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Abstract
With the increasing volume of container freight transport, future port planning is 
crucial. Simulation models provide a means to gain insight in the effects of termi-
nal expansions. Detailed simulations incorporate berth allocation: assigning ves-
sels a time and location at the quay wall, where the vessel is loaded and unloaded. 
This article develops decision models for both offline preliminary berth planning 
and for online recovery of this plan during simulation. First, we develop an opti-
misation-based approach that incorporates realistic aspects—cyclic vessel arrivals, 
tidal windows, and minimisation of vessel draught during low water periods—in 
order to develop a cyclic baseline berth allocation plan. The approach can proac-
tively incorporate slack for increased robustness. Exploiting a constraint-based 
solver, we can obtain optimal or satisficing solutions for a year’s operation of a large 
port. The resulting preliminary berth plan is used as a basis for the arrival times. 
However, disruptions can occur, such as vessel arrival and loading times varying 
from the planned. Hence, second, we develop a real-time disruption management 
decision model. This multi-level heuristic approach reacts to disruptions while mini-
mising perturbation of the original berth plan. Computational experiments with a 
high-resolution simulator show our recovery approach finds good solutions until a 
tipping point of disturbance. Results also show that when the expected occupation of 
a terminal is higher, strengthening robustness of the preliminary plan has increased 
importance. The approach described in the article is implemented for a major Euro-
pean inland tidal port, forming the basis of a simulation-based decision support tool 
for operational planning and exploring port expansion options.

Keywords  Decision support · Simulation · Port expansion · Berth allocation · 
Disruption management · Constraint programming
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1  Introduction

With the increasing volume of container freight transport and the increasing size 
of container vessels, port planning is crucial. Simulation models provide a means 
to gain insights into operational plans and future port expansions (Benedicto et al. 
2018; Clausen and Kaffka 2016). This article is motivated by analysing a planned 
new terminal for an existing European port, for which a simulation study is required 
by the port operator.

In order to give insight into capacity and operational dimensions of the new ter-
minal, detailed study of vessel berthing and processing is needed. Two of the pro-
cesses to be simulated are vessel arrivals and berth allocation. Realistic factors must 
be captured in the study. These include simulating a port that has tide-restricted 
entrance and exit windows, and simulating the way many container shipping compa-
nies and terminals work: with cyclically-calling vessels from ‘loops’ (Hendriks et al. 
2013).

First, this article contributes a novel simulation-informed optimisation approach 
incorporating vessel arrival generation and berth allocation in a simulated environ-
ment. Our approach focuses on the generation of cyclic baseline planning on which 
the vessel arrival times and the actual berth allocation are based (Iris et al. 2018). By 
creating this baseline planning one can incorporate both the tidal windows of vessels 
and the cyclic nature of realistic container vessel arrivals. Unlike works in the lit-
erature that address the strategic berth planning problem, we face a situation where 
the arrival times of vessels are not known but are generated in the simulation; only 
the number of arrivals per vessel class is known. Further, tidal windows and vessel 
loops must be incorporated.

At a technical level, our approach is to derive a berth planning template as a non-
linear mathematical model. We use the optimisation technique of constraint pro-
gramming (CP) to automatically derive specific berth allocation plans. Empirical 
study by means of simulation shows that a CP approach is feasible in practice.

Second, we treat the real-time dynamics of variation from the baseline plan 
through a multi-level heuristic approach which reacts to disruptions while mini-
mising perturbation of the original berth plan. Disruptions include vessel arriving 
early or late, or their loading and unloading varying from expected. Our approach 
has the property of responding quickly and also, given sufficient time, repairing the 
baseline plan while minimising perturbation using a modified CP model (Fukunaga 
2009). Empirical study by means of simulation show the recovery approach finds 
good solutions until a tipping point of disturbance. Results also show that when the 
expected occupation of a terminal is higher, strengthening robustness of the prelimi-
nary plan has increased importance.

Third, we employ our approach for a case study of a large tide-dependent river delta 
port in Europe.1 We study both existing terminals and a planned new terminal. As ter-
minal occupancy increases we examine the effect of busyness on the runtime of the CP 

1  For reasons of commercial confidentiality, the name of the port cannot be disclosed.
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model using a state-of-the-art solver, and show that we can either obtain the optimal 
berth plan or a good approximation of it, within one hour for a large terminal. Plan 
repair can be achieved within a few minutes of computation time.

Figure 1 visualises the high level of the proposed simulation-informed optimisation 
approach. The simulator (Steps 1 and 2) existed previously. It is used for the evaluation 
of the initial berthing plan (Step 3) and in a feedback loop during simulated planning-
and-execution (Step 4). The approach can also be used effectively with live data, in 
which case the input from the simulation to the optimisation is replaced by real-time 
data feeds.

The work reported in this article is implemented as part of a bespoke commercial 
simulation platform in use for decision support at multiple container ports worldwide. 
We provide managerial insights for the capacity planning of terminals and the robust-
ness of operational plans to uncertainty.

Summarising, the contribution over the state-of-the-art is as follows: 

1.	 An integrated optimisation-based approach to cyclic berth planning accounting 
for tidal windows.

2.	 A perturbation-minimising approach to rescheduling to adjust to variation from 
the planned baseline.

3.	 A case study of our optimisation approach for a major European inland port for 
one whole year.

The remainder of the article is structured as follows. The next section surveys related 
literature. Section 3 identifies the specific problem treated. Sections 4 and 5 describe 
the simulation-informed optimisation approaches developed for planning and for re-
planning. Section 6 presents an analysis on data from the case study port. Section 7 
summarises the managerial implications and discusses future directions.

Fig. 1   High-level summary of 
the developed approach. The 
simulator is used in Step 2 and 
in Step 4, and for evaluation of 
Step 3. Metrics collected from 
the simulator provide manage-
rial insights
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2 � Background and related work

2.1 � Container terminal simulation

Port simulation is an established technique for analysing, optimising and planning 
container terminals (Dragović et al. 2017), of value for berth planning, quay crane 
scheduling, yard scheduling, and other problems in practice.

In this article we adopt simulation-based optimisation in order to analyse a 
planned terminal expansion. Simulation-based optimisation typically blends an opti-
misation approach to a decision problem with a simulation model that incorporates 
uncertainty. The paradigm has diverse use (Zúñiga et al. 2020), including long-term 
planning (Turan et al. 2020). Castilla-Rodríguez et al. (2020), for instance, approach 
the management of trans-shipment operations through simulation–optimisation, 
resulting in robust schedules for quay cranes.

This article addresses vessel arrival generation for a terminal simulation, pro-
vides a simulation-informed optimisation approach to berth allocation with realistic 
factors, and further provides a means to handling uncertainty through re-planning. 
We say ‘simulation-informed optimisation’ rather than ‘simulation–optimisation’ 
because the simulator is not invoked by the planner, rather the real-time output of 
the simulator is fed into the planner, and the planner’s decisions are then enacted 
in the simulator. Thus the two components interact in a feedback loop. Hence in 
this section we briefly survey relevant work in arrival generation, berth allocation, 
uncertainty, and constraint programming.

2.2 � Arrival generation

An important design choice that impacts the simulation process is the generation 
of vessel arrivals. This design decision influences everything from the busyness 
in the port’s entrance waters to the allocation of berths and other terminal-related 
planning. Simulation designers largely adopt one of two approaches: either follow 
a random arrival process or derive the arrival process from historical data Exam-
ples of the first approach are Pachakis and Kiremidjian (2003), Thiers and Janssens 
(1998), Yeo et al. (2007).

In the second approach for arrival generation, when historical data is available 
and is relevant, simulation models can use it as a basis for vessel arrival generation 
(Hassan 1993). Huang et  al. (2013), for instance, use the actual arrival historical 
times in the simulation. This is valid if the historical arrival times are representative 
of the simulation period; in particular, this assumption can be false when simulat-
ing future design options for the port. Cimpeanu et al. (2017) assume that a yearly 
schedule for vessel arrivals are known beforehand. These are based on distributions 
of inter-arrival times derived from historical data provided by a port terminal com-
pany. Van Asperen et  al.(2003) examine arrival generation for jetty facilities. The 
data provided in their case was yearly arrival numbers for the vessels, and not infor-
mation about any kind of specific distributions.
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Tidal patterns have been included in some simulation models. The early work 
of Groenveld (1983) included tidal conditions post hoc as a check whether a ves-
sel is allowed to sail or not; a vessel that is not allowed to sail due to tidal restric-
tions needs to wait in the anchorage. Similarly, both Hassan (1993) and Cimpeanu 
et  al. (2017) keep vessels restricted by tidal conditions waiting in a queue. Wad-
hwa (1992) also takes tidal patterns into account when entering and exiting the port. 
Here, the notion of loading a vessel according to a certain allowable draught is intro-
duced. Thiers and Janssens (1998) divide vessels into tide-dependent and not tide-
dependent. For vessels that are tide-dependent there are certain threshold locations 
which the vessel can only pass during a certain time-frame. These tidal windows are 
defined as the time frame in which the vessel can depart from a certain location and 
pass all the thresholds without issues.

With the exception of Huang et al. (2013), all the works surveyed generate vessels 
according to inter-arrival times. In cases where historical data is provided, the inter-
arrival times are often based on data; on the other hand, if no data is available, dif-
ferent random arrival processes are incorporated. None of the models have included 
the cyclic nature of arrivals and only some of them included tidal patterns. The lat-
ter, however, are modelled as a check whether or not a vessel is allowed to enter the 
port or not, rather being taken into account in the arrival generation. By contrast, in 
reality shipping companies do attempt to take tides into account to reduce waiting 
time.

2.3 � Berth allocation

Successful berth planning has major impact on key performance indicators for a 
terminal (Ding et  al. 2016). Berth allocation is the process of allocating terminal 
resources to vessels: assigning vessels a time and location at the quay wall where the 
vessel is loaded and unloaded. While berth allocation has received extensive atten-
tion in the literature (Wawrzyniak et al. (2020) being a recent example), to the best 
of our knowledge, no work uses a baseline berth allocation as a base for a simulation 
model. Table 1 overviews the literature which we summarise next.

The creation of a baseline berth planning itself is found in the literature: for a 
thorough overview we refer to Bierwirth and Meisel (2015). However, one impor-
tant difference between the berth allocation papers in the literature and actually 
using the allocation as a base for a simulation: in the former the expected arrival 
time and expected service time are usually assumed to be known.

In the most generic case of berth allocation, one tries to find an allocation that 
plans vessels as close to their expected arrival time as possible. Often also some 
preferred berthing location of a vessel is taken into account. The objective function 
optimised in real life is a combination of maximising such preferences, maximising 
the vessel service levels (i.e., minimise the departure lateness) and minimise operat-
ing costs during a planning horizon (Ding et al. 2016).

As noted in the introduction, many container shipping companies and terminals 
operate cyclically-calling vessels from ‘loops’ (Hendriks et al. 2013). A loop can be 
seen as a series of ports that are visited in order. Because of the size of these loops, 
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container shipping companies usually have multiple vessels sailing in the same loop. 
In reality, a terminal plans the arrivals of these loops using a cyclic baseline berth 
planning: a schedule for, for example, a week, in which every loop receives a certain 
time when and location where it is expected to arrive each week. This baseline plan 
is modified during the week’s execution because, due to external factors and uncer-
tainties, vessels often encounter deviation from the baseline plan.

Hendriks et  al. (2013) are one of the few authors who incorporate the cyclic 
nature of realistic berth planning into a model. They divide a cyclic period into dis-
crete time sub-periods. Similarly, Zhen et al. (2011) also divide the planning horizon 
into discrete time periods.

Unlike these, and most, works which focus on the tactical or operational aspects 
to berth planning, Imai et  al. (2014) consider a strategic dimension to berth allo-
cation. These authors select a subset of the possible vessels for berthing, and then 
schedule them within a planning horizon. Notably, Imai et  al. also accommodate 
cyclically-calling vessels. Iris et  al. (2018) explore integer programming and set 
packing approaches for the same problem, concluding that the latter has best perfor-
mance. We adopt the same approach of a cyclic-like baseline plan, but in a simula-
tion-informed optimisation paradigm. Two further important differences from work 
on the strategic berth template problem are that, first, in a simulation setting the 
arrival times of vessels are not known, and second, tidal windows are crucial, as we 
next discuss.

Other authors treat another aspect of berth planning which is important for our 
contribution: time-varying water constraints. Qin et al. (2016) consider berth alloca-
tion with time-varying water depth at a tidal river port. As we discuss further below, 
these authors characterise situations when a constraint programming approach is 
superior to an integer programming approach. Zhen et al. (2017) solve berth allo-
cation and quay crane scheduling considering tides and channel flow control con-
straints. Xiang and Liu (2021) also solve integrated berth allocation and quay crane 
scheduling, with a robust optimisation approach.

These works all follow the assumption outlined by Hendriks et al. (2012): namely 
that strategic-level decisions are made (or have been made) about the time of arrival 
and departure, and these decisions are used to create the (cyclic) berth allocations. 
However, since these times are not known in a simulated environment and need to 
be generated from yearly arrival numbers, these models cannot be used directly in 
our case. Instead, the same mindset of rectangle packing on a cylinder instead of a 
plane, as explained by Zhen et al. (2011), is adopted in our work, with the modifica-
tion that we disallow vessels straddling the boundary of the cyclic periods.

2.4 � Dynamicism and uncertainty

In the literature, ‘dynamic’ berth planning more commonly has the meaning that 
the ships have individual arrival times over the planning horizon. This contrasts to 
‘static’ berth planning where all ships are assumed to already be present at the port 
at the time of the planning (Imai et al. 2001). Other authors define the ‘dynamic’ 
berth allocation problem to recognise that the service time of a vessel when berthed 
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may differ depending on the berth on the quayside at which it is serviced (Cordeau 
et al. 2005). Dynamic, then, in this line of the literature, refers to the service time 
depending on the location; it does not refer to dynamic in the sense of uncertainty in 
the arrival or service times per se, nor to change in which vessels are arriving.

As with the service-time-fixed ‘static’ berth allocation problem, the service-time-
variable ‘dynamic’ version has received extensive attention in the literature. As a 
recent example, Nishi et  al. (2020) provide an exact dynamic programming-based 
approach and analyse how it scales better than previous approaches.

Our approach to uncertainty fits with the simulation-based paradigm, as Sect. 3 
describes. We treat the ‘static’ problem as defined above, while allowing uncertainty 
in vessel arrival and service times—and indeed re-planning in face of exogenous 
events.

There are stochastic approaches to berth planning and other terminal operation 
problems. Zhen (2013), for instance, admits uncertainty over berthing time and 
berthing positions. Schepler et al. (2019) consider stochastic arrival times of vessels. 
The authors find that a proactive–reactive approach, based on heuristic search and 
stochastic dynamic programming, works well when uncertainty is limited; a purely 
reactive approach dominates when uncertainty is larger.

Such types of modelling approaches have the advantage of reasoning with uncer-
tainty, and the disadvantage compared to simulation–optimisation of more complex 
mathematical models and limitations on the type of uncertainty or events that can be 
modelled (Liu et al. 2020).

2.5 � Disruption recovery

Recognition of uncertainty is necessary for berth allocation in practice, since berth 
allocation must be feasible operationally real time. While a berth plan which proac-
tively incorporates robustness is valuable, the capability to react to schedule devia-
tions and exogenous events is necessary. A plan that is fully robust to foreseen dis-
ruptions is too inefficient; and we cannot rule out that unforeseen disruptions (Lv 
et al. 2020).

The first type of reactive approach is full re-planning: creating a completely 
new schedule while optimising the original performance measure. Carette (2016) 
addresses the berth allocation problem with this idea. Here, the optimal plan is 
recalculated at given time intervals. At each interval, new information is collected 
and based on this information an optimisation method is used to create entirely new 
schedule.

The second type of reactive approach is disruption management: adjusting the 
original berthing plan to accommodate disruptions while keeping as close as pos-
sible to the original berthing plan. Its advantage over full re-planning is to minimise 
actual relocation of equipment and resources which have been prepared according 
to the original plan. Further, in cases where there are many incoming vessels an 
updated plan can usually be achieved faster. Zhang et al. (2016), for instance, intro-
duce a disruption management strategy based on a lexicographic optimisation of 
vessels according to their type.
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Yang et al. (2016) simulate disruptions and based on this extract stable states for 
vessels. Based on these stable states, a rescheduling processes aims to influence ves-
sels’ schedules as little as possible. Similarly, Zeng et  al. (2011) find an optimal 
berth allocation through repeated simulation runs and solving disruptions that arise; 
the authors treat simultaneously allocation and quay crane scheduling. The perfor-
mance measure is the familiar two-fold measure: on one hand the original optimisa-
tion function must be optimised and on the other hand the deviation from the origi-
nal problem must be minimised. The authors propose the idea of local rescheduling 
which only considers a limited time and space window to solve the disruption, and 
find local rescheduling is more efficient than a full rescheduling approach.

Iris and Lam (2019) assume a finite set of scenarios that give the value of differ-
ent uncertain variables, adopting the robust optimisation paradigm. For the baseline 
planning a vessel specific buffer is added which acts as robustness. The authors also 
generate recovery plans for each scenario: for each, a plan is created which subse-
quently are used to create the baseline plan. Schepler et  al. (2019), noted earlier, 
assume known probability distributions capture uncertainty about arrival times. 
They present a two-stage stochastic programming model for berth allocation plan-
ning, and a stochastic dynamic programming approach for disruption recovery.

Jia et al. (2020) study combined berth allocation of deep-sea vessels and arrival 
scheduling of other vessels. Focusing on a case study where the number of feeder 
vessels is much larger than the number of deep-sea vessels, the authors seek to min-
imise the departure delays of deep-sea vessels and the schedule displacements of 
feeders. A three-phase simulation–optimisation method handles uncertainty in the 
service times of the feeders.

The works surveyed are not real-time recovery approaches. Rather they aim at 
optimising the schedule given a series of simulation runs and corresponding dis-
ruptions. By contrast, Umang et al. (2017) present a real-time approach for disrup-
tion recovery in a bulk port. The authors assume a baseline schedule and aim to 
stay as close to that as possible when disruption happen. During a run, the model 
expects vessels to update their arrival time and handling time. Each hour, a schedule 
recovery is attempted using the updated values. The authors consider rescheduling 
in one of two ways: a greedy algorithm and an optimisation algorithm. The greedy 
algorithm places vessels at berthing locations where the total cost of reassignment 
is minimal. The optimisation algorithm minimises the objective function through 
reformulating the optimisation function as a set-partitioning problem where all the 
feasible assignments are investigated. The authors find that the optimisation algo-
rithm out-performs the others based on objective value while the greedy algorithm 
stays closer to the original baseline plan.

Compared with Umang et  al. (2017), our disruption management approach is 
more general and more scaleable. First, the simulation model for our case study port 
is large—one of the largest ports in Europe—and has simulation period of at least 
one month. Second, Umang et al. only examine test scenarios of 10–25 vessels and 
a time horizon of 5 days, and only update their planning each hour. We respond 
to disruptions in near real time: in the order of minutes per vessel. Lastly, Umang 
et al. assume fixed (hybrid) berthing positions whereas we allow continuous quays 
for which vessels can be berthed anywhere along the quay wall.
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2.6 � Constraint programming

Constraint programming (CP) is a flexible artificial intelligence approach to mod-
elling and solving combinatorial optimisation problems (Pesant 2014). CP can be 
viewed as a generalisation of integer programming (IP).

In contrast to IP, the origins of CP are in artificial intelligence (Pesant 2014; 
Puget and Shaw 2014). The strengths of CP are expressive modelling flexibility, 
which yields more compact and understandable declarative models than IP. Further, 
CP allows us to decouple the modelling from the solving (Freuder 1997; Wallace 
2020).

Kizilay et al. (2018), for instance, use CP to address a decision problem in inte-
grated port container terminal operations. Li et al. (2014) use CP to plan vessel rota-
tions (loops) among terminals within a port. In solving a berth allocation problem, 
Qin et al. (2016) show that CP outperforms integer programming in three instances, 
namely when using dynamic arrivals over static arrivals, when using fine time gran-
ularity, and when the restriction of the objective towards the decision variables is 
not tight. Closest to our work, Zampelli et al. (2013) use CP to address a combina-
tion of berth and crane allocation. Although accommodating many realistic opera-
tional constraints and multiple objectives, they do not consider cyclic vessel loops, 
tidal windows, or dynamicism.

Since the optimisation problem we will formulate has no tight restriction towards 
the decision variables—only that their values be close to preferred locations—and 
uses a very fine time granularity of 1 min, we adopt CP and formulate a compact 
and understandable optimisation model in Sect. 4.

3 � Berth planning problem

Having surveyed the literature, in this section we identify the specific problem 
treated. It has two aspects: planning and re-planning.

First, we address the creation of a cyclic baseline berth allocation of vessel arriv-
als in a simulation model. The allocation must respect physical and operational con-
straints. It must allow for tidal windows, and operator/terminal preferences on berth-
ing locations.

This baseline berth planning serves as a basis for the vessel arrival times in the 
simulation, as follows. Based on provided data about expected vessel arrivals in the 
port, vessels will be generated for the simulation model. Each of these vessels will 
be allocated a berth at a certain time during the simulation. Thus each vessel will be 
assigned the combination of a certain time and a certain position at the quay wall, 
where the vessel can be loaded and unloaded without interfering with other vessels. 
Based on the time of this allocation, the actual time the vessel will arrive in the 
simulation can be decided. That is, due to simulation stochastics, the arrival time of 
a vessel when the simulation executes can (deliberately, from the point of view of 
the simulation designer) differ from the planned arrival time.

In this way we treat uncertainty by means of the simulation paradigm rather than 
through formulating, for instance, a stochastic programming optimisation model. We 



80	 J.-J. van der Steeg et al.

1 3

also note the ability of simulation to capture behavioural factors, although this is not the 
focus of the current paper.

Second, we address re-planning of the berth allocation in reaction to dynamic 
changes to vessel arrival times and orders, loading and unloading times, equipment 
breakdown, and other exogenous factors. The recovery approach must operate fast 
enough to be use in real-time operations, and, preferably, minimise perturbation from 
the baseline plan.

In order to develop a realistic data-based simulation, we take advantage of the fol-
lowing commonly-available data. 

1.	 A yearly forecast for the simulation period. That is, for each class of container ves-
sels, the port manager provides an expected yearly number of arrivals. To make 
these arrivals more realistic, the vessel classes can be sub-divided by the different 
approach routes to the port. That is, the different ‘paths’ from shipping lanes into 
the port entrance; not all vessels can traverse all approach routes, for instance due 
to water depth in a channel. What vessels belong to what vessel classes can be 
specific to the application. In the case study of Sect. 6, vessel classes are defined 
by their size, amount of Twenty-foot Equivalent Unit (TEU) that can be carried, 
and the handling time distributions. Hence each vessel from the same class has 
the same size, TEU and handling time distribution.

2.	 The division of draught for each class. That is, how many vessels are expected 
yearly with what draught. The draught of a vessel is essential knowledge since it 
determines whether or not a vessel can sail given the tidal situation.

3.	 The tidal windows for each draught. These are required in a similar fashion as 
in Thiers and Janssens (1998). The tidal window at a certain location represents 
the first and last moment a vessel with a specific draught is allowed to pass that 
location, such that it will not encounter any tidal issues over the course of the 
journey to or from the port. To make a good estimation about the berthing times 
after a vessel can pass through the tidal window, data about travel times in and 
around the port are used.

4.	 Additional information for each vessel class. Regarding, for instance, the length 
of the vessel and the distribution of the handling time for that class.

Note that we do not rely on the existence of (accurate) historical data about vessel 
arrivals.

For the subsequent parts of a port simulation, in which berth planning is incorpo-
rated, more data could be necessary; for example, information about traffic rules, tug 
boat assistance and external conditions like weather. We discuss further in Sect. 7 at the 
conclusion of the article.
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4 � Optimisation approach: planning

Our approach is to derive a berth planning template as a non-linear mathematical 
model. This approach integrates all the required aspects of the problem into a sin-
gle model. We use the optimisation technique of constraint programming to auto-
matically derive and to dynamically update specific berth allocation plans from the 
model.

The six steps for the planning are illustrated in Fig. 2. We describe each in turn. 
In the subsequent Sect. 5 we describe the re-planning.

4.1 � Cyclic berth planning

Step 1: Determine simulation period and cyclic period. Any simulation design 
requires some foundational decisions regarding the simulated period and the cyclic 
loop period. The decision for the simulation period is important as upon this depend 
the tidal windows. The cyclic period determines how often the cyclical berth alloca-
tion pattern repeats itself. In practice this period is usually 7, 10 or 14 days (Hen-
driks et  al. 2013). The combination of this simulation period and cyclic period 
determine how often the cyclic pattern is repeated. The cycle period can be chosen 
to the user’s needs. Note that such decisions on the simulation are not part of the 
planning approach; rather, the planning depends upon them.

Step 2: Generate vessels for the simulation period. The second step concerns the 
generation of all the vessels that will arrive in the simulated period. This is achieved 
through a repeated random selection with stratification. A list of vessel arrivals is 
generated that represents the total amount of arrivals that is expected in the simula-
tion period, according to the provided number of yearly arrivals for each class and 
draught within that class.

Step 3: Divide arrivals over cyclic periods. We treat the cyclic nature of the arriv-
als with the assumption that vessels from the same vessel class can belong to the 

Fig. 2   Six steps of the berth 
allocation approach
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same loop. Consequently, for each instance where a vessel class has arrivals in every 
cyclic period we may assume there is one loop for that vessel class. In this step, 
then, the division of vessels over the cyclic periods is made. The goal is to divide the 
arrivals from each vessel class as evenly as possible over the cyclic periods.

For example, suppose that the cyclic period is one week and the simulation period 
covers five weeks, then the vessel arrivals are divided over five periods. Now, if 
from a certain class 13 arrivals are expected in the simulation period we will assign 
two arrivals to each week and these will be considered cyclic arrivals. The remain-
ing three arrivals that cannot cover each cyclic period will be assigned to random 
periods where the same period is not chosen twice. These remaining arrivals are 
considered non-cyclic arrivals.

Step 4: Deduce arrivals in projection plan. Now that the arrivals of each class per 
cyclic period is known, the next step is to deduce a projection plan. A projection 
plan is a berth allocation for one period on which the arrivals for each cyclic period 
are projected.

For example, if we know that from a certain loop each week two vessels will 
come to the port, we need two spaces in the berth plan where these vessels can 
arrive. By doing this, the actual arrivals can be projected on this plan since there is a 
space where they fit.

The arrivals of the projection plan can be deduced as follows. First, for each 
cyclic loop that has an arrival each period, one vessel from that class is added to the 
projection plan. These loops will be planned at the same time and place each period. 
Second, since the projection plan is the berthing plan on which every period’s arriv-
als will be projected, room for non-cyclic arrivals needs to be incorporated as well. 
This is done by adding the number of non-cyclic vessels of the period that has the 
most non-cyclic arrivals. This way, the projection plan will have enough planned 
spaces such that each period can fit all their planned arrivals.

Step 5: Solve the projection plan. In this step the goal is to reserve a time slot and 
location for all the vessel class arrivals that are expected in the projection period. 
As explained earlier, the arrivals in the projection period are not actual arrivals but 
placeholders on which the actual arrivals for each period will be projected. This 
means that a decision needs to be made on how much space and how much time 
needs to be reserved for each arrival. We treat the cases of cyclic and non-cyclic 
arrivals separately.

First, for the cyclic arrivals this means that each arrival is from the same class 
which means that the vessel length and estimated handling time are likely rather 
similar. In any case, for each of the cyclic arrivals the longest vessel length and the 
longest estimated handling time for that vessel class needs to be reserved. In our 
case study, vessels from the same class all have the same vessel length and handling 
time distribution, which means that this length and expected handling time from this 
class can be used. This is to make sure that when planning the actual arrivals and 
projecting it on this space that the arrival will stay within the reserved boundaries.

Second, the non-cyclic arrivals are more difficult, since the same spot can be used 
by different vessels of different classes in each period. It is necessary to make sure 
that the spaces that are reserved are large enough such that every cyclic period each 
non-cyclic vessel fits in a space that is large enough to prevent overlap. To do this, 
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we check the non-cyclic arrivals and find the arrival in each period which takes the 
longest handling time and has the largest vessel length. This is the time and space 
that is reserved for the longest non-cyclic arrival in each period. By reserving this 
space we ensure that the largest non-cyclic arrival each period will have enough 
space. Next we check each period for the second-to-longest handling time and vessel 
length and reserve that space, and so forth. In this way it is guaranteed that all the 
spaces reserved in the projection plan are boundaries for the actual arrivals and no 
vessel will be outside its planned spot.

For all vessels, cyclic or not, we can anticipate disruptions might occur and pro-
actively incorporate slack time in the plan for increased robustness. The trade-off 
between a more robust plan versus its reduced efficiency (if no disruptions) is cap-
tured by a hyper-parameter � . This parameter is the percentage of the each vessel’s 
handling time to add as slack. For example, � = 0.5 means that a handling time 
of 10 h is treated as 15 h, i.e., with 5 h (50%) slack. The simulation user can thus 
express her attitude to risk by varying � . We discuss the limitations on how much 
slack can be added in practice, in Sect. 6.3.

Note that the buffers between vessels provided by adding slack time are a pro-
active mitigation against uncertainty—delays—in vessel processing times. The 
observation is that vessels with a large handling time have a larger influence on the 
planning. This is because a vessel with a relatively short handling time can likely 
be moved without disturbing many other vessels. However, this observation does 
not imply that handling time is the most influential source of uncertainty. Section 5 
therefore explains how we couple reactive disruption recovery with initial berth 
planning.

To solve the berth allocation for the projection plan we adopt an optimisation 
approach. We formulate a compact non-linear model. The model is specified by its 
parameters, decision variables, objective function and constraints, as follows:

4.1.1 � Parameters

V = set of vessels to be served in time horizon
li = length of vessel i
ti = estimated handling time of vessel i
L = quay length
T = cyclic period planning time horizon
bip = a score for vessel i to be placed at location p

4.1.2 � Decision variables

xi = start berthing time vessel i
yi = berthing position vessel i
yObji = the objective score value for vessel i
xIntervali = an interval variable covering the interval {xi, xi + ti}

yIntervali = an interval variable covering the interval {yi, yi + li}
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4.1.3 � Objective and constraints

The objective function (1) is to maximise the score given to each vessel regarding a 
certain preferred berthing location for that vessel. As we discuss below, alternative 
objectives can be incorporated.

Constraint (2) is a CP-specific constraint which constrains each pair of xIntervals 
and yIntervals , which form rectangles, to be non-overlapping rectangles (also known 
as the diffn constraint (Beldiceanu and Contejean 1994)). Constraints  (3) and  (4) 
ensure that the values x and y can take on such that they remain within the bounda-
ries of the berthing plan. Constraint  (5) ensures that the value taken up by yObji 
equals the score for vessel i to be berthed at location yi.

The final constraint (6) constrains the minimum score that each vessel must have. 
This last constraint is optional; the minimum score depends on the application. This 
can be used if certain vessels need to be guaranteed at a certain location. In our case 
study a value of 1 was chosen to be able to deal with the situation of discontinuous 
quays (see also Ma et al. (2019)). Namely, in this situation the discontinuous quay 
can be treated as a continuous quay but on the split a score of 0 is assigned. This 
way vessels can never be located over the split.

Constraints used in this model follow the naming as implemented in the OR-Tools 
CP solver (Perron and Furnon 2019) used in our empirical case study in Sect. 6.

Note that there is no constraint enforcing vessel passage in line with feasible tidal 
windows for that vessel. Indeed, it is not possible to take tidal windows into account 
with an optimisation approach like this that plans a repeated periodic cycle, as the 
windows can vary from week to week. Tidal windows are handled in the final step of 
the planning, described next.

Step 6: Plan each cyclic period. The final step is to project each period’s arriv-
als on the projection berth allocation as created in the previous step. In this proce-
dure the tidal windows will have an important role in deciding which vessel from a 
loop will arrive in which period. This can be optimised under the assumption that 
when a shipping line plans arrivals during a low water period, it does not plan a very 
deep vessel, but rather lets the vessel arrive less heavily laden. This assumption was 

(1)max
∑

i∈V

yObji

(2)NoOverlap2D(xInterval, yInterval)

(3)0 ≤ xi ≤ T − ti ∀i ∈ V

(4)0 ≤ yi ≤ L − li ∀i ∈ V

(5)Element(yi, bi, yObji) ∀i ∈ V

(6)yObji ≥ 1 ∀i ∈ V
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provided by domain experts.2 Hence, for each cyclic loop for which a time and place 
is reserved in the projection plan, vessels will be planned in such a way that, if the 
vessel arrives exactly at the time that is planned, the vessel will not have any issues 
with entering the port due to tidal restrictions. Further, when the expected handling 
time is over, the vessel should be able to leave as soon as possible.

In practice, this means that when planning the vessels from a loop, first the vessel 
with the largest draught will be planned. For each period one can use the estimated 
travel time from the tidal window threshold point to the berth to find the time the 
vessel would pass that point if it would arrive exactly on time at the planned berth 
in that period. With this time we can check if the vessel would be able to enter the 
port at that time according to the tidal patterns. Every period in which the vessel can 
enter immediately will be selected as a potential period that the vessel will arrive. If 
the vessel cannot enter immediately in any of the periods, the period with the short-
est time to high water will be selected. Now, for each of the selected periods the time 
after handling is done until the time it can exit the port because of the tides is cal-
culated for each period. The period in which this is shortest is selected as the period 
in which the vessel will arrive. If multiple periods have the same time until exit, we 
break the tie randomly.

An example output berth allocation from our approach can be seen in Fig. 3. The 
figure shows a simulation period of two weeks with a cyclic period of one week. 
Arrivals are randomly generated; the terminal has discontinuous quay walls.

Fig. 3   Example berth allocation: simulation period 2 weeks, cyclic period 1 week. The horizontal axis is 
the time factor of the berth allocation and the vertical axis shows the quay wall. One can see by the split 
in the vertical axis that this terminal has a discontinuous quay wall and consists of two sections of quay. 
The green boxes represent vessels planned in this time frame. Note that in the length of the vessels as 
visualised (the vertical length of the boxes) also a necessary safety distance is incorporated. Thus, boxes 
that touch do not touch in real life

2  The alternative of having the vessels planned to arrive at a higher-water period can be accommodated 
by our approach. Further, unexpected delays due to travel time and water level can be handled through 
the disruption recovery (Sect. 5).
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Note that in all situations, all the vessels are served. This because over the planning 
period, due of the extra spaces, we will always find more spaces in the planning to 
serve the vessels than are needed.

Lastly, note that our planning cyclically-calling vessels on a 2D cylinder—where 
each rectangle corresponds to a set of similar vessels with a recurring nominal arrival 
time at each period (Zhen et  al. 2011)—means that we could allow vessels to be 
planned over the ‘edge’ into the next period. These period-straddling vessels should 
be taken into account at the start of the planning of the next period. Instead, we require 
vessels to be scheduled within a period, as can be seen in Fig. 3 by the small break 
between the end of day 7 and the start of day 8. This significantly simplifies the math-
ematical optimisation model.

4.2 � Alternative objectives

The CP model described above has objective function (1) which maximises the score 
given to each vessel. The score is derived from the preferred berthing location(s) for 
that vessel, as given by the terminal operator (who may take into account preferences 
of the vessel operator). A further advantage of CP is its modelling flexibility (Wallace 
2020); alternative objectives can be readily incorporated.

For example, the above model contains no variable for the end of berthing time of 
vessel i ∈ V . This is because the berthing time is given by parameter ti . If, instead, ti is 
given as the minimal rather than expected berthing time, and vessels are allowed to stay 
quayside longer than ti , then the model can minimise vessel handling times as follows:

where zi is the end berthing time of vessel i, and xzIntervali is an interval variable 
covering the interval {xi,… , zi}.

(7)min
∑

i∈V

zi − xi

(8)NoOverlap2D(xzInterval, yInterval)

(9)0 ≤ xi ≤ T ∀i ∈ V

(10)0 ≤ zi ≤ T ∀i ∈ V

(11)zi − xi ≥ ti ∀i ∈ V

(12)0 ≤ yi ≤ L − li ∀i ∈ V
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5 � Optimisation approach: re‑planning

The preliminary berth plan developed in the last section is used as a basis for the 
vessel arrival times in the simulation. However, disruptions can occur, such as vessel 
arrival and loading times varying from the planned. This motivates the importance 
of treating the dynamic aspects of such disruptions.

5.1 � Disruption recovery through localised re‑planning

Recall that our approach to disruption is disruption management: adjusting the orig-
inal berthing plan to accommodate disruptions while keeping as close as possible to 
the original plan. While this is a primarily reactive approach, we include an adjust-
able percentage of slack in the berthing plan as described earlier. As with planning, 
our approach is embedded in a simulation context.

It is useful to introduce a simplified description of the simulator’s operations is 
as follows. When the berth controller (BC) module receives, in real time, a berthing 
request for a vessel, it checks whether the proposed berth in the plan is free at the 
minimum arrival time of the vessel and whether scheduling the vessel thusly will 
result in any collisions. If both these checks pass, then the vessel can be scheduled at 
that location and at its minimum arrival time.

However, if either check fails—or indeed if disruptions occur with another ves-
sel—then the BC needs to recover the berth schedule in such a way that every vessel 
fits in the planning again. This has to happen in real-time and for every vessel and 
so must be relatively fast: in the order of minutes per vessel. Further, the terminal 
prefers to stay as close to the original berth plann as possible.

Our approach to disruption recovery leverages and combines two complementary 
methods. We next describe the quality measure used to assess how good is a planned 
recovery, then the two methods to obtain recovery plans, and finally how they are 
used to make decisions.

Quality measure Determining the quality of a repair to a berthing plan has two 
important factors, according to domain experts with whom we consulted (compare 
Zeng et al. (2011)): the deviation in berthing time for a vessel, and the deviation in 
berthing location for a vessel. This gives the penalty for a single vessel i berthed at 
time x and location y:

where the berthing time x is compared with its previously-planned berthing time 
t, the berthing location y is compared with b its previously-planned location, � we 
explain next, and c1 and c2 are cost parameters, weighting the deviation in time and 
space respectively.

Terminals can have more than one quay wall. In the case of disruption recovery, 
it could be a good solution to berth a vessel at a different quay wall than at its orig-
inally-planned quay wall when disruptions occur. This has been incorporated in the 
quality formula with the binary variable � , which takes value 1 if the vessel is moved 

(13)pi = c1 ∗ |x − t| + c2 ∗ ((1 − �) ∗ |y − b| + � ∗ L))
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to a different quay wall, and 0 otherwise. If the vessel is moved to a different quay 
wall it is impossible to decide how large the displacement is and therefore the deci-
sion has been made to add a large penalty L which is the length of all the quay walls 
in the terminal combined. This penalty also makes sense in real life because moving 
resources to a different quay wall is a costly operation.

The quality of a complete realised berthing plan is the average penalty over all 
the vessels:

In consultation with the domain experts, for c1 the value of 1 is chosen and for c2 the 
value of 0.2 is chosen. This means that a 5 m offset is punished similarly to a 1 min 
delay.

In addition to this quality measure, there may be non-binding requirements about 
the recovery. These requirements can be seen as preferences of the operator. For 
example, the case study port has a non-binding requirement that a recovery is not 
allowed to change the berthing time and location of other vessels that are expected 
to arrive in four or more days. Any recovery plan which satisfies this soft constraint 
is preferable to any plan which does not.

5.2 � Re‑planning methods

We leverage one heuristic and one exact re-planning method for disruption manage-
ment. The heuristic has two parts: the distinct point method and the chain recovery, 
which are explained next. The exact re-planning method uses CP.

5.2.1 � Distinct point method

The heuristic method begins with the distinct point method. It finds the empty 
spaces in a berthing plan. These are used in the chain recovery, described below. Its 
advantage, compared to brute-force checking each (x, y)-pair, is being a more effi-
cient means to find empty spaces. The resulting boxes are of interest because each of 
these empty spaces represents a potential berthing place and time for the vessel to be 
planned.

First, the region of interest needs to be determined; this is the sub-space to be 
searched. For each vessel to be planned, only a small portion of the berthing plan 
is of interest since this gives the potential berthing locations after its arrival time 
and within its maximum allowable waiting time.3 The region of interest therefore 
starts with the minimum arrival time of the vessel. The end time of the region of 
interest is the minimum arrival time of the vessel with the addition of the mini-
mum allowable waiting time and the handling time of the vessel. The maximum 

(14)P =
1

n

n∑

i

pi

3  This maximum is a requirement only relevant to the distinct point method, because otherwise it might 
delay vessels excessively.
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allowable waiting time can be set based on the user’s requirements; we use 16 h, 
as proscribed in Sect. 6.

To determine the empty boxes in a berth plan, the distinct points of interest for 
both, the x- and the y- axis, are first determined. The distinct points of interest on 
the x-axis are the start and end times of all the vessels within the region of inter-
est in the planning, the start time of the region of interest, and the end time of the 
region of interest. The distinct points of interest on the y-axis are the begin and 
end location of the vessels on the quay within the region of interest, the first point 
at the quay (at 0 m) and the last point at the quay (the length of the quay). In the 
case that the terminal is split into multiple quays, the split is also added as a point 
of interest. In Fig. 4a the selection of distinct points of interest are shown for an 
example situation.

Now that the distinct points of interest are known, we can use each combination 
of two x points and two y points to form boxes. These boxes are known as the poten-
tial empty boxes. The creation of empty boxes is shown in Fig. 4b.

The last step is to determine the actual empty boxes. For this, first each of the 
potential boxes are checked for collisions with the vessels in the region of inter-
est. Second, each box that does not collide with vessels in the region of interest is 
checked with the other empty boxes. If a box has a 100% intersection with another 
box it is completely surrounded by the latter. In this case, the bigger box is kept and 
the smaller box is removed. Third, after this, only the largest possible boxes which 
completely fill up the empty space are kept. Fourth, only the boxes that start within 
the maximum allowable waiting time are retained, because these are the boxes that 
can actually be used as potential berthing locations for the vessel.

In our example situation, Fig. 4c depicts how the final set of boxes are chosen. 
For clarity, in the figure some selected boxes are omitted. These boxes are the nar-
row boxes that reach along the whole x-axis and on the y-axis are between ‘End of 
quay’ and ‘End of 1’, between ‘Front of 2’ and ‘Split’, between ‘Split’ and ‘End of 
3’ and between ‘Front of 3’ and ‘Start of Quay’.

5.2.2 � Chain recovery

The boxes of interest from the distinct point method are used in chain recovery. 
This completes the heuristic approach to disruption management. Chain recovery 
approach follows the critical path—the chain—of vessels. Along this chain, vessels 
are pushed back in time to solve the disruptions (Policella et al. 2004).

This chain starts with the vessel to be planned, or the vessel of interest. When a 
berthing location is chosen for this vessel, the collisions it makes with other vessels 
in the berthing plan are calculated. The vessels that it collides with are pushed back 
(i.e., berthing delayed) until the two vessels do not collide any more. The boxes tell 
us how far we can move each vessel. However, since these vessels have been pushed 
backwards, they might have caused new collisions. These collisions are solved 
repeatedly until no further collisions are caused. Note that the time slacks that exist 
in the plan—the extra time beyond the handling time of each vessel—act as sponges 
to absorb the collisions.
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Fig. 4   Example situation of a berth planning and how empty boxes are selected. Note that for reasons 
of clarity, 4 empty boxes have been left out of (c). These boxes are the narrow boxes that reach along 
the whole x-axis and on the y-axis are between ‘End of quay’ and ‘End of 1’, between ‘Front of 2’ and 
‘Split’, between ‘Split’ and ‘End of 3’ and between ‘Front of 3’ and ‘Start of Quay’
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Chain recovery is a relatively fast method. It is sub-optimal in the sense that it con-
siders only one type of recovery action: delaying a vessel. It does not consider other 
actions such as changing a vessel’s scheduled location.

5.2.3 � Local CP recovery

The second method for disruption recovery is an optimisation-based method, akin 
to how we develop the initial berthing plan (Sect. 4.1). The motivation is that there 
might be situations in which heuristics to recover the berth planning—the distinct point 
method and chain recovery—do not give satisfactory results.

Hence, we use a revised CP model to locally reschedule the berth plan. In principle, 
this approach can find the optimal recovery plan in terms of minimising perturbation 
from the original berthing plan (Fukunaga 2009). The CP model is called local because 
it aims to keep the region of interest that will be replanned as local as possible, thereby 
influencing as little other vessels as possible. This region of interest consists of the 
entire quay in the y direction, and an expanding time span in the x direction. Expand-
ing means that an increasing time span is used until the model is able to find a feasible 
solution.

The parameters, decision variables, objective function and the constraints for the 
local CP model are as follows:

5.2.4 � Parameters

V = set of vessels to be served in time horizon
xOriginali = original x position for vessel i
yOriginali = original y position for vessel i
li = length of vessel i
ti = handling time of vessel i
Lockedi = 1 if the vessel cannot be moved, 0 otherwise
L= quay length
Split = split location of quay
T = planning time horizon

5.2.5 � Decision variables

xi = start berthing time vessel i
yi = berthing position vessel i
yObji = berthing position penalty for deviation from y
si = 1 if vessel i is located above the split, 0 otherwise
xIntervali = an interval variable covering the interval {xi,… , xi + ti}

yIntervali = an interval variable covering the interval {yi,… , yi + li}
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5.2.6 � Objective and constraints

The objective function (15) minimises the difference with the vessels original berth-
ing time and position by minimising their arrival time and penalty for deviation in 
berthing position. The values of the constants are set as described in Sect. 5.1.

The new constraints (17) and (18) ensure that the boundaries of the values of 
x and y are respected. The main point of interest here is that x can only be put 
after xOriginal because vessels cannot be forced to come earlier. Constraints (19) 
ensures that if a vessel is locked it cannot be moved. Constraints (20) and  (21) 
ensure that a vessel cannot be positioned on a split. The final three constraints, 
(22)–(23) appropriately constraint the value of yObj. Constraint (22) ensures that 
the value taken up by yObj is the absolute difference between the original loca-
tion and the actual location. The last constraint determines whether or not the 
vessel is put at the other side of the split. If this is the case yObj takes on the 
value for the total length. These constraints will never lead to infeasible results 
because by definition we know that L is always larger than the absolute difference 
between the original location and the actual location.

The above CP model does not include soft constraints on the recovery plan. 
Below we discuss how we handle the one soft constraint relevant to the case 
study. It is possible to include soft constraints in the model, whereupon a soft CP 
solving approach is relevant (Schiendorfer et al. 2018).

(15)min
∑

i∈V

(xi + 0.2 ∗ yObji)

(16)NoOverlap2D(xInterval, yInterval)

(17)xOriginali ≤ xi ≤ T − ti ∀i ∈ V

(18)0 ≤ yi ≤ L − li ∀i ∈ V

(19)Lockedi = 1 ⟹ xi = xOriginali ∧ yi = yOriginali ∀i ∈ V

(20)si = 1 ⟹ yi ≥ Split ∀i ∈ V

(21)si = 0 ⟹ yi + li ≤ Split ∀i ∈ V

(22)yObji ≥ |yi − yOriginali| ∀i ∈ V

(23)
(si = 1 ∧ yOriginali ≤ Split) ∨ (si = 0 ∧ yOriginali ≥ Split)

⟹ yObji = L ∀i ∈ V



93

1 3

Berth planning and real‑time disruption recovery: a simulation…

5.3 � Decision making for re‑planning

The two methods just described—chain recovery and local CP—are used together 
in a multi-level heuristic approach for disruption management, as depicted in Fig. 5.

The decision flow is as follows. Recall that first (Step  1) the Berth Controller 
checks whether the vessel fits at its minimum arrival time at its planned location. 
If this fits and no disruptions happen, we know that the vessel v is scheduled at the 
optimal location and time.

However, if the check fails, then the distinct point method is applied to the 
region of interest in the berth plan for v. This gives a set of empty boxes of interest. 
Whether an empty box for v is considered promising is determined by checking the 
width of the box. First, the length of the vessel must fit in the box. If so, the longer 

Fig. 5   Flow chart visualising the decision making process for the disruption recovery model. The three 
main steps are shown with shaded background
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the time span of the box, the more promising it is. We can next evaluate the solu-
tions corresponding to the empty boxes and choose the best recovery regarding the 
quality measure Eq. (13).

Second, then in Step  2, the chain recovery method yields the recovery corre-
sponding to an empty box. The vessel to be planned is positioned in the empty box 
with its berthing time equal to the start time of the box and its berthing position 
as much as possible to the side of the box. There is one exception: if the original 
planned berthing position of the vessel v is contained in the empty box, this will be 
the berthing position of the vessel. If all the disruptions are recovered, the penalties 
for each vessel is calculated and summed up and compared with the recoveries cor-
responding to the other empty boxes. Finally, the best recovery is also compared to 
the situation where v is simply placed at its originally-planned location and chain 
recovery is applied from there. The best recovery is selected as the recovery for v; 
BC updates the berthing plan.

Third, however, there is one important exception. It might be that the recovery 
found in the previous step does not satisfy the soft constraints. If not, Step 3 invokes 
the local CP model, the exact method (if run to completion). In particular, in the 
case study port, the only non-binding requirement is that a recovery may not change 
berthing time and location of vessels four days in the future. It is natural therefore 
to apply the local CP with iterative deepening on the time window. That is, first, a 
time window of one day for the repair is tried. If the CP model is not able to find a 
feasible solution, this time window is extended with one day and the local CP model 
tried again. This is repeated until the time window also hits the four day limit. In this 
situation, no good solution can be found within the required time and, since we must 
provide a solution, the best recovery from the previous step is applied anyway.

6 � Case study and discussion

We examine a case study for a major tide-dependent inland river delta port in 
Europe. The goal is to create the baseline berth allocations for three terminals in 
this inland port; one terminal is in design and does not exist yet. These baseline 
berth allocations are used in a simulation model intended to give the port insight 
into the effect of the addition of this extra terminal under various uncertainty scenar-
ios. The port provided a yearly vessel arrival forecast for the year 2030. Our work is 
implemented as part of a bespoke commercial simulation platform in use at several 
ports, and in this case, being used to analyse and plan the port expansion and future 
operations.

We face a typical situation in which historical data about vessel arrivals is availa-
ble but not applicable. First, a new terminal will be simulated of which no historical 
data is available. Second, we are simulating ten years in the future, and vessel arriv-
als (both the amount and the distribution over the classes) in the forecast provided 
by the port management are very different from the historical arrivals. Third, the 
river delta port is highly tide dependent, meaning that vessels with a large draught 
can have very long waiting times due to tidal restrictions and sometimes even have a 
tidal window of mere minutes.
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The terminals have the following specifications:

–	 Terminal 1 is relatively short terminal with one quay wall of about 1500 ms.
–	 Terminal 2 is a large terminal with two quay walls: one of about 2500 ms and a 

smaller one of about 800 ms.
–	 Terminal 3 is a new terminal in design. In this case study the terminal consists of 

two quay walls: one of about 1500 ms and one of about 600 ms.

The case study port imposed a number of specific requirements. These include a 
time granularity of 1 min. This arises because the planning must be able to account 
for very deep vessels which sometimes only have a window of a few minutes when 
entering the port. It is to be emphasised that our approach is generic and differ-
ent requirements can be accommodated. That is, the CP model of Sect. 4.1 is not 
specific to the case study. It can be modified with case-specific constraints, and the 
operational parameters can be easily varied.

We undertake three sets of experiments. These study, respectively, the berth allo-
cation planning, the re-planning through disruption management, and the trade-off 
between proactive and reactive robustness.

6.1 � Experiments: planning

In our first experiment, we examine the planning performance under different levels 
of problem hardness. The goal is to study the feasibility and potential optimality of 
our approach to arrival generation and berth allocation. We vary the average occu-
pancy of the terminals and measure the time it takes for the CP model to obtain a 
(first) solution. The solution time of the CP model is of interest because it is the 
most time consuming part of the planning approach described in Sect. 4.

We undertook an initial experiment to compare the CP optimisation model with 
an integer programming (IP) optimisation model. Formulating the problem with the 
linear constraints of IP led to an artificial increase in model size, and poor perfor-
mance in initial tests. Results, not reported here, agree with Qin et al. (2016) who 
demonstrated the superiority of a CP formulation over an IP formulation in the type 
of problem we solve in the planning.

The hardness of the problem in this study is defined by increasing the occupancy 
through inflating or deflating the yearly forecasts, thus keeping the ratios in terms of 
classes and terminals the same. All other variables are held constant, e.g., the ter-
minal specifications, the simulation period and the basis of the yearly forecasts per 
terminal. The motivation is that the higher the occupancy, the more vessels will be 
arriving in the simulation, and the more difficult it will be to allocate berths.

The experimental setup consists of the three above-mentioned terminals and their 
respective yearly forecast for 2030 as provided by the port. Each run is for the simu-
lation period of one month in 2030 with a cyclic period of one week. We stop the 
solver when it has found and proved an optimal solution, made no solution improve-
ment for two hours, or proved infeasibility. The latter occurs when, for instance, 
the projection week is too large and the problem is infeasible. For each occupation, 
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starting from 5% up to 95% with 5% increments, we report the average runtimes of 
five runs. The differences between the five runs for each occupancy are found in the 
random generation of vessel arrivals from the yearly forecast and the division over 
the cyclic periods.

Experiments were run on a computer with 8GB RAM and an Intel i7 2.80GHz 
CPU (4 cores). For solving the CP model we used the state-of-the-art OR-Tools CP 
solver (Perron and Furnon 2019), version 7.5 running with all 4 cores. This solver 
combines constraint propagation with cuts and linear programming relaxations, in a 
conflict-directed search framework. Note that the solver is complete: when run with-
out a timeout, it produces the globally-optimal solution or proof of infeasibility.

Results and discussion 
The results are presented in Table 2, per terminal.4 We see that, even though the 

speed with which the runtimes increase differs per terminal, the general trend is the 
same. At first, until about 50% occupation, the CP solver is able to find a good solu-
tion easily and is also able to prove its optimality. The table reports the time from 
start until last found solution (if any), or until timeout (if not). This changes in the 
region from 50% to 60%: here the runtimes start increasing and the solver is not able 
to prove the optimality without timing out after two hours of no improvement.5 Note 
that we report together as ‘Infeasible’ those instances which timed-out and those 
instances which were proved infeasible.

From the 65% mark, none of the runs are able to prove optimality any more 
within the set timeout. As soon as we reach the extremely busy cases (above 80% 
and higher) we start seeing runtimes of more than 90 min and occasional proven 
infeasible results. At 90% and higher most results are proven infeasible within two 
hours. The consequence of these findings is that for normal occupancy of between 
50–70% runtimes of above an hour are very unusual.

We have presented our results to the management team of the case study port. 
Based on multiple demonstrations, the management is well satisfied with the speed 
of our approach and the quality of the berth plans created. They state that the quality 
meets their expectations and that the plans produced are realistic.

6.2 � Experiments: re‑planning

In our second experiment, we examine the preliminary berth planning together with 
the disruption management. The goal is to study the effect of uncertainty on the abil-
ity of the disruption management approach to find good recovery berth schedules. 
This experiment is run for the same month in 2030 for the same three terminals, 
again with the yearly forecasts for 2030 provided by the case study port.

5  We performed further probing experiments with a 24 h timeout and found that, if the optimal solution 
is not proven within two hours, the solver makes little further progress up to 24 h. This suggests that 
near-optimal solutions are found within the time limit, but their optimality is not proven.

4  For the management of the port, it is important to have data for the terminals separately. This is 
because each terminal has its own specifications (length, distribution of arriving vessel types, a split or 
not) which speaks to the diversity in which our approach can be applied.
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The experimental setup is as follows. First, a baseline berth plan is created for 
the entire simulation period. Next, the simulation is run and the disruption manage-
ment approach used to respond. We measure the quality of the resulting schedule, 
and compare it against a simple baseline recovery approach, and against an ablated 
approach where the CP model is never used. We also report runtimes.

For the experiment we consider three main sources of disruptions. The first 
source, handling time, is based on a distribution which is based on data provided by 
the case study port. The second source of uncertainty, travelling time, is included 
in the simulation model and varies based on busyness on the water with other traf-
fic and corresponding sailing rules. The travelling time is the time for a vessel to 
traverse from the entrance to the river to the entrance to the port. The third source of 
uncertainty is the arrival times of vessels: that is, the arrival time to the entrance to 
the river (not to the berth).

Whereas the first two sources are included in the simulation, the third, the arrival 
time disruption, can be altered and serve as a measure of uncertainty. To formalise 
this, if we model the arrival time as a normal distribution with the planned arrival 
time as mean, uncertainty is defined as the standard deviation in hours in this normal 
distribution. For example, if the uncertainty is 6 h, the actual vessel arrival will be 
sampled from a normal distribution with its planned arrival time as mean and 6 h as 
standard deviation. In this example, following the standard rules of statistics, about 
68% of the vessels in this simulation run will arrive within one standard deviation, 
6 h before or after the planned arrival time, and about 95% of the vessels will arrive 
within two standard deviations, 12 h before or after the planned arrival time.

With the increasing uncertainty we study the percentage of the vessel arrivals that 
are solved by which recovery method:

–	 DRCP: Disruption Recovery with CP. Our full three-step method as described in 
Sect. 5.2.

–	 DRnCP: Disruption Recovery no CP. We ablate DRCP by removing the CP; thus 
DRnCP has only the initial check, and then the heuristic distinct point method 
and chain recovery.

–	 Baseline: A baseline recovery approach that always plans the vessel at its 
planned location; if disruptions appear it performs chain recovery to make sure 
that the planning is physically possible again. The baseline preforms no looka-
head, and like DRnCP, ignores soft constraints.

To be able to reliably compare these three methods we conducted the experiment 
with the same random seed for each. The average over 10 runs is taken as an indi-
cation for the quality of the resulting recovered berth plan under a certain level of 
uncertainty. Since simulation run simulates three terminals at once, the presented 
runtime is the average resulting time over all three of the terminals.

7 � Results and discussion

The results are presented in Figs. 6 and 7, and in Tables 6, 7, 8, 9 in the appendix.
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Figure  6 gives for each terminal the solution quality for the three different 
recovery algorithms (left column) and, for DRCP, the count of solution usage 
from the three steps (minimal fit, chain recovery, local CP: see Fig. 5). Recall that 
solution quality is defined as the average penalty over all the vessels (14). In more 

(a) (b)

(c) (d)

(e) (f)

Fig. 6   For each of the three terminals: the solution quality for the different recovery approaches for dif-
ferent uncertainties, and the division between different solution steps for different uncertainties
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detail, the right column shows, for each step, the percentage of vessels for which 
the solution from that step is used.

As expected given its relative simplicity, the baseline has inferior performance.
Figure  7 gives the total runtime of the three methods. DRCP is much slower 

than the others. This can be expected from DRCP sometimes using the CP solver to 
obtain the optimal re-schedule, whereas DRnCP and baseline are purely heuristic. 
Further, looking together at the right column of Figs. 6 and 7, we see how the runt-
ime of DRCP indeed correlates with how often Step 3 (the local CP model) is neces-
sary. Greater uncertainty means that DRCP invokes the local CP model more often, 
because chain recovery (Step 2) does not provide a feasible solution.

However, interestingly, we see that DRnCP achieves comparable quality of DRCP 
even at high levels of uncertainty. This is despite the local CP model re-scheduling 
all vessels, resulting in a solution with vessels likely closer together than the solution 
obtained by the chain recovery, which pushes vessels into the future. The explana-
tion is that the planning is updated every time a new vessel arrives. Hence, although 
DRnCP can only push back the berthing time of a vessel in the berth plan, it still 
arrives following its planned arrival time in the baseline berth plan. This means that 
as soon as the vessel actually arrives, it might be planned at the berthing time and 
location as indicated before—but it is also likely that DRnCP might find a new time 
and location for this vessel that is not as far in the future. Thus, even though the 
‘intermediate’ solutions of DRnCP are worse than those of DRCP, there is a good 

Fig. 7   Runtime (in seconds) for the different recovery approaches as uncertainty (in hours) grows
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chance that the problems of the inferior intermediate solution are dissipated when 
more vessels arrive, more information is available, and the vessels are moved again.

We cannot conclude the higher runtime of DRCP is for nothing, however. The 
fortuitous situation for DRnCP just described is not guaranteed: it depends on the 
current situation in the port, the arrival times of other vessels and the handling time 
of other vessels. In Fig.  6a, c, e we see that the standard deviation of DRnCP is 
higher than that of DRCP. The greater robustness of DRCP, and its satisfaction of 
soft constraints (if possible), is the advantage it obtains for its higher runtime.

7.1 � Occupancy and robustness

In our third experiment, we examine the influence of the occupancy rate of berth 
occupation and the value of adding robustness in the preliminary planning. The goal 
is to study the trade-off between the occupancy rate and robustness.

The experimental set up is as follows. First, a baseline berth plan is created based 
on a certain expected occupation and while ensuring a certain robustness in the 
plan. Next, the simulation is run and the quality of the realised berth schedule is 
measured.

The average occupation of the berths in a terminal is a very important measure-
ment to grasp the busyness in the terminal. A domain expert expressed her interest 
in the effect of occupancy on how well the disruption recovery would work. This is 
because, in real life, from a certain occupancy rate, it becomes very difficult for the 
port manager to keep the terminal running: at a certain tipping point it becomes dif-
ficult to keep the waiting times low and stay close to the theoretical planning. One of 
the main goals in this experiment is to investigate whether such a tipping point exists 
and, if so, at what occupancy rate it occurs.

Recall that adding robustness to the preliminary berth planning can be done in a 
proactive manner by adding a time slack after each vessel, controlled by the param-
eter � . By guaranteeing this time slack after each vessel in the plan, the planning is 
less susceptible to disruptions since the smaller disruptions can be captured within 
this time buffer. In practice, while the port manager might wish to set � to be large, 
the larger its value, the larger the operational implications for efficiency. In particu-
lar, when more vessels are expected the potential length these time slacks can take 
on decreases. This is because more vessels are required to be fit in the same space, 
which obviously results in less empty space in the planning. This leads to the goal of 
the experiment.

For each combination of occupancy rate and robustness level, the average of 10 
simulations runs is reported. In line with the soft constraints of the case study port, 
the DRCP approach is used. A disruption standard deviation of 12  h is assumed: 
hence 95% of the vessels in these runs will arrive in the time window of one day 
before and after their planned arrival time.

Results and discussion
Figure 8 and Tables 3, 4, and 5 show the results of the experiment regarding occu-

pancy rates and robustness. ‘–’ denotes that the planning was not able to find a fea-
sible preliminary berth plan (compare Table 2). In this case the recovery algorithm 
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would still work but since there is no initial plan, the returned quality values are not 
meaningful.

(a) (b)

(c) (d)

(e) (f)

Fig. 8   For each of the three terminals: the solution quality for different occupancy rates and different 
robustness levels. Graphs in the right column show the same data as those in the left column, with occu-
pancy rate and robustness inverted
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Table 3   Numerical results for the quality of the realised berth plan given different occupancy rates and 
robustness levels for the terminal 1

Lower score is better. ‘–’ denotes that initial baseline planning found no feasible plan

Occupancy

Robustness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 113.59 98.61 126.75 174.53 249.71 414.42 915.52 2578.49 –
0.25 95.66 97.2 117.76 148.02 268.57 374.73 906.84 1366.18 –
0.5 91.28 80.6 81.55 107.64 245.87 358.45 662.49 – –
0.75 71.21 82.8 71.24 126.99 222 314.51 638.31 – –
1.0 66.78 76.57 95.79 94.53 177.71 310.89 – – –
1.25 12.09 38.28 89.51 80.78 157.6 246.18 – – –
1.5 10.89 54.71 70.91 66.09 166.76 190.14 – – –

Table 4   Numerical results for the quality of the realised berth plan given different occupancy rates and 
robustness levels for the terminal 2

Lower score is better
‘–’ denotes that initial baseline planning found no feasible plan

Occupancy

Robustness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 92.97 95.81 144.51 223.53 348.91 488.36 933.19 3206.22 –
0.25 84.25 75.53 109.83 139.81 320.08 479.39 915.31 2101.55 –
0.5 65.43 73.8 129.36 143.65 273.52 444.35 793.67 – –
0.75 60.2 77.81 79.58 139.74 225.21 385.73 701.81 – –
1.0 43.87 69.27 135.52 156.68 177.77 339.63 – – –
1.25 41.22 70.95 135.12 134.39 158.98 257.01 – – –
1.5 20.71 18.07 57.88 115.98 174.16 200.99 – – –

Table 5   Numerical results for the quality of the realised berth plan given different occupancy rates and 
robustness levels for the terminal 3

Lower score is better
 ‘–’ denotes that initial baseline planning found no feasible plan

Occupancy

Robustness 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 86.6 108.84 114.67 322.18 362.81 489.49 1419.93 2708.56 –
0.25 82.64 104.22 148.93 249.67 374.47 448.13 945.01 1878.1 –
0.5 62.35 87.77 112.04 254.46 329.85 449.96 728.77 – –
0.75 47.95 81.84 156.36 210.7 261.25 406.2 697.84 – –
1.0 47.59 92.99 129.46 196.11 245.88 294.09 – – –
1.25 18.28 74.27 122.07 173.57 267.88 265.69 – – –
1.5 1.12 12.48 57.23 121.25 185.04 178.48 – – –
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Figures 8a,  c,  e show the effect of occupancy on the solution quality for the dif-
ferent terminals. We see that, as expected, the quality becomes worse, the higher the 
occupancy rate. This is expected because the more vessels are anticipated in the same 
time frame, the more disruptions will happen and therefore higher penalties will be 
made. What can also be noted is that the tipping point indeed exists. For every terminal, 
a sudden increase in penalty can be seen at 70% occupation and this trend increases 
rapidly when 80% occupation is reached. This confirms the prediction that a tipping 
point exists from where the recovery approach has much more difficulty to find good 
solutions.

For terminal 2, the CP solver is invoked less frequently than for terminals 1 and 3: 
less than 10% compared to more than 15% at high uncertainty levels for terminal 1 and 
more than 20% for terminal 3. Terminal 1 exhibits some small edge in solution quality 
for DRnCP over DRCP at medium levels of uncertainty, whereas the other terminals 
have almost no difference.

Figures  8b,  d,  f show the same data, but with robustness on the horizontal axis. 
From these graphs can be seen how the solution quality improves when the robustness 
increases. It can also be seen that for higher occupancy rates, the addition of robustness 
has more effect. It should be noted that the lines for the occupancy rates of 0.7 and 0.8 
where omitted to better show the effect of robustness at the lower levels. However, if 
these would have been added, one would see that they show the same downward trend, 
but with steeper fall, the higher the robustness becomes. From this the conclusion can 
be drawn that the higher the expected occupation, the more important it is to include 
robustness in the preliminary berth planner.

As noted, it is not possible to add endless time slacks to a berth schedule. Depend-
ing on the occupancy more or less robustness can be added before the plan becomes 
infeasible. The effect of this can be seen best in the tables where the empty spaces rep-
resent problems that are infeasible. Figure 9 presents the Pareto frontier where, for each 
occupancy, the points have been drawn where the first infeasible runs where detected. 
This information can be used in simulation models to proactively and dynamically add 
robustness to a berth plan based on the estimated occupancy for that simulation period.

Fig. 9   Trade-off between occupancy rate and robustness
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8 � Discussion and conclusion

This work is motivated by analysing a planned new terminal for a large river delta 
port in Europe. The case study is a tidal port, for which a crucial aspect of berth 
planning is to take into account the tidal windows. A simulation study is required by 
the port operator.

We develop a novel, generic approach, focussed on the generation of a cyclic 
baseline planning in simulation on which the vessel arrival times and the actual 
berth allocation are based. We simultaneously incorporate realistic aspects of the 
problem: (1)the tidal windows of vessels, (2) the cyclic nature of certain container 
vessel arrivals, and (3) the minimisation of vessel draught during low water periods. 
We obtain the baseline plan using a constraint programming model. By adopting 
constraint programming, we can formulate a compact and understandable declara-
tive model. Further, CP allows us to decouple the modelling from the solving 
(Freuder 1997).

Our approach is successfully employed for the case study port. With increasing 
terminal occupancy, we examine the effect of busyness on the runtime of the CP 
model using a state-of-the-art solver, and show that we can either obtain the optimal 
berth plan or a good approximation of it, within one hour for a large port. It is to be 
emphasised that the approach presented is generic, and can be applied to other ports, 
and indeed to non-tidal ports and also ports with additional constraints such as chan-
nel capacities.

The approach is developed with simulation providing input into the optimisation. 
It can also be used in a live setting, with real-time operational data replacing the 
input from the simulation.

For a simulation, our approach serves as a basis for the vessel arrival times and 
the planned berth allocation. When the simulation is run, most vessels will not arrive 
exactly according to this baseline plan; further, the departure time is an expected 
time from which the simulation can deviate. The actual arrival time in the simula-
tion will be the planned time with a deviation that is based on a distribution. This 
distribution can be learned from historical data where one compares real arrivals 
with their theoretical planned counterparts. Further, the baseline plan is generated 
based on expected handling times and expected travel times. In the actual simula-
tion, it is also likely that there will be deviation from these expected values. This, 
plus the deviation from the planned arrival time, requires a disruption recovery 
module that manages the berth planning in real time.

Hence, leveraging the simulation-informed optimisation paradigm, this article 
also shows how to re-plan the berth allocation when vessels arrive early or late, 
their (un)loading takes longer or shorter than expected, or exogenous events occur. 
We accommodate this uncertainty by formulating a multi-level heuristic approach, 
including a modified CP model which repairs the plan while minimising pertur-
bation. For the case study port, disruption recovery can be achieved within a few 



106	 J.-J. van der Steeg et al.

1 3

minutes of computation time. Further, we also allow for some uncertainty in the 
number of ships calling at the port, by the planning of extra spaces which are only 
used in some of the weeks and left open in other weeks. Additional sources of 
uncertainty can accommodated explicitly with the simulation-informed optimisation 
paradigm.

A distinguishing feature of this article is the combination of berth planning, 
which has a horizon of months, and its use as an input in real-time disruption recov-
ery, to gain insight into future operations. This contribution is enabled by the sim-
ulation-informed optimisation paradigm. Having developed an optimised baseline 
berth allocation plan, we use this baseline plan in simulated arrival generation; and 
then, in real time, adapt the actual plan in the simulation to minimise disruptions.

We work with a forecast of arrivals in a given year—in the case study presented, 
the year 2030—and plan for a month of (future) operation. Note that stationarity of 
arrivals cannot be assumed. If berth plans of longer duration are required, then the 
baseline planning can be repeated with forecasts for another year, and the plans con-
catenated: for instance, 2030 and 2031.

The work reported in this article is implemented as part of a bespoke commercial 
simulation platform in use for decision support at multiple container ports world-
wide. We provide managerial insights for the capacity planning of terminals and 
the robustness of operational plans to uncertainty. Empirical study shows that the 
recovery approach finds good solutions until a tipping point of disturbance. Results 
also show that when the expected occupation of a terminal is higher, strengthening 
robustness of the preliminary plan has increased importance.

Our ongoing work contains three parts. The first is enriching the simulation 
model itself. For instance, considering that a vessel may be able more or less con-
strained with respect to the tidal windows according to the cargo to be loaded or 
unloaded. The second part is enhancing the optimisation models, for instance to 
remove the restriction of vessels being unable to lie on the boundary of two cyclic 
periods or the assumption of a single cyclic period for all vessels. The last part is 
expanding the operational use of the simulation-based decision support tool. For 
instance, connecting it to simulation models for terminal crane allocation (Jonker 
et al. 2019), trans-shipment ports (Lv et al. 2020) and to hinterland shipping.

Appendix

See Tables 6, 7, 8, and 9
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Table 6   The quality of the realised berth plan and the standard deviation over 10 runs for the different 
recovery methods for different levels of uncertainty for the terminal 1

Lower scores are better

0 6 12 18 24 30 36 42 48

DRCP mean 102.67 172.76 317.56 448.65 536.83 590.22 760.94 806.09 926.05
std 14.31 47.48 61.34 98 73.44 186.3 189.87 181.63 176.22

DRnCP mean 114.89 192.19 327.32 476.5 611.35 681.25 716.03 785.68 986.7
std 22.88 41.61 54.71 123.88 118.2 312.02 211.41 260.26 240.08

Baseline mean 382.3 373.25 815.82 1323.85 1590.65 1737.69 1875.11 1990.62 2247.75
std 229.03 40.73 295.65 707.39 468.23 317.91 341.06 529.03 765.36

Table 7   The quality of the realised berth plan and the standard deviation over 10 runs for the different 
recovery methods for different levels of uncertainty for the terminal 2

 Lower scores are better

0 6 12 18 24 30 36 42 48

DRCP mean 83.66 139.55 210.55 336.05 464.46 546.17 579.59 649.38 695.03
std 8.15 19.17 36.69 61 73.09 32.07 81.16 91.46 99.08

DRnCP mean 79.8 143.11 216.95 366.51 503.95 575.13 589.25 637.96 727.36
std 10.56 24.76 45.11 75.17 80.94 89.33 149.71 123.99 177.78

Baseline mean 135.04 342.53 719.98 1217.71 1794.16 1974.04 2044.14 2415.56 2502.77
std 30.99 81.86 157.61 229.3 509.89 635.82 719.54 574.72 627.16

Table 8   The quality of the realised berth plan and the standard deviation over 10 runs for the different 
recovery methods and different levels of uncertainty for the terminal 3

 Lower scores are better

0 6 12 18 24 30 36 42 48

DRCP mean 159.15 268.03 453.55 661.01 739.74 849.58 854.97 1028.13 1150.06
std 47.22 41.42 59.34 93.74 120.68 143.25 174.43 170.38 160.67

DRnCP mean 205.86 278.43 489.4 689.75 747.07 866.22 945.54 1064.8 1165.45
std 66.51 56.95 67.32 140.61 134.95 183.76 194.86 215.77 241.9

Baseline mean 511.68 571.22 1492.8 2227.56 2701.32 3020.28 3098.68 3170.95 3834.59
std 314.25 230.58 541.73 649.47 390.35 283.2 533.01 370.61 618.98
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