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1
INTRODUCTION

The focus of this thesis is the development of theory of the multilinear and limited range

analogues of the Muckenhoupt Ap weight classes and to develop methods of obtaining

sharp weighted bounds for operators satisfying sparse bounds. This is facilitated by a

quantitative study of multisublinear maximal operators which allows us to develop a

sharp multilinear extrapolation theorem.

Through the domination of multilinear operators by sparse forms, which are inti-

mately related to the multisublinear maximal operators, our techniques allow us to ob-

tain sharp weighted bounds for these operators in both the scalar-valued and vector-

valued settings. To this end we develop a multilinear analogue of the Hardy-Littlewood

and UMD properties of Banach function spaces.

In this chapter we give a general introduction into each of these topics as well as

provide a detailed outline of the thesis.

1.1. GENERAL INTRODUCTION

1.1.1. Weighted bounds for weights in the Ap classes

A positive function w in Rn is said to be an Ap weight for p ∈ [1,∞) when the Hardy-

Littlewood maximal operator

M f (x) := sup
Q3x

1

|Q|
∫

Q
| f |dx,

satisfies the weak-type bound Lp (Rn ; w) → Lp,∞(Rn ; w). Here Lp (Rn ; w) and Lp,∞(Rn ; w)

are the respective strong- and weak-type Lp spaces over Rn with respect to the measure

w dx. In this case we have the equivalence

[w]Ap := sup
Q

(
1

|Q|
∫

Q
w dx

)(
1

|Q|
∫

Q
w− 1

p−1 dx

)p−1

h ‖M‖p
Lp (Rn ;w)→Lp,∞(Rn ;w),

where for p = 1 we use the interpretation [w]A1 = supQ

(
1
|Q|

∫
Q w dx

)(
essinfy∈Q w(y)

)−1.

This equivalence was shown by Muckenhoupt in [Muc72]. He proceeded to show that

when p ∈ (1,∞), the condition [w]Ap <∞ is self-improving in the sense that in this case

M also satisfies the strong bound Lp (Rn ; w) → Lp (Rn ; w).

Not long after this it was shown that the Ap condition is not only characterized by

the strong boundedness of M , but also of certain singular integral operators. Indeed, in

3



4 1. INTRODUCTION

the works of Hunt, Muckenhoupt and Wheeden [HMW73] and in a simplified approach

by Coifman and Fefferman [CF74] this was shown to be the case for the Hilbert trans-

form. The latter also proved that the Ap condition is a sufficient condition to bound any

Calderón-Zygmund operator.

A quantitative study of these bounds was initiated by Buckley in [Buc93]. He showed

that

‖M‖p
Lp (Rn ;w)→Lp (Rn ;w) .p [w]p ′

Ap
,

where the power of the weight constant is optimal. Moreover, he showed that if T is a

Calderón-Zygmund operator, then

‖T ‖p
Lp (Rn ;w)→Lp (Rn ;w) .p [w]p ′+p

Ap
.

While this bound is not optimal, he did show that the optimal power of the weight con-

stant must lie between max{p ′, p} and p ′+p.

This optimality became very relevant when Petermichl and Volberg [PV02] solved

a long standing open problem on the regularity of solutions to Beltrami equations by

showing that the Beurling-Ahlfors transform—a Calderón-Zygmund operator—satisfies

this weighted bound with the sharp exponent max{p ′, p}. Using a sharp version of Ru-

bio de Francia extrapolation [Rub82, GR85] they reduced the problem to showing this

bound in the case p = 2.

The problem of proving that the sharp bound with exponent max{p ′, p} holds for

all Calderón-Zygmund operators became known as the A2-conjecture. After a series of

partial results, such as [Pet08, LPR10, NTV08, CMP10, Vag10, Ler11, PTV10, HLM+12],

this conjecture was eventually settled by Hytönen in [Hyt12].

An alternative approach was developed by Lerner [Ler13], whose proof relied on

dominating Calderón-Zygmund operators by the much simpler sparse operators. Sub-

sequently, the idea of sparse domination was developed further and was broken down

to its essentials by Lerner in [Ler16]. The literature on this topic is vast, see e.g., [BFP16,

CR16, LN18, Lac17, HRT17, LO20, Lor19], and this technique can be applied to an in-

creasingly general class of operators. By now, proving sharp weighted bounds has be-

come more or less synonymous with proving sparse domination.

1.1.2. Weighted endpoint estimates

Sparse operators seem to very precisely capture the weighted behaviour of Calderón-

Zygmund operator in the sense that any operator satisfying sparse domination also sat-

isfies the result of the A2-conjecture. At this point the question arises whether weighted

endpoint bounds known for Calderón-Zygmund operators are also true when we con-

sider the more general class of operators satisfying sparse domination.

In the work [BFP16] it was shown by Bernicot, Frey, and Petermichl that a large class

of operators beyond the framework of Calderón-Zygmund operators satisfy sparse dom-

ination in form. The operators they considered are not necessarily bounded Lp (Rn) →
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Lp (Rn) for all p ∈ (1,∞), but for a limited range p ∈ (r, s), where 1 ≤ r < s ≤ ∞. They

showed that these operators satisfy the property that for every f , g ∈ L∞
c (Rn) there is a

sparse collection of cubes S such that∣∣∣∣∫
Rn

(T f )g dx

∣∣∣∣. ∑
Q∈S

〈 f 〉r,Q〈g 〉s′,Q |Q|. (1.1.1)

Moreover, they showed that this implies that T is bounded Lp (Rn ; w) → Lp (Rn ; w) for

weights w that are in the intersection of the Muckenhoupt class A p
r

and the Reverse

Hölder class RH(s/p)′ . This condition on the weight can be equivalently formulated as

[w]Ap,(r,s) := sup
Q

〈w
1
p 〉

1
1
p − 1

s
1

1
p − 1

s
,Q
〈w− 1

p 〉
1

1
p − 1

s
1

1
r − 1

p
,Q

<∞, (1.1.2)

and they showed that

‖T ‖
1

1
p − 1

s

Lp (Rn ;w)→Lp (Rn ;w) .p,r,s [w]
max

{(
p
r

)′
,
(

p′
s′

)′}
Ap,(r,s)

(1.1.3)

for any T satisfying (1.1.1). Note that Ap,(1,∞) = Ap , and in the case r = 1, s = ∞ the

bound (1.1.3) recovers the bound from the A2-Conjecture.

In Chapter 6 we extend weighted endpoint bounds known for Calderón-Zygmund

operators to the setting of operators satisfying the sparse domination (1.1.1)

For Calderón-Zygmund operators, weighted weak type (1,1) estimates were estab-

lished by Lerner, Ombrosi, and Pérez [LOP09a] and later improved upon by Hytönen and

Pérez [HP13], using mixed A1–A∞ type estimates. They showed that for all Calderón-

Zygmund operators T and all p ∈ (1,∞) one has

‖T ‖Lp (w)→Lp (w) . pp ′[w]
1

p′
A∞ [w]

1
p

A1
, (1.1.4)

where

[w]A∞ = sup
Q

1

w(Q)

∫
Q

M(wχQ )dx,

is the Fujii-Wilson A∞ constant, which characterizes the class A∞ =∪p∈[1,∞) Ap . More-

over, in the work of Lerner, Ombrosi, and Pérez [LOP08] it was shown that for all Calderón-

Zygmund operators T and all weights w ∈ A1 one has

‖T ‖L1(Rn ;w)→L1,∞(Rn ;w) . [w]A1 log(e + [w]A1 ). (1.1.5)

This result is related to the weak Muckenhoupt-Wheeden conjecture, stating that one

has linear dependence on [w]A1 on the right-hand side of (1.1.5), and the logarithm can

be removed. This conjecture is now known to be false [NRVV10] and in fact, the estimate

(1.1.5) is sharp for the Hilbert transform [LNO17]. The result (1.1.5) was improved by

Hytönen and Pérez [HP13] to the mixed A1–A∞ type estimate

‖T ‖L1(Rn ;w)→L1,∞(Rn ;w) . [w]A1 log(e + [w]A∞ ). (1.1.6)
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Both the proofs of (1.1.5) and (1.1.6) rely on introducing weights into the classical

argument involving a Calderón-Zygmund decomposition f = g +b and the vanishing

mean value property of the ‘bad’ part b in combination with the Hörmander condition

of the kernel of the operator. This is done through an argument that can already be

found in [Pér94] (namely, they use [GR85, Lemma 3.3, p. 413]).

In general, the operators satisfying (1.1.1) need not be integral operators at all and for

operators such as the Riesz transform associated to an elliptic operator, an argument by

Blunck and Kunstmann [BK03] (see also [HM03]) proved a weak-type (r,r ) boundedness

using an adapted Lr Calderón-Zygmund decomposition, where a certain cancellation of

the operator with respect to the semigroup generated by the elliptic operator replaces

the regularity estimates of the kernel. Weights in the class Ap,(r,s) were then introduced

into this argument by Auscher and Martell [AM07], but their techniques do not seem to

yield optimal bounds in terms of the constants of the weights. Therefore, in Chapter 6,

which is based on the paper [FN19] by Frey and the author, we give a different argument

to establish the corresponding bounds that are sharp in the sense that they recover the

bounds found in [HP13].

Since we are making no assumptions on our operators other than the sparse dom-

ination (1.1.1), we need to carefully adapt the arguments to these sparse forms. To

this end, we introduce weights into a weak boundedness argument for sparse opera-

tors where there exists a Calderón-Zygmund decomposition with the property that the

‘bad’ part b cancels completely. We then combine this with generalizations of the main

lemmata used in [LOP09a]. Moreover, we leave the Euclidean setting and extend the

results to more general spaces of homogeneous type in Chapter 7. This includes cer-

tain bounded domains and Riemannian manifolds that were also studied in [BK03] and

[AM07, AM08]. In Subsection 5.4.3 we provide examples falling outside of the class of

Calderón-Zygmund operators that our results are applicable to.

1.1.3. Rubio de Francia extrapolation

The reduction to the A2 case for the A2-conjecture was done through a quantitative

version of Rubio de Francia’s extrapolation theorem [Rub82, GR85]. In one of its forms,

this theorem says that if an operator T is bounded Lq (Rn ; w) → Lq (Rn ; w) for a fixed

q ∈ [1,∞) and for all w ∈ Aq , then T is in fact bounded Lp (Rn ; w) → Lp (Rn ; w) for all

p ∈ (1,∞) and all w ∈ Ap . If the control of the initial bound in terms of the constant

[w]Aq is known, then a sharp control of the bound for p ∈ (1,∞) in terms of [w]Ap can

be obtained [DGPP05].

We point out that the range p ∈ (1,∞) in the conclusion of this result is sharp. In-

deed, it need not be the case that an operator satisfying weighted bounds is bounded

L∞(Rn) → L∞(Rn), as is the case, for example, for the Hilbert transform. In particular,

it is impossible to extrapolate estimates to this endpoint. However, this opens up the

question if it is also possible to extrapolate an estimate starting from q = ∞, as is the

case for q = 1. This question becomes particularly interesting in the multilinear setting.



1.1. GENERAL INTRODUCTION 7

For example, in the bilinear setting it may very well occur that singular integral operators

are bounded L2(Rn)×L∞(Rn) → L2(Rn).

An example of such an operator is the bilinear Hilbert transform BHT given by

BHT( f1, f2)(x) := p.v.
∫

R
f1(x − y) f2(x + y)

dy

y
,

which plays a central role in the theory of time-frequency analysis. This operator was

introduced by A. Calderón [Cal77] and he conjectured that it has a bounded exten-

sion L2(R) × L∞(R) → L2(R). This conjecture was finally settled by Lacey and Thiele

[LT97, LT99], where they showed that BHT is bounded Lp1 (R)×Lp2 (R) → Lp (R) for all

p1, p2 ∈ (1,∞] with 2
3 < p < ∞, where 1

p = 1
p1

+ 1
p2

. It is an open problem whether we

can obtain bounds for the remaining range 1
2 < p ≤ 2

3 or not. Weighted bounds for this

operator were established through sparse domination in [CDO18], which caused an in-

terest in proving a multilinear analogue of Rubio de Francia’s extrapolation theorem.

An added difficulty in this situation is the fact that only bounds in a limited range of

p1, p2 are known for a restricted class of weights, so the multilinear extrapolation result

of Grafakos and Martell [GM04] does not apply.

With an application to BHT in mind, a multilinear analogue of the limited range

extrapolation result of Auscher and Martell [AM07] was obtained by Cruz-Uribe and

Martell in [CM18]. They showed that if there are r j ∈ (0,∞), s j ∈ (r j ,∞], and q j ∈ [r j , s j ],

q j 6=∞, such that an m-linear operator T satisfies

‖T (~f )‖Lq (Rn ;w q ) .
m∏

j=1
‖ f j ‖L

q j (Rn ;w
q j
j )

(1.1.7)

for all weights w
q j

j ∈ Aq j ,(r j ,s j ) as in (1.1.2), where w = ∏m
j=1 w j , 1

q = ∑m
j=1

1
q j

, then T

satisfies the same boundedness for all p j ∈ (r j , s j ) and all w
p j

j ∈ Ap j ,(r j ,s j ), as well as

certain vector-valued bounds.

Through the helicoidal method of Benea and Muscalu [BM16], vector-valued bounds

of the form Lp1 (Rn ;`q1 )×Lp2 (Rn ;`q2 ) → Lp (Rn ;`q ) were established in this range of p1,

p2, p for various choices of 1 < q1, q2 ≤∞, 2
3 < q <∞ with 1

q = 1
q1

+ 1
q2

. However, the ex-

trapolation result of Cruz-Uribe and Martell does not allow one to cover the full range of

exponents. More precisely, their result cannot retrieve any of the vector-valued bounds

involving `∞ spaces. The problem seems to be that the multilinear nature of the prob-

lem is not completely utilized when one imposes individual conditions on each of the

weights rather than involving an interaction between the various weights.

In the work [LMO18] by Li, Martell, and Ombrosi an extrapolation result was pre-

sented for a limited range version of the multilinear weight condition introduced by

Lerner, Ombrosi, Pérez, Torres, and Trujillo-González [LOP+09b]. These weight classes

are characterized by boundedness of the multisublinear Hardy-Littlewood maximal op-

erator as well as by boundedness of sparse forms, meaning the theory can be applied



8 1. INTRODUCTION

to a wealth of operators including multilinear Calderón-Zygmund operators and bilin-

ear Hilbert transform. They introduced the weight class A~p,~r where ~p = (p1, . . . , pm),~r =
(r1, . . . ,rm+1) with 1 ≤ r j ≤ p j <∞, r ′

m+1 > p with 1
p =∑m

j=1
1

p j
. Then ~w = (w1, . . . , wm) ∈

A~p,~r if

sup
Q

(
1

|Q|
∫

Q

( m∏
j=1

w

p
p j

j

) r ′m+1
r ′m+1−p dx

) 1
p − 1

r ′m+1 m∏
j=1

(
1

|Q|
∫

Q
w

r j
r j −p j

j dx

) 1
r j

− 1
p j

<∞, (1.1.8)

which in the case m = 1 coincides with the condition [w]
1
p − 1

s

Ap,(r,s)
<∞. They showed that if

(1.1.7) holds for a ~q = (q1, . . . , qm) with 1 ≤ r j ≤ q j <∞, r ′
m+1 > q and all (w q1

1 , . . . , w qm
m ) ∈

A~q ,~r , then T satisfies the same boundedness for all ~p = (p1, . . . , pm) and (w p1
1 , . . . , w pm

m ) ∈
A~p,~r with r j < p j < ∞ and r ′

m+1 > p. Furthermore, their result extends and reproves

some of the vector-valued bounds found by Benea and Muscalu [BM18] for BHT. This

class of weights does seem to be adapted to the situation even when p j = ∞, but one

needs to be careful in how the constant is interpreted in this case. Similar to the proof of

the extrapolation result of Cruz-Uribe and Martell, their proof of this extrapolation re-

sult is based upon an off-diagonal extrapolation result, but in their work they left open

exactly what happens in the case that some of the exponents are infinite. They eventu-

ally covered these cases in [LMM+19]. Here they show that, as a feature of off-diagonal

extrapolation, it is also possible to obtain estimates that include the cases of infinite

exponents.

In this work we again prove an extrapolation result using the multilinear weight

classes, and our result includes these endpoint cases which, in particular, include the

possibility of extrapolating from the cases where in the initial assumption the exponents

can be infinite. This result was originally proven by the author in [Nie19] in the time

before the paper [LMM+19] appeared. This proof is new and does not rely on any off-

diagonal extrapolation result. Rather, we generalize the Rubio de Francia algorithm to

a multilinear setting adapted to the multisublinear Hardy-Littlewood maximal opera-

tor. As a corollary, we are able to obtain vector-valued extensions of operators to spaces

including `∞ spaces. Thus, applying this to BHT allows us to recover these endpoint

bounds that were obtained earlier through the helicoidal method [BM18].

Our construction is quantitative in the sense that it allows us to track the depen-

dence of the bounds on the weight constants. Such quantitative versions of extrapo-

lation results were first formalized by Dragičević, Grafakos, Pereyra, and Petermichl in

the linear setting in [DGPP05], but are completely new in the multilinear setting. In

the linear setting this result is based on Buckley’s sharp weighted bound for the Hardy-

Littlewood maximal operator. This bound has been generalized to the multisublinear

Hardy-Littlewood maximal operator by Damián, Lerner, and Pérez [DLP15] to a sharp

estimate in the setting of a mixed type A~p –A∞ estimates and a sharp A~p bound is found

in [LMS14]. In Section 3.2 we give a different proof of this result for the more general

limited range version of this maximal operator by generalizing a proof of Lerner [Ler08].
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Unlike in the linear case m = 1, our quantitative extrapolation result in the case

m > 1 is actually essential when it comes to obtaining the full range of sharp weighted

bounds for multi(sub)linear operators dominated by sparse forms. The reason for this

is that sparse domination initially yields sharp bounds for an operator for exponents

p1, . . . , pm only if 1
p = ∑m

j=1
1

pm
≤ 1, where one can appeal to duality. While in the linear

setting m = 1 this covers the full range p ∈ (1,∞), in the multilinear setting m > 1 the

exponent p can also satisfy p ∈ ( 1
m ,1). Our extrapolation result allows us to show that

the sharp bound for p ≥ 1 obtained from sparse domination also holds when p < 1. We

elaborate on this further in Chapter 5.

1.1.4. Symmetry in the Ap classes

For p ∈ (1,∞), a standard method of obtaining weighted Lp estimates with a weight w is

by using the duality (Lp (w))∗ = Lp ′
(w1−p ′

) given through the integral pairing

〈 f , g 〉 =
∫

Rn
f g dx.

This duality in reflected in the definition of the Muckenhoupt Ap class, which is defined

in terms of the weights w and w1−p ′ = w− 1
1−p . One way to understand this definition

better is by noting that we can relate the weights w and w1−p ′
through w

1
p (w1−p ′

)
1

p′ = 1.

When we replace the weight w by the weight w p we find, using the averaging nota-

tion 〈h〉q,Q :=
(

1
|Q|

∫
Q |h|q dx

) 1
q

, that

[w p ]
1
p

Ap
= sup

Q
〈w〉p,Q〈w−1〉p ′,Q

for p ∈ (1,∞). The symmetry in this condition is much more prevalent and this condi-

tion seems to be more naturally adapted to the weighted Lp theory. Indeed, defining

[w]p := [w p ]
1
p

Ap
,

we note that [w]p = [w−1]p ′ . We define the bisublinear Hardy-Littlewood maximal op-

erator M(1,1) by

M(1,1)( f1, f2)(x) := sup
Q3x

〈 f1〉1,Q〈 f2〉1,Q .

Then, writing ‖ f ‖L
p
w (Rn ) := ‖ f w‖Lp (Rn ), we have the remarkable equivalences

[w]p h ‖M‖L
p
w (Rn )→Lp,∞(Rn ;w p ) h ‖M‖

L
p′
w−1 (Rn )→Lp′ ,∞(Rn ;w−p′ )

h ‖M(1,1)‖L
p
w (Rn )×L

p′
w−1 (Rn ))→L1,∞(Rn )

,
(1.1.9)

see Chapter 3. Another way of thinking of these equivalences is by setting w1 := w ,

w2 := w−1 and p1 := p, p2 := p ′ so that we have the relations

w1w2 = 1,
1

p1
+ 1

p2
= 1. (1.1.10)
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Then one can impose a symmetric weight condition

[(w1, w2)](p1,p2) := sup
Q

〈w1〉p1,Q〈w2〉p2,Q <∞

and note that

[(w1, w2)](p1,p2) = [w1]p1 = [w2]p2 .

The equivalences (1.1.9) can now be thought of as

‖M(1,1)‖L
p1
w1

(Rn )×L
p2
w2

(Rn )→L1,∞(Rn ) h [(w1, w2)](p1,p2),

‖M‖L
p1
w1

(Rn )→Lp1,∞(Rn ;w
p1
1 ) h [w1]p1 ,

‖M‖L
p2
w2

(Rn )→Lp2,∞(Rn ;w
p2
2 ) h [w2]p2 .

We can even make sense of these expressions when p1 = 1 and p2 = ∞ or p1 = ∞
and p2 = 1, since f ∈ Lp

w (Rn) (or f ∈ Lp,∞(Rn ; w p )) in the case p = ∞ just means that

the function f w is essentially bounded. Writing 〈h〉∞,Q = esssupx∈Q |h(x)|, we see that

the condition [w1]1 <∞ is equivalent to the usual A1 condition imposed on the weight

w1 = w , while the condition [w1]∞ <∞ is equivalent to the condition w2 = w−1 ∈ A1.

We emphasize here that our condition [w]∞ <∞ is not equivalent to the condition w ∈
A∞ = ⋃

p∈[1,∞) Ap and these notions should not be confused. The condition w−1 ∈ A1

seems to be a natural upper endpoint condition and we will show that this is equivalent

to M being bounded L∞
w (Rn) → L∞

w (Rn). As a matter of fact, since M is an isometry in

L∞(Rn), it behaves most naturally when p =∞. Thus, even though this case was origi-

nally missed, this equivalence is the simplest case of Muckenhoupt’s characterization of

the Ap classes. We fill in this gap here.

Proposition 1.1.1. Let w be a weight and c ≥ 0. Then [w]∞ ≤ c if and only if

‖M f ‖L∞
w (Rn ) ≤ c‖ f ‖L∞

w (Rn ). (1.1.11)

for all f ∈ L∞
w (Rn). In particular, ‖M‖L∞

w (Rn )→L∞
w (Rn ) = [w]∞.

Proof. We note that [w]∞ = [w−1]A1 ≤ c if and only if M(w−1) ≤ cw−1. Thus, if [w]∞ ≤ c,

then

M f = M( f w w−1) ≤ M(w−1)‖ f ‖L∞
w (Rn ) ≤ cw−1‖ f ‖L∞

w (Rn )

so that (M f )w ≤ c‖ f ‖L∞
w (Rn ). This proves (1.1.11).

For the converse, set f := w−1. Then ‖ f ‖L∞
w (Rn ) = 1, so (1.1.11) implies that M(w−1)w ≤

c, or M(w−1) ≤ cw−1. The assertion follows.

It also turns out that this condition allows us to extrapolate away from weighted L∞

estimates. We point out that a version of this idea was used in the endpoint extrapo-

lation result of Harboure, Macías and Segovia [HMS88, Theorem 3] involving weighted

versions of the space BMO(Rn). We now fill in the missing case with q =∞ in the Rubio

de Francia extrapolation theorem. We point out that this is the case that has the shortest

argument.
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Theorem 1.1.2. Let T be a linear operator that is bounded L∞
w (Rn) → L∞

w (Rn) for all

weights w satisfying [w]∞ <∞ with

‖T ‖L∞
w (Rn )→L∞

w (Rn ) . [w]2020
∞ . (1.1.12)

Then for all p ∈ (1,∞] and all weights w with [w]p <∞, T is bounded Lp
w (Rn) → Lp

w (Rn)

with

‖T ‖L
p
w (Rn )→L

p
w (Rn ) . [w]2020p ′

p . (1.1.13)

Moreover, the operator T̃ given by T̃ ( fk )k∈N := (T fk )k∈N is bounded Lp
w (Rn ;`∞) → Lp

w (Rn ;`∞)

with

‖T̃ ‖L
p
w (Rn ;`∞)→L

p
w (Rn ;`∞) . [w]2020p ′

p .

Proof. Let p ∈ (1,∞], w a weight with [w]p <∞, and f ∈ Lp
w (Rn) non-zero. We define a

weight W through

W −1 =
∞∑

k=0

M k f

2k‖M‖k
L

p
w (Rn )→L

p
w (Rn )

,

where M 0 f := | f | and M k f := M(M k−1 f ) for k ∈ N. Then | f | ≤ W −1, i.e., ‖ f ‖L∞
W (Rn ) ≤ 1.

Moreover, we have M(W −1) ≤ 2‖M‖L
p
w (Rn )→L

p
w (Rn )W

−1 so that [W ]∞ ≤ 2‖M‖L
p
w (Rn )→L

p
w (Rn ),

and, finally, we have ‖W −1‖L
p
w (Rn ) ≤ 2‖ f ‖L

p
w (Rn ). Thus, combining these three properties

of W with (1.1.12), we have

‖T f ‖L
p
w (Rn ) ≤ ‖T f ‖L∞

W (Rn )‖W −1‖L
p
w (Rn ) . [W ]2020

∞ ‖ f ‖L
p
w (Rn )

. ‖M‖2020
L

p
w (Rn )→L

p
w (Rn )

‖ f ‖L
p
w (Rn ).

The result now follows from Buckley’s bound ‖M‖L
p
w (Rn )→L

p
w (Rn ) . [w]p ′

p .

As for the bound of T̃ , we note that by interchanging the suprema, for all f ∈ L∞
w (Rn ;`∞)

we have

‖T̃ f ‖L∞
w (Rn ;`∞) = sup

k∈N
‖T fk‖L∞

w (Rn ) . [w]2020
∞ sup

k∈N
‖ fk‖L∞

w (Rn ) = ‖ f ‖L∞
w (Rn ;`∞).

Thus, the assertion follows by repeating the first part of the proof with T f replaced by

‖T̃ f ‖`∞ and f replaced by ‖ f ‖`∞ .

The construction of W in this proof uses the classical Rubio de Francia algorithm.

We wish to view our symmetric weight condition in the context of extrapolation for

general q ∈ [1,∞]. In proving Rubio de Francia’s extrapolation theorem, one usually

starts with an estimate of the form

‖T f ‖L
q
w (Rn ) . ‖ f ‖L

q
w (Rn ) (1.1.14)

for some q ∈ [1,∞] and all weights w satisfying [w]q <∞. The idea is then that given a

p ∈ (1,∞) and a weight w satisfying [w]p <∞, one can construct a weight W , possibly
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depending on f , h, and w , so that W satisfies [W ]q < ∞ as well as some additional

properties to ensure that we can use (1.1.14) with W to conclude that

‖T f ‖L
p
w (Rn ) . ‖ f ‖L

p
w (Rn ), (1.1.15)

proving the desired boundedness for an operator T . For the proof one usually treats

the two cases p < q and p > q separately. In the former case one can apply Hölder’s

inequality to move from Lp to Lq as we did in the proof of Theorem 1.1.2, and in the latter

case one can use duality and a similar technique to move from Lp ′
to Lq ′

. These cases

are essentially the same, but due to the notation we use we have to deal with the cases

separately. Here, we wish to come up with a formalization to avoid this redundancy.

The extrapolation theorem is essentially a consequence of to the following proposi-

tion:

Proposition 1.1.3. Suppose we are given p1, p2 ∈ (1,∞) satisfying 1
p1

+ 1
p2

= 1 and weights

w1, w2 satisfying w1w2 = 1 and [(w1, w2)](p1,p2) < ∞. Moreover, assume we have two

functions f1 ∈ Lp1
w1

(Rn) and f2 ∈ Lp2
w2

(Rn) and q1, q2 ∈ [1,∞] with 1
q1

+ 1
q2

= 1. Then there

are weights W1, W2 satisfying W1W2 = 1,

‖ f1‖L
q1
W1

(Rn )‖ f2‖L
q2
W2

(Rn ) ≤ 2‖ f1‖L
p1
w1

(Rn )‖ f2‖L
p2
w2

(Rn )

and

[(W1,W2)](q1,q2) ≤C [(w1, w2)]
max

(
p1
q1

,
p2
q2

)
(p1,p2) .

Indeed, the result of the extrapolation theorem follows by applying the proposition

with f1 := f , q1 := q , q2 := q ′, p1 := p, p2 := p ′, w1 := w , w2 = w−1 and W1 := W , W2 :=
W −1 so that, by (1.1.14), we have∣∣∣∣∫

Rn
(T f ) f2 dx

∣∣∣∣≤ ‖T f ‖L
q
W (Rn )‖ f2‖L

q′
W −1 (Rn )

. ‖ f ‖L
q
W (Rn )‖ f2‖L

q′
W −1 (Rn )

. ‖ f ‖L
p
w (Rn )‖ f2‖L

p′
w−1 (Rn )

.

Thus, by duality, we obtain (1.1.15), as desired. Moreover, since by Fubini’s Theorem

we have the Bochner space equality Lq (Rn ;`q ) = `q (Lq (Rn)), as in the proof of Theo-

rem 1.1.2 one can deduce bounds T̃ : Lp
w (Rn ;`q ) → Lp

w (Rn ;`q ).

The proof of Proposition 1.1.3 uses the classical construction using the Rubio de

Francia algorithm and the novelty here is our symmetric formulation. We prove the full

multilinear limited range generalization of this result in Chapter 4. The case p < q in

the proposition takes the form p1 < q1 and p2 > q2 while the case p > q takes the form

p1 > q1 and p2 < q2. The fact that the proposition is formulated completely symmetri-

cally in terms of the parameters indexed over {1,2}, where we note that [(w1, w2)](p1,p2) =
[(w2, w1)](p2,p1), means that these respective cases can be proven using precisely the

same argument, up to a permutation of the indices. Thus, without loss of generality,

one only needs to prove one of the two cases.
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These symmetries become especially important in the m-linear setting where we are

dealing with parameters indexed over {1, . . . ,m +1} and the amount of cases we have to

consider increases. Thanks to our formulation, we will be able to reduce these multiple

cases back to a single case in our arguments again by permuting the indices.

1.1.5. Vector-valued extensions of operators

Vector-valued extensions of operators prevalent in the theory of harmonic analysis have

been actively studied in the past decades. A centerpoint of the theory is the result of

Burkholder [Bur83] and Bourgain [Bou83] which states that the Hilbert transform has

a bounded tensor extension H̃ : Lp (R; X ) → Lp (R; X ) for some, or equivalently all, p ∈
(1,∞), if and only if the Banach space X has the so-called UMD property. From this

connection one can derive the boundedness of the vector-valued extension of many

operators in harmonic analysis, like Fourier multipliers and Littlewood-Paley operators.

In the specific case where X is a Banach function space, i.e. a lattice of functions

over some measure space, very general extension theorems are known. These follow

from the deep result of Bourgain [Bou84] and Rubio de Francia [Rub86] on the con-

nection between the boundedness of the lattice Hardy-Littlewood maximal operator

M̃ : Lp (Rn ; X ) → Lp (Rn ; X ) and the UMD property of X . The boundedness of the lat-

tice Hardy-Littlewood maximal operator often allows one to use the scalar-valued ar-

guments to show the boundedness of the vector-valued extension of an operator, using

very elaborate Fubini-type techniques. Moreover it connects the extension problem to

the theory of Muckenhoupt weights.

As we have seen, vector-valued extensions in sequence spaces `q of operators can

be obtained from Rubio de Francia’s extrapolation theorem through an argument using

Fubini’s Theorem. Rubio de Francia showed in [Rub85, Theorem 5] that one can take

this even further. Indeed, again assuming that T is a linear operator satisfying the ini-

tial weighted estimate (1.1.14), then for each Banach function space X with the UMD

property, T extends to an operator T̃ satisfying the Bochner space bound Lp (Rn ; X ) →
Lp (Rn ; X ) for all p ∈ (1,∞). This establishes a deep connection between the theory of

Muckenhoupt weights, the theory of UMD Banach function spaces, and the theory of

singular integral operators.

This vector-valued extrapolation result of Rubio de Francia was extended by Amenta,

Lorist, and Veraar in [ALV19] to a rescaled setting and by Lorist and the author in [LN19]

to a limited range multilinear setting.

In this latter result we proved that if there are r j ∈ (0,∞), s j ∈ (r j ,∞], and a multi-

linear operator T is bounded Lp1
w1

(Rn)×·· ·×Lpm
wm

(Rn) → Lp
w (Rn) for all p j ∈ (r j , s j ), and

weights w
p j

j ∈ Ap j ,(r j ,s j ) for all j ∈ {1, . . . ,m}, then it has a vector-valued extension T̃ that

is bounded Lp1
w1

(Rn ; X1)× ·· ·×Lpm
wm

(Rn ; Xm) → Lp
w (Rn ; X ) for all p j ∈ (r j , s j ), all weights

w
p j

j ∈ Ap j ,(r j ,s j ), and all (quasi-)Banach function spaces X j satisfying a UMDr j ,s j condi-

tion, which is a certain rescaled UMD condition. A version of this result with a slightly

more general condition on the spaces is proven in Section 9.1.



14 1. INTRODUCTION

In the linear case m = 1, our result extends the main result of [ALV19] in the sense

that it allows for finite s j , which can then be applied to any of the operators satisfying

the sparse form domination (1.1.1) introduced in [BFP16].

As for the multilinear case m > 1, to place this result into context we point out that

it appeared after the limited range multilinear extrapolation theorem of Cruz-Uribe and

Martell [CM18], but before the realization of Li, Martell, and Ombrosi in [LMO18] that

rather than assuming a condition on each individual weight, it is more appropriate to

consider the multilinear weight classes defined through (1.1.8). Since the space `∞ is

not a UMD space, bounds in this space can not be obtained through our vector-valued

extrapolation theorem, even though these spaces can be obtained through the extrapo-

lation techniques using multilinear weight classes [Nie19, LMM+19].

To unify the theory, a multilinear UMD condition for tuples of Banach spaces was

introduced in the work [LN20] of Lorist and the author. We introduce these spaces in

Chapter 8 and prove a multilinear extension theorem in which we use the multilinear

structure to its fullest in Section 9.2. We impose a condition on the tuple of Banach

function spaces (X1, . . . , Xm) rather than a condition on each X j individually. In parallel

to the weighted theory, we will introduce this condition using the boundedness of a

certain rescaled multisublinear Hardy-Littlewood maximal operator. In the linear case

m = 1 this condition reads as follows:

∥∥M̃(1,1)( f , g )
∥∥

L1(Rn ;L1(Ω)) . ‖ f ‖Lp (Rn ;X )‖g‖Lp′ (Rn ;X ∗)

for all f ∈ Lp (Rn ; X ), g ∈ Lp ′
(Rn ; X ∗) and some p ∈ (1,∞), where M̃(1,1) is the bisublinear

lattice maximal operator that we introduce in Section 8.3. In Section 8.4 we will show

that this condition is equivalent to the UMD condition for Banach function spaces and

motivated by this result, we will call our multilinear analog a multilinear UMD condi-

tion, even though our definition only makes sense for tuples of Banach function spaces.

Both the Banach function space extension principle from [Rub86, ALV19, LN19] and

the iterated Lq -space extension principle using the extrapolation results in [Nie19, LMM+19]

use the weighted boundedness of a multilinear operator

T : Lp1
w1

(Rn)×·· ·×Lpm
wm

(Rn) → Lp
w (Rn)

to deduce the weighted boundedness of its extension

T̃ : Lp1
w1

(Rn ; X1)×·· ·×Lpm
wm

(Rn ; Xm) → Lp
w (Rn ; X ).

Usually these weighted bounds for T are deduced through sparse domination. Thus, to

deduce the weighted boundedness of the vector-valued extension T̃ of an operator T

one typically goes through implications (1) and (3) in the following diagram.
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Sparse domination for T

Sparse domination for T̃

Weighted bounds for T

Weighted bounds for T̃

(1)

(4)

(2) (3)

The implications (1) and (4) are respectively treated in Section 5.3 and Section 8.2. The

vector-valued extrapolation theorem for implication (3) is proven in Section 9.1.

In Section 9.2 we will deduce the weighted boundedness of the vector-valued exten-

sion T̃ of T through implications (2) and (4). To this end we will show that scalar-valued

sparse domination implies vector-valued sparse domination (implication (2)) with re-

spect to tuples of spaces satisfying our multilinear UMD-condition. Such a result was

established by Culiuc, Di Plinio, and Ou in [CDO17] for sequence spaces `q with q ≥ 1,

which in particular satisfy our multilinear UMD condition. We point out that even in

the linear case m = 1, the result of obtaining vector-valued extensions of operators in

UMD Banach function spaces from sparse domination without appealing to a Rubio de

Francia type extrapolation theorem is new.

The advantage of the route through implications (2) and (4) over the route through

implications (1) and (3) is that for general tuples of quasi-Banach function spaces the

Fubini-type techniques needed for implication (2) are a lot less technical than the ones

needed for implication (3). Moreover implication (4) yields quantitative and in many

cases sharp weighted estimates for T̃ , while the weight dependence in the arguments

used for implication (3) is not easily tracked and certainly not sharp. A downside of our

approach through implications (2) and (4) is the fact that we need sparse domination

for T as a starting point, while one only needs weighted bounds in order to apply (3).

We point out that it is an open question whether it is possible to prove implication (3)

for tuples of spaces in our multilinear UMD classes, rather than for tuples of spaces that

each satisfy a UMD condition as is the case in Section 9.1.

Our proof of implication (2) relies on two key ingredients. The first is the equivalence

between sparse form and the L1-norm of the multisublinear maximal function, which

we treat in Section 3.2. This equivalence seems to have been used for the first time in

[CDO17] by Culiuc, Di Plinio, and Ou. The second ingredient is a sparse domination re-

sult for the multisublinear lattice maximal operator under the multilinear UMD condi-

tion assumption, which we present in Section 8.3. This result is an extension of the idea

of Hänninen and Lorist in [HL19], where a linear version of this result was obtained.
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1.2. OUTLINE OF THE THESIS

Part 1
1 : Introduction

In Chapter 1 we give a general introduction for this thesis. In Chapter 2 we describe the

setting as well as the notational conventions that are in force throughout the thesis.

Part 1
2 : Multilinear weight classes and Rubio de Francia extrapolation

In Chapter 3 we define the multilinear weight classes and the corresponding weight con-

stants. The main results in this chapter are Theorem 3.2.3 and Theorem 3.2.11 in which

the weight classes are characterized by the boundedness of the multisublinear maxi-

mal operator and sparse forms. Moreover, we obtain the sharp dependence of the their

bounds in terms of the weight constant. Finally, we introduce multilinear analogues of

the Fujii-Wilson constant and we prove a self-improvement property of the multilinear

weight classes.

In Chapter 4 we prove the abstract version of the sharp multilinear limited range

extrapolation theorem given in Theorem 4.1.1. This is done through the construction

of a multilinear analogue of the Rubio de Francia algorithm in Lemma 4.1.3 and heavily

utilizes the symmetry in the weight classes. A careful study of the dependence of the

parameters and weight constants is done throughout the arguments.

Part 1
3 : Quantitative estimates for multilinear operators dominated by sparse forms

This part is dedicated to applying the theory from Part 1
2 in order to obtain sharp weighted

bound for multi(sub)linear operators.

In Chapter 5 we apply the extrapolation theorem from Chapter 4 to multi(sub)linear

operators satisfying weighted bounds with respect to the multilinear weight classes.

This is done in main result in the first section in Theorem 5.1.2. In the following sec-

tion we apply Theorem 5.1.2 to prove Theorem 5.2.3, where we obtain a sharpness result

for operators through the asymptotic behaviour of their unweighted operator norms. In

the subsequent section we apply Theorem 5.1.2 to obtain the full range of sharp bounds

for operators satisfying `q -type sparse domination in form in Theorem 5.3.6. In the last

section of this chapter we introduce multilinear Calderón-Zygmund operators and the

bilinear Hilbert transform, and apply Theorem 5.3.6 to obtain sharp bounds for these

operators. Moreover, examples of operators satisfying sparse bounds are given in the

linear case m = 1.

In Chapter 6 we first prove that multi(sub)linear operators satisfying sparse form

domination are weakly bounded at the lower endpoint. The main results of the sub-

sequent section are given in Theorem 6.2.1, Theorem 6.2.2, and Theorem 6.2.9, where

weighted mixed type Ap –A∞ endpoint bounds are proven for operators satisfying sparse

form bounds in the linear setting m = 1. A main ingredient for these results is the sharp

reverse Hölder inequality for Muckenhoupt weights.
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In Chapter 7 we show that our results also hold in the setting of spaces of homo-

geneous type. To this end, we prove Calderón-Zygmund decompositions adapted to

dyadic grids in these spaces in the separate cases where the space is either bounded or

unbounded.

Part 1
4 : A multilinear UMD condition and vector-valued extensions of multilinear op-

erators

In this part we introduce a multilinear analogue of the UMD condition for tuples of

quasi-Banach function spaces, and prove vector-valued bounds for extensions of oper-

ators with respect to these spaces.

In Chapter 8 we introduce product quasi-Banach function spaces and use the ex-

trapolation result to prove sharp weighted vector-valued bounds for operators satisfying

a vector-valued sparse domination in Theorem 8.2.2. Moreover, we introduce the mul-

tisublinear lattice maximal operator and define a rescaled multilinear analogue of the

Hardy-Littlewood property for tuples of quasi-Banach function spaces. The main result

in this section is Theorem 8.3.3 in which sparse domination of the multisublinear lat-

tice maximal operator is proven for such tuples of quasi-Banach function spaces. In the

final section we introduce a limited range multilinear analogue of the UMD condition

for tuples of quasi-Banach function spaces. Moreover, we provide basic properties and

examples of these spaces.

In Chapter 9 we describe two methods of obtaining vector-valued bounds for ex-

tensions of multi(sub)linear operators. In the first section we prove a multilinear lim-

ited range analogue of Rubio de Francia’s vector-valued extrapolation theorem in The-

orem 9.1.1. A main ingredient here is a self-improvement property of our limited range

UMD condition in the linear setting m = 1 proven in Proposition 9.1.7. In the next sec-

tion we use the sparse domination result Theorem 8.3.3 for the multisublinear lattice

maximal operator to prove Theorem 9.2.1 in which we show that if an operator satisfies

sparse form domination, then it has a vector-valued extension satisfying vector-valued

sparse domination for tuples of quasi-Banach function spaces satisfying our multilin-

ear UMD condition. The results of Chapter 8 are then used to deduce sharp weighted

vector-valued bounds of these operators. In the last section we describe how our meth-

ods can be used to prove optimal weighted vector-valued bounds in concrete situations

and, in particular, we apply our results to multilinear Calderón-Zygmund operators and

the bilinear Hilbert transform.





2
THE SETTING AND NOTATIONAL CONVENTIONS

Since we are working in a multilinear setting, it is helpful to set some notational conven-

tions in order to reduce the size and increase the readability of our expressions.

Throughout this work, m will denote an integer greater than or equal to 1. When

m = 1, we will refer to this setting as the linear setting, while for general m we refer

to the setting as an m-linear or multilinear setting. Moreover, we respectively refer to

operators in these settings as linear and multilinear operators. We point out that this is

somewhat inaccurate, since we are not only considering multilinear operators, but also

multisublinear operators.

For most of this work we will be working with functions defined on the metric mea-

sure space (Rn , | · |,dx), where n is a positive integer, | · | is the Euclidean norm, and dx is

the Lebesgue measure.

For p ∈ (0,∞], we denote by Lp (Rn) the complex Lebesgue space of measurable func-

tions whose p-th power is integrable. We let L0(Rn) denote the complex space of mea-

surable functions. When we are working with a measure µ different from the Lebesgue

measure on Rn , we will denote these spaces by Lp (Rn ;µ). We use a similar convention

for the weak-type spaces Lp,∞(Rn).

For an m-tuple of parameters p1, . . . , pm , usually appearing in some subset of (0,∞],

we will use the notation ~p = (p1, . . . , pm) for the vector that has the p j as its compo-

nents. We will often introduce such an m-tuple by simply writing ~p ∈ (0,∞]m . Some-

times we will also write~1 = (1, . . . ,1) and ~∞= (∞, . . . ,∞). Moreover, for ~p ∈ (0,∞]m we

will, per convention, define the parameter p ∈ (0,∞] with the index j dropped through

the Hölder relation
1

p
:=

m∑
j=1

1

p j
.

For ~q ∈ (0,∞)m we write ~p ≥ ~q if p j ≥ q j and write ~p > ~q if p j > q j for all j ∈ {1, . . . ,m}.

Note that ~p ≥~q , ~p >~q respectively imply that p ≥ q and p > q . We define arithmetic op-

erations on ~p and~q coordinate wise, e.g., we may write ~p
~q

:= ( p1
q1

, . . . , pm
qm

), ~pα := (pα1 , . . . , pαm)

for α> 0, or 1
~p := ( 1

p1
, . . . , 1

pm
). Moreover, we write max{~p} := max{p1, · · · , pm}.

For ~p ∈ (0,∞]m we will use the shorthand notation

L~p (Rn) := Lp1 (Rn)×·· ·×Lpm (Rn).

This way, we may write ~f ∈ L~p (Rn) to mean that ~f = ( f1, . . . , fm) is an m-tuple of func-

tions with f j ∈ Lp j (Rn) for all j ∈ {1, . . . ,m}. When p j = ∞ for all j ∈ {1, . . . ,m} we will
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sometimes also write L∞(Rn)m rather than L~∞(Rn). Moreover, we use similar conven-

tions when adding a subscript to the spaces, or when considering weak-type spaces e.g.,

for L
~p
loc(Rn) and L

~p
c (Rn). We will later adopt similar conventions for weighted Lebesgue

spaces L
~p
~w (Rn) and weighted mixed-norm Lebesgue spaces L

~p
~w (Rn ;~X ) as soon as the re-

lated notions are introduced.

As for the dependance on parameters of constants appearing in inequalities, we will

write ca,b,... or Ca,b,... to denote a constant which only depends on the parameters a,b, . . .

and possibly on m and the dimension n. By .a,b,... we mean that there is a constant

ca,b,... such that inequality holds and by ha,b,... we mean that both .a,b,... and &a,b,...

hold. Whenever possible, in the proofs of our results we will keep explicit track of the

precise control of the constants other than m and the dimension n.

Finally, we set a convention on our notation for Lebesgue exponents. Since many of

our estimates rely on Hölder’s inequality and related convexity results, it is more con-

venient to think in terms of the parameter 1
p rather than p. To facilitate this, we aim to

avoid using expressions such as, e.g., q
( p

q

)′, but rather write this as 1
1
q − 1

p
. In this case,

when p = q , then it is implied that 1
1
q − 1

p
=∞. Similarly we may write an expression such

as p1p2
p1+p2

as 1
1

p1
+ 1

p2

to make it clearer that we have

‖ ·‖
L

1
1

p1
+ 1

p2 (Rn )

≤ ‖·‖Lp1 (Rn )‖ ·‖Lp2 (Rn )

by Hölder’s inequality. Since it often occurs that, e.g., p1 =∞, using our notational con-

vention this way we do not need to treat this case separately, since we may simply take
1

p1
= 0 in the expressions.
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3
MULTILINEAR WEIGHT CLASSES

In this chapter we introduce the multilinear Muckenhoupt weight classes. The first two

sections of this chapter are partly based on the first part of the paper

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.

Mathematische Annalen, 375(1-2):453–507, 2019.

These sections are enhanced through the inclusion of various small results from unpub-

lished drafts.

The third section contains the partial results from an original unpublished manuscript

on multilinear reverse Hölder weight classes.

3.1. THE A~p,(~r ,s) WEIGHT CLASSES

A weight w is a measurable function w : Rn → (0,∞). For a weight w and p ∈ (0,∞] we

define the weighted Lebesgue space Lp
w (Rn) as the space of those measurable functions

f satisfying ‖ f w‖Lp (Rn ) < ∞. Note that if p ∈ (0,∞), then Lp
w (Rn) coincides with the

space Lp (Rn ; w p ), i.e., the Lp space over Rn with respect to the measure w p dx. It should

be noted that our definition of Lp
w (Rn) is often denoted by Lp (w p ) in the literature when

p < ∞, but the advantage of our definition is that we also obtain a sensible definition

when p =∞.

When p < ∞ we use the notation Lp,∞
w (Rn) := Lp,∞(Rn ; w p ) for the weak-type Lp

space over Rn with respect to the measure w p dx. Moreover, in the case that p =∞ we

set L∞,∞
w (Rn) := L∞

w (Rn).

For a vector of m weights ~w = (w1, . . . , wm), per convention we will use the dropped

index notation w := ∏m
j=1 w j for the product of the weights. Moreover, for exponents

~p ∈ (0,∞]m we will also use the shorthand notation

L
~p
~w (Rn) := Lp1

w1
(Rn)×·· ·×Lpm

wm
(Rn).

By a cube Q ⊆ Rn we mean a half-open cube whose sides are parallel to the coordinate

axes. For a measurable function f ∈ L0(Rn), a measurable set E of positive finite mea-

sure, and q ∈ (0,∞) we will write 〈 f 〉q,E :=
(

1
|E |

∫
E | f |q dx

) 1
q

and 〈 f 〉∞,E := esssupx∈E | f (x)|.

Definition 3.1.1. Let ~r ∈ (0,∞)m , s ∈ (0,∞] and let ~p ∈ (0,∞]m with ~p ≥~r and p ≤ s.

Let ~w be a vector of m weights. We call ~w a multilinear Muckenhoupt weight and write

23



24 3. MULTILINEAR WEIGHT CLASSES

~w ∈ A~p,(~r ,s) if

[~w]~p,(~r ,s) := sup
Q

( m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

)
〈w〉 1

1
p − 1

s
,Q <∞,

where the supremum is taken over all cubes Q ⊆ Rn .

If we have an additional weight v we can replace the product weight w by v in the

above definition. In this case we say that (~w , v) ∈ A~p,(~r ,s) and denote the corresponding

constant by [~w , v]~p,(~r ,s).

We point out that the definition of the weight class is sensible as long as 1
r j

− 1
p j

≥ 0

and 1
p − 1

s ≥ 0. Thus, we can also make sense of it when, e.g., 1
s is negative. Note that

~p ∈ (0,∞]m with ~p ≥~r and p ≤ s exist only when r ≤ s.

By comparability of cubes and balls, we can equivalently define the weight classes in

terms of balls with comparable constants.

Remark 3.1.2. The condition [~w]~p,(~r ,s) < ∞ coincides with (1.1.8) in the introduction

when replacing w j in that expression by w
p j

j . Moreover, in the case m = 1 we have

[w]p,(r,s) = [w p ]
1
p − 1

s

Ap,(r,s)
, where the latter constant is defined in the introduction in (1.1.2).

In particular, we have [w]p,(1,∞) = [w p ]
1
p

Ap
.

We list some useful properties of the weight classes and weight constants.

Proposition 3.1.3. Let~r ∈ (0,∞)m , s ∈ (0,∞] and let ~p ∈ (0,∞]m with ~p ≥~r and p ≤ s.

Let ~w ∈ A~p,(~r ,s). Then we have the following result.

(i) [~w]~p,(~r ,s) ≥ 1.

(ii) Let t > 0. Then ~w t ∈ A ~p
t ,(~rt , s

t )
with

[~w t ] ~p
t ,(~rt , s

t )
= [~w]t

~p,(~r ,s).

(iii) Let ~q ∈ (0,∞]m with ~q ≥~r and q ≤ s, θ ∈ [0,1], and ~v ∈ A~q ,(~r ,s). Then ~vθ~w1−θ ∈
A 1

θ 1
~q
+(1−θ) 1

~p
,(~r ,s) with

[~vθ~w1−θ] 1
θ 1
~q
+(1−θ) 1

~p
,(~r ,s) ≤ [~v]θ~q ,(~r ,s)[~w]1−θ

~p,(~r ,s).

Proof. For (i), note that for any cube Q ⊆ Rn it follows from Hölder’s inequality that

1 = 〈1〉 1
1
r − 1

s
,Q ≤

( m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

)
〈w〉 1

1
p − 1

s
,Q ≤ [~w]~p,(~r ,s).

Hence, [~w]~p,(~r ,s) ≥ 1, as asserted.
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We note that (ii) is a consequence of the fact that for all cubes Q we have

〈w−t
j 〉 1

t
r j

− t
p j

,Q = 〈w−1
j 〉t

1
1

r j
− 1

p j

,Q
, 〈w t 〉 1

t
p − t

s
,Q = 〈w〉t

1
1
p − 1

s
,Q

.

The result then follows from the definition of the weight constant.

For (ii) we note that

1

r j
−

(
θ

1

q j
+ (1−θ)

1

p j

)
= θ

(
1

r j
− 1

q j

)
+ (1−θ)

(
1

r j
− 1

p j

)
θ

1

q
+ (1−θ)

1

p
− 1

s
= θ

(
1

q
− 1

s

)
+ (1−θ)

(
1

p
− 1

s

)
so that by Hölder’s inequality we have

〈v−θ
j w−(1−θ)

j 〉 1
1

r j
−

(
θ 1

q j
+(1−θ) 1

p j

) ,Q ≤ 〈v−1
j 〉θ 1

1
r j

− 1
q j

,Q
〈w−1

j 〉1−θ
1

1
r j

− 1
p j

,Q

〈vθw1−θ〉 1
θ 1

q +(1−θ) 1
p − 1

s
,Q ≤ 〈v〉θ 1

1
q − 1

s
,Q
〈w〉1−θ

1
1
p − 1

s
,Q

.

The result then follows from the definition of the weight constants.

In the following result we show which power weights belong to the class A~p,(~r ,s).

Proposition 3.1.4. Let~r ∈ (0,∞)m , s ∈ (0,∞] and let ~p ∈ (0,∞]m with ~p ≥~r and p ≤ s.

Let ~α ∈ Rm and let w j (x) := |x|α j n .

We have ~w ∈ A~p,(~r ,s) if and only if for all j ∈ {1, . . . ,m}

α j < 1

r j
− 1

p j
,

m∑
j=1

α j >−
(

1

p
− 1

s

)
or respectively α j ≤ 0 or

∑m
j=1α j ≥ 0 when p j = r j or p = s. In this case we have

[~w]~p,(~r ,s) hr,s

 1

1+ 1
1
p − 1

s

∑m
j=1α j


1
p − 1

s
m∏

j=1

 1

1− α j
1

r j
− 1

p j


1

r j
− 1

p j

.

where if p j = r j or p = s, the corresponding term on the right should be replaced by 1.

Proof. Note that when 1
r j

− 1
p j

> 0, 1
p − 1

s > 0, the weights w j (x)
− 1

1
r j

− 1
p j = |x|

−α j n

1
r j

− 1
p j and

w(x)
1

1
p − 1

s = |x|
n

1
p − 1

s

∑m
j=1α j

are locally integrable if and only if α j < 1
r j
− 1

p j
and

∑m
j=1α j >

−
(

1
p − 1

s

)
. The local integrability of these weights is necessary for the condition [~w]~p,(~r ,s) <

∞. In case p j = r j or p = s we note that respectively w j or w is locally bounded if and

only if respectively α j ≤ 0 or
∑m

j=1α j ≥ 0. We will prove that these conditions are also
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sufficient. To this end we consider the weight constants in terms of balls rather than

cubes.

Set cn := |Sn−1|n−1 so that |B(z;R)| = cn
n Rn . For the lower bound, note that

[~w]~p,(~r ,s) ≥
(

n

cn

∫
B(0;1)

|y |
1

1
p − 1

s

∑m
j=1α j n

dy

) 1
p − 1

s m∏
j=1

 n

cn

∫
B(0;1)

|y |
−α j n

1
r j

− 1
p j dy

 1
r j

− 1
p j

=

 1

1+ 1
1
p − 1

s

∑m
j=1α j


1
p − 1

s
m∏

j=1

 1

1− α j
1

r j
− 1

p j


1

r j
− 1

p j

,

(3.1.1)

where if p j = r j or p = s, the corresponding integral should be replaced by supy∈B(0;1) |y |−α j n =
1 or supy∈B(0;1) |y |

∑m
j=1α j n = 1.

For the upper bound, let B(x0;r0) be a ball. We consider the two cases |x0| ≥ 3r0 and

|x0| < 3r0.

First assume that |x0| ≥ 3r0. Then for any y ∈ B(x0;r0) we have |y |h |x0|. Indeed,

|y | ≤ |y −x0|+ |x0| < r0 +|x0| ≤ 4

3
|x0|, |y | ≥ |x0|− |y −x0| > |x0|− r0 ≥ 2

3
|x0|.

Then we have

(
1

|B(x0;r0)|
∫

B(x0;r0)
|y |

1
1
p − 1

s

∑m
j=1α j n

dy

) 1
p − 1

s m∏
j=1

 1

|B(x0;r0)|
∫

B(x0;r0)
|y |

−α j n

1
r j

− 1
p j dy

 1
r j

− 1
p j

h |x0|
∑m

j=1α j n
m∏

j=1
|x0|−α j n = 1,

where a similar computation holds when p j = r j or p = s. Since it follows from Hölder’s

inequality that any of the terms in the supremum taken to compute [~w]~p,(~r ,s) are at least

1, this holds in particular for the term computed in (3.1.1). Thus,

1 ≤

 1

1+ 1
1
p − 1

s

∑m
j=1α j


1
p − 1

s
m∏

j=1

 1

1− α j
1

r j
− 1

p j


1

r j
− 1

p j

,

proving the desired upper bound in this case.

Finally, assume that |x0| < 3r0. Note that now B(x0;r0) ⊆ B(0;4r0), since whenever
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|y −x0| < r0, we have |y | ≤ |y −x0|+ |x0| < 4r0. Then

(
1

|B(x0;r0)|
∫

B(x0;r0)
|y |

1
1
p − 1

s

∑m
j=1α j n

dy

) 1
p − 1

s m∏
j=1

 1

|B(x0;r0)|
∫

B(x0;r0)
|y |

−α j n

1
r j

− 1
p j dy

 1
r j

− 1
p j

≤
(

n

cnr n
0

∫
B(0;4r0)

|y |
1

1
p − 1

s

∑m
j=1α j n

dy

) 1
p − 1

s m∏
j=1

 n

cnr n
0

∫
B(0;4r0)

|y |
−α j n

1
r j

− 1
p j dy

 1
r j

− 1
p j

=

 1

r n
0

(4r0)
n+ 1

1
p − 1

s

∑m
j=1α j n

1+ 1
1
p − 1

s

∑m
j=1α j


1
p − 1

s
m∏

j=1

 1

r n
0

(4r0)
n− α j n

1
r j

− 1
p j

1− α j
1

r j
− 1

p j


1

r j
− 1

p j

= 4n
( 1

r − 1
s

)  1

1+ 1
1
p − 1

s

∑m
j=1α j


1
p − 1

s
m∏

j=1

 1

1− α j
1

r j
− 1

p j


1

r j
− 1

p j

,

where if p j = r j or p = s, the corresponding integral estimate should be replaced by

supy∈B(x0;r0) |y |−α j n ≤ (4r0)−α j or supy∈B(x0;r0) |y |
∑m

j=1α j n ≤ (4r0)
∑m

j=1α j in the computa-

tion. This proves the result.

Proposition 3.1.5. Let ~r ∈ (0,∞)m and ~p ∈ (0,∞]m with ~p ≥~r . Let I be a partition of

{1, . . . ,m} and let 1
sI

∈ R with 1
pI

:= ∑
j∈I

1
p j

≥ 1
sI

and 1
rI

:= ∑
j∈I

1
r j

> 1
sI

for each I ∈ I .

Then, if 1
s :=∑

I∈I
1
sI

, we have the inclusion∏
I∈I

A(p j ) j∈I ,((r j ) j∈I ,sI ) ⊆ A~p,(~r ,s) (3.1.2)

with

[~w]~p,(~r ,s) ≤
m∏

I∈I

[(w j ) j∈I ](p j ) j∈I ,((r j ) j∈I ,sI ). (3.1.3)

Moreover, if I is a proper partition, then this inclusion is strict.

Note that in particular this implies that for 1
~s ∈ Rm with 1

s j
< 1

r j
for all j ∈ {1, . . . ,m}

we have Ap1,(r1,s1) ×·· ·× Apm ,(rm ,sm ) ⊆ A~p,(~r ,s) with a strict inclusion.

Proof. To prove the inclusion, note that it follows from Hölder’s inequality that for any

cube Q ⊆ Rn we have

〈w〉 1
1
p − 1

s
,Q ≤ ∏

I∈I

〈∏
j∈I

w j 〉 1
1

pI
− 1

sI

,Q ,

where 1
pI

:=∑
j∈I

1
p j

. Thus, by the definition of the weight constants, this proves (3.1.3).

We conclude from this that (3.1.2) holds.
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To see that the inclusion is strict when I is a proper partition, we fix I ∈I and define

δ := 1
2

(
1
rI
− 1

sI

)
+ 1

2

( 1
r − 1

s

)> 1
rI
− 1

sI
> 0 and ε := 1

2

( 1
r − 1

s −δ
)> 0. Setting

α j :=


1
r j
− 1

p j
− δ

#I if j ∈ I ;

1
r j
− 1

p j
− ε

m−#I if j ∉ I ,

and w j (x) := |x|α j n , we note that α j < 1
r j
− 1

p j
,

∑
j∈I
α j = 1

r I
− 1

p I
−δ< 1

sI
− 1

p I
,

m∑
j=1

α j = 1

r
− 1

p
− (δ+ε) > 1

s
− 1

p
.

Hence, by Proposition 3.1.4 we have (w j ) j∈I ∉ A(p j ) j∈I ,((r j ) j∈I ,sI ) while ~w ∈ A~p,(~r ,s). This

proves the assertion.

The class A~p,(~r ,s) has an alternative description in terms of individual conditions on

the m weights ~w combined with a condition on the product weight w .

Proposition 3.1.6. Let~r ∈ (0,∞)m , s ∈ (0,∞] and ~p ∈ (0,∞]m with ~p ≥~r and p ≤ s. Let ~w

be an m-tuple of weights. The following are equivalent:

(i) ~w ∈ A~p,(~r ,s);

(ii) w j ∈ Ap j ,(r j ,σ j ) with 1
σ j

= 1
r j
− ( 1

r − 1
s

)
for all j ∈ {1, . . . ,m} and w ∈ Ap,(r,s).

Moreover, we have

max{[w1]p1,(r1,σ1), . . . , [wm]pm ,(rm ,σm ), [w]p,(r,s)} ≤ [~w]~p,(~r ,s),

[~w]~p,(~r ,s) ≤
( m∏

j=1
[w j ]p j ,(r j ,σ j )

)
[w]p,(r,s).

(3.1.4)

Proof. Fix j0 ∈ {1, . . . ,m}. We first note that 1
p j0

≥ 1
σ j0

so that the weight classes are well-

defined. Indeed, this inequality is equivalent to 1
r j0

− 1
p j0

≤ 1
r − 1

s . For the latter, note

that
1

r j0

− 1

p j0

≤ 1

r
− 1

p
≤ 1

r
− 1

s
,

since 1
s ≤ 1

p , as desired.

For (i)⇒(ii), note that 1
p j0

− 1
σ j0

= 1
p − 1

s +
∑m

j=1
j 6= j0

1
r j
− 1

p j
. Thus, by Hölder’s inequality,

we have

〈w−1
j0
〉 1

1
r j0

− 1
p j0

,Q〈w j0〉 1
1

p j0
− 1
σ j0

,Q = 〈w−1
j0
〉 1

1
r j0

− 1
p j0

,Q〈w
m∏

j=1
j 6= j0

w−1
j 〉 1

1
p − 1

s +∑m
j=1
j 6= j0

1
r j

− 1
p j

,Q

≤
( m∏

j=1
〈w−1

j 〉 1
1

r j
− 1

p j

,Q

)
〈w〉 1

1
p − 1

s
,Q
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for all cubes Q. Taking a supremum over all cubes Q proves that [w j0 ]p j0 ,(r j0 ,σ j0 ) ≤
[~w]~p,(~r ,s). For the assertion about w , note that 1

r − 1
p =∑m

j=1
1
r j
− 1

p j
so that

〈w−1〉 1
1
r − 1

p
,Q〈w〉 1

1
p − 1

s
,Q ≤

( m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

)
〈w〉 1

1
p − 1

s
,Q

for all cubes Q. By taking a supremum over all cubes Q we conclude that [w]p,(r,s) ≤
[~w]~p,(~r ,s). Thus, we have proven (ii) and the first inequality in (3.1.4).

For (ii)⇒(i), note that if follows from Hölder’s inequality that( m∏
j=1

〈w j 〉 1
1

p j
− 1
σ j

,Q

)
〈w−1〉 1

1
r − 1

p
,Q ≥ 〈1〉 1

m( 1
r − 1

s )
,Q = 1

and hence( m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

)
〈w〉 1

1
p − 1

s
,Q ≤

( m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q〈w j 〉 1
1

p j
− 1
σ j

,Q

)
〈w−1〉 1

1
r − 1

p
,Q〈w〉 1

1
p − 1

s
,Q

≤
( m∏

j=1
[w j ]p j ,(r j ,σ j )

)
[w]p,(r,s)

for all cubes Q. Taking a supremum over Q proves (i) and the second inequality in (3.1.4).

The result follows.

In the case m = 1, the class Ap,(r,s) can also be described through a reverse Hölder

condition.

Definition 3.1.7. Let β ∈ (1,∞] and let w be a weight. We write w ∈ RHβ when

[w]RHβ
:= sup

Q
〈w〉β,Q〈w〉−1

1,Q <∞,

where the supremum is taken over all cubes Q ⊆ Rn .

Proposition 3.1.8. Let r ∈ (0,∞), s ∈ (0,∞], p ∈ [r, s), and let w be a weight. The following

are equivalent:

(i) w ∈ Ap,(r,s);

(ii) w ∈ Ap,(r,∞) and w p ∈ RH 1
p

1
p − 1

s

.

Moreover, in this case we have

max{[w p ]
1
p

RH 1
p

1
p − 1

s

, [w]p,(r,∞)} ≤ [w]p,(r,s)

[w]p,(r,s) ≤ [w p ]
1
p

RH 1
p

1
p − 1

s

[w]p,(r,∞)

(3.1.5)
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Proof. For (i)⇒(ii), note that by Hölder’s inequality we have 〈w〉p,Q ≤ 〈w〉 1
1
p − 1

s
,Q for all

cubes Q so that [w]p,(r,∞) ≤ [w]p,(r,s). For the other assertion, note that by Hölder’s in-

equality we have 1 = 〈w w−1〉r,Q ≤ 〈w〉p,Q〈w−1〉 1
1
r − 1

p
,Q so that

〈w p〉
1
p

1
p

1
p − 1

s
,Q

= 〈w〉 1
1
p − 1

s
,Q〈w−1〉 1

1
r − 1

p
,Q〈w−1〉−1

1
1
r − 1

p
,Q

≤ [w]p,(r,s)〈w p〉
1
p

1,Q

for all cubes Q. Taking a supremum over all cubes Q proves the result and the first in-

equality in (3.1.5).

For (ii)⇒(i), note that since

〈w〉 1
1
p − 1

s
,Q = 〈w p〉

1
p

1
p

1
p − 1

s
,Q

≤ [w p ]
1
p

RH 1
p

1
p − 1

s

〈w p〉
1
p

1,Q = [w p ]
1
p

RH 1
p

1
p − 1

s

〈w〉p,Q ,

we have

〈w〉 1
1
p − 1

s
,Q〈w−1〉 1

1
r − 1

p
,Q ≤ [w p ]

1
p

RH 1
p

1
p − 1

s

〈w〉p,Q〈w−1〉 1
1
r − 1

p
,Q ≤ [w p ]

1
p

RH 1
p

1
p − 1

s

[w]p,(r,∞)

for all cubes Q. Taking a supremum over Q proves the result and the second inequality

in (3.1.5), as desired.

3.2. OPERATORS GOVERNING THE MULTILINEAR WEIGHT CLASSES

3.2.1. The multisublinear maximal operator

It is sometimes convenient to emphasize the separation of the parameter s from the r j ,

as it often plays a different role from the other parameters in the proofs. The following

lemma provides a way to deal with this parameter.

Lemma 3.2.1 (Translation lemma). Let~r ∈ (0,∞)m , s ∈ (0,∞] and ~p ∈ (0,∞]m with ~p ≥~r
and p ≤ s and let ~w be a vector of m weights. Then ~w ∈ A~p,(~r ,s) if and only if there are
1
s1

, . . . 1
sm

∈ R satisfying 1
s j

≤ 1
p j

,
∑m

j=1
1
s j

= 1
s , and ~w ∈ A~p(s),(~r (s),∞), where

~p(s) =
(

1
1

p1
− 1

s1

, . . . ,
1

1
pm

− 1
sm

)
, ~r (s) =

(
1

1
r1
− 1

s1

, . . . ,
1

1
rm

− 1
sm

)
.

Moreover, in this case we have

[~w]~p,(~r ,s) = [~w]~p(s),(~r (s),∞). (3.2.1)

Proof. We have
1

p(s)
:=

m∑
j=1

(
1

p j
− 1

s j

)
= 1

p
− 1

s
.
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it remains to note that(
m∏

j=1
〈w−1

j 〉 1
1

r j
− 1

p j

,Q

)
〈w〉 1

1
p − 1

s
,Q =

 m∏
j=1

〈w−1
j 〉 1(

1
r j

− 1
s j

)
−

(
1

p j
− 1

s j

) ,Q

〈w〉p(s),Q .

Taking a supremum over all cubes Q yields (3.2.1), proving the assertion.

We point out that the choice of the 1
s j

in the lemma is not necessarily unique if m 6= 1.

One could, for example, take 1
s j

= p
p j

1
s , but different choices are also possible. We note

that this lemma can be used even if 1
s = 0. In particular, in this case it can occur that

some of the 1
s j

are negative.

When s = ∞, the weight classes are characterized by the boundedness of certain

multisublinear maximal operators.

Definition 3.2.2. For ~r ∈ (0,∞)m and ~f ∈ L~rloc(Rn) we define the m-sublinear Hardy-

Littlewood maximal operator

M~r (~f )(x) := sup
Q

m∏
j=1

〈 f j 〉r j ,QχQ (x), x ∈ Rn

where the supremum is taken over all cubes Q ⊆ Rn . Similarly, for a collection of cubes

P we define

MP
~r (~f )(x) := sup

Q∈P

m∏
j=1

〈 f j 〉r j ,QχQ (x), x ∈ Rn .

Note that if P is countable, then MP
~r (~f ) is a measurable function as it is a countable

supremum of measurable functions. If we let Q denote the collection of cubes with

rational center points and rational side length, then it follows from the regularity of the

Lebesgue measure that M~r (~f ) = MQ
~r (~f ). Hence, since Q is countable, we conclude that

M~r (~f ) is also a measurable function.

The following proposition is the main result of this section.

Theorem 3.2.3. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p ≥~r and let ~w, v be m+1 weights. The

following are equivalent:

(i) (~w , v) ∈ A~p,(~r ,∞);

(ii) M~r is bounded L
~p
~w (Rn) → Lp,∞

v (Rn).

In this case we have

‖M~r ‖L
~p
~w

(Rn )→L
p,∞
v (Rn )

hr [~w , v]~p,(~r ,∞). (3.2.2)

Moreover, if~r < ~p and v = w, then (i) and (ii) are equivalent to

(iii) M~r is bounded L
~p
~w (Rn) → Lp

w (Rn)
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and we have

‖M~r ‖L
~p
~w

(Rn )→L
p
w (Rn )

.r c~p,~r [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞) , (3.2.3)

where

c~p,~r =
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

.

Moreover, the estimate (3.2.3) is optimal in the sense that the power of the weight constant

is the smallest possible one and in the unweighted case we have ‖M~r ‖L~p (Rn )→Lp (Rn ) hr

c~p,~r .

To facilitate the proof of this result it is convenient to reduce to the case of dyadic

grids. For α ∈ {
0, 1

3 , 2
3

}n we will consider the translated dyadic grids

Dα := ⋃
k∈Z

{
2−k(

[0,1)n +m + (−1)kα
)

: m ∈ Zn}
.

An important property of these grids is the fact that for each cube Q ⊆ Rn there exists an

α ∈ {
0, 1

3 , 2
3

}n and a cube Q ′ ∈Dα such that Q ⊆Q ′ and |Q ′| ≤ 6n |Q|. This so-called three

lattice lemma will allow us to reduce our arguments to only having to consider dyadic

grids. This property as well as further properties of dyadic grids can be found in [LN18].

An immediate consequence is the following:

Lemma 3.2.4. Let~r ∈ (0,∞)m . Then for all ~f ∈ L~rloc(Rn) we have the pointwise equiva-

lences

M~r (~f )h~r max
α∈

{
0, 1

3 , 2
3

}n
MDα

~r (~f )h
∑

α∈
{

0, 1
3 , 2

3

}n
MDα

~r (~f ).

Proof. Note that the second equivalence follows from the equivalence of the `∞ and `1

norms in finite dimensions. It remains to prove the first equivalence.

The equality “≥” is clear, as the supremum on the right is taken over a smaller set

of cubes. For the converse inequality, let Q ⊆ Rn be a cube. By the three lattice lemma

there exists an α ∈ {
0, 1

3 , 2
3

}n and a cube Q ′ ∈Dα containing Q that satisfies |Q ′| ≤ 6n |Q|.
Then

m∏
j=1

〈 f j 〉r j ,QχQ ≤ 6
n
r

m∏
j=1

〈 f j 〉r j ,Q ′χQ ′ ≤ 6
n
r max
α∈

{
0, 1

3 , 2
3

}n
MDα

~r (~f ).

The result follows by taking a supremum over all cubes Q ⊆ Rn .

The fact that dyadic cubes can cover certain sets without overlapping each other

allows us to essentially replace the Vitali covering lemma in the proof of the maximal

theorem for dyadic grids. As a matter of fact, this allows us to prove bounds for weighted

maximal operators independent of their reference weight. More precisely, for r ∈ (0,∞),

f ∈ Lr
loc(Rn), a weight w , and a cube Q, we define 〈 f 〉w

r,Q :=
(

1
w(Q)

∫
Q | f |r w dx

) 1
r

. For a
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fixed dyadic grid D = Dα we may then define the weighted dyadic maximal operator

MD,w
r ( f )(x) := supQ∈D〈 f 〉w

r,QχQ (x). Letting Lp (Rn ; w) denote the Lebesgue space over

Rn with measure wdx, we then have the following result:

Lemma 3.2.5. Let r ∈ (0,∞), let w be a weight, and let D = Dα be a fixed dyadic grid.

Then for all p ∈ (r,∞] the operator MD,w
r is bounded Lp (Rn ; w) → Lp (Rn ; w) with

‖MD,w
r ‖Lp (Rn ;w)→Lp (Rn ;w) ≤

( 1
r

1
r − 1

p

) 1
r

.

Moreover, MD,w
r is bounded Lr (Rn ; w) → Lr,∞(Rn ; w) with ‖MD,w

r ‖Lr (Rn ;w)→Lr,∞(Rn ;w) ≤ 1.

Proof. Note that for p =∞ the bound is clear. If we can prove the weak-type, then the

general result follows from the Marcinkiewicz Interpolation Theorem.

Let F ⊆D be a finite collection of cubes and set MF ,w
r (h)(x) := supQ∈F 〈 f 〉w

r,QχQ (x).

Fix f ∈ Lr (Rn ; w) and λ > 0. Per definition, for each x ∈ Rn such that MF ,w
r ( f )(x) > λ,

there is a cube Q ∈ F containing x such that 〈 f 〉w
r,Q > λ. We pick the largest cube in F

with this property and add it to the collection P . We claim that the hereby obtained

collection P is pairwise disjoint and satisfies

{x ∈ Rn : MF ,w
r ( f )(x) >λ} = ⋃

P∈P

P. (3.2.4)

For the first part of the claim, note that if P1,P2 ∈ P , then there are x1, x2 ∈ Rn such

that they were chosen as the maximal cube in F respectively containing x1, x2 ∈ Rn . If

P1∩P2, then by the properties of the dyadic system, we have P1 ⊆ P2 or P2 ⊆ P1. Without

loss of generality we assume the first. In that case P2 contains x1, and by maximality of

P1, this implies that P1 = P2. We conclude that P is indeed pairwise disjoint. For (3.2.4),

the inclusion “ ⊆′′ holds per construction. For the other inclusion, suppose P ∈ P and

x ∈ P . Then MF ,v
r (h)(x) ≥ 〈 f 〉w

r,P > λ so that x ∈ {x ∈ Rn : MF ,w
r ( f )(x) > λ}, proving

(3.2.4). This proves the claim.

Now, we have

λr w({x ∈ Rn : MF ,w
r ( f )(x) >λ}) = ∑

P∈P

λr w(P ) ≤ ∑
P∈P

(〈 f 〉w
r,P

)r w(P )

= ∑
P∈P

∫
P
| f |r w dx =

∫
{x∈Rn :MF ,w

r ( f )(x)>λ}
| f |r w dx

≤ ‖ f ‖r
Lr (Rn ;w).

Thus, taking a supremum over λ > 0 yields ‖MF ,w
r ( f )‖Lr,∞(Rn ;w) ≤ ‖ f ‖Lr (Rn ;w). Finally,

for each j ∈ N we let D j ⊆ D denote a finite collection of cubes with the properties that

D j ⊆ D j+1 and ∪ j∈ND j = D. Then M
D j ,w
r ( f ) ↑ MD,w

r ( f ) so that by monotonicity of the

measure we have

‖MD,w
r ( f )‖Lr,∞(Rn ;w) = lim

j→∞
‖M

D j ,w
r ( f )‖Lr,∞(Rn ;w) ≤ ‖ f ‖Lr (Rn ;w).

The assertion follows.
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Lemma 3.2.6. Let ~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~r < ~p and let ~w ∈ A~p,(~r ,∞). Then there

exist sublinear operators Np j ,r j ,~w : L
p j
w j

(Rn) → L
p j
w j

(Rn) so that for all ~f ∈ L
~p
~w (Rn) we have

M~r (~f ) ≤ [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

m∏
j=1

Np j ,r j ,~w ( f j ). (3.2.5)

Moreover, Np j ,r j ,~w satisfies

‖Np j ,r j ,~w‖
L

p j
w j

(Rn )→L
p j
w j

(Rn )
.r j

 1
r j

1
r j
− 1

p j

 1
r j

.

Proof. We first prove this result for MD
~r , where D = Dα is a fixed dyadic grid, to obtain

the appropriate operators ND
p j ,r j ,~w . Then it follows from Lemma 3.2.4 that

M~r (~f ) ≤ 6
n
r max
α∈

{
0, 1

3 , 2
3

}n

m∏
j=1

NDα

p j ,r j ,~w ( f j ) ≤ 6
n
r

m∏
j=1

max
α∈

{
0, 1

3 , 2
3

}n
NDα

p j ,r j ,~w ( f j ).

The result then follows by setting

Np j ,r j ,~w := 6
n
r j max
α∈

{
0, 1

3 , 2
3

}n
NDα

p j ,r j ,~w .

Now, let γ := max

{
1
~r

1
~r − 1

~p

}
, let Q ∈ D, and set v j := w

− 1
1

r j
− 1

p j

j . Since
∏m

j=1 w−1
j w

1
p j
1
p =(∏m

j=1 w−1
j

)
w = 1, it follows from Hölder’s inequality that

1 = 〈1〉γ−1
1∑m

j=1
1

r j

,Q
≤

m∏
j=1

〈w−1
j w

1
p j
1
p 〉γ−1

r j ,Q =
m∏

j=1
〈w−1

j w

1
p j
1
p 〉

γ−
1

r j
1

r j
− 1

p j

r j ,Q 〈w−1
j w

1
p j
1
p 〉

1
p j

1
r j

− 1
p j

r j ,Q

≤
m∏

j=1

〈w−1
j 〉 1

1
r j

− 1
p j

〈w

1
p j
1
p 〉p j ,Q


γ−

1
r j

1
r j

− 1
p j

〈w−1
j w

1
p j
1
p 〉

1
p j

1
r j

− 1
p j

r j ,Q

=
( m∏

j=1

(
〈v j 〉

1
r j

− 1
p j

1,Q 〈w p〉
1

p j

1,Q

)γ− 1
r j

1
r j

− 1
p j

) m∏
j=1

〈w
−r j

j w

1
p j
1
p

r j 〉

1
p j

1
r j

1
r j

− 1
p j

1,Q .
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This implies that

m∏
j=1

〈v j 〉
1

r j

1,Q ≤
[~w]γ

~p,(~r ,∞)( m∏
j=1

〈v j 〉
(

1
r j

− 1
p j

)
γ− 1

r j

1,Q

)
〈w〉γp,Q

=
[~w]γ

~p,(~r ,∞)

m∏
j=1

(
〈v j 〉

1
r j

− 1
p j

1,Q 〈w p〉
1

p j

1,Q

)γ− 1
r j

1
r j

− 1
p j

m∏
j=1

(
1

〈w p〉1,Q

) 1
p j

1
r j

1
r j

− 1
p j

≤ [~w]γ
~p,(~r ,∞)

m∏
j=1

( 〈w
−r j

j w

1
p j
1
p

r j 〉1,Q

〈w p〉1,Q

) 1
p j

1
r j

1
r j

− 1
p j .

Thus, for f j ∈ L
p j
w j

(Rn) and x ∈Q, we have

m∏
j=1

〈 f j 〉r j ,Q =
m∏

j=1
〈 f j v

− 1
r j

j 〉v j

r j ,Q〈v j 〉
1

r j

1,Q

≤ [~w]γ
~p,(~r ,∞)

m∏
j=1

( infy∈Q M
v j ,D
r j

( f j v
− 1

r j

j )(y)

1
r j

− 1
p j

1
p j

1
r j 〈w

−r j

j w

1
p j
1
p

r j 〉1,Q

〈w p〉1,Q

) 1
p j

1
r j

1
r j

− 1
p j

≤ [~w]γ
~p,(~r ,∞)

m∏
j=1

M w p ,D
1

r j
− 1

p j
1

p j
1

r j

(M
v j ,D
r j

( f j v
− 1

r j

j )v
1

p j

j w
−

1
p j
1
p )(x).

(3.2.6)

Setting

ND
p j ,r j ,~w ( f j ) := M w p ,D

1
r j

− 1
p j

1
p j

1
r j

(M
v j ,D
r j

( f j v
− 1

r j

j )v
1

p j

j w
−

1
p j
1
p )w

1
p j
1
p w−1

j

and by taking a supremum over all Q containing x in (3.2.6) we have proven (3.2.5) in

the dyadic case. We remark here that in the case that 1
p j

= 0, we use the interpretation

ND
∞,r j ,~w ( f j ) = ‖M

v j ,D
r j

( f j v
− 1

r j

j )‖L∞w−1
j .

Noting that by Lemma 3.2.5 we have

‖M u,D
1
r − 1

q
1
q

1
r

(h)‖Lq (Rn ;u) ≤
( q

r

) 1
q

1
r

1
r − 1

q ‖h‖Lq (Rn ;u) = e
log q−logr

q−r ‖h‖Lq (Rn ;u) ≤ e
1
r ‖h‖Lq (Rn ;u),
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for the case 1
p j

> 0, we compute

‖ND
p j ,r j ,~w ( f j )‖

L
p j
w j

(Rn )
= ‖M w p ,D

1
r j

− 1
p j

1
p j

1
r j

(M
v j ,D
r j

( f j v
− 1

r j

j )v
1

p j

j w
− p

p j )‖L
p j (Rn ;w p )

.r j ‖M
v j ,D
r j

( f j v
− 1

r j

j )v
1

p j

j w
− p

p j ‖L
p j (Rn ;w p )

= ‖M
v j ,D
r j

( f j v
− 1

r j

j )‖L
p j (Rn ;v j )

≤
 1

r j

1
r j
− 1

p j

 1
r j

‖ f j v
− 1

r j

j ‖L
p j (Rn ;v j )

=
 1

r j

1
r j
− 1

p j

 1
r j

‖ f j ‖L
p j
w j

(Rn )
,

and for the case 1
p j

= 0, we compute

‖ND
∞,r j ,~w ( f j )‖L∞

w j
(Rn ) = ‖M

v j ,D
r j

( f j v
− 1

r j

j )‖L∞(Rn ) ≤ ‖ f j v
− 1

r j

j ‖L∞(Rn ) = ‖ f j ‖L∞
w j

(Rn ).

The assertion follows.

Proof of Theorem 3.2.3. We will prove the equivalence of (i) and (ii) by proving (3.2.2).

For “ . ", we note that it follows from Lemma 3.2.4 that it suffices to prove the esti-

mate for MD
~r for a fixed dyadic grid D = Dα. Note that by Hölder’s inequality we have

〈 f j 〉r j ,Q ≤ 〈 f j w j 〉p j ,Q〈w−1
j 〉 1

1
r j

− 1
p j

,Q for a cube Q, so that

m∏
j=1

〈 f j 〉r j ,Q ≤ [~w , v]~p,(~r ,∞)〈v〉−1
p,Q

m∏
j=1

〈 f j w j 〉p j ,Q = [~w , v]~p,(~r ,∞)

m∏
j=1

〈 f j w j v
− p

p j 〉v p

p j ,Q .

Thus, by Hölder’s inequality for weak Lebesgue spaces and Lemma 3.2.5, we have

‖MD
~r (~f )‖L

p,∞
v (Rn ) ≤ [~w , v]~p,(~r ,∞)‖

m∏
j=1

M v p ,D
p j

( f j w j v
− p

p j )‖Lp,∞(Rn ;v p )

. [~w , v]~p,(~r ,∞)

m∏
j=1

‖M v p ,D
p j

( f j w j v
− p

p j )‖L
p j ,∞

(Rn ;v p )

≤ [~w , v]~p,(~r ,∞)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn )
,

Thus, we have shown that

‖M~r ‖L
~p
~w

(Rn )→L
p,∞
v (Rn )

. [~w , v]~p,(~r ,∞).
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For the converse inequality, fix a cube Q and let ~f ∈ L
~p
~w (Rn). Letting 0 <λ<∏m

j=1〈 f j 〉r j ,Q ,

we have

M~r (~f )(x) ≥
m∏

j=1
〈 f j 〉r j ,Q >λ

for all x ∈Q so that Q ⊆ {x ∈ Rn : M~r (~f )(x) >λ}. Hence,

λ〈v〉p,Q ≤ |Q|− 1
p λv p ({M~r (~f ) >λ})

1
p

≤ ‖M~r ‖L
~p
~w

(Rn )→L
p,∞
v (Rn )

m∏
j=1

|Q|−
1

p j ‖ f j ‖L
p j
w j

(Rn )
.

Taking a supremum over such λ and by replacing f j with χQ f j , we conclude that(
m∏

j=1
〈 f j 〉r j ,Q

)
〈v〉p,Q ≤ ‖M~r ‖L

~p
~w

(Rn )→L
p,∞
v (Rn )

m∏
j=1

〈 f j w j 〉p j ,Q . (3.2.7)

Now set f j = w

−
1

r j
1

r j
− 1

p j

j and assume for the moment that for those j ∈ {1, . . . ,m} with

p j <∞ the function f
r j

j = f
p j

j w
p j

j = w

− 1
1

r j
− 1

p j

j is locally integrable. Then the product on

the right-hand side of (3.2.7) is positive and finite so that we may take it to the left-hand

side. This yields (
m∏

j=1
〈w−1

j 〉 1
1

r j
− 1

p j

,Q

)
〈v〉p,Q ≤ ‖M~r ‖L

~p
~w

(Rn )→L
p,∞
v (Rn )

(3.2.8)

and taking a supremum over all cubes Q yields (3.2.2). To prove that w

− 1
1

r j
− 1

p j

j is indeed

locally integrable, we choose f j such that f
p j

j w
p j

j = (w

1
1

r j
− 1

p j

j +ε)−1 for ε > 0, the latter

expression being bounded and thus locally integrable. Again taking the product on the

right-hand side of (3.2.7) to the left, an appeal to the Monotone Convergence Theorem

as ε ↓ 0 yields (3.2.8). The assertion follows.

Since the implication (iii)⇒(ii) when v = w is clear, we may finish the proof of the

equivalences by showing (i)⇒(iii) through (3.2.3).

By Lemma 3.2.6, it follows from Hölder’s inequality that

‖M~r (~f )‖L
p
w (Rn ) ≤ [~w]

max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

m∏
j=1

‖Np j ,r j ,~w f j ‖L
p j
w j

(Rn )

.r c~p,~r [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn )
,
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as desired.

Finally, we prove optimality of (3.2.3). Let α ≥ 0 denote the smallest possible con-

stant in the estimate

‖M~r (~f )‖L
p
w (Rn ) . [~w]α~p,(~r ,∞)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn )
.

We have shown that α ≤ max

{
1
~r

1
~r − 1

~p

}
and it remains to prove the lower bound. Fix j0 ∈

{1, . . . ,m}. For ε ∈ (0,1) we define

w j0 (x) := |x|n(1−ε)

(
1

r j0
− 1

p j0

)
, w j (x) := 1 for j ∈ {1, . . . ,m}\{ j0},

f j0 (x) := |x|−
n(1−ε)

r j0 χB(0;1)(x), f j (x) := |x|−
n(1−ε)

p j χB(0;1)(x) for j ∈ {1, . . . ,m}\{ j0}.

Then, by Proposition 3.1.4,

[~w]~p,(~r ,∞) h

 1
p j0

1
p j0

+ (1−ε)
(

1
r j0

− 1
p j0

)


1
p j0

ε
−

(
1

r j0
− 1

p j0

)
≤ ε−

(
1

r j0
− 1

p j0

)
.

Moreover, one computes
m∏

j=1
‖ f j ‖L

p j
w j

(Rn )
h ε

− 1
p

so that

‖M~r (~f )‖L
p
w (Rn ) . [~w]α~p,(~r ,∞)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn )
. ε

−α
(

1
r j0

− 1
p j0

)
− 1

p . (3.2.9)

Computing

m∏
j=1

〈 f j 〉r j ,B(0;|x|) & ε
− 1

r j0 f j0 (x)
m∏

j=1
j 6= j0

 1
r j

1
r j
− (1−ε) 1

p j

 1
r j

f j (x),

setting g (x) :=∏m
j=1 f j (x)w j (x) = |x|−

n(1−ε)
p χB(0;1)(x) yields

‖M~r (~f )‖L
p
w (Rn ) & ε

− 1
r j0 ‖g‖Lp (Rn ) h ε

− 1
r1

− 1
p .

By combining this with (3.2.9) we find that

1. ε
−α

(
1

r j0
− 1

p j0

)
+ 1

r j0 .

Letting ε ↓ 0 shows that we must have −α
(

1
r j0

− 1
p j0

)
+ 1

r j0
≤ 0, i.e.,

α≥
1

r j0

1
r j0

− 1
p j0

.
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Taking a maximum over j0 ∈ {1, . . . ,m} proves that α≥ max

{
1
~r

1
~r − 1

~p

}
, as desired.

For the last result it remains to prove that ‖M~r ‖L~p (Rn )→Lp (Rn ) & c~p,~r . For ε ∈ (0,1) we

set f j (x) := |x|−
n(1−ε)

p j χB(0;1)(x) so that

m∏
j=1

〈 f j 〉r j ,B(0;|x|) &r j

m∏
j=1

 1
r j

1
r j
− (1−ε) 1

p j

 1
r j

f j (x)

and hence

‖M~r (~f )‖Lp (Rn ) &r ‖ f ‖Lp (Rn )

m∏
j=1

 1
r j

1
r j
− (1−ε) 1

p j

 1
r j

h ε
− 1

p
m∏

j=1

 1
r j

1
r j
− (1−ε) 1

p j

 1
r j

.

(3.2.10)

Moreover, we have

‖M~r (~f )‖Lp (Rn ) ≤ ‖M~r ‖L~p (Rn )→Lp (Rn )

m∏
j=1

‖ f j ‖L
p j (Rn ) h ‖M~r ‖L~p (Rn )→Lp (Rn )ε

− 1
p .

Combining this with (3.2.10) yields

‖M~r ‖L~p (Rn )→Lp (Rn ) &r

m∏
j=1

 1
r j

1
r j
− (1−ε) 1

p j

 1
r j

.

The assertion follows by letting ε ↓ 0.

3.2.2. Sparse forms and symmetry in the weight classes

In terms of symmetries, the definition of the weight constant [~w]~p,(~r ,s) seems to be best

suited to the case where 1
p ≤ 1. Indeed, if we set 1

pm+1
:= 1− 1

p ≥ 0, 1
rm+1

:= 1− 1
s and

wm+1 := w−1, then we have

m+1∑
j=1

1

p j
= 1,

m+1∏
j=1

w j = 1.

The conditions ~p ≥~r , p ≤ s are then equivalent to r j ≤ p j for all j ∈ {1, . . . ,m+1} and the

constant for the weight class now takes the form

[~w]~p,(~r ,s) = sup
Q

m+1∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q = [(w1, . . . , wm+1)](p1,...,pm+1),((r1,...,rm+1),∞), (3.2.11)

where the last equality follows from the fact that the term involving the product weight

in the m +1-linear weight class is equal to 1. The symmetry of this last expression also
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emphasizes a certain permutational invariance. Indeed, if π ∈ Sm+1 is a permutation,

then, since
m+1∑
j=1

1

pπ( j )
=

m+1∑
j=1

1

p j
= 1,

m+1∏
j=1

wπ( j ) =
m+1∏
j=1

w j = 1,

we have

[~w]~p,(~r ,s) = [(wπ(1), . . . , wπ(m))](pπ(1),...,pπ(m)),((rπ(1),...,rπ(m)),r ′
π(m+1)).

It will sometimes also be useful to redefine v j := w

− 1
1

r j
− 1

p j

j for j ∈ {1, . . . ,m +1} so that

[(w1, . . . , wm+1)](p1,...,pm+1),((r1,...,rm+1),∞) = sup
Q

m+1∏
j=1

〈v j 〉
1

r j
− 1

p j

1,Q .

Remark 3.2.7. While we have to restrict ourselves to the Banach range 1
p ≤ 1 here, we

point out that even when 1
p > 1, we can reduce back to this case by the rescaling property

Proposition 3.1.3(ii) applied, for example, with t = r . This way we are replacing 1
p by

r
p ≤ 1, allowing us to use the results in this section.

In a way, we are now viewing the m-linear Muckenhoupt weight classes as the sub-

class of the m+1-linear Muckenhoupt weight classes where the m+1 weights satisfy the

relation that their product weight is 1. To avoid confusion between the two viewpoints,

we introduce a separate notation for m + 1-tuples of parameters. We will use the fol-

lowing convention: for m+1 parametersα1, . . . ,αm+1 we shall use the boldface notation

ααα= (α1, . . . ,αm+1) for m +1-tuples while we will use the arrow notation ~α= (α1, . . . ,αm)

for m-tuples. This means for example that the equality of the constants (3.2.11) will now

be written as

[~w]~p,(~r ,s) = [www]ppp,(rrr ,∞),

where as before 1
pm+1

:= 1− 1
p , 1

rm+1
:= 1− 1

s and wm+1 := w−1.

As it turns out, our weight classes are governed by sparse forms.

Definition 3.2.8. Let R > 1. A collection of cubes S is called R-sparse if there is pairwise

disjoint collection (EQ )Q∈S of measurable sets satisfying EQ ⊆Q and |Q| ≤ R|EQ |. When

R = 2, we simply call such a collection of cubes sparse.

Given rrr ∈ (0,∞)m+1, for a sparse collection of cubes S we define the sparse form

Λrrr ,S (fff ) := ∑
Q∈S

(m+1∏
j=1

〈 f j 〉r j ,Q

)
|Q|

for fff ∈ Lrrr
loc(Rn).

We point out here that the sparsity constant R is not too important and it can usually

be replaced by 2. More precisely, as a consequence of Proposition 3.2.10 below we have

that for any R, R̃ > 1 and all fff ∈ Lrrr
loc(Rn) we have

sup
S

S is R-sparse

Λrrr ,S (fff )hR,R̃ sup
S

S is R̃-sparse

Λrrr ,S (fff ).



3.2. OPERATORS GOVERNING THE MULTILINEAR WEIGHT CLASSES 41

Next, we note that we can use the three-lattice lemma to pass from general sparse col-

lections to sparse collections in dyadic grids.

Lemma 3.2.9. Let R > 1 and let S be an R-sparse collection of cubes. Then for each

α ∈ {
0, 1

3 , 2
3

}n there exists a 6nR-sparse collection of cubes S α such that

Λrrr ,S (fff ).r
∑

α∈
{

0, 1
3 , 2

3

}n
Λrrr ,S α (fff )

for all fff ∈ Lrrr
loc(Rn).

Proof. For each Q ∈S we use the three lattice lemma to choose anα(Q) ∈ {
0, 1

3 , 2
3

}n and

P (Q) ∈Dα(Q) such that Q ⊆ P (Q) and |P (Q)| ≤ 6n |Q|. We set S α := {P (Q) : Q ∈S , α(Q) =
α} and EP (Q) := EQ . Then the EP (Q) are pairwise disjoint, and

|P (Q)| ≤ 6n |Q| ≤ 6nR|EQ | = 6nR|EP (Q)|

so that S α is 6nR-sparse.

Finally, note that

Λrrr ,S (fff ) = ∑
α∈

{
0, 1

3 , 2
3

}n

∑
Q∈S :α(Q)=α

(m+1∏
j=1

〈 f j 〉r j ,Q

)
|Q|

≤ 6
n
r

∑
α∈

{
0, 1

3 , 2
3

}n

∑
Q∈S :α(Q)=α

(m+1∏
j=1

〈 f j 〉r j ,P (Q)

)
|P (Q)|

= 6
n
r

∑
α∈

{
0, 1

3 , 2
3

}n
Λrrr ,S α (fff ).

The assertion follows.

Sparse forms are deeply connected to multisublinear maximal operators. Note that

for all fff ∈ Lrrr
loc(Rn) and any R-sparse collection of cubes S we have the estimate

Λrrr ,S (fff ) ≤ R
∑

Q∈S

inf
y∈Q

Mrrr (fff )(y)|EQ | ≤ R
∑

Q∈S

∫
EQ

Mrrr (fff )dx

≤ R‖Mrrr (fff )‖L1(Rn ).

Hence, we have

sup
S
Λrrr ,S (fff ) ≤ R‖Mrrr (fff )‖L1(Rn ), (3.2.12)

where the supremum is taken over all R-sparse collections of cubes S . From Theo-

rem 3.2.3 it then follows that

sup
S
Λrrr ,S (fff ).r cppp,rrr [www]

max

{
1
rrr

1
rrr − 1

ppp

}
ppp,(rrr ,∞)

m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
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for all ppp > rrr with
∑m+1

j=1
1

p j
= 1, all www ∈ Appp,(rrr ,∞) with

∏m
j=1 w j = 1, and all fff ∈ Lppp

www (Rn). In

particular, we have shown that the sparse form is bounded with respect to the embed-

ded weight classes. To show that the boundedness of the sparse form characterizes the

embedded weight class, we will show that the converse estimate to (3.2.12) holds. This

follows from a sparse domination result for the multisublinear maximal operator.

Proposition 3.2.10 (Sparse domination of the multisublinear maximal operator). Let
~r ∈ (0,∞)m and let ~f ∈ L~rloc(Rn). Let D = Dα be a dyadic grid and let F ⊆ D be a finite

collection of cubes. Then for all R > 1 there exists an R-sparse collection of cubes S ⊆ F

such that

MF
~r (~f ) ≤ (R ′)

1
r sup

Q∈S

m∏
j=1

〈 f j 〉r j ,QχQ . (3.2.13)

In particular, for all rrr ∈ (0,∞)m+1, fff ∈ Lrrr
loc(Rn), and R > 1 we have

‖Mrrr (fff )‖L1(Rn ) hR,r sup
S
Λrrr ,S (fff ) (3.2.14)

where the supremum is taken over all R-sparse collections of cubes S .

Proof. We will define S recursively. For each Q ∈ F we define its stopping children

chF (Q) as follows. For each dyadic child Q ′ of Q we check if Q ′ ∈F and

m∏
j=1

〈 f j 〉r j ,Q ′ > (R ′)
1
r

m∏
j=1

〈 f j 〉r j ,Q . (3.2.15)

If this is the case, then we add Q ′ to chF (Q). If this is not the case, then we repeat this

process to the dyadic children of Q ′. The pairwise disjoint collection of cubes chF (Q)

thus obtained, are the maximal (with respect to inclusion) cubes in F strictly contained

in Q satisfying (3.2.15). Now, let S0 denote the maximal cubes in F . Then we recursively

define Sk+1 :=∪Q∈Sk chF (Q) and set S :=∪∞
k=0Sk .

To see that S is R-sparse, fix Q ∈ S and set EQ := Q\ ∪Q ′∈chF (Q) Q ′. By (3.2.15),

Hölder’s inequality, and disjointness of the cubes in chF (Q), we have

∑
Q ′∈chF (Q)

|Q ′| = ∑
Q ′∈chF (Q)

|Q ′|
∏m

j=1〈 f j 〉r
r j ,Q ′∏m

j=1〈 f j 〉r
r j ,Q ′

≤ 1

R ′∏m
j=1〈 f j 〉r

r j ,Q

∑
Q ′∈chF (Q)

m∏
j=1

(∫
Q ′
| f j |r j dx

) r
r j

≤ 1

R ′∏m
j=1〈 f j 〉r

r j ,Q

m∏
j=1

( ∑
Q ′∈chF (Q)

∫
Q ′
| f j |r j dx

) r
r j ≤ |Q|

R ′ .

Hence, |Q| ≤ |EQ | +∑
Q ′∈chF (Q) |Q ′| ≤ |EQ | + |Q|/R ′ so that |Q| ≤ R|EQ |. Since the EQ are

also pairwise disjoint, we conclude that S is R-sparse.

Next, we check that (3.2.13) holds for this collection S . For each Q ′ ∈ F we let

πS (Q ′) denote the minimal cube in S containing Q ′. Note that such a minimal cube

exists, since any Q ′ ∈ F lies in one of the cubes in S0. Now, let Q ∈ S and Q ′ ∈ F with

πS (Q ′) = Q. If Q ′ ( Q, then Q ′ ∉ S and hence Q ′ ∉ chF (Q). Since πS (Q ′) = Q, Q ′
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cannot be contained in any of the cubes in chF (Q). Thus, by maximality of the cubes in

chF (Q), Q ′ fails the estimate (3.2.15). Note that this is also the case when Q ′ =Q. Hence,

we conclude that if Q ∈S and Q ′ ∈F satisfies πS (Q ′) =Q, then

m∏
j=1

〈 f j 〉r j ,Q ′ ≤ (R ′)
1
r

m∏
j=1

〈 f j 〉r j ,Q . (3.2.16)

Finally, note that

F = ⋃
Q∈S

{P ∈F :πS (P ) =Q}

so that by (3.2.16) for all x ∈ Rn we have

MF
~r (~f )(x) = sup

Q∈S
sup
P∈F

πS (P )=Q

m∏
j=1

〈 f j 〉r j ,PχP (x) ≤ (R ′)
1
r sup

Q∈S

m∏
j=1

〈 f j 〉r j ,QχQ (x).

This proves (3.2.13).

For the second assertion, we have proven one of the inequalities in (3.2.12). For the

converse inequality, note that by the inequality ‖ · ‖`∞ ≤ ‖ · ‖`1 it follows from (3.2.13)

that for any finite collection of cubes F in a dyadic grid D = Dα there is an R-sparse

collection S of cubes S ⊆F so that

‖MF
rrr (fff )‖L1(Rn ) ≤ (R ′)

1
r ‖ ∑

Q∈S

m∏
j=1

〈 f j 〉r j ,QχQ‖L1(Rn ) ≤ (R ′)
1
r Λrrr ,S (fff ).

Now note that it follows from the monotone convergence theorem that

‖MD
rrr (fff )‖L1(Rn ) ≤ sup

F⊆D:F finite
‖MF

rrr (fff )‖L1(Rn ) ≤ (R ′)
1
r sup

S
Λrrr ,S (fff ),

proving the result for the dyadic maximal operator. The assertion now follows from

Lemma 3.2.4.

The following result is a consequence of Theorem 3.2.3 and Proposition 3.2.10. For

clarity, we formulate this result here in terms of m-tuples of weights. For this we will use

the notation M(~r ,s′)(~f , g ) = M(r1,...,rm ,s′)( f1, . . . , fm , g ) and similarly forΛ(~r ,s′).

Theorem 3.2.11. Let ~r ∈ (0,∞)m , s ∈ (1,∞], and ~p ∈ (0,∞]m with ~p >~r and 1 ≤ p < s.

Then the following are equivalent:

(i) ~w ∈ A~p,(~r ,s);

(ii) M(~r ,s′) is bounded L
~p
~w (Rn)×Lp ′

w−1 (Rn) → L1,∞(Rn);

(iii) M(~r ,s′) is bounded L
~p
~w (Rn)×Lp ′

w−1 (Rn) → L1(Rn);

(iv) supS Λ(~r ,s′),S is bounded L
~p
~w (Rn)×Lp ′

w−1 (Rn) → R, where the supremum is taken

over all sparse collections S ;
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(v) Λrrr ,S is bounded L
~p
~w (Rn)×Lp ′

w−1 (Rn) → R uniformly in all sparse collections S .

In this case we have

‖M(~r ,s′)‖L
~p
~w

(Rn )×L
p′
w−1 (Rn )→L1,∞(Rn )

hr,s [~w]~p,(~r ,s), (3.2.17)

‖M(~r ,s′)‖L
~p
~w

(Rn )×L
p′
w−1 (Rn )→L1(Rn )

hr,s ‖sup
S
Λ(~r ,s′),S ‖

L
~p
~w

(Rn )×L
p′
w−1 (Rn )→R

hr,s sup
S

‖Λ(~r ,s′),S ‖
L
~p
~w

(Rn )×L
p′
w−1 (Rn )→R

.
(3.2.18)

Moreover, we have

sup
S

‖Λ(~r ,s′),S ‖
L
~p
~w

(Rn )×L
p′
w−1 (Rn )→R

.r,s c~p,~r ,s [~w]
max

{
1
~r

1
~r − 1

~p
,

1− 1
s

1
p − 1

s

}
~p,(~r ,s) (3.2.19)

with

c~p,~r ,s =
( m∏

j=1

( 1
r j

1
r j
− 1

p j

) 1
r j

)( 1− 1
s

1
p − 1

s

)1− 1
s

.

This estimate is optimal in the sense that the power of the weight is the smallest possible

one, and when ~w ≡ 1, the three quantities in (3.2.18) are equivalent to c~p,~r ,s .

We point out that by Theorem 3.2.3, (3.2.17) holds more generally when ~p ≥~r and 1 ≤
p ≤ s. Note that the only part of this theorem that does not follow from Theorem 3.2.3 is

(3.2.18), which we will see is a consequence of Proposition 3.2.10. We point out however,

that rather than using Lemma 3.2.6 to prove the bound (3.2.19) as was done in the proof

of Theorem 3.2.3, it is interesting in its own right to give an alternative proof of this

bound via sparse forms. It is worth noting that this alternative approach is quantitatively

worse than our previous proof in that we obtain an exponentially worse dependence in
~p. Indeed, this constant appears in Lemma 3.2.13 below.

To facilitate our proof we will require two preparatory lemmata. The following is a

reformulation of the definition of the weight class.

Lemma 3.2.12. Let rrr ∈ (0,∞)m+1 and let ppp ∈ (0,∞]m satisfy ppp > rrr and
∑m+1

j=1
1

p j
= 1.

Moreover, let www be an m + 1 tuple of weights satisfying
∏m+1

j=1 w j = 1 and define v j :=

w

− 1
1

r j
− 1

p j

j . Then www ∈ Appp,(rrr ,∞) if and only if for those j ∈ {1, . . . ,m+1} for which p j <∞ the

weight v j is locally integrable, and there is a constant c > 0 such that for all cubes Q we

have (
m+1∏
j=1

〈v j 〉
1

r j

1,Q

)
|Q| ≤ c

m+1∏
j=1

v j (Q)
1

p j .

In this case, the optimal constant c in this inequality is given by [www]ppp,(rrr ,∞).

The next lemma allows us to deal with the sparseness condition.
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Lemma 3.2.13. Let rrr ∈ (0,∞)m+1 and let ppp ∈ (0,∞]m satisfy ppp > rrr and
∑m+1

j=1
1

p j
= 1.

Moreover, let www be an m + 1 tuple of weights satisfying
∏m+1

j=1 w j = 1 and define v j :=

w

− 1
1

r j
− 1

p j

j . Let Q be a cube and let E ⊆Q such that |Q| ≤ 2|E |. If www ∈ Appp,(rrr ,∞), then

(
m+1∏
j=1

〈v j 〉
1

r j

1,Q

)
|Q| ≤ 2

( 1
r −1

)
max

{
1
rrr

1
rrr − 1

ppp

}
− 1

r
[www]

max

{
1
rrr

1
rrr − 1

ppp

}
ppp,(rrr ,∞)

m+1∏
j=1

v j (E)
1

p j . (3.2.20)

Remark 3.2.14. Having Lemma 3.2.12 in mind, it seems that the larger power of the

weight constant in (3.2.20) comes from the fact that we are passing from the weighted

measure of the set Q to the measure of the smaller set E . In fact, it seems like we are only

using the full weight condition www ∈ Appp,(rrr ,∞) once and we are left with an estimate of the

form
m+1∏
j=1

v j (Q)
1

p j .
m+1∏
j=1

v j (E)
1

p j ,

where the implicit constant depends on the weights. This estimate seems to only require

the weaker Fujii-Wilson A∞ condition satisfied by the weight v j , but we do not pursue

this further here. We refer the reader to Section 3.3 for a discussion on improving esti-

mates using multilinear analogues of Fujii-Wilson A∞ conditions.

Proof. We set γ := max

{
1
rrr

1
rrr − 1

ppp

}
and

β j := 1

r j
−

(
1

r j
− 1

p j

)
γ,

so that β j ≤ 0 for all j ∈ {1, . . . ,m +1}. Thus, since 〈v j 〉1,E ≤ 2〈v j 〉1,Q by the assumptions

on E , we have 〈v j 〉β j

1,Q ≤ 2−β j 〈v j 〉β j

1,E . Then(
m+1∏
j=1

〈v j 〉
1

r j

1,Q

)
|Q| =

(
m+1∏
j=1

〈v j 〉
1

r j
− 1

p j

1,Q

)γ (
m+1∏
j=1

〈v j 〉β j

1,Q

)
|Q| ≤ [www]γppp,(rrr ,∞)

(
m+1∏
j=1

〈v j 〉β j

1,Q

)
|Q|

≤ 2
( 1

r −1
)
γ− 1

r [www]γppp,(rrr ,∞)

(
m+1∏
j=1

〈v j 〉β j

1,E

)
|E |

= 2
( 1

r −1
)
γ− 1

r [www]γppp,(rrr ,∞)

(
m+1∏
j=1

v j (E)β j

)
|E |1−

∑m+1
j=1 β j .

(3.2.21)

Next, set α :=∑m+1
j=1

(
1
r j
− 1

p j

)
> 0 and k j :=α

(
1
r j
− 1

p j

)−1
. Then

m+1∑
j=1

1

k j
= 1

α

m+1∑
j=1

(
1

r j
− 1

p j

)
= 1
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and

1−
m+1∑
j=1

β j =
m+1∑
j=1

1

p j
−

m+1∑
j=1

1

r j
+γ

m+1∑
j=1

(
1

r j
− 1

p j

)
= (γ−1)α

so that
1−∑m+1

j=1 β j

k j
=

(
1

r j
− 1

p j

)
(γ−1) = 1

p j
−β j .

Thus, since
∏m+1

j=1 v
1

r j
− 1

p j

j =∏m+1
j=1 w j = 1, it follows from Hölder’s inequality that

|E |1−
∑m+1

j=1 β j =
∫

E

m+1∏
j=1

v
1
α

(
1

r j
− 1

p j

)
j dx

1−∑m+1
j=1 β j

≤
m+1∏
j=1

v j (E)

1−∑m+1
j=1 β j

k j =
m+1∏
j=1

v j (E)
1

p j
−β j

.

By combining this estimate with (3.2.21), we obtain (3.2.20). The assertion follows.

Proof of Theorem 3.2.11. The equivalence of (i), (ii), and (iii) follows from Theorem 3.2.3.

We will prove that (iii), (iv), (v) are equivalent by proving (3.2.18).

Set 1
pm+1

:= 1− 1
p ≥ 0, 1

rm+1
:= 1− 1

s and wm+1 := w−1 so that we are back in the m+1-

tuple notation.

To prove (3.2.18), note that first equivalence follows from (3.2.14) with R = 2. For the

second equivalence we note that

sup
S

‖Λrrr ,S ‖L
ppp
www (Rn )→R ≤ ‖sup

S
Λrrr ,S ‖L

ppp
www (Rn )→R,

so that to conclude the result it suffices to show that

‖Mrrr ‖L
ppp
www (Rn )→L1(Rn ) . sup

S
‖Λrrr ,S ‖L

ppp
www (Rn )→R.

Fix a dyadic grid D = Dα, a finite collection of cubes F ⊆ D, and fff ∈ Lppp
www (Rn) of norm

1. Then just as in the proof of Proposition 3.2.10 we can find a sparse collection S ⊆F

such that

‖MF
rrr (fff )‖L1(Rn ) .rrr Λrrr ,S (fff ) ≤ ‖Λrrr ,S ‖L

ppp
www (Rn )→R

≤ sup
S

‖Λrrr ,S ‖L
ppp
www (Rn )→R.

Hence, by the monotone convergence theorem, we have

‖MD
rrr (fff )‖L1(Rn ) ≤ sup

F⊆D:F finite
‖MF

rrr (fff )‖L1(Rn ) .rrr sup
S

‖Λrrr ,S ‖L
ppp
www (Rn )→R.

The result now follows from taking a supremum over all fff ∈ Lppp
www (Rn) of norm 1 and

Lemma 3.2.4.

Finally, we prove (3.2.19). Let S be a sparse collection of cubes which, by Lemma 3.2.9,

at the loss of a dimensional constant we may assume to be contained in a dyadic grid
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D =Dα. We set v j := w

− 1
1

r j
− 1

p j

j for j ∈ {1, . . . ,m +1} and γ := max

{
1
rrr

1
rrr − 1

ppp

}
. Then it follows

from Lemma 3.2.13 and Lemma 3.2.5 that

Λrrr ,S ( f1, . . . , fm+1) = ∑
Q∈S

(
m+1∏
j=1

〈 f j 〉r j ,Q

)
|Q|

= ∑
Q∈S

(
m+1∏
j=1

〈 f j v
− 1

r j

j 〉v j

r j ,Q〈v j 〉
1

r j

1,Q

)
|Q|

.r,γ [www]γppp,(rrr ,∞)

∑
Q∈S

m+1∏
j=1

〈 f j v
− 1

r j

j 〉v j

r j ,Q v j (EQ )
1

p j

≤ [www]γppp,(rrr ,∞)

∑
Q∈P

m+1∏
j=1

(∫
EQ

M
v j ,D
r j

( f j v
− 1

r j

j )p j v j dx

) 1
p j

≤ [www]γppp,(rrr ,∞)

m+1∏
j=1

‖M
v j ,D
r j

( f j v
− 1

r j

j )‖L
p j (Rn ;v j )

≤ cppp,rrr [www]γppp,(rrr ,∞)

m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
,

As this estimate is uniform in the sparse collection S , this proves (3.2.19). The assertion

follows.

3.3. MULTILINEAR FUJII-WILSON AND REVERSE HÖLDER CONSTANTS

A classical result for the Ap classes is the fact that every w ∈ Ap satisfies a reverse Hölder

estimate from which one can deduce that for some ε > 0 we have w ∈ Ap−ε. In our

notation this can be equivalently formulated by saying that if w ∈ Ap,(r,s), then there is

an α > 1 such that w ∈ Ap,(αr,s). In this section we establish a multilinear analogue of

this result. Moreover, we include an open problem regarding the sharp control of the

parameter α in terms of a multilinear analogue of the Fujii-Wilson A∞ condition, as

well as an open problem regarding an improved bound in the two weight setting for the

multisublinear maximal operator with respect to this constant.

In the previous section we have established bounds for the multisublinear maximal

operators that are optimal in terms of control by powers of the weight constant [·]~p,(~r ,s).

In this section we define a smaller constant to try to obtain an even more precise control

in terms of the weight.

For a collection of cubes P and a cube Q we will write P (Q) := {P ∈P : P ⊆Q}.

Definition 3.3.1. Let ~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , and let ~w be an m-tuple of
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weights. Setting v j := w

− 1
1

r j
− 1

p j

j , for each dyadic grid Dα, α ∈ {
0, 1

3 , 2
3

}n , we define

[~w]FW,Dα

~p,~r
:= sup

Q∈Dα

〈MDα(Q)
~p (v

1
p1

1 , . . . , v
1

pm
m )〉p,Q∏m

j=1〈v j 〉
1

p j

1,Q

and

[~w]F̃W,Dα

~p,~r
:= sup

Q∈Dα

〈MDα

~p,Q (v
1

p1
1 , . . . , v

1
pm

m )〉p,Q

〈∏m
j=1 v

1
p j

j 〉p,Q

Moreover, we define [~w]FW
~p,~r

:= max
α∈

{
0, 1

3 , 2
3

}n [~w]FW,Dα

~p,~r , [~w]F̃W
~p,~r

:= max
α∈

{
0, 1

3 , 2
3

}n [~w]F̃W,Dα

~p,~r .

Note that by Hölder’s inequality we have

[~w]FW
~p,~r ≤ max

α∈
{

0, 1
3 , 2

3

}n
sup

Q∈Dα

∏m
j=1〈MDα(Q)

p j
(v

1
p j

j )〉p j ,Q∏m
j=1〈v j 〉

1
p j

1,Q

≤
m∏

j=1
[w j ]FW

p j ,r j
=

m∏
j=1

[v j ]
1

p j

A∞ ,

where [·]A∞ is the Fujii-Wilson A∞ constant

[w]A∞ = max
α∈

{
0, 1

3 , 2
3

}n
sup

Q∈Dα

1

w(Q)

∫
Q

MDα(Q)(w)dx,

which first appeared (in an equivalent form) in the works [Fuj78, Wil87, Wil89, Wil08]

and was later studied in [HPR12, HP13] in relation to a sharp reverse Hölder inequality.

In this section we wish to generalize some of their results to a multilinear setting. More-

over, we give some alternative proofs or certain properties of the constant [·]F̃W
~p,~r which

was first studied (in an alternative form) in [ZK19]. As we will see, the generally smaller

constant [·]FW
~p,~r seems to be better suited to study multilinear reverse Hölder inequalities,

however the precise nature of this relationship remains open. We prove some partial re-

sults.

Remark 3.3.2. In a dyadic grid D =Dα, it follows from the equivalence

sup
S ⊆D

S sparse

( ∑
Q ′∈S (Q)

( m∏
j=1

v j (Q ′)
1

p j

)p
) 1

p

h
(∫

Q
MD(Q)
~p (v

1
p1

1 , . . . , v
1

pm
m )p dx

) 1
p

,

see Proposition 3.2.10, that the condition [~w]FW,D
~p,~r <∞ can be equivalently formulated

through the inequality ∑
Q ′∈S (Q)

m∏
j=1

v j (Q ′)
p

p j .
m∏

j=1
v j (Q)

p
p j ,

which should be valid uniformly for all sparse collections S ⊆D and cubes Q ∈D.
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Note that when m = 1 we have [w]FW
p,r = [w]F̃W

p,r . In general, we have the following

properties:

Proposition 3.3.3. Let ~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , and let ~w be an m-tuple of

weights. The following properties hold:

(i) 1 ≤ [~w]FW
~p,~r ≤ [~w]F̃W

~p,~r ;

(ii) If ~w ∈ A~p,(~r ,∞), then [~w]FW
~p,~r , [~w]F̃W

~p,~r <∞ with

[~w]F̃W
~p,~r ≤ e

1
r [~w]

max

{ 1
~p

1
~r − 1

~p

}
~p,(~r ,∞) .

For the purpose of the proof of this result we extend the Lr -averaging notation to

include the limiting case r = 0 by setting 〈 f 〉0,Q := e
1
|Q|

∫
Q log | f |dx and set MD

0 ( f )(x) :=
supQ∈D〈 f 〉0,QχQ (x). We will need the following lemma:

Lemma 3.3.4. For all p ∈ (0,∞] we have ‖MD
0 ‖Lp (Rn )→Lp (Rn ) ≤ e

1
p .

Proof. Let r ∈ (0, p). Since MD
0 ( f ) ≤ MD

r ( f ), it follows from Lemma 3.2.5 that

‖MD
0 ‖Lp (Rn )→Lp (Rn ) ≤ ‖MD

r ‖Lp (Rn )→Lp (Rn ) ≤
( 1

r
1
r − 1

p

) 1
r

.

Letting r → 0, the right-hand side converges to e
1
p , proving the result.

Proof of Proposition 3.3.3. Set v j := w

− 1
1

r j
− 1

p j

j and let D =Dα be a dyadic grid. To prove

the first inequality in (i), note that for all Q ∈D we have

1 =
∏m

j=1〈v
1

p j

j 〉p j ,Q∏m
j=1〈v j 〉

1
p j

1,Q

≤
〈MD(Q)

~p (v
1

p1
1 , . . . , v

1
pm

m )〉p,Q∏m
j=1〈v j 〉

1
p j

1,Q

≤ [~w]FW
~p,~r .

The second inequality follows from the inequality 〈∏m
j=1 v

1
p j

j 〉p,Q ≤ ∏m
j=1〈v j 〉

1
p j

1,Q which

follows from Hölder’s inequality.

For (ii), define

[~v] := sup
Q∈D

(
m∏

j=1
〈v j 〉

1
p j

1,Q

)
〈

m∏
j=1

v
− 1

p j

j 〉0,Q = sup
Q∈D

(
m∏

j=1
〈v j 〉

1
p j

1,Q

)
〈

m∏
j=1

v
1

p j

j 〉−1
0,Q .

We note that the definition of [~v] implies that for a fixed cube Q ∈D we have

MD(Q)
~p (v

1
p1

1 , . . . , v
1

pm
m ) ≤ [~v]MD

0 (
m∏

j=1
v

1
p j

j χQ ).
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Hence, by Lemma 3.3.4,

〈MD(Q)
~p (v

1
p1

1 , . . . , v
1

pm
m )〉p,Q ≤ [~v]〈MD

0 (
m∏

j=1
v

1
p j

j χQ )〉p,Q ≤ [~v]|Q|− 1
p ‖MD

0 (
m∏

j=1
v

1
p j

j χQ )‖Lp (Rn )

≤ e
1
p [~v]|Q|− 1

p ‖
m∏

j=1
v

1
p j

j χQ‖Lp (Rn ) = e
1
p [~w]γ

~p〈
m∏

j=1
v

1
p j

j 〉p,Q ,

proving that

[~w]FW
~p ≤ e

1
r [~v]. (3.3.1)

Setting γ := max

{ 1
~p

1
~r − 1

~p

}
, we claim that

[~v] ≤ [~w]γ
~p,(~r ,∞). (3.3.2)

Combining this with (3.3.1) then proves the desired result.

To prove the claim, fix a cube Q ∈D. Since w
∏m

j=1 v
1

r j
− 1

p j

j = w
∏m

j=1 w−1
j = 1, we have

m∏
j=1

v
− 1

p j

j =
(
w

m∏
j=1

v
1

r j
− 1

p j

j

)γ m∏
j=1

v
− 1

p j

j = wγ
m∏

j=1
v

(
1

r j
− 1

p j

)
γ− 1

p j

j .

Thus, setting 1
q := 1

p γ+
∑m

j=1

(
1
r j
− 1

p j

)
γ− 1

p j
and using the fact that

(
1
r j
− 1

p j

)
γ− 1

p j
≥ 0

for all j ∈ {1, . . . ,m}, it follows from Hölder’s inequality that

〈
m∏

j=1
v
− 1

p j

j 〉0,Q ≤ 〈
m∏

j=1
v
− 1

p j

j 〉q,Q ≤ 〈wγ〉 1
1
p γ

,Q

m∏
j=1

〈v

(
1

r j
− 1

p j

)
γ− 1

p j

j 〉 1(
1

r j
− 1

p j

)
γ− 1

p j

,Q

= 〈w〉γp,Q

m∏
j=1

〈v j 〉
(

1
r j

− 1
p j

)
γ− 1

p j

1,Q .

Then we find that(
m∏

j=1
〈v j 〉

1
p j

1,Q

)
〈

m∏
j=1

v
− 1

p j

j 〉0,Q ≤ 〈w〉γp,Q

m∏
j=1

〈v j 〉
(

1
r j

− 1
p j

)
γ

1,Q

=
(
〈w〉p,Q

m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q

)γ
≤ [~w]γ

~p,(~r ,∞).

Taking a supremum over all cubes Q ∈D yields (3.3.2), as desired. The assertion follows.

We have the following result:
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Theorem 3.3.5. Let ~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~r < ~p, and let ~w , v be m + 1 weights.

Then

‖M~r ‖L
~p
~w

(Rn )→L
p
v (Rn )

.r c~p,~r [~w , v]~p,(~r ,∞)[~w]F̃W
~p,~r

with

c~p,~r =
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

.

This result was first proven in [ZK19] and we give an alternative version of this proof

here, going through a Sawyer-type testing condition.

Note that when v = w is the product weight, then Proposition 3.3.3(ii) implies that

[~w]~p,(~r ,∞)[~w]F̃W
~p,~r ≤ [~w]

1+max

{ 1
~p

1
~r − 1

~p

}
~p,(~r ,∞) = [~w]

max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞) ,

so that Theorem 3.3.5 improves the bound for M~r from Theorem 3.2.3.

In view of Proposition 3.3.3(i), we propose the following conjecture:

Conjecture 3.3.6. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with~r < ~p, and let ~w , v be m +1 weights.

Then

‖M~r ‖L
~p
~w

(Rn )→L
p
v (Rn )

.~p,~r [~w , v]~p,(~r ,∞)[~w]FW
~p,~r .

The conjecture is true in the case m = 1, since then [·]FW
p,r = [·]F̃W

p,r . We also provide an

alternative way of proving the case m = 1 through a sharp reverse Hölder estimate.

To prove Theorem 3.3.5, we first prove the following result:

Theorem 3.3.7. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with~r < ~p, let ~w , v be m +1 weights, and let

D =Dα be a dyadic grid. Setting v j := w

− 1
1

r j
− 1

p j

j , we have

sup
Q∈D

〈MD(Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )v〉p,Q∏m

j=1〈v j 〉
1

p j

1,Q

≤ ‖MD
~r ‖

L
~p
~w

(Rn )→L
p
v (Rn )

.r c~p,~r sup
Q∈D

〈MD(Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )v〉p,Q

〈∏m
j=1 v

1
p j

j 〉p,Q

,

with

c~p,~r =
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

.

Note that when m = 1 this result gives the equivalence

‖MD
r ‖L

p
w (Rn )→L

p
v (Rn ) hp,r sup

Q∈D

〈MD(Q)
r (w

−
1
r

1
r − 1

p )v〉p,Q

〈w
− 1

1
r − 1

p 〉
1
p

1,Q

.
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It is however unlikely that when m > 1 we have the equivalence

‖MD
~r ‖

L
~p
~w

(Rn )→L
p
v (Rn )

h~p,~r sup
Q∈D

〈MD(Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )v〉p,Q∏m

j=1〈v j 〉
1

p j

1,Q

,

which would imply Conjecture 3.3.6 (as can be shown in a way analogous to the proof

of Theorem 3.3.5 below). Indeed, a counterexample by Tuomas Hytönen1 shows that

this equivalence fails when the weights are replaced by more general measures and it

seems that this counterexample can be adapted to this setting of weights. Thus, if Con-

jecture 3.3.6 is true, it needs to be proven using a different method.

Proof of Theorem 3.3.7. For the first inequality we have

|Q| 1
p 〈MD(Q)

~r (v
1

r1
1 , . . . , v

1
rm
m )v〉p,Q ≤ ‖MD

~r (v
1

r1
1 χQ , . . . , v

1
rm
m χQ )‖L

p
v (Rn )

≤ ‖MD
~r ‖

L
~p
~w

(Rn )→L
p
v (Rn )

m∏
j=1

‖χQ v
1

r j

j ‖
L

p j
w j

(Rn )

= |Q| 1
p ‖MD

~r ‖
L
~p
~w

(Rn )→L
p
v (Rn )

m∏
j=1

〈v j 〉
1

p j

1,Q ,

as desired.

For the second, let F ⊆ D be a finite collection of cubes. Then there is a sparse

collection of cubes S ⊆F such that

‖MF
~r (~f )‖L

p
v (Rn ) .r

∥∥ ∑
Q∈S

m∏
j=1

〈 f j 〉r j ,QχEQ

∥∥
L

p
v (Rn ),

see Proposition 3.2.10 and [Nie19, Lemma 2.9]. We proceed with a construction very

similar to the one in the proof of Proposition 3.2.10. We will recursively define a collec-

tion of cubes T ⊆ S . For each Q ∈ S we define its stopping children chS (Q) through

the following procedure. For each dyadic child Q ′ of Q we check if Q ′ ∈S and if

m∏
j=1

〈 f j v
− 1

r j

j 〉v j

r j ,Q ′ > 2
1
r

m∏
j=1

〈 f j v
− 1

r j

j 〉v j

r j ,Q . (3.3.3)

If this is the case, then we add Q ′ to chS (Q). Otherwise, we repeat this process to the

dyadic children of Q ′. The pairwise disjoint collection of cubeschS (Q) thus obtained are

the cubes in S strictly contained in Q satisfying (3.3.3) that are maximal (with respect

to inclusion). Now, let T0 denote the maximal cubes in S . Then we recursively define

Tk+1 :=∪Q∈Tk chS (Q) and set T :=∪∞
k=0Tk .

1Personal communication, 2019
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For a cube Q ∈ F we let πT (Q) denote the minimal cube in T containing Q. As

in the proof of Proposition 3.2.10 we then have
∏m

j=1〈 f j v
− 1

r j

j 〉v j

r j ,Q ′ ≤ 2
1
r
∏m

j=1〈 f j v
− 1

r j

j 〉v j

r j ,Q

whenever Q ∈T and πT (Q ′) =Q, and S =∪Q∈T {P ∈S :πT (P ) =Q}. Thus, setting

M := sup
Q∈D

〈MF (Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )v〉p,Q

〈∏m
j=1 v

1
p j

j 〉p,Q

and vm+1 := v p , we have

∥∥ sup
Q∈S

m∏
j=1

〈 f j 〉r j ,QχEQ

∥∥
L

p
v (Rn ) =

∥∥ ∑
Q∈S

m∏
j=1

〈 f j v
− 1

r j

j 〉v j

r j ,Q〈v
1

r j

j 〉r j ,QχEQ

∥∥
L

p
v (Rn )

=

 ∑
Q∈T

∑
Q ′∈S

πT (Q ′)=Q

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q ′〈v
1

r j

j 〉r j ,Q ′
)p vm+1(EQ ′ )


1
p

.r

 ∑
Q∈T

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p ∑
Q ′∈S

πT (Q ′)=Q

( m∏
j=1

〈v
1

r j

j 〉r j ,Q ′
)p

vm+1(EQ ′ )


1
p

≤
( ∑

Q∈T

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p ∑
Q ′∈S (Q)

∫
EQ′

MF (Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )p vm+1 dx

) 1
p

≤
( ∑

Q∈T

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p
∫

Q
MF (Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )p v p dx

) 1
p

≤M

( ∑
Q∈T

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p
∫

Q

m∏
k=1

v
p

pk
k dx

) 1
p

=M

(∫
Rn

( ∑
Q∈T

χQ

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p
) m∏

k=1
v

p
pk

k dx

) 1
p

.

(3.3.4)

Now, fix a point x ∈ Rn and consider the (possibly finite) sequence of cubes Q0 ⊇ Q1 ⊇
Q2 ⊇ ·· · with Qk ∈ Tk containing x. In case the sequence is finite, we denote the high-

est index by Nx . Otherwise we set Nx = ∞. By construction of the cubes, we have
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∏m
j=1〈 f j v

− 1
r j

j 〉v j

r j ,Qk+1
> 2

1
r
∏m

j=1〈 f j v
− 1

r j

j 〉v j

r j ,Qk
for k +1 ≤ Nx so that

∑
Q∈T

χQ (x)
m∏

j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p = lim
N→∞

min(N ,Nx )∑
k=0

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Qk

)p

≤ limsup
N→∞

min(N ,Nx )∑
k=0

2−
p
r (min(N ,Nx )−k)

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,QN

)p

≤ 1

1−2−
p
r

m∏
j=1

(
M

v j ,D
r j

( f j v
1

r j

j )(x)
)p ≤ 2

m∏
j=1

(
M

v j ,D
r j

( f j v
1

r j

j )(x)
)p

.

Hence, by Lemma 3.2.5 and Hölder’s inequality,

(∫
Rn

( ∑
Q∈T

χQ

m∏
j=1

(〈 f j v
− 1

r j

j 〉v j

r j ,Q

)p
) m∏

k=1
v

p
pk

k dx

) 1
p

.
∥∥ m∏

j=1
M

v j ,D
r j

( f j v
1

r j

j )v
1

p j

j

∥∥
Lp (Rn )

≤
m∏

j=1
‖M

v j ,D
r j

( f j v
− 1

r j

j )‖L
p j (Rn ;v j )

≤
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

‖ f j ‖L
p j
w j

(Rn )
.

Combining this with (3.3.4) proves the assertion for MF
~r . The general result then follows

from the fact that ‖MD
~r (~f )‖L

p
v (Rn ) ≤ sup F⊆D

F finite
‖MF

~r (~f )‖L
p
v (Rn ), which follows from the

Monotone Convergence Theorem.

Proof of Theorem 3.3.5. By the three lattice lemma it suffices to prove this result in a

dyadic grid D = Dα and by the Monotone Convergence Theorem it suffices to consider

the result for finite collections F ⊆D. Fix Q ∈F and let S ⊆F (Q) be a sparse collection

of cubes such that MF (Q)
~r (v

1
r1
1 , . . . , v

1
rm
m ).r

∑
Q ′∈S

∏m
j=1〈v j 〉
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1
rm
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1,Q ′
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( m∏
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~p,(~r ,∞)|Q| ∑
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~p (v
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1 , . . . , v

1
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m )〉p
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Hence,
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〈MF (Q)
~r (v

1
r1
1 , . . . , v

1
rm
m )v〉p,Q

〈∏m
j=1 v

1
p j

j 〉p,Q

.r [~w , v]~p,(~r ,∞)

〈MF (Q)
~p (v
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1
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j=1 v

1
p j
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≤ [~w , v]~p,(~r ,∞)[~w]F̃W,D
~p,~r .

Taking a supremum over Q ∈F , the assertion then follows from Theorem 3.3.7.

An alternate approach to try to prove Conjecture 3.3.6 will be through a multilinear

reverse Hölder condition.

Definition 3.3.8. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , let ~w be an m-tuple of weights,

and let β ∈ [1,∞]. Setting v j := w

− 1
1

r j
− 1

p j

j , we write ~w ∈ RH~p,~r ,β if there is a c > 0 such

that for all cubes Q we have

m∏
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〈v j 〉
1

p j

β,Q ≤ c
m∏

j=1
〈v j 〉

1
p j

1,Q .

We denote the smallest possible constant c by [~w]RH~p,~r ,β .

In the following result we show that if ~w ∈ RH~p,β, then [~w]FW
~p,~r <∞.

Proposition 3.3.9. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , let ~w be an m-tuple of weights,

and let β ∈ [1,∞]. If ~w ∈ RH~p,~r ,β, then

[~w]FW
~p,~r . (β′)

1
p [~w]RH~p,~r ,β .
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for a dyadic grid D =Dα and a cube Q ∈D we have
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Hence, [~w]FW
~p,~r . (β′)

1
p [~w]RH~p,~r ,β , as desired.

Proposition 3.3.10. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , let ~w , v be m+1 weights, and

let β ∈ [1,∞]. If ~w ∈ RH~p,~r ,β, then

‖M~r ‖L
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p
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[~w , v]~p,(~r ,∞).
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where J := { j ∈ {1, . . . ,m} : p j <∞} and

c~p,~r =
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

.

Proof. By the three lattice lemma, it suffices to prove the result in a dyadic grid D =Dα

and by the Monotone Convergence Theorem we only need to consider finite collec-

tions F ⊆ D. Let ~f ∈ L
~p
~w (Rn) and let S ⊆ F be a sparse collection of cubes such that
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~r (~f ).r
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∥∥ ∑
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(3.3.5)

where whenever p j =∞we replace the estimate of 〈 f j 〉r j ,Q by 〈 f j 〉r j ,Q ≤ 〈 f j w j 〉∞,Q〈w−1
j 〉r j ,Q
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Combining this with (3.3.5) yields

‖MF
~r (~f )‖L

p
v (Rn ) .r [~w]γRH~p,~r ,β

[~w , v]~p,(~r ,∞)

( ∑
Q∈S

(∏
j∈J

〈 f j w j 〉 1
1
β′

1
r j

+ 1
β

1
p j

,Q

∏
j∉J

〈 f j w j 〉∞,Q

)p |Q|
) 1

p

≤ 2[~w]γRH~p,~r ,β
[~w , v]~p,(~r ,∞)‖MD((

1
1
β′

1
r j

+ 1
β

1
p j

)
j∈J

,(∞) j∉J

)(( f j w j ) j∈J , ( f j w j ) j∉J )‖Lp (Rn )

.r (β′)
1
p [~w]γRH~p,~r ,β

[~w , v]~p,(~r ,∞)

m∏
j=1

 1
r j

1
r j
− 1

p j

 1
r j

‖ f j ‖L
p j
w j

,

where in the last step we used Lemma 3.2.5 so that
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for j ∈ J . The assertion follows.

In view of this result, Conjecture 3.3.6 is a consequence of the following conjecture:

Conjecture 3.3.11. Let ~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p > ~r , let ~w be an m-tuple of

weights, and let β ∈ [1,∞]. If [~w]FW
~p,~r <∞ and β′ ≥ 2n+1([~w]FW

~p,~r )p , then ~w ∈ RH~p,~r ,β with

[~w]RH~p,β . 2
1
βp .

This conjecture is motivated by the following weaker result.

Theorem 3.3.12. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , let ~w be an m-tuple of weights,

let β ∈ [1,∞], and let D = Dα be a dyadic grid. If [~w]FW,D
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For the proof we require a lemma.

Lemma 3.3.13. Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with ~p >~r , let ~w be an m-tuple of weights,

let β ∈ [1,∞], and let D =Dα be a dyadic grid. For β′ ≥ 2n+1([~w]FW,D
~p,~r )p we have
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Proof. Let Q0 ∈D and setΩλ := {x ∈Q0 : MD(Q0)
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>λ we haveΩλ =Q0. Hence,

∫ ∏m
j=1〈v j 〉

1
p j

1,Q0

0
(β−1)pλ(β−1)p−1µ(Ωλ)dλ=

(∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )p dx

)(
m∏

j=1
〈v j 〉

1
p j

1,Q0

)(β−1)p

≤ |Q0|([~w]FW,D
~p,~r )p

(
m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp

.

Moreover, when
∏m

j=1〈v j 〉
1

p j

1,Q0
≤ λ the collection Pλ ⊆ D(Q0) of cubes Q that are max-

imal with respect to the inequality
∏m

j=1〈v j 〉
1

p j

1,Q > λ is pairwise disjoint, has each of its

members strictly contained in Q0, and satisfiesΩλ =⋃
Q∈Pλ

. Hence,∫ ∞∏m
j=1〈v j 〉

1
p j

1,Q0

(β−1)pλ(β−1)p−1µ(Ωλ)dλ

=
∫ ∞∏m

j=1〈v j 〉
1

p j
1,Q0

(β−1)pλ(β−1)p−1
∑

Q∈Pλ

∫
Q

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )p dx dλ.

(3.3.6)

By maximality of the Q ∈Pλ we find that MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )(x) = MD(Q)

~p (v
1

p1
1 , . . . , v

1
pm

m )(x)

for all x ∈Q. Thus, denoting the dyadic parent of Q ∈Pλ by Q̂, by maximality we have∫
Q

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )p dx ≤ ([~w]FW,D

~p,~r )p
m∏

j=1
v j (Q)

p
p j ≤ ([~w]FW,D

~p,~r )p |Q̂|
m∏

j=1
〈v j 〉

p
p j

1,Q̂

≤ 2nλp ([~w]FW,D
~p,~r )p |Q|.

Hence, the right-hand side of (3.3.6) can be estimated by

([~w]FW,D
~p,~r )p

∫ ∞∏m
j=1〈v j 〉

1
p j

1,Q0

(β−1)pλβp−1|Ωλ|dλ≤
2n([~w]FW,D

~p,~r )p

β′

∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )βp dx

≤ 1

2

∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )βp dx

whenever β′ ≥ 2n+1([~w]FW,D
~p,~r )p . Collecting the results yields

1

2
〈MD(Q0)

~p (v
1

p1
1 , . . . , v

1
pm

m )〉βp
βp,Q0

≤ ([~w]FW,D
~p,~r )p

(
m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp

.
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Thus,

sup
Q∈D

〈MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )〉βp,Q0∏m

j=1〈v j 〉
1

p j

1,Q0

≤ 2
1
βp ([~w]FW,D

~p,~r )
1
β ,

whenever β′ ≥ 2n+1([~w]FW,D
~p,~r )p , as asserted.

Proof of Theorem 3.3.12. Set v~p :=∏m
j=1 v

p
p j

j and let Q0 ∈D. Since v~p ≤ MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )p ,

we have

∫
Q0

vβ
~p dx ≤

∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )(β−1)p v~p dx =

∫ ∞

0
(β−1)pλ(β−1)p−1v~p (Ωλ)dλ

(3.3.7)

whereΩλ = {x ∈Q0 : MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )(x) >λ}. Then

∫ ∏m
j=1〈v j 〉

1
p j

1,Q0

0
(β−1)pλ(β−1)p−1v~p (Ωλ)dλ= |Q0|〈v~p〉1,Q0

( m∏
j=1

〈v j 〉
1

p j

1,Q0

)(β−1)p

≤ |Q0|
( m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp

(3.3.8)

and, with Pλ as in the proof of Lemma 3.3.13,

∫ ∞∏m
j=1〈v j 〉

1
p j

1,Q0

(β−1)pλ(β−1)p−1v~p (Ωλ)dλ=
∫ ∞∏m

j=1〈v j 〉
1

p j
1,Q0

(β−1)pλ(β−1)p−1
∑

Q∈Pλ

v~p (Q)dλ,

(3.3.9)

where

∑
Q∈Pλ

v~p (Q) ≤ ∑
Q∈Pλ

|Q̂|〈v~p〉1,Q̂ ≤ 2n
∑

Q∈Pλ

|Q|
( m∏

j=1
〈v j 〉

1
p j

1,Q̂

)p

≤ 2nλp
∑

Q∈Pλ

|Q| = 2nλp |Ωλ|.

Thus, (3.3.9) can be estimated by

2n
∫ ∞∏m

j=1〈v j 〉
1

p j
1,Q

(β−1)pλβp−1|Ωλ|dλ≤ 2n

β′

∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )βp dx.
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Combining this with (3.3.8) and (3.3.7), it follows from Lemma 3.3.13 that∫
Q0

vβ
~p dx ≤ |Q0|

( m∏
j=1

〈v j 〉
1

p j

1,Q0

)βp + 2n

β′

∫
Q0

MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )βp dx

= |Q0|
( m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp + 2n

β′ |Q0|〈MD(Q0)
~p (v

1
p1

1 , . . . , v
1

pm
m )〉βp

βp,Q0

≤ |Q0|
( m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp +
2n+1([~w]FW,D

~p,~r )p

β′ |Q0|
( m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp

≤ 2|Q0|
( m∏

j=1
〈v j 〉

1
p j

1,Q0

)βp
.

whenever β′ ≥ 2n+1([~w]FW,D
~p,~r )p . This proves the result.

Note that in the case m = 1, Theorem 3.3.12 implies Conjecture 3.3.11. Indeed, in

this case we have

Corollary 3.3.14. Let r ∈ (0,∞), p ∈ (0,∞] with p > r , let w be a weight, and let β ∈
[1,∞]. If [w]FW

p,r < ∞ and β′ ≥ 2n+1([w]FW
p,r )p = 2n+1[w

− 1
1
r − 1

p ]A∞ , then w ∈ RHp,r,β with

[w]RHp,r,β . 2
1
βp and hence,

〈w
− 1

1
r − 1

p 〉β,Q . 2〈w
− 1

1
r − 1

p 〉1,Q .

for all cubes Q.

This result was proven in [HPR12] and was used to obtain a sharp self-improvement

result for the Muckenhoupt classes. We show here that it can also be used to prove the

following multilinear self-improvement result:

Proposition 3.3.15 (Self-improvement of multilinear weight classes). Let ~w ∈ A~p,(~r ,s).

Then there is an 1 < α̃< min
{ ~p
~r

}
such that for all 0 <α≤ α̃ we have ~w ∈ A~p,(α~r ,s) with

[~w]~p,(α~r ,s) .r,s [~w]~p,(~r ,s). (3.3.10)

Proof. By Proposition 3.1.6 and Lemma 3.2.1 we have w j ∈ A 1
1

p j
− 1
σ j

,( 1
1

r j
− 1
σ j

,∞) with 1
σ j

=
1
r j

− ( 1
r − 1

s

)
. Hence, by Proposition 3.3.3 we have [w j ]FW

1
1

p j
− 1
σ j

, 1
1

r j
− 1
σ j

< ∞. Thus, since

1
r j
− 1

σ j
− ( 1

p j
− 1

σ j

)= 1
r j
− 1

p j
, by Corollary 3.3.14 there exists a β j > 1 such that

〈w−1
j 〉 β j

1
r j

− 1
p j

,Q
. 2

1
r j

− 1
p j 〈w−1

j 〉 1
1

r j
− 1

p j

,Q .
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We define α̃ := min j

1
r j

1
β′

j

1
p j

+ 1
β j

1
r j

so that 1 < α̃< min
{ ~p
~r

}
and

1
r j

− 1
p j

1
αr j

− 1
p j

≤ β j for any 0 <α≤

α̃. Then

[~w]~p,(α~r ,s) = sup
Q

〈w〉 1
1
p − 1

s
,Q

m∏
j=1

〈w−1
j 〉 1

1
αr j

− 1
p j

,Q ≤ sup
Q

〈w〉 1
1
p − 1

s
,Q

m∏
j=1

〈w−1
j 〉 β j

1
r j

− 1
p j

,Q

. 2
1
r − 1

s sup
Q

〈w〉 1
1
p − 1

s
,Q

m∏
j=1

〈w−1
j 〉 1

1
r j

− 1
p j

,Q = 2
1
r − 1

s [~w]~p,(~r ,s).

The assertion follows.





4
THE MULTILINEAR RUBIO DE FRANCIA ALGORITHM

AND EXTRAPOLATION

In this chapter we prove the abstract version of the sharp multilinear limited range ex-

trapolation theorem. This is based on the main result from the paper

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.

Mathematische Annalen, 375(1-2):453–507, 2019.

4.1. MULTILINEAR EXTRAPOLATION

The main theorem of this chapter is as follows:

Theorem 4.1.1 (Quantitative multilinear limited range extrapolation). Let~r ∈ (0,∞)m ,

s ∈ (0,∞], t ∈ (0, s), and let ~q ∈ (0,∞]m satisfying ~q ≥~r , t ≤ q ≤ s.

Suppose we are given ~p ∈ (0,∞]m satisfying ~p > ~r , t ≤ p < s, (or p j = q j for some

j ∈ {1, . . . ,m} or p = q), ~w ∈ A~p,(~r ,s), and ~f ∈ L
~p
~w (Rn), g ∈ L

1
1
t − 1

p

w−1 (Rn). Then there is a
~W ∈ A~q ,(~r ,s) such that

( m∏
j=1

‖ f j ‖L
q j
W j

(Rn )

)
‖g‖

L

1
1
t − 1

q

W −1 (Rn )

≤ 2
m2

t

( m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

)
‖g‖

L

1
1
t − 1

p

w−1 (Rn )

(4.1.1)

and

[~W ]~q ,(~r ,s) ≤C~p,~q ,~r ,s [~w]
max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s) . (4.1.2)

We note that the addendum p j = q j or p = q is only relevant when we have equality

in one of the components in ~q ≥~r or q ≤ s, i.e., if q = s or q j = r j for some j ∈ {1, . . . ,m},

and in this case we may indeed include the respective cases with p = s or p j = r j to

the conclusions of the result. In this case one should respectively use the interpretation
1
q − 1

s
1
p − 1

s
= 1 or

1
r j

− 1
q j

1
r j

− 1
p j

= 1.

Qualitatively, one can think of this result as the inclusion⋃
~p>~r , p<s

⋃
~w∈A~p,(~r ,s)

L
~p
~w (Rn) ⊆ ⋂

~p≥~r , p≤s

⋃
~w∈A~p,(~r ,s)

L
~p
~w (Rn). (4.1.3)
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After a rescaling argument, the extrapolation theorem follows from the symmetric

version of the theorem below. In this theorem we deal with m +1-tuples as well as m-

tuples of the same parameters, which can be notationally confusing. To circumvent this

problem, we shall use the convention from Subsection 3.2.2 that for m +1 parameters

α1, . . . ,αm+1 we shall use the boldface notationααα= (α1, . . . ,αm+1) for m+1-tuples while

we will use the arrow notation ~α= (α1, . . . ,αm) for m-tuples.

Theorem 4.1.2. Let rrr ∈ (0,∞)m+1 and let qqq ∈ (0,∞]m+1 satisfying qqq ≥ rrr and
∑m+1

j=1
1

q j
= 1.

Suppose we are given ppp ∈ (0,∞]m+1 satisfying ppp > rrr (or p j = q j ) and
∑m+1

j=1
1

p j
= 1, an

m +1 tuple of weights www satisfying
∏m+1

j=1 w j = 1 and www ∈ Appp,(rrr ,∞), and fff ∈ Lppp
www (Rn). Then

there is an m +1-tuple of weights WWW satisfying
∏m+1

j=1 W j = 1 and WWW ∈ Aqqq ,(rrr ,∞) such that

m+1∏
j=1

‖ f j ‖L
q j
W j

(Rn )
≤ 2m2

m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
(4.1.4)

and

[WWW ]qqq ,(rrr ,∞) ≤Cppp,qqq ,rrr [www]
max

{
1
rrr − 1

qqq
1
rrr − 1

ppp

}
ppp,(rrr ,∞) . (4.1.5)

The proof of this theorem relies on a multilinear generalization of the Rubio de Fran-

cia algorithm.

Lemma 4.1.3 (Multilinear Rubio de Francia algorithm). Let~r ∈ (0,∞)m , ~p ∈ (0,∞]m with
~r < ~p. Then for each ~w ∈ A~p,(~r ,∞) there exist operators Rp j ,r j ,~w : L

p j
w j

(Rn) → L
p j
w j

(Rn) satis-

fying

(i) | f j | ≤ Rp j ,r j ,~w f j ;

(ii) ‖Rp j ,r j ,~w f j ‖L
p j
w j

(Rn )
≤ 2‖ f j ‖L

p j
w j

(Rn )
;

(iii)
m∏

j=1
〈Rp j ,r j ,~w f j 〉r j ,Q .r c~p,~r [~w]

max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞) inf

y∈Q

m∏
j=1

Rp j ,r j ,~w f j (y) for all cubes Q, where

c~p,~r =
m∏

j=1

 1
r j

1
r j
− 1

p j

 1
r j

.

Remark 4.1.4. When f j 6= 0, then we note that Rp j ,r j ,~w f j is strictly positive. Setting R j :=
(Rp j ,r j ,~w f j )−1, we point out that property (iii) is then equivalent to the condition ~R ∈
A~∞,(~r ,∞) with

[~R]~∞,(~r ,∞) .r c~p,~r [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞) .
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Proof. Letting Np j ,r j ,~w be as in Lemma 3.2.6, we define

Rp j ,r j ,~w f j :=
∞∑

k=0

N k
p j ,r j ,~w ( f j )

2k‖Np j ,r j ,~w‖k

L
p j
w j

(Rn )→L
p j
w j

(Rn )

,

where N 0
p j ,r j ,~w ( f j ) := | f j | and N k

p j ,r j ,~w ( f j ) := Np j ,r j ,~w (N k−1
p j ,r j ,~w ( f j )).

To prove property (i), it suffices to note that the k = 0 term in the sum is equal to | f j |.
For (ii) we have

‖Rp j ,r j ,~w f j ‖L
p j
w j

(Rn )
≤

∞∑
k=0

‖N k
p j ,r j ,~w ( f j )‖

L
p j
w j

(Rn )

2k‖Np j ,r j ,~w‖k

L
p j
w j

(Rn )→L
p j
w j

(Rn )

≤
∞∑

k=0

‖ f j ‖L
p j
w j

(Rn )

2k
= 2‖ f j ‖L

p j
w j

(Rn )
.

To prove (iii), we first note that

Np j ,r j ,~w (Rp j ,r j ,~w f j ) ≤
∞∑

k=0

N k+1
p j ,r j ,~w ( f j )

2k‖Np j ,r j ,~w‖k

L
p j
w j

(Rn )→L
p j
w j

(Rn )

≤ 2‖Np j ,r j ,~w‖
L

p j
w j

(Rn )→L
p j
w j

(Rn )
Rp j ,r j ,~w f j .

Thus, it follows from Lemma 3.2.6 that

M~r (Rp1,r1,~w f1, . . . ,Rpm ,rm ,~w fm) ≤ [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

m∏
j=1

Np j ,r j ,~w (Rp j ,r j ,~w f j )

.r 2mc~p,~r [~w]
max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

m∏
j=1

Rp j ,r j ,~w f j ,

as desired. The assertion follows.

Remark 4.1.5. We can obtain a more precise control in terms of the weight constant in

(iii) in the case m = 1. Indeed, in this case we do not need to pass to the operators Np,r,w

to define Rp,r,w , but we can instead define

Rp,r,w f :=
∞∑

k=0

M k
r ( f )

2k‖Mr ‖k
L

p
w (Rn )→L

p
w (Rn )

.

We now obtain (iii) with cp,r [w]

1
r

1
r − 1

p

p,(r,∞) replaced by ‖Mr ‖L
p
w (Rn )→L

p
w (Rn ). We could then use

Theorem 3.3.5 instead of Theorem 3.2.3 to obtain a more precise control in terms of the

weight.
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Proof of Theorem 4.1.2. The proof will consist of two steps. In the first step we prove the

result for very specific qqq . In the second step we iterate the first step to obtain the desired

result.

Step 1. In this step we assume that there is some j0 ∈ {1, . . . ,m +1} such that

1

p j0

< 1

q j0

,
1

p j
≥ 1

q j
for j 6= j0.

Since none of the statements in the formulation of the proposition depend on the order

of the indices, we may assume without loss of generality that j0 = m +1.

We define 1
s := 1− 1

rm+1
≥ 0, 1

p := 1− 1
pm+1

> 0, 1
q := 1− 1

qm+1
≥ 0, and w := w−1

m+1 so that

w =∏m
j=1 w j . For an m +1-tuple (α1, . . . ,αm+1) we will use the notation ~α= (α1, . . . ,αm)

so that the arrow notation will always refer to an m-tuple. Thus, we have now reduced

the problem to proving that there exist m weights ~W ∈ A~q ,(~r ,s) such that f j ∈ L
q j
w j

(Rn),

fm+1 ∈ Lq ′

W −1 (Rn), where W :=∏m
j=1 W j , with(

m∏
j=1

‖ f j ‖L
q j
W j

(Rn )

)
‖ fm+1‖L

q′
W −1 (Rn )

≤ 2m

(
m∏

j=1
‖ f j ‖L

p j
w j

(Rn )

)
‖ fm+1‖L

p′
w−1 (Rn )

, (4.1.6)

and

[~W ]~q ,(~r ,s) .r,s

( m∏
j=1

( 1
r j
− 1

q j

1
r j
− 1

q j

) 1
r j

− 1
q j

)
[~w]

max

{ 1
~r − 1

~q
1
~r − 1

~p

}
~p,(~r ,s) . (4.1.7)

Indeed, the result then follows by setting Wm+1 :=W −1 and by noting that

[WWW ]qqq ,(rrr ,∞) = [~W ]~q ,(~r ,s), [www]ppp,(rrr ,∞) = [~w]~p,(~r ,s).

The construction of the m weights W1, . . . ,Wm relies on the multilinear Rubio de

Francia algorithm as well as a clever usage of the translation lemma to deal with the

parameter s. Setting

1

s j
:=

(
1
p − 1

s

)
1

q j
−

(
1
q − 1

s

)
1

p j

1
p − 1

q

,

we have

1

s j
≤

(
1
p − 1

s

)
1

q j
−

(
1
q − 1

s

)
1

q j

1
p − 1

q

= 1

q j

with equality if and only if 1
q j

= 1
p j

and so that 1
s j

≤ 1
q j

≤ 1
p j

, and

m∑
j=1

1

s j
=

(
1
p − 1

s

)
1
q −

(
1
q − 1

s

)
1
p

1
p − 1

q

= 1

s
.

We set
1

p j (s)
:= 1

p j
− 1

s j
,

1

q j (s)
:= 1

q j
− 1

s j
,

1

r j (s)
:= 1

r j
− 1

s j
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and 1
p(s) := ∑m

j=1
1

p j (s) = 1
p − 1

s , ~p(s) := (p1(s), . . . , pm(s)), and similarly for 1
q(s) , ~q(s), and

~r (s).

We emphasize here that 1
p j (s) = 0 if and only if 1

p j
= 1

q j
and we encourage the reader

to verify that the remaining steps in this proof remain valid in this particular case.

We may compute

1
p(s) − 1

q(s)

1
p(s)

=
1

p j
− 1

q j

1
p j (s)

,

1
q(s)

1
p(s)

=
1

q j (s)

1
p j (s)

. (4.1.8)

We set g j := | f j |

1
p j (s)

1
p j w

−
1

s j
1

p j

j so that

‖g j ‖
L

p j (s)
w j

(Rn )
= ‖ f j ‖

1
p j (s)

1
p j

L
p j
w j

(Rn )

and, using the notation from Lemma 4.1.3, we set R j := Rp j (s),r j (s),~w (g j )−1 and

W j := R

1
p(s) −

1
q(s)

1
p(s)

j w

1
q(s)

1
p(s)

j .

By Lemma 4.1.3(i) we have R j ≤ |g j |−1 so that by (4.1.8) we have

| f j |W j ≤ |g j |

1
p j
1

p j (s)
−

1
p(s) −

1
q(s)

1
p(s) w

1
s j
1

p j (s)
+

1
q(s)

1
p(s)

j = (g j w j )

1
q j
1

p j (s) .

Hence,

‖ f j ‖L
q j
W j

(Rn )
≤ ‖g j ‖

1
q j
1

p j (s)

L
p j (s)
w j

(Rn )
= ‖ f j ‖

1
q j
1

p j

L
p j
w j

(Rn )
. (4.1.9)
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Next, it follows from (4.1.8), Hölder’s inequality, and Lemma 4.1.3(ii) that

‖ fm+1‖L
q′
W −1 (Rn )

≤ ‖ fm+1w−1‖Lp′ ‖W −1w‖
L

1
1
p − 1

q

= ‖ fm+1‖L
p′
w−1 (Rn )

∥∥∥( m∏
j=1

Rp j (s),r j (s),~w (g j )
) 1

p(s) −
1

q(s)
1

p(s) w

1
p(s) −

1
q(s)

1
p(s)

∥∥∥
L

1
1

p(s) −
1

q(s)

= ‖ fm+1‖L
p′
w−1 (Rn )

∥∥∥ m∏
j=1

Rp j (s),r j (s),~w (g j )
∥∥∥

1
p(s) −

1
q(s)

1
p(s)

L
p(s)
w (Rn )

≤ ‖ fm+1‖L
p′
w−1 (Rn )

m∏
j=1

‖Rp j (s),r j (s),~w (g j )‖

1
p(s) −

1
q(s)

1
p(s)

L
p j (s)
w j

(Rn )

≤ 2m‖ fm+1‖L
p′
w−1 (Rn )

m∏
j=1

‖ f j ‖

1
p j

− 1
q j

1
p j

L
p j
w j

(Rn )
.

By combining this estimate with (4.1.9), we have proven (4.1.6).

Finally, we prove (4.1.7). By Remark 4.1.4, Proposition 3.1.3(iii), and Lemma 3.2.1,

we have

[~W ]~q ,(~r ,s) = [~W ]~q(s),(~r (s),∞) ≤ [~R]

1
p(s) −

1
q(s)

1
p(s)

~∞,(~r (s),∞)[~w]

1
q(s)

1
p(s)

~p(s),(~r (s),∞)

.r,s c

1
p(s) −

1
q(s)

1
p(s)

~p(s),~r (s) [~w]
max

{
1
~r (s)

1
~r (s) −

1
~p(s)

} 1
p(s) −

1
q(s)

1
p(s)

+
1

q(s)
1

p(s)

~p,(~r ,s) .

(4.1.10)

Using (4.1.8), we compute

1
r j (s)

1
r j (s) − 1

p j (s)

1
p(s) − 1

q(s)

1
p(s)

+
1

q(s)

1
p(s)

=

(
1

p j (s) − 1
q j (s)

)
1

r j (s) +
(

1
r j (s) − 1

p j (s)

)
1

q j (s)(
1
r j
− 1

p j

)
1

p j (s)

=
1
r j
− 1

q j

1
r j
− 1

p j

,

which we interpret as being equal to 1 when 1
q j

= 1
p j

= 1
r j

, so that

max

{ 1
~r (s)

1
~r (s) − 1

~p(s)

} 1
p(s) − 1

q(s)

1
p(s)

+
1

q(s)

1
p(s)

= max

{ 1
~r − 1

~q

1
~r − 1

~p

}
. (4.1.11)

Next, we compute

1

r j
− 1

s j
=

(
1
r j
− 1

q j

)
1

p(s) −
(

1
r j
− 1

p j

)
1

q(s)

1
p(s) − 1

q(s)

≤
(

1

r j
− 1

q j

) 1
p(s)

1
p(s) − 1

q(s)

.
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Hence,

c

1
p(s) −

1
q(s)

1
p(s)

~p(s),~r (s) ≤
m∏

j=1

( 1
r j
− 1

q j

1
r j
− 1

p j

) 1
r j

− 1
q j

( 1
p(s)

1
p(s) − 1

q(s)

)(
1

r j
− 1

s j

) 1
p(s) −

1
q(s)

1
p(s)

≤ e
1
e

( 1
r − 1

s

) m∏
j=1

( 1
r j
− 1

q j

1
r j
− 1

p j

) 1
r j

− 1
q j .

(4.1.12)

Thus, combining (4.1.11) and (4.1.12) with (4.1.10) proves (4.1.7). This concludes Step 1.

Step 2. Now suppose qqq is arbitrary. For each j we either have 1
p j

< 1
q j

or 1
p j

≥ 1
q j

.

Assume without loss of generality that there is a j1 ∈ {1, . . . ,m} such that

1

p j
≥ 1

q j
if j ∈ {1, . . . , j1},

1

p j
< 1

q j
if j ∈ { j1 +1, . . . ,m +1}. (4.1.13)

Indeed, if this is not the case then, just as in Step 1, we may permute the indices to

reduce back to this case.

The strategy will be to construct the m + 1 weights WWW in m − j1 + 1 steps through

repeated application of Step 1.

We define

θk :=


∑m+1

j=m−k+2
1

q j
− 1

p j∑m+1
j= j1+1

1
q j

− 1
p j

if k ∈ {1, . . . ,m − j1 +1};

0 if k = 0,

so that 0 = θ0 ≤ θ1 ≤ ·· · ≤ θm− j1+1 = 1. Thus, defining,

1

qk
j

:= 1

q j
+θk

(
1

p j
− 1

q j

)
,

we have
1

q j
= 1

q0
j

≤ 1

q1
j

≤ ·· · ≤ 1

qm− j1
j

≤ 1

qm− j1+1
j

= 1

p j
.

Now, we define

qqq1 := (q1
1 , . . . , q1

j1
, q j1+1, . . . , qm , pm+1)

qqq2 := (q2
1 , . . . , q2

j1
, q j1+1, . . . , qm−1, pm , pm+1)

...

qqqm− j1 := (qm− j1
1 , . . . , qm− j1

j1
, q j1+1, p j1+2, . . . , pm+1).
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First we will check that the reciprocals of the coordinates of these m+1-tuples sum to 1.

Indeed, using
∑m+1

j=1
1

p j
=∑m+1

j=1
1

q j
= 1, we have

j1∑
j=1

1

qk
j

=
j1∑

j=1

1

q j
+θk

j1∑
j=1

1

p j
− 1

q j
=

j1∑
j=1

1

q j
+θk

(
1−

m+1∑
j= j1+1

1

p j

)
−θk

(
1−

m+1∑
j= j1+1

1

q j

)

=
j1∑

j=1

1

q j
+

m+1∑
j=m−k+2

1

q j
− 1

p j
= 1−

m−k+1∑
j= j1+1

1

q j
−

m+1∑
j=m−k+2

1

p j

so that
j1∑

j=1

1

qk
j

+
m−k+1∑
j= j1+1

1

q j
+

m+1∑
j=m−k+2

1

p j
= 1,

as desired.

Now, for k ∈ {1, . . . ,m − j1 +1} we define

γk := max
j=1,..., j1


1
r j
− 1

qk−1
j

1
r j
− 1

qk
j

 ,

where the terms should be interpreted as being equal to 1 when 1
qk

j

= 1
r j

, and we write

~qk = (qk
1 , . . . , qk

m) for the m-tuple given by the first m coordinates of qqqk , with 1
qk :=∑m

j=1
1

qk
j

.

We may apply Step 1 with j0 = j1 +1 to obtain weights WWW m− j1 = (W m− j1
1 , . . . ,W m− j1

m+1 )

such that
m+1∏
j=1

‖ f j ‖
L

q
m− j1
j

W
m− j1
j

(Rn )

≤ 2m
m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
(4.1.14)

and

[WWW m− j1 ]qqqm− j1 ,(rrr ,∞) ≤Cppp,qqq ,rrr [www]
γm− j1+1

ppp,(rrr ,∞) . (4.1.15)

Next, we apply Step 1 with j0 = j1 +2 to obtain weights WWW m− j1−1 with

m+1∏
j=1

‖ f j ‖
L

q
m− j1−1
j

W
m− j1−1
j

(Rn )

≤ 2m
m+1∏
j=1

‖ f j ‖
L

q
m− j1
j

W
m− j1
j

(Rn )

and

[WWW m− j1−1]qqqm− j1−1,(rrr ,∞) ≤Cppp,qqq ,rrr [WWW m− j1 ]
γm− j1

qqqm− j1 ,(rrr ,∞)
.

Combining these estimates with (4.1.14) and (4.1.15) we obtain

m+1∏
j=1

‖ f j ‖
L

q
m− j1−1
j

W
m− j1−1
j

(Rn

≤ (2m)2
m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
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and

[WWW m− j1−1]qqqm− j1−1,(rrr ,∞) ≤Cppp,qqq ,rrr [www]
γm− j1γm− j1+1

ppp,(rrr ,∞) .

Continuing this process, applying Step 1 with j0 = j1 +k for k = 3, . . . ,m − j1 +1, we

conclude, setting WWW :=WWW 0, that

m+1∏
j=1

‖ f j ‖L
q j
W j

(Rn )
=

m+1∏
j=1

‖ f j ‖
L

q0
j

W 0
j

(Rn )
≤ (2m)m− j1+1

m+1∏
j=1

‖ f j ‖L
p j
w j

(Rn )
(4.1.16)

and

[WWW ]qqq ,(rrr ,∞) = [WWW 0]qqq0,(rrr ,∞) ≤Cppp,qqq ,rrr [www]
∏m− j1+1

k=1 γk

ppp,(rrr ,∞) . (4.1.17)

Since (2m)m− j1+1 ≤ 2m2
, we note that (4.1.4) now follows from (4.1.16). Finally, we

note that (4.1.5) follows from (4.1.17), provided we can show that

m− j1+1∏
k=1

γk = max
j=1,...,m+1


1
r j
− 1

q j

1
r j
− 1

p j

 . (4.1.18)

Note that by our initial assumption (4.1.13), this maximum is attained at some j2 ∈
{1, . . . , j1}.

We claim that

γk =
1

r j2
− 1

qk−1
j2

1
r j2

− 1
qk

j2

for all k ∈ {1, . . . ,m− j1+1}. Assuming for the moment that the claim is true, we find that

m− j1+1∏
k=1

γk =
m− j1+1∏

k=1

1
r j2

− 1
qk−1

j2

1
r j2

− 1
qk

j2

=
1

r j2
− 1

q0
j2

1
r j2

− 1

q
m− j1+1
j2

=
1

r j2
− 1

q j2

1
r j2

− 1
p j2

,

proving (4.1.18).

To prove the claim, we compute

1

r j
− 1

qk
j

= 1

r j
− 1

q j
−θk

(
1

r j
− 1

q j

)
+θk

(
1

r j
− 1

p j

)

=
(

1

r j
− 1

p j

)(1−θk )

1
r j
− 1

q j

1
r j
− 1

p j

+θk


so that

1
r j
− 1

qk−1
j

1
r j
− 1

qk
j

=
(1−θk−1)

1
r j

− 1
q j

1
r j

− 1
p j

+θk−1

(1−θk )
1

r j
− 1

q j
1

r j
− 1

p j

+θk

=ψk

 1
r j
− 1

q j

1
r j
− 1

p j

 ,
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where

ψk (x) = (1−θk−1)x +θk−1

(1−θk )x +θk
.

We note that proving the claim is equivalent to proving the equality

max
j=1,...,m+1

ψk

 1
r j
− 1

q j

1
r j
− 1

p j

=ψk

 max
j=1,...,m+1

1
r j
− 1

q j

1
r j
− 1

p j

 .

The inequality

ψk

 max
j=1,...,m+1

1
r j
− 1

q j

1
r j
− 1

p j

=ψk

 1
r j2

− 1
q j2

1
r j2

− 1
p j2

≤ max
j=1,...,m+1

ψk

 1
r j
− 1

q j

1
r j
− 1

p j


is clear. To prove the converse inequality, it suffices to show that ψk is an increasing

function for all k ∈ {1, . . . ,m − j1 +1}. Computing

ψ′
k (x) = (1−θk−1)((1−θk )x +θk )− (1−θk )((1−θk−1)x +θk−1)

((1−θk )x +θk )2

= θk −θk−1

((1−θk )x +θk )2 ≥ 0,

we have proven the desired result. This concludes Step 2. The assertion follows.

Proof of Theorem 4.1.1. By Proposition 3.1.3(ii), the result follows from applying Theo-

rem 4.1.2 with rrr = (~rt , ( s
t )′), qqq = (

~q
t , ( q

t )′), ppp = ( ~pt , ( p
t )′), www = (~w t , w−t ), and fff = (|~f |t , |g |t ).
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5
WEIGHTED BOUNDS FOR MULTILINEAR OPERATORS

This third part is dedicated to applying the theory we have developed so far to operators

satisfying sparse domination.

This chapter is based on parts of the papers

B. Nieraeth. Quantitative estimates and extrapolation for multilinear weight classes.

Mathematische Annalen, 375(1-2):453–507, 2019;

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-

nation. arXiv:2003.02233, 2020,

with the exception of the third section, which is based on the optimality result in the

paper

D. Frey and B. Nieraeth. Weak and Strong Type A1–A∞ Estimates for Sparsely

Dominated Operators. Journal of Geometric Analysis, 29(1):247–282, 2019.

We point out that the result we present here is actually a new multilinear version of that

result which can be obtained through a careful tracking of the constants in the proof of

the extrapolation theorem in Chapter 4.

5.1. EXTRAPOLATION FOR MULTILINEAR OPERATORS

In this section we will be considering operators T defined on m-tuples of functions in

the weighted Lebesgue spaces L
~p
~w (Rn). For fixed ~r ∈ (0,∞)m , s ∈ (0,∞] it is a conse-

quence of the extrapolation theorem (in particular, of (4.1.3)) that if there is a ~p ∈ (0,∞]m

with ~p ≥~r , p ≤ s, and T is defined on L
~p
~w (Rn) for all ~w ∈ A~p,(~r ,s), then T is actually de-

fined on L
~p
~w (Rn) for all ~p ∈ (0,∞]m with ~p > ~r , p < s, and ~w ∈ A~p,(~r ,s). Thus, for the

results in this section we will not need to assume any additional structure on T such as

(sub)linearity in its components. These notions will come in to play in the next section

where we will be considering operators satisfying sparse domination.

Definition 5.1.1. Let ~U , V be m + 1 quasi-normed linear subspaces of L0(Rn) and T :
~U → V . We say that T is bounded when there is a constant c ≥ 0 such that for all ~f ∈ ~U
we have ‖T (~f )‖V ≤ c

∏m
j=1 ‖ f j ‖U j . The smallest possible c is denoted by ‖T ‖~U→V .

Using the extrapolation result Theorem 3.2.11 we can give a detailed quantitative

bound for the operators under consideration. Using Fubini’s Theorem we can also ex-

tend the extrapolation theorem to a vector-valued setting. In the following result we are

75
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considering the space Lp
w (Rn ;Lt (Ω)) for p, t ∈ (0,∞], a weight w , and Ω a σ-finite mea-

sure space. This space consists of the measurable functions f : Rn ×Ω→ C such that the

function x 7→ ‖ f (x, ·)‖Lt (Ω) lies in Lp
w (Rn), with ‖ f ‖L

p
w (Rn ;Lt (Ω)) := ∥∥x 7→ ‖ f (x, ·)‖Lt (Ω)

∥∥
L

p
w (Rn ).

In the case when p = t , we can use Fubini’s Theorem to find that

‖ f ‖Lt
w (Rn ;Lt (Ω)) =

∥∥‖ f ‖Lt
w (Rn )

∥∥
Lt (Ω),

valid for any t ∈ (0,∞], allowing us to carry over scalar-valued estimates to this vector-

valued setting.

Theorem 5.1.2 (Multilinear Rubio de Francia extrapolation). Let~r ∈ (0,∞)m , s ∈ (0,∞],
~q ∈ (0,∞]m with ~q ≥~r , q ≤ s, and let T be an operator that is bounded L

~q
~w (Rn) → Lq

w (Rn)

for all ~w ∈ A~q ,(~r ,s). Moreover, suppose that there exists an increasing functionφ~q such that

‖T ‖
L
~q
~w

(Rn )→L
q
w (Rn )

≤φ~q ([~w]~q ,(~r ,s)) (5.1.1)

for all ~w ∈ A~q ,(~r ,s).

Then for all ~p ∈ (0,∞]m with ~p >~r , p < s, (or p j = q j for some j ∈ {1, . . . ,m} or p = q),

all weights ~w ∈ A~p,(~r ,s), T is bounded L
~p
~w (Rn) → Lp

w (Rn) with

‖T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

≤ 2
m2

r φ~q

(
C~p,~q ,~r ,s [~w]

max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s)

)
. (5.1.2)

Moreover, suppose (Ω,µ) is a σ-finite measure space,~t ∈ (0,∞]m with~t >~r and t < s

(or t j = q j , t = q). Then

T̃ (~f )(x,ω) := T (~f (·,ω))(x)

is well-defined for all f j ∈ L
p j
w j

(Rn ;Lt j (Ω)). Moreover, for all ~p ∈ (0,∞]m with ~p >~r , p < s,

(or p j = q j , p = q), all weights ~w ∈ A~p,(~r ,s), and all f j ∈ L
p j
w j

(Rn ;Lt j (Ω)) for which T̃ (~f ) is

measurable,

‖T̃ (~f )‖L
p
w (Rn ;Lt (Ω)) ≤ 22 m2

r φ~q

(
C~p,~q ,~r ,s,~t [~w]

max

{ 1
~r − 1

~q
1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~p,(~r ,s)

) m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;L
t j (Ω))

.

(5.1.3)

We again note that the addendum p j = q j , p = q is only relevant when we have

equality in any of the components in ~q ≥~r or q ≤ s, i.e., if q = s or q j = r j for some

j ∈ {1, . . . ,m}, in which case we may indeed include the respective cases with p = s or

p j = r j to the conclusions of the result. In this case one should respectively use the

interpretation
1
q − 1

s
1
p − 1

s
= 1 or

1
r j

− 1
q j

1
r j

− 1
p j

= 1.

Remark 5.1.3. In certain specific cases we have a precise control of the constant C~p,~q ,~r ,s

in (5.1.2). Indeed, the proof is based on the extrapolation theorem, Theorem 4.1.2, and

in Step 1 of the proof of this result we computed a precise control of this constant in

(4.1.7). More precisely, in Step 1 of this proof we have the following situations:
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(i) If there is a j0 ∈ {1, . . . ,m} such that 1
p j0

< 1
q j0

, 1
p j

≥ 1
q j

for all j 6= j0, and 1
p ≤ 1

q , then

C~p,~q ,~r ,s .r,s

( m∏
j=1
j 6= j0

( 1
r j
− 1

q j

1
r j
− 1

p j

) 1
r j

− 1
q j

)( 1
q − 1

s

1
p − 1

s

) 1
q − 1

s
.

(ii) If 1
p > 1

q and 1
p j

≥ 1
q j

for all j ∈ {1, . . . ,m}, then

C~p,~q ,~r ,s .r,s

m∏
j=1

( 1
r j
− 1

q j

1
r j
− 1

p j

) 1
r j

− 1
q j .

Remark 5.1.4. We point out that the measurable assumption on T̃ is redundant when

T is m-linear. Indeed, any element of L
p j
w j

(Rn)⊗Lt j (Ω) is spanned by functions of the

form ( f j ⊗ξ j )(x,ω) = f j (x)ξ j (ω) for f j ∈ L
p j
w j

(Rn), ξ j ∈ Lt j (Ω), and on these functions T̃

coincides with the tensor extension of T , i.e.,

T̃ (~f ⊗~ξ ) = T (~f )⊗
m∏

j=1
ξ j

is measurable in Rn×Ω. Since L
p j
w j

(Rn)⊗Lt j (Ω) is dense in L
p j
w j

(Rn ;Lt j (Ω)), measurability

of T̃ (~f ) for general f j ∈ L
p j
w j

(Rn ;Lt j (Ω)) follows from an approximation argument, see

also Lemma 5.3.2 below.

Remark 5.1.5. Let (Ω1,µ1), . . . , (ΩK ,µK ) be σ-finite measure spaces and for j ∈ {1, · · · ,m}

we set X j := L
t K

j (ΩK ; · · · ;L
t 1

j (Ω1))) for ~t k > ~r and t k < s (or t k
j = q j , t k = q) as in the

theorem. By induction it is also possible to obtain vector-valued estimates for T in the

theorem for functions in the spaces Lp j (Rn ; X j ). We however do not pursue this fur-

ther here, since this method does not give us optimal quantitative weighted bounds.

In Chapter 9.2 we provide a different method that gives sharp vector-valued weighted

bounds for operators satisfying sparse domination and, in particular, we can replace the

exponent of the weight constant in (5.1.3) in certain instances by the smaller exponent

max

{ 1
~r − 1

~q

1
~r − 1

~p

,

1
q − 1

s

1
p − 1

s

}
.

Proof of Theorem 5.1.2. Fix ~w ∈ A~p,(~r ,s) and ~f ∈ L
~p
~w (Rn), g ∈ L

1
1
r − 1

p

w−1 (Rn). By applying The-

orem 4.1.1 with t = r we can pick a ~W ∈ A~q ,(~r ,s) such that

( m∏
j=1

‖ f j ‖L
q j
W j

(Rn )

)
‖g‖

L

1
1
r − 1

q

W −1 (Rn )

≤ 2
m2

r

( m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )
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and

[~W ]~q ,(~r ,s) ≤C~p,~q ,~r ,s [~w]
max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s) .

Hence, we obtain

‖T (~f ) · g‖Lr (Rn ) ≤φ~q ([~W ]~q ,(~r ,s))
( m∏

j=1
‖ f j ‖L

p j
W j

(Rn )

)
‖g‖

L

1
1
r − 1

p

W −1 (Rn )

≤ 2
m2

r φ~q (C~p,~q ,~r ,s [~w]
max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s) )

( m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )

.

The assertion now follows from the duality result

‖T (~f )‖L
p
w (Rn ) = ‖|T (~f )|r ‖

1
r

L
p
r

wr (Rn )
= sup

‖g‖
L

1
1
r − 1

p

w−1 (Rn )

=1
‖T (~f ) · g‖Lr (Rn ).

For the second result, fix ~w ∈ A~p,(~r ,s), f j ∈ L
p j
w j

(Rn ;Lt j (Ω)) for all j ∈ {1, . . . ,m}, and

g ∈ L

1
1
r − 1

p

w−1 (Rn). Then by applying Theorem 4.1.1 with q j = t j , t = r , and the f j replaced

by ‖ f j ‖L
t j (Ω) ∈ L

p j
w j

(Rn), we can pick a ~W ∈ A~t ,(~r ,s) such that, by Fubini’s Theorem,

( m∏
j=1

‖ f j ‖
L

t j
W j

(Rn ;L
t j (Ω))

)
‖g‖

L

1
1
r − 1

t
W −1 (Rn )

=
( m∏

j=1
‖x 7→ ‖ f j (x, ·)‖L

t j (Ω)‖L
t j
W j

(Rn )

)
‖g‖

L

1
1
r − 1

t
W −1 (Rn )

≤ 2
m2

r

( m∏
j=1

‖x 7→ ‖ f j (x, ·)‖L
t j (Ω)‖L

p j
w j

(Rn )

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )

= 2
m2

r

( m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;L
t j (Ω))

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )

(5.1.4)

and

[~W ]~t ,(~r ,s) ≤C~p,~r ,s,~t [~w]
max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~p,(~r ,s) .

In particular we note that by Fubini’s Theorem, we have thatω 7→ ‖ f j (·,ω)‖
L

t j
W j

(Rn )
lies in

Lt j (Ω) and is therefore finite a.e. This implies that f j (·,ω) ∈ L
t j

W j
(Rn) for a.e. ω ∈Ω and

thus T̃ (~f ) is well-defined. Now, assuming that T̃ (~f ) is measurable in Rn ×Ω, it follows
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from (5.1.2) with ~p =~t , (5.1.4), Fubini’s Theorem, and Hölder’s inequality, that

‖‖T̃ (~f )‖Lt (Ω) · g‖Lr (Rn ) ≤ ‖ω 7→ ‖T (~f (·,ω) )‖Lt
W (Rn )‖Lt (Ω)‖g‖

L

1
1
r − 1

t
W −1 (Rn )

≤ 2
m2

r φ~q (C~q ,~r ,s,~t [~W ]
max

{ 1
~r − 1

~q
1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
~t ,(~r ,s)

)
∥∥∥ω 7→

( m∏
j=1

‖ f j (·,ω)‖
L

t j
W j

(Rn )

)∥∥∥
Lt (Ω)

‖g‖
L

1
1
r − 1

t
W −1 (Rn )

≤ 2
m2

r φ~q (C~p,~q ,~r ,s,~t [~w]
max

{ 1
~r − 1

~q
1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~t ,(~r ,s)

)
( m∏

j=1
‖ f j ‖

L
t j
W j

(Rn ;L
t j (Ω))

)
‖g‖

L

1
1
r − 1

t
W −1 (Rn )

≤ 22 m2
r φ~q (C~p,~q ,~r ,s,~t [~w]

max

{ 1
~r − 1

~q
1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~t ,(~r ,s)

)
( m∏

j=1
‖ f j ‖L

p j
w j

(Rn ;L
t j (Ω))

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )

.

The assertion now follows from the duality result

‖T̃ (~f )‖L
p
w (Rn ;Lt (Ω)) = ‖‖T̃ (~f )‖r

Lt (Ω)‖
1
r

L
p
r

wr (Rn )
= sup

‖g‖
L

1
1
r − 1

p

w−1 (Rn )

=1
‖‖T (~f )‖Lt (Ω) · g‖Lr (Rn ).

In applying the extrapolation theorem, one can obtain further results by making ap-

propriate choices for the initial operator T . The following is an extrapolation result in-

volving weak-type estimates. The trick used to obtain this result is well-known and can

be found already in [GM04].

Theorem 5.1.6 (Weak type extrapolation). Let ~r ∈ (0,∞)m , s ∈ (0,∞], ~q ∈ (0,∞]m with
~q ≥~r , q ≤ s, and let T be an operator that is bounded L

~q
~w (Rn) → Lq,∞

w (Rn) for all ~w ∈
A~q ,(~r ,s). Moreover, suppose that there exists an increasing function φ~q such that

‖T ‖
L
~q
~w

(Rn )→L
q,∞
w (Rn )

≤φ~q ([~w]~q ,(~r ,s)) (5.1.5)

for all ~w ∈ A~q ,(~r ,s).

Then for all ~p ∈ (0,∞]m with ~p >~r , p < s, (or p j = q j , p = q), all weights ~w ∈ A~p,(~r ,s),

T is bounded L
~p
~w (Rn) → Lp,∞

w (Rn) with

‖T ‖
L
~p
~w

(Rn )→L
p,∞
w (Rn )

≤ 2
m2

r φ~q

(
C~p,~q ,~r ,s [~w]

max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s)

)
. (5.1.6)

Proof. Let λ> 0 and for ~f ∈ L
~q
~w (Rn) we set Eλ := {x ∈ Rn : |T (~f )(x)| >λ}. Define

Tλ(~f ) :=λχEλ
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and note that by (5.1.5) we have

‖Tλ(~f )‖L
q
w (Rn ) =λ

(
w q (Eλ)

) 1
q ≤ ‖T (~f )‖Lq,∞(w q ) ≤φ~q ([~w]~q ,(~r ,s))

m∏
j=1

‖ f j ‖L
q j
w j

(Rn )
.

Thus, by applying Theorem 4.1.1 with T replaced by Tλ we find that

‖Tλ(~f )‖L
p
w (Rn ) ≤ 2

m2
r φ~q

(
C~p,~q ,~r ,s [~w]

max

{ 1
~r − 1

~q
1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s)

) m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

for all ~p ∈ (0,∞]m with ~p > ~r , p < s, (or p j = q j , p = q), all weights ~w ∈ A~p,(~r ,s),~w ∈
A~p,(~r ,s), and all ~f ∈ L

~p
~w (Rn). As λ > 0 was arbitrary, noting that supλ>0 ‖Tλ(~f )‖L

p
w (Rn ) =

‖T (~f )‖L
p,∞
w (Rn ) proves (5.1.6). The assertion follows.

As a consequence we can extrapolate from weak lower endpoint estimates in cases

where strong bounds are not available. Writing~1 for the vector consisting of m compo-

nents all equal to 1, passing to the full-range case where~r =~1 and s =∞, we obtain the

following corollary:

Corollary 5.1.7. Let T be an operator that is bounded L~1
~w (Rn) → L

1
m ,∞
w (Rn) for all ~w ∈

A~1,(~1,∞). Moreover, suppose there is an increasing function φ such that

‖T ‖
L~1
~w

(Rn )→L
1
m ,∞
w (Rn )

≤φ([~w]~1,(~1,∞))

for all ~w ∈ A~1,(~1,∞).

Then for all ~p ∈ [1,∞]m with p <∞ and ~w ∈ A~p,(~1,∞), T is bounded L
~p
~w (Rn) → Lp,∞

w (Rn)

with

‖T ‖
L
~p
~w

(Rn )→L
p,∞
w (Rn )

≤ 2m3
φ

(
C~p [~w]pm

~p,(~1,∞)

)
.

We can also extrapolate from the upper endpoints. An application of Theorem 4.1.1

in the case s = ∞ with ~q = ~∞, where ~∞ is the vector consisting of m components all

equal to ∞, together with Remark 5.1.3 yields the following:

Theorem 5.1.8 (Upper endpoint extrapolation). Let~r ∈ (0,∞)m and let T be an operator

that is bounded L~∞
~w (Rn) → L∞

w (Rn) for all ~w ∈ A~∞,(~r ,∞). Moreover, suppose there is an

increasing function φ such that

‖T ‖L~∞
~w

(Rn )→L∞
w (Rn ) ≤φ([~w]~∞,(~r ,∞))

for all ~w ∈ A~∞,(~r ,∞).

Then for all ~p ∈ (0,∞]m with ~p >~r ,

‖T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

≤ 2
m
r φ

(
C~p,~r [~w]

max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

)
.
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where

C~p,~r .r

m∏
j=1

( 1
r j

1
r j
− 1

p j

) 1
r j .

We point out that this result is the simplest case in the extrapolation result. Indeed,

in this case we have ~W = ~R, where ~R are the weights from Remark 4.1.4 obtained directly

from the multilinear Rubio de Francia algorithm.

An interesting application of this result is related to the space BMO(Rn) of functions

of bounded mean oscillation. We define the sharp maximal operator M # by

M # f = sup
Q

〈| f −〈 f 〉1,Q |〉1,QχQ

for f ∈ L1
loc(Rn), where the supremum is taken over all cubes Q ⊆ Rn . The definition of

BMO(Rn) in the unweighted setting can be given in terms of M # by saying a measurable

function f is in BMO(Rn) if M # f ∈ L∞, with ‖ f ‖BMO(Rn ) := ‖M # f ‖L∞(Rn ). This suggests

the following definition of a weighted version of the BMO(Rn) space:

Definition 5.1.9. Given a weight w , we define the space BMOw (Rn) as those locally

integrable functions f such that

‖ f ‖BMOw (Rn ) := ‖(M # f )‖L∞
w (Rn ) <∞.

Weighted BMO spaces also appeared in the work of Muckenhoupt and Wheeden in

[MW76], and they showed that the estimate

‖T f ‖BMOw (Rn ) . ‖ f ‖L∞
w (Rn ), (5.1.7)

with an explicit constant depending on w , is satisfied when T is the Hilbert transform,

if and only if w−1 ∈ A1. We recall here that the condition w−1 ∈ A1 is equivalent to

the condition w ∈ A∞,(1,∞) with [w]∞,(1,∞) = [w−1]A1 . Later it was shown by Harboure,

Macías and Segovia in [HMS88] that one can extrapolate from the estimate (5.1.7) for an

operator T to obtain that T is bounded on Lp
w (Rn) for all w p ∈ Ap . As a consequence of

Theorem 5.1.8 we obtain a multilinear version of this result.

Corollary 5.1.10 (Extrapolation from BMO estimates). Let ~r ∈ (0,∞)m and let T be an

operator that is bounded L~∞
~w (Rn) → BMOw (Rn) for all ~w ∈ A~∞,(~r ,∞). Moreover, suppose

there is an increasing function φ such that

‖T ‖L~∞
~w

(Rn )→BMOw (Rn ) ≤φ([~w]~∞,(~r ,∞))

for all ~w ∈ A~∞,(~r ,∞).

Then for all ~p ∈ (0,∞]m with ~p >~r , there is an increasing function φ~p,~r such that

‖T (~f )‖L
p
w (Rn ) ≤φ~p,~r ([~w]~p,(~r ,∞))

m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

for all ~w ∈ A~p,(~r ,∞) and all ~f ∈ L
~p
~w (Rn) for which the left-hand side is finite.
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Proof. We apply Theorem 5.1.8 with T replaced by M #T to find that for all ~p ∈ (0,∞]m

with ~p >~r ,

‖M #T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

≤ 2
m
r φ

(
C~p,~r [~w]

max

{
1
~r

1
~r − 1

~p

}
~p,(~r ,∞)

)
where

C~p,~r .r

m∏
j=1

( 1
r j

1
r j
− 1

p j

) 1
r j .

By the Fefferman-Stein inequality for the sharp maximal operator, see [FS72], we

find that

‖T (~f )‖L
p
w (Rn ) .w,p ‖M #(T (~f ))‖L

p
w (Rn ),

for all ~f ∈ L
~p
~w (Rn) for which the left-hand side is finite, where the implicit constant de-

pends on w only through an increasing function in the constant [w p ]A∞ . It remains to

note that by Proposition 3.1.6,

[w p ]A∞ . [w p ]A p
r
= [w]p

p,(r,∞) ≤ [~w]p
~p,(~r ,∞),

see also [Gra14a, Chapter 7]. The assertion follows.

Examples of multilinear operators satisfying weak-type and BMO endpoint estimates

are multilinear Calderón-Zygmund operators, see also [Gra14b, Section 7.4.1]. Weighted

estimates in these situations can be found in [LOP+09b].

5.2. OPTIMALITY OF WEIGHTED BOUNDS

In this section we describe a way to use the extrapolation theorem to deduce when

weighted bounds of an operator T are optimal, given a certain asymptotic behaviour

of the unweighted operator norms ‖T ‖L~p (Rn )→Lp (Rn ).

First we define the critical exponents we need that determine a certain asymptotic

behaviour of ‖T ‖L~p (Rn )→Lp (Rn ).

Definition 5.2.1. Let~r ∈ (0,∞)m , s ∈ (0,∞], ~q ∈ (0,∞]m with ~q ≥~r , q ≤ s, and let T be an

operator that is bounded L~p (Rn) → Lp (Rn) for all ~p ∈ (0,∞]m with ~p >~r , p < s (or p j = q j

for some j ∈ {1, . . . ,m}, or p = q). Setting ‖T ‖~p := ‖T ‖L~p (Rn )→Lp (Rn ), for j ∈ {1, . . . ,m} we

define

α j ,~q (T ) := sup
{
α ∈ [0,∞) : ∀ε> 0, limsup

1
p j

→ 1
r j

( 1

r j
− 1

p j

)α−ε‖T ‖(q1,...,q j0−1,p j0 ,q j0+1,...,qm ) =∞
}

with ~α~q (T ) := (α1,~q (T ), . . . ,αm,~q (T )) and

ω j ,~q (T ) := sup
{
ω ∈ [0,∞) : ∀ε> 0, limsup

1
p → 1

s

( 1

p
−1

s

)ω−ε‖T ‖(q1,...,q j−1, 1
1

q j
−( 1

q − 1
p )

,q j+1,...,qm ) =∞
}

.

with ω~q (T ) := max j∈{1,...,m}ω j ,~q (T ).
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Note that when m = 1, the quantities α j ,~q (T ), ω~q (T ) do not depend on ~q .

Remark 5.2.2. We note that we are considering m different ways of letting 1
p → 1

s in

the definition of ω~q (T ), while we are only considering one way of letting 1
p j

→ 1
r j

in the

definition ofα j ,~q (T ). This is for notational simplicity only and our results can be refined

by also considering these other directions.

Theorem 5.2.3 (Optimality of weighted bounds for multilinear operators). Let~r ∈ (0,∞)m ,

s ∈ (0,∞],~q ∈ (0,∞]m with~q ≥~r , q ≤ s, and let T be an operator that is bounded L
~q
~w (Rn) →

Lq
w (Rn) for all ~w ∈ A~q ,(~r ,s). Moreover, suppose that there is a β ∈ [0,∞) such that

‖T ‖
L
~q
~w

(Rn )→L
q
w (Rn )

. [~w]β
~q ,(~r ,s)

for all ~w ∈ A~q ,(~r ,s).

Then

β≥ max
{~α~q (T )

1
~r − 1

~q

,
ω~q (T )

1
q − 1

s

}
,

where we interpret
α j ,~q (T )

1
r j

− 1
q j

as 0 when q j = r j and
ω~q (T )

1
q − 1

s
as 0 when q = s.

Proof. Fix j ∈ {1, . . . ,m}. By Remark 5.1.3, applying Theorem 5.1.2 with 1
pk

= 1
qk

for k 6= j

and 1
p j

≤ 1
q j

, ~w ≡ 1 yields

‖T ‖(q1,...,q j−1,p j ,q j+1,...,pm ) .r,s

( 1
r j
− 1

q j

1
r j
− 1

p j

)β( 1
r j

− 1
q j

)
. (5.2.1)

Now let ε> 0 and letα ∈ [0,∞) satisfy limsup 1
p j

→ 1
r j

(
1
r j
− 1

p j

)α−ε‖T ‖(q1,...,q j−1,p j ,q j+1,...,qm ) =
∞. By (5.2.1) this implies that

limsup
1

p j
→ 1

r j

( 1

r j
− 1

p j

)α−ε−β( 1
r j

− 1
q j

)
&r,s limsup

1
p j

→ 1
r j

( 1

r j
− 1

p j

)α−ε‖T ‖(q1,...,q j−1,p j ,q j+1,...,qm ) =∞

which implies that α−ε−β( 1
r j
− 1

q j
) < 0. Since ε> 0 is arbitrary, this implies that

β≥ α
1
r j
− 1

q j

when 1
q j

6= 1
r j

and α= 0 when 1
q j

= 1
r j

. Taking a supremum over such α and a maximum

over j ∈ {1, . . . ,m} yields

β≥ max
{~α~q (T )

1
~r − 1

~q

}
. (5.2.2)
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By Remark 5.1.3, another application of Theorem 5.1.2 with 1
pk

= 1
qk

for k 6= j and
1

p j
:= 1

1
q j

−( 1
q − 1

p )
with 1

q ≤ 1
p , ~w ≡ 1 yields

‖T ‖(q1,...,q j−1, 1
1

q j
−( 1

q − 1
p )

,q j+1,...,qm ) .r,s

( 1
q − 1

s

1
p − 1

s

)β( 1
q − 1

s )
.

With an argument analogous to our previous one, this implies that

β≥ ω j ,~q (T )
1
q − 1

s

.

Taking a maximum over j ∈ {1, . . . ,m} and combining this result with (5.2.2), the asser-

tion follows.

Remark 5.2.4. By using Theorem 5.1.6 instead of Theorem 5.1.2 we can obtain the same

result for weak-type bounds with an analogous argument.

In the case m = 1 this result reduces to the following:

Corollary 5.2.5. Let r ∈ (0,∞), s ∈ (0,∞], q ∈ [r, s], and let T be an operator that is

bounded Lq
w (Rn) → Lq

w (Rn) for all w ∈ Aq,(r,s). Moreover, suppose that there is a β ∈ [0,∞)

such that

‖T ‖L
q
w (Rn )→L

q
w (Rn ) . [w]βq,(r,s)

for all w ∈ Aq,(r,s).

Then

β≥ max
{ α(T )

1
r − 1

q

,
ω(T )
1
q − 1

s

}
,

where

α(T ) = sup
{
α ∈ [0,∞) : ∀ε> 0, limsup

1
p → 1

r

(1

r
− 1

p

)α−ε‖T ‖Lp (Rn )→Lp (Rn ) =∞
}

,

ω(T ) = sup
{
ω ∈ [0,∞) : ∀ε> 0, limsup

1
p → 1

s

( 1

p
− 1

s

)ω−ε‖T ‖Lp (Rn )→Lp (Rn ) =∞
}

,

and where we interpret α(T )
1
r − 1

q
as 0 when q = r and ω(T )

1
q − 1

s
as 0 when q = s.

Finally, we present the following variant of this result:

Theorem 5.2.6. Let r ∈ (0,∞), s ∈ (0,∞], q ∈ [r, s), and let T be an operator that is

bounded Lq
w (Rn) → Lq

w (Rn) for all w ∈ Aq,(q,s). Moreover, suppose that there is aβ ∈ [0,∞)

such that

‖T ‖L
q
w (Rn )→L

q
w (Rn ) . [w]βq,(q,s)

for all w ∈ Aq,(q,s).
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Then

β≥ ω(T )
1
q − 1

s

,

where

ω(T ) = sup
{
ω ∈ [0,∞) : ∀ε> 0, limsup

1
p → 1

s

( 1

p
− 1

s

)ω−ε‖T ‖Lp (Rn )→Lp (Rn ) =∞
}

.

We note that [w]q,(r,s) ≤ [w]q,(q,s) by Hölder’s inequality, and

[w]q,(q,s) = [w
1

1
q − 1

s ]
1
q − 1

s

A1
.

The key observation for the proof of this result is that the Rubio de Francia algorithm in

the case m = 1 produces an A1 weight.

Proof. Fix p ∈ [q, s) and g ∈ L
1

1
q − 1

p (Rn) of norm 1. By applying the Rubio de Francia

algorithm, Lemma 4.1.3, to g , we obtain a weight w := R 1
1
q − 1

p
, 1

1
q − 1

s
,1g satisfying |g | ≤ w ,

and

[w]q,(q,s) = sup
Q

〈R 1
1
q − 1

p
, 1

1
q − 1

s
,1g 〉 1

1
q − 1

s
,Q〈(R 1

1
q − 1

p
, 1

1
q − 1

s
,1g )−1〉∞,Q .r

( 1
q − 1

s

1
p − 1

s

) 1
q − 1

s
.

Hence, for all f ∈ Lq
w (Rn) of norm 1 we have

‖(T f )g‖Lq (Rn ) ≤ ‖T f ‖L
q
w (Rn ) . [w]βq,(q,s) .r

( 1
q − 1

s

1
p − 1

s

)β( 1
q − 1

s )
.

By the duality result

‖T f ‖Lp (Rn ) = ‖|T f |q‖
1
q

L
p
q (Rn )

= sup
‖g‖

L

1
1
q − 1

p (Rn )

=1
‖(T f )g‖Lq (Rn ),

we now obtain

‖T ‖Lp (Rn )→Lp (Rn ) .r

( 1
q − 1

s

1
p − 1

s

)β( 1
q − 1

s )
.

With an argument analogous to the one in the proof of Theorem 5.2.3 this implies that

β≥ ω(T )
1
q − 1

s
. The assertion follows.

The initial weighted boundedness that we need to apply these results can be ob-

tained through sparse domination.
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5.3. SPARSE DOMINATION OF `q -TYPE

There are many different variants of sparse forms and operators and there are various

ways that an operator can be bounded by them. In this section we will consider bounds

obtained for multilinear operators satisfying a general `q -type sparse form domination,

covering a variety of examples presented in the next section. Since sparse domination is

usually proven for functions of bounded support, we will first need to discuss extensions

of operators.

Typically, unlike in our assumptions on the operators in the previous sections, oper-

ators will not initially be defined on L
~p
~w (Rn). Rather, they will be defined on an m-tuple

of spaces ~U where each U j is an appropriately large subspace of the of measurable func-

tions L0(Rn) such as the space of bounded functions with bounded support L∞
c (Rn), the

space of simple functions with characteristic functions over finite sets, the space of com-

pactly supported smooth functions C∞
c (Rn), the space of Schwartz functions S (Rn),

etc. If we then prove that T is bounded for these functions between weighted Lebesgue

spaces, we can use density to extend T to a bounded operator on these spaces, as long

as we assume some additional structure on the operator. What is noteworthy is that in

the multilinear setting this argument is slightly more technical than in the linear setting.

Definition 5.3.1. Let ~U , V be m + 1 quasi-normed linear subspaces of L0(Rn) and T :
~U →V . We say that T is m-linear if it is linear in each of its components, i.e., if for all ~f ∈
~U and j ∈ {1, . . . ,m} the map U j → V , g 7→ T ( f1, . . . , f j−1, g , f j+1, . . . , fm) is linear. We say

that T is m-sublinear if it is positive-valued and subadditive in each of its components,

i.e., if for all ~f ∈ ~U the function T (~f ) takes values in the positive reals, and for all j ∈
{1, . . . ,m} and g ∈U j ,

T ( f1, . . . , f j−1, f j + g , f j+1, . . . , fm) ≤ T (~f )+T ( f1, . . . , f j−1, g , f j+1, . . . , fm).

We will generally consider operators that are either m-linear or m-sublinear, which

we shorten by saying that the operator is m-(sub)linear. In the case m = 1, a bounded

(sub)linear operator satisfies a reverse triangle inequality type estimate and thus, in par-

ticular, is uniformly continuous. Therefore, if it takes values in a complete space, it ex-

tends to an operator on the closure of its domain. For m > 2 this uniform continuity

needs to be replaced by a local uniform continuity. This again suffices to extend the

operator to the closure of its domain. While this result may be straightforward, we in-

clude it here. For the definition of a quasi-Banach function space we refer the reader to

Chapter 8.

Lemma 5.3.2. Let ~Y be an m-tuple of quasi-normed vector spaces, let V be a quasi-

Banach function space, and let U j ⊆ Y j be a dense subspace for each j ∈ {1, . . . ,m}. If

T : ~U →V is bounded and satisfies the pointwise a.e. estimate

|T (~f )−T (~g )| ≤
m∑

j=1
|T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm)|

+ |T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)|
(5.3.1)
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for all ~f ,~g ∈ ~U , then T uniquely extends to a bounded operator ~Y →V with a comparable

bound. Moreover, if T is m-(sub)linear, then it satisfies (5.3.1), and if V has the property

that every convergent sequence has a pointwise a.e. convergent subsequence, then the

extension of T is again an m-(sub)linear operator.

The extension of T will again be denoted by T .

Proof. By the compatibility of the norm on V with pointwise estimates, (5.3.1) and bound-

edness of T yields for ~f ,~g ∈ ~U

‖T (~f )−T (~g )‖V .
m∑

j=1
‖T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm)‖V

+‖T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)‖V

.
m∑

j=1

( m∏
l=1
l 6= j

(‖ fl‖Yl +‖gl‖Yl )
)
‖ f j − g j ‖Y j .

(5.3.2)

Now, if ~f ∈ ~Y and ( f k
j )k∈N is a sequence in U j converging to f j in Y j for all j ∈ {1, . . . ,m},

then (5.3.2) implies that (T (~f k ))k∈N is a Cauchy sequence in V . The first assertion then

follows by defining T (~f ) to be the limit of this sequence in V . Note that this is well-

defined since it follows from another application of (5.3.2) that this limit does not de-

pend on the approximating sequences of the f j . For the bound we have

‖T (~f )‖V ≤β liminf
k→∞

‖T (~f k )‖V ≤βc
m∏

j=1
limsup

k→∞
‖ f k

j ‖Y j ≤β
( m∏

j=1
α j

)
c

m∏
j=1

‖ f k
j ‖Y j .

where c, α j , and β are respectively the bound for T , the quasi-triangle inequality con-

stant for Y j , and the quasi-triangle inequality constant for V .

For the second assertion, if T is m-sublinear, then it follows from iterating the in-

equality

T (~f ) ≤ T (g1, f2, . . . , fm)+T ( f1 − g1, f2, . . . , fm)

for all f j in the first term on the right for j = 2 to j = m, that

T (~f ) ≤ T (~g )+
m∑

j=1
T ( f1, . . . , f j−1, f j − g j , g j+1, . . . , gm).

By symmetry, we obtain

T (~g ) ≤ T (~f )+
m∑

j=1
T (g1, . . . , g j−1, g j − f j , f j+1, . . . , fm)

and by combining these two estimates we obtain (5.3.1). If T is m-linear, these first two

inequalities are actually equalities, so we can proceed analogously.

The final assertion is a consequence of the fact that m-(sub)linearity is a pointwise

property.
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Note that if V = Lp
w (Rn) for a weight w and a p ∈ (0,∞], then V satisfies the property

that every convergent sequence has a pointwise a.e. convergent subsequence. More-

over, by continuity of the (quasi-)norm ‖ · ‖L
p
w (Rn ), the bound of the extension T will not

only be comparable, but it will be equal to the bound of the original T .

Consider an operator T : ~U → L0(Rn), where ~U is an m-tuple of quasi-normed lin-

ear subspaces of L0(Rn). Let ~r ∈ (0,∞)m , s ∈ (0,∞] and q ∈ (0, s). We then impose the

condition on T that for all ~f ∈ ~U there exists a sparse collection S such that

‖T (~f )g‖Lq (Rn ) .
( ∑

Q∈S

( m∏
j=1

〈 f j 〉r j ,Q

)q 〈g 〉q
1

1
q − 1

s
,Q
|Q|

) 1
q

. (5.3.3)

It turns out that it is convenient to reformulate this sparse domination in terms of a

domination by a multisublinear maximal operator.

Proposition 5.3.3. Let~r ∈ (0,∞)m , s ∈ (0,∞] and q ∈ (0, s). Then

‖M(~r , 1
1
q − 1

s
)(
~f , g )‖Lq (Rn ) h sup

S

( ∑
Q∈S

( m∏
j=1

〈 f j 〉r j ,Q

)q 〈g 〉q
1

1
q − 1

s
,Q
|Q|

) 1
q

,

for all ~f ∈ L~rloc(Rn), g ∈ L

1
1
q − 1

s

loc (Rn), where the supremum is over all sparse collections S .

Proof. Note that the left-hand side can be written as

‖M
(~rq ,

1
q

1
q − 1

s
)
(| f1|q , . . . , | fm |q , |g |q )‖

1
q

L1(Rn )

while the right-hand side can be written as

sup
S

( ∑
Q∈S

( m∏
j=1

〈| f j |q 〉 r j
q ,Q

)
〈|g |q 〉 1

q
1
q − 1

s
,Q
|Q|

) 1
q =

(
sup
S
Λ

S ,(~rq ,
1
q

1
q − 1

s
)
(|~f |q , |g |q )

) 1
q

Thus, the result follows from Proposition 3.2.10.

By this result we can write (5.3.3) as

‖T (~f )g‖Lq (Rn ) . ‖M(~r , 1
1
q − 1

s
)(
~f , g )‖Lq (Rn ),

which is not only notationally convenient, but as we will see in Chapter 9.2, gives us the

right point of view to extend sparse domination to a vector-valued setting.

One of the reasons we are considering sparse domination in this general form is be-

cause pointwise sparse domination by an `q sparse operator implies the sparse form

domination we are considering for s =∞.
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Proposition 5.3.4. Let~r ∈ (0,∞)m , q ∈ (0,∞) and let T be an operator defined on L∞
c (Rn)m .

Suppose that for each bounded set B and all ~f ∈ L∞
c (Rn)m supported in B, for each α ∈{

0, 1
3 , 2

3

}n there exists a sparse collection S α ⊆Dα such that∣∣T (~f )
∣∣≤CT

∑
α∈

{
0, 1

3 , 2
3

}n

( ∑
Q∈S α

( m∏
j=1

〈 f j 〉r j ,Q

)q
χQ

) 1
q

(5.3.4)

pointwise a.e. in B. Then

‖T (~f ) · g‖Lq (Rn ) .q CT ‖M(~r ,q)(~f , g )‖Lq (Rn )

for all ~f ∈ L∞
c (Rn)m , g ∈ L∞

c (Rn).

Proof. Let ~f ∈ L∞
c (Rn)m , g ∈ L∞

c (Rn). Since the set B :=
(
∪m

j=1 supp f j

)
∪ supp g is a

bounded set, letting S α be sparse collections such that (5.3.4) holds pointwise a.e. in

B , it follows from Proposition 5.3.3 that

‖T (~f ) · g‖Lq (Rn ) .q CT
∑

α∈
{

0, 1
3 , 2

3

}n

∥∥∥( ∑
Q∈S α

( m∏
j=1

〈 f j 〉r j ,Q

)q
χQ

) 1
q

g
∥∥∥

Lq (Rn )

=CT
∑

α∈
{

0, 1
3 , 2

3

}n

( ∑
Q∈S α

( m∏
j=1

〈 f j 〉r j ,Q

)q 〈g 〉q
q,Q |Q|

) 1
q

.q CT ‖M(~r ,q)(~f , g )‖Lq (Rn ).

The assertion follows.

Remark 5.3.5. We point out that if q̃ ∈ (0, q], then the inequality ‖ · ‖`q ≤ ‖ · ‖`q̃ implies

that if (5.3.4) holds, then it also holds with q replaced by q̃ . Thus, we actually find that

(5.3.4) implies that

‖T (~f ) · g‖Lq̃ (Rn ) ≤ 2
1
q̃ CT ‖M(~r ,q̃)(~f , g )‖Lq̃ (Rn )

for all q̃ ∈ (0, q] and g ∈ Lq̃
loc(Rn).

In the following result we will deduce weighted bounds from domination by the mul-

tisublinear Hardy–Littlewood operator. We recall here thatα j ,~p (T ),ω~p (T ) are defined in

Definition 5.2.1.

Theorem 5.3.6. Let T be an m-(sub)linear operator initially defined on L∞
c (Rn)m . Let

~r ∈ (0,∞)m , s ∈ (0,∞] and q ∈ (0, s) and suppose that

‖T (~f ) · g‖Lq (Rn ) ≤CT ‖M(~r , 1
1
q − 1

s
)(
~f , g )‖Lq (Rn ) (5.3.5)

for all ~f ∈ L∞
c (Rn)m , g ∈ L∞

c (Rn). Then for all ~p ∈ (0,∞]m with ~r < ~p and p < s, all
~w ∈ A~p,(~r ,s), T has a bounded extension L

~p
~w (Rn) → Lp

w (Rn) with

‖T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

.~p,q,~r ,s CT [~w]
max

{
1
~r

1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s) . (5.3.6)



90 5. WEIGHTED BOUNDS FOR MULTILINEAR OPERATORS

If for all j ∈ {1, . . . ,m}

α j ,~p (T ) ≥ 1

r j
, ω~p (T ) ≥ 1

q
− 1

s
,

then the exponent of the weight constant in (5.3.6) is the smallest possible one.

Moreover, suppose (Ω,µ) is a σ-finite measure space,~t ∈ (0,∞]m with~t >~r and t < s.

Then

T̃ (~f )(x,ω) := T (~f (·,ω))(x)

is well-defined for all ~w ∈ A~p,(~r ,s) and f j ∈ L
p j
w j

(Rn ;Lt j (Ω)). Furthermore, for all f j ∈
L

p j
w j

(Rn ;Lt j (Ω)) for which T̃ (~f ) is measurable,

‖T̃ (~f )‖L
p
w (Rn ;Lt (Ω)) .~p,q,~r ,s,~t [~w]

max

{
1
~r

1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~p,(~r ,s)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;L
t j (Ω))

.

(5.3.7)

Remark 5.3.7. As was noted in Remark 5.1.4, when T is m-linear the measurability as-

sumption on T̃ (~f ) is redundant and in this case we have the boundedness result

‖T̃ ‖L
p1
w1

(Rn ;Lt1 (Ω))×···×L
pm
wm (Rn ;Ltm (Ω))→L

p
w (Rn ;Lt (Ω)) .~p,q,~r ,s,~t [~w]

max

{
1
~r

1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~p,(~r ,s) .

We moreover point out that the weight constant here is in general not optimal. We will

show in Section 9.2 that, at least when t ≥ 1, it is possible to replace the exponent by the

smaller exponent

max

{
1
~r

1
~r − 1

~p

,

1
q − 1

s

1
p − 1

s

}
,

which does not depend on~t .

Theorem 5.3.6 is essentially a consequence of Theorem 3.2.11 and, in certain cases,

the quantitative multilinear extrapolation theorem. The reason we might have to use ex-

trapolation is because sparse domination by forms yields, a priori, weighted bounds for

the range of exponents where one can dualize the operator. Typically, in the multilinear

case, this does not yield the full range of exponents where the operator satisfies weighted

bounds. To recover this full range of exponents, we will use Theorem 5.1.2. Before we

can do this however, we need to use Lemma 5.3.2 to extend T to weighted Lebesgue

spaces. Since we are working with weights that are not necessarily locally integrable, it

is not a-priori clear that the bounded functions of bounded suppose are dense in these

spaces. We prove that this density result does indeed hold.

Lemma 5.3.8. Let w be a weight and p ∈ (0,∞). Then Lp
w (Rn) ∩ L∞

c (Rn) is dense in

Lp
w (Rn).
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Proof. First consider the case p > 1 and suppose g ∈ Lp ′

w−1 (Rn) satisfies the property that∫
Rn f g dx = 0 for all f ∈ Lp

w (Rn)∩L∞
c (Rn). If f ∈ L∞

c (Rn), then f
1+w ∈ Lp

w (Rn)∩L∞
c (Rn), so∫

Rn
f

g

1+w
dx =

∫
Rn

f

1+w
g dx = 0,

i.e., g
1+w ∈ Lp ′

(Rn) is annihilated by all f ∈ L∞
c (Rn). Since L∞

c (Rn) is dense in Lp (Rn), we

have g
1+w = 0 and thus g = 0. We conclude that Lp

w (Rn)∩L∞
c (Rn) is dense in Lp

w (Rn).

Now consider the case p ≤ 1. Fix k ∈ N so that 2k p > 1. If f ∈ Lp
w (Rn), then we

can pick a positive g ∈ L2k p

w2−k (Rn) with g 2k = | f |. By our previous result we can find a

sequence (g j ) j∈N in L2k p

w2−k (Rn)∩ L∞
c (Rn) converging to g . Setting f j := |g j |2k

sgn( f ) ∈
Lp

w (Rn)∩L∞
c (Rn) we compute

| f j − f | = ||g j |2
k − g 2k | = ||g j |− g |

k−1∏
l=0

||g j |2
l + g 2l |

so that by Hölder’s inequality

‖ f j − f ‖L
p
w (Rn ) ≤ ‖g j − g‖

L
2k p

w2−k (Rn )

k−1∏
l=0

‖|g j |2
l + g 2l ‖

L
2k−l p

w2−(k−l ) (Rn )
.

Since ‖|g j |2l + g 2l ‖
L

2k−l p

w2−(k−l ) (Rn )
. ‖g j ‖2l

L
2k p

w2−k (Rn )
+‖g‖2l

L
2k p

w2−k (Rn )
is bounded in j , we con-

clude that f j → f in Lp
w (Rn). Hence, Lp

w (Rn)∩L∞
c (Rn) is dense in Lp

w (Rn), as desired.

We are now ready to prove Theorem 5.3.6.

Proof of Theorem 5.3.6. Set 1
t j

:= τ
r j

with 1
τ =

1
r − 1

s + 1
q

1
q

> 1. Noting that 1
t = τ

r =
1
r

1
r + 1

q − 1
s

1
q ∈

( 1
s , 1

q ),
1
r1

1
r1
− 1

t1

= . . . =
1

rm

1
rm

− 1
tm

=
1
q − 1

s

1
t − 1

s

= 1

1−τ ,

it follows from Theorem 3.2.11 and Proposition 3.1.3(ii) that for all ~w ∈ A~t ,(~r ,s) we have

‖T (~f ) · g‖Lq (Rn ) ≤CT ‖M(~r , 1
1
q − 1

s
)(
~f , g )‖Lq (Rn ) =CT ‖M(

~r
q ,( s

q )′
)(|~f |q , |g |q )‖

1
q

L1(Rn )

.q,~r ,s CT [~w q ]

1
q ·max

{ q
~r

q
~r − q

~t

,
1− q

s
q
t − q

s

}
~t
q ,(~rq , s

q )

( m∏
j=1

‖| f j |q‖
1
q

L

t j
q

w
q
j

(Rn )

)
‖|g |q‖

1
q

L

(
t
q

)′
w−q (Rn )

=CT [~w]
1

1−τ
~t ,(~r ,s)

( m∏
j=1

‖ f j ‖
L

t j
w j

(Rn )

)
‖g‖

L

1
1
q − 1

t

w−1 (Rn )

(5.3.8)
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for all f j ∈ L
t j
w j

(Rn)∩L∞
c (Rn), g ∈ L

1
1
q − 1

t

w−1 (Rn)∩L∞
c (Rn). By Lemma 5.3.8 and Lemma 5.3.2

we see that (5.3.8) extends to an inequality valid for all ~f ∈ L~t
~w (Rn), g ∈ L

1
1
q − 1

t

w−1 (Rn).

Hence, by duality, we have

∥∥T (~f )
∥∥

Lt
w (Rn ) =

∥∥|T (~f )|q∥∥ 1
q

L
t
q

w q (Rn )

= sup
‖g‖

L

1
1
q − 1

t
w−1 (Rn )

=1
‖T (~f ) · g‖Lq (Rn ),

we have proven (5.1.1) with ~q =~t and φ~t ([~w]~t ,(~r ,s))hq,~r ,s CT [~w]
1

1−τ
~t ,(~r ,s)

. Noting that

max

{ 1
~r − 1

~t
1
~r − 1

~p

,
1
t − 1

s
1
p − 1

s

}
= (1−τ) ·max

{
1
~r

1
~r − 1

~p

,

1
q − 1

s

1
p − 1

s

}
,

the asserted bounds follow from Theorem 5.1.2. Finally, the optimality assertion follows

from Theorem 5.2.3.

5.4. EXAMPLES OF OPERATORS SATISFYING SPARSE DOMINATION AND AP-
PLICATIONS

In this section we apply Theorem 5.3.6 to multilinear Calderón-Zygmund operators and

the bilinear Hilbert transform, both of which having an intriguing history in terms of

obtaining weighted bounds. Moreover, we give some examples of operators satisfying

limited range sparse domination in the linear case m = 1.

5.4.1. Multilinear Calderón-Zygmund operators

Let T be an m-linear operator, initially defined for m-tuples ~f ∈C∞
c (Rn)m , that satisfies

T ( f1, . . . , fm)(x) =
∫

(Rn )m
K (x, y1, . . . , ym)

m∏
j=1

f j (y j ) dy,

whenever x ∉∩m
j=1 supp f j , where K is a kernel defined in (Rn)m+1\∆, with∆ := {(y0, . . . , ym) ∈

(Rn)m+1 : y0 = y1 = ·· · = ym}. Suppose K satisfies the estimate

|K (y0, . . . , ym)|. 1(∑m
j ,k=0 |y j − yk |

)mn

for all (y0, . . . , ym) ∈ (Rn)m+1\∆, and suppose that for all l ∈ {0, . . . ,m} we have

|K (y0, . . . , yl , . . . , ym)−K (y0, . . . , y ′
l , . . . , ym)|.ω

( |yl − y ′
l |∑m

j ,k=0 |y j − yk |

)
1(∑m

j ,k=0 |y j − yk |
)mn
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for all (y0, . . . , yl , . . . , ym) ∈ (Rn)m+1\∆, and y ′
l with |yl−y ′

l | ≤ 1
2 maxk∈{0,...,m} |yl−yk |, where

ω : [0,∞) → [0,∞) is a nondecreasing continuous doubling function. If there exist ~q ∈
(1,∞]m so that T extends to a bounded operator L~q (Rn) → Lq (Rn), then T is called an

m-linear Calderón-Zygmund operator with modulus of continuity ω.

Multilinear Calderón-Zygmund operators with modulus of continuity ω(t ) = tε for

some ε > 0 first appeared in the work [CM75] by Coifman and Meyer. Weighted esti-

mates for these operators have been considered for example by Grafakos and Torres in

[GT02] and subsequently by Grafakos and Martell in [GM04]. In the work [LOP+09b]

by Lerner, Ombrosi, Pérez, Torres, and Trujillo-González, it was realized that the appro-

priate weight classes to study these operators are the multilinear weight classes A~p,(~1,∞)

associated to the multisublinear maximal operator. Sharp weighted bounds for the spe-

cific exponents p1 = . . . = pm = m + 1 were found by Damián, Lerner, and Pérez in

[DLP15]. These bounds were extended to all ~p ∈ (1,∞)m in the Banach range 1 ≤ p <∞
by Li, Moen, and Sun in [LMS14]. They proved that the same bounds hold also in

the case 1
p > 1 for multilinear sparse operators, leading them to conjecture that the

bounds for multilinear Calderón-Zygmund operators should also extend to the case
1
p > 1. Through a pointwise sparse domination result, this conjecture was indepen-

dently proven to be true by Conde-Alonso and Rey [CR16] and Lerner and Nazarov

[LN18] who considered moduli of continuity ω satisfying a log–Dini condition. More

precisely, they proved that if ∫ 1

0
ω(t ) log

1

t

dt

t
<∞, (5.4.1)

then for all bounded sets B and all ~f ∈ L∞
c (Rn)m supported in B , for each α ∈ {

0, 1
3 , 2

3

}n

there exists a sparse collection S α ⊆Dα such that

∣∣T (~f )
∣∣≤CT

∑
α∈

{
0, 1

3 , 2
3

}n

∑
Q∈S

( m∏
j=1

〈 f j 〉r j ,Q

)
χQ

pointwise a.e. in B . We also refer the reader to [Lac17, HRT17] for the linear case m =
1, where the weaker Dini condition was assumed on ω. The Dini condition was used

in the bilinear setting m = 2 by Damián, Hormozi, and Li [DHL18] where, in addition,

quantitative mixed multilinear A~p –A∞ bounds were considered.

To see how the pointwise sparse domination can be used to obtain sharp weighted

bounds, note that by Proposition 5.3.4 we have

‖T (~f ) · g‖L1(Rn ) .CT ‖M(~r ,1)(~f , g )‖L1(Rn )

for all ~f ∈ L∞
c (Rn)m , g ∈ L∞

c (Rn). Hence, by Theorem 5.3.6 and Remark 5.1.4, we obtain

the following result:

Theorem 5.4.1. Let T be an m-linear Calderón-Zygmund operator with modulus of con-

tinuity ω satisfying the log–Dini condition (5.4.1). Then for all ~p ∈ (1,∞]m with p < ∞
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and all ~w ∈ A~p,(~1,∞), T has a bounded extension L
~p
~w (Rn) → Lp

w (Rn) with

‖T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

.~p CT [~w]
max

{
p ′

1,...,p ′
m ,p

}
~p,(~1,∞)

.

Moreover, let (Ω,µ) be a σ-finite measure space, and let~t ∈ (1,∞]m with t <∞. Then for

all ~w ∈ A~p,(~r ,s) the tensor extension T̃ of T is bounded Lp1
w1

(Rn ;Lt1 (Ω))×·· ·×Lpm
wm

(Rn ;Ltm (Ω)) →
Lp

w (Rn ;Lt (Ω)) with

‖T̃ ‖L
p1
w1

(Rn ;Lt1 (Ω))×···×L
pm
wm (Rn ;Ltm (Ω))→L

p
w (Rn ;Lt (Ω)) .~p,~t [~w]

max
{

t ′1,...,t ′m ,t
}·max

{
p′1
t ′1

,...,
p′m
t ′m

, p
t

}
~p,(~1,∞)

.

We point out that the extrapolation result, Theorem 5.1.2, yields another proof of

this result using only the bound at p1 = . . . = pm = m+1 obtained in [DLP15] and hence,

gives an alternative method of proving the conjecture from [LMS14] to obtain bounds

in the cases 1
p > 1. This follows from the observation that in the proof of Theorem 5.4.1

we only require the bound at p1 = . . . = pm = m +1.

The exponent max
{

t ′1, . . . , t ′m , t
} ·max

{
p ′

1
t ′1

, . . . ,
p ′

m
t ′m

, p
t

}
in the vector-valued bound is

not optimal and, in fact, we will see in Chapter 9 that it can be replaced by the sharp

bound max
{

p ′
1, . . . , p ′

m , p
}

when t ≥ 1, which coincides with the exponent in the scalar

estimate.

Finally, we note that our bounds in the cases where p j =∞ are completely new.

5.4.2. The bilinear Hilbert transform

The bilinear Hilbert transform BHT, initially defined for f1, f2 ∈S (R), is given by

BHT( f1, f2)(x) := p.v.
∫

R
f1(x − y) f2(x + y)

dy

y
,

and is an integral operator falling outside of the theory of bilinear Calderón-Zygmund

operators. The reason for this is that its symbol sgn(ξ1 − ξ2) in its representation as a

Fourier multiplier

BHT( f1, f2)(x) =−iπ
∫

R2
sgn(ξ1 −ξ2) f̂ (ξ1)ĝ (ξ2)e2πi (ξ1+ξ2)x dξ1dξ2

has a singularity along the line ξ1 = ξ2 rather than in a single point, as is the case for

Calderón-Zygmund operators.

This operator was introduced by A. Calderón and he wanted to know if it has a

bounded extension L2(R)×L∞(R) → L2(R). This question was answered by Lacey and

Thiele [LT97, LT99] and they showed that BHT is bounded Lp1 (R)×Lp2 (R) → Lp (R) for all

p1, p2 ∈ (1,∞] with 2
3 < p <∞. It is an open problem whether we can obtain bounds for

the remaining range 1
2 < p ≤ 2

3 or not. However, in the range of Lacey and Thiele several

weighted bounds and vector-valued extensions have been obtained.

Let r1,r2, s ∈ (1,∞) satisfy one of the following equivalent properties:
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(i) max
{ 1

r1
, 1

2

}+max
{ 1

r2
, 1

2

}+max
{ 1

s′ , 1
2

}< 2;

(ii) There exist θ1,θ2,θ3 ∈ [0,1) with θ1 +θ2 +θ3 = 1 so that

1

r1
< 1+θ1

2
,

1

r2
< 1+θ2

2
,

1

s
> 1−θ3

2
.

Using characterization (i), it was shown by Culiuc, Di Plinio and Ou in [CDO18] that

‖BHT( f1, f2) · g‖L1(R) . ‖M(r1,r2,s′)( f1, f2, g )‖L1(R) (5.4.2)

for all f1, f2, g ∈ L∞
c (R).

Using characterization (ii), it was later shown by Benea and Muscalu in [BM17] that

for q ∈ (0, s) we also have the `q -type sparse domination

‖BHT( f1, f2) · g‖Lq (R) . ‖M(r1,r2, 1
1
q − 1

s
)( f1, f2, g )‖Lq (R) (5.4.3)

for all f1, f2, g ∈ L∞
c (R), as well as more general vector-valued sparse domination results.

While we only require (5.4.2) to obtain bounds in the scalar-valued setting, we will see

in Section 9.3 that allowing for this smaller q in (5.4.3) is important to obtain bounds in

the vector-valued setting.

In [CDO18], it was deduced from (5.4.2) that for all p1, p2 ∈ (1,∞) with ~p > ~r , in

the Banach range 1 < p < s and for all ~w ∈ A~p,(~r ,s) we have the weighted bounds BHT :

Lp1
w1

(Rn)×Lp2
w2

(Rn) → Lp
w (Rn). These weighted bounds were used in [CM18] to obtain

weighted and vector-valued estimates in the range p ≤ 1 through extrapolation using

certain product Ap1,(r1,s1)×Ap2,(r2,s2) weight classes. This result was extended in [LMO18]

where the full multilinear weight classes A(p1,p2),((r1,r2),s) were used, but only the cases

for finite p j were treated. However, as shown in [LMM+19], their methods can be used

to also obtain the cases with p j =∞ . By applying Theorem 5.3.6 and Remark 5.1.4 to

(5.4.2), we obtain the following result:

Theorem 5.4.2. Let r1,r2, s ∈ (1,∞) satisfy one of the equivalent conditions (i), (ii). Then

for all p1, p2 ∈ (1,∞] with ~p >~r , p < s and all ~w ∈ A~p,(~r ,s), BHT extends to a bounded

operator Lp1
w1

(R)×Lp2
w2

(R) → Lp
w (R) with

‖BHT‖L
p1
w1

(R)×L
p2
w2

(R)→L
p
w (R) . [~w]

max

{
1

r1
1

r1
− 1

p1

,
1

r2
1

r2
− 1

p2

,
1− 1

s
1
p − 1

s

}
~p,(~r ,s) .

Moreover, let (Ω,µ) be a σ-finite measure space, and let t1, t2 ∈ (1,∞] with~t >~r , t < s.

Then for all ~w ∈ A~p,(~r ,s) the tensor extension �BHT of BHT is bounded Lp1
w1

(Rn ;Lt1 (Ω))×
Lp2

w2
(Rn ;Lt2 (Ω)) → Lp

w (Rn ;Lt (Ω)) with

‖�BHT‖L
p1
w1

(Rn ;Lt1 (Ω))×L
p2
w2

(Rn ;Lt2 (Ω))→L
p
w (Rn ;Lt (Ω))

.~p,~t [~w]
max

{
1

r1
1

r1
− 1

t1

,
1

r2
1

r2
− 1

t2

,
1− 1

s
1
t − 1

s

}
·max

{
1

r1
− 1

t1
1

r1
− 1

p1

,
1

r2
− 1

t2
1

r2
− 1

p2

,
1
t − 1

s
1
p − 1

s

}
~p,(~1,∞)

.

(5.4.4)
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As we noted in Remark 5.3.7, the quantitative bound (5.4.4) is not sharp and will be

improved in Chapter 9.

5.4.3. Examples in the linear case m = 1

There is a wealth of examples of sparsely dominated operators in the case m = 1. Going

beyond the class of Calderón-Zygmund operators, a general class of examples associ-

ated to semigroups was found in the work of Bernicot, Frey, and Petermichl [BFP16]. A

very general sparse domination principle was established by Lerner in [Ler16] and was

further generalized by Lerner and Ombrosi in [LO20] and by Lorist [Lor19], who also

considered `q -type sparse domination in spaces of homogeneous type.

We point out several interesting examples here.

Example 5.4.3 (Rough homogeneous singular integral operators). Let (Sd−1,σ) denote

the unit sphere in Rd with its Euclidean surface measure. ForΩ ∈ L∞(Sd−1) with
∫

Sd−1Ωdσ=
0 we define the rough homogeneous singular integral operator TΩ as

TΩ f (x) := p.v.
∫

Rd
f (x − y)

Ω(y/|y |)
|y |d dy.

One of the main results in the work [CCDO17] of Conde-Alonso, Culiuc, Di Plinio, and

Ou is that for all s ∈ (1,∞) and all f , g ∈ L∞
c (Rd ) there exists a sparse collection S such

that

‖(TΩ f )g‖L1(Rd ) . s‖Ω‖L∞(Sd−1)

∑
Q∈S

〈 f 〉1,Q〈g 〉s′,Q |Q|.

An alternative proof of this result was given by Lerner [Ler19].

Adapting the technique of Lerner from [Ler19], it was shown by Canto, Li, Roncal,

and Tapiola in [CLRT19, Theorem 5.1], that for all s ∈ (1,∞), q ∈ (0,1], and all f , g ∈
L∞

c (Rd ) we have the `q -type sparse domination

‖(TΩ f )g‖Lq (Rd ) .
s

q
‖Ω‖L∞(Sd−1)‖M(r, 1

1
q − 1

s
)( f , g )‖Lq (Rn ).

Example 5.4.4 (Riesz transform associated with elliptic second order divergence form

operators). Let A be a complex, bounded, measurable matrix-valued function in Rn

satisfying the ellipticity condition Re(A(x)ξ·ξ) ≥λ|ξ|2 for all ξ ∈ Cn and a.e. x ∈ Rn . Then

one can define a maximal accretive operator

L f :=−div(A∇ f )

which generates a semigroup (e−tL)t>0. If r ∈ [1,∞), s ∈ (1,∞], then if both the semi-

group and the family (
p

t∇e−tL)t>0 satisfy Lr –Ls off-diagonal estimates, then it is shown

in [BFP16] that the Riesz transform R :=∇L−1/2 satisfies

‖R f · g‖L1(Rn ) . ‖M(r,s′)( f , g )‖L1(Rn )
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for all f , g ∈ L∞
c (Rn). Moreover, if we are in dimension n = 1, then we can take r = 1

and s =∞ so that R satisfies sparse domination in the full range. We refer the reader to

[Aus07] for more values of r and s in other dimensions.

Example 5.4.5 (Riesz transform associated to the Neumann Laplacian). Suppose∆ is the

Laplace operator associated with Neumann boundary conditions in a bounded convex

doubling domain U ⊆ Rn . As studied in [WY13], the Riesz transform R :=∇∆−1/2 will not

in general have a kernel satisfying pointwise regularity estimates and is thus not in the

class of Calderón-Zygmund operators. Nonetheless, this operator satisfies

‖R f · g‖L1(U ) . ‖MB
(1,1)( f , g )‖L1(U )

for all f , g ∈ L∞
c (Rn), where B is the collection of balls in U . Note that to apply our

results to this example, we need to show that they remain valid when replacing Rn by

the doubling metric measure space U . We refer the reader to Chapter 7, where we show

how our results can be extended to general spaces of homogeneous type.

Example 5.4.6 (The Bochner-Riesz multiplier). For each δ≥ 0, the Bochner-Riesz multi-

plier Bδ is defined as the Fourier multiplier F (Bδ f ) = (1−|ξ|2)δ+F f , where t+ = max(t ,0).

For δ≥ (n−1)/2, Bδ satisfies weighted bounds ‖Bδ‖L
p
W (Rn )→L

p
w (Rn ) <∞ for any p ∈ (1,∞)

and any w ∈ Ap,(1,∞), see [Buc93, DR86, SS92].

The situation is more complicated when 0 < δ < (n −1)/2 and weighted bounds for

such δ have, for example, been considered in [CDL12, Chr85, DMOS08]. The idea to

quantify weighted bounds for Bδ for 0 < δ < (n − 1)/2 through sparse domination was

initiated by Benea, Bernicot, and Luque [BBL17]. It was shown by Lacey, Mena, and

Reguera in [LMR19] that for this range of δ there are explicit subsets Rδ,n of the plane

such that for any (r, s) ∈ Rδ,n we have

‖Bδ f · g‖L1(Rn ) . ‖M(r,s′)( f , g )‖L1(Rn ).

We also refer the reader to the recent work by Kesler and Lacey [KL18] containing certain

sparse endpoint bounds in dimension n = 2.

Example 5.4.7 (Spherical maximal operators). Let (Sn−1,σ) denote the unit sphere in Rn

equipped with its normalized Euclidean surface measureσ. For a smooth function f on

Rn we denote by Aρ f (x) the average of f over the sphere centered at x of radius ρ > 0,

i.e.,

Aρ f (x) :=
∫

Sd−1
f (x −ρω) dσ(ω).

We respectively define the lacunary spherical maximal operator and the full spherical

maximal operator by

Mlac f := sup
k∈Z

|A2k f |, Mfull f := sup
ρ>0

|Aρ f |,

the latter having been introduced by Stein [Ste76] and the former having been studied

by Calderón [Cal79]. It was shown by Lacey [Lac19] that for explicit subsets Ln , Fn of the



98 5. WEIGHTED BOUNDS FOR MULTILINEAR OPERATORS

plane we have

‖Mlac f · g‖L1(Rn ) . ‖M(r,s′)( f , g )‖L1(Rn ), for (p−, p+) ∈ Ld ,

‖Mfull f · g‖L1(Rn ) . ‖M(r,s′)( f , g )‖L1(Rn ), for (p−, p+) ∈ Fd .

In the recent work [RSS20] by Roncal, Shrivastava, and Shuin, the ideas of [Lac19] were

adapted to prove sparse domination result for the bisublinear analogues of Mlac and

Mfull.



6
WEIGHTED ENDPOINT ESTIMATES

In this chapter we will be proving mixed A1–A∞ type endpoint estimates as a conse-

quence of sparse domination in the case m = 1.

This chapter as well as the next one are based on the paper

D. Frey and B. Nieraeth. Weak and Strong Type A1–A∞ Estimates for Sparsely

Dominated Operators. Journal of Geometric Analysis, 29(1):247–282, 2019.

6.1. WEAK-TYPE BOUNDS FOR MULTILINEAR OPERATORS FROM SPARSE DOM-
INATION

In this section we prove how one can obtain unweighted weak-type bounds from sparse

domination. In the next section we adapt this proof in the linear case m = 1 to a weighted

setting. The proofs are based on the fact that for any σ-finite measure space (Ω,µ), any

r ∈ (0,∞) we have the equivalence

‖ f ‖Lr,∞(Ω) h sup
E⊆Ω

0<µ(E)<∞
inf

E ′⊆E
µ(E)≤2µ(E ′)

µ(E)
1
r −1‖ f χE ′‖L1(Ω) (6.1.1)

for all f ∈ Lr,∞(Ω), see [Gra14a, Exercise 1.4.14]. This description of the Lr,∞ quasinorm

in terms of L1 norms allows us to utilize the sparse domination assumption to deduce

weak-type bounds.

We have the following result:

Proposition 6.1.1. Let T be an m-(sub)linear operator initially defined on L∞
c (Rn)m . Let

~r ∈ (0,∞)m , s ∈ (1,∞], and suppose that

‖T (~f )g‖L1(Rn ) ≤CT ‖M(~r ,s′)(~f , g )‖L1(Rn )

for all ~f ∈ L∞
c (Rn)m , g ∈ L∞(Rn)∩L1(Rn). Then T has a bounded extension L~r (Rn) →

Lr,∞(Rn) with

‖T ‖L~r (Rn )→Lr,∞(Rn ) .r,s CT .

Proof. Let ~f ∈ L∞
c (Rn)m with ‖ f j ‖L

r j (Rn ) = 1. By the equivalence (6.1.1) and Lemma 3.2.4

99
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we have

‖T (~f )‖Lr,∞(Rn ) h sup
E⊆Rn

0<|E |<∞
inf

E ′⊆E
|E |≤2|E ′|

|E | 1
r −1‖T (~f )χE ′‖L1(Rn )

≤CT sup
E⊆Rn

0<|E |<∞
inf

E ′⊆E
|E |≤2|E ′|

|E | 1
r −1‖M(~r ,s′)(~f ,χE ′ )‖L1(Rn )

hCT sup
E⊆Rn

0<|E |<∞
max

α∈
{

0, 1
3 , 2

3

}n
inf

E ′⊆E
|E |≤2|E ′|

|E | 1
r −1‖MDα

(~r ,s′)(
~f ,χE ′ )‖L1(Rn ).

(6.1.2)

Fix a dyadic grid D =Dα and E ⊆ Rn with 0 < |E | <∞. Define

Ω j := {
x ∈ Rn ; MD

r j
( f j )(x) >

(2m

|E |
) 1

r j
}
, Ω :=

m⋃
j=1
Ω j .

Then, since ‖MD
r j
‖L

r j (Rn )→L
r j ,∞

(Rn ) ≤ 1 by Lemma 3.2.5, we have

|Ω| ≤
m∑

j=1
|Ω j | ≤

m∑
j=1

|E |
2m

= |E |
2

.

Setting E ′ := E\Ω, we find |E | ≤ |E ′|+ |Ω| ≤ |E ′|+ |E |/2 so that |E | ≤ 2|E ′|.
Now, using an analogous argument as in the proof of Lemma 3.2.5 we can writeΩ j =⋃

P j ∈P j P j where P j ⊆ D is the pairwise disjoint collection cubes P j that are maximal

with respect to the inequality 〈 f j 〉r j ,P j >
(

2m
|E |

) 1
r j . Note that unlike in Lemma 3.2.5 where

we had to consider finite collections of cubes, the fact that these maximal cubes exist

follows from the fact that Ω j has finite measure. Indeed, since the increasing sequence

of cubes in D containing a point x ∈ Rn has a strictly increasing sequence of measures

converging to ∞, the cubes P j in this sequence satisfying 〈 f j 〉r j ,P j >
(

2m
|E |

) 1
r j must be

bounded from above as they are contained inΩ j , proving that there is a maximal one.

Now, we write

g j := | f j |χΩc
j
+ ∑

P j ∈P j

〈 f j 〉r j ,P jχP j , b j := ∑
P j ∈P j

b j ,P j := ∑
P j ∈P j

(| f j |r j −〈 f j 〉r j

r j ,P j

)
χP j

so that | f j |r j = g
r j

j +b j . Then for all P j ∈P j we have

suppb j ,P j ⊆ P j ,
∫

P j

b j ,P j dx = 0, (6.1.3)

‖g j ‖∞ ≤
(2n+1m

|E |
) 1

r j , ‖g j ‖L
r j (Rn ) = 1. (6.1.4)

Here, for the first bound on g j we used the fact that on Ωc
j we have | f j | ≤ MD

r j
( f j )(x) ≤(

2m
|E |

) 1
r j by the Lebesgue Differentiation Theorem, while for the parent P̂ j of a cube P j ∈

P j we have 〈 f j 〉r j ,P j ≤ 2
n
r j 〈 f j 〉r j ,P̂ j

≤ 2
n
r j

(
2m
|E |

) 1
r j by maximality.
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Next, we claim that

MD
(~r ,s′)(

~f ,χE ′ ) = MD
(~r ,s′)(~g ,χE ′ ). (6.1.5)

Indeed, fix a cube Q ∈ D. If Q ∩E ′ =∅, then 〈χE ′〉s′,Q = 0. For the other case, suppose

Q ∩E ′ 6=∅. If P j ∈ P j satisfies P j ∩Q 6=∅, we must have P j ⊆ Q (otherwise Q ⊆ P j ⊆
Ω j ⊆Ω, but E ′∩Ω=∅). But then, by (6.1.3), we have 〈b j ,P j 〉1,Q = 0. If on the other hand

P j ∩Q =∅, then we similarly have 〈b j ,P j 〉1,Q = 0. Hence,

〈 f j 〉r j

r j ,Q = 〈g j 〉r j

r j ,Q + ∑
P j ∈P j

〈b j ,P j 〉1,Q = 〈g j 〉r j

r j ,Q .

The claim (6.1.5) now follows from the definition of MD
(~r ,s′).

Finally, we note that for 1
p j

:= τ
r j

with 1
τ

:= 1
s′ + 1

r it follows from (6.1.4) that

‖g j ‖L
p j (Rn ) .r j |E |−

1
r j

(
1− r j

p j

)
‖g j ‖

r j
p j

L
r j (Rn )

= |E |
1

p j
− 1

r j

so that by Hölder’s inequality and Lemma 3.2.5 we have

‖MD
(~r ,s′)(~g ,χE ′ )‖L1(Rn ) ≤

(
1
r + 1

s′
1
r − 1

s

) 1
r + 1

s′ ( m∏
j=1

‖g j ‖L
p j (Rn )

)‖χE ′‖Lp′ (Rn )

.r,s |E ′|
1

p′ |E | 1
p − 1

r ≤ |E |1− 1
r .

The assertion now follows from (6.1.2) and (6.1.5).

6.2. WEIGHTED ENDPOINT BOUNDS FOR LINEAR OPERATORS

We will be considering estimates for (sub)linear operators at the endpoint p = r with

weights in the class Ar,(r,s). Our bounds will be in terms of the constant [w]r,(r,s) =
[w

1
1
r − 1

s ]
1
r − 1

s
A1

and the Fujii-Wilson constant [w−1]FW
r ′,s′ = [w

1
1
r − 1

s ]
1
r ′
A∞ which was introduced

in Section 3.3. It follows from Proposition 3.1.8 that w ∈ Ar,(r,s) if and only if [w r ]
1
r
A1

=
[w]r,(r,∞) <∞ and w r ∈ RH 1

r
1
r − 1

s

. We will establish the following weak-type bounds:

Theorem 6.2.1. Let T be a (sub)linear operator initially defined on L∞
c (Rn). Let r ∈ [1,∞),

s ∈ (1,∞], and suppose that

‖T f · g‖L1(Rn ) ≤CT ‖M(r,s′)( f , g )‖L1(Rn )

for all f ∈ L∞
c (Rn), g ∈ L∞(Rn)∩L1(Rn). Then for all w ∈ Ar,(r,s), T has a bounded exten-

sion Lr
w (Rn) → Lr,∞

w (Rn) with

‖T ‖Lr
w (Rn )→Lr,∞

w (Rn ) .r,s CTψ(w),
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where

ψ(w) =



[w]A1 log(e + [w]A∞ ) if r = 1, s =∞;

[w r ]
1
r
A1

[w r ]
1
r ′
A∞ log(e + [w r ]A∞ )

2
r if r > 1, s =∞;

[w s′ ]A∞ [w]A1 [w]RHs′ if r = 1, s <∞;

[w
1

1
r − 1

s ]
1+ 1

r
A∞ [w r ]

1
r
A1

[w r ]
1
r
RH 1

r
1
r − 1

s

if r > 1, s <∞.

We will also prove the following result:

Theorem 6.2.2. Let T be a (sub)linear operator initially defined on L∞
c (Rn). Let r ∈ [1,∞),

s ∈ (1,∞], and suppose that

‖T f · g‖L1(Rn ) ≤CT ‖M(r,s′)( f , g )‖L1(Rn )

for all f , g ∈ L∞
c (Rn). Then for all p ∈ (r, s), w ∈ Ap,(p,s), T has a bounded extension

Lp
w (Rn) → Lp

w (Rn) with

‖T f ‖L
p
w (Rn )→L

p
w (Rn ) .r,s CT cp,r,s [w−1]FW

p ′,s′ [w]p,(p,s), (6.2.1)

where

cp,r,s =
(

1− 1
p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

.

In particular, for all p ∈ (r, s), w ∈ Ap,(p,s) we have

‖T ‖L
p
w (Rn )→L

p
w (Rn ) .p,r,s CT [w]

1− 1
s

1
p − 1

s

p,(p,s) =CT [w
1

1
p − 1

s ]
1
s′
A1

. (6.2.2)

Moreover, if ω(T ) ≥ 1− 1
s , where

ω(T ) = sup
{
ω ∈ [0,∞) : ∀ε> 0, limsup

1
p → 1

s

( 1

p
− 1

s

)ω−ε‖T ‖Lp (Rn )→Lp (Rn ) =∞
}

,

then the exponent of the weight constant in (6.2.2) is the smallest possible one.

For the proofs of these results we will require several lemmata. Throughout these

results we will work in a fixed dyadic grid D =Dα.

As an analogue to [LOP08, Lemma 3.2] and [HP13, Lemma 6.1], our main lemma is

the following:

Lemma 6.2.3. Let r ∈ (0,∞), s ∈ (1,∞], p ∈ (r, s) and 1
q ∈ (0, 1

p − 1
s ). Then

‖MD
(r,s′)( f , g )‖L1(Rn )

.

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s [

q

(
1

p
− 1

s

)]′ 1
p′ ‖ f ‖L

p

MD
q w

(Rn )‖g‖
L

p′
w−1 (Rn )

for all f ∈ Lr
loc(Rn), g ∈ Ls′

loc(Rn) and w ∈ Lq
loc(Rn) non-zero on the support of g .
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We point out that a similar type of result is established in [DHL17, Theorem B].

Remark 6.2.4. In the unweighted case it follows from Hölder’s inequality and 3.2.5 that

‖MD
(r,s′)( f , g )‖L1(Rn ) ≤

(
1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

‖ f ‖Lp (Rn )‖g‖Lp′ (Rn ).

Thus, it appears that adding the weight accounts for the extra term

(
1− 1

p
1
r − 1

p

) 1
r

, which de-

pends on p when r 6= 1. This extra term appears in Lemma 6.2.6 below and it causes the

additional terms in the quantitative bounds for r 6= 1 in Theorem 6.2.1. At this moment

it is not clear whether this term can be removed or not.

We break up the proof of the main lemma into another series of lemmata.

Lemma 6.2.5. For all f ∈ Lr
loc(Rn), g ∈ Ls′

loc(Rn) and β ∈ (0,1] we have the pointwise esti-

mate

MD
(r,s′)( f , g ) ≤ MD

r

(
(MD

s′ g )1−β f
)

(MD
s′ g )β.

Proof. Fix x ∈ Rn and let Q ∈D with x ∈Q. Then

〈g 〉s′,Q = 〈g 〉βs′,Q〈g 〉1−β
s′,Q ≤ 〈g 〉βs′,Q essinf

y∈Q
(MD

s′ g )(y)1−β

so that

〈 f 〉r,Q〈g 〉s′,Q ≤ 〈(MD
s′ g )1−β f 〉r,Q〈g 〉βs′,Q ≤ MD

r

(
(MD

s′ g )1−β f
)

(x)(Ms′g )(x)β.

Taking a supremum over all Q ∈D with x ∈Q proves the result.

Lemma 6.2.6. Let r ∈ (0,∞), s ∈ (1,∞], p ∈ (r, s), and q ∈ (p,∞). Then

‖MD
(r,s′)( f , g )‖L1(Rn ) .

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r

‖ f ‖L
p

MD
q w

(Rn )‖MD
s′ g‖

L
p′
(MD

q w)−1
(Rn )

,

for all f ∈ Lr
loc(Rn), g ∈ Ls′

loc(Rn), and w ∈ Lq
loc (Rn).

For the proof of this lemma we require two results on dyadic maximal operators. The

first is a version of a classical result of Fefferman and Stein [FS71].

Lemma 6.2.7. Let r ∈ (0,∞), and let w be a weight. Then for all p ∈ (r,∞] the operator

MD
r is bounded Lp

MD
p w

(Rn) → Lp
w (Rn) with

‖MD
r f ‖L

p

MD
p w

(Rn )→L
p
w (Rn ) ≤

(
1
r

1
r − 1

p

) 1
q

.

Moreover, MD
r is bounded Lr

MD
r w

(Rn) → Lr,∞
w (Rn) with ‖MD

r ‖Lr
MD

r w
(Rn )→Lr,∞

w (Rn ) ≤ 1.
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Proof. The proof of this result is very similar to the proof of Lemma 3.2.5. By the same

reasoning as in that proof, it suffices to prove the weak-type bound and by a rescaling

argument, it suffices to prove this in the case r = 1. Let F ⊆ D be a finite collection of

cubes and fix f ∈ L1(Rn ; MD w), λ> 0. Let P be the pairwise disjoint collection of cubes

P that are maximal with respect to the inequality 〈 f 〉1,P >λ so that {x ∈ Rn : MF ( f )(x) >
λ} =∪P∈P P .

Now, since

〈 f 〉1,P w(P ) ≤ (
essinf

y∈P
MD w(y)

)〈 f 〉1,P |P | ≤
∫

P
f MD w dx,

we have

λw({x ∈ Rn : MF ( f )(x) >λ}) = ∑
P∈P

λw(P ) ≤ ∑
P∈P

〈 f 〉1,P w(P )

≤ ∑
P∈P

∫
P

f MD w dx =
∫

{x∈Rn :MF ( f )(x)>λ}
f MD w dx

≤ ‖ f ‖L1(Rn ;MD w).

Thus, taking a supremum overλ> 0 yields ‖MF ( f )‖L1,∞(Rn ;w) ≤ ‖ f ‖L1(Rn ;MD w). By mono-

tonicity of the measure we have

‖MD( f )‖L1,∞(Rn ;w) ≤ sup
F⊆D

F finite

‖MF ( f )‖L1,∞(Rn ;w) ≤ ‖ f ‖L1(Rn ;MD w),

proving the assertion follows.

The second result we need can be found in [CR80, Proposition 2], see also [Gra14a,

Theorem 7.2.7], and states that

MD((MD f )δ).
(MD f )δ

1−δ (6.2.3)

for all δ ∈ (0,1) and f ∈ L1
loc(Rn).

Proof of Lemma 6.2.6. We will prove the stronger assertion

‖MD
(r,s′)( f , g )‖L1(Rn ) .

(
1− 1

t
1
r − 1

t

) 1
r
 1

r

1
r −max

(
1
t , 1

p

)
 1

r

‖ f ‖L
p

(MD
p w)

1−t ′
1−p′

(Rn )‖MD
s′ g‖

L
p′

(MD
p w)

− 1−t ′
1−p′

(Rn )
,

valid for all t > r , generalizing a version of the result [Ler10, Theorem 1.7] in which the

case r = 1, s =∞ is treated. The result of the lemma follows with 1
t :=

1
q

1
p′ +

1
q
< 1

r .

We set

β := min

(
p ′

1
t

1
r ′ + 1

t ′
1
r

1
t + 1

r

,1

)
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so that 0 <β≤ 1.

By Lemma 6.2.5 and by Hölder’s inequality we find that

‖MD
(r,s′)( f , g )‖L1(Rn ) ≤ ‖MD

r

(
(MD

s′ g )1−β f
)

(MD
s′ g )β‖L1(Rn )

≤ I‖MD
s′ g‖β

L
p′

(MD
p w)

− 1−t ′
1−p′

(Rn )
, (6.2.4)

where

I =
∥∥∥MD

r

(
(MD

s′ g )1−β f
)∥∥∥

L

1
β

1
β
− 1

p′

(MD
p w)

β 1−t ′
1−p′

(Rn )

.

We will consider two cases. First assume that

p ′
1
t

1
r ′ + 1

t ′
1
r

1
t + 1

r

≥ 1

and β= 1. Then

(p ′−1)

(
1

t

1

r ′ +
1

t ′
1

r

)
≥ 2

1

t

1

r

so that
1− t ′

1−p ′ ≤
1

2

(
1+ t ′−1

r ′−1

)
< 1

by the assumption r < t . Then it follows from Lemma 6.2.7 and (6.2.3) that

I = ‖MD
r f ‖L

p

(MD
p w)

1−t ′
1−p′

(Rn ) ≤
(

1
r

1
r − 1

p

) 1
r

‖ f ‖L
p

MD
p ((MD

p w)

1−t ′
1−p′ )

(Rn )

.

 1

1− 1−t ′
1−p ′

 1
p (

1
r

1
r − 1

p

) 1
r

‖ f ‖L
p

(MD
p w)

1−t ′
1−p′

(Rn )

≤
(

2

r

1− 1
t

1
r − 1

t

) 1
p

(
1
r

1
r − 1

p

) 1
r

‖ f ‖L
p

(MD
p w)

1−t ′
1−p′

(Rn ),

as desired.

For the second case we assume that

p ′
1
t

1
r ′ + 1

t ′
1
r

1
t + 1

r

< 1 and β= p ′
1
t

1
r ′ + 1

t ′
1
r

1
t + 1

r

.

Then, using r < t , we note that

1
β − 1

p ′
1
β

= 2 1
t

1
r

1
r + 1

t

< 1

r
and

(1− t ′) 1
p ′

1
p ′ − 1

β

= 1

2

(
1+ t ′−1

r ′−1

)
< 1.
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Hence, we may apply Lemma 6.2.7 and (6.2.3) so that

I .

 1

1− (1−t ′) 1
p′

1
p′ −

1
β


1
β
− 1

p′
1
β


1
r

1
r −

1
β
− 1

p′
1
β


1
r

‖(MD
s′ g )1−β f ‖

L

1
β

1
β
− 1

p′

(MD
p w)

β 1−t ′
1−p′

(Rn )

=
(

2

r

1− 1
t

1
r − 1

t

) 1
β
− 1

p′
1
β

(
1
r + 1

t
1
r − 1

t

) 1
r

‖(MD
s′ g )1−β f ‖

L

1
β

1
β
− 1

p′

(MD
p w)

β 1−t ′
1−p′

(Rn )

.

(6.2.5)

By Hölder’s inequality we find that

‖(MD
s′ g )1−β f ‖

L

1
β

1
β
− 1

p′

(MD
p w)

β 1−t ′
1−p′

(Rn )

≤ ‖(MD
s′ g )1−β‖

L

p′
1−β

(MD
p w)

(β−1) 1−t ′
1−p′

(Rn )

‖ f ‖L
p

(MD
p w)

1−t ′
1−p′

(Rn )

= ‖MD
s′ g‖1−β

L
p′

(MD
p w)

− 1−t ′
1−p′

(Rn )
‖ f ‖L

p

(MD
p w)

1−t ′
1−p′

(Rn ).

Hence, by (6.2.5) we have

I .

(
1− 1

t
1
r − 1

t

) 1
r
(

1
r

1
r − 1

t

) 1
r

‖ f ‖L
p

(MD
p w)

1−t ′
1−p′

(Rn )‖MD
s′ g‖1−β

L
p′

(MD
p w)

− 1−t ′
1−p′

(Rn )
.

Thus, the result follows from (6.2.4).

By combining the two cases, the assertion follows.

Proof of Lemma 6.2.3. Since 1
q < 1

p − 1
s ≤ 1

s′ , we note that by Hölder’s inequality we have

MD
s′ g ≤ (MD

q w)(MD
1

1
s′ −

1
q

(g w−1)) where g w−1 is well-defined since w is non-zero on the

support of g . Then, setting 1
q̃ :=

1
q

1
p − 1

s
we have

‖MD
s′ g‖

L
p′
(MD

q w)−1
(Rn )

≤ ‖MD
1

1
s′ −

1
q

(g w−1)‖Lp′ (Rn )

≤
( 1

s′ − 1
q

1
p − 1

s − 1
q

) 1
s′ −

1
q

‖g‖
L

p′
w−1 (Rn )

≤
(

1
s′

1
p − 1

s

) 1
s′

(q̃ ′)
1
s′ −

1
q ‖g‖

L
p′
w−1 (Rn )

.

(6.2.6)
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Now, note that since 1
p − 1

s ≤ 1
p ≤ 1, we have

1

s′
− 1

q
= 1

p ′ +
1

p
− 1

s
− 1

q
≤ 1

p ′ +
1
p − 1

s − 1
q

1
p − 1

s

= 1

p ′ +
1

q̃ ′

so that (q̃ ′)
1
s′ −

1
q ≤ (q̃ ′)

1
p′ +

1
q̃′ . By maximizing the function t 7→ t 1/t for t ≥ 1, we note that

(q̃ ′)
1

q̃′ ≤ e
1
e . By combining this with (6.2.6) and Lemma 6.2.6, the result follows.

Finally, we need the following result:

Lemma 6.2.8. Let r ∈ [1,∞), s ∈ (1,∞], w ∈ Ar,(r,s), let q ∈ (1,∞) with q ′ = 2n+1[w
1

1
r − 1

s ]A∞ .

Then

M q
1
r − 1

s

w .r,s [w]r,(r,s)w.

Proof. Let Q be a cube. By applying Corollary 3.3.14 with w replaced by w−1, p = s, and

β= q , we obtain

〈w〉 q
1
r − 1

s
,Q .r,s 2

1
r − 1

s 〈w〉 1
1
r − 1

s
,Q ≤ [w]r,(r,s) essinf

y∈Q
w(y).

Picking x ∈ Rn and taking a supremum over all cubes Q containing x proves the asser-

tion.

Proof of Theorem 6.2.2. Let 1
q ∈ (0, 1

p − 1
s ) be such that

[
q

(
1
p − 1

s

)]′ = 2n+1[w
1

1
p − 1

s ]A∞ .

Then it follows from Lemma 6.2.3 and Lemma 6.2.8 that

‖T f ·g‖L1(Rn ) .r,s CT

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

[w
1

1
p − 1

s ]
1

p′
A∞ [w]p,(p,s)‖ f ‖L

p
w (Rn )‖g‖

L
p′
w−1 (Rn )

,

for all f , g ∈ L∞
c (Rn). Then, since [w

1
1
p − 1

s ]
1

p′
A∞ = [w−1]FW

p ′,s′ , (6.2.1) follows from duality and

density. For the next assertion, note that by Proposition 3.3.3(ii) we have

[w−1]FW
p ′,s′ .s [w−1]

1− 1
p

1
p − 1

s

p ′,(s′,∞) = [w]

1− 1
s

1
p − 1

s
−1

p,(1,s) .

Since [w]p,(1,s) ≤ [w]p,(p,s) by Hölder’s inequality, combining this result with (6.2.1) proves

(6.2.2). Finally, the optimality result is a consequence of Theorem 5.2.6.

Proof of Theorem 6.2.1. The proof uses arguments similar to the ones presented in the
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proof of Proposition 6.1.1. Let f ∈ Lr
w (Rn) with ‖ f ‖Lr

w (Rn ) = 1. We have

‖T f ‖Lr,∞
w (Rn ) h sup

E⊆Rn

0<w r (E)<∞

inf
E ′⊆E

w r (E)≤2w r (E ′)

w r (E)
1
r −1‖T f ·w rχE ′‖L1(Rn )

≤CT sup
E⊆Rn

0<w r (E)<∞

inf
E ′⊆E

w r (E)≤2w r (E ′)

w r (E)
1
r −1‖M(r,s′)( f , w rχE ′ )‖L1(Rn )

hCT max
α∈

{
0, 1

3 , 2
3

}n
sup

E⊆Rn

0<w r (E)<∞

inf
E ′⊆E

w r (E)≤2w r (E ′)

w r (E)
1
r −1‖MDα

(r,s′)( f , w rχE ′ )‖L1(Rn ).

(6.2.7)

Fix a dyadic grid D =Dα and E ⊆ Rn with 0 < w r (E) <∞. We define

Ω := {x ∈ Rn : MD
r f (x) > (2[w r ]A1

w r (E)

) 1
r }

so that, since ‖MD
r ‖Lr

w (Rn )→Lr,∞
w (Rn ) ≤ [w]r,(r,∞) = [w r ]

1
r
A1

by Theorem 3.2.3, we have

w r (Ω) ≤ [w r ]A1 w r (E)

2[w r ]A1

= w r (E)

2
.

Setting E ′ := E\Ω this implies that w r (E ′) ≥ w r (E)−w r (Ω) ≥ w r (E)/2.

By applying Lemma 7.2.3 with | f |r ∈ L1(Rn), we obtain a pairwise disjoint collection

P ⊆D of cubes so thatΩ=∪P∈P P and functions g , b so that | f |r = g +b, where

g = | f |rχΩc + ∑
P∈P

〈| f |r 〉1,PχP

and

‖g‖∞ .
[w r ]A1

w r (E)
.

Using Lemma 6.2.3 with the weight χE ′w
r
p , for all p ∈ (r, s) and 1

q ∈ (0, 1
p − 1

s ) with 1
q̃ :=

1
q

1
p − 1

s
we have

‖MD
(r,s′)( f , w rχE ′ )‖L1(Rn ) = ‖MD

(r,s′)(|g |
1
r , w rχE ′ )‖L1(Rn )

.

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

(q̃ ′)
1

p′ ‖|g | 1
r ‖L

p

MD
q (w

r
p χE ′ )

(Rn )‖w rχE ′‖
L

p′

w
− r

p
(Rn )

.

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

(q̃ ′)
1

p′ [w r ]
1
r − 1

p

A1
w r (E)

1
p − 1

r ‖g‖
1
p

L1
MD

q
p

(wr χE ′ )
(Rn )

w r (E ′)
1

p′ .

(6.2.8)

Note here that we have used the fact that the terms involving b cancel in the exact same

way as they do in the proof of Proposition 6.1.1.
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Similar to what is done in [Pér94, LOP08, HP13], we deal with the term involving g

as follows: We remark that for a cube P ∈D and a function φ ∈ L1
loc(Rn) we have

MD(φχP c )(x) = inf
y∈P

MD(φχP c )(y) (6.2.9)

for all x ∈ P . Indeed, let x, y ∈ P and let R ∈D so that x ∈ R. Then either R ⊆ P or P ⊆ R.

In the first case we have 〈φχP c 〉1,R = 0 while in the second case we have y ∈ R and thus

〈φχP c 〉1,R ≤ MD(φχP c )(y). Thus, we may conclude that MD(φχP c )(x) ≤ MD(φχP c )(y),

proving (6.2.9). Using this result, we find, since E ′ ⊆ P c for all P ∈P , that

‖gχΩ‖L1
MD

q
p

(wr χE ′ )
(Rn ) ≤

∑
P∈P

inf
y∈P

MD
q
p

(χP c w r )(y)
∫

P
| f |r dx

≤ ‖ f χΩ‖r
Lr

MD
qr
p

w
(Rn ).

Since g = | f |r onΩc , we conclude that

‖g‖L1
MD

q
p

(χE ′ wr )
(Rn ) ≤ ‖ f ‖r

Lr
MD

qr
p

w
(Rn ). (6.2.10)

We choose 1
t ∈ (0,1) such that t ′ = 2n+1[w

1
1
r − 1

s ]A∞ and set

1

q
:=

1
r − 1

s
1
r

1

p

1

t

so that 1
q ∈ (0, 1

p − 1
s ) whenever

1

p
>

1
s

1
r( 1

r − 1
s

)(
2n+1[w

1
1
r − 1

s ]A∞
)−1 + 1

s

. (6.2.11)

Then it follows from Lemma 6.2.8 that

MD
qr
p

w = MD
t

1
r − 1

s

w .r,s [w]r,(r,s)w. (6.2.12)

Moreover, we compute

1

q̃ ′ =
1

2n+1[w
1

1
r − 1

s ]A∞

1
p

1
p − 1

s

1
r − 1

s
1
r

+
1
s
1
r

≥ 1

2n+1[w
1

1
r − 1

s ]A∞

.

Thus, it follows from (6.2.8), (6.2.10), and (6.2.12) that

w r (E)
1
r −1‖MDα

(r,s′)( f , w rχE ′ )‖L1(Rn )

.r,s

(
1− 1

p

1
r − 1

p

) 1
r
(

1
r

1
r − 1

p

) 1
r
(

1− 1
s

1
p − 1

s

)1− 1
s

[w
1

1
r − 1

s ]
1

p′
A∞ [w r ]

1
r − 1

p

A1
[w]

r
p

r,(r,s).
(6.2.13)
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We treat the cases 1
s = 0 and 1

s > 0 separately.

First assume 1
s > 0. We define

1

p
:=

1
s

1
r( 1

r − 1
s

)(
2n+2[w

1
1
r − 1

s ]A∞
)−1 + 1

s

which satisfies (6.2.11). Then

1

p ′ =
( 1

r − 1
s

)(
2n+2[w

1
1
r − 1

s ]A∞
)−1 + 1

s
1
r ′( 1

r − 1
s

)(
2n+2[w

1
1
r − 1

s ]A∞
)−1 + 1

s

≤ 1

r ′ +
1
r − 1

s
1
s

1

2n+2[w
1

1
r − 1

s ]A∞

so that

[w
1

1
r − 1

s ]
1

p′
A∞ .r,s [w

1
1
r − 1

s ]
1
r ′
A∞ .

Moreover, we compute

1− 1
p

1
r − 1

p

= r +
1
s

(
1− 1

r

)
1
r

( 1
r − 1

s

)2n+2[w
1

1
r − 1

s ]A∞ ,

1
r

1
r − 1

p

= 1+
1
s

1
r − 1

s

2n+2[w
1

1
r − 1

s ]A∞ ,

1− 1
s

1
p − 1

s

= 1− 1
s

1
s

 1
r

1
r − 1

s

1

1− (
2n+2[w

1
1
r − 1

s ]A∞
)−1

−1

≤ 1− 1
s

1
s

1
r + 1

s
1
r − 1

s

.

Hence, by combining these estimates with (6.2.13), it follows from (6.2.7) that

‖T f ‖Lr,∞
w (Rn ) .r,s [w

1
1
r − 1

s ]A∞
(
1+ (1− 1

r
)[w

1
1
r − 1

s ]A∞
) 1

r [w r ]
1
r − 1

p

A1
[w]

r
p

r,(r,s)

≤ [w
1

1
r − 1

s ]A∞
(
1+ (1− 1

r
)[w

1
1
r − 1

s ]A∞
) 1

r [w r ]
1
r
A1

[w r ]
1
r
RH 1

r
1
r − 1

s

.

The result follows by considering the cases 1
r = 1 and 1

r < 1 separately.

Now we assume that 1
s = 0. Note that (6.2.11) no longer imposes any restrictions on

1
p . We set

1

p
:= 1

r

(
1− 1

log(e + [w r ]A∞ )

)
and compute

1

p ′ =
1

r ′ +
1

r

1

log(e + [w r ]A∞ )

so that

[w r ]
1

p′
A∞ . [w r ]

1
r ′
A∞ .
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Moreover, we compute

1− 1
p

1
r − 1

p

= 1+ r

r ′ log(e + [w r ]A∞ ),

1
r

1
r − 1

p

= log(e + [w r ]A∞ ),

1
1
p

= r

(
1+ 1

log(e + [w r ]A∞ )−1

)
. r.

combining this with (6.2.13), we conclude from (6.2.7) that

‖T f ‖Lr,∞
w (Rn ) .r [w r ]

1
r ′
A∞ log(e + [w r ]A∞ )

1
r
(
1+ (1− 1

r
) log(e + [w r ]A∞ )

) 1
r [w r ]

1
r
A1

.

By considering the cases 1
r = 1 and 1

r < 1 separately, the assertion follows.

Finally, we establish a dual result of the type first studied in [LOP09a], generalizing

the result [HP13, Theorem 1.23].

Theorem 6.2.9. Let T be a (sub)linear operator initially defined on L∞
c (Rn). Let r ∈ [1,∞),

s ∈ (1,∞], p ∈ (r, s), and suppose that

‖T f · g‖L1(Rn ) ≤CT ‖M(r,s′)( f , g )‖L1(Rn )

for all f ∈ L∞
c (Rn), g ∈ L∞(Rn)∩L1(Rn).

Then for all w r ∈ A1, T has an extension to Lr (Rn) satisfying∥∥∥∥T f

w

∥∥∥∥
Lr,∞

w (Rn )
.r,s CT [w r ]

1
r
A∞ log(e + [w r ]A1 )

1
r ‖ f ‖Lr (Rn )

for all f ∈ Lr (Rn),

Proof of Theorem 6.2.9. Let f ∈ L∞
c (Rn) with ‖ f ‖Lr (Rn ) = 1. Then∥∥∥∥T f

w

∥∥∥∥
Lr,∞(Rn ;w r )

h sup
E⊆Rn

0<w r (E)<∞

inf
E ′⊆E

w r (E)≤2w r (E ′)

w r (E)
1
r −1‖T f w r−1χE ′‖L1(Rn )

≤CT max
α∈

{
0, 1

3 , 2
3

}n
sup

E⊆Rn

0<w r (E)<∞

inf
E ′⊆E

w r (E)≤2w r (E ′)

w r (E)
1
r −1‖MDα

(r,s′)( f , w r−1χE ′ )‖L1(Rn ).

(6.2.14)

Fix a dyadic grid D =Dα and E ⊆ Rn with 0 < w r (E) <∞. We define

Ω :=
{

x ∈ Rn : M w r

r

( f

w

)
(x) > ‖M w r

r ‖Lr (Rn ;w r )→Lr,∞(Rn ;w r )

( 2

w r (E)

) 1
r
}
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so that

w r (Ω) ≤ w r (E)

2

∥∥∥ f

w

∥∥∥r

Lr
w (Rn )

= w r (E)

2

which, setting E ′ := E\Ω, implies that w r (E ′) ≥ w r (E)−w r (Ω) ≥ w r (E)/2. We also note

here that ‖M w r

r ‖Lr (Rn ;w r )→Lr,∞(Rn ;w r ) . 1 by the three lattice lemma and Lemma 3.2.5.

By applying the Whitney Decomposition Theorem to Ω we obtain a disjoint collec-

tion P ⊆ Dα of cubes so that Ω = ∪P∈P P with the property that for each P ∈ P there

exists a cube Q(P ) containing P so that Q(P )∩Ωc 6= ∅ and |Q(P )| . |P |. Then we can

write | f |r = g +b, where

g = | f |rχΩc + ∑
P∈P

〈| f |r 〉1,PχP .

Fix p ∈ (r, s) to be chosen later. By applying Lemma 6.2.3 with the weight w

1
r − 1

p
1
r , we find

that for all 1
q ∈ (0, 1

r − 1
p ) with 1

q̃ :=
1
q

1
r − 1

p
we have

‖MD
(r,s′)( f , w

1− 1
r

1
r χE ′ )‖L1(Rn ) = ‖MD

(s′,r )(w
1− 1

r
1
r χE ′ , |g | 1

r )‖L1(Rn )

.

( 1
p

1
p − 1

s

)1− 1
s
(

1− 1
s

1
p − 1

s

)1− 1
s
(

1
r

1
r − 1

p

) 1
r

(q̃ ′)
1
p ‖w

1− 1
r

1
r χE ′‖

L
p′

MD
q (w

1
r − 1

p
1
r )

(Rn )
‖|g | 1

r ‖L
p

w
−

1
r − 1

p
1
r

(Rn )

(6.2.15)

where the terms involving b cancel in the same way as in the previous proofs.

Let 1
q ∈ (0, 1

r − 1
p ) be such that q̃ ′ = 2n+1[w r ]A∞ . Then it follows from Lemma 6.2.8

that

MD
q (w

1
r − 1

p
1
r ) = MD

r q̃ (w)

1
r − 1

p
1
r .r,s [w r ]

1
r − 1

p

A1
w

1
r − 1

p
1
r

so that

(q̃ ′)
1
p ‖w

1− 1
r

1
r χE ′‖

L
p′

MD
q (w

1
r − 1

p
1
r )

(Rn )
.r,s [w r ]

1
p

A∞ [w r ]
1
r − 1

p

A1
‖w

1− 1
r

1
r w

1
r − 1

p
1
r χE ′‖Lp′ (Rn )

= [w r ]
1
p

A∞ [w r ]
1
r − 1

p

A1
w r (E ′)

1
p′ .

(6.2.16)

Next, since inΩc we have | f | ≤ M w r

r

( f
w

)
w .r w r (E)−1/r w , we have

‖ f χΩc ‖L
p

w
−

1
r − 1

p
1
r

(Rn ) .r w r (E)
1
p − 1

r ‖| f | r
p w

1
r − 1

p
1
r w

−
1
r − 1

p
1
r χΩc ‖Lp (Rn ) ≤ w r (E)

1
p − 1

r . (6.2.17)
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Furthermore, fixing a P ∈P and x ∈Q(P )∩Ωc , we have

〈 f 〉
1
r − 1

p
1
r

1
p

r,P . 〈 f 〉
1
r − 1

p
1
r

1
p

r,Q(P ) ≤ M w r

r

( f

w

)
(x)

1
r − 1

p
1
r

1
p 〈w〉

1
r − 1

p
1
r

1
p

r,B(P )

.r w r (E)
−

1
r − 1

p
1
p 〈w〉

1
r − 1

p
1
r

1
p

r,B(P )

and

〈w
−

1
r − 1

p
1
p 〉r

r,P .r [w r ]

1
r − 1

p
1
p

A1
〈(Mr w)

−
1
r − 1

p
1
p 〉r

r,Q(P ) ≤ [w r ]

1
r − 1

p
1
p

A1
〈w〉

−
1
r − 1

p
1
r

1
p

r,Q(P )

so that

∑
P∈P

〈 f 〉p
r,P

∫
P

w
−

1
r − 1

p
1
r

1
p dx = ∑

P∈P

〈 f 〉r
r,P 〈 f 〉

1
r − 1

p
1
r

1
p

r,P 〈w
−

1
r − 1

p
1
p 〉r

r,P |P |

.r [w r ]

1
r − 1

p
1
p

A1
w r (E)

−
1
r − 1

p
1
p

∑
P∈P

〈 f 〉r
r,P |P |

≤ [w r ]

1
r − 1

p
1
p

A1
w r (E)

−
1
r − 1

p
1
p .

(6.2.18)

Hence, by (6.2.17) and (6.2.18) we have

‖|g | 1
r ‖p

L
p

w
−

1
r − 1

p
1
r

(Rn )
= ‖ f χΩc ‖p

L
p

w
−

1
r − 1

p
1
r

(Rn )
+ ∑

P∈P

〈 f 〉p
r,P

∫
P

w
−

1
r − 1

p
1
r

1
p dx

.r [w r ]

1
r − 1

p
1
p

A1
w r (E)

−
1
r − 1

p
1
p .

(6.2.19)

Thus, by combining (6.2.16) and (6.2.19) with (6.2.15), we conclude that

w r (E)
1
r −1‖MDα

(r,s′)( f , w r−1χE ′ )‖L1(Rn )

.r,s

( 1
p

1
p − 1

s

)1− 1
s
(

1− 1
s

1
p − 1

s

)1− 1
s
(

1
r

1
r − 1

p

) 1
r

[w r ]
1
p

A∞ [w r ]
2
(

1
r − 1

p

)
A1

(6.2.20)

By writing L := log(e + [w r ]A1 ) and choosing

1

p
= 1

L

1

s
+

(
1− 1

L

)
1

r

we have

[w r ]
2
(

1
r − 1

p

)
A1

= [w r ]
2
( 1

r − 1
s

) 1
log(e+[wr ]A1

)

A1
≤ e2

( 1
r − 1

s

) 1
e
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and

1
p

1
p − 1

s

= 1+
1
s

1
r − 1

s

L′ .
1
r

1
r − 1

s

,

1− 1
s

1
p − 1

s

= 1− 1
s

1
r − 1

s

L′ .
1− 1

s
1
r − 1

s

1
r

1
r − 1

p

=
1
r

1
r − 1

s

L.

Thus, by (6.2.14) and (6.2.20) we have∥∥∥∥T f

w

∥∥∥∥
Lr,∞(Rn ;w r )

.r,s CT [w r ]
1
r
A∞ log(e + [w r ]A1 )

1
r ,

as desired. The assertion follows.



7
EXTENSIONS OF THE RESULTS TO SPACES OF HOMO-

GENEOUS TYPE

7.1. DYADIC GRIDS IN SPACES OF HOMOGENEOUS TYPE

So far we have formulated and proven our results in Rn equipped with the Lebesgue

measure. This section is dedicated to extending our results to more general quasimet-

ric measure spaces (S,d ,µ), commonly referred to as spaces of homogeneous type and

introduced in [CW71]. Here S is a set equipped with a quasimetric d , i.e., a mapping

satisfying the usual properties of a metric except for the triangle inequality, which is

replaced by the estimate

d(x, y) ≤ A(d(x, z)+d(z, y))

for a constant A ≥ 1, and µ is a Borel measure on S satisfying the doubling property, i.e.,

there is a C > 0 such that

µ(B(x;2r )) ≤Cµ(B(x;r )) (7.1.1)

for all x ∈ S, r > 0. Note that for (7.1.1) to make sense, we need to assume that µ is

defined on all balls. To facilitate this we assume that all balls in S are Borel sets. Note

that this condition is restrictive, since in general quasimetric spaces balls may fail to be

Borel sets as is shown in [Ste15, Example 1.1].

Taking the smallest admissible C in (7.1.1) we set ν := log2 C , which we will refer to as

the doubling dimension of S. Note that in Rn we have |B(x;2r )| = 2n |B(x;r )| and hence,

its doubling dimension is n.

We will write |E | := µ(E) for all Borel sets E ⊆ S. The doubling property implies that

for x ∈ S and R ≥ r > 0 we have

|B(x;R)| ≤C

(
R

r

)ν
|B(x;r )|. (7.1.2)

In turn, this implies that if y ∈ B(x;R) for x ∈ S, then for 0 < r ≤ 2AR we have

|B(x;R)| ≤C

(
2AR

r

)ν
|B(y ;r )|. (7.1.3)

We make the additional assumption that 0 < |B | < ∞ for all balls B ⊆ S. This property

ensures that S is separable [BB11, Proposition 1.6]. Moreover, this implies that the av-

erages of 〈 f 〉r,B are well-defined and, as shown in [AM15, Section 3.3], the Lebesgue

Differentiation Theorem holds in (S,d ,µ).
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The essential structure of Rn that we used so far is its decomposition into dyadic

grids. The three lattice lemma then allowed us to reduce our arguments to a single

dyadic grid. The reason we are able to extend our results to (S,d ,µ) is because such

a space also admits a version of dyadic grids, as well as a version of the three lattice

lemma.

We will use the following definition of a dyadic system in (S,d ,µ):

Definition 7.1.1. Let 0 < c0 ≤C0 <∞ and 0 < δ< 1. If for each k ∈ Z we have a pairwise

disjoint collection Dk = (Qk
j ) j∈Jk of Borel subsets of S and a collection of points (zk

j ) j∈Jk ,

then we call (Dk )k∈Z a dyadic system in S with parameters c0, C0, δ, if it satisfies the

following properties:

(i) for all k ∈ Z we have

S = ⋃
j∈Jk

Qk
j ;

(ii) for l ≥ k, if Q ∈Dl and Q ′ ∈Dk , we have that either Q ∩Q ′ =∅ or Q ⊆Q ′;

(iii) for each k ∈ Z and j ∈ Jk we have

B(zk
j ;c0δ

k ) ⊆Qk
j ⊆ B(zk

j ;C0δ
k );

(iv) for l ≥ k, if Q l
j ′ ⊆Qk

j , then B(z l
j ′ ;C0δ

k ) ⊆ B(zk
j ;C0δ

k ).

The elements of a dyadic system are called cubes. We call zk
j the center of Qk

j . If Q ∈
Dk , then we call the unique cube Q ′ ∈Dk−1 so that Q ⊆Q ′ the parent of Q. Furthermore,

we say that Q is a child of Q ′. Note that it is possible that for a cube Q there exists more

than one k ∈ Z so that Q ∈ Dk . Hence, when speaking of a child or the parent of Q, this

should be with respect to a specific k ∈ Z where Q ∈Dk to avoid ambiguity.

For a detailed discussion on the construction of dyadic systems as well as the fol-

lowing version of the three lattice lemma we refer the reader to [HK12] and references

therein.

Theorem 7.1.2. There exist 0 < c0 <C0 <∞, 0 < δ< 1, ρ > 0 and a positive integer K , so

that there are dyadic system (Dα)K
α=1 in S with parameters c0, C0, δ so that for each x ∈ S

and r > 0 there exists an α ∈ {1, . . . ,K } and Q ∈Dα so that

B(x;r ) ⊆Q and diam(Q) ≤ ρr.

Using these systems to replace the systems (Dα)
α∈

{
0, 1

3 , 2
3

}n in Rn almost all of our

results up to this as well as the results in the next part will go through. The only exception

to this are the weak-type result in Chapter 6, i.e., Proposition 6.1.1, Theorem 6.2.1, and

Theorem 6.2.9. The reason for this can be found in the proof of Proposition 6.1.1, where

in a maximal cube selection argument for a Calderón-Zygmund decomposition we used

the fact that in Rn , the increasing sequence of cubes in a dyadic grid containing a fixed
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point has the property that the corresponding sequence of measures converges to ∞.

This need not be the case in (S,d ,µ), since, for example, (S,d) could be bounded. In the

following section we provide additional restrictions on (S,d ,µ) in order to recover the

results from Chapter 6 in this setting.

Rather than allowing for dimensional constants in the implicit constants in our esti-

mates, we now allow for implicit constants depending on the parameters of the dyadic

system, the doubling dimension ν, and the quasimetric constant A.

7.2. CALDERÓN-ZYGMUND DECOMPOSITIONS IN SPACES OF HOMOGENEOUS

TYPE

We will consider the situations where the underlying quasimetric space (S,d) is un-

bounded and where (S,d) is bounded separately. More precisely, we assume that (S,d)

has exactly one of the following properties:

(I) All balls in (S,d) are open and there is a constant γ> 0 so that

diam(B(x;r )) ≥ γr (7.2.1)

for all x ∈ S, r > 0;

(II) diamS <∞.

We note that property (I) and property (II) are mutually exclusive, since (I) implies that

S is unbounded. When (S,d) is an unbounded connected metric space, then it satisfies

(I):

Proposition 7.2.1. Suppose (S,d) is an unbounded connected metric space. Then (I)

holds with γ= 1.

Proof. Since d is a metric, all balls in (S,d) are open. For the second assertion, let x ∈ S

and r > ε> 0. Since S is connected and the closed ball B(x;r−ε) and B(x;r )c are disjoint,

S is not equal to the union of these sets. Thus, there is a y ∈ B(x;r )\B(x;r −ε) from which

it follows that diam(B(x;r )) ≥ d(x, y) ≥ r −ε. The result follows by letting ε→ 0.

A non-connected example where (I) holds with γ = 1/2 is the subset (−∞,0)∪ (1,2)

of the real line. An example where (I) fails is any metric space that has an isolated point.

From now on we consider a fixed dyadic system D = ∪k∈ZDk in S with parameters

c0, C0, δ.

We first consider the case (II).

Lemma 7.2.2 (Calderón-Zygmund Lemma in the case (II)). Let f ∈ L1(S), λ > 0, and

let Ω := {x ∈ S : MD f (x) > λ}. If Ω 6= S, then we can find a pairwise disjoint collection

of cubes P ⊆ D and a constant c > 0, depending only on the parameters of the dyadic

system, the doubling dimension ν, and the quasimetric constant A, so that

Ω= ⋃
P∈P

P,
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and

λ< 〈 f 〉1,P .λ.

for all P ∈P .

Proof. Fix k0 ∈ Z small enough so that c0δ
k0 > diamS. Then for any x ∈ S we have

B(x;c0δ
k0 ) = S. Hence, it follows from property (iii) of dyadic systems that Dk0 = {S}.

Note thatΩ 6= S implies that 〈 f 〉1,S ≤λ. Let x ∈Ω. Then the set

Kx := {k > k0 | there is a Q ∈Dk , x ∈Q, 〈 f 〉1,Q >λ}

is non-empty. Thus, by well-orderedness there is a minimal kx ∈ Kx , and thus a cube

Px ∈Dkx that contains x so that 〈 f 〉1,Px >λ. By minimality of kx , it follows that 〈 f 〉1,p(Px ) ≤
λ, where p(Px ) ∈ Dkx−1 denotes the parent of Px . By (7.1.3) and property (iii) of dyadic

systems this implies that

λ< 〈 f 〉1,Px ≤ c〈 f 〉1,p(Px ) ≤ cλ,

with c =C (2AC0/(c0δ))ν.

It remains to show that the collection P = (Px )x∈S is pairwise disjoint. Indeed, as-

sume that P1,P2 ∈P so that P1 ∩P2 6=∅. We have either P1 ⊆ P2 or P2 ⊆ P1 by property

(ii) of dyadic systems. Without loss of generality we assume the first. Pick x ∈ S so that

P1 = Px . Since x ∈ P2 and 〈 f 〉1,P2 > λ, minimality of kx implies that P2 ∈ Dl for some

l ≥ kx . Again by property (ii) of dyadic systems, this implies that P2 ⊆ P1, proving that

P1 = P2. The assertion follows.

Next, we consider the case (I). We define the uncentered maximal operator with re-

spect to the collection of balls B in S by MB f (x) := supB 〈 f 〉1,BχB (x).

Lemma 7.2.3 (Calderón-Zygmund Lemma in the case (I)). Let f ∈ L1(S), λ > 0, and let

Ω := {x ∈ S : MB f (x) > λ}. If Ω 6= S, then we can find a pairwise disjoint collection of

cubes P ⊆D such that

Ω= ⋃
P∈P

P,

and

〈 f 〉1,P .λ.

for all P ∈P .

For the proof we use a version of the Whitney Decomposition Theorem. Note that

the diameter assumption (7.2.1) together with property (iii) of dyadic systems implies

that for any Q ∈Dk we have

γc0δ
k ≤ diamQ ≤ 2AC0δ

k . (7.2.2)
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Theorem 7.2.4 (Whitney Decomposition Theorem for Dyadic Cubes). Let Ω ( S be

open. Then there exists a pairwise disjoint collection of cubes P ⊆D such that

Ω= ⋃
P∈P

P

and for each P ∈P ,

diamP ≤ d(P,Ωc ) ≤ 4A2C0

γc0δ
diamP.

In particular, for each P ∈P there is a ball B(P ) containing P satisfying |B(P )|. |P | and

B(P )∩Ωc 6=∅.

Proof. We define

E := {Q ∈D |Q ⊆Ω, diamQ ≤ d(Q,Ωc )}.

Moreover we set

P := {Q ∈ E | there is a k ∈ Z so that Q ∈Dk , p(Q) ∉ E },

where p(Q) ∈Dk−1 denotes the parent of Q ∈Dk . We will show that⋃
P∈P

P =Ω.

Indeed, any P ∈ P is contained in Ω. Conversely, if x ∈Ω, Let (Qk
x )k∈Z be the sequence

of cubes in D with x ∈ Qk
x and Qk

x ∈ Dk for all k ∈ Z. Since Ω is open, there is a ball

B = B(x;r ) contained inΩ. Picking k0 large enough so that 2AC0δ
k0 < r , we find that

Qk
x ⊆ B(x;r ) ⊆Ω

for all k ≥ k0 by (7.2.2). Moreover, since d(Qk
x ,Ωc ) ≥ A−1(d(x,Ωc )−2A2C0δ

k ) ↑ A−1d(x,Ωc )

as k →∞, while diam(Qk
x ) ≤ 2AC0δ

k ↓ 0 as k →∞, we can find a k1 ∈ Z so that diam(Qk
x ) ≤

d(Qk
x ,Ωc ) whenever k ≥ k1. Hence, for all k ≥ max(k0,k1) we have Qk

x ∈ E . Thus, the set

Kx := {k ∈ Z |Qk
x ∈ E }

is non-empty. We also claim that Kx is bounded from below. Indeed, if we choose k2 ∈ Z
small enough so that γc0δ

k2 > d(x,Ωc ), then

d(Qk
x ,Ωc ) ≤ d(x,Ωc ) < diam(Qk

x )

for all k ≤ k2 by (7.2.2), and hence Qk
x ∉ E for k ≤ k2, proving the claim.

We set kx := minKx ∈ Z. Then Qkx
x ∈ E while p(Qkx

x ) = Qkx−1
x ∉ E . Hence, Qkx

x ∈ P ,

proving that x ∈∪P∈P P , as desired.

Next we will show that P is pairwise disjoint. Suppose for a contradiction that we

have P1,P2 ∈ P so that P1 ∩P2 6=∅ and P1 6= P2. Let l1, l2 ∈ Z so that P1 ∈ Dl1 , P2 ∈ Dl2

and p(P1), p(P2) ∉ E . Without loss of generality we assume that l1 > l2 and thus P1 ⊆ P2
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by property (ii) of the dyadic systems. Then also p(P1) ⊆ P2. Since p(P1) ∉ E , we must

have that either p(P1)*Ω or d(p(P1),Ωc ) < d(p(P1)). The first case implies that P2 *Ω,

contradicting the fact that P2 ∈ E . The second case implies that

diam(P2) ≥ diam(p(P1)) > d(p(P1),Ωc ) ≥ d(P2,Ωc ),

again contradicting P2 ∈ E . We conclude that P is pairwise disjoint, as desired.

It remains to show that d(P,Ωc ) < 4A2C0/(γc0δ)diamP for all P ∈ P . Let P ∈ P ,

P ∈ Dk so that p(P ) ∉ E . Then either p(P ) *Ω or d(p(P ),Ωc ) < diam(p(P )). In the first

case we have d(p(Q),Ωc ) = 0, so in both cases we have

d(p(P ),Ωc ) < diam(p(P )) ≤ 2AC0δ
k−1 = 2AC0

γc0δ
γc0δ

k ≤ 2AC0

γc0δ
diamP.

by (7.2.2). Hence,

d(P,Ωc ) ≤ A(d(p(P ),Ωc )+diam(p(P ))) < 4A2C0

γc0δ
diamP,

as desired.

For the final assertion, note that if P ∈P , P ∈Dk with center zP , we have

2d(zP ,Ωc ) ≤ 2A diamP +2Ad(P,Ωc ) ≤
(
2A+ 8A3C0

γc0δ

)
diamP

≤
(
4A+ 16A3C0

γc0δ

)
C0δ

k =: τC0δ
k

so that

∅ 6= B(zP ;2d(zp ,Ωc ))∩Ωc ⊆ B(zP ;τC0δ
k )∩Ωc .

Since ∣∣∣B(zP ;τC0δ
k )

∣∣∣≤C

(
τC0

c0

)ν
|B(zP ;c0δ

k )|. |P |

by (7.1.2), this proves the assertion with B(P ) := B(zp ;τC0δ
k ).

Proof of Lemma 7.2.3. To see that Ω is open, note that for each x ∈ Ω there is a ball B

containing x such that 〈 f 〉1,B >λ. But then for every y ∈ B we have MB f (y) ≥ 〈 f 〉1,B >λ
so that y ∈Ω. Hence, B ⊆Ω. Since we assumed that all balls in S are open, this proves

that Ω is open. Thus, we may apply the Whitney Decomposition Theorem to write Ω=
∪P∈P P .

If P ∈P , we may pick a point x ∈ B(P )∩Ωc to conclude that

〈 f 〉1,P . 〈 f 〉1,B(P ) ≤ MB f (x) ≤λ.

The assertion follows.
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Proposition 7.2.5. Suppose that (S,d) satisfies either property (I) or (II). Then the results

of Proposition 6.1.1 and Theorem 6.2.1 remain true when replacing Rn by (S,d ,µ).

If (S,d) satisfies property (I), then the results of Theorem 6.2.9 remains true when re-

placing Rn by (S,d ,µ).

Proof. In the case (I), by replacing MD
r by a constant multiple of MB

r in the definition

ofΩ j andΩ in Proposition 6.1.1 and Theorem 6.2.1 respectively, using Lemma 7.2.3 the

proofs of these results run mutatis mutandis. For Theorem 6.2.9, one has to replace M w r

r

by MB,w r

r in the definition ofΩ and then apply Theorem 7.2.4, noting thatΩ is open in

the same way as is done in the proof of Lemma 7.2.3.

For Theorem 6.2.1 in the case (II), we note that since S is bounded we have w r (S) <
∞. Thus, since w r (Ω) ≤ w r (E)/2 ≤ w r (S)/2, the set Ω has strictly smaller w r -measure

than S and hence, Ω 6= S. Thus, we may apply Lemma 7.2.2 to decompose Ω, and

the proof runs analogously. An analogous reasoning works for the sets Ω j in Proposi-

tion 6.1.1. The assertion follows.
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8
A MULTILINEAR UMD CONDITION

This chapter is based on the preliminary sections of the papers

E. Lorist and B. Nieraeth. Vector-valued extensions of operators through multi-

linear limited range extrapolation. Journal of Fourier Analysis and Applications,

25(5):2608–2634, 2019.

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-

nation. arXiv:2003.02233, 2020.

8.1. QUASI-BANACH FUNCTION SPACES

Let (Ω,µ) be a measure space. A subspace X ⊆ L0(Ω) equipped with a quasi-norm ‖·‖X

is called a quasi-Banach function space if it satisfies the following properties:

• Ideal property: If ξ ∈ L0(Ω) and η ∈ X with |ξ| ≤ |η|, then ξ ∈ X and ‖ξ‖X ≤ ‖η‖X .

• Weak order unit: There is a ξ ∈ X with ξ> 0 a.e.

• Fatou property: If 0 ≤ ξ j ↑ ξ pointwise a.e. for (ξ j ) j∈N in X and sup j∈N‖ξ j ‖X <∞,

then ξ ∈ X and ‖ξ‖X = sup j∈N‖ξ j ‖X .

If ‖·‖X is a norm then X is called a Banach function space.

A quasi-Banach function space X is called order-continuous if for any sequence 0 ≤
ξ j ↑ ξ ∈ X we have ‖ξ j −ξ‖X → 0. As an example we note that all reflexive Banach func-

tion spaces are order-continuous. If X is order-continuous, then the Bochner space

Lp (Rn ; X ) for p ∈ (0,∞) coincides with the mixed-norm space of all measurable func-

tions f : Rn ×Ω→ C such that ∥∥x 7→ ‖ f (x, ·)‖X
∥∥

Lp (Rn ) <∞.

Moreover if X is an order-continuous Banach function space, then its dual X ∗ is also

a Banach function space. For an introduction to Banach function spaces we refer the

reader to [LT79, Section 1.b] or [BS88].

A quasi-Banach function space X is said to be p-convex for p ∈ (0,∞) if for any

ξ1, · · · ,ξK ∈ X we have ∥∥∥( K∑
k=1

|ξk |p
)1/p∥∥∥

X
≤

( K∑
k=1

‖ξk‖p
)1/p

.
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Moreover, X is said to be p-concave when the reverse inequality holds. Usually the defin-

ing inequalities for p-convexity and p-concavity include a constant depending on p and

X , but as shown in [LT79, Theorem 1.d.8], X can be renormed equivalently such that

these constants equal 1. The p-concavification of X for p ∈ (0,∞) is defined as

X p := {|ξ|p sgnξ : ξ ∈ X
}= {

ξ ∈ L0(Ω) : |ξ|1/p ∈ X
}

equipped with the quasinorm ‖ξ‖X p := ‖|ξ|1/p‖p
X . Note that ‖·‖X p is a norm if and only if

X is p-convex. In particular for f ∈ Lp
loc(Rn ; X ) and a set E ⊆ Rn of positive finite measure

the p-convexity of X ensures that 〈 f 〉p,E is well-defined as a Bochner integral. See [LT79,

Section 1.d] and [Kal84] for a further introduction to p-convexity and related notions.

8.1.1. Product quasi-Banach function spaces

For m quasi-Banach function spaces X1, . . . , Xm over the same measure space we, wish

to define their product
∏m

j=1 X j . This space is essentially defined as the pointwise prod-

uct of functions in the factors. More precisely:

Definition 8.1.1. Let X1, . . . , Xm be m quasi-Banach function spaces over a measure

space (Ω,µ). We define

m∏
j=1

X j :=
{
ξ ∈ L0(Ω) : there exist 0 ≤ ξ j ∈ X j 1 ≤ j ≤ m such that |ξ| ≤

m∏
j=1

ξ j

}
.

Moreover, for ξ ∈∏m
j=1 X j we define

‖ξ‖∏m
j=1 X j

:= inf
{ m∏

j=1
‖ξ j ‖X j : |ξ| ≤

m∏
j=1

ξ j ,0 ≤ ξ j ∈ X j , 1 ≤ j ≤ m
}

.

We call ~X = (X1, · · · , Xm) an m-tuple of quasi-Banach function spaces if X1, · · · , Xm are

quasi-Banach function spaces over the same measure space and the product
∏m

j=1 X j

equipped with ‖·‖∏m
j=1 X j

is also a quasi-Banach function space.

We use the convention that for an m-tuple of quasi-Banach function spaces we write

X :=∏m
j=1 X j . We extend our convention of the vector notation for the weighted mixed-

norm spaces by writing

L
~p
~w (Rn ;~X ) := Lp1

w1
(Rn ; X1)×·· ·×Lpm

wm
(Rn ; Xm).

Moreover, we say that ~X is~r -convex for~r ∈ (0,∞)m if X j is r j -convex for all j ∈ {1, . . . ,m}.

For a pair of quasi-Banach spaces X1 and X2 we will sometimes also write X1 ·X2 for

their product. We point out that taking products of quasi-Banach spaces is associative

in the sense that X1 · (X2 ·X3) = (X1 ·X2) ·X3 with equal (quasi)norms and therefore Def-

inition 8.1.1 is consistently defined under changes in m. Moreover, we point out that(∏m
j=1 X j

)p =∏m
j=1 X p

j for all p ∈ (0,∞).

We show that the space
∏m

j=1 X j is a vector-space.
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Proposition 8.1.2. Let X1, . . . , Xm be m quasi-Banach function spaces over the same mea-

sure space. Then
∏m

j=1 X j is a vector-space. Moreover, we have

m∏
j=1

X j =
{
ξ ∈ L0(Ω) : there exist ξ j ∈ X j 1 ≤ j ≤ m such that ξ=

m∏
j=1

ξ j

}
(8.1.1)

and

‖ξ‖∏m
j=1 X j

= inf
{ m∏

j=1
‖ξ j ‖X j : |ξ| =

m∏
j=1

ξ j ,0 ≤ ξ j ∈ X j , 1 ≤ j ≤ m
}

. (8.1.2)

Proof. It is clear that
∏m

j=1 X j is closed under scalar multiplication. To see that it is

closed under addition, note that if ξ,η ∈∏m
j=1 X j , then |ξ| ≤∏m

j=1 ξ j for some 0 ≤ ξ j ∈ X j ,

and |η| ≤∏m
j=1η j for some 0 ≤ η j ∈ X j . Then 0 ≤ ξ j +η j ∈ X j and

|ξ+η| ≤ |ξ|+ |η| ≤
m∏

j=1
ξ j +

m∏
j=1

η j ≤
m∏

j=1
(ξ j +η j ),

proving that ξ+η ∈∏m
j=1 X j , as desired.

For (8.1.1) and (8.1.2), the inclusion “ ⊇′′ for (8.1.1) together with the norm inequality

“ ≤′′ for (8.1.2) are clear. For the converse, note that if |ξ| ≤ ∏m
j=1 ξ j for 0 ≤ ξ j ∈ X j ,

then we can define ξ̃1 by 0 where ξ = 0 and by ξ
∏m

j=2 ξ
−1
j where ξ 6= 0. Then we have

ξ = ξ̃1
∏m

j=2 ξ j , and |ξ̃1| ≤ ξ1, so that by the ideal property of X1 we have ξ̃1 ∈ X1 with

‖ξ̃1‖X1 ≤ ‖ξ1‖X1 . This proves the inclusion “ ⊆′′ in (8.1.1), proving the equality. For the

norm equality, note that since |ξ| = |ξ̃1|∏m
j=2 ξ j , we have

inf
{ m∏

j=1
‖ξ j ‖X j : |ξ| =

m∏
j=1

ξ j ,0 ≤ ξ j ∈ X j , 1 ≤ j ≤ m
}
≤ ‖ξ̃1‖

m∏
j=2

‖ξ j ‖X j ≤
m∏

j=1
‖ξ j ‖X j .

Taking an infimum over all 0 ≤ ξ j ∈ X j with |ξ| ≤∏m
j=1 ξ j then proves (8.1.2).

We refer the reader to [Cal64, Loz69, Sch10] for a further elaboration on product Ba-

nach function spaces. Let us give a few examples:

Proposition 8.1.3. Let (Ω,µ) be a σ-finite measure space.

(i) For any quasi-Banach function space X we have X ·L∞(Ω) = X .

(ii) Lebesgue spaces: Lp (Ω) =∏m
j=1 Lp j (Ω) for ~p ∈ (0,∞]m .

(iii) Lorentz spaces: Lp,q (Ω) =∏m
j=1 Lp j ,q j (Ω) for ~p ∈ (0,∞)m , ~q ∈ (0,∞]m .

(iv) Orlicz spaces: LΦ(Ω) =∏m
j=1 LΦ j (Ω) for Young functionsΦ j andΦ−1 =∏m

j=1Φ
−1
j .

In all these cases the (quasi)-norm of the product is equivalent to the usual (quasi)-norm.
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Proof. For (i), if ξ ∈ X ·L∞(Ω), pick 0 ≤ ξ1 ∈ X , 0 ≤ ξ2 ∈ L∞(Ω) such that |ξ| ≤ ξ1ξ2. Then

|ξ| ≤ ‖ξ2‖L∞(Ω)ξ1, so by the ideal property of X we have ξ ∈ X with ‖ξ‖X ≤ ‖ξ2‖L∞(Ω)‖ξ1‖X .

Taking an infimum over all such decompositions ξ1,ξ2 yields ‖ξ‖X ≤ ‖ξ‖X ·L∞(Ω). Con-

versely, if ξ ∈ X then |ξ| = |ξ| ·1 so that ξ ∈ X ·L∞(Ω) with ‖ξ‖X ·L∞(Ω) ≤ ‖ξ‖X ‖1‖L∞(Ω) =
‖ξ‖X . The assertion follows.

For (ii), (iii), and (iv), the inclusion
∏m

j=1 X j ⊆ X with X respectively equal to Lp (Ω),

Lp,q (Ω), and LΦ(Ω) and X j respectively equal to Lp j (Ω), Lp j ,q j (Ω), and LΦ j (Ω), fol-

lows from the generalized Hölder’s inequality ‖∏m
j=1 ξ j ‖X .

∏m
j=1 ‖ξ j ‖X j valid for these

spaces, see [O’N63, O’N65].

For the converse in (ii) and (iii) in the case that q = q1 = ·· · = qm =∞, let ξ ∈ Lp (Ω) or

ξ ∈ Lp,∞(Ω) respectively. If p = p1 = ·· · = pm =∞, the result follows from (i). Otherwise,

we set ξ j := |ξ|
p

p j . Then ξ j ∈ Lp j (Ω) or ξ j ∈ Lp j ,∞(Ω) respectively, |ξ| = ∏m
j=1 ξ j , and∏m

j=1 ‖ξ j ‖L
p j (Ω) = ‖ξ‖Lp (Ω) or similarly in the weak case, proving the result. The converse

for (iv) is proven analogously with ξ j :=Φ−1
j (Φ(|ξ|)).

Finally, for (iii) in the case qk < ∞ for some 1 ≤ k ≤ j we take α > 0 such that

X j := Lp j /α,q j /α(Ω) are all reflexive Banach spaces. Then by [Tri78, Theorem 1.10.3 and

1.18.6] we can identify the product space
∏m

j=1 Lp j /α,q j /α(Ω) with an iterated complex

interpolation space by [Cal64]. So
∏m

j=1 Lp j /α,q j /α(Ω) = Lp/α,q/α(Ω). The assertion now

follows by taking a 1
α -concavification of both sides and the fact that the concavification

of a product is the product of concavifications.

Next, we present several useful results for when our spaces are Banach function

spaces and not merely quasi-Banach spaces. We will be working with so called Calderón-

Lozanovskii products which are products of the form X 1−θ
0 · X θ

1 for some θ ∈ (0,1), see

[Cal64, Loz69].

We have the following properties of product Banach function spaces:

Proposition 8.1.4. Let X , X1, . . . , Xm be Banach function spaces over a σ-finite measure

space (Ω,µ) and let θ,θ1, . . . ,θm ∈ (0,1) with
∑m

j=1θ j = 1.

(i) If one of X1, . . . , Xm is reflexive, then
∏m

j=1 X
θ j

j is reflexive.

(ii) If X is reflexive, then so is X θ .

(iii)
(∏m

j=1 X
θ j

j

)∗ =∏m
j=1

(
X
θ j

j

)∗.

(iv) (X θ)∗ = (X ∗)θ ·L1/(1−θ)(Ω).

Proof. Part (i) is proven in [Loz69, Theorem 3], and it also follows from [Cal64] through

complex interpolation. Part (ii) follows from (i) by noting that by Proposition 8.1.3(i)

we have X θ = L∞(Ω)1−θ · X θ. Part (iii) is proven in [Loz69, Theorem 2] and for (iv) see

[Sch10, Theorem 2.9].

Next we prove a result for the products of weighted mixed-norm Lebesgue spaces.
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Lemma 8.1.5. Let ~X be an m-tuple of quasi-Banach function spaces, let ~p ∈ (0,∞]m with

p <∞, and let ~w be an m-tuple of weights. If there is a q ∈ (0,∞) such that X is q-convex

and order-continuous, then

Lp
w (Rn ; X ) =

m∏
j=1

L
p j
w j

(Rn ; X j ).

Proof. For the inclusion
∏m

j=1 L
p j
w j

(Rn ; X j ) ⊆ Lp
w (Rn ; X ), note that if f ∈∏m

j=1 L
p j
w j

(Rn ; X j )

and | f | ≤ ∏m
j=1 f j for 0 ≤ f j ∈ L

p j
w j

(Rn ; X j ), then ‖ f ‖X ≤ ∏m
j=1 ‖ f j ‖X j so that by Hölder’s

inequality we have f ∈ Lp
w (Rn ; X ) with

‖ f ‖L
p
w (Rn ;X ) ≤

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;X j )
.

Moreover, taking an infimum over all 0 ≤ f j ∈ L
p j
w j

(Rn ; X j ) such that | f | ≤ ∏m
j=1 f j , we

conclude that ‖ f ‖L
p
w (Rn ;X ) ≤ ‖ f ‖∏m

j=1 L
p j
w j

(Rn ;X j )
.

For the converse, we first reduce to the case q = 1, p > 1. For all α ∈ (0,∞) we have

Lp
w (Rn ; X )α = L

p
α

wα (Rn ; Xα) and
(∏m

j=1 L
p j
w j

(Rn ; X j )
)α = ∏m

j=1 L
p j
α

wα
j

(Rn ; Xα
j ), so that for the

result it suffices to prove that L
p
α

wα (Rn ; Xα) =∏m
j=1 L

p j
α

wα
j

(Rn ; Xα
j ). By taking α< min{p, q},

replacing
p j

α by p j , Xα
j by X j , and wα

j by w j , we have reduced to the case q = 1, p > 1.

Now, let f ∈ Lp
w (Rn ; X ) be a function such that f w is a simple function, say f w =∑K

k=1χAk ⊗ξk with non-zero ξk ∈ X , and (Ak )K
k=1 a pairwise disjoint collection of mea-

surable sets in Rn such that, since p <∞, |Ak | <∞ for all k ∈ {1, . . . ,K }. Since ξk ∈ X , we

can find 0 ≤ ξ j ,k ∈ X j such that |ξk | ≤
∏m

j=1 ξ j ,k for all k ∈ {1, . . . ,K }. We define

η j ,k := ‖ξ j ,k‖−1
X j

( m∏
l=1

‖ξl ,k‖Xl

) p
p j ξ j ,k

so that ‖η j ,k‖X j =
(∏m

l=1 ‖ξl ,k‖Xl

) p
p j for all j ∈ {1, . . . ,m}, k ∈ {1, . . . ,K } and

∏m
j=1η j ,k =∏m

j=1 ξ j ,k for all k ∈ {1, . . . ,K }.

Defining f j := w−1
j

∑K
k=1χAk ⊗η j ,k , it follows from the fact that the Ak are pairwise

disjoint that f =∏m
j=1 f j . Since f j ∈ L

p j
w j

(Rn ; X j ) with

‖ f j ‖L
p j
w j

(Rn ;X j )
=

( K∑
k=1

|Ak |‖η j ,k‖p j

X j

) 1
p j =

( K∑
k=1

|Ak |
( m∏

l=1
‖ξl ,k‖Xl

)p) 1
p j ,

we conclude that f ∈∏m
j=1 L

p j
w j

(Rn ; X j ) with

‖ f ‖∏m
j=1 L

p j
w j

(Rn ;X j )
≤

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;X j )
=

( K∑
k=1

|Ak |
( m∏

l=1
‖ξl ,k‖Xl

)p) 1
p

.
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Taking an infimum over all possible 0 ≤ ξ j ,k ∈ X j such that |ξk | ≤
∏m

j=1 ξ j ,k for all k ∈
{1, . . . ,K }, we conclude that

‖ f ‖∏m
j=1 L

p j
w j

(Rn ;X j )
≤

( K∑
k=1

|Ak |‖ξk‖p
X

) 1
p = ‖ f ‖L

p
w (Rn ;X ). (8.1.3)

Since X is an order-continuous Banach function space and p > 1, the mixed-norm space

Lp (Rn ; X ) coincides with the corresponding Bochner space and hence, the simple func-

tions are dense in this space. Thus, the functions f for which f w is a simple function

are dense in Lp
w (Rn ; X ) so that we can extend the inequality (8.1.3) to all f ∈ Lp

w (Rn ; X ).

We conclude that
∏m

j=1 L
p j
w j

(Rn ; X j ) = Lp
w (Rn ; X ) with equal norm, as desired.

8.2. VECTOR-VALUED SPARSE DOMINATION

This section serves as a vector-valued analogue of Section 5.3. We will be consider-

ing operators satisfying vector-valued sparse domination in one of the two equivalent

senses presented in the following proposition. The first uses duality in X , which is use-

ful as it allows one to apply Fubini’s theorem. The second is domination with the norm

of X on the inside, which allows one to deduce weighted bounds with a simpler argu-

ment.

Proposition 8.2.1. Let~r ∈ (0,∞)m , q ∈ (0,∞), s ∈ (q,∞] and let ~X be an m-tuple of quasi-

Banach function spaces over a measure space (Ω,µ) such that X is q-convex and order-

continuous. Let T̃ be an operator defined on an m-tuple ~f ∈ L~rloc(Rd ;~X ) with T̃ (~f ) ∈
L0(Rd ; X ). Then the following are equivalent:

(i) For all g ∈ L∞
c (Rd ; ((X q )∗)

1
q )∥∥T̃ (~f ) · g

∥∥
Lq (Rd ;Lq (Ω)) ≤C

∥∥M(~r , 1
1
q − 1

s
)(‖~f ‖~X ,‖g‖

((X q )∗)
1
q

)
∥∥

Lq (Rd ).

(ii) For all g ∈ L∞
c (Rd )∥∥‖T̃ (~f )‖X · g

∥∥
Lq (Rd ) ≤C

∥∥M(~r , 1
1
q − 1

s
)(‖~f ‖~X , g )

∥∥
Lq (Rd ).

Proof. For (ii)⇒(i), note that

‖T̃ (~f ) · g‖Lq (Ω) =
(∫
Ω
|T̃ (~f )|q |g |q dµ

) 1
q ≤ ∥∥|T̃ (~f )|q∥∥ 1

q

X q

∥∥|g |q∥∥ 1
q

(X q )∗

= ∥∥T̃ (~f )
∥∥

X ‖g‖
((X q )∗)

1
q

so that
∥∥T̃ (~f ) · g

∥∥
Lq (Rd ;Lq (Ω)) ≤

∥∥‖T̃ (~f )‖X · ‖g‖
((X q )∗)

1
q

∥∥
Lq (Rd ). Since for a simple func-

tion g ∈ L∞
c (Rd ; ((X q )∗)

1
q ) we have ‖g‖

((X q )∗)
1
q
∈ L∞

c (Rd ), applying (ii) with g replaced by

‖g‖
((X q )∗)

1
q

proves (i).
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For (i)⇒(ii) we note that by duality (see e.g. [HNVW16, Proposition 1.3.1]) we have

∥∥‖T̃ (~f )‖X · g
∥∥

Lq (Rd ) =
∥∥‖|T̃ (~f )|q‖X q · |g |q∥∥ 1

q

L1(Rd )

= ∥∥|T̃ (~f )|q |g |q |∥∥ 1
q

L1(Rd ;X q )

= sup
‖h‖

L∞(Rd ;((X q )∗)1/q )
=1

∥∥|T̃ (~f )|q · |g |q · |h|q∥∥ 1
q

L1(Rd ;L1(Ω))

= sup
‖h‖

L∞(Rd ;((X q )∗)1/q )
=1

∥∥T̃ (~f ) · g h
∥∥

Lq (Rd ;Lq (Ω)).

(8.2.1)

Since g h ∈ L∞
c (Rd ; ((X q )∗)

1
q ) for any g ∈ L∞

c (Rd ) and h ∈ L∞(Rd ; ((X q )∗)
1
q ) of norm 1

with ‖g h‖
((X q )∗)

1
q
≤ |g |‖h‖

L∞(Rd ;((X q )∗)
1
q )

= |g |, it follows from (i) that

∥∥T̃ (~f ) · g h
∥∥

Lq (Rd ;Lq (Ω)) ≤C
∥∥M(~r , 1

1
q − 1

s
)(‖~f ‖~X ,‖g h‖

((X q )∗)
1
q

)
∥∥

Lq (Rd )

≤C
∥∥M(~r , 1

1
q − 1

s
)(‖~f ‖~X , g )

∥∥
Lq (Rd ).

By combining this result with (8.2.1) we have proven (ii).

In the following result we will deduce weighted bounds from vector-valued sparse

domination.

Theorem 8.2.2. Let~r ∈ (0,∞)m , q ∈ (0,∞), s ∈ (q,∞] and let ~X be an m-tuple of quasi-

Banach function spaces over a measure space (Ω,µ) such that X is q-convex and order-

continuous. Let T̃ be an m-(sub)linear operator initially defined for all simple functions
~f ∈ L∞

c (Rd ;~X ). Suppose that∥∥‖T̃ (~f )‖X · g
∥∥

Lq (Rd ) ≤CT
∥∥M(~r , 1

1
q − 1

s
)(‖~f ‖~X , g )

∥∥
Lq (Rd ). (8.2.2)

for all simple ~f ∈ L∞
c (Rd ;~X ), g ∈ L∞

c (Rd ). Then for all ~p ∈ (0,∞]m with~r < ~p and p < s,

all ~w ∈ A~p,(~r ,s), T̃ has a unique extension satisfying

‖T̃ (~f )‖L
p
w (Rd ;X ) .~p,q,~r ,s CT [~w]

max

{
1
~r

1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s)

m∏
j=1

‖ f j ‖L
p j
w j

(Rd ;X j )

for all ~f ∈ L
~p
~w (Rd ;~X ).

For the proof, we first require a density result. Note that we are only considering sim-

ple functions g ∈ L∞
c (Rd ), while in Proposition 8.2.1 we are considering all g ∈ L∞

c (Rd ).

However, as another consequence of the following density result, this is equivalent.

Lemma 8.2.3. Let w be a weight, p, q ∈ (0,∞) and X a q-convex quasi-Banach function

space. Then the simple functions in Lp
w (Rn ; X )∩L∞

c (Rn ; X ) are dense in Lp
w (Rn ; X ).



132 8. A MULTILINEAR UMD CONDITION

Proof. First suppose that p, q ≥ 1 and fix f ∈ Lp
w (Rn ; X ). By [HNVW16, Corollary 1.1.21]

and the dominated convergence theorem there exists a sequence of simple functions

( f j ) j∈N such that f j → f in Lp
w (Rn ; X ), and f j (x) → f (x) and ‖ f j (x)‖X ≤ ‖ f ‖X for a.e.

x ∈ Rn . Setting (g j ) j∈N = ( f jχB(0, j )) j∈N it follows that g j ∈ Lp
w (Rn ; X )∩L∞

c (Rn ; X ) for all

j ∈ N and g j → f in Lp
w (Rn ; X ) by the dominated convergence theorem, proving the

lemma.

Now consider the case p < 1 and/or q < 1. Fix k ∈ N so that 2k p,2k q > 1. For

f ∈ Lp
w (Rn ; X ) we can pick a positive g ∈ L2k p

w2−k (Rn ; X 2−k
) with g 2k = | f |. By our previous

result we can find a positive sequence of simple functions (g j ) j∈N in L2k p

w2−k (Rn ; X 2−k
)∩

L∞
c (Rn ; X 2−k

) converging to g . Setting f j := g 2k

j sgn( f ) ∈ Lp
w (Rn ; X )∩L∞

c (Rn ; X ) we com-

pute

| f j − f | = |g 2k

j − g 2k | = |g j − g |
k−1∏
l=0

|g 2l

j + g 2l |

so that by Hölder’s inequality

‖ f j − f ‖L
p
w (Rn ;X ) ≤ ‖g j − g‖

L
2k p

w2−k (Rn ;X 2−k )

k−1∏
l=0

‖g 2l

j + g 2l ‖
L

2k−l p

w2−(k−l ) (Rn ;X 2−k−l )
.

Since ‖g 2l

j +g 2l ‖
L

2k−l p

w2−(k−l ) (Rn ;X 2−k−l )
. ‖g j ‖2l

L
2k p

w2−k (Rn ;X 2−k )
+‖g‖2l

L
2k p

w2−k (Rn ;X 2−k )
is bounded in

j , we conclude that f j → f in Lp
w (Rn ; X ), proving the result.

Proof of Theorem 8.2.2. The proof is completely analogous to the proof of Theorem 5.3.6,

replacing T by ‖T̃ (~f )‖X and f j by ‖ f j ‖X j , and by using the density result Lemma 8.2.3

rather than Lemma 5.3.8.

8.3. THE MULTISUBLINEAR LATTICE MAXIMAL OPERATOR

In this section we will introduce and study properties of the multisublinear lattice max-

imal operator. We begin with an overview of the case m = 1. Let X be a Banach function

space and let F be a finite collection of cubes. Since X is a Banach function space over

a measure space (Ω,µ), it is a Banach lattice with respect to the partial order ≤ given by

ξ≤ η if and only if ξ(ω) ≤ η(ω) for all ω ∈Ω. Thus, for any f ∈ L1
loc(Rn ; X ), x ∈ Rn , we may

define

M̃F f (x) := sup
Q∈F

〈
f
〉

1,QχQ (x),

where the supremum is taken in the lattice sense in X . Since this supremum is taken

over the finitely many values (
〈

f
〉

1,Q )Q∈F in X , this means that M̃F f can take at most

2#F values and hence, is an X -valued simple function. Moreover, since 〈 f 〉1,Q (ω) =
〈 f (·,ω)〉1,Q for ω ∈ Ω and the supremum of functions in X is given by their pointwise
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supremum, we have

M̃F f (x,ω) = max
Q∈F

〈
f (·,ω)

〉
1,QχQ (x) = MF ( f (·,ω))(x)

for all (x,ω) ∈ Rn ×Ω.

We say that X has the Hardy–Littlewood property and write X ∈ HL if there is a p ∈
(1,∞) such that

‖M̃‖p,X := sup
F

∥∥M̃F
∥∥

Lp (Rn ;X )→Lp (Rn ;X ) <∞,

where the supremum is taken over all finite collections of cubes F . This property is in-

dependent of the exponent p and the dimension n, see [GMT93], and even the quantity

‖M̃‖p,X can be bounded by a constant independent of n, see [DK19].

As an example we note that (iterated) Lp -spaces for p ∈ (1,∞] have the Hardy–Littlewood

property. Moreover by a deep result of Bourgain [Bou84] and Rubio de Francia [Rub86,

Theorem 3] we have that both X and X ∗ have the Hardy–Littlewood property if and only

if X has the so-called UMD property. We will elaborate on the connection between the

Hardy–Littlewood property and the UMD property in Section 8.4.

If X is an order-continuous Banach function space with the Hardy–Littlewood prop-

erty and p ∈ [1,∞), we define the lattice Hardy–Littlewood maximal operator for f ∈
Lp (Rn ; X ), x ∈ Rn , by

M̃ f (x) := sup
Q

〈
f
〉

1,QχQ (x),

where the supremum is taken in the lattice sense over all cubes Q ⊆ Rn . We will show

that M̃ f : Rn → X is strongly measurable. By regularity of the Lebesgue measure, to

compute M̃ f it is equivalent to take the supremum over the countable collection of

cubes with rational center points and rational side lengths. Thus, we can find finite

collections of cubes F j for j ∈ N such that F j ⊆F j+1 and for a.e. x ∈ Rn

sup
j∈N

M̃F j f (x) ↑ sup
j∈N

M̃F j f (x) = M̃ f (x)

pointwise a.e. Since X has the Hardy–Littlewood property (where we use the fact that

sup j∈N‖M̃F j f ‖L1,∞(Rd ;X ) < ∞ by [GMT93, Theorem 1.7] for the case p = 1), it follows

from the Fatou property of X that M̃ f (x) ∈ X for a.e. x ∈ Rn . By order-continuity of X ,(
M̃F j f (x)

)
j∈N converges in X to M̃ f (x) for a.e. x ∈ Rn . As M̃F j f is a simple function for

each j ∈ N, we conclude that M̃ f is strongly measurable. We also point out that since

M̃F j ( f (·,ω))(x) = M̃F j f (x,ω) → M̃ f (x,ω)

for a.e. (x,ω) ∈ Rn ×Ω, we also have

M̃ f (x,ω) = M( f (·,ω))(x)

for a.e. (x,ω) ∈ Rn ×Ω.
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For the multisublinear analogue of the lattice Hardy–Littlewood maximal operator,

let~r ∈ (0,∞)m and let ~X be an~r -convex m-tuple of quasi-Banach function spaces. For a

finite collection of cubes F , ~f ∈ L~rloc(Rn ;~X ), and x ∈ Rn , we define

M̃F
~r (~f )(x) := sup

Q∈D

m∏
j=1

〈
f j

〉
r j ,QχQ (x),

where the supremum is taken in the lattice sense.

Definition 8.3.1. Let ~r ∈ (0,∞)m and let ~X be an m-tuple of quasi-Banach function

spaces. We say that ~X has the ~r -Hardy–Littlewood property and write ~X ∈ HL~r if ~X is
~r -convex and there is a ~p ∈ (0,∞]m with ~p >~r such that

‖M̃~r ‖~p,~X := sup
F

∥∥M̃F
~r

∥∥
L~p (Rn ;~X )→Lp (Rn ;X ) <∞,

where the supremum is taken over all finite collection of cubes F .

As in the linear case m = 1, the definition of HL~r is independent of the exponents ~p

and the dimension n. The independence of n can be shown using the method of rota-

tions (see e.g. [GMT93, Remark 1.3]), and the independence of ~p follows from Corollary

8.3.5 below.

We also point out that we have the rescaling property that if ~X ∈ HL~r , then ~Xα ∈ HL ~r
α

for all α ∈ (0,∞) with ‖M̃ ~r
α
‖ ~p
α ,~Xα = ‖M̃~r ‖α~p,~X

. For the case m = 1 this means that X r has

the Hardy-Littlewood property if and only if X ∈ HLr .

The multilinear Hardy–Littlewood satisfies the following partition result:

Proposition 8.3.2. Let~r ∈ (0,∞)m , let ~X be an~r -convex m-tuple of quasi-Banach func-

tion spaces, and let I be a partition of {1, . . . ,m}. If (X j ) j∈I ∈ HL(r j ) j∈I for all I ∈ I , then
~X ∈ HL~r .

Proof. Fix a finite collection of cubes F . For each I ∈ I , let (p j ) j∈I ∈ (0,∞]#I be such

that (p j ) j∈I ≥ (r j ) j∈I and ‖M̃‖(p j ) j∈I ,(X j ) j∈I < ∞. Let ~f ∈ L~p (Rn ,~X ) of norm 1. Writing
1

pI
:= ∑

j∈I
1

p j
and X I := ∏

j∈I X j , it follows from the associativity of taking products of

quasi-Banach function spaces that ‖·‖X ≤∏
I∈I ‖·‖X I . Hence, by Hölder’s inequality we

have ∥∥M̃F
~r (~f )

∥∥
Lp (Rn ;X ) ≤

∏
I∈I

∥∥M̃F
(r j ) j∈I

(( f j ) j∈I )
∥∥

LpI (Rn ;X I ) ≤
∏

I∈I

‖M̃‖(p j ) j∈I ,(X j ) j∈I .

Thus, taking the supremum over all ~f of norm 1 and all finite collection of cubes D yields
~X ∈ HL~r with ‖M̃~r ‖~p,~X ≤∏

I∈I ‖M̃‖(p j ) j∈I ,(X j ) j∈I , as desired.

This result implies in particular that if X
r j

j ∈ HL for all j ∈ {1, . . . ,m}, then ~X ∈ HL~r . We

note that in general, this does not provide a necessary condition. Indeed, for m = 3 we

can take X1 = `2(`∞), X2 = `∞(`2) and X3 = `2(`2). It is shown in [NVW15, Proposition
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8.1] that X2 does not satisfy the Hardy-Littlewood property. However, noting that X3 =
(X1 ·X2)∗, it follows from Corollary 8.4.8 below that ~X ∈ HL(1,1,1).

Let ~r ,~p ∈ (0,∞]m with ~p ≥~r , let ~X ∈ HL~r , and assume that X is order-continuous.

For ~f ∈ L~p (Rn ;~X ) we define the multisublinear lattice maximal operator

M̃~r (~f )(x) := sup
Q

m∏
j=1

〈
f j

〉
r j ,QχQ (x),

where the supremum is taken in the lattice sense over all cubes Q ⊆ Rn . By an analogous

argument as in the case m = 1 (using Lemma 8.3.4 below for when p j = r j for some

j ∈ {1, . . . ,m}), the order-continuity of X and ensures that M̃~r (~f ) ∈ L0(Rn ; X ) and, if (Ω,µ)

is the underlying measure space of X , we have

M̃~r (~f )(x,ω) = M~r (~f (·,ω))(x)

for a.e. (x,ω) ∈ Rn ×Ω.

Next we will prove vector-valued sparse domination of M̃~r in a vector-valued ana-

logue of Proposition 3.2.10. Since we are now dealing with the order structure of X , the

selection procedure of the maximal cubes requires a more involved argument than what

is presented for X = C in Proposition 3.2.10. This result in the case m = 1 was studied in

[HL19] and the argument here is a multilinear analogue of their proof.

Theorem 8.3.3. Let ~r ∈ (0,∞)m , let ~X be an m-tuple of quasi-Banach function spaces,

and let q ∈ [r,∞). Suppose that ~X ∈ HL~r and that X is an order-continuous q-convex

quasi-Banach function space. Let D = Dα be a dyadic grid and let F ⊆ D be a finite

collection of cubes. Then for all ~f ∈ L~rloc(Rn ;~X ) there is a sparse collection of cubes S ⊆F

such that ∥∥MF
~r (~f )

∥∥
X .r sup

Q∈S

m∏
j=1

〈‖ f j ‖X j 〉r j ,QχQ .

Moreover, for any ~f ∈ L~rloc(Rn ;~X ) and g ∈ Lq
loc(Rn) we have

∥∥‖M̃~r (~f )‖X · g
∥∥

Lq (Rn ) .~X ,~r

∥∥M(~r ,q)
(‖~f ‖~X , g

)∥∥
Lq (Rn ),

In particular, we have ∥∥M̃~r (~f )
∥∥

Lq (Rn ;X ) .~X ,~r

∥∥M~r
(‖~f ‖~X )∥∥

Lq (Rn ).

Note that X in Theorem 8.3.3 is automatically r -convex, which follows from the fact

that X j is r j -convex for 1 ≤ j ≤ m and X r is equal to the Calderón-Lozanovskii product∏m
j=1(X

r j

j )
r

r j . If X is q-convex for q > r we get a sparse domination result with a smaller

sparse operator, which, as we will see in Corollary 8.3.5), yields better weighted bounds.

For the proof we will first show that M̃D
~r satisfies a weak endpoint estimate.
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Lemma 8.3.4. Let ~r ∈ (0,∞)m , let ~X be an m-tuple of quasi-Banach function spaces.

Suppose that ~X ∈ HL~r and that X and let D =Dα be a dyadic grid. Then for all ~p ∈ (0,∞]m

with ~p >~r we have

sup
F⊆D

F finite

∥∥M̃F
~r

∥∥
L~r (Rn ;~X )→Lr,∞(Rn ;X ) .~p,~r ‖M̃~r ‖~p,X

Proof. Fix F ⊆ D finite and let ~f ∈ L~r (Rn ;~X ) of norm 1. For λ > 0 and j ∈ {1, . . . ,m} we

let P j denote the collection of maximal cubes in D satisfying
〈‖ f j ‖X j

〉
r j ,Q >λ

r
r j so that

Ω j := {x ∈ Rn : MD
r j

(‖ f j ‖X j )(x) > λ
r

r j } = ⋃
Q∈P j Q. For a fixed P ∈ F and j ∈ {1, . . . ,m} we

find that if P \Ω j 6=∅, then, since the collection P j is pairwise disjoint and since〈〈 f j 〉r j ,QχQ
〉

r j ,P = 〈 f jχQ〉r j ,P

for all Q ⊆ P , we have

〈 f j 〉r j ,PχP =
〈

f jχΩc
j
+ ∑

Q∈P j :
Q⊆P

f jχQ

〉
r j ,P

χP

=
〈

f jχΩc
j
+ ∑

Q∈P j

〈 f j 〉r j ,QχQ

〉
r j ,P

χP .

Taking the product over j ∈ {1, . . . ,m} and the supremum over P ∈F this yields

M̃F
~r (~f ) ≤ sup

P∈F

m∏
j=1

(〈
f jχΩc

j
+ ∑

Q∈P j

〈 f j 〉r j ,QχQ

〉
r j ,P

χP +〈 f j 〉r j ,PχΩ j

)
≤ M̃F

~r (~g )+b,

where

g j := g 1
j + g 2

j := f jχΩc
j
+ ∑

Q∈P j

〈 f j 〉r j ,QχQ ,

and b : Rn → X is the sum of all terms of the product over j ∈ {1, . . . ,m} other than

M̃F
~r (~g ). Since P j is pairwise disjoint, we have ‖g j ‖L

r j (Rn ;X j ) = ‖ f j ‖L
r j (Rn ;X j ) = 1. More-

over since

suppb ⊆
m⋃

j=1
Ω j =

m⋃
j=1

{
x ∈ Rn : MD

r j
(‖ f j ‖X j )(x) >λ

r
r j

}
and since ‖MD

r j
‖L

r j (Rn )→L
r j ,∞

(Rn ) ≤ 1 by Lemma 3.2.5, we have

∣∣{x ∈ Rn : ‖b(x)‖X >λ}
∣∣≤ m∑

j=1

∣∣{x ∈ Rn : MD
r j

(‖ f j ‖X j

)
(x) >λ

r
r j }

∣∣≤ m

λr .

To estimate ~g , note that by the Lebesgue differentiation theorem we have

‖g 1
j ‖X j = ‖ f j ‖X jχΩc

j
≤ MD

r j

(‖ f j ‖X j

)
χΩc

j
≤λ

r
r j .
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and, by pairwise disjointness of P j , r j -convexity of X j , and the maximality of the cubes

in P j , we have

‖g 2
j ‖X j =

∥∥∥( ∑
Q∈P j

〈 f j 〉r j

r j ,QχQ

) 1
r j

∥∥∥
X j

≤ 2
n
r j

( ∑
Q∈P j

〈‖ f j ‖X j 〉
r j

r j ,Q̂
χQ

) 1
r j ≤ 2

n
r j λ

r
r j ,

where Q̂ is the dyadic parent of Q ∈P j . Thus we have ‖g j ‖L∞(Rn ;X j ) .r j λ
r

r j .

Combining the estimates for ~g and b we obtain for~r < ~p <∞∣∣∣{x ∈ Rn :
∥∥M̃F

~r (~f )(x)
∥∥

X > 2λ}
∣∣∣≤ ∣∣∣{x ∈ Rn :

∥∥M̃F
~r (~g )(x)

∥∥
X >λ}

∣∣∣+ ∣∣{x ∈ Rn : ‖b(x)‖X >λ}
∣∣

≤ ‖M̃~r ‖~p,X

∏m
j=1‖g j ‖p

L
p j (Rn ;X j )

λp + m

λr

.~p,~r ‖M̃~r ‖~p,X

∏m
j=1‖g j ‖

p j
r j

p

L
r j (Rn ;X j )

λ
( 1

r j
− 1

p j
)pr

λp + 1

λr ≤ ‖M̃~r ‖~p,X
2

λr ,

and the case where p j =∞ for some (or all) 1 ≤ j ≤ m is similar. Taking the supremum

over ~f ∈ L~r (Rn ;~X ) of norm 1 and all finite collections of cubes F ⊆ D proves the result.

Proof of Theorem 8.3.3. Let ~f ∈ L~rloc(Rn ;~X ) and set

A0 := sup
F⊆D

F finite

∥∥M̃F
~r

∥∥
L~r (Rn ;~X )→Lr,∞(Rn ;X ),

which is finite by Lemma 8.3.4. For a cube Q ∈F , we define its stopping children chF (Q)

to be the collection of maximal cubes Q ′ ∈F such that Q ′ (Q and

∥∥∥ sup
P∈F

Q ′⊆P⊆Q

m∏
j=1

〈 f j 〉r j ,P

∥∥∥
X
> 2

1
r A0

m∏
j=1

〈‖ f j ‖X j

〉
r j ,Q . (8.3.1)

We let S0 be the maximal cubes in D, recursively define Sk+1 :=⋃
Q∈Sk

chD(Q), and set

S :=⋃∞
k=0 Sk .

Fix Q ∈S , set EQ :=Q \
⋃

Q ′∈chD (Q) Q ′, and define

Q∗ :=
{

x ∈ Rn :
∥∥M̃F

~r (~f χQ )(x)
∥∥

X > 2
1
r A0

m∏
j=1

〈‖ f j ‖X j

〉
r j ,Q

}
.

Then by the definition of A0 we have

|Q∗| 1
r ≤ 1

2
1
r

∏m
j=1‖ f jχQ‖L

r j (Rn ;X j )∏m
j=1

〈‖ f j ‖X j

〉
r j ,Q

= |Q|1/r

2
1
r

. (8.3.2)
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Moreover, for Q ′ ∈ chS (Q) and x ∈Q ′, it follows from (8.3.1) that∥∥M̃F
~r (~f χQ )(x)

∥∥
X ≥

∥∥∥ sup
Q∈F

Q ′⊆P⊆Q

m∏
j=1

〈 f j 〉r j ,P

∥∥∥
X
> 21/r A0

m∏
j=1

〈‖ f j ‖X j

〉
r j ,Q

so x ∈Q∗ and thus Q ′ ⊆Q∗. Since chF (Q) is pairwise disjoint, it follows from (8.3.2) that∑
Q ′∈chS (Q)

|Q ′| ≤ |Q∗| ≤ 1

2
|Q|

so that |EQ | ≥ 1
2 |Q|. We conclude that S is a sparse collection of cubes.

Next, we check that M̃F
~r (~f ) is pointwise dominated by the sparse operator associ-

ated to S . For each P ∈ F we denote by πS (P ) the minimal Q ∈ S satisfying P ⊆ Q so

that we can partition F as

F = ⋃
Q∈S

{
P ∈F :πS (P ) =Q

}
.

Fix Q ∈S , x ∈Q and let Q ′ ∈F be the minimal cube such that x ∈Q ′ and πS (Q ′) =Q. If

Q ′ (Q, we have∥∥∥ sup
P∈F :

πS (P )=Q

m∏
j=1

〈 f j 〉r j ,PχP (x)
∥∥∥

X
=

∥∥∥ sup
P∈F :

Q ′⊆P⊆Q

m∏
j=1

〈 f j 〉r j ,P

∥∥∥
X

≤ 2
1
r A0

m∏
j=1

〈‖ f j ‖X j

〉
r j ,QχQ (x).

If Q ′ =Q the same estimate follows from the r j -convexity of the X j . Using the fact that

‖·‖`∞ ≤ ‖·‖`q and the q-convexity of X we can conclude for any x ∈ Rn

∥∥M̃F
~r (~f )(x)

∥∥
X =

∥∥∥sup
Q∈S

sup
P∈F :

πS (P )=Q

m∏
j=1

〈 f j 〉r j ,PχP (x)
∥∥∥

X

≤
( ∑

Q∈S

∥∥∥ sup
P∈F :

πS (P )=Q

m∏
j=1

〈 f j 〉r j ,PχP (x)
∥∥∥q

X

) 1
q

≤ 2
1
r A0

( ∑
Q∈S

m∏
j=1

〈‖ f j ‖X j

〉q
r j ,QχQ (x)

) 1
q

,

as desired.

For the second assertion, note that by the Fatou property of X we have∥∥M̃D
~r (~f )(x)

∥∥
X ≤ sup

F⊆D:F finite

∥∥M̃F
~r (~f )(x)

∥∥
X

for x ∈ Rn . Hence, the form domination result for M̃D follows from an argument analo-

gous to the one in the proof of Proposition 5.3.4, and the result for M̃~r then follows from

the three lattice lemma. The final statement follows by setting g =χRn .
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By combining Theorem 8.3.3 with Theorem 8.2.2, we can now directly conclude

weighted estimates for M̃~r . In particular this proves the ~p-independence of the~r -Hardy–

Littlewood property.

Corollary 8.3.5. Let ~X be an m-tuple of quasi-Banach function spaces, take~r ∈ (0,∞)m

and q ∈ [r,∞). Suppose ~X ∈ HL~r and assume X is an order-continuous q-convex quasi-

Banach function space. Then for ~p ∈ (0,∞]m with~r < ~p and p <∞ and any w ∈ A~p,(~r ,∞)

∥∥M̃~r
∥∥

L
~p
~w

(Rn ;~X )→L
p
w (Rn ;X )

.~X ,~p,q,~r [~w]
max

{ 1
~r

1
~r − 1

~p
, p

q

}
~p,(~r ,∞) .

We point out that the condition p < ∞ here is necessary. Indeed, it is shown in

[GMT93, Remark 2.9] that M̃ is not bounded on L∞(R;`2).

8.4. LIMITED RANGE MULTILINEAR UMD CLASSES OF QUASI-BANACH FUNC-
TION SPACES

A Banach space has the UMD property if the martingale difference sequence of any fi-

nite martingale in Lp (Ω; X ) is unconditional for some (equivalently all) p ∈ (1,∞), i.e. if

for ( fk )K
k=0 any finite martingale in Lp (Ω; X ) for some (equivalently all) p ∈ (1,∞) and a

probability space (Ω,P) and all scalars |ε1| = · · · = |εK | = 1 we have∥∥∥ K∑
k=1

εk d fk

∥∥∥
Lp (Ω;X )

.
∥∥∥ K∑

k=1
d fk

∥∥∥
Lp (Ω;X )

, (8.4.1)

where (d fk )K
k=1 is the difference sequence of ( fk )K

k=0. The least admissible constant in

(8.4.1) is denoted by βp,X . The class of UMD Banach function spaces includes for ex-

ample all reflexive Lebesgue, Lorentz and Musielak-Orlicz spaces. As the UMD property

implies reflexivity, L1 and L∞ do not have the UMD property. For an introduction to the

UMD property we refer the reader to [HNVW16, Pis16].

As already noted in the previous section, for Banach function spaces the UMD prop-

erty is intimately connected to the Hardy–Littlewood property. As shown by Bourgain

[Bou84] and Rubio de Francia [Rub86, Theorem 3], a Banach function space X has the

UMD property if and only if both X and X ∗ have the Hardy–Littlewood property. This

connection between the Hardy–Littlewood property and the UMD property is made

quantitative in [KLW20], where it is shown that ‖M̃‖p,X . (βp,X )2.

Motivated by this connection between the Hardy–Littlewood property and the UMD

property and using the extension of the Hardy–Littlewood property to the rescaled, mul-

tilinear setting from Section 8.3, we will now define a limited range, multilinear version

of the UMD property for m-tuples of quasi-Banach function spaces.

Definition 8.4.1. Let ~X be an m-tuple of quasi-Banach function spaces, take~r ∈ (0,∞)m

and s ∈ (r,∞]. We say that ~X has the (~r , s)-UMD property and write ~X ∈ UMD~r ,s if X =∏m
j=1 X j is an order-continuous Banach function space and (~X , X ∗) ∈ HL(~r ,s′).



140 8. A MULTILINEAR UMD CONDITION

Note that while the UMD property is well-defined in terms of martingale difference

sequences for any Banach space, our limited range multilinear version is only given

for quasi-Banach function spaces and has no immediate connection to martingales. It

would be interesting to have an equivalent characterization of either the limited range or

the multilinear generalization (for example in terms of martingale difference sequences)

that does not use the lattice structure of ~X .

As a first result on the limited range multilinear UMD property we will show that

our nomenclature makes sense, i.e. that the UMD~r ,s property is actually related to the

UMD property for Banach function spaces. If X is a Banach function space, then X has

the UMD property if and only if X ∈ UMD1,∞. This follows directly from the result of

Bourgain and Rubio de Francia and the case m = r = s′ = 1, of the following proposition.

Proposition 8.4.2. Let ~X be an m-tuple of quasi-Banach function spaces and let ~r ∈
[1,∞)m and s ∈ (1,∞]. The following are equivalent:

(i) ~X ∈ UMD~r ,s ;

(ii) ~X ∈ HL~r and (X1, . . . , X j−1, X j+1, . . . , Xm , X ∗) ∈ HL(r1,...,r j−1,r j+1,...rm ,s′) for all j ∈ {1, . . . ,m}.

Proof. For (i)⇒(ii) we only prove ~X ∈ HL~r . The other results with j ∈ {1, . . . ,m} follow

from an analogous argument by interchanging the roles of X ∗ and X j and the roles of s′

and r j .

Let (Ω,µ) denote the underlying measure space over which the ~X are defined and

fix ~p ∈ (0,∞]m with~r < ~p, 1 ≤ p < s and a finite collection of cubes F . By the pointwise

sparse domination result for MF
~r , it follows from Proposition 5.3.4 that ‖MF

~r (~f )g‖L1(Rn ) .~r
‖MF

(~r ,1)(
~f , g )‖L1(Rn ) for ~f ∈ L~rloc(Rn), g ∈ L1

loc(Rn). Since M̃F
~r (~f )(x,ω) = MF

~r (~f (·,ω))(x),

combining this with Fubini’s theorem we obtain for ~f ∈ L
~p
c (Rn ;~X ) and g ∈ Lp ′

(Rn ; X ∗)∣∣∣∣∫
Rn

∫
Ω

M̃F
~r (~f )g dµdx

∣∣∣∣≤ ∫
Ω
‖MF

~r (~f (·,ω))g (·,ω)‖L1(Rn ) dµ(ω)

.~r

∫
Ω

∥∥MF
(~r ,1)(

~f (·,ω), g (·,ω))
∥∥

L1(Rn ) dµ(ω)

= ∥∥M̃F
(~r ,1)(

~f , g )
∥∥

L1(Rn ;L1(Ω)) ≤
∥∥M̃F

(~r ,s′)(
~f , g )

∥∥
L1(Rn ;L1(Ω))

≤ ∥∥M̃(~r ,s′)
∥∥

(~p,p ′),(~X ,X ∗)

( m∏
j=1

‖ f j ‖L
p j (Rn ;X j )

)
‖g‖Lp′ (Rn ;X ∗),

where in the second to last step we used Hölder’s inequality with s′ ≥ 1 and (i) and Corol-

lary 8.3.5 in the last. Taking a supremum over all g ∈ Lp ′
(Rn ; X ∗) with ‖g‖Lp′ (Rn ;X ∗) = 1

proves that ~X ∈ HL~r , as asserted.

The proof of (ii)⇒(i) relies on some combinatorics. To facilitate this, we set rm+1 :=
s′ and Xm+1 := X ∗. Fix ~p ∈ (0,∞]m+1 with min~p > max~r , ~f ∈ L~p (Rn ;~X ), and a finite
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collection of cubes F . Note that

m+1∏
j=1

〈 f j 〉r j ,QχQ =
m+1∏
j=1

(m+1∏
k=1
k 6= j

〈 fk〉rk ,QχQ

) 1
m

for all Q ∈F so that

M̃F
~r (~f ) ≤

m+1∏
j=1

M̃F
~q (~g )

1
m

with

~q = (r1, . . . ,r j−1,r j+1, . . .rm+1)

~g = ( f1, . . . , f j−1, f j+1, . . . , fm+1)

Furthermore setting ~Y j = (X1, · · · , X j−1, X j+1, · · · , Xm+1), we have

m+1∏
j=1

Y
1
m

j =
m+1∏
j=1

m+1∏
k=1
k 6= j

X
1
m

k =
m+1∏
j=1

X j = L1(Ω).

Thus setting A j := ‖M̃~q‖(p j ,...,p j ),~Y j
, which is finite by Corollary 8.3.5, we have

∥∥MF
~r (~f )

∥∥
Lp (Rn ;L1(Ω)) ≤

m+1∏
j=1

∥∥M̃F
~q (~g )

1
m

∥∥
L

p j (Rn ;Y
1
m

j )
=

m+1∏
j=1

∥∥M̃F
~q (~g )

∥∥ 1
m

L
p j
m (Rn ;Y j )

≤
m+1∏
j=1

A
1
m
j

m+1∏
k=1
k 6= j

‖ fk‖
1
m

L
p j (Rn ;Xk )

=
m+1∏
j=1

A
1
m
j ‖ fk‖L

p j (Rn ;Xk ),

proving (i). The assertion follows.

In particular, in the case m = 1 this result says that X ∈ UMDr,s if and only if X r ∈ HL

and (X ∗)s′ ∈ HL.

We have the following result on the product space X :

Proposition 8.4.3. Let ~X be an m-tuple of quasi-Banach function spaces and let ~r ∈
[1,∞)m and s ∈ (1,∞]. If ~X ∈ UMD~r ,s then X ∈ UMDr,s .

Proof. Fix ~p ∈ (0,∞)m with ~p > ~r , 1 < p < s and f ∈ Lp (Rn ; X ). Since X is assumed

to be order-continuous, By Lemma 8.1.5 we have Lp (Rn ; X ) = ∏m
j=1 Lp j (Rn ; X j ). Hence,

we can find positive f j ∈ Lp j (Rn ; X j ) such that | f | ≤ ∏m
j=1 f j . Let (Ω,µ) denote the un-

derlying σ-finite measure space of ~X and fix a fixed finite collection of cubes F . By

Hölder’s inequality we have 〈 f 〉r,Q ≤ ∏m
j=1〈 f j 〉r j ,Q for all Q ∈ F . This implies that for

g ∈ Lp ′
(Rn ; X ∗) we have

‖M̃F
(r,s′)( f , g )‖L1(Rn ;L1(Ω)) ≤ ‖M̃F

(~r ,s′)(
~f , g )‖L1(Rn ;L1(Ω))

≤ ‖M̃‖(~p,p ′),(~X ,X ∗)

( m∏
j=1

‖ f j ‖L
p j (Rn ;X j )

)
‖g‖Lp′ (Rn ;X ∗).
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Taking an infimum over all positive f j ∈ Lp j (Rn ; X j ) such that | f | ≤∏m
j=1 f j and a supre-

mum over all finite collections F we conclude that X ∈ UMDr,s with ‖M̃(r,s′)‖(p,p ′),(X ,X ∗) ≤
‖M̃(~r ,s′)‖(~p,p ′),(~X ,X ∗). This proves the assertion.

Example 8.4.4. Let (Ω,µ) be a σ-finite measure space. In the case m = 1, it follows from

Proposition 8.4.2 that X ∈ UMDr,s for 1 ≤ r < s ≤∞ if and only if X r ∈ HL and (X ∗)s′ ∈
HL. This implies the following:

(i) If X = Lp (Ω) with p ∈ (r, s), then X ∈ UMDr,s .

(ii) If X = Lp,q (Ω) with p, q ∈ (r, s), then X ∈ UMDr,s .

(iii) If X = LΦ(Ω) is a Musielak-Orlicz space such that (ω, t ) 7→ Φ(ω, t
1
r ) and (ω, t ) 7→

Φ∗(ω, t
1
s′ ) are Young functions satisfying the ∆2 condition, then X ∈ UMDr,s . See

[FG91, LVY19] for the UMD (and thus the HL) property of these spaces.

In [LN19] vector-valued extensions of multilinear operators in quasi-Banach func-

tion spaces were constructed through weighted techniques. In that work the condition

that ((X
r j

j )∗)(s j /r j )′ has the UMD property for 1 ≤ j ≤ m was imposed. In the next propo-

sition we wish to compare this assumption to our limited range multilinear UMD prop-

erty.

Proposition 8.4.5. Let ~X be an m-tuple of quasi-Banach function spaces, let~r ∈ (0,∞)m

and take~r <~s ≤∞. Suppose that X j is r j -convex, s j -concave and
(
(X

r j

j )∗
)(s j /r j )′ has the

UMD property for 1 ≤ j ≤ m. Then for all q ∈ (0,r ] we have ~X q ∈ UMD~r
q , s

q
. In particular,

~X ∈ UMD~r ,s if r ≥ 1.

Proof. Note that ~X q ∈ UMD~r
q , s

q
per definition means that

(X q
1 , . . . , X q

m , (X q )∗) ∈ HL(
~r
q ,

(
s
q

)′) .

So by Proposition 8.3.2 it suffices to show (X q
j )

r j
q = X

r j

j ∈ HL for j = 1, · · · ,m and ((X q )∗)(s/q)′ ∈
HL. Since (s j /r j )′ ≥ 1, we know that (X

r j

j )∗ has the UMD property (see [Rub86, Theo-

rem III.4]) and thus X
r j

j ∈ HL for j = 1, · · · ,m. To show ((X q )∗)(s/q)′ ∈ HL we note that

by [LN19, Proposition 3.4] we have ((X r )∗)(s/r )′ ∈ UMD. Then, by [LN19, Proposition

3.3(iii)] this implies that also ((X q )∗)(s/q)′ ∈ UMD for all q ∈ (0,r ]. In particular, we have

((X q )∗)(s/q)′ ∈ HL, as desired. The assertion follows.

To end this section we will give some examples of tuples in the UMD~r ,s -class and

provide some methods to generate new tuples from old ones. We start with a family of

examples in the form of Lebesgue spaces.

Proposition 8.4.6. Let~r ∈ (0,∞)m , s ∈ (1,∞] and~t ∈ (0,∞]m with~t >~r and 1 ≤ t < s. Let

(Ω,µ) be a σ-finite measure space. Then L~t (Ω) ∈ UMD~r ,s .
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Proof. Write X j = Lt j (Ω) so that X =∏m
j=1 X j = Lt (Ω) by Proposition 8.1.3(ii). Note that

since t1
r1

, . . . , tm
rm

, t ′
s′ ∈ (1,∞], we have X

r j

j = L
t j
r j (Ω) ∈ HL for all j ∈ {1, . . . ,m} and (X ∗)s′ =

L
t ′
s′ (Ω) ∈ HL. Thus, it follows from Proposition 8.3.2 that ~X ∈ UMD~r ,s . The assertion

follows.

To extend this example to iterated Lp -spaces, we will show that the UMD~r ,s class

is stable under iteration. For quasi-Banach function spaces X and Y respectively over

measure spaces (Ω1,µ1) and (Ω2,µ2) the mixed-norm space X (Y ) is given by all mea-

surable functions f : Ω1 ×Ω2 → C such that∥∥ω1 7→ ‖ f (ω1, ·)‖Y
∥∥

X <∞.

Proposition 8.4.7. Let~r ∈ (0,∞)m and s ∈ (1,∞] and let ~X and ~Y be m-tuples of quasi-

Banach function spaces. If ~X ,~Y ∈ UMD~r ,s , then ~X (~Y ) ∈ UMD~r ,s .

Proof. Denote by (Ω1,µ1), (Ω2,µ2) theσ-finite measure spaces that ~X , ~Y are respectively

defined over and write

A1 := sup
F finite

∥∥M̃F
~r

∥∥
L~r (Rn ;~X )→Lr,∞(Rn ;X ), A2 := sup

F finite

∥∥M̃F
~r

∥∥
L~r (Rn ;~Y )→Lr,∞(Rn ;Y ).

Let F denote a finite collection of cubes and let ~f ∈ L~r (Rn ;~X (~Y )). By Fubini’s Theorem

and by applying Theorem 8.3.3 twice we obtain

∥∥M̃F
~r ,s (~f , g )

∥∥
L1(Rn ;L1(Ω1×Ω2)) =

∫
Ω1

∥∥M̃F
~r ,s (~f (·,ω1, ·), g (·,ω1, ·))

∥∥
L1(Rn ;L1(Ω1)) dµ1(ω1)

. A2

∫
Ω1

∥∥M̃F
~r ,s (‖~f (·,ω1, ·)‖~Y ,‖g (·,ω1, ·)‖Y ∗ )

∥∥
L1(Rn ) dµ1(ω1)

= A1
∥∥M̃F

~r ,s (‖~f ‖~Y ,‖g‖Y ∗ )
∥∥

L1(Rn ;L1(Ω1))

. A1 A2
∥∥MF

~r ,s (‖~f ‖~X (~Y ),‖g‖X ∗(Y ∗))
∥∥

L1(Rn ).

Thus, by Theorem 3.2.3 we conclude that ~X (~Y ) ∈ UMD~r ,s , as desired.

Applying Proposition 8.4.7 to the result in Proposition 8.4.6 we obtain the announced

result for iterated Lp -spaces.

Corollary 8.4.8. Let ~r ∈ (0,∞)m and s ∈ (1,∞]. Let K ∈ N and let~t 1, . . . ,~t K ∈ (0,∞]m

with~t k >~r and 1 ≤ t k < s for all k ∈ {1, · · · ,K }. Let (Ωk ,µk ) for k ∈ {1, · · · ,K } be σ-finite

measure spaces and for j ∈ {1, · · · ,m} we set

X j := L
t 1

j (Ω1; · · · ;L
t K

j (ΩK )).

Then ~X ∈ UMD~r ,s .
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A point of interest in the above result is that it shows that we can go beyond assuming

that each individual X j has the UMD property. We can even consider spaces such as

`∞(`2), which by [NVW15, Proposition 8.l] does not even satisfy the Hardy-Littlewood

property.

Remark 8.4.9. By mimicking the proof of Proposition 8.4.6 we can also obtain a version

of Corollary 8.4.8 for Lorentz and Orlicz spaces. We point out however that it is not

clear if we can consider the appropriate endpoint cases outside of the range of UMD

spaces. More precisely, in the case of Lorentz spaces it is unknown whether Lp,∞(Ω)

for p ∈ (1,∞) satisfies the Hardy-Littlewood property. Similarly it is unknown whether

there are Orlicz spaces that are not UMD, but satisfy the Hardy-Littlewood property. If

there are such spaces, we obtain more examples beyond the setting of individual UMD

conditions that fall within our range.

In the next result we show that we can add L∞ spaces to existing UMD tuples to

create new ones.

Proposition 8.4.10. Let ~r ∈ (0,∞)m and s ∈ (1,∞]. Let ~X be an m − 1-tuple of quasi-

Banach function spaces over a measure spaceΩ. If ~X ∈ UMD(r1,...,rm−1),s , then

(X1, . . . , Xm−1,L∞(Ω)) ∈ UMD~r ,s .

Proof. We first note that by Proposition 8.1.3(i) we have
(∏m−1

j=1 X j
)·L∞(Ω) = X ·L∞(Ω) =

X . Next, let F denote a finite collection of cubes and fix ~p ∈ (1,∞]m with pm =∞ and
~p >~r , p < s. For ~f ∈ L~p (Rn ;~X ), g ∈ Lp ′

(Rn ; X ∗) we have

M̃F
(~r ,s′)(

~f , g ) ≤ M̃F
(r1,...,rm−1,s′)( f1, . . . , fm−1, g )M̃F

rm
( fm).

Hence,

‖M̃F
(~r ,s′)(

~f , g )‖L1(Rn ;L1(Ω))

≤ ‖M̃F
(r1,...,rm−1,s′)( f1, . . . , fm−1, g )‖L1(Rn ;L1(Ω))‖M̃F

rm
( fm)‖L∞(Rn ;L∞(Ω))

≤ ‖M̃(r1,...,rm−1,s′)‖(p1,...,pm−1,p ′),~X

(m−1∏
j=1

‖ f j ‖L
p j (Rn ;X j )

)
‖ fm‖L∞(Rn ;L∞(Ω))‖g‖Lp′ (Rn ;X ∗),

proving that (X1, . . . , Xm−1,L∞(Ω)) ∈ UMD~r ,s . The assertion follows.

Note in particular that in the case m = 2, this result implies that if X has the UMD

property, then (X ,L∞(Ω)) ∈ UMD(1,1),∞.

Finally, we prove that the HL~r and UMD~r ,s properties are stable under taking Calderón-

Lozanovskii products.

Proposition 8.4.11. Let ~X ,~Y be m-tuples of quasi-Banach function defined over the same

σ-finite measure space and let~r ∈ (0,∞)m , s ∈ (1,∞], and θ ∈ (0,1).

(i) If ~X ,~Y ∈ HL~r and for all j ∈ {1, . . . ,m} either X 1−θ
j ·Y θ

j is order-continuous, or X j or

Y j is equal to L∞(Ω), then ~X 1−θ ·~Y θ ∈ HL~r .
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(ii) If ~X ,~Y ∈ UMD~r ,s with X j , Y j as in (i), then ~X 1−θ ·~Y θ ∈ UMD~r ,s .

Proof. We first prove (i). Let F be a finite collection of cubes and let ~p ∈ (0,∞]m with
~p >~r , where p j = ∞ whenever X j or Y j is equal to L∞(Ω), and p j < ∞ otherwise. By

Lemma 8.1.5 we have

Lp j (Rn ; X 1−θ
j ·Y θ

j ) = L
p j

1−θ (Rn ; X 1−θ
j ) ·L

p j
θ (Rn ;Y θ

j ) = Lp j (Rn ; X j )1−θ ·Lp j (Rn ;Y j )θ

when X 1−θ
j ·Y θ

j is order-continuous. We prove that this also holds when X j or Y j is equal

to L∞(Ω). Assume that X j = L∞(Ω), the case Y j = L∞(Ω) being analogous. Since p j =∞,

it follows from Proposition 8.1.3(i) that

Lp j (Rn ; X 1−θ
j ·Y θ

j ) = L∞(Rn ;Y θ
j ) = L∞(Rn ;Y j )θ = L∞(Rn ×Ω)1−θ ·L∞(Rn ;Y j )θ

= Lp j (Rn ; X j )1−θ ·Lp j (Rn ;Y j )θ,

as desired.

Now, let ~f ∈ L~p (Rn ;~X ). Then we can pick positive g j ∈ Lp j (Rn ; X j ), h j ∈ Lp j (Rn ;Y j )

so that | f | ≤ g 1−θ
j hθj for all j ∈ {1, . . . ,m}. Then 〈 f j 〉r j ,Q ≤ 〈g j 〉1−θ

r j ,Q〈h j 〉θr j ,Q for all Q ∈F by

Hölder’s inequality so that

‖M̃F
~r (~f )‖X 1−θ ·Y θ ≤ ‖M̃F

~r (~g )1−θ · M̃F
~r (~h)θ‖‖

X 1−θ ·Y θ ≤ ‖M̃F
~r (~g )‖1−θ

X ‖M̃F
~r (~h)‖θY

a.e. in Rn . Hence, by Hölder’s inequality,

‖M̃F
~r (~f )‖Lp (Rn ;X 1−θ ·Y θ) ≤ ‖M̃F

~r (~g )‖1−θ
Lp (Rn ;X )‖M̃F

~r (~h)‖θLp (Rn ;Y )

≤ ‖M̃‖1−θ
~p,~X

‖M̃‖θ
~p,~Y

m∏
j=1

‖g j ‖1−θ
L

p j (Rn ;X j )
‖h j ‖θLp j (Rn ;Y j )

.

Taking an infimum over all positive g j ∈ Lp j (Rn ; X j ), h j ∈ Lp j (Rn ;Y j ) with | f j | ≤ g 1−θ
j hθj

and a supremum over all finite collections of cubes F proves that ~X 1−θ ·~Y θ ∈ HL~r with

‖M̃‖~p,~X 1−θ ·~Y θ ≤ ‖M̃‖1−θ
~p,~X

‖M̃‖θ
~p,~Y

. This proves (i).

For (ii), note that by Proposition 8.4.3 we have that X , Y are r -convex and X ∗, Y ∗ are

s′-convex. This implies that X , Y are reflexive and hence, X ∗ and Y ∗ are reflexive. By

Proposition 8.1.4(iii),(i) we have (X 1−θ ·Y θ)∗ = (X ∗)1−θ · (Y ∗)θ and this space is reflexive

and hence order-continuous. Thus, since (~X , X ∗), (~Y ,Y ∗) ∈ HL(~r ,s′), it follows from part

(i) that (~X 1−θ~Y θ, (X 1−θY θ)∗) ∈ HL(~r ,s′). Hence, ~X 1−θ ·~Y θ ∈ UMD~r ,s , as asserted.





9
VECTOR-VALUED EXTENSIONS OF MULTILINEAR OP-

ERATORS

In the first section of this chapter we prove a slightly more general version of the main

result in

E. Lorist and B. Nieraeth. Vector-valued extensions of operators through multi-

linear limited range extrapolation. Journal of Fourier Analysis and Applications,

25(5):2608–2634, 2019.

Our result here is more general in the sense that we are considering a more general con-

dition on the spaces.

The remaining sections of this chapter are based on the main result and the applica-

tions from the paper

E. Lorist and B. Nieraeth. Sparse domination implies vector-valued sparse domi-

nation. arXiv:2003.02233, 2020.

9.1. VECTOR-VALUED EXTRAPOLATION

The goal of this section is to prove the following theorem:

Theorem 9.1.1 (Multilinear limited range vector-valued extrapolation). Let~r ∈ (0,∞)m ,
~s ∈ (0,∞]m with ~r < ~s. Suppose T is an m-(sub)linear operator such that for all ~p ∈
(0,∞)m satisfying ~r < ~p <~s there exists a function φ~p : [1,∞)m → [0,∞), increasing in

each variable, such that T is bounded L
~p
~w (Rn) → Lp

w (Rn) with

‖T ‖
L
~p
~w

(Rn )→L
p
w (Rn )

≤φ~p ([w1]p1,(r1,s1), . . . , [wm]pm ,(rm ,sm )) (9.1.1)

for all weights ~w satisfying w j ∈ Ap j ,(r j ,s j ) for all j ∈ {1, . . . ,m}.

Let ~X be an m-tuple of quasi-Banach function spaces over a σ-finite measure space

(Ω,µ) and assume that for all simple functions ~f ∈ L∞
c (Rn ;~X ) the function

T̃ (~f )(x,ω) := T (~f (·,ω))(x) (9.1.2)

is strongly measurable.

147
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If X
r j

j ∈ UMD
1,

s j
r j

for all j ∈ {1, . . . ,m}, then for all~r < ~p <~s there is a functionφ~X ,~p,~r ,~s :

[1,∞)m → [0,∞), increasing in each variable, such that T̃ is bounded L
~p
~w (Rn ;~X ) → Lp

w (Rn ; X )

with

‖T̃ ‖
L
~p
~w

(Rn ;~X )→L
p
w (Rn ;X )

≤φ~X ,~p,~r ,~s ([w1]p1,(r1,s1), . . . , [wm]pm ,(rm ,sm ))

for all weights ~w satisfying w j ∈ Ap j ,(r j ,s j ) for all j ∈ {1, . . . ,m}.

Remark 9.1.2. In the same way as is explained in Remark 5.1.4, the strong measurability

assumption on T̃ is redundant for m-linear T , since T̃ then coincides with the tensor

extension.

Remark 9.1.3. This theorem can be equivalently formulated if we only assume that

(9.1.1) holds for some ~q ∈ (0,∞)m satisfying ~r < ~q <~s rather than all ~r < ~p <~s. This

is a consequence of the limited range multilinear extrapolation theorem of Cruz-Uribe

and Martell [CM18]. However, this can also be seen by using the extrapolation theorem,

Theorem 4.1.1, in the case m = 1 to each of the m component functions. This actually

yields an improved version of the result by Cruz-Uribe and Martell in the sense that we

obtain a sharp dependence on the weight constants. We sketch the proof here.

Given~r < ~p <~s and weights ~w satisfying w j ∈ Ap j ,(r j ,s j ) for all j ∈ {1, . . . ,m} as in the

theorem and ~f ∈ L
~p
~w (Rn), g ∈ L

1
1
r − 1

p

w−1 (Rn), we set g j := w j |g w−1|
1

r j
− 1

p j
1
r − 1

p ∈ L

1
1

r j
− 1

p j

w−1
j

(Rn). By

applying Theorem 4.1.1 with m = 1 to the pairs f j , g j , we find weights ~W with

[W j ]q j ,(r j ,s j ) .p j ,q j ,r j ,s j [w j ]

max

{ 1
r j

− 1
q j

1
r j

− 1
p j

,

1
q j

− 1
s j

1
p j

− 1
s j

}
p j ,(r j ,s j )

and ( m∏
j=1

‖ f j ‖L
q j
W j

(Rn )

)
‖g‖

L

1
1
r − 1

q

W −1 (Rn )

≤
m∏

j=1
‖ f j ‖L

q j
W j

(Rn )
‖g j ‖

L

1
1

r j
− 1

q j

W −1
j

(Rn )

≤ 2
1
r

( m∏
j=1

‖ f j ‖L
p j
w j

(Rn )

)
‖g‖

L

1
1
r − 1

p

w−1 (Rn )

.

Analogously to what we did in the proof of Theorem 5.1.2 we can then show that if (9.1.1)

holds for some~r <~q <~s, then it holds for all~r < ~p <~s, with a quantitative control of the

weighted bound.

Remark 9.1.4. The condition X
r j

j ∈ UMD
1,

s j
r j

rather than X j ∈ UMDr j ,s j might seem

unnatural, but is actually merely a consequence of our choice of definition for these

classes, which is not scaling invariant. In the latter definition, we require X j to be a

Banach function space, while for the former we require X j to be r j -convex, which is



9.1. VECTOR-VALUED EXTRAPOLATION 149

more natural in the situation. It would have also been reasonable to define ~X ∈ UMD~r ,s

by (~X r , (X r )∗) ∈ HL~r
r ,
(

s
r

)′ rather than our current definition (~X , (X )∗) ∈ HL~r ,s′ . Had we

defined UMD~r ,s in this former manner, then the conditions X
r j

j ∈ UMD
1,

s j
r j

and X j ∈
UMDr j ,s j would have been equivalent.

Remark 9.1.5. This result is not sharp in the sense that our method does not yield op-

timal weighted bounds for T̃ . Part of the reason is that our result relies on a certain

self-improvement of the UMD1,s class, see Proposition 9.1.7 below, and unlike for the

self-improvement of the weight classes from Proposition 3.3.15, we do not know how

this self-improvement is quantified precisely. Another issue is that in our vector-valued

Rubio de Francia algorithm, see Lemma 9.1.8 below, the control we obtain of the weight

constants are determined by the geometry of the spaces ~X . As we shall see in the follow-

ing chapter, it need not be the case at all that the weighted bounds of T̃ depend on the

spaces ~X .

Remark 9.1.6. In this result we are considering weights in the class Ap1,(r1,s1) × ·· · ×
Apm ,(rm ,sm ) which, by Proposition 3.1.5, is contained in the multilinear weight class A~p,(~r ,s)

with

[~w]~p,(~r ,s) ≤
m∏

j=1
[w j ]p j ,(r j ,s j ),

and with a strict inclusion whenever m > 1. This means that a bound on T in terms

of the multilinear weight class A~p,(~r ,s) implies (9.1.1). A version of Theorem 9.1.1 for the

classes A~p,(~r ,s) rather than for Ap1,(r1,s1)×·· ·×Apm ,(rm ,sm ) would be of great interest, but it

seems a closer study of the condition ~X r ∈ UMD~r
r , s

r
is required to attain this. Thus, this

result finds most of its use in the linear case m = 1, while for the multilinear cases m > 1

it is mostly overshadowed by the vector-valued sparse domination result we present in

Section 9.2. We elaborate on this further in Subsection 9.3.1.

For the proof of Theorem 9.1.1 we require several preparatory results. We first need a

certain self-improvement result for the UMD1,s class, which we can then combine with

the self-improvement property of weights from Proposition 3.3.15.

Proposition 9.1.7. Let s ∈ (1,∞] and X ∈ UMD1,s . Then there exists an α̃ ∈ (1, s) such that

for all α ∈ (1, α̃] we have Xα ∈ UMD1, s
α

.

In the case s =∞, this is a result by Rubio de Francia, see [Rub86, Theorem 4]. This

result is a main ingredient for our proof for the cases s <∞. We also require an analo-

gous self-improvement result for the HL property which can be found in [GMT93].

Proof of Proposition 9.1.7. Since X ∈ UMD1,s , we have X ∈ UMD and (X ∗)s′ ∈ HL. Thus,

by [Rub86, Theorem 4] and [GMT93] we can find a β̃ > 1 such that for all β ∈ (1, β̃] we

respectively have X β ∈ UMD and (X ∗)s′β ∈ HL. In particular, we have Y1 := (X β)∗ ∈ HL
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and Y2 := (X ∗)s′β ∈ HL. Set

1

α̃
:=

1
s + 1

β̃

1
β̃′

1
s′

1
s + 1

β̃′
1
s′

∈ (
1

s
,1)

and let α ∈ (1, α̃]. Then there is a β ∈ (1, β̃] such that 1
α =

1
s + 1

β
1
β′

1
s′

1
s + 1

β′
1
s′

∈ [ 1
β ,1). By Propo-

sition 8.4.2, showing that Xα ∈ UMD1, s
α

is equivalent to showing that Xα ∈ HL and

((Xα)∗)(s/α)′ ∈ HL. For the first assertion, note that since α ≤ β ≤ β̃ we have Xα ∈ UMD

and thus, Xα ∈ HL. It remains to prove the second assertion. Let (Ω,µ) be the measure

space that X is defined over. Then, by Proposition 8.1.4(iv), we have

((Xα)∗)(s/α)′ = (
(X β)∗

) 1
β

1
α − 1

s ·L

1
α − 1

s
1
α − 1

β (Ω)

= (
(X β)∗

) 1
β

1− 1
β

1− 1
α

1
α − 1

s · (((X β)∗)
1
β ·Lβ

′
(Ω)

) 1
α − 1

β

( 1
α − 1

s )(1− 1
β

)

= (
(X β)∗

)1−θ · ((X ∗)s′β)θ.

with

θ =
(1− 1

s ) 1
β ( 1

α − 1
β )

( 1
α − 1

s )(1− 1
β )

∈ [0,1).

The result then follows from applying Proposition 8.4.11(i) in the case m = 1.

Next, we need a vector-valued version of the Rubio de Francia iteration algorithm.

Lemma 9.1.8. Let s ∈ (1,∞), p ∈ (1, s), X ∈ UMD1,s defined over a σ-finite measure space

(Ω,µ), and w ∈ Ap,(1,s). If h ∈ Lp ′

w−1 (Rn ; (X ∗)) is a positive function, then there is a positive

function H ∈ Lp ′

w−1 (Rn ; (X ∗)) satisfying:

(i) h ≤ H pointwise a.e.;

(ii) ‖H‖
L

p′
w−1 (Rn ;(X ∗))

≤ 2‖h‖
L

p′
w−1 (Rn ;(X ∗))

;

(iii) H(·,ω) ∈ A1,(1,s) for a.e. ω ∈Ωwith

[H(·,ω)]1,(1,s) .X ,p,q,s [w]
max

{ 1− 1
s

1
p − 1

s
,

1− 1
q

1− 1
p

}
p,(1,s)

for all q ∈ (1, s] such that X is q-concave.

Proof. Since X ∈ UMD1,s , it follows from Proposition 8.4.2 that X ∗ ∈ HLs′ . Hence, by

Corollary 8.3.5 we have

‖M̃s′‖L
p′
w−1 (Rn ;X ∗)→L

p′
w−1 (Rn ;X ∗)

.X ,p,q,s [w−1]
max

{ 1− 1
s

1
p − 1

s
,

1− 1
q

1− 1
p

}
p ′,(s′,∞) = [w]

max
{ 1− 1

s
1
p − 1

s
,

1− 1
q

1− 1
p

}
p,(1,s) (9.1.3)
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for all q ∈ (1, s] such that X ∗ is q ′-convex.

We define

H :=
∞∑

k=0

M̃ k
s′ (h)

2k‖M̃s′‖k

L
p′
w−1 (Rn ;X ∗)→L

p′
w−1 (Rn ;X ∗)

.

Then (i) and (ii) follow in the same way as in the proof of Lemma 4.1.3. For (iii), note

that by (9.1.3) we have

Ms′ (H(·,ω)) = M̃s′ (H)(·,ω) ≤ 2‖M̃s′‖L
p′
w−1 (Rn ;X ∗)→L

p′
w−1 (Rn ;X ∗)

H(·,ω)

.X ,p,q,s [w]
max

{ 1− 1
s

1
p − 1

s
,

1− 1
q

1− 1
p

}
p,(1,s) H(·,ω).

so that [H(·,ω)]1,(1,s) .X ,p,q,s [w]
max

{ 1− 1
s

1
p − 1

s
,

1− 1
q

1− 1
p

}
p,(1,s) for a.e. ω ∈Ω. The assertion follows.

We are now ready to prove Theorem 9.1.1.

Proof of Theorem 9.1.1. Fix~r < ~p <~s and weights ~w satisfying w j ∈ Ap j ,(r j ,s j ) for all j ∈
{1, . . . ,m}. By Proposition 3.3.15 and Proposition 9.1.7 we can pick 1 <α< min

{ ~p
~r

}
such

that w j ∈ Ap j ,(αr j ,s j ) with [w j ]p j ,(αr j ,s j ) . [w j ]p j ,(r j ,s j ) and X
αr j

j ∈ UMD
1,

s j
αr j

for all j ∈
{1, . . . ,m}.

Since
∑m

j=1
r
r j

= 1, it follows from Proposition 8.1.4(iii) that

(
(Xαr )∗

) 1
αr =

(( m∏
j=1

(X
αr j

j )
r

r j

)∗) 1
αr =

( m∏
j=1

(
(X

αr j

j )∗
) r

r j

) 1
αr =

m∏
j=1

(
(X

αr j

j )∗
) 1
αr j .

Since X
αr j

j ∈ UMD, the space (X
αr j

j )∗ is reflexive for all j ∈ {1, . . . ,m} so that (Xαr )∗ is

also reflexive by Proposition 8.1.4(i) and hence order-continuous. Thus, it follows from

Lemma 8.1.5 that

L

1
1
αr − 1

p

w−1 (Rn ; ((Xαr )∗)
1
αr ) =

m∏
j=1

L

1
1
αr j

− 1
p j

w−1
j

(Rn ; ((X
αr j

j )∗)
1
αr j ). (9.1.4)

Thus, fixing g ∈ L

1
1
αr − 1

p

w−1 (Rn ; ((Xαr )∗)
1
αr ), we can pick positive g j ∈ L

1
1
αr j

− 1
p j

w−1
j

(Rn ; ((X
αr j

j )∗)
1
αr j )

such that |g | ≤∏m
j=1 g j .

For the functions H j obtained from applying Lemma 9.1.8 with s = s j

αr j
, p = p j

αr j
,

X = X
αr j

j , w = w
αr j

j , h j = g
αr j

j , we set W j := H
1
αr j

j so that

|g | ≤
m∏

j=1
g j =

m∏
j=1

h
1
αr j

j ≤
m∏

j=1
H

1
αr j

j =
m∏

j=1
W j =W (9.1.5)
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and

‖W j ‖
L

1
1
αr j

− 1
p j

w−1
j

(Rn ;((X
αr j
j )∗)

1
αr j )

= ‖H j ‖
1
αr j

L
(p j /αr j )′

w
−αr j
j

(Rn ;(X
αr j
j )∗)

≤ 2
1
αr j ‖h j ‖

1
αr j

L
(p j /αr j )′

w
−αr j
j

(Rn ;(X
αr j
j )∗)

= 2
1
αr j ‖g j ‖

L

1
1
αr j

− 1
p j

w−1
j

(Rn ;((X
αr j
j )∗)

1
αr j )

.

(9.1.6)

Moreover, by Proposition 3.1.3(ii), Hölder’s inequality, and the definition of α, we have

[W j (·,ω)]αr j ,(r j ,s j ) = [H j (·,ω)]
1
αr j

1,( 1
α ,

s j
αr j

)
≤ [H j (·,ω)]

1
αr j

1,(1,
s j
αr j

)

.X ,p j ,q,s j [w
αr j

j ]

1
αr j

·max
{ 1−

αr j
s j

αr j
p j

−
αr j
s j

,
1−

αr j
q j

1−
αr j
p j

}
p j
αr j

,(1,
s j
αr j

)

= [w j ]

max
{ 1
αr j

− 1
s j

1
p j

− 1
s j

,

1
αr j

− 1
q j

1
αr j

− 1
p j

}
p j ,(αr j ,s j ) . [w j ]

max
{ 1
αr j

− 1
s j

1
p j

− 1
s j

,

1
αr j

− 1
q j

1
αr j

− 1
p j

}
p j ,(r j ,s j )

(9.1.7)

for a.e. ω ∈Ω and all q j ∈ (αr j , s j ] such that X j is q j -concave.

Let ~f ∈ L∞
c (Rn ;~X ) be simple functions. Then ~f (·,ω) ∈ L∞

c (Rn) for a.e. ω ∈Ω so that

T (~f ) is well-defined. By (9.1.1) and (9.1.5) we have

‖T (~f (·,ω))g (·,ω)‖Lαr (Rn ) ≤ ‖T (~f (·,ω))‖Lαr
W (·,ω)(Rn )

≤φα~r ([W1(·,ω)]αr1,(r1,s1), . . . , [Wm(·,ω)]αrm ,(rm ,sm ))
m∏

j=1
‖ f j (·,ω)‖

L
αr j
W j (·,ω)(Rn )

≤φ~X ,~p,~r ,~s ([w1]p1,(r1,s1), . . . , [wm]pm ,(rm ,sm ))
m∏

j=1
‖ f j (·,ω)‖

L
αr j
W j (·,ω)(Rn )

,

where φ~X ,~p,~r ,~s is a componentwise increasing function determined by (9.1.7). Then, ab-

breviating φ := φ~X ,~p,~r ,~s ([w1]p1,(r1,s1), . . . , [wm]pm ,(rm ,sm )), by Fubini’s Theorem, Hölder’s

inequality, and (9.1.6), we have

‖T̃ (~f ) · g‖Lαr (Rn ;Lαr (Ω)) = ‖‖T (~f (·,ω))g (·,ω)‖Lαr (Rn )‖Lαr (Ω) ≤φ
∥∥∥ m∏

j=1
‖ f j (·,ω)‖

L
αr j
W j (·,ω)(Rn )

∥∥∥
Lαr (Ω)

≤φ
m∏

j=1
‖ f j W j ‖L

αr j (Rn ;L
αr j (Ω)) ≤φ

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;X j )
‖W j ‖

L

1
1
αr j

− 1
p j

w−1
j

(Rn ;((X
αr j
j )∗)

1
αr j )

≤ 2
1
αr φ

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;X j )
‖g j ‖

L

1
1
αr j

− 1
p j

w−1
j

(Rn ;((X
αr j
j )∗)

1
αr j )

.
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Taking an infimum over all possible g j ∈ L

1
1
αr j

− 1
p j

w−1
j

(Rn ; ((X
αr j

j )∗)
1
αr j ) with |g | ≤ ∏m

j=1 g j ,

we conclude that

‖T̃ (~f ) · g‖Lαr (Rn ;Lαr (Ω)) .r φ
( m∏

j=1
‖ f j ‖L

p j
w j

(Rn ;X j )

)
‖g‖

L

1
1
αr − 1

p

w−1 (Rn ;((Xαr )∗)
1
αr )

.

Thus, by duality in Bochner spaces, we have

‖T̃ (~f )‖L
p
w (Rn ;X ) = ‖|T̃ (~f )|αr ‖

1
αr

L
p
αr
wαr (Rn ;Xαr )

= sup
‖g‖

L

1
1
αr − 1

p

w−1 (Rn ;((Xαr )∗)
1
αr )

=1
‖T̃ (~f ) · g‖Lαr (Rn ;Lαr (Ω))

.r φ
m∏

j=1
‖ f j ‖L

p j
w j

(Rn ;X j )

for all simple functions ~f ∈ L∞
c (Rn ;~X ). The assertion now follows from the density result

Lemma 8.2.3 and the extension result Lemma 5.3.2.

9.2. VECTOR-VALUED SPARSE DOMINATION FROM SCALAR-VALUED SPARSE

DOMINATION

This section is dedicated to proving vector-valued sparse domination of operators sat-

isfying scalar-valued sparse domination. Moreover, we use this to deduce sharp vector-

valued weighted bounds for these operators.

Note that we introduce the parameter q into the theorem here, which is essential in

obtaining the full range of vector-valued bounds, including the quasi-Banach range. We

elaborate further on this in Section 9.3.

Theorem 9.2.1. Let~r ∈ (0,∞)m , q ∈ (0,∞), s ∈ (q,∞] and let T be an operator defined on

m-tuples of functions such that for any ~f , g ∈ L∞
c (Rn)∥∥T (~f ) · g

∥∥
Lq (Rn ) ≤CT

∥∥M(~r , 1
1
q − 1

s
)(
~f , g )

∥∥
Lq (Rn ). (9.2.1)

Let ~X be and m-tuple of quasi-Banach function spaces over a measure space (Ω,µ) such

that ~X q ∈ UMD~r
q , s

q
. Furthermore suppose that for all simple functions ~f ∈ L∞

c (Rn ;~X ) the

function T̃ (~f ) : Rn → X given by

T̃ (~f )(x,ω) := T (~f (·,ω))(x), (x,ω) ∈ Rn ×Ω

is well-defined and strongly measurable. Then for all simple functions ~f ∈ L∞
c (Rn ;~X ) and

g ∈ L∞
c (Rn) ∥∥‖T̃ (~f )‖X · g

∥∥
Lq (Rn ) .~X ,q,~r ,s CT

∥∥M(~r , 1
1
q − 1

s
)(‖~f ‖~X , g )

∥∥
Lq (Rn ). (9.2.2)
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As in Remark 9.1.2, if T is m-linear, then T̃ (~f ) is always well-defined and strongly

measurable for simple functions ~f ∈ L∞
c (Rn ;~X ) as it is given by the tensor extension of

T .

Proof. The proof essentially consists of applying Fubini’s Theorem twice and then using

the vector-valued sparse domination result for the multisublinear maximal operator.

Let ~f ∈ L∞
c (Rn ;~X ) and g ∈ L∞

c (Rn ; ((X q )∗)
1
q ) be simple. Then for a.e. ω ∈ Ω we have

f j (·,ω), g (·,ω) ∈ L∞
c (Rn). Thus, using Fubini’s Theorem and (9.2.1), we have∥∥T̃ (~f ) · g

∥∥
Lq (Rn ;Lq (Ω)) =

∥∥ω 7→ ‖T (~f (·,ω), g (·,ω)‖Lq (Rn )
∥∥

Lq (Ω)

≤CT
∥∥ω 7→ ‖M(~r , 1

1
q − 1

s
)(
~f (·,ω), g (·,ω))‖Lq (Rn )

∥∥
Lq (Ω)

=CT
∥∥M̃(~r , 1

1
q − 1

s
)(
~f , g )

∥∥
Lq (Rn ;Lq (Ω)).

(9.2.3)

We set Xm+1 := ((X q )∗)
1
q so that

m+1∏
j=1

X j = (X q · (X q )∗)
1
q = L1(Ω)

1
q = Lq (Ω),

which is an order-continuous q-convex quasi-Banach function space. Then it follows

from the sparse domination result in Theorem 8.3.3 that∥∥M̃(~r , 1
1
q − 1

s
)(
~f , g )

∥∥
Lq (Rn ;Lq (Ω)) .~X ,q,~r ,s

∥∥M(~r , 1
1
q − 1

s
)

(‖~f ‖~X ,‖g‖
((X q )∗)

1
q

)∥∥
Lq (Rn ).

By combining this with (9.2.3) and Proposition 8.2.1, the assertion follows.

We will now use Theorem 9.2.1 to deduce weighted boundedness for the vector-

valued extension of an operator T from a scalar-valued sparse domination result for

T , which is new even in the unweighted setting.

Theorem 9.2.2. Let~r ∈ (0,∞)m , q ∈ (0,∞), s ∈ (q,∞] and let T an m-linear or positive-

valued m-sublinear operator satisfying (9.2.1) and let ~X satisfy the assumptions in Theo-

rem 9.2.1. Then for all p ∈ (0,∞]m with ~p >~r and p < s, and all ~w ∈ A~p,(~r ,s) we have

∥∥T̃ (~f )
∥∥

L
p
w (Rn ;X ) .~X ,~p,q,~r ,s CT [~w]

max

{
1
~r

1
~r − 1

~p
,

1
q − 1

s
1
p − 1

s

}
~p,(~r ,s)

m∏
j=1

‖ f j ‖L
p j
w j

(Rn ;X j )

for all ~f ∈ L
~p
~w (Rn ;~X ).

Proof. This follows from combining Theorem 9.2.1 with Theorem 8.2.2.
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9.3. APPLICATIONS

In this section we provide a discussion regarding utilizing `q -type sparse domination in

order to obtain vector-valued sparse domination in spaces beyond the Banach range.

Moreover, we wish to compare the utility of our vector-valued extrapolation and our

vector-valued sparse domination methods. Furthermore, we compare the results of Sec-

tion 5.4 for multilinear Calderón-Zygmund operator and the bilinear Hilbert transform

to the results obtained in this chapter. We point out that our results are of course appli-

cable far beyond these examples as they include all operators satisfying sparse domina-

tion.

9.3.1. Vector-valued estimates in the quasi-Banach range

In the multilinear setting it is a natural occurrence that an operator maps into a Lebesgue

space with exponents smaller than 1 and hence, no longer in the Banach range. For this

reason one also expects the vector-valued extensions of the operator to map into spaces

in the quasi-Banach range. However, in our multilinear UMD condition we assume that

the product of the spaces is a Banach space. This is partly because we are obtaining our

estimates after a dualization argument which is usually not possible in the quasi-Banach

setting. As we have seen in Theorem 8.2.2, it is thanks to the quantitative extrapola-

tion theorem from Chapter 4 that this dualization does not hinder us in obtaining sharp

bounds in the mixed-norm spaces L
~p
~w (Rn ;~X ) in the full range of exponents ~p. We are

however still hindered in how much convexity we are allowed to assume on the tuple ~X .

In this subsection we explain how the parameter q in the results in Section 9.2 can

be used to recover the expected results in the quasi-Banach range, at the cost of a worse

exponent in the weighted estimate. We illustrate this in the following proposition:

Proposition 9.3.1. Let~r ∈ (0,∞)m , q0 ∈ (0,∞), and let T be an m-linear operator initially

defined on L∞
c (Rn)m . Suppose that for each bounded set B and all ~f ∈ L∞

c (Rn)m supported

in B, for each α ∈ {
0, 1

3 , 2
3

}n there exists a sparse collection S α ⊆Dα such that∣∣T (~f )
∣∣≤CT

∑
α∈

{
0, 1

3 , 2
3

}n

( ∑
Q∈S α

( m∏
j=1

〈 f j 〉r j ,Q

)q0
χQ

) 1
q0 (9.3.1)

pointwise a.e. in B. If (Ω,µ) is a σ-finite measure space, then for all ~p ∈ (0,∞]m , ~t ∈
(0,∞]m with~r < ~p,~t and p, t <∞ and all ~w ∈ A~p,(~r ,∞) the tensor extension T̃ of T has a

bounded extension Lp1
w1

(Rn ;Lt1 (Ω))×·· ·×Lpm
wm

(Rn ;Ltm (Ω)) → Lp
w (Rn ;Lt (Ω)) with∥∥T̃

∥∥
L

p1
w1

(Rn ;Lt1 (Ω))×···×L
pm
wm (Rn ;Ltm (Ω))→L

p
w (Rn ;Lt (Ω)) .~p,q0,~r ,~t CT [~w]γ

~p,(~r ,∞), (9.3.2)

where

γ=


max

{
1
~r

1
~r − 1

~p
,

1
q0
1
p

}
if t ∈ [q0,∞);

max

{
1
~r

1
~r − 1

~p
,

1
t
1
p

}
if t ∈ (r, q0].
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The above result also holds for m-sublinear T as in Theorem 9.2.1. Of course, our

methods go beyond the setting of Lt -spaces, but we restrict our attention to this partic-

ular case for now for the sake of clarity and for the sake of comparing our result to the

results in Section 5.4.

Proof. Write ~X = (Lt1 (Ω), . . . ,Ltm (Ω)). We consider the two cases separately.

For the case t ∈ [q0,∞), we note that ~X q0 = (L
t1
q0 (Ω), . . . ,L

tm
q0 (Ω)) ∈ UMD ~r

q0
,∞ by Propo-

sition 8.4.6. Thus, the result follows from an application of Proposition 5.3.4 and Theo-

rem 9.2.2 with q = q0 and s =∞.

In the other case t ∈ (r, q0] we have ~X t = (L
t1
t (Ω), . . . ,L

tm
t (Ω)) ∈ UMD~r

t ,∞ by Propo-

sition 8.4.6. Note that the inequality ‖ · ‖`q0 ≤ ‖ · ‖`t implies that (9.3.1) holds with q0

replaced by t , see also Remark 5.3.5. Hence, an application of Proposition 5.3.4 and

Theorem 9.2.2 with q = t and s =∞ proves the result.

Note that in case t ∈ [q0,∞) we did not need to assume the pointwise sparse dom-

ination (9.3.1) in our proof, but it would have sufficed to assume domination in form.

For example, if we instead assumed that for an s ∈ (q0,∞] and all ~f , g ∈ L∞
c (Rn) we have∥∥T (~f ) · g

∥∥
Lq0 (Rn ) ≤CT

∥∥M(~r , 1
1

q0
− 1

s
)(
~f , g )

∥∥
Lq0 (Rn ), (9.3.3)

then exactly as in the proof we obtain (9.3.2) for t ∈ [q0,∞) with

γ= max

{
1
~r

1
~r − 1

~p

,

1
q0

− 1
s

1
p − 1

s

}
. (9.3.4)

However, at this point it is not clear how to deal with the cases t ∈ (r, q0]. In the case

of (9.3.1) we can simply apply the estimate ‖ · ‖`q0 ≤ ‖ · ‖`t to obtain the domination re-

quired to complete the argument. However, if we only assume the sparse domination in

form (9.3.3), it is unknown whether we automatically also have (9.3.3) with q0 replaced

by a smaller exponent 0 < q ≤ q0, meaning that it is not clear whether we have the flexi-

bility to cover the cases t ∈ (r, q0] or not without assuming that (9.3.3) also holds with q0

replaced by t .

We point out that replacing q0 by 0 < q ≤ q0 qualitatively yields the same weighted

bounds, but the result is quantitatively worse in that it yields a worse exponent γ in the

bound. Thus, on all accounts it seems that the following conjecture should hold:

Conjecture 9.3.2 (Sparse form domination implies worse sparse form domination). Let
~r ∈ (0,∞)m , q0 ∈ (0,∞), and s ∈ (q0,∞]. Let T be an m-(sub)linear operator initially

defined on L∞
c (Rn)m and suppose that for any ~f ∈ L∞

c (Rn)m we have

‖T (~f ) · g‖Lq0 (Rn ) .
∥∥M(~r , 1

1
q0

− 1
s

)(
~f , g )

∥∥
Lq0 (Rn ).

Then the same estimate also holds when we replace q0 by any q ∈ (0, q0].
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We point out that even the simplest case m = 1, r = 1, q0 = 1, s = ∞ is unknown.

For specific cases of T one can usually verify the conjecture by going back to the proof

of (9.3.3) and insert the estimate ‖·‖`q ≤ ‖·‖`q0 at the right place in the proof. Examples

where this is the case include:

• In [Lor19, Theorem 3.5] a general theorem to obtain sparse domination for an oper-

ator T is shown. In this theorem a localized `q -estimate is imposed on T to deduce

(9.3.3) with q0 = q . The localized `q -estimate for T becomes weaker for smaller q ,

so any operator whose sparse domination can be proven through [Lor19, Theorem

3.5] also satisfies the result of Conjecture 9.3.2.

• As mentioned in Subsection 5.4.2, sparse domination with q0 = 1 for the bilinear

Hilbert transform BHT was proven by Culiuc, Di Plinio and Ou in [CDO18]. The re-

sult of Conjecture 9.3.2 for BHT was verified later by Benea and Muscalu in [BM17].

• One of the main results in [CCDO17] is (9.3.3) with q0 = 1 for rough homogeneous

singular operators TΩ, see also [Ler19] for an alternative proof. As mentioned in

Example 5.4.3, adapting the technique in [Ler19], Conjecture 9.3.2 was verified for

these operators in [CLRT19, Theorem 5.1], which has implications for weighted

norm inequalities for TΩ with so-called Cp -weights.

Now, if Conjecture 9.3.2 is false and, e.g., there is an m-linear operator T such that

for all ~f ∈ L∞
c (Rn)m we have

‖T (~f ) · g‖L1(Rn ) .
∥∥M(~1,1)(

~f , g )
∥∥

L1(Rn ),

but T does not satisfy the corresponding `q -type sparse domination for any q ∈ (0,1).

Then T has vector-valued extensions that can be obtained from the vector-valued ex-

trapolation result Theorem 9.1.1, but not from the vector-valued sparse domination

result Theorem 9.2.2. For example, bounds for any m-tuple of quasi-Banach function

spaces ~X with X j ∈ UMD for all j ∈ {1, . . . ,m} whose product X is not a Banach space

can be obtained from the extrapolation theorem, but not from the vector-valued sparse

domination theorem. This includes, for example, bounds with respect to Lt j (Ω) spaces

with ~t ∈ (1,∞)m , but with t ∈ (0,1). Similar examples for Lorentz and Orlicz spaces

can be given using Example 8.4.4. Moreover, we point out that if an operator satisfies

weighted bounds, but no sparse domination, then Theorem 9.1.1 can still be used, while

Theorem 9.2.1 can not. It is however not clear if there are examples of operators satisfy-

ing weighted bounds, but no form of sparse domination.

To conclude this subsection, we wish to compare the results of Section 9.2 with The-

orem 5.3.6, where vector-valued extensions for Lebesgue spaces Lt j (Ω) for a σ-finite

measure space (Ω,µ) were proven as a result of sparse domination and scalar-valued

extrapolation. Let ~r ∈ (0,∞)m , s ∈ (0,∞], q ∈ (0, s), and let T be an m-linear operator

initially defined on L∞
c (Rn)m such that for all ~f ∈ L∞

c (Rn)m we have

‖T (~f ) · g‖Lq (Rn ) ≤CT
∥∥M(~r , 1

1
q − 1

s
)(
~f , g )

∥∥
Lq (Rn ).
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Then, by Theorem 5.3.6, we find that for all ~p ∈ (0,∞]m , ~t ∈ (0,∞]m with ~r < ~p,~t and

p, t < s and all ~w ∈ A~p,(~r ,s) we have

‖T̃ ‖L
p1
w1

(Rn ;Lt1 (Ω))×···×L
pm
wm (Rn ;Ltm (Ω))→L

p
w (Rn ;Lt (Ω)) .CT [~w]

max

{
1
~r

1
~r − 1

~t

,
1
q − 1

s
1
t − 1

s

}
·max

{
1
~r − 1

~t
1
~r − 1

~p
,

1
t − 1

s
1
p − 1

s

}
~p,(~r ,s) .

Since

max

{
1
~r

1
~r − 1

~p

,

1
q − 1

s

1
p − 1

s

}
≤ max

{
1
~r

1
~r − 1

~t

,

1
q − 1

s

1
t − 1

s

}
·max

{ 1
~r − 1

~t
1
~r − 1

~p

,
1
t − 1

s
1
p − 1

s

}
,

the exponent (9.3.4) obtained from vector-valued sparse domination improves this re-

sult in the Banach range t ∈ [1,∞), as was noted in Remark 5.3.7.

9.3.2. Multilinear Calderón-Zygmund operators

As discussed in Subsection 5.4.1, it was shown in [CR16, LN18] that multilinear Calderón-

Zygmund operators with a modulus of continuity satisfying a log-Dini condition satisfy

the sparse domination (9.3.1) for ~r =~1, q0 = 1, and s =∞. Hence, by applying Propo-

sition 9.3.1 we find that if (Ω,µ) is a σ-finite measure space, then for all ~p,~t ∈ (1,∞]m ,

p, t <∞ and all ~w ∈ A~p,(~1,∞) the tensor extension T̃ of T is bounded Lp1
w1

(Rn ;Lt1 (Ω))×
·· ·×Lpm

wm
(Rn ;Ltm (Ω)) → Lp

w (Rn ;Lt (Ω)) with∥∥T̃
∥∥

L
p1
w1

(Rn ;Lt1 (Ω))×···×L
pm
wm (Rn ;Ltm (Ω))→L

p
w (Rn ;Lt (Ω)) .~p,q0,~r ,~t CT [~w]γ

~p,(~1,∞)

with

γ=
{

max
{

p ′
1, . . . , p ′

m , p
}

if t ∈ [1,∞);

max
{

p ′
1, . . . , p ′

m , p
t

}
if t ∈ ( 1

m ,1].

Hence, in the case t ∈ [1,∞) our quantitative bound improves the one from Theorem 5.4.1.

By applying Proposition 5.3.4, Remark 5.3.5, Theorem 9.2.1, and Theorem 9.2.2, the

full result for the tensor extension T̃ of an m-linear Calderón-Zygmund operator T we

obtain is as follows:

Theorem 9.3.3. Let T be an m-linear Calderón-Zygmund operator with a modulus of

continuity ω satisfying the log-Dini condition (5.4.1). Let ~X be an m-tuple of quasi-

Banach function spaces such that ~X q ∈ UMD~1
q ,∞ for some q ∈ (0,1]. Then for all simple

functions ~f ∈ L∞
c (Rn ;~X ), g ∈ L∞

c (Rn) we have∥∥‖T̃ (~f )‖X · g
∥∥

Lq (Rn ) .~X ,q CT
∥∥M(~r ,q)(‖~f ‖~X , g )

∥∥
Lq (Rn ).

Moreover, for all ~p ∈ (1,∞]m with p <∞ and all ~w ∈ A~p,(~1,∞), T̃ has a bounded extension

L
~p
~w (Rn ;~X ) → Lp

w (Rn ; X ) with

‖T̃ ‖
L
~p
~w

(Rn ;~X )→L
p
w (Rn ;X )

.~X ,~p,q CT [~w]
max

{
p ′

1,...,p ′
m , p

q

}
~p,(~1,∞)

.
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To optimize the weighted bound, for each tuple of spaces ~X one should determine

the largest q ∈ (0,1] such that ~X q ∈ UMD~1
q ,∞. For q = 1 our bound coincides with the

known sharp bound in the scalar case, so in this case our bound is optimal.

In conclusion, our result recovers the full known range of vector-valued extensions of

multilinear Calderón-Zygmund operators and proves new ones with new sharp weighted

bounds.

Remark 9.3.4. In the linear case m = 1, the sharpness of the T (b) theorem in [NTV02]

enabled Hytönen in [Hyt14, Theorem 3] to prove boundedness of the tensor extension of

a Calderón–Zygmund operator T on Lp (Rn ; X ) for general UMD Banach spaces X from

scalar-valued boundedness of T . It would be of great interest to develop techniques to

extend more general multilinear operators beyond the function space setting.

9.3.3. The bilinear Hilbert transform

As mentioned in Subsection 5.4.2, it was shown in [BM17] that the bilinear Hilbert trans-

form

BHT( f1, f2)(x) := p.v.
∫

R
f1(x − y) f2(x + y)

dy

y

satisfies the `q -type sparse domination

‖BHT( f1, f2) · g‖Lq (R) . ‖M(r1,r2, 1
1
q − 1

s
)( f1, f2, g )‖Lq (R) (9.3.5)

for all f1, f2, g ∈ L∞
c (R), q ∈ (0, s), whenever r1,r2, s ∈ (1,∞) satisfy the property that there

exist θ1,θ2,θ3 ∈ [0,1) with θ1 +θ2 +θ3 = 1 such that

1

r1
< 1+θ1

2
,

1

r2
< 1+θ2

2
,

1

s
> 1−θ3

2
(9.3.6)

or equivalently

max
{ 1

r1
,

1

2

}+max
{ 1

r2
,

1

2

}+max
{ 1

s′
,

1

2

}< 2.

Hence, by Theorem 9.2.1 and Theorem 9.2.2, we obtain the following result for the tensor

extension �BHT of BHT:

Theorem 9.3.5. Let r1,r2, s ∈ (1,∞) satisfy (9.3.6) and let (X1, X2) be a pair of quasi-

Banach function spaces such that ~X q ∈ UMD~r
q , s

q
for some q ∈ (0,1]. Then for all simple

functions ~f ∈ L∞
c (R;~X ) and g ∈ L∞

c (R) we have∥∥‖�BHT( f1, f2)‖X · g
∥∥

Lq (R) .~X ,q,~r ,s CT
∥∥M(r1,r2, 1

1
q − 1

s
)(‖ f1‖X1 ,‖ f2‖X2 , g )

∥∥
Lq (R). (9.3.7)

Moreover, for all ~p ∈ (0,∞]2 with ~r < ~p and p < s, all ~w ∈ A~p,(~r ,s), �BHT has a bounded

extension Lp1
w1

(R; X1)×Lp2
w2

(R; X2) → Lp
w (R; X ) with

‖�BHT‖L
p1
w1

(R;X1)×L
p2
w2

(R;X2)→L
p
w (R;X ) .~X ,~p,~r ,s [~w]

max

{
1

r1
1

r1
− 1

p1

,
1

r2
1

r2
− 1

p2

,
1
q − 1

s
1
p − 1

s

}
~p,(~r ,s) .
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Note that in particular we find that for all r1,r2, s ∈ (1,∞) satisfying (9.3.6) and all
~X ∈ UMD~r ,s we have

‖�BHT( f1, f2)‖Lp (R;X ) .~X ,~p,~r ,s ‖ f1‖Lp1 (R;X1)‖ f2‖Lp2 (R;X2)

for all f j ∈S (R; X j ).

We point out here that [BM17] actually proved the vector-valued sparse domination

(9.3.7) in the cases where the X j are iterated Lebesgue spaces with the same range of

exponents we obtain (see Corollary 8.4.8), through the helicoidal method. It is worth to

note that Theorem 9.3.5 extends the main result of [BM17] to our more general vector

spaces by only using their scalar-valued sparse domination (9.3.5) as an input.

To end this section, we compare our results to the results obtained by Amenta and

Uraltsev [AU19] and Di Plinio, Li, Martikainen, and Vuorinen [DLMV19]. In their works

they prove vector-valued bounds for BHT for triples of complex Banach spaces (X1, X2, X3)

that are not necessarily Banach function spaces, but that are compatible in the sense

that there is a bounded trilinear form Π : X1 × X2 × X3 → C. Then the trilinear form

BHF( f1, f2, f3) := 〈BHT( f1, f2) f3〉 has the vector-valued analogue

BHFΠ( f1, f2, f3) :=
∫

R
p.v.

∫
R
Π( f1(x − y), f2(x + y), f3(x))

dy

y
dx,

whose boundedness properties can then be studied. We point out that the main result in

[DLMV19] considers estimates for the same tuples of spaces as in [AU19], but for a larger

range of exponents. Since our main interest is in the spaces, for simplicity we compare

our result to the main result of [AU19]. To state the result we need to introduce the

notion of intermediate UMD spaces. We say that a Banach space X is a u-intermediate

UMD space for u ∈ [2,∞] if it is isomorphic to the complex interpolation space [E , H ] 2
u

,

where E is a UMD space and H is a Hilbert space and the couple (E , H) is compatible.

For ~u ∈ [2,∞]m We say that a tuple of Banach spaces ~X is ~u-intermediate UMD if X j is

u j -intermediate UMD for 1 ≤ j ≤ m.

Theorem 9.3.6 ([AU19, Theorem 1.1]). Let ~u ∈ [2,∞]3, let ~X be a triple of ~u-intermediate

Banach spaces, and let Π : X1 × X2 × X3 → C be a bounded trilinear form. For all p1, p2 ∈
(1,∞) with p ∈ (1,∞) satisfying

1 < 1

u1
min

{u′
1

p ′
1

,1
}
+ 1

u2
min

{u′
2

p ′
2

,1
}
+ 1

u3
min

{u′
3

p
,1

}
, (9.3.8)

we have

|BHFΠ( f1, f2, g )|. ‖ f1‖Lp1 (R;X1)‖ f2‖Lp2 (R;X2)‖g‖Lp′ (R;X3) (9.3.9)

for all f j ∈S (R; X j ), g ∈S (R; X3).

Even though we are not able to recover any of their results for spaces that are not Ba-

nach function spaces, in the setting of Banach function spaces our results go much be-

yond theirs. Indeed, consider a pair of complex quasi-Banach function spaces (X1, X2)
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over (Ω,µ). Then we define

Π : X1 ×X2 ×X ∗ → C, Π( f1, f2, g ) :=
∫
Ω

f1 f2g dµ.

By an application of Fubini’s Theorem, we find that for all f j ∈ S (R; X j ), g ∈ S (R; X ∗)

we have

|BHFΠ( f1, f2, g )| =
∣∣∣∣∫

R

∫
Ω

BHT( f1(·,ω), f2(·,ω))(x)g (x,ω)dµ(ω)dx

∣∣∣∣
≤ ‖�BHT( f1, f2)g‖L1(R;L1(Ω)).

(9.3.10)

This means that the sparse domination result in Theorem 9.3.5 combined with Propo-

sition 8.2.1 implies that whenever r1,r2, s ∈ (1,∞) satisfy (9.3.6) and ~X ∈ UMD~r ,s , we

obtain (9.3.9) for all ~p ∈ (0,∞]2 with~r < ~p and p < s, as well as weighted bounds.

Since intermediate UMD spaces are themselves UMD spaces, any of our results where

X1 or X2 is not UMD improve on Theorem 9.3.6 in the function space setting. This

includes examples such as X1 = L∞(Ω), X2 = L2(Ω), or X1 = `2(`∞), X2 = `∞(`2), see

Corollary 8.4.8.

Next, let~t ∈ (0,∞]2 with~r <~t , 1 ≤ t < s and consider the case

X1 = Lt1 (Ω), X2 = Lt2 (Ω), X ∗ = Lt ′ (Ω).

Then by (9.3.10) and Theorem 9.3.5 with q = 1 we obtain

|BHFΠ( f1, f2, g )|. ‖ f1‖Lp1 (R;Lt1 (Ω))‖ f2‖Lp2 (R;Lt2 (Ω))‖g‖Lp′ (R;Lt ′ (Ω)) (9.3.11)

for all f j ∈ S (R;Lt j (Ω)), g ∈ S (R;Lt ′ (Ω)) and ~p ∈ (0,∞]2 with~r < ~p, p < s. This is be-

yond the reach of Theorem 9.3.6, as Theorem 9.3.6 does not include Lebesgue space

over non-atomic measure spaces because of the restrictions in (9.3.8), see [AU19, Exam-

ple 6.2.3].
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SUMMARY

The subject of this thesis is the study of the multilinear Muckenhoupt weight classes

and the quantitative boundedness of operators with respect to these weights in both the

scalar-valued and the vector-valued setting. This includes the study of multisublinear

Hardy-Littlewood maximal operators, sparse forms, and multilinear Rubio de Francia

extrapolation methods.

After giving a historical overview of the theory in the first part, in the second part

we introduce the limited range multilinear Muckenhoupt weight classes and the cor-

responding weight constants. We show that these weight classes are characterized by

the boundedness of the multisublinear Hardy-Littlewood maximal operator and sparse

forms, and we obtain the sharp dependence of these bounds in terms of the weight con-

stants. We also define multilinear reverse Hölder and Fujii-Wilson constants and prove a

self-improvement property of the multilinear Muckenhoupt weight classes. Finally, we

prove an abstract quantitative multilinear limited range extrapolation theorem which

allows us to extrapolate from weighted estimates that include the cases where some of

the exponents are infinite. To this end we develop a multilinear analogue of the Rubio

de Francia algorithm adapted to the multisublinear maximal operator.

In the third part we prove weighted bounds for multi(sub)linear operators satisfy-

ing sparse domination by using the sharp extrapolation theorem to extend quantitative

estimates obtained from sparse domination in the Banach space setting to the quasi-

Banach space setting. We provide a criterium on the unweighted operator norm of

the operators which ensures that the obtained bounds are sharp. Moreover, we ob-

tain vector-valued estimates for Lebesgue spaces including L∞. As a corollary, we ob-

tain multilinear extrapolation results for some upper and lower endpoints estimates in

weak-type and BMO spaces. We apply our results to multilinear Calderón-Zygmund op-

erators and the bilinear Hilbert transform.

In the fourth part we introduce a multilinear and limited range analogues of the

UMD condition for tuples of quasi-Banach function spaces and prove vector-valued

bounds for operators in these spaces through two separate methods. The first is through

a multilinear limited range version of Rubio de Francia’s vector-valued extrapolation

theorem. Through the second method we show that if an operator has scalar-valued

sparse domination, then this operator has a vector-valued extension satisfying vector-

valued sparse domination with respect to our tuples of spaces satisfying the multilinear

UMD condition. For the proof of this result, we introduce the multisublinear Hardy-

Littlewood lattice maximal operator and define a rescaled multilinear analogue of the

Hardy-Littlewood property for tuples of quasi-Banach function spaces. We show that if a

tuple of quasi-Banach function spaces has this property, then the multisublinear Hardy-
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Littlewood maximal operator satisfies vector-valued sparse bounds in these spaces, which

is the main ingredient in proving that scalar-valued sparse domination implies vector-

valued sparse domination. Finally, we apply our results to multilinear Calderón-Zygmund

operators and the bilinear Hilbert transform.



SAMENVATTING

Het onderwerp van dit proefschrift is de studie van multilineaire Muckenhoupt gewicht-

sklassen en kwantitatieve begrensdheid van operatoren in termen van deze gewichten

in het scalair en vectorwaardige geval. Hiervoor komen onder andere multisublineaire

Hardy-Littlewood maximaal operatoren, schaarse vormen, en multilineaire Rubio de

Francia extrapolatie methoden aan bod.

Na het geven van een historisch overzicht in het eerste deel, geven we een intro-

ductie over de begrensde bereik multilineaire Muckenhoupt gewichtsklassen en de bi-

jbehorende gewichts constanten in het tweede deel. We laten zien dat deze gewicht-

sklassen gekarakteriseerd worden door de begrensdheid van de multisublineaire Hardy-

Littlewood maximaal operator en de schaarse vormen. We tonen een scherpe afhanke-

lijkheid van deze grens aan in termen van de gewichts constanten. Ook definiëren we

multilineaire omgekeerde Hölder en Fujii-Wilson constanten en bewijzen we een zelfver-

beterings eigenshcap van de multilineaire gewichtsklassen. Tot slot bewijzen we een ab-

stracte kwantitatieve multilineaire begrensde bereik extrapolatie stelling waardoor we

gewogen afschattingen kunnen extrapoleren in onder andere de gevallen waar een aan-

tal van de exponenten oneindig zijn. Om dit te doen ontwikkelen we een multilineaire

analogon van het Rubio de Francia algoritme die aangepast is op de multisublineaire

maximaal operator.

In het derde deel bewijzen we gewogen afschattingen voor multi(sub)lineaire oper-

atoren die aan schaarse dominatie voldoen door gebruik te maken van de scherpe ex-

trapolatie stelling om kwantitatieve afschattingen in het Banach bereik naar het quasi-

Banach bereik uit te breiden. We bepalen een criterium op de ongewogen operator nor-

men van de operatoren die ervoor zorgt dat deze verkregen afschattingen scherp zijn.

Verder verkrijgen we vectorwaardige afschattingen voor Lebesgue ruimtes waaronder

L∞. Als gevolg krijgen we eindpunt extrapolatie stellingen voor zwakke Lebesgue en

BMO ruimtes. We passen ons resultaat toe op multilineaire Calderón-Zygmund opera-

toren en de bilineaire Hilbert transform.

In het vierde deel introduceren we een multilineaire begrensde bereik analogon van

de UMD eis voor tupels van quasi-Banach ruimtes en bewijzen we vectorwaardige af-

schattingen voor operatoren in deze ruimtes door middel van twee verschillende meth-

oden. De eerste methode maakt gebruik van een multilineaire begrensde bereik ver-

sie van Rubio de Francia’s vectorwaardige extrapolatie stelling. Via de tweede methode

laten we zien dat als een operator scalairwaardige schaarse dominatie heeft, dan heeft

deze operator een vectorwaardige uitbreiding met vectorwaardige schaarse dominatie

voor tupels van ruimtes die voldoen aan de multilineaire UMD eis. Voor het bewijs

van dit resultaat introduceren we de multisublineaire Hardy-Littlewood rooster maxi-
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maal operator en definiëren we een hergeschaalde multilineaire analogon van de Hardy-

Littlewood eigenschap voor tupels van quasi-Banach functie ruimtes. We laten zien dat

als een tupel van quasi-Banach functie ruimtes deze eigenschap heeft, dan heeft de

multisublineaire Hardy-Littlewood maximaal operator schaarse begrensdheid in deze

ruimtes, wat het hoofdingrediënt is om aan te tonen dat scalairwaardige schaarse dom-

inatie vectorwaardige schaarse dominatie impliceert. Tot slot passen we onze resultaten

toen op multilineaire Calderón-Zygmund operatoren en de bilineaire Hilbert transform.
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