or Q< Q’;
(iii) foreach ke€Zand j € J; we have

B(z}c;co(‘)‘k) c Q}“ c B(zj?; Co6%);

(iv) forl=k,if Qj., c Q}C, then B(zj.,; Codb) < B(z}f; Co85).

The elements of a dyadic system are called cubes. We call z* the center of Q. If Q €
Py, then we call the unique cube Q' € 2_; so that Q € Q' the parent of Q. Furthermore,
we say that Q is a child of Q. Note that it is possible that for a cube Q there exists more
than one k € Z so that Q € ;. Hence, when speaking of a child or the parent of Q, this
should be with respect to a specific k € Z where Q € 9y to avoid ambiguity.

For a detailed discussion on the construction of dyadic systems as well as the fol-
lowing version of the three lattice lemma we refer the reader to [HK12] and references
therein.

Theorem 7.1.2. There exist0 < ¢y < Cy <00, 0< 6 <1, p >0 and a positive integer K, so
that there are dyadic system (2% )§=1 in S with parameters ¢y, Cy, 8 so that for each x € S
andr >0 thereexistsan a € {1,...,K} and Q € 2% so that

B(x;r)€Q and diam(Q) < pr.

Using these systems to replace the systems (@"‘)aE {012 n in R™ almost all of our
33

results up to this as well as the results in the next part will go through. The only exception

to this are the weak-type result in Chapter 6, i.e., Proposition 6.1.1, Theorem 6.2.1, and

Theorem 6.2.9. The reason for this can be found in the proof of Proposition 6.1.1, where

in a maximal cube selection argument for a Calderén-Zygmund decomposition we used

the fact that in R”, the increasing sequence of cubes in a dyadic grid containing a fixed
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point has the property that the corresponding sequence of measures converges to co.
This need not be the case in (S, d, ), since, for example, (S, d) could be bounded. In the
following section we provide additional restrictions on (S, d, ) in order to recover the
results from Chapter 6 in this setting.

Rather than allowing for dimensional constants in the implicit constants in our esti-
mates, we now allow for implicit constants depending on the parameters of the dyadic
system, the doubling dimension v, and the quasimetric constant A.

7.2. CALDERON-ZYGMUND DECOMPOSITIONS IN SPACES OF HOMOGENEOUS
TYPE

We will consider the situations where the underlying quasimetric space (S,d) is un-
bounded and where (S, d) is bounded separately. More precisely, we assume that (S, d)
has exactly one of the following properties:

(D All ballsin (S, d) are open and there is a constant y > 0 so that
diam(B(x;r)) = yr (7.2.1)
forallxe S, r>0;
(I) diam S < co.

We note that property (I) and property (II) are mutually exclusive, since (I) implies that
S is unbounded. When (S, d) is an unbounded connected metric space, then it satisfies
@D:

Proposition 7.2.1. Suppose (S,d) is an unbounded connected metric space. Then (I)
holds withy = 1.

Proof. Since d is a metric, all balls in (S, d) are open. For the second assertion, let x € S
and r > £ > 0. Since S is connected and the closed ball B(x; r—¢) and B(x; r)€ are disjoint,
Sisnotequal to the union of these sets. Thus, thereis a y € B(x; r)\B(x; r — ¢) from which
it follows that diam(B(x; r)) = d(x, y) = r — €. The result follows by letting € — 0. O

A non-connected example where (I) holds with y = 1/2 is the subset (—o0,0) U (1,2)
of the real line. An example where (I) fails is any metric space that has an isolated point.

From now on we consider a fixed dyadic system 2 = UiczPy in S with parameters
Co, C(), 0.

We first consider the case (II).

Lemma 7.2.2 (Calder6n-Zygmund Lemma in the case (II)). Let f € LY(S), A >0, and
let Q:={xeS:M?Zf(x)>A}. If Q#S, then we can find a pairwise disjoint collection
of cubes 2 < 9 and a constant ¢ > 0, depending only on the parameters of the dyadic
system, the doubling dimension v, and the quasimetric constant A, so that

Q=P

Pezp
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and
A< (f}l,p S A.

forallPe 2.

Proof. Fix ko € Z small enough so that co6% > diam$. Then for any x € S we have
B(x; cy6%0) = S. Hence, it follows from property (iii) of dyadic systems that D, = 1Sk
Note that Q # S implies that (f);,s < 1. Let x € Q. Then the set

Kyi:={k>ko|thereisaQe Py, x€Q, (fH1,0>M}

is non-empty. Thus, by well-orderedness there is a minimal k, € K, and thus a cube
Py € 9y, that contains x so that (f);,p, > A. By minimality of ky;, it follows that {f)1,pp,) <
A, where p(Py) € Dk, _; denotes the parent of P,. By (7.1.3) and property (iii) of dyadic
systems this implies that

A<{fr1p, < c{F1ppy <ch,

with ¢ = C(2ACy/(cpd))".

It remains to show that the collection 2 = (Py)xcs is pairwise disjoint. Indeed, as-
sume that Py, P» € 22 so that P N P, # &. We have either P, < P, or P, € P; by property
(ii) of dyadic systems. Without loss of generality we assume the first. Pick x € S so that
Py = Py. Since x € P, and (f)1,p, > A, minimality of k, implies that P, € 2, for some
| = ky. Again by property (ii) of dyadic systems, this implies that P, < Py, proving that
Py = P,. The assertion follows. O

Next, we consider the case (I). We define the uncentered maximal operator with re-
spect to the collection of balls 28 in S by M? f (x) := supg{f)1.5 X5 (%).

Lemma 7.2.3 (Calder6n-Zygmund Lemma in the case (I)). Let f € LY(S), A > 0, and let
Q:={xeS:MZf(x) > A. IfQ # S, then we can find a pairwise disjoint collection of
cubes P < 9D such that

Q=P

Pe&p
and

(FHip S A

forallPe 2.

For the proof we use a version of the Whitney Decomposition Theorem. Note that
the diameter assumption (7.2.1) together with property (iii) of dyadic systems implies
that for any Q € 2 we have

yco8* < diam Q < 2ACy 5. (7.2.2)
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Theorem 7.2.4 (Whitney Decomposition Theorem for Dyadic Cubes). Let Q C S be
open. Then there exists a pairwise disjoint collection of cubes & < 9 such that

o= P

Pe?

and foreach P € 22,
“Go diam P,
5 d

4 A
diamP < d(PQ°) <
YCo

In particular, for each P € 2 there is a ball B(P) containing P satisfying |B(P)| < |P| and
B(P)NQ° #£ 2.

Proof. We define
&:={Qe2|QcQ,diamQ < d(Q,Q°)}.

Moreover we set
P :={Qe & |thereisa k € Zso that Q € D¢, p(Q) ¢ &},

where p(Q) € Z_; denotes the parent of Q € ;. We will show that

U pr=q
Pep
Indeed, any P € & is contained in Q. Conversely, if x € Q, Let (Q’f)kez be the sequence
of cubes in 2 with x € QX and Q¥ € ; for all k € Z. Since Q is open, there is a ball
B = B(x;r) contained in Q. Picking kj large enough so that 2ACyd ko < 1, we find that

ke Bx;rca

forall k > ko by (7.2.2). Moreover, since d(QX, Q) = A7 (d(x,Q°)-2A%Cy6%) 1 A1 d(x,Q°)
as k — oo, while diam(Qf) < 2AC06" | 0as k — oo, we canfind a k; € Zso that diam(Q’;) <
d(Q’;,QC) whenever k = k;. Hence, for all kK = max(ko, k;) we have Q’; € &. Thus, the set

Ke={keZ|Qre &)

is non-empty. We also claim that Ky is bounded from below. Indeed, if we choose k; € Z
small enough so that ycy6% > d(x,Q°), then

d(QF,Q°) < d(x,Q% < diam(Q¥)

for all k < k; by (7.2.2), and hence Qfg ¢ & for k < kp, proving the claim.

We set k, := minK, € Z. Then Qf" € & while p(Qfx) = Qx"_1 ¢ &. Hence, Q’;" €2,
proving that x € Upecg P, as desired.

Next we will show that &2 is pairwise disjoint. Suppose for a contradiction that we
have Py, P, € & so that Py NP, # & and Py # P». Let I, I, € Z so that P, € 9y, P> € 9,
and p(Py), p(P,) ¢ &. Without loss of generality we assume that /; > I, and thus P, < P
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by property (ii) of the dyadic systems. Then also p(P;) < P,. Since p(P;) ¢ &, we must
have that either p(P;) € Q or d(p(P1),Q°) < d(p(P1)). The first case implies that P,  Q,
contradicting the fact that P, € &. The second case implies that

diam(P;) = diam(p(P1)) > d(p(P1),Q°) = d(P,,Q°),

again contradicting P, € &. We conclude that £ is pairwise disjoint, as desired.
It remains to show that d(P,QF°) < 4A2Co/(yco5) diamP for all P € . Let P € &2,
P € 9y so that p(P) ¢ &. Then either p(P) € Q or d(p(P),Q°) < diam(p(P)). In the first
case we have d(p(Q),Q°) =0, so in both cases we have
2AC[) k

_ 2AC,
d(p(P),Q°) < di P)) <2ACy6% 1 = 2y 06k < diam P
(p(P), Q") < diam(p(P)) 0 YCO5YCO Yood iam

by (7.2.2). Hence,

2
d(BQ°) = Ald(p(P),Q°) +diam(p(P))) < 4G
Ycod

diamP,

as desired.
For the final assertion, note that if P € &2, P € 9. with center zp, we have

3
Co

diam P
5 ) iam

8
2d(zp, Q) <2AdiamP +2Ad(P,Q°) < (2A +
YCo

16A3C
S(4A+ 0)C06k =:TC06k
Ycod
so that
T # B(Zp;Zd(Zp,QC)) nQ°c B(Zp;TC05k) nQ°.

Since

k 7Co)" k

B(zpi7Co6M)| = C| =22 | 1B(zpi o™ S 1P
Co

by (7.1.2), this proves the assertion with B(P) := B(zp; TC05k). O

Proof of Lemma 7.2.3. To see that Q is open, note that for each x € Q there is a ball B
containing x such that {f); 3 > A. But then for every y € B we have M% f(y) = (f)1,5 > A
so that y € Q. Hence, B < Q. Since we assumed that all balls in S are open, this proves
that Q is open. Thus, we may apply the Whitney Decomposition Theorem to write Q =
Upegp P.

If P € 22, we may pick a point x € B(P) n Q€ to conclude that

Hrie SHOupey < M2 f(x) < M.

The assertion follows. O
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Proposition 7.2.5. Suppose that (S, d) satisfies either property (D) or (I). Then the results
of Proposition 6.1.1 and Theorem 6.2.1 remain true when replacing R" by (S,d, ).

If (S, d) satisfies property (D), then the results of Theorem 6.2.9 remains true when re-
placingR" by (S, d, ).

Proof. In the case (I), by replacing M? by a constant multiple of MZ in the definition
of Q; and Q in Proposition 6.1.1 and Theorem 6.2.1 respectively, using Lemma 7.2.3 the
proofs of these results run mutatis mutandis. For Theorem 6.2.9, one has to replace M}” '
by M;%'wr in the definition of Q and then apply Theorem 7.2.4, noting that Q is open in
the same way as is done in the proof of Lemma 7.2.3.

For Theorem 6.2.1 in the case (II), we note that since S is bounded we have w’(S) <
oo. Thus, since w' (Q) < w” (E)/2 < w'(S)/2, the set Q has strictly smaller w”-measure
than S and hence, Q # S. Thus, we may apply Lemma 7.2.2 to decompose (2, and
the proof runs analogously. An analogous reasoning works for the sets Q; in Proposi-
tion 6.1.1. The assertion follows. O
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A MULTILINEAR UMD CONDITION

This chapter is based on the preliminary sections of the papers

E. Lorist and B. Nieraeth. Vector-valued extensions of operators through multi-
linear limited range extrapolation. Journal of Fourier Analysis and Applications,
25(5):2608-2634, 2019.

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233, 2020.

8.1. QUASI-BANACH FUNCTION SPACES

Let (Q, 1) be a measure space. A subspace X < L0(Q) equipped with a quasi-norm || || x
is called a quasi-Banach function space if it satisfies the following properties:

e Ideal property:1f £ € Lo(Q) and n € X with |{| < |n|, then ¢ € X and |[{]lx < Inll x-
o Weak order unit: Thereisa ¢ € X with & >0 a.e.

* Fatou property: 1f 0 < ¢; 1 ¢ pointwise a.e. for ({;) jen in X and sup jenlI<jllx < oo,
then ¢ € X and ||€]lx = supjenliSjlix-

If |- Il x is a norm then X is called a Banach function space.

A quasi-Banach function space X is called order-continuous if for any sequence 0 <
¢j1¢e X wehave [¢;—¢llx — 0. As an example we note that all reflexive Banach func-
tion spaces are order-continuous. If X is order-continuous, then the Bochner space
LP(R"; X) for p € (0,00) coincides with the mixed-norm space of all measurable func-
tions f:R" x Q — C such that

||X’—> ”f(x, ')”X”Lp(Rn) < 00.

Moreover if X is an order-continuous Banach function space, then its dual X* is also
a Banach function space. For an introduction to Banach function spaces we refer the
reader to [LT79, Section 1.b] or [BS88].

A quasi-Banach function space X is said to be p-convex for p € (0,00) if for any
¢1,--+,&k € X we have

K K
H(glfm)”pux < (glnfkn”)””.

125
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Moreover, X is said to be p-concavewhen the reverse inequality holds. Usually the defin-
ing inequalities for p-convexity and p-concavity include a constant depending on p and
X, but as shown in [LT79, Theorem 1.d.8], X can be renormed equivalently such that
these constants equal 1. The p-concavification of X for p € (0,00) is defined as

XP:={|&|Psgné:Ee X} ={Ee L0 [€]VP e X}

equipped with the quasinorm €| x» := |||€]'/P II§. Note that | - | x» is a norm if and only if
X is p-convex. In particular for f € Lf; (R";X) and aset E < R" of positive finite measure
the p-convexity of X ensures that (f) , g is well-defined as a Bochner integral. See [LT79,
Section 1.d] and [Kal84] for a further introduction to p-convexity and related notions.

8.1.1. Product quasi-Banach function spaces

For m quasi-Banach function spaces Xj,..., X;; over the same measure space we, wish
to define their product ]'I;.”: , X This space is essentially defined as the pointwise prod-
uct of functions in the factors. More precisely:

Definition 8.1.1. Let Xj,..., X;; be m quasi-Banach function spaces over a measure
space (Q, 1). We define

m m
[1x;:= {EeLO(Q):thereexistOsEj € Xj1<j<msuchthat [¢| < Hfj}.
1 j=1

Moreover, for & € H;”:  Xj we define
m m
€1y, x, = inf{ [T1€;0x; : 161 < [[ .0 <€ e X;, 12 j < m).
=1 =1

We call X = (X1,---, Xp) an m-tuple of quasi-Banach function spaces if X1, -+, X, are
quasi-Banach function spaces over the same measure space and the product ]'[;”: 1 X
equipped with || - |y X is also a quasi-Banach function space.

=

We use the convention that for an m-tuple of quasi-Banach function spaces we write
X:= H;”: 1 X;j. We extend our convention of the vector notation for the weighted mixed-
norm spaces by writing

I R X) 1= L (R™; X)) x o x LI (R Xo).

Moreover, we say that X is 7#-convex for 7 € (0,00)™ if X; is rj-convex forall j € {1,..., m}.
For a pair of quasi-Banach spaces X; and X, we will sometimes also write X; - X, for
their product. We point out that taking products of quasi-Banach spaces is associative
in the sense that X; - (X2 - X3) = (X7 - X3) - X3 with equal (quasi)norms and therefore Def-
inition 8.1.1 is consistently defined under changes in m. Moreover, we point out that
( ;?’zlxj)p = ;.”:IX]’.” for all p € (0,00).
We show that the space ]'[7‘=1 X is a vector-space.
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Proposition 8.1.2. Let Xy, ..., X, be m quasi-Banach function spaces over the same mea-
sure space. Then ]'[;71: 1 Xj is a vector-space. Moreover, we have

m m
H Xj= {EE L%(Q) : there exist§j€ X;1< j<msuchthat{ = H fj} 8.1.1)
j=1 j=1
and
m m
1€l x, =inf{1‘[l||¢j||xj k1= [1¢j0=¢ e X515 mf. 612
j= j=

Proof. 1t is clear that H;?“: , Xj is closed under scalar multiplication. To see that it is
closed under addition, note that if &, 7 € H;?’Zl Xj, then [{] < H;?“Zl {jforsome0=¢; € X;,

andlnlsﬂ;ﬁzlnj forsome0<n;€ X;. Then0<¢;+n;€ X;and

m m m
E+nl<iEl+m<T1&+[Tny <1 +np,
j=1

==

proving thaté+ne H;”zl X, as desired.
For (8.1.1) and (8.1.2), the inclusion “ 2" for (8.1.1) together with the norm inequality
“ <" for (8.1.2) are clear. For the converse, note that if || < H;.”:lcfj for 0 <¢; € X,

then we can define El by 0 where ¢ = 0 and by f]’[;."zz cf]‘.l where ¢ # 0. Then we have
E=§& ]'[;” ,¢j, and I&1] < &1, so that by the ideal property of X; we have & € X; with

IIEI llx, = €11l x,. This proves the inclusion “ <’ in (8.1.1), proving the equality. For the
norm equality, note that since || = |¢; ] H;”zz ¢j, we have

m m . m m
inf{_ﬂlllvfjllxj HE _Hlf,-,OSéj eXj1=j=mf=<I&| _Hznfjnx, < _Hlnrf,-uxj.
J= J= J= J=

Taking an infimum over all 0 < {; € X; with [{| < 1'[;?1:1 ¢ j then proves (8.1.2). O

We refer the reader to [Cal64, Loz69, Sch10] for a further elaboration on product Ba-
nach function spaces. Let us give a few examples:

Proposition 8.1.3. Let (Q2, 1) be a o -finite measure space.
(i) For any quasi-Banach function space X we have X - L°(Q) = X.
(ii) Lebesgue spaces: LP (Q) = H;?il LPi(Q) for p € (0,00]™.
(iii) Lorentz spaces: LP9(Q) = H;.”zl LPi9i (Q) for p € (0,00)™, G € (0,00]™ .
(iv) Orlicz spaces: L®(Q) = I, L% (Q) for Young functions ®; and @~ = " (D]‘.l.

In all these cases the (quasi)-norm of the product is equivalent to the usual (quasi)-norm.
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Proof. For (i), if £ € X - L*°(Q), pick0=¢; € X, 0 = &, € L*°(Q) such that [{]| = ¢;¢,. Then
1€ = 1§21l Lo (@) § 1, S0 by the ideal property of X we have § € X with [|S]lx < 1§21 1l x-
Taking an infimum over all such decompositions ¢1,¢» yields [[€]lx < €]l x.z~(q). Con-
Versely, if £ € X then || = |€]- 1 so that ¢ € X - L®°(Q) with ||f||X.L00(Q) < ||f||X||1||LOO(Q) =
€Nl x. The assertion follows.

For (ii), (iii), and (iv), the inclusion H;?“: 1 XjeX with X respectively equal to L”(Q),
LP9(Q), and L®(Q) and X; respectively equal to LPi(Q), L”i9i(Q), and L% (Q), fol-
lows from the generalized Holder’s inequality || H;.": 16illx < ]'[;”= LIg I X; valid for these
spaces, see [O'N63, O’N65].

For the converse in (ii) and (iii) in the case that g = q; = --- = g, = 00, let { € LP(Q) or
& e LP*°(Q) respectively. If p = p; =+ = p;, = 0o, the result follows from (i). Otherwise,
we set ¢ = |§|”£J'. Then ¢; € LPi(Q) or {; € LP/*°(Q) respectively, |¢| = H;”zlfj, and
]_[;-":1 I€j1l7; ) = ISl (@ or similarly in the weak case, proving the result. The converse
for (iv) is proven analogously with ¢ := (D]‘.l (@(&)).

Finally, for (iii) in the case gy < oo for some 1 < k < j we take ¢ > 0 such that
Xj:= LPi'®4i%(()) are all reflexive Banach spaces. Then by [Tri78, Theorem 1.10.3 and
1.18.6] we can identify the product space [T}, LPi'®4i/®(0)) with an iterated complex
interpolation space by [Cal64]. So 1'[;.":1 LPiladjleqy = pp/ad/e(Q). The assertion now
follows by taking a é-concaviﬁcation of both sides and the fact that the concavification
of a product is the product of concavifications. O

Next, we present several useful results for when our spaces are Banach function
spaces and not merely quasi-Banach spaces. We will be working with so called Calderon-
Lozanovskii products which are products of the form X(}’H . Xf for some 0 € (0,1), see
[Cal64, Loz69].

We have the following properties of product Banach function spaces:

Proposition 8.1.4. Let X, Xy,..., X, be Banach function spaces over a o -finite measure
space (Q, ) and let 6,61, ...,0,, € (0,1) with z;.“:lej =1.

. . . 0; . .
(i) Ifoneof Xy,..., Xy, is reflexive, then ]'[;”lej’ is reflexive.

(i) IfX is reflexive, then so is X9.
ces m 9] * _ m 9] *
i (172, X') =T (%57)"
(iv) (XG)* — (X*)B -Lll(l_e)(Q).

Proof. Part (i) is proven in [Loz69, Theorem 3], and it also follows from [Cal64] through
complex interpolation. Part (ii) follows from (i) by noting that by Proposition 8.1.3(i)
we have X? = 1°(Q)!~? - X?. Part (iii) is proven in [Loz69, Theorem 2] and for (iv) see
[Sch10, Theorem 2.9]. O

Next we prove a result for the products of weighted mixed-norm Lebesgue spaces.
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Lemma8.1.5. Let X be an m-tuple of quasi-Banach function spaces, let p € (0,00]™ with
p < oo, and let i be an m-tuple of weights. If there is a q € (0,00) such that X is q-convex
and order-continuous, then

1 .
L, R X) = [] L R™; X)).
j=1

Proof. For the inclusion H;”Zl L’Z,’} R"; X)) < L’Z,(R”; X), note that if f € H;‘n=1 Lf:,jj R"; X)
and |f| = H;ﬁzlfj for0< fje Lﬁ,’j (R"; X), then | fllx < H;ﬁ:l IIijIXj so that by Hélder's
inequality we have f € L}, (R"; X) with

m
< . .
”f”Lg,(R";X) = ]l:[l ”f] "L}Z/]j (R”;Xj).

Moreover, taking an infimum over all 0 < fi€ L’;,jj (R%: X i) such that | f] < H;.” 1 fi» we

conclude that noyy < i . -
”f"ng(R ;1 X) ”f”H;n:lLi/]j (Rn;Xj)

For the converse, we first reduce to the case g = 1, p > 1. For all « € (0,00) we have
Pj

p . a s
LE, (R X)® = L, (R X?) and ([T7, L (R X)) =17, Lo (R"; X7, 50 that for the
p Pi
result it suffices to prove that Lia R X% = H;?il Lu‘ja (R X]‘."). By taking @ < min{p, q},
j
replacing % by p;, X]‘." by X, and w;" by w;, we have reduced to the case g =1, p > 1.
Now, let f € L7, (R"; X) be a function such that fw is a simple function, say fw =
ZIk(:l X A ® ¢ with non-zero ¢ € X, and (Ak)lk(:1 a pairwise disjoint collection of mea-
surable sets in R” such that, since p < oo, |A| <ocoforall ke {1,...,K}. Since & € X, we
canfind 0 < ¢k € Xj such that [Epl < ]'[}71:1 $ik forall ke {1,...,K}. We define

m A
o -1 P;
Nk = ||€j,k||Xj(HI|§l,kllx,) Tk
I=1

l
so that [ kllx; = (H}Zl ||<fz,k||X,)pj forall je{l,...m} kefl,....K}and [T}, njx =
]'[;.”:lfj,k forallke{1,...,K}.
Defining f; := wJTI 2115:1 XA, ®1jk it follows from the fact that the Ay are pairwise

disjoint that f = ]'[;”=1 fj. Since fj € L’Z,jj (R"; X;) with

1

K pi 1 K m p
. . — . I\ Pj — pj
||f,||Lz;,j(Rn;Xj)—(I;lmknm],knxj) j —(k;ma(l_ﬂl €))7,

we conclude that f € H;ﬁzl L’,j,jj (R"; X;) with

m K m P x
1P 71 ey = T2 e = (32 14T 10k0x) )
T2y Ly RX) 53 70 Ly (RXG) L= =1
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Taking an infimum over all possible 0 < ¢; x € X; such that |{| < H’" 16k forall ke
{1,..., K}, we conclude that

1
e 23 oy (Z ACIERR)” =112 oo (8.1.3)

Since X is an order-continuous Banach function space and p > 1, the mixed-norm space
LP(R"; X) coincides with the corresponding Bochner space and hence, the simple func-
tions are dense in this space. Thus, the functions f for which fw is a simple function
are dense in L’!J (R"; X) so that we can extend the inequality (8.1.3) to all f € LfU(R”;X).
We conclude that H’” Lp / (R" X)) = Lp (R"; X) with equal norm, as desired. O

8.2. VECTOR-VALUED SPARSE DOMINATION

This section serves as a vector-valued analogue of Section 5.3. We will be consider-
ing operators satisfying vector-valued sparse domination in one of the two equivalent
senses presented in the following proposition. The first uses duality in X, which is use-
ful as it allows one to apply Fubini’s theorem. The second is domination with the norm
of X on the inside, which allows one to deduce weighted bounds with a simpler argu-
ment.

Proposition 8.2.1. Let7 € (0,00)™, g € (0,00), s € (q,00] and let X bean m-tuple of quasi-
Banach function spaces over a measure space (Q, ) such that X is q-convex and order-
continuous. Let T be an operator defined on an m-tuple f € LIOC(R”’;}?) with T(f) €
L°(R%; X). Then the following are equivalent:

(i) Forall ge L®RY; ((Xq)*)%)

1T &l omanaon = CIMg, oy Uz gD o2 oy
qg-s

(ii) Forall g e L°(R?)

TG x -8l paay = C [ Mg, lh)(nfn;(,g) | 2o ma)-
q-s

Proof. For (ii)= (i), note that

1 1
IT(f) gllra = (fQ|T(f)|q|g|qd#)q < 1T 2 1819 o
= T(H)llxlgl

((Xq)*)%

tion g € L°(RY%; (XN)*) @) we have | gl . € L®(R%), applying (ii) with g replaced by

o~ )q ||Lq(Rd) Since for a simple func-

IIgII((Xq . 1 proves (i).
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For (i)=(ii) we note that by duality (see e.g. [HNVW16, Proposition 1.3.1]) we have

1

T8l amay = INTFN o 1817] s ey
1
= |||T(f)|q|g|q|“Zl(Rd;Xq)
. b (8.2.1)
:thl sup 1T H19-1g19 1Al ||L1<Rd;L1(Q)>

Lo ®d;(x N )1y =1

= sup [ T(f)- gh“L"l(Rd;Lq(Q))'

1Al oo et (xaysy11ay =1

Since gh € LgO(Rd;((Xq)*)é) for any g € L®(R?) and h € L°(RY; ((X9)*)¥) of norm 1

ith [[gh =Igllh =|gl, it follows f i) that
with lighl 3 <18 co oy b, = 181 itfollows from (i) tha
I 7(F) - ghll Lamaszoa < C | Mg, ppfl 1ghl o 1) lramay
<C|[Mg 10U 1% &) oma-
q-s
By combining this result with (8.2.1) we have proven (ii). O

In the following result we will deduce weighted bounds from vector-valued sparse
domination.

Theorem 8.2.2. Let 7 € (0,00)"", g € (0,00), s € (q,00] and let X be an m-tuple of quasi-
Banach function spaces over a measure space (Q, ) such that X is q-convex and order-
continuous. Let T be an m-(sub)linear operator initially defined for all simple functions
f € L‘C’O(Rd; X’). Suppose that

T x- gl Lagay < Cr 1M,y U F 50 @) o ey (8.2.2)

Q|

for all simplef € L®R%; X), g € L®(R?). Then for all p € (0,00]™ with7 < jp and p < s,
all € Ap ), T has a unique extension satisfying

111
. ma"{;f;vi-i} m
<. . 7) . .
NNy wasx) Spads C 1015 6 ]H=1 1M wasx,

ZerP md. ¥
forall f € L (R%; X).

For the proof, we first require a density result. Note that we are only considering sim-
ple functions g € L°(R?), while in Proposition 8.2.1 we are considering all g € L2 (R%).
However, as another consequence of the following density result, this is equivalent.

Lemma 8.2.3. Let w be a weight, p, q € (0,00) and X a q-convex quasi-Banach function
space. Then the simple functions in Lﬁ,(R"; X)N LY R"; X) are dense in L’Z,(R"; X).
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Proof. First suppose that p,q =1 and fix f € L) (R"; X). By [HNVW16, Corollary 1.1.21]
and the dominated convergence theorem there exists a sequence of simple functions
(fj)jen such that f; — f in L’;,(R”;X), and f;(x) — f(x) and || fj(x)llx < I fllx for a.e.
x € R". Setting (g;) jen = (fjXB(,j)) je it follows that g; € LfU(R";X) N LPR"; X) for all
jeNand gj — fin Lh (R%; X) by the dominated convergence theorem, proving the
lemma.

Now consider the case p < 1 and/or g < 1. Fix k € N so that 2€p,2¥g > 1. For

k -
f e LP (R*; X) we can pick a positive g € I? :ik (R™; X2 k) with gzk =|fI|. By our previous
w
k -
result we can find a positive sequence of simple functions (g;) jen in I* ;i r (R™; X? k) N
w

[2(R"; X2 ") converging to g. Setting f; := gjz.k sgn(f) € LY, (R"; X) n L (R"; X) we com-
pute

ok ok L
fi-f1=1g; -g* I=1g;-gl[]lgj +& |
=0

so that by Holder’s inequality

k-1
. ‘ 2, 2!
”f] _f”Lﬁ,(R";X) = ”g] _g”Lkak(R";Xzik) ll_!) ”g] +g "sz_lp
o =

—k—1.*
®%X2E
w wzi(kil)
1 1 1 1
Since |g2 + g2 || it <lgil? +lgl? is bounded in
187 + 87 bty ity SIS, o HNE e,
w2” -b wsz ’ w2 ’
J» we conclude that f; — fin LfU(R”;X), proving the result. O

Proof of Theorem 8.2.2. The proofis completely analogous to the proof of Theorem 5.3.6,
replacing T by || T(f)ll x and f; by Il fill X;» and by using the density result Lemma 8.2.3
rather than Lemma 5.3.8. O

8.3. THE MULTISUBLINEAR LATTICE MAXIMAL OPERATOR

In this section we will introduce and study properties of the multisublinear lattice max-
imal operator. We begin with an overview of the case m = 1. Let X be a Banach function
space and let & be a finite collection of cubes. Since X is a Banach function space over
a measure space (Q, ), it is a Banach lattice with respect to the partial order < given by
¢ =nifand onlyif {(w) < n(w) for all w € Q. Thus, for any f € Llloc(R"; X), x € R", we may
define

M7 f(x):= sup (f); oxo(),
Qe

where the supremum is taken in the lattice sense in X. Since this supremum is taken
over the finitely many values ((f), o)Qe in X, this means that M7 f can take at most
2"7 values and hence, is an X-valued simple function. Moreover, since (f)1,g(w) =

{(f(-,w))1, for w € Q and the supremum of functions in X is given by their pointwise
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supremum, we have
EYa _ _ A7
M f(x,w)—&g(f(-,w))l'qu(x)—M (fCw)(x)

for all (x,w) e R" x Q.
We say that X has the Hardy-Littlewood property and write X € HL if thereisa p €
(1,00) such that

UM, x = sup IV Ly n.x)— ooy <00

where the supremum is taken over all finite collections of cubes %. This property is in-
dependent of the exponent p and the dimension n, see [GMT93], and even the quantity
"M"p,X can be bounded by a constant independent of 7, see [DK19].

As an example we note that (iterated) LP-spaces for p € (1,00] have the Hardy-Littlewood
property. Moreover by a deep result of Bourgain [Bou84] and Rubio de Francia [Rub86,
Theorem 3] we have that both X and X* have the Hardy-Littlewood property if and only
if X has the so-called UMD property. We will elaborate on the connection between the
Hardy-Littlewood property and the UMD property in Section 8.4.

If X is an order-continuous Banach function space with the Hardy-Littlewood prop-
erty and p € [1,00), we define the lattice Hardy-Littlewood maximal operator for f €
LP(R"Y; X), xe R", by

Mf(x):= s%p<f>1,gxo(x%

where the supremum is taken in the lattice sense over all cubes Q < R”. We will show
that Mf : R — X is strongly measurable. By regularity of the Lebesgue measure, to
compute M it is equivalent to take the supremum over the countable collection of
cubes with rational center points and rational side lengths. Thus, we can find finite
collections of cubes &; for j € Nsuch that ; € %, andfora.e. x€ R”

sup Mvgff(x) 1 sup va’?ff(x) =Mf(x)

JEN JEN
pointwise a.e. Since X has the Hardy-Littlewood property (where we use the fact that
supjeNllﬂgffllLl,w(Rd;X) < oo by [GMT93, Theorem 1.7] for the case p = 1), it follows
from the Fatou property of X that M f(x) € X for a.e. x € R". By order-continuity of X,
(MZi f(x))jeN converges in X to M f(x) for a.e. x € R". As M7i f is a simple function for

each j € N, we conclude that M f is strongly measurable. We also point out that since
M7I(f(0) (0 = M7 f(x,0) = Mf(x,0)
fora.e. (x,w) e R" x Q, we also have
Mf(x,0) = M(f(,0))(x)

fora.e. (x,w) eR" x Q.



134 8. A MULTILINEAR UMD CONDITION

For the multisublinear analogue of the lattice Hardy-Littlewood maximal operator,
let 7 € (0,00)™ and let X be an F-convex m-tuple of quasi-Banach function spaces. For a
finite collection of cubes &, f € LIFOC(R"; X), and x € R”, we define

M7 (f)00 :=sup [](f;), oxo),
Qe j=1 J

where the supremum is taken in the lattice sense.

Definition 8.3.1. Let 7 € (0,00)™ and let X be an m-tuple of quasi-Banach function
spaces. We say that X has the 7-Hardy-Littlewood property and write X € HL; if X is
7-convex and there is a p € (0,00]™ with p > 7 such that

”anﬁ,)? = s;p ”M}g “Lﬁ(Rn;)?)—»Ln(R";X) < 00,

where the supremum is taken over all finite collection of cubes %.

As in the linear case m = 1, the definition of HL; is independent of the exponents p
and the dimension n. The independence of n can be shown using the method of rota-
tions (see e.g. [GMT93, Remark 1.3]), and the independence of p follows from Corollary
8.3.5 below.

We also point out that we have the rescaling property that if X € HLz, then X% € HL

for all & € (0,00) with IIIT/E I $a = ||M;|I; % For the case m =1 this means that X" has

the Hardy-Littlewood property if and only if X € HL,.
The multilinear Hardy-Littlewood satisfies the following partition result:

Proposition 8.3.2. Let 7 € (0,00)", let X be an 7-convex m-tuple of quasi-Banach func-
tion spaces, and let .9 be a partition of {1,...,m}. If (Xj) jer € HL(r);, forall 1 € ., then
X € HL;.

Proof. Fix a finite collection of cubes &. For each I € #, let (pj)jer € (0,00]*! be such
that (p) jer = (rj)jer and IMll(p;),;,(x)),e; < 00. Let f € LP(R™, X) of norm 1. Writing
% =X jer pij and Xj := []jer Xj, it follows from the associativity of taking products of
quasi-Banach function spaces that || - | x < [Ije.s | - |l x;. Hence, by Holder’s inequality we

have
“Mfg(f)”LP(R”;X) <1 ”Migrcj)je]((fj)jd) ”LPI(R";X,) <1 "M"(pj)jelv(xj)jel'
Iey Iey

Thus, taking the supremum over all f ofnorm 1 and all finite collection of cubes 2 yields
X € HL; with ||M?||p»;( <Ilier ||M||[pj)jg1,(Xj)jel, as desired. O

This result implies in particular that if X;j e HLforall j € {1,...,m}, then X € HL;. We
note that in general, this does not provide a necessary condition. Indeed, for m = 3 we
can take X; = £2(£%), X, = £*°(¢?) and X3 = £%(¢?). It is shown in [NVW15, Proposition
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8.1] that X, does not satisfy the Hardy-Littlewood property. However, noting that X3 =
(X1 - X»)*, it follows from Corollary 8.4.8 below that X € HL; 1 1).

Let 7, p € (0,00]™ with § = 7, let X € HLz, and assume that X is order-continuous.
For f eLP R X) we define the multisublinear lattice maximal operator

m
M;(f)(x) = sup § A CICO
j=1

where the supremum is taken in the lattice sense over all cubes Q < R". By an analogous
argument as in the case m = 1 (using Lemma 8.3.4 below for when p; = r; for some
jefl,...,m}), the order-continuity of X and ensures that My (f) e LO9(R"™; X) and, if (Q, N}
is the underlying measure space of X, we have

M;(f)(x,0) = Mz(f (-, )) (x)

fora.e. (x,w) e R" x Q.

Next we will prove vector-valued sparse domination of M; in a vector-valued ana-
logue of Proposition 3.2.10. Since we are now dealing with the order structure of X, the
selection procedure of the maximal cubes requires a more involved argument than what
is presented for X = C in Proposition 3.2.10. This result in the case m = 1 was studied in
[HL19] and the argument here is a multilinear analogue of their proof.

Theorem 8.3.3. Let 7 € (0,00)™, let X be an m-tuple of quasi-Banach function spaces,
and let q € [r,00). Suppose that X € HL; and that X is an order-continuous q-convex
quasi-Banach function space. Let 9 = 2% be a dyadic grid and let & < 9 be a finite
collection of cubes. Then for all f € LIFOC(R”; X) there is a sparse collection of cubes ¥ € F
such that
7 2 m
[ M ()l Srsup [T filx0r000
Qe j=1

Moreover, for anyf € LIFOC(R”;X') and g e Lﬁ)C(R") we have

” ”M?(f)”X'g”Lq(Rn) 5)?,? ”M(?,q)(”f“f(’g) “Lfl(R")’

In particular, we have

13 () ooy Sz 147 0170 52) o oy

Note that X in Theorem 8.3.3 is automatically r-convex, which follows from the fact
that X is rj-convex for 1 < j < m and X" is equal to the Calderén-Lozanovskii product

]'[;”: 1 (X;j )7 I X s g-convex for g > r we get a sparse domination result with a smaller
sparse operator, which, as we will see in Corollary 8.3.5), yields better weighted bounds.
For the proof we will first show that M? satisfies a weak endpoint estimate.
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Lemma 8.3.4. Let 7 € (0,00)™, let X be an m-tuple of quasi-Banach function spaces.
Suppose that X € HL; and that X and let @ = 2% be a dyadic grid. Then for all p € (0,00]™
with p > 7 we have

—g —
sup || M || o) oo ) S 1Ml x

F<P

Z finite
Proof. Fix & < 2 finite and let f € LF(R”;X') ofnorm 1. For A >0and j € {1,..., m} we
let 22; denote the collection of maximal cubes in 9 satisfying <|| fill X; >rij > A7/ so that
Qj:={xeR": M%(Ilfjllxj)(x) > AT} = UQegj Q. Forafixed Pe & and j €{1,...,m} we
find that if P\ Q; # &, then, since the collection 2?; is pairwise disjoint and since

<<fj>rj,QXQ>rj,P = <ijQ>rj’P

for all Q < P, we have

(fidripxp={fixas+ fix xp
QcpP

=(fixas+ Y. (fnaxa), e
QG.@]' I
Taking the product over j € {1,..., m} and the supremum over P € & this yields

m
M7 (f)<su Yac + (fidr., +(fi)r.PXQ;
<MZ(@)+b,

where

8j=8;+8;=fixa:+ Y, (fidr,oxe
QEQZ]‘

and b : R" — X is the sum of all terms of the product over j € {1,..., m} other than
M‘? (8). Since 2?; is pairwise disjoint, we have | g;ll;r; ®Rix)) = I £ill s ®R7iX)) = 1. More-
over since

m m 1
suppbc | JQ; = U{xeR”:M%(Ilfjllxj)(x) > A%}
j=1 j=1

and since ||M§? ;7 ey— 7 gn < 1 by Lemma 3.2.5, we have
m I m
[xe R 1b@)Ix > A < Y [tx e R": M7 (I fjllx;) (0 > A7} < T
=1

To estimate g, note that by the Lebesgue differentiation theorem we have

r
T

<A

<

||g]1'||Xj = ||fj||Xj7CQ§ < Mrg;(”fj"Xj)XQ-

C
]
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and, by pairwise disjointness of 2;, rj-convexity of X, and the maximality of the cubes
in 22;, we have

Qe

||g]g||Xj:)|(Qezevj<m:;’0m)rljHx,- rL( 2 Afilx), o i )%szr’r}ﬁj,

where Q is the dyadic parent of Q € 2;. Thus we have | gl oo ®rn; X;

<
) Nrj
Combining the estimates for g and b we obtain for 7 < j < co

|ee R | M (F)00] > 20| < [tx e R™: [ M (@ (0| > 1| + | ix e R” 11600l x > A

m
. [17 lllg,IILp](RnX) m
= IMzllp,x I T
wp (L-Lypy
m '] P
[T} 1I|g]||LJ(RnX)/1 1 5
Spr 1Mz llpx I +F—”M””p,XF’

and the case where p; = oo for some (or all) 1 < j < m is similar. Taking the supremum
over f € L' (R"; X) of norm 1 and all finite collections of cubes & € @ proves the result.
O

Proof of Theorem 8.3.3. Let f € LIFOC(R”; X) and set

7 Il L7 R";X)—Lro° (R X)?

Ag:i= sup (14
Fc
Bzﬁrute

which is finite by Lemma 8.3.4. For a cube Q € &, we define its stopping children ch g (Q)
to be the collection of maximal cubes Q' € & such that Q' C Q and

| sup [T¢pno], 20 AoH(llf}HX]), o 63.1)
Q’PcepgéQ j=t j=1

We let -4 be the maximal cubes in 9, recursively define #.,1 := Uge.s, chy (Q), and set
S =Ur o Tk
Fix Q€ #, set Eg := Q\Uqrech, @) Q' and define

Q"= {xeR": M (fro) |y >2* A0H<||f]||xj>rj b
]_
Then by the definition of Ay we have
1 L ixeliwexy 1

(8.3.2)
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Moreover, for Q' € ch(Q) and x € Q, it follows from (8.3.1) that

. - m

IMZ Frol=| sup [T<hde|, zl”Aol‘[<||f,||X] 0
QeF  j=1 j=1
Q'cPcQ

80 x € Q* and thus Q' < Q*. Since ch (Q) is pairwise disjoint, it follows from (8.3.2) that

Y 1Q1<1Q"l<510)
Q'echy (Q)
so that |Eq| = %IQI. We conclude that .# is a sparse collection of cubes.
Next, we check that Mf (f) is pointwise dominated by the sparse operator associ-
ated to .#. For each P € & we denote by 7.« (P) the minimal Q € . satisfying P < Q so
that we can partition & as

F=J{PeF:nsP)=Q}.
Qe

Fix Q€ ., x € Q and let Q' € & be the minimal cube such that x € Q' and 7. (Q") = Q. If
Q' € Q, we have

H sup ll(f})r]PXP(x)” “ sup [[l<ﬁ>r, ”
1y (P)=Q'" Q'ePeqQ’

<27 r Ag H(llfjllxj>, oXQ(X).
=1
If Q' = Q the same estimate follows from the r;-convexity of the X;. Using the fact that
Ill¢oo < II-ll o and the g-convexity of X we can conclude for any x € R"

”Mf(f}(x)”x Hsup sup H(f]>rjPXP(x)H
PeZ: j=1 X
Ty (P)=Q

(2] s [’

S PeZ: 1
Qe T (P)= Q]

<2t a0 ¥ 1050, grow)",

Qe j=1

Q\'—‘

as desired.
For the second assertion, note that by the Fatou property of X we have
1M (Frollxs  sup M7 (Pl
F <. finite
for x € R". Hence, the form domination result for M? follows from an argument analo-

gous to the one in the proof of Proposition 5.3.4, and the result for Mz then follows from
the three lattice lemma. The final statement follows by setting g = yr». O



8.4. LIMITED RANGE MULTILINEAR UMD CLASSES OF QUASI-BANACH FUNCTION SPACE39

By combining Theorem 8.3.3 with Theorem 8.2.2, we can now directly conclude
weighted estimates for M;. In particular this proves the p-independence of the 7-Hardy-
Littlewood property.

Corollary 8.3.5. Let X be an m-tuple of quasi-Banach function spaces, take ¥ € (0,00)™
and q € [r,00). Suppose X € HL; and assume X is an order-continuous q-convex quasi-

Banach function space. Then for p € (0,00]™ with 7 < p and p < oo and any w € A (7,00)

M- <.
“ Ms ”L;(R”;X)—»Lﬁ,(R";X) ~X,p.q,7
We point out that the condition p < oo here is necessary. Indeed, it is shown in
[GMT93, Remark 2.9] that M is not bounded on L™ (R; ¢%).

8.4. LIMITED RANGE MULTILINEAR UMD CLASSES OF QUASI-BANACH FUNC-
TION SPACES

A Banach space has the UMD property if the martingale difference sequence of any fi-
nite martingale in L” (Q; X) is unconditional for some (equivalently all) p € (1,00), i.e. if
for ( fk)I,f:0 any finite martingale in L (Q; X) for some (equivalently all) p € (1,00) and a
probability space (Q2,[P) and all scalars |e;| = --- = |ex| = 1 we have

(8.4.1)

K K
L0 W] DILTL e
”gl kdf LX) ™ k§1 fi LP(X)

where (d fk)lk(:1 is the difference sequence of ( fk)I]f:o- The least admissible constant in
(8.4.1) is denoted by 8, x. The class of UMD Banach function spaces includes for ex-
ample all reflexive Lebesgue, Lorentz and Musielak-Orlicz spaces. As the UMD property
implies reflexivity, L' and L> do not have the UMD property. For an introduction to the
UMD property we refer the reader to [HNVW16, Pis16].

As already noted in the previous section, for Banach function spaces the UMD prop-
erty is intimately connected to the Hardy-Littlewood property. As shown by Bourgain
[Bou84] and Rubio de Francia [Rub86, Theorem 3], a Banach function space X has the
UMD property if and only if both X and X* have the Hardy-Littlewood property. This
connection between the Hardy-Littlewood property and the UMD property is made
quantitative in [KLW20], where it is shown that IIM lp,x < (Bp, x)2.

Motivated by this connection between the Hardy-Littlewood property and the UMD
property and using the extension of the Hardy-Littlewood property to the rescaled, mul-
tilinear setting from Section 8.3, we will now define a limited range, multilinear version
of the UMD property for m-tuples of quasi-Banach function spaces.

Definition 8.4.1. Let X be an m-tuple of quasi-Banach function spaces, take 7 € (0,00)"™
and s € (r,00]. We say that X has the (7, s)-UMD property and write X € UMDy if X =
H;”z , Xjisan order-continuous Banach function space and (f( ,X*) €HL,¢).
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Note that while the UMD property is well-defined in terms of martingale difference
sequences for any Banach space, our limited range multilinear version is only given
for quasi-Banach function spaces and has no immediate connection to martingales. It
would be interesting to have an equivalent characterization of either the limited range or
the multilinear generalization (for example in terms of martingale difference sequences)
that does not use the lattice structure of X.

As a first result on the limited range multilinear UMD property we will show that
our nomenclature makes sense, i.e. that the UMDy, ; property is actually related to the
UMD property for Banach function spaces. If X is a Banach function space, then X has
the UMD property if and only if X € UMD, . This follows directly from the result of
Bourgain and Rubio de Francia and the case m = r = s’ = 1, of the following proposition.

Proposition 8.4.2. Let X be an m-tuple of quasi-Banach function spaces and let 7 €
[1,00)™ and s € (1,00]. The following are equivalent:

(i) X € UMDy ;

(ii) X € HL; and(X1,...,Xj-1, Xj41,..., Xm, X*) € HLm,,__,rj_l,rjﬂ,._.,m,s/)forallj efl,...,m}.
Proof. For (i)=(ii) we only prove Xe HL;. The other results with j € {1,..., m} follow
from an analogous argument by interchanging the roles of X* and X; and the roles of s’
and r;.

Let (Q, u) denote the underlying measure space over which the X are defined and
fix p € (0,00]™ with ¥ < pj, 1 < p < s and a finite collection of cubes %. By the pointwise
sparse domination result for Mfg , it follows from Proposition 5.3.4 that || Mfg ( f )8l 1wy St

IMZ | (F, @l gey for f e L], (R™), g € L (R™). Since MY (f)(x,w) = MZ (f(,0) (),

loc
combining this with Fubini’s theorem we obtain for f € Lf (R"; X) and ge 4 R X™")

'[ [ 37 (Frgduax
R JQ

< fQ IMZ (F(0) g0l gn du(w)
< | IMZ (Fe0), 8600 | 1 g d@)
~T a (7,1) ) yg » Ll(Rn) IJ'
_1%7Z (F TF (F
= ”M(m)(f O pwery = 1M o (F @ b wesr o)

__ m
< || M(?,S/) || (ﬁ,pl)'(X'X*)( l_ll ”f‘] ”ij (R";Xj)) ”g"Lp’ (R; X*)?

]:

where in the second to last step we used Holder’s inequality with s’ > 1 and (i) and Corol-
lary 8.3.5 in the last. Taking a supremum over all g € LP' (R"; X*) with 18N,y gaxe) =1
proves that Xe HL;, as asserted.

The proof of (ii)= (i) relies on some combinatorics. To facilitate this, we set 7,41 :=
s and X,;41 := X*. Fix jp € (0,00]""! with min > maxF, f € LP(R"; X), and a finite
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collection of cubes %. Note that

m+1 m+1 m+1 %
[T ¢naxe =TT (1 onere)
j=1 j=1 " k=1
k#j
for all Q € & so that
—g = m+1~9 1
M7 (f)y= [ M7 @)™
j=1
with

G=(r, ., Tj-1,Tjs1,- - Tt
gz (flr-"r_fjflyf‘j+1)---rfm+l)
Furthermore setting 17] = (X1, Xj-1, Xj+1, , Xm+1), we have

m+1

m+l 1 m+lm+l 1 1
[Ty =11 [l x7=1]Xx=L©.
j=1 j=1 k=1 j=1

k#j

Thus setting A; := ||Mz; I (Pjrbi) ¥}’ which is finite by Corollary 8.3.5, we have

m+1

m+1 1
- — 1 — -
M7 F)logoion = TTIMZ @7 | L= [T IMZ @)™,
LP(R%LL(Q ; f 4
' REL@ =1 e I N D)
m+l 1 m+l 1 m+l 1
m m — m R
< ]l:[l Aj 1£11 ”fk”L”f(R";Xk) = }:[1 AT fiell 7 o x,
k#j
proving (i). The assertion follows. O

In particular, in the case m = 1 this result says that X € UMD, if and only if X" € HL
and (X*)* € HL.
We have the following result on the product space X:

Proposition 8.4.3. Let X be an m-tuple of quasi-Banach function spaces and let 7 €
[1,00)™ and s € (1,00]. If X € UMDy,  then X € UMD, .

Proof. Fix p € (0,00)" with p > 7, 1 < p <sand f € LP(R";X). Since X is assumed
to be order-continuous, By Lemma 8.1.5 we have L” (R"; X) = H;.”Zl LPi(R"; X;). Hence,
we can find positive f; € LPi(R"; X;) such that |f]| < ]'[;.":1 fj- Let (Q,u) denote the un-
derlying o-finite measure space of X and fix a fixed finite collection of cubes #. By
Holder’s inequality we have (f),o < H;.n: 1 fj)r].,Q for all Q € &. This implies that for
g€ L” (R"; X*) we have

— —z =
”M(r,s’) (f,9lp RE:LL Q) = ||M(7,S/) f, &l R™;L1(Q)

m
= IMll,pn, . x) ( Hl 1illrs (R";Xj)) 1811 s x:
]:
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Taking an infimum over all positive fj € LPi(R™; X ;) such that|f| < ]'[;.”: 1 fj and a supre-
mum over all finite collections & we conclude that X € UMD, s with [| M, ¢ | (p, p1), (x, x%) <
| Mz sl Bp), (X, X5 This proves the assertion. O

Example8.4.4. Let (Q, u) be a o-finite measure space. In the case m = 1, it follows from
Proposition 8.4.2 that X € UMD, for 1 < r < s < oo if and only if X" € HL and (X*)S' €
HL. This implies the following:

(@) If X =LP(Q)with pe(r,s), then X € UMD,.
(i) If X =LP9(Q) with p,q € (,5), then X e UMD,..

(iii) If X = L®(Q) is a Musielak-Orlicz space such that (w, t) — ®(w, t%) and (w, 1) —
1
®* (w, t') are Young functions satisfying the A, condition, then X € UMD, ;. See
[FGI1, LVY19] for the UMD (and thus the HL) property of these spaces.

In [LN19] vector-valued extensions of multilinear operators in quasi-Banach func-
tion spaces were constructed through weighted techniques. In that work the condition
that ((X;j)*)(sf/rf)' has the UMD property for 1 < j < m was imposed. In the next propo-
sition we wish to compare this assumption to our limited range multilinear UMD prop-
erty.

Proposition 8.4.5. Let X be an m-tuple of quasi-Banach function spaces, let 7 € (0,00)™
. R
and take ¥ < S < co. Suppose that X is rj-convex, sj-concave and ((X;’)*)(S’/r]) has the

UMD property for1 < j < m. Then forall q € (0,r] we have X9 € UMD ; ;. In particular,

Is
q’q

X e UMDy if r = 1.

Proof. Note that X7 € UMD; ; per definition means that
q’q

(Xq,...,X,’fl,(Xq)*)EHL( ()"
i ; /
So by Proposition 8.3.2 it suffices to show (X]q) q = X;’ eHLforj=1,---,mand (XT)*)s/D)' ¢
HL. Since (s;/r;)" = 1, we know that (X;j)* has the UMD property (see [Rub86, Theo-
rem I11.4]) and thus X;j € HL for j = 1,---,m. To show ((X9)*)®/?" € HL we note that

by [LN19, Proposition 3.4] we have ((Xr)*)(s”)’ € UMD. Then, by [LN19, Proposition
3.3(iii)] this implies that also ((Xq)*)(s“])l € UMD for all g € (0, r]. In particular, we have
(X9)*)/@" ¢ HL, as desired. The assertion follows. O

Ql~
Ql

To end this section we will give some examples of tuples in the UMDy ;-class and
provide some methods to generate new tuples from old ones. We start with a family of
examples in the form of Lebesgue spaces.

Proposition 8.4.6. Let 7 € (0,00)™, s€ (1,00] and i € (0,00]™ witht>7F and1 <t <s. Let
(Q, 1) be a o -finite measure space. Then L' (Q) € UMDy, ;.
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Proof. Write X; = L' (Q) so that X = H;.”: 1 Xj = L'(Q) by Proposition 8.1.3(ii). Note that
"

’ i L /
since £,..., 2, £ € (1,00, we have X/ = L7/ (Q) e HL for all j € {1,...,m} and (X")* =
LY (Q) € HL. Thus, it follows from Proposition 8.3.2 that Xe UMDy ;. The assertion
follows. =

To extend this example to iterated L”-spaces, we will show that the UMDz ; class
is stable under iteration. For quasi-Banach function spaces X and Y respectively over
measure spaces (Qp, 1) and (Qp, t2) the mixed-norm space X (Y) is given by all mea-
surable functions f: Q; x Qy — C such that

o=l f @1,y | x <oo.

Proposition 8.4.7. Let7 € (0,00)™ and s € (1,00] and ler X and Y be m-tuples of quasi-
Banach function spaces. If X, Y € UMDy g, then X(Y)e UMDz ;.

Proof. Denote by (Q1, 1), (Q2, o) the o-finite measure spaces that X, Y are respectively
defined over and write

Ap:= sup ”MfgHL?(R";X)—»LW(R";X)’ Az = sup ”M?“LHR";Y)—»LW(RV!;Y)'
Z finite Z finite

Let % denote a finite collection of cubes and let f € L” (R”; X(¥)). By Fubini’s Theorem
and by applying Theorem 8.3.3 twice we obtain

“Mi(frg) ||L1(R";L1(91XQZ)) =Ll ||M;.i(f(')wl»')rg('rwly'))”Ll(Rn;Ll(Ql)) dﬂl(ﬂ)])

SJAZ\[Q ||Mi(“f(,a)l,)”?,”g(,a)l,)”)’*) Ll(Rn) d,u'l(wl)
1

= Al ”Mi(”f"f/y ”g“Y*) LI(R";LI(QI))
S AL A | M7 (1170 181 (v | 11 eny-

Thus, by Theorem 3.2.3 we conclude that X(Y)e UMDy , as desired. O

Applying Proposition 8.4.7 to the result in Proposition 8.4.6 we obtain the announced
result for iterated LP-spaces.

Corollary 8.4.8. Let 7 € (0,00)™ and s € (1,00]. Let K € N and leti',..., 7K € (0,00]™
witht*>7and1 <t < sforallke{l,---,K}. Let (Q, 1) for k€ {1,---,K} be o-finite
measure spaces and for j € {1,---, m} we set

t K
Xj:=LJ(Qy;-+;L7 (Qk)).

Then X € UMDy ;.
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Apoint of interest in the above result is that it shows that we can go beyond assuming

that each individual X; has the UMD property. We can even consider spaces such as
£ (¢?), which by [NVW15, Proposition 8.1 does not even satisfy the Hardy-Littlewood
property.
Remark 8.4.9. By mimicking the proof of Proposition 8.4.6 we can also obtain a version
of Corollary 8.4.8 for Lorentz and Orlicz spaces. We point out however that it is not
clear if we can consider the appropriate endpoint cases outside of the range of UMD
spaces. More precisely, in the case of Lorentz spaces it is unknown whether LP*°(Q)
for p € (1,00) satisfies the Hardy-Littlewood property. Similarly it is unknown whether
there are Orlicz spaces that are not UMD, but satisfy the Hardy-Littlewood property. If
there are such spaces, we obtain more examples beyond the setting of individual UMD
conditions that fall within our range.

In the next result we show that we can add L* spaces to existing UMD tuples to

create new ones.

Proposition 8.4.10. Let 7 € (0,00)" and s € (1,00). Let X be an m — 1-tuple of quasi-
Banach function spaces over a measure space Q. If X € UMDq,,..rm1),s» then

(X1, 0 X1, L°(Q)) € UMD5 .

Proof. We first note that by Proposition 8.1.3(i) we have (]'[;”z‘l1 Xj)-L®(Q) = X-L®(Q) =

X. Next, let & denote a finite collection of cubes and fix jj € (1,00]" with p,, = co and
p>T, p<s. For fe LPR";X), ge L’ (R"; X*) we have

.....

Hence,

—g =
||M(;ysr) (fr 9l R™L1(Q))

FVEa ¥
<IMg, sy o -1, @ @1 @y 1My, (fr) llzoo s 2o ()
~ m—1
= ||M(r1,“_vrm71,s’) “ (pl;--upm—lvp/),i( 1—[ ”f‘] ”ij (R";Xj)) ”fm ||L°°(Rn;L°°(Q)) ”g”Lp’ (R X*)?
j=1

proving that (Xy,..., X;u—1, L% (Q)) € UMDy ;. The assertion follows. O

Note in particular that in the case m = 2, this result implies that if X has the UMD
property, then (X, L*(Q2)) € UMD(1,1,00-

Finally, we prove that the HLr and UMDy ; properties are stable under taking Calderén-
Lozanovskii products.

Proposition 8.4.11. Let X, Y be m-tuples of quasi-Banach function defined over the same
o -finite measure space and let 7 € (0,00)™, s € (1,00], and 6 € (0, 1).
(i) IfX,Y € HL; and forall j € {1,..., m} either X}‘e . Yje is order-continuous, or X; or
Y; is equal to L®(Q), then X179 . Y9 e HL;.
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(i) IfX,Y € UMDy with X;, Yj as in (i), then X'~0 - Y% € UMDy ;.

Proof. We first prove (i). Let & be a finite collection of cubes and let p € (0,00]™ with
p > 7, where p; = co whenever X; or Y; is equal to L*(Q), and p; < co otherwise. By
Lemma 8.1.5 we have

Pj pPj
LPIR" X170y = LR R X170 LT R YD) = LPI R X170 - LV R"; v))°

when X}‘H . YJQ is order-continuous. We prove that this also holds when X or Y] is equal
to L°(Q). Assume that X; = L*(Q), the case Y; = L>(Q) being analogous. Since p; = oo,
it follows from Proposition 8.1.3(i) that

= LPIR" X)) 0 1P R ),
as desired.
Now, let f € LP(R"; X). Then we can pick positive g; € LP/(R"; X;), hj € LPI(R"; Y})

so that | f| < gjl.‘eh? forall j € {1,...,m}. Then (f}),; o < (gj)ij‘,%mj)?jp for all Q € & by
Holder’s inequality so that

IMT (Hllxa-0.y0 < IMZ (@' -MZ 0Ny, o < IMZ @15 1M WIS
a.e. in R". Hence, by Holder’s inequality,
IMZ ()l 1o s x1-0.y0) < 1M (@) 1o 30 1M (W p sy

m
Aril=0 a7 1-6 0
< - - i . i . .
<Ml 2IMI o [Tlg;l,; oy s ey
j=1

Taking an infimum over all positive g; € LP/ (R"; X;), hj € LPi (R"; Y;) with | fj| < g}—e h?
and a supremum over all finite collections of cubes % proves that X!?. Y9 € HL; with
1Ml 5 31-0.50 < ||1T4’||;§||M||gy. This proves (i).

For (ii), note that by Proposition 8.4.3 we have that X, Y are r-convexand X*, Y* are
s’-convex. This implies that X, Y are reflexive and hence, X* and Y* are reflexive. By
Proposition 8.1.4(iii), (i) we have (X'~¢ . y9)* = (x*)1=9. (v *)? and this space is reflexive
and hence order-continuous. Thus, since (X, X*), (Y, Y*) € HLz,¢), it follows from part
(i) that (}?1‘9 176, (X1‘9 Ye) *) e HLz,¢). Hence, X1-0.y0¢ UMDy g, as asserted. O
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VECTOR-VALUED EXTENSIONS OF MULTILINEAR OP-
ERATORS

In the first section of this chapter we prove a slightly more general version of the main
result in

E. Lorist and B. Nieraeth. Vector-valued extensions of operators through multi-
linear limited range extrapolation. Journal of Fourier Analysis and Applications,
25(5):2608-2634, 2019.

Our result here is more general in the sense that we are considering a more general con-
dition on the spaces.

The remaining sections of this chapter are based on the main result and the applica-
tions from the paper

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-
nation. arXiv:2003.02233, 2020.

9.1. VECTOR-VALUED EXTRAPOLATION
The goal of this section is to prove the following theorem:

Theorem 9.1.1 (Multilinear limited range vector-valued extrapolation). Let7 € (0,00)™,
5 € (0,00]"™ with ¥ < S. Suppose T is an m-(sub)linear operator such that for all p €
(0,00)™ satisfying ¥ < p < § there exists a function ¢ : [1,00)™ — [0,00), increasing in
each variable, such that T is bounded L’;} R") — LP (R™) with

I T”LZ(R")—»LZ,(R”) = Pplunlpy, o000 (Wl ppn, (rissim) (9.1.1)
forall w:aights w satisfying wj € Ap, (r;,sp forall j€{l,...,m}.
Let X be an m-tuple of quasi-Banach function spaces over a o -finite measure space
(Q, w) and assume that for all simple functions f e L®(R" X) the function
T(f)xw) = T(f(,0) () 9.12)

is strongly measurable.

147
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IfX;j € UMDLLJ- forallje{l,...,m}, then forall7 < p < s there is a function g 575
j

[1,00)™ — [0,00), increasing in each variable, such that T is bounded L’Z.} R X) — L’,j, R"%:X)
with
I T”Lp ®R:D)—1DRYX) = be BT, ([wl]ﬁl,(rlvsl)’ o [wm]pmv(rn'hsm))

for all weights W satisfying wj € Ap, r;,s) forall je{1,..., m}.

Remark9.1.2. In the same way as is explained in Remark 5.1.4, the strong measurability
assumption on T is redundant for m-linear T, since T then coincides with the tensor
extension.

Remark 9.1.3. This theorem can be equivalently formulated if we only assume that
(9.1.1) holds for some g € (0,00)™ satisfying ¥ < ¢ < § rather than all ¥ < p < 5. This
is a consequence of the limited range multilinear extrapolation theorem of Cruz-Uribe
and Martell [CM18]. However, this can also be seen by using the extrapolation theorem,
Theorem 4.1.1, in the case m = 1 to each of the m component functions. This actually
yields an improved version of the result by Cruz-Uribe and Martell in the sense that we
obtain a sharp dependence on the weight constants. We sketch the proof here.

Given 7 < p < s and weights w satistying w; € Ay, (r;,5; forall j€{l,...,m} as in the

1

AL 1
1 r] p] 17

1
o R, weset g = wilgw” L rp eL’ "I R™). By

1_
7

theorem and f € L’;(R”), gel

applying Theorem 4.1.1 with m = 1 to the pairs f;, g, we find weights W w1th

Wila.rjsp Spjpajoryes; [Wily rsp

and

m
(H i1 (Rn))llgll < H 1171, (Rn)||g,||

l
LTTd ey 71 o
L1 ®RY L mn
7
(Huf,u oy (Rn))llgll o
"Ry
w

Analogously to what we did in the proof of Theorem 5.1.2 we can then show that if (9.1.1)
holds for some 7 < g < 5, then it holds for all 7 < p < §, with a quantitative control of the
weighted bound.

Remark 9.1.4. The condition X;j € UMD, rather than X; € UMDy, ;; might seem

unnatural, but is actually merely a consequence of our choice of definition for these
classes, which is not scaling invariant. In the latter definition, we require X jtobea

Banach function space, while for the former we require X; to be r;-convex, which is
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more natural in the situation. It would have also been reasonable to define X € UMDy
by (X",(X")*) € HL, () rather than our current definition (X, (X)*) € HL; ¢. Had we
defined UMDy ; in this former manner, then the conditions X;j € UMD1 s; and X; €
7

UMD ris; would have been equivalent.

Remark 9.1.5. This result is not sharp in the sense that our method does not yield op-
timal weighted bounds for T. Part of the reason is that our result relies on a certain
self-improvement of the UMD ; class, see Proposition 9.1.7 below, and unlike for the
self-improvement of the weight classes from Proposition 3.3.15, we do not know how
this self-improvement is quantified precisely. Another issue is that in our vector-valued
Rubio de Francia algorithm, see Lemma 9.1.8 below, the control we obtain of the weight
constants are determined by the geometry of the spaces X. As we shall see in the follow-
ing chapter, it need not be the case at all that the weighted bounds of T depend on the
spaces X.

Remark 9.1.6. In this result we are considering weights in the class Ap, (,s) % - X
Ap . (rm,sm) Which, by Proposition 3.1.5, is contained in the multilinear weight class A 7,5
with

and with a strict inclusion whenever m > 1. This means that a bound on T in terms
of the multilinear weight class Aj (7 ) implies (9.1.1). A version of Theorem 9.1.1 for the
classes Aj (7 5 rather than for Ap, (r\,s) %"+ % Ap,, (rm.s,,) Would be of great interest, but it
seems a closer study of the condition X" € UMD ; is required to attain this. Thus, this

’

r’r
result finds most of its use in the linear case m = 1, while for the multilinear cases m > 1
it is mostly overshadowed by the vector-valued sparse domination result we present in
Section 9.2. We elaborate on this further in Subsection 9.3.1.

For the proof of Theorem 9.1.1 we require several preparatory results. We first need a
certain self-improvement result for the UMD  class, which we can then combine with
the self-improvement property of weights from Proposition 3.3.15.

Proposition 9.1.7. Lets € (1,00] and X € UMD, 5. Then there existsan @ € (1, s) such that
foralla € (1,a] we have X* € UMD, s

In the case s = oo, this is a result by Rubio de Francia, see [Rub86, Theorem 4]. This
result is a main ingredient for our proof for the cases s < co. We also require an analo-
gous self-improvement result for the HL property which can be found in [GMT93].

Proof of Proposition 9.1.7. Since X € UMD; 5, we have X € UMD and (X *)s" € HL. Thus,
by [Rub86, Theorem 4] and [GMT93] we can find a E > 1 such that for all g € (1,5] we
respectively have X# € UMD and (X *)¥F ¢ HL. In particular, we have Y; := (X#)* € HL
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and Y, := (X*)¥'P € HL. Set

© I'—‘
\I'—'

1

B 1

BT L
N

1 11
s+5’

SHI
uzlw

—_

1,11
and let a € (1,&. Then there is a f € (1, f] such that 1 = Lﬁ—f

\\._.

[%, 1). By Propo-

1
sition 8.4.2, showing that X% € UMD, s is equivalent to showing that X% € HL and
(X*)*)&/®" ¢ HL. For the first assertion, note that since a < § <  we have X% € UMD
and thus, X% € HL. It remains to prove the second assertion. Let (Q, u) be the measure
space that X is defined over. Then, by Proposition 8.1.4(iv), we have

1 1 1
B a~s
(X9 = (xB)*) 3T . L¥ 5 (@)
1 1 L
Zrrs RSN
=(@hyr) e Xﬁ B.1P Q)& VP
(x5 ) ((( RN
with o
95l R) o
d-Lha-L
a s ﬁ
The result then follows from applying Proposition 8.4.11(i) in the case m = 1. -

Next, we need a vector-valued version of the Rubio de Francia iteration algorithm.

Lemma9.1.8. Letse (1,00), pe(1,s), X € UMD, ; defined over a o -finite measure space
Q,u),andwe Ap . Ifhe L’:U,l (R"; (X™)) is a positive function, then there is a positive

function H € L’Z}/ _, (R (X™)) satisfying:
(i) h < H pointwise a.e.;

i) |H <2|lh
) NH ey S gy

(iii)) H(-,w) € Ay,1,5) for a.e. w € Q with

17 -1

1 Lll }
’
5 1-5

P

max{

T
[(HCo)h,0,9 SXpags W], 0 "

forall g € (1, s] such that X is q-concave.

Proof. Since X € UMDy g, it follows from Proposition 8.4.2 that X* € HLy. Hence, by
Corollary 8.3.5 we have

_1 -1 _1 -1
max 151'1[{} max isl’ ‘11
-1 P75 Tp0 _ pos op
w ] —[w]p,(l,s) 9.1.3)

1My P'(s',00)
w

<

/

P . (Rn;X*)ﬁLnil (R";X%) ~X,pq,s [
w
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forall g € (1, s] such that X* is ¢'-convex.

We define _
oS M (h)

=0 2K I My ||k

_ (R X*)~L’” L R%X*)

Then (i) and (ii) follow in the same way as in the proof of Lemma 4.1.3. For (iii), note
that by (9.1.3) we have

My (H(-,w)) = My (H) (-, w) < 2| My| H(,w)

/ /
L REX)—LP | RXY)
w
1

_l
max{ 1 !
T_T1 1'1 l

Sx,pa,s (W ]p,(mp ¢ P H(,w).
-1 1-1
max{i,i:]l}
sothat[H(~,w)]1,(1,s)gx,p,q,s[w]p'(ls)” * P fora.e. we Q. The assertion follows. O

We are now ready to prove Theorem 9.1.1.

Proof of Theorem 9.1.1. Fix T < p < § and weights  satisfying w; € Ay, ;s foE all je
{1,..., m}. By Proposition 3.3.15 and Proposition 9.1.7 we can pick 1 < a <min{4} such
that w; € Ay, (ar;,s;) With [w]]p],(m],s]) [wjlp;,r;,sp and X e UMD s; forall j e

Tj
{1,...,m}.

Since Y. ;”: 1 % =1, it follows from Proposition 8.1.4(iii) that

1 1 1 m

((Xar) 5_((H(Xar]) 1) )7:(.’" (Xar]) )* H ocr])
j=1

1= j=

—

Since X]c.”j € UMD, the space (X;”j)* is reflexive for all j € {1,..., m} so that (X*")* is
also reflexive by Proposition 8.1.4(i) and hence order-continuous. Thus, it follows from
Lemma 8.1.5 that

1 %
1 il

LT R (X)) ) = HL ‘f g R ((X; )" o) 9.1.4)
]

1 1

1
Thus, ﬁxmggeL‘” ’ (R"; (X9T)*)ar), we can pick positive g; € L fl 7 (R”,((Xm’) )’” )
such that |g| = Hmlg,

For the functions H; obtained from applying Lemma 9.1.8 with s = as—ij, p= a’%,
1
_ ocrj _ arj = arj e arj
X—Xj yW=w,; , hj g , we set Wj : H]. so that
m m L om L m
gl= [T =[1", =1 H =wi=w (9.1.5)
j=1 j=1 Jj=1 Jj=1
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and
1 i 1
Wil o , I "L(” i g T i ”L(pf“”’) ®REX; 1))
L (R",((X )T w w
wJT ] J
L
“ilg;l
T L
La,'{ Py )

j
(9.1.6)
Moreover, by Proposition 3.1.3(ii), Hoélder’s inequality, and the definition of a, we have
1

L
(WG lar,irjsp = [I_I]'("w)]1 (jl i = ;0] ]1 —Z)

arar; Tarj
ar; ar;
J J
-+ 1--L
1 Sj q
ary Moy )
[ arj] Pj Sj Pj (917)
~X,Pjq,Sj j I
1,25
1.1 1. _1 11 11
ar; ~s; ar; q ar; ~s; ar; " q
J J J J J J J J
max1—1T -1 'L_L} max1—1T -1 ’L_L}
PjTSj @R PiTSj @R

=lw J]p,,(ar,,s]) S lw J]p],(r,,s)

fora.e. w e Qandall g; € (arj, s;] such that X; is g;-concave.
Let f € L@o(R";X) be simple functions. Then f(-,w) € LX(R") for a.e. w € Q so that

T(f ) is well-defined. By (9.1.1) and (9.1.5) we have

1T w)gl e @ < I T, oNlirer &

= (/)a?([Wl ('yw)]arl,(rl,sl); o [Wh( (U)]arm,(rm,sm)) l_[ "f]( CU)” &)
j=1
= (,bjgyi;';r’g([wl]pl,(rl,sl); e [Wml o, s sim) H ”f]( w) || (R")
j=1

where ¢35 AR is a componentwise increasing function determined by (9.1.7). Then, ab-

breviating ¢ := ¢ 5,5 Wl py s o [Wm py, (s by Fubini’s Theorem, Holder’s

inequality, and (9.1.6), we have

1T gllisrmosor @y = NTFG0)8L w)||Lar(Rn)||Lar(m<c/>)| H 155G | ory
<(Pl_[ ”_f]W]”Lar](RnL 7 () —¢1—[ ||_f]|| p] (RnX )"VV]”
= & Ty
L. R"; ((X )9 )

J

<2ar an,n 12 e 1811

- L
L:_r{ g ®e(X; ) ™)
j
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i - R
Taking an infimum over all possible g; € Lw_’1 Pi (R%; ((X;”’)*) “j) with |g| < H;”:l g
J
we conclude that

m
ITF) - glioranstorn Sr (T2 gy, ) 18N 2
j=1 Wit

ar

1 1
P R ((xary)yer)

L,
Thus, by duality in Bochner spaces, we have
~ = ~ 2 ar L ~
KT @y xy = NT GO, = sup I1T(f)-gllLar me;rer )
L;{l,(R”;X“’) gl 1 =1

1

Sl

L

1
1 R (xanar)
w

m

< ¢, ||f‘|| pi

~T | | J J R X
j=1 ij( X7

for all simple functions f e LXR"; X ). The assertion now follows from the density result
Lemma 8.2.3 and the extension result Lemma 5.3.2. O

9.2. VECTOR-VALUED SPARSE DOMINATION FROM SCALAR-VALUED SPARSE
DOMINATION

This section is dedicated to proving vector-valued sparse domination of operators sat-
isfying scalar-valued sparse domination. Moreover, we use this to deduce sharp vector-
valued weighted bounds for these operators.

Note that we introduce the parameter g into the theorem here, which is essential in
obtaining the full range of vector-valued bounds, including the quasi-Banach range. We
elaborate further on this in Section 9.3.

Theorem 9.2.1. Let7 € (0,00)"™, g € (0,00), s € (q,00] and let T be an operator defined on
m-tuples of functions such that for any f ,8 € LXRM)

”T(f)'g”mm") = CT”M(F, 1 )(f,g) ||L”7(R”)’ 9.2.1)

1_1
q~s

Let X be and m-tuple of quasi-Banach function spaces over a measure space (Q, (1) such
that X9 € UMD ;. Furthermore suppose that for all simple functions f € L R"; X) the
'q

q
function T(f ) :R" — X given by
T(f)x,w) = T(fC,0)x), (x,0)eR"xQ

is well-defined and strongly measurable. Then for all simple functions f e LXR"; X) and
geLP R
” ” T(f ) ”X : g”Lq(Rn) Si,q,ﬁs CT “ M(fy 1 )(”f”)‘(y g) ||L‘7(R")' (922)

1_
q

1
s
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As in Remark 9.1.2, if T is m-linear, then T(f) is always well-defined and strongly
measurable for simple functions f € L(R"; X) as it is given by the tensor extension of
T.

Proof. The proof essentially consists of applying Fubini’s Theorem twice and then using
the vector-valued sparse domination result for the multisublinear maximal operator.
Let f € L°R";X) and g € L°(R"; ((X‘V)*)i) be simple. Then for a.e. w € Q we have
fitw),g(,w)e LY (R™). Thus, using Fubini’s Theorem and (9.2.1), we have

1T gl amnray = @ — 1T ), 860 g | 1)
< Crllo— 1My 1 (Fe0), g6 lamn | Loy

1_1
G~

= CT”M(?, -l )(f,g) ”L‘?(R";L‘/I(Q))‘
T-

9.2.3)

1
s

1
We set X401 := (X9)*) 7 so that
m+1

l_[ Xj= (XLI(Xq)*)% :LI(Q)é =L1(Q),
j=1

which is an order-continuous g-convex quasi-Banach function space. Then it follows
from the sparse domination result in Theorem 8.3.3 that

1M, e | ooy Sx.05.s 1M, lil)(”f")'(r ||g||((Xq)*)%)”m(R")-
q s q-s
By combining this with (9.2.3) and Proposition 8.2.1, the assertion follows. O

We will now use Theorem 9.2.1 to deduce weighted boundedness for the vector-
valued extension of an operator T from a scalar-valued sparse domination result for
T, which is new even in the unweighted setting.

Theorem 9.2.2. Let7 € (0,00)", g € (0,00), s € (q,00] and let T an m-linear or positive-
valued m-sublinear operator satisfying (9.2.1) and let X satisfy the assumptions in Theo-
rem 9.2.1. Then for all p € (0,00]™ withp>T7 and p < s, and all i € Ap 7,5 we have

1 1.1
F_4°s
maxy 71,711
PP POS

m
|| T(f ) || Lﬁ,(R";X) Sx,ﬁ,q,?,s CT[L_D]ij,(?,s) L ”f] ”LZ/j] ®R":X;)
]:

- ﬁ i
forall f € L, (R™; X).

Proof. This follows from combining Theorem 9.2.1 with Theorem 8.2.2. O
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9.3. APPLICATIONS

In this section we provide a discussion regarding utilizing ¢9-type sparse domination in
order to obtain vector-valued sparse domination in spaces beyond the Banach range.
Moreover, we wish to compare the utility of our vector-valued extrapolation and our
vector-valued sparse domination methods. Furthermore, we compare the results of Sec-
tion 5.4 for multilinear Calder6n-Zygmund operator and the bilinear Hilbert transform
to the results obtained in this chapter. We point out that our results are of course appli-
cable far beyond these examples as they include all operators satisfying sparse domina-
tion.

9.3.1. Vector-valued estimates in the quasi-Banach range

In the multilinear setting it is a natural occurrence that an operator maps into a Lebesgue
space with exponents smaller than 1 and hence, no longer in the Banach range. For this
reason one also expects the vector-valued extensions of the operator to map into spaces
in the quasi-Banach range. However, in our multilinear UMD condition we assume that
the product of the spaces is a Banach space. This is partly because we are obtaining our
estimates after a dualization argument which is usually not possible in the quasi-Banach
setting. As we have seen in Theorem 8.2.2, it is thanks to the quantitative extrapola-
tion theorem from Chapter 4 that this dualization does not hinder us in obtaining sharp
bounds in the mixed-norm spaces Lf; (R”; X) in the full range of exponents . We are
however still hindered in how much convexity we are allowed to assume on the tuple X.
In this subsection we explain how the parameter g in the results in Section 9.2 can
be used to recover the expected results in the quasi-Banach range, at the cost of a worse
exponent in the weighted estimate. We illustrate this in the following proposition:

Proposition 9.3.1. Let7 € (0,00)™, qo € (0,00), and let T be an m-linear operator initially
defined on LY (R™)™. Suppose that for each bounded set B and all fe LXR™M™ supported
inB, foreach a € {0, %, %}n there exists a sparse collection % < 2% such that

THl=scr Y (X (ﬁmnj,g)q"xo)% 9.3.1)

ae{o‘l ;}" Qes® " j=1

pointwise a.e. in B. If (Q,u) is a o-finite measure space, then for all p € (0,00]™, T €
(0,00)™ with ¥ < p, T and p, t < 0o and all W € A7 ) the tensor extension T of T has a
bounded extension L)) (R"; L' (Q)) x --- x LI (R™; L' (Q)) — L}, (R™; L' (Q)) with
7 217
” T”L"’,,}1 R7LA () - x LE™ (R7;LIm (Q))— LY, R™;LE(Q)) §ﬁ,qo,?,? CT[w]ﬁ,('r’,oo)’

wm

(9.3.2)

where
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The above result also holds for m-sublinear T as in Theorem 9.2.1. Of course, our
methods go beyond the setting of L’-spaces, but we restrict our attention to this partic-
ular case for now for the sake of clarity and for the sake of comparing our result to the
results in Section 5.4.

Proof. Write X = (L' (Q),..., L' (€))). We consider the two cases separately.

For the case t € [gy,00), we note that X0 = (L‘% «,..., L% Q) e UMDi’OO by Propo-
sition 8.4.6. Thus, the result follows from an application of Proposition 5.?:7.04 and Theo-
rem 9.2.2 with g = gp and s = co.

In the other case £ € (r, o] we have X' = (LtTl (Q), ...,LtTm () e UMD; by Propo-
sition 8.4.6. Note that the inequality || - [lg%0 < || - I« implies that (9.3.1) il,olds with gg
replaced by ¢, see also Remark 5.3.5. Hence, an application of Proposition 5.3.4 and
Theorem 9.2.2 with g = t and s = oo proves the result. O

Note that in case t € [gp,00) we did not need to assume the pointwise sparse dom-
ination (9.3.1) in our proof, but it would have sufficed to assume domination in form.
For example, if we instead assumed that for an s € (gp,o0] and all f ,8 € L¥(R") we have

IT(F)-gll Lo ®n =Cr I Mg _1 (f,8) I Lo ®R")’ (9.3.3)

L
q0

_1
s

then exactly as in the proof we obtain (9.3.2) for ¢ € [gg, c0) with
1 11
y:max{ﬁ,%}. 9.3.4)
7 »7s

However, at this point it is not clear how to deal with the cases ¢ € (r, go]. In the case
of (9.3.1) we can simply apply the estimate || - [ls4 < | - l,« to obtain the domination re-
quired to complete the argument. However, if we only assume the sparse domination in
form (9.3.3), it is unknown whether we automatically also have (9.3.3) with g replaced
by a smaller exponent 0 < g < ¢y, meaning that it is not clear whether we have the flexi-
bility to cover the cases ¢ € (r, go] or not without assuming that (9.3.3) also holds with ¢
replaced by t.

We point out that replacing gy by 0 < g < g qualitatively yields the same weighted
bounds, but the result is quantitatively worse in that it yields a worse exponent y in the
bound. Thus, on all accounts it seems that the following conjecture should hold:

Conjecture 9.3.2 (Sparse form domination implies worse sparse form domination). Let
7 € (0,00)™, go € (0,00), and s € (gg,00]. Let T be an m-(sub)linear operator initially
defined on LY (R™)™ and suppose that for any fe LPR™")™ we have

IT(F) - gllraomn S [ Mg, 1y (£, 8| 1o -

1 _1
q0 S

Then the same estimate also holds when we replace qoy by any q € (0, qo].
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We point out that even the simplest case m =1, r =1, gp = 1, s = co is unknown.
For specific cases of T one can usually verify the conjecture by going back to the proof
of (9.3.3) and insert the estimate ||-|| g4 < ||-]l¢% at the right place in the proof. Examples
where this is the case include:

e In [Lorl9, Theorem 3.5] a general theorem to obtain sparse domination for an oper-
ator T is shown. In this theorem a localized ¢9 -estimate is imposed on T to deduce
(9.3.3) with go = q. The localized ¢7-estimate for T becomes weaker for smaller g,
so any operator whose sparse domination can be proven through [Lor19, Theorem
3.5] also satisfies the result of Conjecture 9.3.2.

¢ As mentioned in Subsection 5.4.2, sparse domination with gy = 1 for the bilinear
Hilbert transform BHT was proven by Culiuc, Di Plinio and Ou in [CDO18]. The re-
sult of Conjecture 9.3.2 for BHT was verified later by Benea and Muscalu in [BM17].

* One of the main results in [CCDO17] is (9.3.3) with gy = 1 for rough homogeneous
singular operators Tq, see also [Ler19] for an alternative proof. As mentioned in
Example 5.4.3, adapting the technique in [Ler19], Conjecture 9.3.2 was verified for
these operators in [CLRT19, Theorem 5.1], which has implications for weighted
norm inequalities for T with so-called C,-weights.

Now, if Conjecture 9.3.2 is false and, e.g., there is an m-linear operator T such that
for all f € L°(R™)™ we have

[ T(f)‘g”Ll(Rn) S ||M(I,1)(f'g) ||L1(R”)'

but T does not satisfy the corresponding ¢9-type sparse domination for any ¢ € (0, 1).
Then T has vector-valued extensions that can be obtained from the vector-valued ex-
trapolation result Theorem 9.1.1, but not from the vector-valued sparse domination
result Theorem 9.2.2. For example, bounds for any m-tuple of quasi-Banach function
spaces X with X j € UMD for all j € {1,...,m} whose product X is not a Banach space
can be obtained from the extrapolation theorem, but not from the vector-valued sparse
domination theorem. This includes, for example, bounds with respect to L% (Q) spaces
with 7 € (1,00)", but with ¢ € (0,1). Similar examples for Lorentz and Orlicz spaces
can be given using Example 8.4.4. Moreover, we point out that if an operator satisfies
weighted bounds, but no sparse domination, then Theorem 9.1.1 can still be used, while
Theorem 9.2.1 can not. It is however not clear if there are examples of operators satisfy-
ing weighted bounds, but no form of sparse domination.

To conclude this subsection, we wish to compare the results of Section 9.2 with The-
orem 5.3.6, where vector-valued extensions for Lebesgue spaces L' (Q) for a o-finite
measure space ({2, ) were proven as a result of sparse domination and scalar-valued
extrapolation. Let 7 € (0,00)"", s € (0,00], q € (0,s), and let T be an m-linear operator
initially defined on L (R™)" such that for all f e L®(R"")™ we have

IT(f)- gllzarn <Cr||My s )(frg)”Lq(Rn)-

1_1
G~s
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Then, by Theorem 5.3.6, we find that for all p € (0,00]™, 7 € (0,00]™ with 7 < j, 7 and
p,t<sandall i € A ;) we have

” T”LZ,I1 (R™;LA (Q))X'"XLzlrfn (R™;Ltm (Q))_,L/Z,(Rn;Lt(Q)) ,S CT[W] B,(7,5)

1 1_1 1 1_1 1_1 1_1

g s F g s P77 175

_ T "\ _r T -\, - > L
max{l_l’l_l}_max{l_l'l_l}max{l_l’l_l}’

T p p s F f t s F p p s

the exponent (9.3.4) obtained from vector-valued sparse domination improves this re-
sult in the Banach range ¢ € [1,00), as was noted in Remark 5.3.7.

Since

9.3.2. Multilinear Calderén-Zygmund operators

As discussed in Subsection 5.4.1, it was shown in [CR16, LN 18] that multilinear Calder6n-
Zygmund operators with a modulus of continuity satisfying a log-Dini condition satisfy
the sparse domination (9.3.1) for 7 = 1, go = 1, and s = co. Hence, by applying Propo-
sition 9.3.1 we find that if (Q, 1) is a o-finite measure space, then for all i)’,_f € (1,00]™,
p,t<ooandall i e Aﬁ,d,oo) the tensor extension T of T is bounded L’,j}1 (R™; L1 (Q)) x
s x L’,j,':’n (R L' (Q)) — Lb (R™; L' (Q)) with

T . -7
I T”L’le (RGL1 (@) x-+x L™ (R";LIm (Q)— LY, (R LY (Q) Shaoi CT[w]ﬁ,(i,oo)

with

i max{p},..., p,,, p} if t€[1,00);

N {max{p'l,...,p;n, B} ifre(L,1.

Hence, in the case f € [1,00) our quantitative bound improves the one from Theorem 5.4.1.
By applying Proposition 5.3.4, Remark 5.3.5, Theorem 9.2.1, and Theorem 9.2.2, the

full result for the tensor extension T of an m-linear Calderén-Zygmund operator T we
obtain is as follows:

Theorem 9.3.3. Let T be an m-linear Calderon-Zygmund operator with a modulus of

continuity w satisfying the log-Dini condition (5.4.1). Let X be an m-tuple of quasi-

Banach function spaces such that X9 € UMD i for some g € (0,11. Then for all simple
7

functionsf € LZO(R”;X), g € LX(R™) we have
TG x- 8l pagn Sx.g CrlMeEp U F 50 @ | Lo

Moreover, for all p € (1,00]™ with p < oo and all i € A’,(T,oo)r T has a bounded extension

p
L? R™; X) — L}, (R"; X) with

max{p’l,...,p;n,%}

I .
p,(1,00)

I <. . 7
P ®n%)—Lh,®nx) ~Xpa Crlw]
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To optimize the weighted bound, for each tuple of spaces X one should determine
the largest g € (0,1] such that X9 € UMD - For g =1 our bound coincides with the
4
known sharp bound in the scalar case, so in this case our bound is optimal.
In conclusion, our result recovers the full known range of vector-valued extensions of
multilinear Calder6n-Zygmund operators and proves new ones with new sharp weighted

bounds.

Remark 9.3.4. In the linear case m = 1, the sharpness of the T'(b) theorem in [NTV02]
enabled Hytonen in [Hyt14, Theorem 3] to prove boundedness of the tensor extension of
a Calderén—Zygmund operator T on L? (R"; X) for general UMD Banach spaces X from
scalar-valued boundedness of T. It would be of great interest to develop techniques to
extend more general multilinear operators beyond the function space setting.

9.3.3. The bilinear Hilbert transform

As mentioned in Subsection 5.4.2, it was shown in [BM17] that the bilinear Hilbert trans-
form

d
BHT(f1, f2)(x) := p.v.j};fl(x—y)fg(x+y) 7}/
satisfies the ¢9-type sparse domination

IBHT(fi, f2) - gllLawy S 1M, ,,.

111)(f1,fz,g)||Lq(R) (9.3.5)
s

forall fi, f>,8€ LY (R), g € (0, s), whenever 11, 12, s € (1,00) satisfy the property that there
exist 01,60,,03 € [0,1) with 8; + 6, + 03 = 1 such that
1 1+ 91 1 1+ 92 1 1- 03

—< , —< , =>— (9.3.6)
n 2 ) 2 N 2

or equivalently
11 11 11
max{—, =} + max{—, =} + max{—, =} <2.
rn 2 rp 2 s 2
Hence, by Theorem 9.2.1 and Theorem 9.2.2, we obtain the following result for the tensor

extension BHT of BHT:

Theorem 9.3.5. Let r1,12,5 € (1,00) satisfy (9.3.6) and let (X1, X») be a pair of quasi-
Banach function spaces such that X9 e UMD  for some q € (0,1]. Then for all simple
a4q

functions f € LP(R; X) and g € LY (R) we have

“ ||ﬁ(f1’ Plx- g“Lq(R) Sx,q,?,s CT”M(rl,rg,

q

11l)(||f1”X1r”fZ”Xgrg)”Lq(R)- (937)

Moreover, for all p € (0,001 with ¥ < pandp<s,all ive Ap 7,5 BOT has a bounded
extension L)), (R; X1) x Lh2 (R; Xo) — LY, (R; X) with

1

IBHTI 21 gixi) 22 i) — L, Ri20) Sxp7s P .9
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Note that in particular we find that for all r, 72,5 € (1,00) satisfying (9.3.6) and all
X € UMDy ; we have

IBHT(f1, 2 llr®ix) Sx,5,7,s 11llio @xo L f2ll2pz ;X2

forall fj € Z(R; X;).

We point out here that [BM17] actually proved the vector-valued sparse domination
(9.3.7) in the cases where the X; are iterated Lebesgue spaces with the same range of
exponents we obtain (see Corollary 8.4.8), through the helicoidal method. It is worth to
note that Theorem 9.3.5 extends the main result of [BM17] to our more general vector
spaces by only using their scalar-valued sparse domination (9.3.5) as an input.

To end this section, we compare our results to the results obtained by Amenta and
Uraltsev [AU19] and Di Plinio, Li, Martikainen, and Vuorinen [DLMV19]. In their works
they prove vector-valued bounds for BHT for triples of complex Banach spaces (X3, X2, X3)
that are not necessarily Banach function spaces, but that are compatible in the sense
that there is a bounded trilinear form IT : Xj x X, x X3 — C. Then the trilinear form
BHF(fi, f>, f3) := (BHT(f1, f2) f3) has the vector-valued analogue

d
BHFn(f1, f2, f3) = pr‘V'fRH(fl(x_y)’fz(x-"y)’ﬁi(x))7ydx’

whose boundedness properties can then be studied. We point out that the main result in
[DLMV19] considers estimates for the same tuples of spaces as in [AU19], but for a larger
range of exponents. Since our main interest is in the spaces, for simplicity we compare
our result to the main result of [AU19]. To state the result we need to introduce the
notion of intermediate UMD spaces. We say that a Banach space X is a u-intermediate
UMD space for u € [2,00] if it is isomorphic to the complex interpolation space [E, H] 2,
where E is a UMD space and H is a Hilbert space and the couple (E, H) is compatibllé.
For i € [2,00)™ We say that a tuple of Banach spaces X is ii-intermediate UMD if X jis
uj-intermediate UMD for1 < j < m.

Theorem 9.3.6 ([AU19, Theorem 1.1]). Letii € [2,00]°, let X be a triple of ii-intermediate
Banach spaces, and let 1 : X; x X» x X3 — C be a bounded trilinear form. For all p1,p2 €
(1,00) with p € (1,00) satisfying

/ ! !

1 u 1 u 1 u
1<—min{—,l,l}+—min{—f,l}+—min{—3,l}, (9.3.8)
uj 14 Uz 12 us p
we have
IBHF(f1, f2, @)1 S 1A lleey x| fall Lpz v, x0) IIgIILp'(R;XS) (9.3.9)

forall fie Y (R;X;), g€ (R; X3).

Even though we are not able to recover any of their results for spaces that are not Ba-
nach function spaces, in the setting of Banach function spaces our results go much be-
yond theirs. Indeed, consider a pair of complex quasi-Banach function spaces (X, X»)
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over (Q, ). Then we define

M: X1 x Xox X*—C, T(f, f2,8) ::folfzgdu-

By an application of Fubini’s Theorem, we find that for all f; € /(R; X;), g € /(R; X™)
we have

IBHFn(fi, f2,8)1 = UR[QBHT(fl(-,w),fz(-,w))(x)g(x,w) dp(w)dx

= ||ﬁ(fl,ﬁ)g||Ll(R;Ll(Q))-

(9.3.10)

This means that the sparse domination result in Theorem 9.3.5 combined with Propo-
sition 8.2.1 implies that whenever r1,r2,s € (1,00) satisfy (9.3.6) and Xe UMDy g, we
obtain (9.3.9) for all 5 € (0,00]? with 7 < j and p < s, as well as weighted bounds.

Since intermediate UMD spaces are themselves UMD spaces, any of our results where
X; or X, is not UMD improve on Theorem 9.3.6 in the function space setting. This
includes examples such as X; = L®(Q), Xo = L*(Q), or X; = £2(£®), X, = (°(£?), see
Corollary 8.4.8.

Next, let 7 € (0,00]? with 7 < 7, 1 < t < s and consider the case

X1 =L"Q), X=L2(Q), X*=L"Q.
Then by (9.3.10) and Theorem 9.3.5 with g = 1 we obtain
|BHFn(f1, f2, 81 S fillm (R;L11 () I f21l L2 (R;L%2 () ||g||Lp’ ®RLY (Q) (9.3.11)

forall fj € S (R;L'(Q)), g€ S (R;L" (Q)) and p € (0,00]2 with 7 < j, p < s. This is be-
yond the reach of Theorem 9.3.6, as Theorem 9.3.6 does not include Lebesgue space
over non-atomic measure spaces because of the restrictions in (9.3.8), see [AU19, Exam-
ple 6.2.3].
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SUMMARY

The subject of this thesis is the study of the multilinear Muckenhoupt weight classes
and the quantitative boundedness of operators with respect to these weights in both the
scalar-valued and the vector-valued setting. This includes the study of multisublinear
Hardy-Littlewood maximal operators, sparse forms, and multilinear Rubio de Francia
extrapolation methods.

After giving a historical overview of the theory in the first part, in the second part
we introduce the limited range multilinear Muckenhoupt weight classes and the cor-
responding weight constants. We show that these weight classes are characterized by
the boundedness of the multisublinear Hardy-Littlewood maximal operator and sparse
forms, and we obtain the sharp dependence of these bounds in terms of the weight con-
stants. We also define multilinear reverse Holder and Fujii-Wilson constants and prove a
self-improvement property of the multilinear Muckenhoupt weight classes. Finally, we
prove an abstract quantitative multilinear limited range extrapolation theorem which
allows us to extrapolate from weighted estimates that include the cases where some of
the exponents are infinite. To this end we develop a multilinear analogue of the Rubio
de Francia algorithm adapted to the multisublinear maximal operator.

In the third part we prove weighted bounds for multi(sub)linear operators satisfy-
ing sparse domination by using the sharp extrapolation theorem to extend quantitative
estimates obtained from sparse domination in the Banach space setting to the quasi-
Banach space setting. We provide a criterium on the unweighted operator norm of
the operators which ensures that the obtained bounds are sharp. Moreover, we ob-
tain vector-valued estimates for Lebesgue spaces including L>. As a corollary, we ob-
tain multilinear extrapolation results for some upper and lower endpoints estimates in
weak-type and BMO spaces. We apply our results to multilinear Calderé6n-Zygmund op-
erators and the bilinear Hilbert transform.

In the fourth part we introduce a multilinear and limited range analogues of the
UMD condition for tuples of quasi-Banach function spaces and prove vector-valued
bounds for operators in these spaces through two separate methods. The first is through
a multilinear limited range version of Rubio de Francia’s vector-valued extrapolation
theorem. Through the second method we show that if an operator has scalar-valued
sparse domination, then this operator has a vector-valued extension satisfying vector-
valued sparse domination with respect to our tuples of spaces satisfying the multilinear
UMD condition. For the proof of this result, we introduce the multisublinear Hardy-
Littlewood lattice maximal operator and define a rescaled multilinear analogue of the
Hardy-Littlewood property for tuples of quasi-Banach function spaces. We show that ifa
tuple of quasi-Banach function spaces has this property, then the multisublinear Hardy-
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Littlewood maximal operator satisfies vector-valued sparse bounds in these spaces, which
is the main ingredient in proving that scalar-valued sparse domination implies vector-
valued sparse domination. Finally, we apply our results to multilinear Calderén-Zygmund
operators and the bilinear Hilbert transform.



SAMENVATTING

Het onderwerp van dit proefschrift is de studie van multilineaire Muckenhoupt gewicht-
sklassen en kwantitatieve begrensdheid van operatoren in termen van deze gewichten
in het scalair en vectorwaardige geval. Hiervoor komen onder andere multisublineaire
Hardy-Littlewood maximaal operatoren, schaarse vormen, en multilineaire Rubio de
Francia extrapolatie methoden aan bod.

Na het geven van een historisch overzicht in het eerste deel, geven we een intro-
ductie over de begrensde bereik multilineaire Muckenhoupt gewichtsklassen en de bi-
jbehorende gewichts constanten in het tweede deel. We laten zien dat deze gewicht-
sklassen gekarakteriseerd worden door de begrensdheid van de multisublineaire Hardy-
Littlewood maximaal operator en de schaarse vormen. We tonen een scherpe athanke-
lijkheid van deze grens aan in termen van de gewichts constanten. Ook definiéren we
multilineaire omgekeerde Hélder en Fujii-Wilson constanten en bewijzen we een zelfver-
beterings eigenshcap van de multilineaire gewichtsklassen. Tot slot bewijzen we een ab-
stracte kwantitatieve multilineaire begrensde bereik extrapolatie stelling waardoor we
gewogen afschattingen kunnen extrapoleren in onder andere de gevallen waar een aan-
tal van de exponenten oneindig zijn. Om dit te doen ontwikkelen we een multilineaire
analogon van het Rubio de Francia algoritme die aangepast is op de multisublineaire
maximaal operator.

In het derde deel bewijzen we gewogen afschattingen voor multi(sub)lineaire oper-
atoren die aan schaarse dominatie voldoen door gebruik te maken van de scherpe ex-
trapolatie stelling om kwantitatieve afschattingen in het Banach bereik naar het quasi-
Banach bereik uit te breiden. We bepalen een criterium op de ongewogen operator nor-
men van de operatoren die ervoor zorgt dat deze verkregen afschattingen scherp zijn.
Verder verkrijgen we vectorwaardige afschattingen voor Lebesgue ruimtes waaronder
L. Als gevolg krijgen we eindpunt extrapolatie stellingen voor zwakke Lebesgue en
BMO ruimtes. We passen ons resultaat toe op multilineaire Calderén-Zygmund opera-
toren en de bilineaire Hilbert transform.

In het vierde deel introduceren we een multilineaire begrensde bereik analogon van
de UMD eis voor tupels van quasi-Banach ruimtes en bewijzen we vectorwaardige af-
schattingen voor operatoren in deze ruimtes door middel van twee verschillende meth-
oden. De eerste methode maakt gebruik van een multilineaire begrensde bereik ver-
sie van Rubio de Francia’s vectorwaardige extrapolatie stelling. Via de tweede methode
laten we zien dat als een operator scalairwaardige schaarse dominatie heeft, dan heeft
deze operator een vectorwaardige uitbreiding met vectorwaardige schaarse dominatie
voor tupels van ruimtes die voldoen aan de multilineaire UMD eis. Voor het bewijs
van dit resultaat introduceren we de multisublineaire Hardy-Littlewood rooster maxi-
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maal operator en definiéren we een hergeschaalde multilineaire analogon van de Hardy-
Littlewood eigenschap voor tupels van quasi-Banach functie ruimtes. We laten zien dat
als een tupel van quasi-Banach functie ruimtes deze eigenschap heeft, dan heeft de
multisublineaire Hardy-Littlewood maximaal operator schaarse begrensdheid in deze
ruimtes, wat het hoofdingrediént is om aan te tonen dat scalairwaardige schaarse dom-
inatie vectorwaardige schaarse dominatie impliceert. Tot slot passen we onze resultaten
toen op multilineaire Calder6n-Zygmund operatoren en de bilineaire Hilbert transform.
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