
Numerical Investigation of 
Stationary Crossflow 

Instability Evolution in a 
Rapidly Deformed Base Flow

Srijit Sen





Numerical Investigation of Stationary
Crossflow Instability Evolution in a

Rapidly Deformed Base Flow
by

Srijit Sen

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday Dec 19, 2022 at 10:30 AM.

Student number: 5220823
Project Duration: Nov 1,2021 - Dec 19,2022
Thesis Committee: Dr. Marios Kotsonis, Aerodynamics

Dr. -Ing habil. Stefan Hickel, Aerodynamics
Dr. Frits de Prenter, Wind Energy
Ir. Jordi Casacuberta Puig, Aerodynamics





Acknowledgement
’

This thesis marks the end of my journey of immense learning and personal growth at TU Delft. Looking back, I believe
that I owe a thank you to multiple people who helped me through this challenging yet wonderful journey. Even though
the pandemic imposed multiple challenges in the way knowledge was disseminated in the first year of MSc, I thoroughly
enjoyed the courses I took. Thus, I extend a big thank you to all my professors, whose lectures and rigorous assignments
deepened my love for flow physics and prepared me for the challenges I would face in my thesis. I also extend my gratitude
to my seniors Uttam, Abhyuday, Ravi, and Sophie, whose advice I could always count on when I faced road blocks during
my first MSc year.

The journey of my thesis started with a presentation shown by my daily supervisor Jordi, who appeared to be searching
for an MSc student to support his brave effort to understand mechanisms of the very complex phenomena of step induced
turbulent transition on aircraft wings. I pounced on the opportunity, and even though it took me four months to fully
appreciate the depth of his work and my own research topic, I loved every bit of the process, thanks to Jordi’s patience
answering every question I asked. I would thereby convey my deepest gratitude to my favourite scientist and mathemati-
cian, for inspiring my curiosity, patiently answering my silliest questions, encouraging me to explore different avenues,
and teaching me to be critical of my own results. Huge swathes of this thesis would be incomplete without the continued
support of my second supervisor, Professor Marios. Thank you for bearing with my seemingly random one on one meeting
requests. I went to each meeting unsure of where my thesis was headed, and came out with fresh perspective to tackle
the problems in my thesis head on. To my third supervisor, Professor Stefan, I have dreamed of working with you ever
since I took the courses you delivered, and I am grateful that you could closely follow the progress of my thesis, even with
the plethora of tasks on your plate. I would also like to thank Sven for fruitful discussions on the tools used in this thesis,
Aaron for being approachable to discuss doubts, and other members of the Low Speed Lab whose depth of knowledge of
transition phenomena appears to be formidable. I am rooting for the members of this lab to make a big breakthrough on
delaying aircraft wing transition, and I will keenly follow its progress after departing from TU Delft.

Apart from my rich learning experience in Delft, my friends made my MSc journey extra special, being the reason for
many of my ups, and standing firmly by my side during my downs. Rahul, thank you for being an empathetic listener,
and for guiding me to seek professional help when I hit rock-bottom at the end of my first MSc year. I shall forever
cherish the amazing cycling trips and Formula 1 races watched together. Raghav, I am grateful for the role you played in
helping me realize the value of socializing. I shall always treasure our dinner conversations, parties, and amazing food you
cooked for me. Siddharth, thanks for getting me glued to the gym, cracking the funniest jokes, and cooking exceptional
food for me. Pratik and Revanth, thanks for inspiring me with your unparalleled work ethic. Maitreyee, thanks for the
ever-refreshing ”chai” and constant gym motivation. Thanks to my ”Camelot” squad composed of Ivana, Rohan Katkam,
Kanhai, and Vivian, with whom I shall treasure the memorable dinners, Christmas celebrations, and our visit to the tulip
fields. To my ”Leegh” squad composed of Prateek, Divvay, Rohan Kaushik, and Prithvish, a big thank you for all the
amazing tennis memories, and the vlogs which still make me laugh till date. Members of the ”Extra” squad: Shriram,
Kartik, Dhruv, Anirvin, and Avi, I sometimes wish you pulled my leg a little lesser, but I shall forever cherish our trips to
Italy and Belgium. Special thanks to all other classmates and friends who I could not fit in this list, for making my journey
here memorable.

My final thank you is reserved for my family. I shall always be indebted to my dad, Saikat Sen, for teaching me a broad
range of complicated physics and mathematical concepts at a very young age, which enables me to simplify challenging
physics and math problems today. To my mom, Sarmistha Sen, thanks for setting an example of balancing work and life,
and diligently writing down food recipes which helped me develop my hobby of cooking during my time at Delft. To my
grandmoms, Anjali Mukherjee and Chaya Sen, and my cousin and aunt, Srijata Roy and Srirupa Roy, thanks for remaining
supportive throughout my journey, and for always checking on how I am doing. I truly realized the value of a loving family
during my never-ending thesis writing phase, when their encouragement kept me motivated to reach the finishing line.

Srijit Sen
Delft, December 2022

iii





Summary
Flow of air over a swept wing initially starts in a smooth laminar state before transitioning to a chaotic turbulent state.

Flow in a turbulent state results in larger drag than flow in a laminar state, resulting in more fuel consumption and larger
carbon footprint, motivating research into causes of transition and efforts to delay its location. The destabilization of
stationary crossflow modes is the dominant cause of transition in swept wings. They start off as small disturbances coex-
isting with the laminar flow on the swept wing (base flow) until they grow to such an extent that they distort the base flow,
causing it to transition to a turbulent state. Multiple attempts have focused on finding ways to inhibit crossflow instability
growth and delay transition location. However, excrescences on swept wings like a sharp geometric discontinuity in the
form of a forward-facing step (FFS) of the thickness of a few millimetres, has the potential of nullifying any control efforts,
and causing transition at the location of the FFS, exposing a large region of the wing to increased drag. Although it is
known that the FFS deforms the base flow by imposing a rapid pressure change, separation and upwash due to geometrical
blockage, the mechanisms by which it impacts stationary crossflow instability evolution are yet to be fully understood.
Surprisingly, some swept wings with an FFS of appropriate height have been found to postpone the transition location be-
yond the clean wing location. This provides further motivation to understand the mechanisms by which a rapid base flow
deformation affects stationary crossflow instability evolution since surface excrescences themselves have the potential to
act as transition control methods if designed appropriately.

The current thesis considers a spanwise invariant, synthetic, and idealized base flow deformation on a swept flat plate
with infinite span (an idealization of a swept wing without curvature effects). The synthetic deformation is obtained by
superposing a Gaussian-like pressure variation, approximately spanning width scales close to the order of boundary layer
thickness, on the favourable external pressure distribution of a clean swept flat plate (without any roughness elements
such as an FFS). The change in external pressure distribution is propagated down to the wall by means of boundary
layer equation assumptions, resulting in local pressure changes in the boundary layer like the FFS. The linear evolution
of stationary crossflow instability through the region of deformed base flow, initialized as a single wavelength spanwise
periodic mode, is modelled using a Harmonic Linearized Navier Stokes Equations solver. An energy balance framework
is developed that identifies the production term’s behaviour as the differentiator between regions of perturbation growth
and decay. The behaviour of the production term is described by two competing mechanisms, the first controlled by wall-
tangential base flow shear and the second controlled by wall-tangential base flow acceleration or deceleration. The balance
of these mechanisms shows that the perturbation grows faster than the clean case in regions of wall-tangential base flow
deceleration and slower than the clean case in regions of wall-tangential base flow acceleration. Perturbations are even
found to attenuate in some cases when a region of wall-tangential base flow acceleration follows a region of wall-tangential
base flow deceleration. The modification of energy transfer mechanisms brings into question whether the initial modal
perturbation deviates from modal character on interacting with the base flow deformation. The Orr mechanism is shown
to identify differences in perturbation behaviour from local modal character. However, criteria from the literature hint
towards an absence of any non-modal effects. Finally, the extent to which a synthetic idealized base flow deformation
mimics the effects of an FFS on deforming the base flow and stationary crossflow instability evolution is tested to show
the applicability of methods developed in the thesis to instances of natural base flow deformation. The progress made in
this thesis on understanding mechanisms governing the linear phase of perturbation growth on interacting with a base flow
deformation leads to suggestions on devices that can be tested to delay the linear primary stage and subsequent stages of
stationary crossflow instability growth, with the hope that these devices would lead to the development of new transition
delay techniques, making aviation more sustainable than its current state.
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Nomenclature

Some of the most commonly used abbreviations, symbols, acronyms and subscripts used in the thesis are listed here.

Abbreviations

BLS Boundary layer solver
DNS Direct Numerical Simulation
FFS Forward-facing step
HLNS Harmonic Linear Navier Stokes Equation
ILST Incompressible Linear Stability Theory
LPSE Linear Parabolized Stabilized Equation
PSE Parabolized Stability Equation

Symbols

α Complex streamwise wavenumber
β Complex spanwise wavenumber (real for stationary crossflow modes)
η′ Wall-normal perturbation vorticity
ζ Angle between base flow tangential perturbation vector and total perturbation vector
ρ Density
ϕ Perturbation phase
ω Complex circular frequency
ω′ Perturbation vorticity
µ Mean
ν Kinematic viscosity
A Amplitude
D Work of viscous forces
E Perturbation energy
i Iota
p′ Perturbation pressure
P Pressure
P Pressure term
Re Reynolds Number
T Transport term
u′ Chordwise perturbation velocity
U Chordwise flow velocity
v′ Wall-normal perturbation velocity
V Wall-normal flow velocity
w Width of Gaussian styled pressure variation
w′ Spanwise perturbation velocity
W Spanwise flow velocity
x Chordwise direction coordinate
y Wall-normal direction coordinate
z Spanwise direction coordinate
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Subscripts
0 Initial
∞ Freestream
B Base flow
i Imaginary
n Normal
r Real
S Direction of inviscid streamline
st Step station
t Tangential
x x partial derivative
xc x contribution
xd x derivative terms
y y partial derivative
yc y contribution
yd y derivative terms

Special Symbols
ϕd Angular difference between direction of perturbation xz lines of constant phase and inviscid stream-

line
∆P Pressure variation
pf Pressure factor

Acronyms
2D Two-dimensional
3D Three-dimensional
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1
Introduction

1.1. Motivation
Air travel has become a ubiquitous part of human life. It is widely used for activities such as business, tourism, and

migration. It contributes 4.1 % to the global GDP and supports 87.7 million livelihoods (Gill, 2016). Given the benefits of
aviation, there is no surprise that air transport has experienced significant growth in the recent past (Sgouridis, Bonnefoy,
& Hansman, 2011). However, like any other mode of transport, air travel also contributes to the increase of greenhouse
gases like carbon dioxide and other undesirable gases such as nitrogen oxides, sulphur dioxide, soot, and water vapour in
the atmosphere. These are products of combustion that takes place in aircraft engines (Anger, 2010). Given these adverse
effects, there is an active strive to make aviation more sustainable. Improving jet engine efficiencies might seem like the
first choice to achieve this objective. But this approach has reached its physical and technical plateaus (Beck et al., 2018).
Thus, efforts to make aviation sustainable can broadly be classified into reducing aircraft drag and switching to alternative
forms of aircraft power. While considering the latter, promising advances have been made in the field of electric and
hydrogen powered aircraft, that would replace polluting fuel powered engines. However, challenges still remain in fully
scaling up these technologies for commercial use (Sahoo, Zhao, & Kyprianidis, 2020; Haglind, Hasselrot, & Singh, 2006).
This leaves drag reduction as one of the best possible ways to make aviation more eco-friendly in the immediate future.
An aircraft that experiences lesser drag spends lesser fuel while flying, leaving a lower carbon footprint.

Friction drag constitutes the biggest contributor of aircraft drag, with skin friction drag of wings contributing 18% and
horizontal tail planes contributing 4% of the total drag (Schrauf, 2005). When air flows over a wing, viscous shear in a
thin region near the wing surface (known as the boundary layer) creates friction drag. This viscous shear increases when
the air flowing over the wing transitions from a smooth laminar state to a chaotic turbulent state. Turbulent drag is almost
5 to 10 times more than laminar drag (Beck et al., 2018). If the flow were to be laminar on 20%, 30% or 40% of the
above stated surfaces by finding methods to delay transition, the total aircraft drag could reduce as much as 8%, 12% or
16% (Schrauf, 2005). The subject of flow transition on swept wings (most common in aviation) is not fully understood.
One commonly accepted view of transition in low disturbance environments common for flight is the entrainment and
subsequent growth of unstable wave-like modal perturbations. Their growth distorts the undisturbed laminar boundary
layer flow (base flow), leading to turbulent transition. Multiple modal mechanisms have been proposed to be active in
swept wings (Saric, Reed, & White, 2003). Among these mechanisms, experiments of Gray (1952) and Anscombe and
Illingworth (1956) showed that the growth of crossflow instability prepones transition in swept wings to a location much
closer to the leading edge compared to unswept wings, proving its dominance in swept wings. The instability manifests
as stationary and travelling waves, out of which stationary waves generated by surface roughness dominate transition
scenarios in low turbulence environments characteristic of flight (Bippes, 1999). Laminar flow control has thus been
proposed to control the development of crossflow modes (Saric, West, Tufts, & Reed, 2019; Wassermann & Kloker, 2002;
Serpieri & Kotsonis, 2016).

Unfortunately, laminar flow control has its own set of challenges. Achieving laminar flow throughout the life cycle
of an aircraft wing is difficult given the high standards of surface quality that need to be ensured (Hansen, 2010). An
increase in surface roughness by wear, for instance, could disturb the airflow over the wing, contributing to preponement
of transition location. Similarly, spanwise distributed steps or gaps between wing panels, insect remnants, excrescences,
or surface protuberances could also trip the laminar flow earlier than expected (Eppink, 2020). Hence, efforts are being
dedicated to understanding how tolerances for these negatively affecting factors can be defined. This is done with the hope
that these design or manufacturing tolerances eventually motivate aircraft designs compatible with laminar flow control.
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2 Chapter 1. Introduction

One element that can potentially prepone transition location in a swept wing (or swept flat plate) boundary layer, on
interacting with stationary crossflow instabilities, is a spanwise distributed forward-facing step (FFS) of appropriate height
(Tufts, Reed, Crawford, Duncan, & Saric, 2017; Rius-Vidales & Kotsonis, 2021; Eppink, 2020). When an FFS is placed
in the favourable pressure gradient region of a swept wing (or swept flat plate) boundary layer, local pressure changes are
induced in the base flow, upstream and downstream of the step location (Tufts et al., 2017; Casacuberta, Hickel, West-
erbeek, & Kotsonis, 2022). This is complemented by regions of separation upstream and downstream of the step and
a strong upward flow deflection upstream of the step (Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022). Construc-
tive/destructive interference of crossflow vortices with secondary separation bubble (Tufts et al., 2017), double inflection
point theory (Eppink, 2020), and non-modal growth (Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022) are some of
the mechanisms proposed to explain the modification of an incoming stationary crossflow mode. However, these theories
often do not yield similar conclusions, meaning that the topic is still a matter of debate. The topic is further complicated
as the initial perturbation amplitude (Eppink, 2020), spanwise wavelength (Rius-Vidales & Kotsonis, 2020), and unsteady
effects (Rius-Vidales & Kotsonis, 2022) also seem to influence behaviour of transition location in addition to step height.
Remarkably, Rius-Vidales and Kotsonis (2021) also found that an appropriately designed FFS can lead to a delay of tran-
sition front in comparison with an undisturbed flow. Thus, understanding the mechanisms of interaction of stationary
crossflow instability with FFS remains an active area of research so that the upstream movement of transition front can
be prevented to pave the way for passive or active control of stationary crossflow instability, and to potentially exploit the
transition delay results of Rius-Vidales and Kotsonis (2021) to develop new flow control techniques.

The coexistence of base flow phenomena such as the vertical deflection of flow due to geometric blockage, separation
bubble formation, and non-monotonic pressure variation in the step vicinity are one of the primary reasons for the difficulty
in analyzing stationary crossflow instability response. Although the three phenomena stated above are inevitably coupled,
there remains scope to break the problem to its bear parts, and first explain the mechanisms of the interaction of an
incoming stationary crossflowmode and a boundary layer with a base flow deformation induced by a rapid pressure change.
The analysis can be restricted to the linear regime of stationary crossflow instability growth with a single wavelength to
ensure that the first stage of instability growth is fully understood. The tools used for this investigation would be lower-
fidelity than those used to capture step effects given the absence of geometric discontinuity, which would allow for a wider
sweep of parameters. Answers on physical mechanisms to explain the effect of base flow deformation can be obtained by
developing appropriate analysis procedures. Moreover, it is hoped that appropriate pressure variations can be designed to
dampen stationary crossflow instability in its linear development stage, thus potentially delaying the forthcoming stages of
development. The procedures developed in due course of the thesis can be extrapolated in the future to develop a general
framework to describe the interaction of stationary crossflow instability in the linear regime with instances of deformed
base flow such as steps, humps and troughs. Considering the larger picture, this project would be a tiny step in the journey
of achieving laminar flow airfoils, in the process making aviation a lot more sustainable than what it currently is.

1.2. Organization and Conventions
The motivation for the project (Section 1.1) provides inspiration to introduce specific topics in this chapter, organized

in a logical sequence to define the questions and objectives of this thesis clearly. The fundamentals of boundary layers and
transition are first discussed. An introduction to the traditional view of modelling transition via modal instability amplifi-
cation is then provided. Modal instabilities found in swept wing boundary layers are then introduced and special emphasis
is placed on the features and control of the dominant instability in such boundary layers i.e. the crossflow instability. The
interaction of stationary crossflow instability (the predominant form of crossflow instability in low turbulence environ-
ments) with an FFS is then considered due to the ability of the FFS to nullify crossflow instability control techniques. Key
deficiencies in understanding interaction mechanisms are clearly highlighted. One theory hints at the instability being
governed by non-modal mechanisms on interaction with the FFS (Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022),
which subsequently motivates an investigation of criteria and mechanisms to identify non-modal growth. This concludes
the survey of state of art, leading to a discussion on the gaps in literature and the scope of the current thesis. This is
followed by the development of research questions, the objective, and sub-objectives. The outline of the full report is then
presented, and the unique contributions of the thesis are highlighted.

The swept flat plate coordinate system is continually used in this thesis wherein the leading edge orthogonal or chordwise
or streamwise direction corresponds to the x direction, the leading edge parallel or spanwise direction corresponds to the z
direction and the wall-normal direction corresponds to the y direction. The undisturbed flow called the ”base flow” (also
denoted by a subscript B), has velocity UB in the x direction, VB in the y direction, and WB in the z direction. The
base flow is also exposed to a varying base flow pressure (PB). Perturbations seeded on the base flow give rise to the
total flow. The perturbation has velocity u′ in the x direction, v′ in the y direction, w′ in the z direction, and pressure p′.
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Partial derivatives in x, y, and z direction are denoted by subscripts x, y, and z respectively (for example UBy
represents

∂UB/∂y).

1.3. Boundary Layer and Transition
Fluids experience friction while moving over a stationary solid surface by virtue of viscous effects in a thin region of

flow near the surface known as the boundary layer, where velocity increases from zero at the wall (by virtue of the no-slip
condition) to the external velocity (Ue) outside the boundary layer. The friction experienced depends on the velocity dif-
ference between adjacent layers in the wall-normal direction, and is appropriately quantified by the shear stress, expressed
as τ = νρ dUB/dy, where ν is the kinematic viscosity and ρ is the density. The wall-normal gradient of UB is highest
in the near-wall viscous region and decreases to zero outside the boundary layer in the inviscid region. There is no hard
boundary between the viscous and inviscid regions, and boundary layer thickness can thus be defined in multiple ways.
One measure is δ99, which considers the height of the boundary layer as the height at which the streamwise flow velocity
reaches 99% of freestream velocity (U = 0.99U∞). Some other physical representations of boundary layer thickness are
displacement thickness, momentum thickness, and shape factor, whose physical implications and derivations are explained
in Anderson (2011).

When a uniform fluid flow with constant external velocityUe = U∞ tangentially comes into contact with a surface such
as a flat plate, the boundary layer thickens as it evolves in space. The thickening can be explained using a vorticity analogue
(Abernathy, 1968; Vos & Farokhi, 2015), where the variation of velocity in wall-normal direction on fluid contact with
the flat plate induces vorticity in the flow field. The circulation or total vorticity contained remains constant, but viscosity
acts to diffuse vorticity away from the wall, thickening the boundary layer in the process. Often, boundary layers do not
have a constant external velocity but have a varying external velocity by virtue of pressure gradients. A negative pressure
gradient is favourable in nature since it increases the external velocity. It also corresponds to an increase of near-wall
momentum owing to the lesser time available to viscosity to diffuse the newly introduced vorticity with an increase of
external velocity (Abernathy, 1968; Vos & Farokhi, 2015). A positive pressure gradient is adverse since it decreases the
external velocity, giving viscosity more time to diffuse vorticity. Continual exposure to adverse pressure gradient leads to
flow separation wherein the shears of flow tend to zero leading to flow reversal.

The properties of boundary layers considered so far have been for smooth and laminar boundary layers. A laminar
boundary layer under certain conditions has the tendency to transition to a turbulent and chaotic state. The mean profile
of a turbulent boundary layer has a higher velocity gradient compared to the mean profile of a laminar boundary layer,
which leads to higher shear stress and skin-friction drag in the former compared with the latter. The higher shear is due to
unsteady fluctuations in turbulent boundary layers transferring low momentum from far-wall to near-wall regions and vice
versa. The transfer of momentum to near-wall regions makes a turbulent boundary layer resistant to separation. However,
in cases where flow separation isn’t encountered, turbulent transition acts as a drag enhancer.

The mechanisms for turbulent transition are not fully understood, but they vary for two-dimensional (2D) and three-
dimensional (3D) boundary layers. Boundary layers in unswept wings are 2D, wherein no fluid flow occurs along the
spanwise direction. Whereas boundary layers are 3D in swept wings, wherein a component of flow exists in the spanwise
direction. The unswept wing is the most weight-efficient way to extend an airfoil to form a wing that can generate lift.
However, its structural and weight advantages are up against the onset of wave drag effects in transonic flight regimes,
wherein the presence of shocks drastically increases drag. It was found that the leading edge orthogonal or chordwise
component governs the onset of wave drag effects (Anderson, 2011; Vos & Farokhi, 2015). Hence, wing sweep was
suggested as the chordwise component of a swept wing was smaller than that of an unswept wing, resulting in lower top
speeds in the suction side of the wing, leading to a later onset of wave drag. Two prominent features of swept boundary
layers absent in unswept wing boundary layers are the presence of an attachment line and crossflow component. The
attachment line is a line of fluid flow replacing the stagnation point, usually present on airfoils or unswept wings owing to
the non-zero spanwise component along the leading edge. Crossflow, on the other hand, is attributed to the near-wall base
flow not following the direction of the inviscid base flow. The influence of sweep and pressure gradient results in curved
inviscid streamlines (Saric et al., 2003). Compared to the inviscid region, the chordwise velocity is lesser, but the pressure
gradient remains the same in the near-wall region. Thus, centripetal acceleration in the near-wall region is not sufficient to
balance the pressure gradient, resulting in a flow with a component in the direction perpendicular to the inviscid streamline,
known as crossflow. Since crossflow tends to zero in the inviscid region and the wall, its profile is inflectional in nature.
In the favourable pressure gradient region of backward swept wings, the attachment line flow moves from root to tip, and
the near-wall streamlines are tilted less outboard compared to inviscid streamlines resulting in positive crossflow as per
the conventions considered here.
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Figure 1.1: Various paths to transition in wall boundary layers; reproduced from Reshotko (2008).

Turbulent transition in both 2D and 3D boundary layers starts with receptivity, a process by which disturbances in
the freestream enter a boundary layer as steady or unsteady fluctuations of basic state (Morkovin, 1969). Following
receptivity, five paths to transition have been proposed, as shown in Figure 1.1. Of these, path A to path C correspond to
low disturbance environments characteristic of flight (Reshotko, 2008), and are hence elaborated upon. In path A, external
disturbances are low, and transition scenarios are dominated by the amplification of modal instabilities. In 2D boundary
layers, for the dominant instability mechanism of Tollmien-Schlicting wave growth, receptivity is followed by a stage of
linear growth, referred to as the primary growth phase. The growth of amplitude leads to the development of secondary
instabilities (Reshotko, 2008), which induce non-linearities and three-dimensional effects (Herbert, 1988), leading to the
onset of transition. In 3D boundary layers, for the dominant modal mechanism of crossflow instability growth, although
the initial growth after receptivity follows a linear trend, the primary stage of growth also contains a non-linear phase,
wherein the amplitude of the disturbance saturates (Reed, Saric, & Arnal, 1996). Following the primary phase, the flow
becomes susceptible to high frequency secondary instabilities. This leads to the breakdown of laminar flow and subsequent
transition to turbulence. The details of unstable waves or modes and their evolution in the linear regime are captured by
Linear Stability Equations. The eN method (Smith & Gamberoni, 1956; Van Ingen, 1956) predicts transition based on the
primary linear growth phase and works well for 2D boundary layers but falters in predicting 3D boundary layer transition
due to the extended non-linear regime before the action of secondary instabilities (Reed et al., 1996).

Path B corresponds to slightly higher levels of external disturbance. In flow regimes where unstable modes can’t be
identified, a superposition of stable modes can cause short-term transient or non-modal growth (Schmid & Henningson,
2001). Path B represents scenarios where these non-modal conditions initialized upstream, lead to the development of
modal disturbances downstream, when modal theory predicts that an unstable mode only exists in the downstream region.
Numerical studies have shown that such scenarios can be prominent in 3D boundary layers, where an initially non-modal
instability can precondition the growth of a modal crossflow instability (Corbett & Bottaro, 2001; Tempelmann, Hanifi,
& Henningson, 2010; Lucas, 2014). In 2D boundary layers, dominant modal perturbations are 2D in nature, whereas
dominant non-modal initial conditions are 3D in nature (2D instabilities do not have any periodic variation in the spanwise
direction unlike 3D instabilities). Thus, the evolution of a non-modal disturbance to a modal disturbance is difficult to
perceive in 2D boundary layer flows (Reshotko, 2008). In path C, the external disturbance levels are further higher than
scenarios of path B, and non-modal growth totally overrides modal amplification. The Orr mechanism (Orr, 1907) and
lift-up effect (Ellingsen & Palm, 1975) in parallel 2D flows, and their extension to non-parallel 2D flows (Andersson,
Berggren, & Henningson, 1999) come under the umbrella of theories that were proposed to explain the possibility of
bypassing modal growth. Path A is the traditional theory to predict the onset of turbulence, and transition fronts in flight
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conditions have shown evidence of modal instability dominated transition (Gray, 1952; Anscombe & Illingworth, 1956),
motivating an investigation of modal growth is presented in the upcoming section.

1.4. Analysis of Modal Growth
The stages of modal perturbation growth were defined for two-dimensional and three-dimensional flows in Section 1.3.

However, it is important to understand how the existence of unstable modes is predicted. Skipping the phase of receptivity,
linear stability theory (LST) can be used to identify unstable modes assuming a parallel base flow (VB = 0,UBx

= 0, and
WBx

= 0). The Navier Stokes equation of the base flow subtracted from the total flow yields the perturbation equation.
The linearized equation (derived in Section 4.2) written in terms of Einstein convention reads

∂u′j
∂xj

= 0, (1.1)

∂u′k
∂t

+ UB
∂u′k
∂x

+WB
∂u′k
∂z

+ v′
dUB
dy

+ v′
dWB

dy
= −1

ρ

∂p′

∂xk
+ ν

∂2u′k
∂x2j

. (1.2)

The subscript k considers quantities one at a time wherein k = 1 denotes quantities along x, k = 2 denotes quantities along
y, and k = 3 denotes quantities along z. x, y, and z can be equivalently represented as x1, x2, and x3. u′, v′, and w′ are
represented by u′1, u′2, and u′3 respectively. The quantities represented by the index j are the same as those represented by
k, but it considers the summation of quantities along x, y, and z instead of considering them one at a time. In Equation 1.2,
the coefficients of perturbation terms are functions of y, owing to which a solution of velocity and pressure perturbation
can be obtained by the separation of variables using normal modes (Reed et al., 1996). The Fourier ansatz typically used
for such problems is of the form

u′k = ûk(y)e
i(αx+βz−ωt) + c.c., (1.3)

p′ = p̂(y)ei(αx+βz−ωt) + c.c., (1.4)

where ûk(y) and p̂(y) are complex in nature and encapsulate the y dependency of the ansatz. α, β and ω are complex
in nature with their real parts (αr, βr and ωr) determining periodicity, and imaginary parts (αi, βi and ωi) determining
whether there is growth or decay in x, z, and t, respectively. When the ansatz presented in Equation 1.3 and Equation 1.4
is substituted into the linearized perturbation equations after dropping the complex conjugate and recast in terms of wall-
normal velocity (v’) and wall-normal vorticity (η′) perturbations by eliminating perturbation pressure terms (as shown in
(Schmid & Henningson, 2001)), the result is the Orr-Sommerfeld and Squire Equation which read[(

− iω + i(αUB + βWB)
)(

D2 − k2

)
− i

(
α
d2UB
∂y2

+ β
d2WB

∂y2

)
− ν
(
D2 − k2

)2]
v̂ = 0, (1.5)

[
(−iω + iαUB + iβWB − ν(D2 − k2)

]
η̂ = −iβ dUB

dy
v̂, (1.6)

where
D2 =

∂2

∂y2
, (1.7)

k2 = α2 + β2, (1.8)

η̂ = i(βû− αŵ). (1.9)

The non-dimensionalized version of Equation 1.5 and Equation 1.6 are more popularly used, wherein the velocities and
length scales are scaled by reference scales Uref and lref , respectively, resulting in a Reynolds NumberRe = Uref lref/ν.
To solve the non-dimensional form of the above equations, the direction in which perturbation grows or decays needs
to be specified. In spatial analysis with growth in chordwise direction, α is assumed to be the complex output of the
analysis, and β and ω are assumed to be real inputs to the equation along with a specification of Re. With appropriate
boundary conditions, the Orr-Sommerfeld equation simplifies to an eigenvalue problem of fourth-order with eigenvector
v̂ and eigenvalue α, determined as a function of inputs β, ω, andRe. The non-homogenous Squire equation can be solved
using the forced value of v̂ to obtain a particular solution, namely η̂P , such that [v̂, η̂P ] is called the Orr-Sommerfeld mode
(Schmid & Henningson, 2001). The homogenous solution of Squire equation (η̂H ) reveals another set of modes [0, η̂H ],
which are stable (Schmid & Henningson, 2001), and hence not considered while determining the least stable mode. In
temporal analysis, ω is the complex eigenvalue, determined as a function of real inputs α, β and Re. Temporal equations
are usually easier to solve since the determination of α in spatial analysis makes the eigenvalue problem non-linear (Boiko
et al., 2011). Since all coefficients of the eigenvalue problem are real, the solutions occur in complex conjugate pairs (Reed
et al., 1996).
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Initial attempts to solve the eigenvalue problem a century ago faced hurdles due to the lack of computing technology to
solve fourth-order eigenvalue problems. Hence, simplifications weremade to the Orr-Sommerfield equation by assuming a
larger Reynolds number limit, which simplified Equation 1.5 to the Rayleigh equation, whose solution yielded an ”inviscid”
instability. For a temporal problemwith 2D base flow (WB = 0) considering 2D instability (β = 0), Rayleigh (1879) stated
that the presence of an inflection point in the base flow profile is a necessary condition for the existence of an inviscid
instability. Pioneering contributions were also made by Fjørtoft (1950) and Howard (1961) to define theorems for the
existence of such an instability. When the temporal problem assuming viscous terms was solved for a flow with piecewise
linear velocity distribution (Prandtl, 1921), it was proven that unstable modes could exist without an inflection point. It is
known today that a lot of flows destabilize without the existence of an inflection point via the action of instabilities called
”viscous instability” (Boiko et al., 2011).

Figure 1.2: Stability characteristics curve of Blasius Boundary Layer with inputs ω on y axis and Reynolds number based on displacement thickness
(Reδ∗ ) on the x axis. Constant −αi (solid lines), Phase velocity ω/αr (dashed lines), Neutral Curve (solid line αi = 0); reproduced from Boiko et al.

(2011).

The usual aim of a stability analysis is to determine regimes of flow where an instability can grow, and thus eventually
transition the laminar flow to a turbulent state. An example of the result of a spatial analysis for a 2D Blasius Boundary
layer susceptible to 2D instability (β = 0) growth is shown in Figure 1.2 (Boiko et al., 2011). A sweep across ω and
spatial locations (obtained by varying Reδ∗ , the Reynolds number based on displacement thickness, δ∗, in Figure 1.2) is
conducted for a given base flow, and the lines of constant αi are plotted. The neutral curve corresponds to αi = 0. Within
the neutral curve envelope, values of αi are negative, meaning the instability can grow. Whereas, outside the neutral curve,
values of αi are positive, meaning the instability decays. The minimum x coordinate of the neutral curve projected onto
the x axis denotes the value ofReδ∗ beyond which unstable eigenmodes can exist. The value of the streamwise coordinate
at this Reynolds number can be denoted ”critical” streamwise position (xcr). x < xcr denotes subcritical regimes, where
all eigenmodes are stable. The knowledge of transition location comes from the eN method, whereN at a certain position
is the maximum logarithm of amplitude gain for a particular frequency. Iterating over a range of frequencies generates
an N envelope, and it is estimated that flow transitions to turbulence when N takes values between 7 and 9 (Smith &
Gamberoni, 1956; Van Ingen, 1956).

While LST provides insight into determining regions of instability growth, it has several limitations such as the assump-
tion of parallel flow, ignoring upstream effects, ignoring non-linear effects, and ignoring receptivity details, and hence
can’t be accurately used to model instability evolution. Techniques such as Parabolized Stability Equation (PSE) and
Direct Numerical Simulations (DNS) take into account these limitations. If receptivity details are not considered, these
methods can be initialized by an Orr-Sommerfeld mode, and the evolution of instability through a predetermined base flow
can be predicted. PSE is a parabolic marching technique and solves perturbation evolution at a fraction of the computa-
tional cost of DNS which solves an elliptic system (Bertolotti, Herbert, & Spalart, 1992). However, the full modelling of
all stages of the transition process is more accurately described by DNS (Bertolotti et al., 1992). PSE also faces difficulty
negotiating strong streamwise changes in base flow as its formulation assumes that the laminar base flow and perturbation
properties encounter small changes over scales of the order of the characteristic wavelength of the mode (Franco, Hein, &
Valero, 1821). The DNS again is a legitimate alternative in such cases. However, to avoid excessive computational cost,
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linear evolution can be captured using the fully elliptic Harmonic Linearized Navier Stokes Solver (HLNS).

Although the above introduced tools are capable of identifying unstable modes (i.e. LST) and modelling their evolution
(i.e. PSE, HLNS, and DNS), they do not provide information on the mechanisms by which modal instabilities grow. For
2D parallel flows, Lin (1944) provided separate vorticity based mechanisms for identifying the existence of inviscid and
viscous instabilities. However, the theory doesn’t explain behaviour in non-parallel base flows. The Reynolds-Orr energy
balance framework is a method to understand mechanisms by which a perturbation grows or decays in non-parallel base
flow. The linear perturbation energy equation integrated over a control volume V reads∫

V

∂E

∂t
= −

∫
V

UB,j
∂E

∂xj
dV︸ ︷︷ ︸

Transport

−
3∑
k=1

∫
V

u′ku
′
j

∂UB,k
∂xj

dV︸ ︷︷ ︸
Production

−
3∑
k=1

∫
V

u′k
∂p′

∂xk
dV︸ ︷︷ ︸

Pressure Work

+
1

Re

3∑
k=1

∫
V

∂2u′k
∂x2j

dV︸ ︷︷ ︸
Work of Viscous Forces

. (1.10)

where u′k is the real-valued representation of perturbation field and perturbation energy E is defined as

E =
1

2

3∑
k=1

u′2k . (1.11)

In case of a temporal framework, ∂E/∂t represents energy growth in time. Due to the periodicity of perturbation in x and
z directions, the transport terms yield a very small result in a periodic domain. The pressure perturbation is also usually
small compared to the magnitude of perturbation energy and yields negligible contributions. The main terms contributing
to the energy budget are production and work of viscous forces. The term representing work of viscous forces simplifies
to dissipation under the assumption of periodicity in x, representing the energy dissipated by perturbation by viscous
effects (Schmid & Henningson, 2001). Production represents the kinetic energy exchange of perturbation with base flow
(Albensoeder, Kuhlmann,&Rath, 2001). Analyzing the behaviour of production term can lend insight into themechanisms
by which a perturbation grows or decays, with a positive sign indicating energy transfer from base flow to perturbation
and a negative sign indicating energy transfer from perturbation to base flow (Albensoeder et al., 2001). In the spatial
framework with growth in the chordwise direction, the analysis becomes more convoluted as the energy growth (∂E/∂x)
in space is part of the advection term. Nevertheless, the Reynolds-Orr framework has been used to elaborate mechanisms
of modal evolution for spatially evolving instabilities by dividing the entire energy balance equation (Equation 1.10) by
UB to isolate ∂E/∂x (Karp & Hack, 2018).

1.5. Crossflow Instability
Multiple modal growthmechanisms are active in 3D boundary layers (Saric et al., 2003). The instabilities not considered

in this thesis are streamwise instability, attachment line instability, and centrifugal instability. Streamwise instabilities
destabilize by the growth of TS waves, which are unstable only in regions of the wing exposed to an adverse pressure
gradient. They are thus less critical than instabilities that grow near the leading edge or the favourable pressure gradient
region of swept wings. The attachment line flow can destabilize when the leading edge flow is contaminated or when an
instability develops which eventually transitions an initially smooth attachment line flow. The action of these instabilities
can be prevented by considering an appropriate leading edge radius (Reed & Saric, 2014). The centrifugal instability on
the other hand occurs in regions of concave curvature and results in the development and destabilization of Görtler vortices.
A relatively large number of wings use predominantly convex airfoil profiles, which shields such wings from centrifugal
instability driven transition. This leads to a discussion on the instability considered in this thesis which could arguably be
considered the dominant instability in 3D boundary layers. Directional profiles i.e. the component of 3D boundary layer
in a direction along the wavenumber vector govern instability evolution (Mack, 1984), and the directional profiles close
to crossflow direction are inflectional, leading to the development of an inviscid instability called crossflow instability
(Bippes, 1999). The crossflow instability amplifies in a favourable pressure gradient regime since crossflow profiles are
inflectional in this regime, and thus have a potential to reduce the laminar flow regime on swept wings compared to
unswept wings (Gray, 1952; Anscombe & Illingworth, 1956), prompting studies on understanding its behaviour. The
study of crossflow instability is usually conducted on swept wings or swept flat plates, wherein the latter focuses only on
the effect of pressure gradient without taking into account the effects of curvature.

The crossflow instability manifests as oblique waves that take both the form of travelling and stationary waves (Bippes,
1999; Saric et al., 2003). In low turbulence environments characteristic of flight, stationary disturbances generated by
surface roughness elements dominate (Bippes, 1999). The instability is experimentally visualized in wind tunnels with
low turbulence intensity by placing discrete roughness elements (DREs) in a spanwise repeated pattern on a swept wing or
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a swept flat plate with swept wing-like pressure gradient, separated by a gap of the disturbance wavelength estimated from
linear stability theory. Experimental techniques have been complemented by numerical analysis through PSE and DNS
on swept flat plates with pressure gradients mimicking experimental conditions. These allow easy separation of the total
flow into base flow and perturbation, which is considerably harder in experimental studies where the base flow can only be
estimated to some degree by a spanwise averaged temporal mean flow, and perturbation behaviour is subsequently obtained
by subtracting mean flow from total flow (Bippes, 1999). Numerical investigations can be initialized via various methods.
A spanwise periodic Orr-Sommerfeld mode can be used to initialize perturbations in case receptivity details are neglected.
Whereas the modelling of cylindrical disturbance elements (Tempelmann, Schrader, Hanifi, Brandt, & Henningson, 2012)
or localized disturbance strips (Wassermann & Kloker, 2002) are methods to initialize stationary crossflow instabilities
accounting for receptivity. Details of receptivity play an important role in determining unsteady interactions. Although
numerical simulations provide insightful data, experimental uncertainties make matching numerical and experimental data
very difficult (Tempelmann et al., 2012).

Figure 1.3: Stages of stationary crossflow mode evolution explained with contours of streamwise velocity (UB/U∞, denoted u/U0 in author’s
convention); reproduced from Mistry (2014)

Experimental investigations reveal that the perturbation takes the form of counter-rotating vortices with lines of constant
phase (axes) very close to the direction of inviscid streamlines (Bippes, 1999). When the perturbation is superposed
onto the mean flow, the total flow has traces of co-rotating vortices. The growth of instability following receptivity
can be classified into primary and secondary phases. In the primary phase, perturbation growth initially occurs linearly.
Small vertical and spanwise perturbations convect high-momentum fluid away from the wall and high-momentum towards
the wall (Saric et al., 2003). The high gradient region near the wall favours this momentum exchange. These small
momentum displacements lead to large streamwise disturbances. The effect of these perturbations on mean flow can be
seen as spanwise modulations of the streamwise velocity profile as depicted in Figure 1.3. These streamwise disturbances
soon get large (> 10%U∞) to the extent that computations of results from linear theory depart from experimentally
observed features (Reibert, Saric, Carrillo, & Chapman, 1996). This marks the onset of non-linear growth where evidence
of harmonics of the wavelength forced by the DREs are found (Reibert et al., 1996) (for a forcing of 12mm, harmonics are
6mm, 4mm, and so on). The non-linear regime leads to the saturation of perturbation amplitude (Bippes, 1999). Figure 1.3
depicts the transformation from linear to non-linear regime, characterized by rollover (Mistry, 2014). The initial amplitude
of stationary crossflowmode can also play a role in determining the extent of linear and non-linear primary regimes, thereby
affecting transition location (Radeztsky Jr, Reibert, & Saric, 1999). The primary stage of growth distorts the base flow
which now has strong shear layers and inflectional velocity profiles (Saric et al., 2003; Casacuberta, Groot, Hickel, &
Kotsonis, 2022). The distorted base flow is susceptible to unsteady secondary instabilities of three types (Malik, Li, &
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Chang, 1994), which rapidly amplify leading to breakdown and transition to turbulence. This breakdown is characterized
by a saw-tooth pattern since transition develops locally leading to uneven distribution in span (Saric et al., 2003).

Since this instability substantially reduces the laminar flow on a swept wing compared to an unswept wing (Anscombe&
Illingworth, 1956; Gray, 1952), its control has received considerable attention. Saric et al. (2019) note the results of Reibert
et al. (1996), wherein only the harmonics of wavelength lesser than the forced wavelengths appear in the non-linear regime.
The authors use this as inspiration to force a subcritical stationary crossflowmode with wavelength lower than the naturally
dominant critical mode. This ends up forcing the harmonics of the subcritical mode in the non-linear growth regime but
does not force the critical wavelength itself, which results in a transition delay. Wassermann and Kloker (2002) explained
that the subcritical modes induce a deformation of the mean flow, which postpones the amplification of the critical mode
and its harmonics. This process is called upstream flow deformation (UFD), referring to a set of techniques that can be
used to force subcritical modes to cause transition delay. Another class of techniques proposed to alter the base flow
itself to reduce the crossflow component and stabilize crossflow vortices to induce transition delay (Dörr & Kloker, 2015).
This method falls under the category of Base Flow Deformation methods. The above described flow control techniques,
however, face significant challenges for incorporation into the mainstream as some degree of roughness ubiquitous in
swept wings can prepone the location of turbulent transition.

1.6. Interaction of FFS with Stationary Crossflow Instability
An FFS of appropriate height, placed in the favourable pressure gradient region of a swept flat plate or wing, interacts

with an incoming stationary crossflow instability to prepone transition location significantly compared with a no-step
or clean case (Tufts et al., 2017; Eppink, 2020; Rius-Vidales & Kotsonis, 2021). This has been reported to occur across
different values of spanwise wavelength of crossflow instability, wherein appropriate step heights have preponed transition
location to the approximate location of the FFS (Rius-Vidales & Kotsonis, 2020). The presence of an FFS can thereby
invalidate control efforts such as forcing of subcritical crossflowmodes proposed by Saric et al. (2019), which can trip at the
FFS location. Initial attempts to investigate the phenomena of transition preponement were directed at designing empirical
one-factor criteria to develop tolerances for this threshold, namely the critical step height, beneath which transition location
wouldn’t move significantly upstream compared to the clean case (Tufts et al., 2017). Recent studies of Eppink (2020) and
Rius-Vidales and Kotsonis (2020) revealed that one-factor criteria might not be adequate to explain transition preponement.
Moreover, Rius-Vidales andKotsonis (2021) also found a particular step height that postponed transition location compared
to a clean case (without the presence of FFS). Thus, the focus shifted to observing physical features of the FFS base flow
and finding mechanisms by which the modified base flow influences perturbation behaviour.

Figure 1.4: (a) Pressure gradient in chordwise direction (colour map), line of zero pressure chordwise gradient (dashed black), streamline seeded at
inlet (grey) (b) Variation of static pressure along streamline seeded at y/δ0 = 0.2 in clean case (thick solid black), step case I (dotted orange), step case

II (dash-dotted blue), step case III (thin solid red); reproduced from Casacuberta, Hickel, Westerbeek, and Kotsonis (2022).
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1.6.1. Effects of FFS on Base Flow
The presence of an FFS alters the local pressure distribution of the boundary layer compared with the clean case

(Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022; Tufts et al., 2017). Casacuberta, Hickel, Westerbeek, and Kotso-
nis (2022) test three different steps and observe consistent base flow pressure modification trends for all steps as shown
in Figure 1.4. In this figure, xst/δ0 corresponds to a transformed non-dimensionalized coordinate in chordwise direction
wherein δ0 = δ99 at domain inlet, such that xst/δ0 = 0 denotes step location (whose negative values denote step upstream
regions, and positive values denote step downstream regions). Contours of base flow pressure in Figure 1.4(a) and a plot
of pressure along a characteristic boundary layer streamline in Figure 1.4(b) show a region of adverse pressure gradient
upstream of the step, a strong favourable pressure gradient region in the vicinity of the step and another adverse pressure
gradient region downstream, as opposed to the smooth favourable pressure gradient in the clean case. Exposure to regions
of strong adverse pressure gradient can lead to flow separation. The works of Casacuberta, Hickel, Westerbeek, and Kotso-
nis (2022) and Tufts et al. (2017) reveal two regions of flow reversal within the adverse pressure regions just upstream and
downstream of the step. Tufts et al. (2017) note that these recirculation regions are areas of open helical flow and also note
that the size of these recirculation bubbles increases with the step size. Casacuberta, Hickel, Westerbeek, and Kotsonis
(2022) comment that the size of the first bubble is larger than the second bubble. Another manifestation of the change in
local pressure gradient is the change of crossflow velocity direction. Mack (1984) shows that Falkner Skan Cooke pro-
files with adverse and favourable pressure gradient have crossflow components in opposite direction. In the presence of a
favourable pressure gradient in the clean case, the crossflow velocity is positive as per conventions considered here. With
the presence of step, Eppink (2020) observes that upstream of the step, there exists a local region of negative crossflow,
which changes to positive crossflow at the step which then changes back to negative crossflow further downstream of the
step, before relaxing back to the clean case conditions. Eppink (2020) attributes the presence of adverse pressure gradient
regions as the likely cause for crossflow profile reversal upstream and downstream of the step.

The change in direction of crossflow velocity is a direct consequence of the change in behaviour of the base flow
velocity vector near the step. Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) note that this can be attributed to
the behavioural difference of base flow in the near-step and inviscid regions. The inviscid region mildly feels the effect
of local step pressure gradient, evidenced by the inviscid streamline angle of step cases being similar to the clean case.
However, in regions of local adverse pressure gradient upstream and downstream of the step, the chordwise velocity
decelerates. Such effects are not as pronounced in the spanwise velocity. This causes a strong outboard turn of streamlines
in adverse pressure gradient region thus reversing crossflow. In the local favourable pressure gradient region near the
step in between these local regions of adverse pressure gradient, the rapid acceleration of chordwise velocity causes an
inboard flow resulting in a crossflow velocity profile directed in the positive direction. The difference between spanwise
and chordwise velocity behaviour in the near-wall region is attributed to the presence of pressure gradient only in the
chordwise direction, with no spanwise pressure gradient to directly influence spanwise velocity evolution. Additionally,
an upwash is also noted upstream of the step, which gets enhanced at the step, especially in the near wall region, which
then decays further downstream.

1.6.2. Effects of FFS on Perturbation Evolution
Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) propose the study of amplitude function of fundamental chord-

wise perturbation velocity field to contrast behaviour in clean and FFS regimes (fundamental mode corresponds to the
monochromatic wavelength that is forced upstream of the step). The evolution of amplitude function over the step is
shown in Figure 1.5. Upstream of the step, two peaks appear, wherein the primary peak deflects away from the wall, and
the secondary peak remains close to the wall. These secondary peaks appear as near wall streaks, phase shifted with re-
spect to the streaks caused by primary peaks. Downstream of the step, a secondary peak is again present in all step heights
considered. This peak intensifies with step height. For the highest step considered, this secondary peak passes the main
peak of the perturbation. These secondary peaks start decaying further downstream, merging into a single peaked profile.
Secondary peaks also appear in the investigations of Eppink (2020) and Tufts et al. (2017). However, since these do not
appear in the clean case, Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) claim that these are secondary structures,
and the primary peak is more representative of the behaviour of the crossflow instability. Upstream of the step, this theory
agrees well with the observations of Rius-Vidales and Kotsonis (2021) and Eppink (2020) who observe that the instability
does not directly interact with the step, but rather sees an upward deflection.

Since the structural modifications of the instability are now clear, the focus shifts to understanding the amplitude evolu-
tion of the instability. Upstream of the step, Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) observe the evolution
of the value of amplitude function of fundamental chordwise perturbation velocity at its primary peak. With respect to the
clean case, the step cases show higher amplification in the step upstream region. The author points out that this evolution
is linear as the results of LPSE closely match DNS results in the step upstream region before the appearance of secondary
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Figure 1.5: Variation of Amplitude function with wall-normal coordinate at various near step locations, given by non-dimensionalized coordinate
xst/δ0 = (a) -2.04, (b) -0.45, (c) -0.07, (d) 0.01, (e) 0.61, (f) 2, (g) 5, (h) 8; reproduced from Casacuberta, Hickel, Westerbeek, and Kotsonis (2022)

structures. At the step vicinity, Casacuberta, Hickel, and Kotsonis (2021) claim that observing the evolution of a quantity
representative of perturbation energy is better suited as the growth rate of u′ and v′ show different behavioural trends.
Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) thus observe the evolution of amplitude of total perturbation veloc-
ity vector norm at its primary peak. They observe a relatively constant trend of amplitude growth in two of the smaller steps.
However, a strong decay is observed in the largest step in the region downstream of the step. The authors explain these
effects by observing the behaviour of the production term of the spanwise integrated Reynolds-Orr equation (elaborated in
section 5.1), which is representative of the exchange of kinetic energy between the base flow and fundamental perturbation
(Albensoeder et al., 2001; Lanzerstorfer & Kuhlmann, 2012; Picella et al., 2018). For the largest step, the production term
shows a decay in the step downstream region, consistent with the trends seen in amplitude evolution. Casacuberta, Hickel,
Westerbeek, and Kotsonis (2022) also find that the tangential and total perturbation vectors misalign from each other and
do not have same growth rates in the FFS vicinity across all cases, prompting them to suspect that non-modal mechanisms
drive instability growth in conjunction with modal mechanisms in this region. In a region further downstream, significant
growth of higher order harmonics is reported. The authors find that the fundamental perturbation component preserves its
own behaviour for the largest step, pointing towards a linear mechanism of growth. However, for the smaller steps, they
find that instability growth is non-linear, indicating that the step height plays a role in determining the type of evolution in
terms of linearity. Previous studies have proposed a different picture of instability amplitude evolution and mechanisms
governing the same.

Eppink (2020) experimentally observes a non-monotonic amplitude evolution trend in the step vicinity based on the
observations of chordwise perturbation. The author considers the global peak of the chordwise instability for represent-
ing amplitude evolution, instead of the primary peak chosen by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022).
Starting from the step, to a region slightly downstream, in the second flow reversal region, enhanced growth of pertur-
bation amplitude is noted. This is followed by a short region of decay. Further downstream the trend changes, with an
enhanced region of growth followed by saturation. To elaborate mechanisms responsible for amplification, the author
tests two different initial stationary crossflow amplitudes. The author finds that the first region of growth is similar for
different initial amplitudes, providing evidence that this region is governed by linear mechanisms. Since this region of
growth is in a region of reversed flow, Eppink (2020) draws parallels with the studies on interaction of crossflow instability
with a separation bubble on a swept wing (Hosseinverdi & Fasel, 2016). They explain that the coexistence of separation
and crossflow components lead to two separate inflection points, one each in the chordwise and crossflow profile. Thus,
this region of flow can be considered ’double inflectional’, and the inflection points in these regions provide impetus for
the growth of crossflow instability. The second region of growth shows different trends for different initial amplitudes,
hinting at the presence of non-linear effects. These are linked to the presence of higher harmonics in the reattachment
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region, which are triggered by a shear layer strongly deformed in the spanwise direction by strong crossflow vortices near
the step. Rius-Vidales and Kotsonis (2021) observe a non-monotonic growth trend similar to Eppink (2020). However,
the regions of growth and decay are different, and spanwise perturbation profiles are used for the study amplitude evolu-
tion. Instability amplification starts upstream of the step, and continues until a region of favourable pressure gradient is
encountered. Decay of instability occurs in a region of adverse pressure gradient, and further growth is observed when
the pressure gradient relaxes back to that of the clean case. The appearance of harmonics in a region downstream of the
FFS is also another similarity observed with Eppink (2020). However, Rius-Vidales and Kotsonis (2021) suggest that
the harmonic components amplify by the nonlinear forcing of the fundamental component, which is different from the
mechanism proposed by Eppink (2020).

Thus, it appears that themechanisms explaining amplitude evolution of a stationary primary crossflow instability are still
unclear. Although mechanisms of primary growth are unclear, some factors that might eventually affect transition location
are the secondary recirculation region size (Tufts et al., 2017), initial amplitude (Eppink, 2020), wavelength of initial
stationary crossflow mode (Rius-Vidales & Kotsonis, 2020), and the different action of secondary instabilities for different
step heights (Rius-Vidales & Kotsonis, 2022). This provides insights into how complicated the mechanisms governing
transition are, and highlights the need to simplify the FFS problem. A first step could be to understand mechanisms
governing linear amplitude evolution in the primary phase of instability growth, before attempting to understand non-
linear trends and transition location behaviour.

Figure 1.6: Depiction of temporal growth of the superposition of decaying eigenmodes Φ1 and Φ2, when initialized by q; (a) t = 0, (b) and (c) t>0,
adapted from Schmid and Henningson (2001)

1.7. Analysis of Non-modal Growth
1.7.1. 2D Flows
The shortcomings of modal analysis can be explained considering parallel flows. LST only considers the behaviour of the
least stable eigenmode, which thereby determines the long term behaviour of the perturbation. However, this approach
neglects the behaviour in the short term, wherein a superposition of non-orthogonal stable Orr-Somerfield and Squire
modes can lead to transient growth (Schmid & Henningson, 2001). This is demonstrated with an example from Schmid
and Henningson (2001) in Figure 1.6, wherein two decaying non-orthogonal eigenvectors sum up to yield a resultant vector
that grows in the short term. The growth or decay of perturbations in such scenarios is heavily dependent on the initial
condition, whose determination can be physically explained for different flow scenarios using the Orr mechanism and the
lift-up effect.

Orr Mechanism
The Orr mechanism stemmed from efforts to explain an inviscid mechanism for Couette flow transition, wherein Rayleigh
(1879) stated that the flow could not destabilize considering just inviscid effects. Orr (1907) however looked at the inviscid
problem from the initial value problem perspective and suggested that there was potential for growth in the short-term for
a perturbation initially tilted against shear (Lindzen, 1988; Butler & Farrell, 1992). First, the issue of perturbation tilt is
considered. A physical description of perturbation tilt can be provided by visualizing perturbations as a line of ink droplets
initially aligned in a direction opposite to shear, wherein the droplets farthest from the wall would travel faster than the
ones close to the wall. After a period of time, the line of droplets will first align neutrally (i.e. parallel to the y axis), and
then align in the direction of shear (Roy & Govindarajan, 2010). Lindzen (1988) states that z perturbation vorticity (ω′

3)
remains constant for a 2D perturbation growing through the Orr mechanism. Using this fact, a mathematical demonstration
of perturbation tilt is developed here. An appropriate artificial value of ω′

3 = |ω̂3(y)| eiϕ(x,y,t) can be selected with the
assumption ofDω′

3/Dt = 0 to conserve z perturbation vorticity. Assuming that ϕ is real, and a y dependent shape function
of the form ω̂3(y) = ye−y

2

/max(ye−y
2

) ensures that the perturbation vorticity does not grow in space or time. Initially,
the phase ϕ would be such that the lines of constant phase would be aligned in a direction away from shear. This can be
obtained by assuming initial conditions to be

ϕ0 = γy + αx, (1.12)
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with lines of constant phase given by γy + αx = C, where γ = 2, α = 2, and C is a constant. The misalignment with
shear is shown in Figure 1.7 (a). To satisfy Dω′

3/Dt = 0, ϕ must evolve such that

∂ϕ

∂t
+ UB

∂ϕ

∂x
= 0, (1.13)

which presents an initial value problem for ϕ. The solution of this initial value problem for Couette flow (UB = y) is
given by

ϕ(x, y, t) = ϕ0(x− UBt, y) = γy + α(x− UBt) = (γ − αt)y + αx, (1.14)

where lines of constant phase are given by (γ − αt)y + αx = C. At t = 1 the lines of constant phase are given by x = c,
so the perturbations are neutrally aligned, shown in Figure 1.7 (b). Whereas at t = 1 the perturbation tilts in such a way
that the lines of constant phase align with shear as shown in Figure 1.7 (c).

Figure 1.7: Contours of temporal evolution of manufactured field of ω′
3 at (a) t = 0, (b) t = 1, (c) t = 2; black solid lines depict the lines of constant

phase in xy plane, white dash-dotted lines depict the base flow shear.

Two explanations have been proposed to relate titlting with perturbation energy growth. Lindzen (1988) proposes a
theory based on distance between centres of perturbation vorticity. They claim that the perpendicular distance between
perturbation vorticity lines of constant phase would change when the perturbation tilts with base flow shear. This can be
inferred from the manufactured perturbation field in Figure 1.7, where the perpendicular distance between these adjacent
lines of constant phase is maximum during neutral alignment (Figure 1.7 b), and lesser in shear aligned (Figure 1.7 c) and
misaligned states (Figure 1.7 a). Lindzen (1988) suggests that the perturbation velocities need to increase in the first phase
of rotation from shear misaligned to neutral state, to account for perturbation centres being stretched apart in order to keep
the perturbation velocity derivatives (or vorticity) constant. The growth of perturbation velocities leads to perturbation
energy growth. In the second phase of rotation from neutral to shear aligned state, the perturbation lines of constant phase
grow closer, thus leading to perturbation velocity and energy decay in a manner opposite to behaviour described for first
half of tilt.

The second approach to quantify the growth of energy associated with tilting was proposed by Butler and Farrell (1992).
They consider the inviscid perturbation energy equation given by

dE

dt
= −1

2

∫
dUB
dy

u′ v′. (1.15)

where the overbar denotes an averaging in chordwise direction. The term on the right-hand side of Equation 1.15 is the
Reynolds Stress term which represents a mechanism by which perturbations grow by extracting energy from the mean
flow shear. The stream function of perturbation (ψ′) can now be considered, wherein for 2D flows, u′ = ∂ψ′/∂y and
v′ = −∂ψ′/∂x. The expression −u′ v′ determines the sign of Reynolds Stress, which can be expressed in terms of
perturbation streamfunction as

−u′ v′ = ∂ψ′

∂x

∂ψ′

∂y

dUB
dy

= −

(
∂y

∂x

)
ψ

(
∂ψ′

∂y

)2
dUB
dy

, (1.16)
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where ∂y/∂xψ determines the tilt of the perturbation streamfunction, with a negative value indicating misalignment with
shear and a positive value indicating alignment with shear. When perturbation streamlines are oppositely aligned with
mean shear, ∂y/∂xψ < 0, the integral in Equation 1.15 is negative, meaning that the perturbation gains energy. When
the shear advects the perturbation such that the streamfunction changes its orientation with respect to base flow shear, the
integral becomes positive, driving the perturbation to lose energy. This subsection thus provides an idea of how a 2D
perturbation initial condition can transiently grow in a 2D parallel flow. However, 3D perturbations can also exist in 2D
flows, and their consideration is shown in the upcoming subsection.

Lift-up Effect
The first mention of the lift-up effect was made by Ellingsen and Palm (1975). They considered the base flow as

an incompressible, two-dimensional, steady, and parallel flow between two horizontal plates. They chose to model the
linear behaviour of inviscid infinitesimal perturbations invariant in streamwise direction, and found that the streamwise
perturbation had potential to grow in time as per

u′ = u′0 − v′
dUB
dy

t, (1.17)

where the subscript 0 denotes initial condition at t = 0. The growth of u′ in Equation 1.17 is not exponential, and instead
called ”algebraic”. Hultgren and Gustavsson (1981) suggested the viscous counterpart of this effect by finding potential
for u′ to grow in scales of t/Re << 1. Schmid and Henningson (2001) later expressed this algebraic growth in terms of
solutions of linear stability equations solved as an initial value problem in time instead of the approach taken by traditional
modal analysis to find the least stable mode. They find that an initial condition [v0 η0] grows by the superposition of Squire
modes and the least-stable Orr-Somerfeld mode, which results in the tendency of short-term growth in η′ (undetected by
analysis of modal growth), as per

η̂ = η̂0 − iβ
dUB
dy

v̂0t+O(t/Re). (1.18)

The relation between growth in η′ and u′ can be explained using a physical vortex tilting mechanism shown in Figure 1.8
(Roy & Subramanian, 2014). They explain that the vorticity of total flow, originally present only in the z direction
(dUB/dy) gets tilted to give rise to a new component of y vorticity, by virtue of spanwise variation of wall-normal veloc-
ity. They claim that the developed y vorticity is a representation of the vorticity field of ”streaks” i.e. spanwise variations
in streamwise velocity (Butler & Farrell, 1992), thus providing the link between growth of η′ and u′.

Figure 1.8: Mechanism of roll mode (∂v′/∂z) tilting base flow vorticity giving rise to streaks (∂u′/∂z), adapted from Roy and Subramanian (2014)
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The question then arises as to which flow features can be responsible for spanwise variation of v′. Streamwise vorticity
can potentially lead to the rise to such behaviour of wall-normal perturbation velocity, and this can be shown by evaluating
the expression of streamwise vorticity which reads

ξ′ =
∂v′

∂z
− ∂w′

∂y
. (1.19)

Thus, infinitely long streamwise vortices form a very dangerous initial condition in shear flows (Brandt, 2014). Physically,
an explanation for the effect of streamwise vortices, comes from the work of (Landahl, 1980). Assuming inviscid flow,
fluid particles retain their horizontal momentum when displaced from one layer to another by these streamwise vortices.
From high momentum regions, large velocity fluid is displaced to a low momentum region and vice versa, leading to the
development of streaks. The lift-up effect has potential to bypass traditional TS transition in 2D flows (Tempelmann et al.,
2010).

Adjoint Analysis
Both the physical mechanisms stated above have their own typical initial condition. Their initial conditions that gain

most energy in a specific time period or spatial domain are referred to as optimal initial conditions (Butler & Farrell,
1992). Perturbation energy growth is possibly a more relevant metric than individual component growth, as different
components have different growth rates in non-modal flow problems. In a temporal framework, perturbation energy is
maximized a period of time, whereas in the spatial framework, perturbation energy is maximized over a given chordwise
length to determine optimal initial conditions. The first attempts to maximize disturbance energy were made for parallel
flows using a temporal framework, where the optimal initial conditions were obtained by ”optimizing over eigenmodes
of the Orr-Somerfield operator” (Andersson et al., 1999). Considering perturbations to be two-dimensional Butler and
Farrell (1992) were able to recreate the characteristic perturbation tilting seen in the Orr mechanism. However, when
3D disturbances were accounted for, Butler and Farrell (1992) and Reddy and Henningson (1993) were able to identify
streamwise vortices as an initial condition, which led to the development of streamwise streaks, providing evidence of the
lift-up effect. A spatial framework accounting for non-parallel effects, however suits boundary layer flows better since
these flows are convectively unstable. Thus, Andersson et al. (1999) and Luchini (2000) developed spatial frameworks
to determine optimal initial conditions using adjoint based optimization techniques. They also concluded that streamwise
vortices were the optimal initial condition that later developed into streaks, providing evidence of the lift-up effect. Levin
and Henningson (2003) compared the behaviour of modal (exponential) and non-modal (algebraic) instabilities in a flat
plate boundary layer. They found that the algebraic instability in the form of streaks dominates in favourable pressure
gradient regimes. In contrast, the exponential instability in the form of TS waves dominates in adverse pressure gradient
regimes. For zero pressure gradient, it was found that exponential and algebraic instabilities co-exist.

1.7.2. 3D flows
The more relevant scenario of non-modal growth in 3D boundary layers is now considered. As already stated in Sec-

tion 1.3, non-modal growth can precondition modal growth in 3D bounday layers in Path B of the various transtion paths
shown in Figure 1.1. This subsection explores the results of spatial adjoint analysis that have shed light on this phenom-
ena. Byström (2007), Tempelmann et al. (2010) and Lucas (2014) used different modifications of Parabolized Stability
Equations and its corresponding adjoint equations to obtain optimal initial conditions for maximum perturbation growth
in Falkner Skan Cooke Boundary layers. They all find that the initial disturbances are streamwise-oriented vortices tilted
against mean crossflow shear. These vortices evolve in an external streamline aligned direction into streaks that are slightly
aligned in the direction of mean crossflow shear. Tempelmann et al. (2010) and Lucas (2014) point that the tilting with
respect to mean crossflow shear points towards the presence of Orr mechanism, whereas the streamwise vortex to streak
conversion points towards to the lift-up effect. Furthermore, Byström (2007), Tempelmann et al. (2010) and Lucas (2014)
initialized an optimal initial condition in subcritical regime where no unstable modes could be found, and allowed it to
develop downstream into a supercritical regime where unstable modes could be identified. They find that the shape func-
tion of the evolved non-modal perturbation is similar to the modal perturbation shape function in the supercritical regime.
Furthermore, the slope of perturbation energy amplitude evolution curves remains the same in the supercritical regime for
both modal and non-modal instabilities. These features point towards the potential of a non-modal perturbation initialized
in a subcritical regime providing an initial amplitude to the crossflow mode in the supercritical regime.

1.7.3. Step Flows
The discussion above corresponds to non-modal growth in smooth base flows wherein perturbations initially non-modal
with respect to a given base flow can bypass modal growth in 2D flows or precondition modal growth in 3D flows. These
situations are referred to as initial condition driven non-modality in this thesis. Step flows provide an alternative represen-
tation of the problem, wherein a region of rapid base flow change can potentially induce differences relative to behaviour
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predicted by modal mechanisms. These effects are referred to as base flow deformation driven non-modality. Some crite-
ria can be observed in literature that attempt to differentiate modal from non-modal growth in step flows which are first
presented. Physical features of the lift-up effect observed in initial condition driven non-modality also feature in step flows,
and are thus presented later.

Criteria
Marxen, Lang, Rist, Levin, and Henningson (2009) propose to observe the growth rates of base flow tangential and normal
perturbation components, such that a difference in growth rates indicate non-modal behaviour and similarity in growth rates
indicate modal growth. The authors also claim that non-modal growth corresponds to perturbation being misaligned with
respect to direction of non-modal cases. These criteria were proposed for a non-step 2D flow subjected to favourable
pressure gradient followed by adverse pressure gradient, leading up to separation. Inspired by these criteria, Casacuberta,
Hickel, Westerbeek, and Kotsonis (2022) propose to observe the growth rates of base flow tangential and total perturbation
vector, and the alignment/misalignment of the primary total perturbation vector with the base flow to distinguish non-modal
and modal mechanisms in cases involving interaction of stationary crossflow instability with an FFS (as elaborated upon
in Section 5.2.2). They note that far upstream and downstream of the step, these growth rates match each other, while in
the vicinity of the step, they do not match each other. The authors then find the cosine of the angle between the primary
perturbation vector and the base flow. They find that corresponding to the regions of growth rate discrepancy, there are
regions where the cosine does not take a value near one, indicating that the perturbation vector is misaligned with the base
flow. Shortly downstream of the step, tangential and total perturbation growth rates match each other again. Therefore,
they claim that at the vicinity of the step, modal and non-modal effects might be present together.

Lift-up Effect
To observe the lift-up effect in step cases, Lanzerstorfer and Kuhlmann (2012) propose to decompose the perturbation

(υ′) into components paralllel (υ′
∥) and perpendicular (υ

′
⊥) to the base flow (possessing velocity VB) as per

υ′ = υ′
∥ + υ′

⊥. (1.20)

Physically υ′
∥ corresponds to the field of streaky structures and υ′

∥ corresponds to the field of counter-rotating rollers
(Picella et al., 2018). The production term (P = −(υ′ · (∇VB · υ′))) in the Reynolds-Orr energy balance is then
decomposed into four different contributions as per

P =

4∑
i=1

Ii = −υ′
⊥ · (∇VB · υ′

⊥)− υ′
∥ · (∇VB · υ′

⊥)− υ′
⊥ · (∇VB · υ′

∥)− υ′
∥ · (∇VB · υ′

∥). (1.21)

The second component I2 is considered indicative of the lift-up effect by Lanzerstorfer and Kuhlmann (2012). I2 has
been used to identify lift-up effect in many non-step base flows as well (Albensoeder et al., 2001; Loiseau, Robinet,
& Leriche, 2016; Picella et al., 2018). Physically, the effect corresponds to energy transfer from the base flow to the
perturbation component parallel to base flow (or streaks) via the perturbation component perpendicular to base flow (or
rollers) (Picella et al., 2018). Although, there appears to be a contrasting observation compared to conventional lift-up
effect which destabilizes perturbations. Lanzerstorfer and Kuhlmann (2012) observe the lift-up effect to be stabilizing in
the region near existence of separation bubbles, where perturbations are found to grow. In these regions I4 is dominant,
and the authors claim that the sustenance of streaks is due to feedback from the recirculating bubble. It is to be noted that
Lanzerstorfer and Kuhlmann (2012) do not draw any connection to transient growth.

Casacuberta, Hickel, and Kotsonis (2022) also find evidence of lift-up driven perturbation stabilization. For interac-
tions of the stationary crossflow instability with an FFS, Casacuberta, Hickel, and Kotsonis (2022) perform a similar
decomposition of production term to monitor I2 for the cases simulated in Casacuberta, Hickel, Westerbeek, and Kotsonis
(2022), whose results were elaborated upon in Section 1.6.2. The authors claim that the lift-up effect drives crossflow
instability growth in the clean case, evidenced by a consistent positive value of I2 dominating the production term budget
(Equation 1.21). In the largest step case, they show that the production term decomposition of the largest step case yields
stabilized values of I2, in a step-downstream region where the production term showed stabilization. The authors call
this effect the ”reverse lift-up effect”, a stabilizing effect in opposition to the ”classic lift-up effect” which consistently
destabilizes perturbations in the clean case. The reversal of I2 sign is attributed to the cosine of phase difference between
base flow normal and tangential perturbation components reversing sign.

1.8. Gaps in Literature and Scope of Thesis
As discussed in Section 1.6.2, there is a lack of consensus on the mechanisms describing stationary crossflow instability

amplitude evolution on interacting with an FFS. The first step towards understanding this complex interaction would be to
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consider the response of primary stationary crossflow instability to an artificial base flow deformation via the imposition
of a pressure change that does not cause separation. Flow separation and the upwash associated with it complicate the base
flow further and might contribute towards making perturbation behaviour difficult to interpret. Since the initial amplitude
and wavelength of the crossflow mode seeded at the inlet can also affect the mechanisms by which the instability interacts
with the base flow (as examined in Section 1.6.2), the scope of this study is limited to studying the behaviour of linear
evolution with one particular wavelength. Appropriate frameworks need to be developed to understand mechanisms of
amplitude evolution when an incoming stationary crossflow mode faces an artificially developed rapid base flow variation.
The spanwise integrated production term proposed by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) is a good
starting point to interpret perturbation behaviour, but it is important to understand what factors determines the behavioural
trends of production term. There is also a need to formulate the entire energy balance equation, to isolate the growth of
energy in x (as shown by Karp and Hack (2018)) and relate it to production term behaviour, rather than relying on directly
correlating production term and perturbation amplitude behaviour. Counting the number of inflection points (Eppink,
2020) and the nature of directional profile (Mack, 1984) might also prove to be relevant theories to explain perturbation
behaviour, and the universality of these theories need to be tested.

If the mechanisms of amplitude evolution are clear, there remains a need to investigate whether the initially modal per-
turbation undergoes transformation in character. Mechanisms such as the lift-up effect serve as a starting point to compare
the behaviour of perturbation in base flow deformed cases and the clean case. The lift-up effect appears to be destabilizing
in the clean case. If there is a possibility of stabilization via reverse lift-up in base flow deformed cases as observed by
Casacuberta, Hickel, and Kotsonis (2022) in the largest step, it could be considered as a hint of deviation from modal
behaviour. Although the Orr mechanism does not find mention in step studies, a change in shear in a rapid base flow could
possibly affect perturbation tilt, and thus show differences with respect to clean case behaviour. Whether the perturba-
tion tilt connects to energy exchange mechanisms or other relevant features of modal evolution needs to be explored via
frameworks to understand factors affecting perturbation tilt and its influence on perturbation behaviour. Furthermore, the
action of lift-up effect and Orr mechanism can be compared with local modal behaviour, which can be approximated by
the Orr-Sommerfeld mode. Final decisions regarding deviation from modal character can be taken by observing whether
the local mode shows different character from the perspective of the Orr mechanism and lift-up effect, with respect to
the actual perturbation behaviour simulated by a method more accurate than LST. If some evidence of these mechanisms
showing behavioural differences with respect to local modal behaviour is found, the criteria mentioned in subsection 1.7.3
are examined. If they are satisfied, it could be claimed that the incoming mode undergoes transformation to base flow
deformed non-modal character. Else, it can be claimed that the incoming mode is simply a manifestation of a base flow
deformed mode. This leads to the definition of the research questions and objective of the project in the upcoming section.

1.9. Research Questions and Objective
The research questions for the thesis are

1. What mechanisms govern the amplitude evolution of a stationary primary crossflow perturbation on its interaction
with a rapid base flow deformation?

• Does a linear energy balance explain the mechanisms governing amplitude evolution?
• Can the effect of an FFS on amplitude evolution be reproduced by an appropriately designed synthetic base
flow deformation?

2. What mechanisms and criteria can be identified to explain if an initially modal perturbation deviates from modal
character under the influence of a rapidly deformed base flow?

• What metrics can identify mechanisms such as the lift-up effect or Orr mechanism when the perturbation
evolves in a clean or deformed base flow?

• Do these mechanisms capture deviation of perturbation from local modal behaviour?
• Does the perturbation become non-modal based on criteria identified from literature?

Associated with the research questions, the main research objective of this thesis is

”To assess the evolution of a stationary primary crossflow perturbation in the region of a rapid base flow
deformation by performing numerical simulations, developing frameworks to identify mechanisms governing
instability evolution and observing whether the instability deviates from its initial modal character.”

The research objective can be accomplished by achieving the following sub-objectives
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1. Designing an appropriate base flow deformation and selecting appropriate methods to simulate base flow and per-
turbation response to such a base flow.

2. Developing energy balance frameworks to explain mechanisms by which a perturbation gains or loses energy, po-
tentially explaining its amplitude response.

3. Identifying mechanisms and criteria that can compare instability behaviour with modal behaviour in regions of
deformed base flow.

4. Comparing mechanisms of perturbation response to an FFS to the perturbation response of an appropriately de-
signed base flow deformation with similar pressure characteristics to validate whether similar mechanisms govern
perturbation evolution in both rapidly changing flow regimes.

1.10. Outline
The sub-objectives defined above provide inspiration for the sequence of subsequent chapters in this thesis. Inspired by
the base flow deformation imposed by an FFS, details of the method developed to rapidly deform a base flow and the
subsequent development of test cases to be simulated in this thesis are presented in Chapter 2. The flow problem to
simulate the base flow of test cases is then defined, followed by the selection of the best method to simulate base flow in
Chapter 3. The perturbation evolution problem is then considered, and an elaborate selection procedure to select the best
method to model perturbation evolution is presented in Chapter 4. The numerical framework to understand mechanisms
of perturbation evolution via the spanwise Reynolds-Orr framework, and to evaluate deviation of perturbation from modal
behaviour via the perspective of mechanisms and criteria are then presented in Chapter 5. This is followed by analyzing the
results of perturbation evolution through the developed base flow deformations in Chapter 6. A validation study comparing
the mechanisms influencing perturbation evolution in step cases with some representative test cases is then considered in
Chapter 7. This is followed by the conclusions and recommendations for future work in Chapter 8.

1.11. Unique Contributions
It may appear difficult to segregate the unique contributions of this thesis from already implemented techniques in

literature, thus motivating this section to highlight these contributions explicitly. The idea of observing terms of the
Reynolds-Orr energy balance to understand perturbation propagation has already been implemented multiple times, with
prominent examples relevant for this thesis being Albensoeder et al. (2001) (investigation of 3D perturbation in temporal
framework in a 2D base flow), Karp and Hack (2018) (investigation of 3D perturbation in spatial framework in a 2D
base flow), and Lanzerstorfer and Kuhlmann (2012) (investigation of 3D perturbation in spatio-temporal framework in
a 2D base flow). In the above-stated investigations, the authors used spanwise periodic perturbations with no growth in
spanwise direction, prompting them to integrate the energy balance equation in the spanwise direction, in order to isolate
energy growth either in space or time. Albensoeder et al. (2001), Lanzerstorfer and Kuhlmann (2012), and Karp and Hack
(2018) evaluated all terms of the energy balance equation, and explicitly related the growth of energy in space or time to
the dominant term in the energy balance i.e. the production term. These studies potentially motivated Casacuberta, Hickel,
Westerbeek, and Kotsonis (2022) to use the spanwise integrated Reynolds-Orr approach to understand the spatial growth
or decay of spanwise periodic stationary crossflow instability in a 3D base flow. But, the authors chose to observe the
production term and correlate its behaviour to the amplitude evolution of a spanwise periodic perturbation, without explic-
itly showing how the production term relates to spatial energy growth. Also, Casacuberta, Hickel, and Kotsonis (2022)
provide a method to interpret production term behaviour in Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) via the
I1 to I4 decomposition. Although physically relevant (refer Section 1.7.3), this approach does not help identify features
of base flow that might cause a perturbation to behave differently in base flow deformed cases compared to the clean case.
This motivates the first unique contribution of the current thesis, where an attempt is made to decompose the production
term by which the differences in perturbation behaviour between deformed cases and the clean case can be linked to dif-
ferences in the behaviour of their underlying base flows (Section 5.1.2 and Section 6.3.1), and to subsequently show how
the production term’s behaviour explicitly relates to spatial energy growth or decay of linearly evolving primary stationary
crossflow instability interacting with a rapid base flow deformation (Section 5.1.3, Section 5.1.4, and Section 6.3.2). The
second unique contribution is the development of a mathematical framework to understand perturbation phase evolution,
which is then related to the Orr mechanism, as presented in Section 5.2.1 and Section 6.4.2.



2
Synthetic Base Flow Deformation Design

In this thesis, a synthetic base flow deformation is obtained by imposing a rapid pressure variation on the external pressure
distribution of the clean case (which varies slowly and has a favourable gradient), with the assumption that the changed
external pressure distribution propagates down to the boundary layer, thus imposing a locally changed pressure field. In
this chapter, the details of the clean case external pressure distribution are first provided. Next, details on the pressure
variation imposed by an FFS are presented. This provides inspiration to develop pressure variations that are to be imposed
on the clean case pressure distribution. Finally, an overview of the test cases to be simulated in this thesis are provided.

2.1. Clean Case Pressure Distribution
The clean case pressure distribution is obtained from a part of the chordwise pressure distribution of a 45° swept wing
tested experimentally at TU Delft by Rius-Vidales and Kotsonis (2021). This part of the swept wing pressure distribution
has a favourable pressure gradient, beginning at 5% of wing chord, where the δ99 thickness is δ0 = 7.71×10−4m, and the
part stretches 517 δ0. A plot of the clean case pressure distribution is shown in Appendix A.1.

Figure 2.1: Evolution of∆P in three different step cases (a) Step A (light green) (b) Step B (grey) (c) Step C (purple); plotted using data taken from
the work of Casacuberta, Hickel, Westerbeek, and Kotsonis (2022).
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2.2. Inspiration from the FFS
In Section 1.6.1, it is observed that the step imposes a non-monotonic pressure field, which subsequently contributes to

rapidly deforming the base flow. The behaviour changes from the clean case favourable pressure gradient to an adverse
pressure gradient region upstream of the step, followed by a strong favourable pressure gradient region at the step vicinity,
followed by an adverse pressure gradient region downstream of the step, before eventually relaxing back to the clean case
favourable pressure gradient (Tufts et al., 2017; Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022). This behaviour is
captured by comparing the behaviour of a streamline seeded at y/δ0 = 0.2 and subtracting the clean case pressure distri-
bution from it as shown in Figure 2.1. This parameter is denoted as pressure variation or ∆P and shown in Figure 2.1.
Here, the location x/δ0 = 177.62 corresponds to the location of the step. For ease of interpretation, a coordinate xst can
be introduced so that xst/δ0 = x− 177.62 = 0 corresponds to the step location. The pressure variation in Figure 2.1 can
be considered to locally be ”three-way”, with two local regions of increasing ∆P (adverse) and a sharp local region of
decreasing ∆P (favourable) in between. This provides motivation to investigate two different types of ∆P distributions.
One would have an adverse ∆P region followed by a favourable ∆P region, whereas the other would have a favourable
∆P region followed by an adverse ∆P region. These constitute ”two-way” ∆P distributions. A ∆P distribution com-
bining two two-way distributions can form an adverse, favourable, adverse three-way ∆P distribution, similar to that
simulated in the step. These ∆P distributions are superimposed on the pressure distribution of the clean case to give rise
to an external pressure distribution Pe, also referred to as ”effective pressure distribution”. Using a numerical method
that allows the propagation of effective pressure distribution down to the boundary layer, the base flow can be deformed
locally.

2.3. Development of Gaussian-like Pressure Variation
The developed ∆P distributions should satisfy three criteria. The first criterion is to ensure a smooth ∆P distribution

(i.e. the distribution is continuous and differentiable), such that the resulting Pe profile is also smooth, leading to no
unphysical jump conditions while simulating base flow. The second criterion is to ensure that the change of Pe is rapid
such that the resulting base flow deformation would also be rapid in nature. This implies that the ∆P distribution is
localized to a short width scale, closer to the order of boundary layer thickness than numerical domain size, such that
Pe relaxes back to clean case pressure distribution beyond the realm of imposed ∆P . The third criterion is that the ∆P
distribution should be easily parametrizable, which would allow for an easy development of test cases. The width of∆P
distribution would naturally be the first parameter, as its appropriate selection would ensure a rapid base flow deformation.
The second parameter would be the gradient of the ∆P distribution, as its increased magnitude for a fixed width would
lead to stronger base flow deformation. The third parameter would be the location of ∆P imposition, where a location
close to xst/δ0 = 0 would help in comparisons against FFS behaviour.

Figure 2.2: (a)∆P distribution of a positive pf case (blue) and a negative pf case (red) case; green dash-dotted line denotes w/2, magenta
dash-dotted line denotes A, brown dash-dotted line completes the triangle formed by A and w/2 with its slope representing -pf ; (b) Formation of a

three-way∆P distribution (purple dash-dotted) combining a positive and a negative pf ∆P distribution.



2.3. Development of Gaussian-like Pressure Variation 21

Gaussian distributions form an excellent starting point for designing ∆P distributions satisfying majority of the above
criteria. A gaussian curve (g(x)) is quantified by

g =
1

σ
√
2π
e−

1
2 (

x−µ
σ )2 (2.1)

where µ is the mean and σ is the standard deviation. By design, about 99% of the area of a standardized Gaussian falls
under µ− 3σ to µ+ 3σ. If ∆P is prescribed as a Gaussian curve, its inherent nature would be of the form of a two-way
distribution. Since the curve itself is smooth, a superposition onto the clean case freestream pressure curve would give
an effective pressure distribution which is also smooth. The normalization of Gaussian (1/σ

√
2π) in Equation 2.1 can be

dropped and replaced by an amplitude (G), such that the change of the amplitude can result in stronger pressure changes
(g = Ge−((x−µ)/σ)2). However, the issue with directly choosing the Gaussian is that the width of the ∆P distribution is
not easily controllable. Hence, the Gaussian is modified such that it always takes the same arbitrarily low value at x±w/2,
thus resulting in a concrete definition of∆P width. The function is specified as

∆P = Ae−B(x−µ)2 , (2.2)

where A and B are coefficients that need to be defined. For ensuring the same arbitrary limit at x± µ = ±w/2, the value
of the limit ’L’ is substituted into Equation 2.2 yields

L = Ae
−Bw2

4 . (2.3)

This limit is chosen to be an arbitrarily small number 1E-3. Now, an expression of B is obtained as

B = − 4

w2
ln
(L
A

)
. (2.4)

The last coefficient that needs to be specified is A. This is representative of the amplitude of the ∆P curve. The maxi-
mum pressure gradient of the∆P curve would be a naturally suited candidate to derive A. However, this would result in
a complicated implicit procedure involving differentiation of the∆P expression in Equation 2.2. Instead, a simple repre-
sentation of pressure gradient in terms of the slope of a line joining the peak of the curve on the y axis and x±µ = ±w/2
on the x axis is proposed. This pressure gradient representation is called pressure factor, denoted as pf , given by

pf = −2A

w
. (2.5)

A diagrammatic visualization of the definition of pf , A and w is provided in the Figure 2.2. Specifying pf , w and µ thus
lead to the definition of coefficients A and B, which result in the∆P curve. A region of negative∆P gradient is called a
favourable ∆P regime, and a region of positive ∆P gradient is called an adverse ∆P regime. A positive pf distribution
has a favourable∆P regime followed by an adverse∆P regime. Whereas, a negative pf distribution has an adverse∆P
regime followed by a favourable ∆P regime. The developed ∆P distribution is superposed onto the external pressure
distribution of clean case to generate the effective pressure distribution of two-way cases.

The option of superposing two two-way distributions to create a three-way distribution is now considered. Sample three-
way distributions are inspired by the step (Figure 2.1), which has an adverse-favourable-adverse∆P behaviour, with∆P
taking zero value in the favourable ∆P regime. For this purpose, a negative pf distribution with mean µ1 and a positive
pf distribution with mean µ2 are considered. Both distributions are assumed to have the same widthw. The means µ1 and
µ2 are offset from µ0, the previous near-step mean for two-way cases, as per

µ1 = µ0 − w/4, (2.6)

µ2 = µ0 + w/4. (2.7)

A diagrammatic visualization of the formation of a three-way ∆P as a resultant of addition of two two-way ∆P dis-
tributions is shown in Figure 2.2. The adverse ∆P regimes of the resultant curve retain the same ∆P gradient as the
underlying two-way ∆P distributions. However, the favourable ∆P regime is now a superposition of both cases, with
a larger ∆P gradient than the underlying distributions. This mimics the character of step ∆P distributions (Figure 2.1)
wherein a favourable ∆P region of higher gradient is surrounded by two adverse ∆P regions with lower gradient. The
developed ∆P distribution is superposed onto the external pressure distribution of clean case to generate the effective
pressure distribution of three-way cases.
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Figure 2.3: (a)∆P distribution and (b) Effective pressure distribution in 10δ0 cases; −2.5pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

Figure 2.4: (a)∆P distribution and (b) Effective pressure distribution in 30δ0 cases; −2.5pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

2.4. Two-way ∆P cases
Three different width scales i.e. 10δ0, 30δ0 and 50δ0 are considered inspired the observation of non-modal effects by
Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) at O(10δ0). For each of these width scales, six different levels of
pf are considered i.e. pf = ±0.5,±1.5,±2.5. The same set of pf values are selected for different width scales to ensure
that the maximum gradient of ∆P distributions are similar for a particular pf value across width scales considered. The
highest width scale would have the tendency to separate the most at a given pf . This tendency is higher for a negative
pf which faces an adverse pressure gradient first. For the 50δ0 cases, the -2.5 pf case separates when simulated using a
boundary layer solver. Hence, it is replaced by a -2.0 pf case just for the highest width scale. These ∆P distributions
have their centre located at x/δ0 = 177.62 which is the step location considered by Casacuberta, Hickel, Westerbeek,
and Kotsonis (2022). The two-way ∆P distributions and resulting Pe distributions with width 10δ0, 30δ0, and 50δ0 are
shown in Figure 2.3, Figure 2.4, and Figure 2.5 respectively. The effective pressure distributions show that the lowest pf
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cases do not change the sign of pressure gradient, whereas the moderate and higher pf cases result in a change in pressure
gradient sign. It should also be noted that the peak of the ∆P distribution does not exactly correspond to the local peak
of Pe distribution since the clean case pressure distribution has non-zero gradient. Numerical values of characteristics
such as gradient of ∆P distribution and Pe distribution are shown in the Appendix A.2. These two-way distributions
are abbreviated for easier referencing in future sections, i.e. a two-way ∆P case with pf = 2.5 and w = 30δ0 is called
2.5pf 30w.

Figure 2.5: (a)∆P distribution and (b) Effective pressure distribution in 50δ0 cases; −2.0pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

Figure 2.6: (a)∆P distribution and (b) Effective pressure distribution in three-way cases; 0.5pf (light green), 1.5pf (grey), 2.5pf (purple), and clean
case (black); black dotted lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition in deformed cases.

2.5. Three-way ∆P cases
Three-way∆P distributions considered here are formed by superposing a negative pf and a positive pf distribution of

width 30δ0 each. Three different pressure factor magnitudes are considered for the two-way pressure gradient distributions
i.e. pf = 0.5, 1.5, 2.5, with the resultant three-way ∆P distributions shown in Figure 2.6 (a), and effective pressure
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distributions shown in Figure 2.6 (b). The mean of the first and second distributions are calculated in accordance with
Equation 2.6 and Equation 2.7, assuming that µ0/δ0 = 177.62. It should be noted that most results in this thesis are
generated primarily using the two-way ∆P distributions, with the three-way ∆P cases serving as a good reference to
compare results against FFS results. Numerical values of characteristics such as gradient of ∆P distribution and Pe
distribution are shown in the Appendix A.2. These three-way distributions are abbreviated for easier referencing in future
sections, i.e. a three-way∆P case with pf = 2.5 and w = 30δ0 is called 2.5pf 30w × 2.
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Modelling Base Flow Evolution

The previous chapter provides an overview of the method proposed to synthetically deform the base flow, which would
only work if the changes imposed on the external pressure distribution of the clean case (possessing a favourable pressure
gradient) propagate down to the wall. This chapter entails the selection of the best method to simulate the base flow to
ensure the effective pressure gradient propagates down to the wall. It starts with the definition of the flow problem to be
solved. An overview of the full Navier Stokes Equation that governs the base flow problem is then presented. The setup
of Direct Numerical Simulation (DNS) is then discussed, which solves the governing equations with minimal assumptions.
The disadvantages of DNS are then presented, which leads to the exploration of Boundary Layer Equations and the setup
of the Boundary Layer Solver (BLS) to solve these equations. A comparison between DNS and BLS base flow for one
particular test case is presented, following which a method is finalized for simulation. The grid for the selected method is
presented next, and the change of grid is shown not to influence results.

3.1. Base Flow Problem Definition
The base flow problem definition closely corresponds to the work of Casacuberta, Hickel, Westerbeek, and Kotsonis

(2022) with the exception of the kind of external pressure distribution imposed. The coordinate system corresponds to
the swept flat plate coordinate system defined in Section 1.2. Base flow properties are assumed to be spanwise invariant,
reducing the complexity of the problem from 3 to 2.5 dimensions. To compute the base flow, a domain of chordwise length
517δ0 (same as the chordwise extent of pressure distribution in Section 2.1) and wall-normal height 26δ0 is considered.
Whether the domain needs any resolution in the spanwise direction or not is controlled by the method selected to represent
the base flow. The xy representation of the domain is presented in Appendix B.1. The pressure distribution at the top
boundary of the domain corresponds to the effective pressure distributions developed in Chapter 2. The chordwise velocity
at the inlet (U∞) takes a value of 15.10 m/s. The ratio of inviscid spanwise velocity (W∞) and U∞ is maintained as
-1.24. U∞ and δ0 are consistently used as the velocity and length scales for non-dimensionalization, respectively, and the
Reynolds number based on these scales Re = U∞δ0/ν is maintained as 791.37.

3.2. Full Navier Stokes Equation
The reference flow referred to as the base flow is a steady laminar three-dimensional boundary layer with spanwise

invariance, implying that derivatives in z are zero. The velocities in x, y, and z are UB , VB , and WB , respectively,
consistent with conventions specified in Section 1.2. A spanwise invariant pressure field PB is also present. The steady
Navier Stokes Equations governing base flow evolution read

∂UB
∂x

+
∂VB
∂y

= 0, (3.1)

UB
∂UB
∂x

+ VB
∂UB
∂y

= −1

ρ

∂PB
∂x

+ ν

(
∂2UB
∂x2

+
∂2UB
∂y2

)
, (3.2)
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∂VB
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∂VB
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, (3.3)
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∂WB
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(
∂2WB
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+
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∂y2

)
. (3.4)
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3.3. Direct Numerical Simulation
Direct Numerical Simulation is a technique used to solve the full elliptic Navier Stokes Equations with no assumptions.

In this thesis, the three-dimensional Navier Stokes equations are solved using an in-house conservative finite volume solver,
namely, INCA (Hickel & Adams, 2008; Hickel, Egerer, & Larsson, 2014). The setup of steady state DNS used in this
thesis closely mimics the setup of Casacuberta, Hickel, Westerbeek, and Kotsonis (2022). The assumption of spanwise
invariance of the flow field implies that the discretization is primarily done in x and y directions, with two grid points in z
direction. At the inflow, a 3D boundary layer obtained from the solution to the Falkner-Skan-Cooke equations is imposed.
At the top boundary, a Dirichlet boundary condition is used for specifying external pressure, which is obtained from the
expressions obtained from Chapter 2. For velocities at the top boundary, a homogeneous Neumann boundary condition
is prescribed. At the wall, the standard no-slip condition is used. At the outlet, the external pressure is specified, and a
second-order Neumann Boundary condition is used for velocity. The initial condition at the first time step is specified
by initializing Falkner-Skan-Cooke profiles at each location. The equations are marched in time till the flow reaches a
steady state using an explicit third-order Runge Kutta scheme. Each iteration in time involves converging the Poisson
equation, where the limit is set to 1E-9 for convergence. The stopping criteria for time is based on a L2 norm of temporal
derivatives reaching an arbitrarily small value of 1E-8. Beyond this, a steady state of base flow can be safely claimed since
temporal derivatives become extremely small. During the solution procedure, there is a provision for vertical momentum
to flow upwards or downwards in the top boundary so as to ensure that the solutions are physical. DNS is computationally
expensive due to the elliptic nature of governing equations, which motivates a simplification of these governing equations
to a parabolic state under certain assumptions, subsequently resulting in a significant reduction of computational cost.

3.4. Boundary Layer Equations and Solver
The elliptic Navier Stokes equation can be simplified to parabolic form under three assumptions:

1. The boundary layer thickness (δ) is much smaller than the characteristic length scale of the problem (l) i.e. δ << l.
2. The order ofmagnitude of second-order derivatives of wall-tangential components of base flow inx aremuch smaller

than the second-order derivatives in y, and can subsequently be neglected.
3. The base flow y momentum equation (Equation 3.3) is assumed to simplify to

∂PB
∂y

= 0. (3.5)

Schlichting and Gersten (2000) explains that this assumption physically corresponds to a fluid particle having no
mass or experiencing no friction while moving in the wall-normal direction in the boundary layer. The invariance of
base flow pressure in y implies that the external pressure applied at the top boundary is felt unaltered in the near-wall
region.

The simplified parabolic equations, termed Boundary Layer Equations, read

∂UB
∂x

+
∂VB
∂y

= 0, (3.6)

UB
∂UB
∂x
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∂UB
∂y
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∂Ue
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+ ν
∂2UB
∂y2

, (3.7)

UB
∂WB

∂x
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∂y
= ν

∂2WB

∂y2
, (3.8)

where Ue represents the external velocity, which can be obtained from the externally imposed pressure (Pe) by means of
the differential version of the Bernoulli Equation which reads

Ue
∂Ue
∂x

= −1

ρ

∂Pe
∂x

. (3.9)

The process of simplifying Navier Stokes Equations to Boundary Layer Equations along with the motivation for the above-
stated assumptions is provided in Appendix B.2.



3.5. Comparison of DNS and BLS Base Flow 27

The boundary layer solver (BLS) simultaneously satisfies Equation 3.6, Equation 3.7, and Equation 3.8 to generate the
base flow. The system of equations is parabolic, which can be solved using a chordwise marching procedure at a fraction
of the cost of solving the fully elliptic Navier Stokes equations. Marching in the x direction is conducted using a second-
order implicit finite difference scheme on a uniformly spaced grid. Chebyshev polynomials are used for discretizing the
equations in the wall-normal direction using the procedure proposed by Malik (1990). Using Chebyshev polynomials
gives dual benefits of spectral convergence in the wall-normal direction and allows placement of half the points within the
boundary layer, where derivatives of base flow are ofmuch highermagnitude than the inviscid region. The inflow condition
of the marching procedure is specified by a Falkner-Skan-Cooke boundary layer solution. The boundary conditions at the
wall are given by the no-slip condition. At the top boundary placed far away from the wall, an external velocity is imposed.
It is obtained from the effective pressure distributions specified in Chapter 2 by satisfying the Bernoulli Equation. It is to
be noted that effective pressure, base flow pressure and external pressure are synonymous in boundary layer solver base
flows.

BLS although fast is limited in usage by its assumptions. BLS can’t march past separation since these scenarios in-
volve a backward propagating base flow, where the parabolic marching procedure of BLS fails (Goldstein, 1948). Some
assumptions of BLS fail in adverse pressure gradient regions where an inflection point appears. Clearly, in such cases the
assumption of UBxx

<< UByy
is wrong, since UByy

goes to zero near the inflection point. Boundary layer solvers also
cannot capture any pressure variation in y, which could be relevant in natural manifestations of deformed base flow, as
seen in the case of the FFS in Figure 1.4, where pressure varies with y.

3.5. Comparison of DNS and BLS Base Flow
With regards to the cases considered in this thesis, it is preferred that the pressure field imposed at the top propagates

down to the wall, such that the boundary layer experiences a local pressure change. The BLS would be an appropriate fit
since it does not impose any wall-normal changes in base flow pressure. The BLS and DNS results for the clean case are
similar in terms of pressure distribution imposed at the top boundary propagating down to the wall without any alteration.
However, the usage of BLS in cases where the external pressure changes in the order of boundary layer thickness might
result in a flow field different from that predicted by DNS due to the violation of assumptions of boundary layer theory.
A comparison of BLS results with DNS results is thus conducted in this section to understand if these assumptions are
violated. The external pressure distribution of the −2.5 pf30w case is imposed directly as the top boundary condition of
DNS and via computation of external velocity using the Bernoulli Equation in BLS to evaluate differences between the
generated flow fields. The grid used for DNS has y+ values less than 1.3, and the details of the boundary layer grid are
provided in Section 3.6.

Figure 3.1: Contours of base flow pressure in (a) BLS and (b) DNS solution of −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition
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The pressure field for the BLS solution is a uniform extension of the pressure in the top boundary in the wall-normal
direction since no wall-normal gradients are allowed, as seen in Figure 3.1 (a). However, in the DNS solution, the pres-
sure distribution at the top boundary (featuring a local increase and subsequent decrease) does not resemble the pressure
distribution near the wall, which appears close to a monotonically decreasing pressure variation, as seen in Figure 3.1 (b).
Plots of base flow pressure at the top and near-wall region further reveal this discrepancy, as shown in Appendix B.3. It
is thus evident that the wall-normal variation of pressure is non-zero in the DNS solution. This has consequences for the
VB field, where the VB field predicted by BLS is orders of magnitude higher than that predicted by DNS as shown in
Figure 3.2. The discrepancy in VB fields of DNS and BLS is also shown using plots at two different wall-normal levels in
Appendix B.3. This can potentially be attributed to the inviscid nature of particles moving in the y direction in the BLS
solution, compared with viscous effects inhibiting y motion in the DNS solution.

Figure 3.2: Contours of wall-normal velocity in (a) BLS and (b) DNS solution of −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition.

Figure 3.3: Contours of chordwise velocity in (a) BLS and (b) DNS solution of−2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition.

The pressure not propagating down to the boundary layer would imply that the local acceleration or deceleration expe-
rienced in the region of deformation would also be much lesser in the DNS solution compared with the boundary layer
solution. This can be seen observing the UB contours in Figure 3.3. An upward deflection of constant contour levels in
boundary layer solver implies that chordwise velocity experiences deceleration along a line drawn at a fixed y level (i.e.
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in a region on an xy plane where the y variation of a quantity follows a monotonically increasing trend, an upward deflec-
tion of constant contour levels would correspond to decrease of the value of the quantity along the chordwise direction,
when monitored at a constant wall-normal height and vice versa). A downward deflection has the opposite consequence.
The BLS base flow has much more significant upward and downward deflection of UB contour levels in the region of
deformation when compared with the DNS base flow, indicating a larger value of the chordwise derivative of UB in the
near-wall region of base flow deformation. This is also evidenced in the UBx

plots at different wall-normal levels attached
in the Appendix B.3, where UBx

at near-wall levels is very different for the BLS solution compared to the DNS solution.

Thus, the boundary layer approximation of neglecting terms in the y momentum equation is invalid in the full Navier
Stokes representation of fluid flow captured by DNS, rendering the BLS solution an idealized base flow. The BLS is used
for the rest of the thesis to ensure that the pressure change imposed at the top propagates down to the wall, resulting in a
local pressure change in the near-wall boundary layer and subsequent rapid base flow deformation. Since the base flow
results are idealized, their usage in calculating perturbation properties could yield idealized results. Hence, the results are
accepted with caution, and a validation section is also presented in Chapter 7, wherein the results of a BLS baseflow and
subsequent perturbation analysis of base flow deformations imposed by a three-way pressure change are compared with
the results of a DNS base flow and perturbation analysis of a natural base flow deformation i.e. the FFS. This checks if
the effects of an FFS on deviating base flow and perturbation behaviour from clean case behaviour can be captured by a
synthetic base flow deformation.

Figure 3.4: Plot of wall-normal variation of chordwise velocity in−2.5pf 30w case at xst/δ0 = (a) −0.6w, (b) −0.25w, (c) 0.25w, and (d) 0.6w
whenNx = 12000 (grey circles), 15000 (magenta solid), and 18000 (light green dashed).

3.6. Grid for Selected Method

The grid for the boundary layer solver has 15000 uniform divisions in x direction. Since Chebyshev polynomials are
used to discretize the equations in y direction, the y grid is non-uniform, with 100 divisions such that half of the points are
placed beneath y/δ0 = 0.1. To ensure that the results of the base flow do not vary with the grid, different grids are tested
by varying x and y divisions one at a time. A grid with more resolution and another with lesser resolution are considered
compared to the current grid. Values of UB profiles at four different locations and δ∗ values in the vicinity of deformation
are compared to show that the grid used does not impact flow physics. The results of x refinement are shown in Figure 3.4
and Figure 3.5. The results of the grid used here superpose those of a grid of higher and lower x resolution verifying that
results generated wouldn’t be dependent on the number of grid points in x. A similar study is conducted for wall-normal
discretization which shows that results are independent of y discretization, and the results are attached in Appendix B.5.
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Figure 3.5: Plot of chordwise variation of displacement thickness in−2.5pf 30w case whenNx = 12000 (grey circles), 15000 (magenta solid), and
18000 (light green dashed); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition.



4
Modelling Perturbation Evolution

This chapter tackles the selection of an appropriate method to model perturbation evolution using the base flow solution
generated using BLS. The derivation of linearized perturbation equations is first presented. This is followed by the descrip-
tion of various ansatz used to model perturbation behaviour. A description of various methods used to solve linearized
perturbation equations using various ansatz is then provided with a brief of solution techniques and detailed explanations
of limitations. A section then follows on selecting the best-suited method to achieve the objectives of the current thesis.
This is followed by a description of the domain and grid for the selected method, with a verification procedure to prove
that the results do not depend on the grid selected.

4.1. Perturbation Evolution Problem Definition
The perturbation is seeded as a spanwise periodic stationary crossflowmode with spanwise wavelength 7.5 mm obtained

as a solution of linear local stability analysis (explained in Section 4.3.2) as specified by Casacuberta, Hickel, Westerbeek,
and Kotsonis (2022). The authors ground their choice by the ability of the mode to achieve maximum amplification at
the end of the domain considered in Section 3.1. In the current thesis, the same mode is used to ease the comparison
process with FFS cases simulated by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022). The size of the domain
for perturbation evolution in wall-normal direction remains consistent with specifications in Section 3.1. However, the
chordwise extent of the base flow domain is cropped since the analysis of perturbation behaviour only needs to be conducted
in regions around the vicinity of the base flow deformation. The inlet is placed at x/δ0 = 140, sufficiently upstream of
the largest imposed pressure variation. The outlet is placed at x/δ0 = 273 to provide enough domain length to observe
perturbation evolution trends downstream of the base flow deformation. The domain (visualized in Appendix B.1) does
not have any z extension as the properties of perturbation remain spanwise periodic throughout the domain. The selected
mode is allowed to grow or decay in the chordwise direction, and the equations governing its evolution are presented in
Section 4.2.

4.2. Linearized Perturbation Equations
Linearized perturbation equations can be derived by subtracting the equation of base flow from the equation of total flow.

The base flow components UB , VB andWB are interchangeably denoted UB,1, UB,2 and UB,3 in Einstein convention, and
perturbation velocity u′, v′ and w′ are also interchangeably denoted u′1, u′2 and u′3 in Einstein convention. The equation
of total flow is first considered. The total flow consists of velocity components superposed on their respective base flow
velocity components. A pressure perturbation p′ is also superposed on the base flow pressure. The perturbations modelled
in this thesis are stationary, subsequently implying that the total flow is steady since the base flow is already steady. The
Navier Stokes equation for total flow are

∂(UB,j + u′j)

∂xj
= 0, (4.1)

(UB,j + u′j)
∂(UB,k + u′k)

∂xj
= −1

ρ

∂(PB + p′)

∂xj
+ ν

∂2(UB,k + u′k)

∂x2j
, (4.2)

where the index k considers quantities one at a time, and the index j considers sum of quantities over j = 1, 2, and 3
(similar to Section 1.4). Subtracting the base flow equations (Equation 3.1 to Equation 3.4) from the total flow equations,
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the equations describing perturbation behaviour are obtained as

∂u′j
∂xj

= 0, (4.3)

UB,j
∂u′k
∂xj

+ u′j
∂UB,k
∂xj

= −1

ρ

∂p′

∂xj
+ ν

∂2u′k
∂x2j

− u′j
∂u′k
∂xj

. (4.4)

To linearize the perturbation equations, the definition of a linear operator is considered as per Haberman (1983). Any
operator L is said to be linear if

L(c1v1 + c2v2) = c1L(v1) + c2L(v2), (4.5)

where v1 and v2 are two variables whereas c1 and c2 are arbitrary constants. The operator L can be a linear polynomial
or a partial derivative for Equation 4.5 to be satisfied. However if L involves the multiplication of partial derivatives or
linear polynomials, the linearity condition doesn’t hold anymore. Linearizing Equation 4.5 would thus entail removing
products of partial derivatives, and the result of linearization is

UB,j
∂u′k
∂xj

+ u′j
∂UB,k
∂xj

= −1

ρ

∂p′

∂xj
+ ν

∂2u′k
∂x2k

(4.6)

The eliminated term −u′j∂u′k/∂xj is negligible when the amplitude of perturbation is orders of magnitude lower than the
base flow velocity and its derivative. The perturbation continuity equation Equation 4.3 does not need linearization as it
is already linear in nature.

4.3. Ansatz and Solution Techniques
To solve the perturbation equations in a modal framework, a separation of variables approach can be used (refer Sec-

tion 1.4), where the solution is composed of a sum of complex Fourier modes. The Fourier modes always exist in complex
conjugate pairs, ensuring that the reconstructed perturbation field summing these modes is real. In linear methods, it is suf-
ficient to assume that one such Fourier mode and its corresponding conjugate pair satisfy the linear perturbation equations
individually. Their summation yields the total perturbation, which also satisfies the perturbation equation by the linear-
ity property. The Fourier ansatz for linear perturbation equations relevant for modelling stationary crossflow instability
evolution is first introduced. This is followed by substituting the ansatz into perturbation equations to generate different
solution techniques for perturbation equations.

4.3.1. Ansatz
The most basic ansatz assumed to solve the linearized perturbation equation assumes a periodic dependency in z, and

combined growth and periodicity in x, represented as

u′k = ûk(y) e
i(αx+βz). (4.7)

Growth (or decay) in x is captured by the imaginary part of α (αi), whereas periodicity in x is captured by the real part of
α (αr). β is real since the base flow does not vary in z leaving no scope for perturbation growth in z. ûk(y) is a complex
field representing the shape and phase variation of the perturbation field in y. This ansatz is called the LST ansatz (owing
to similarities with the LST ansatz shown in section 1.4).

The shortcoming of this ansatz lies in its inability to capture history effects. To be able to capture history effects,
Equation 4.7 is modified to

u′k = ûk(x, y) e
i(
∫ x
x0
αds+βz)

. (4.8)

Equation 4.8 is known as the PSE ansatz. The ability to capture history effects is attributed to the integration of α
(Westerbeek, 2020). The difference between the effects of integrated and non-integrated α is visualized in Figure 4.1,
where α varies from the beginning of the domain to the end of the domain. Non-parallel boundary layers feature chang-
ing values of α, whose effects ILST can only capture in a local sense without accounting for history. The existence of
streamwise derivatives in non-parallel flows motivates the need to keep ûk a function of x.

However, the PSE ansatz does not completely allow the presence of different growth rates among different components.
The common growth rate αi captures the bulk of growth common across all components, whereas any difference in growth
rate among components can only be partially captured by differences in ûk evolution across components. In strong non-
parallel boundary layers, perturbations tend to have different growth rates across different components as evidenced in the
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Figure 4.1: Plot of x variation of Ψ = (a) 2Re(e−αix) (red), 2 Re(e−
∫ x
0 αids) (blue), (b) 2 Re(eiαrx) (red), 2 Re(ei

∫ x
0 αrds) (blue), and (c)

2 Re(ei(αr+iαi)x) (red), 2 Re(ei
∫ x
0 (αr+iαi)ds) (blue).

results of stationary crossflow instability interaction with an FFS in Casacuberta et al. (2021). To capture such effects, it
is essential that each component is allowed to grow at a different growth rate, which leads to the HLNS ansatz, expressed
as

u′k = ũk(x, y) e
iβz. (4.9)

Here, ũk(x, y) is a complex field which captures growth and phase variation in xy plane. The z periodicity, represented
by eiβz , is common across all perturbation components. The complex field of ũk(x, y) can be decomposed into terms
responsible for phase variation and magnitude, and rewritten as

u′k = |ũk| ei(ϕk+βz), (4.10)

where |ũk| is the perturbation amplitude function. Its x variation captures the growth or decay of a perturbation. Whereas
its y variation at a fixed x station normalized by the maxima of the amplitude function at the same station represents the
shape function. On the other hand, ϕk represents the xy phase dependency, which controls perturbation tilt in the xy plane
and the direction of lines of constant phase in the xz plane.

Figure 4.2: Wall-normal variation of (a) |f̃ | and (b) −ϕ, where ϕ = 2y (purple), 0 (grey), and −2y (brown).
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Figure 4.3: Representation of Re(f ′) on yz planes when (a) ϕ = 2y, (b) ϕ = 0, and (c) ϕ = −2y; black lines denote lines of constant phase.

Perturbation tilt is of prime interest as it can possibly demonstrate the Orr Mechanism (refer Section 1.7.1 and Sec-
tion 1.8). Hence, artificial fields are constructed to demonstrate how the variation of ϕ influences perturbation tilt. An
arbitrary yz field f ′ = |f̃ |ei(ϕ+βz) is considered, whose amplitude function is given by |f̃ | = ye−y

2

/max(ye−y
2

). The
variation of |f̃ | is plotted in Figure 4.2 (a), approximately resembling the u′ shape function of clean case crossflow modes.
Three different distributions of ϕ (ϕ(y) = 2y, 0,−2y) are tested for a fixed value of β = 2 to understand the effect of ϕ
distribution on tilt, as shown in Figure 4.2 (b). The real-valued field of f ′ is expressed by

Re(f ′) = Re (|f̃ | ei(θ+βz)) = |f̃ | cos(ϕ+ βz). (4.11)

The lines of constant phase for this field in the yz plane are obtained by ϕ+ βz = C, as shown in Figure 4.3. It is noted
that the variation of ϕ with y directly relates to the direction of tilt of the perturbation as it controls the lines of phase in
the yz plane. Tilt (m) can be quantified by the slope of the lines of constant phase with respect to the y axis given by

m = − 1

β

∂ϕ

∂y
. (4.12)

A leftward tilt in Figure 4.3 (a) is noted for the distribution of ϕ(y) = 2y, owing to the negative slope as per Equation 4.12.
A rightward tilt in Figure 4.3 (c) corresponds to the distribution of ϕ(y) = −2y, owing to the positive slope as per
Equation 4.12. Generalizing, since β is a positive constant, the value of −∂ϕ/∂y directly determines the direction in
which the real-valued field of perturbation is tilted.

Figure 4.4: Representation of Re(g′) on xz planes when (a) ϕ = 0.5 and (b) ϕ = 0.5− 0.2x/25; white lines denote lines of constant phase.
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The xz lines of constant phase on the other hand are relevant since the wavenumber vector is in a direction perpendicular
to these lines of constant phase. The control of lines of constant phase in xz planes is shown by constructing artificial fields
g′ = ei(ϕ+βz), whose lines of constant phase are given by ϕ+βz = C. β takes a value of 0.5 and two different values of ϕ
are tested. The first value of ϕ is the constant value of 0.5, which results in straight lines of constant phase (Figure 4.4 (a)).
Whereas when ϕ varies in x, linearly spaced between 0.5 and 0.3 through the domain, curved lines of constant phase are
obtained (Figure 4.4 (b)). The angle θ made by the line of constant phase and the x axis can be computed by differentiating
the equation of lines of constant phase with respect to x and taking its arctan to yield

θ = atan

(
− 1

β

∂ϕ

∂x

)
. (4.13)

In problems of perturbation evolution, ϕ is a parameter varying with both x and y direction. If the ϕ variation with
y remains constant with the change of x station, it implies that ϕx does not change with wall-normal height, further
implying that the direction of lines of constant phase in xz plane are invariant with height considered. One characteristic
line of constant phase can be defined in such a scenario. This would correspond to the assumptions of ILST, which
presumably considers the definition of one line of constant phase (αrx + βz = C) perpendicular to the wavenumber
direction throughout the entire wall-normal height as representative of perturbation lines of constant phase at any height.
Whereas, if the variation of ϕ with y changes with the change of x station, it implies that ϕx changes with wall-normal
height, further implying that the lines of constant phase at two different levels would be aligned in different directions. No
common line of constant phase in xz plane can be identified, casting doubt on whether a direction of wavenumber vector
can be identified.

4.3.2. Incompressible Local Stability Equations and Solver
The disturbance equations stated in Equation 4.3 and Equation 4.6 can be simplified further by substituting Equation 4.7
into the perturbation equations and assuming parallel flow. Parallel flow implies that the base flow is just a function of y,
and the wall-normal velocity is zero. The perturbation derivatives and second derivatives in various directions after the
substitution of the ILST ansatz (Equation 4.7) read

∂u′k
∂x

= iαûkei(αx+βz), (4.14)

∂u′k
∂y

=
∂ûk
∂y

ei(αx+βz), (4.15)

∂u′k
∂z

= iβûkei(αx+βz), (4.16)

∂2u′k
∂x2

= −α2ûke
i(αx+βz), (4.17)

∂2u′k
∂y2

=
∂2ûk
∂y2

ei(αx+βz), (4.18)

∂2u′k
∂z2

= −β2ûke
i(αx+βz). (4.19)

Similar expressions hold for pressure perturbation and aren’t repeated. Substituting these derivatives (Equation 4.14 to
Equation 4.19) into the linearized perturbation equations (Equation 4.3 and Equation 4.6), and factoring out common
exponentials with parallel flow assumptions give

iαû+
∂v̂

∂y
+ iβŵ = 0, (4.20)

iUBαû+ iWBβû+ v̂
∂UB
∂y

= − i
ρ
αp̂+ ν

(
∂2û

∂y2
− (α2 + β2)û

)
, (4.21)

iUBαv̂ + iWBβv̂ = −1

ρ

∂p̂

∂y
+ ν

(
∂2v̂

∂y2
− (α2 + β2)v̂

)
, (4.22)

iUBαŵ + iWBβŵ + v̂
∂WB

∂y
= − i

ρ
βp̂+ ν

(
∂2û

∂y2
− (α2 + β2)ŵ

)
. (4.23)



36 Chapter 4. Modelling Perturbation Evolution

These equations together form the Incompressible Local Stability Equations abbreviated as ILST. The ILST system can be
non-dimensionalized by non-dimensionalizing perturbation and base flow velocities by U∞, length scales by a reference
length scale (δ0) and perturbation pressure by ρU2

∞. The Reynolds number corresponding to this non-dimensionalization
is Re = U∞δ0/ν. When Re, β and base flow are known, the non-dimensionalized version of ILST with appropriate
boundary conditions takes the form of an eigenvalue problem where α is the eigenvalue and [û, v̂, ŵ, p̂]T is the eigenvector.
Assuming a fixed value of Reynolds Number, the x station (to obtain the base flow at that particular station) and β can be
varied to obtain a contour of real and imaginary values of α. Negative imaginary values of α would correspond to regions
of growth, whereas positive regions would correspond to stabilization. Integrating the values of α along x for a fixed value
of β helps develop an approximate idea of whether the value of β corresponds to a mode that grows long-term or short-term.
Thus, even though ILST uses a parallel flow approximation, it is still usually used in weakly non-parallel flows to select
the initial value of mode to be simulated or experimentally observed (Bippes, 1999). Discretization of ILST equations in
y direction by Chebyshev polynomials results in a non-uniform grid in y direction as per Malik (1990), onto which the
base flow solution at a x station is interpolated. On solving the equations, multiple eigenvalues are obtained. A filtering
technique chooses the most physical eigenvalue, motivated by the requirement of the eigenvector to decay exponentially
in the freestream region (Groot, 2018).

4.3.3. Linear Parabolized Stability Equations and Solver
The localized nature of ILST without its ability to take into account history effects and streamwise changes of base flow

limits its usage in cases where these effects could be significant. The Linearized Parabolic Stability Equations (LPSE)
is more preferred in these cases, where the effects of streamwise changes of base flow on perturbation behaviour can be
handled to some degree. The perturbation equations are elliptic in nature which makes these equations difficult to solve.
But these can be parabolized under certain approximations, which make the equations easier to solve as a downstream
marching procedure can be performed ignoring any effects of upstream propagation which would render the system ellip-
tic. To parabolize the perturbation equations, the derivation provided by Westerbeek (2020) is adopted here. The shape
function needs to be slowly varying whereas the wave function is allowed to vary fast (Westerbeek, 2020). A slow varying
coordinate ξ = ϵx is introduced such that ϵ = O(Re−1). The ansatz in Equation 4.8 can be modified as per the modified
formulation to read

u′k = ûk(ξ, y) e
i(
∫ x
x0
αds+βz)

. (4.24)

The change of ûk is given by
∂ûk
∂x

=
∂ξ

∂x

∂ûk
∂ξ

≈ 1

Re

∂ûk
∂ξ

. (4.25)

This yields an expression for the first derivative of u′k which reads

∂u′k
∂x

≈

(
1

Re

∂ûk
∂ξ

+ iαû

)
e
i(
∫ x
x0
αds+βz)

. (4.26)

The second derivative of u′k which features in the viscous dissipation terms of the perturbation momentum equation reads

∂2u′k
∂x2

≈

(
1

Re2
∂2ûk
∂ξ2

+
2iα
Re

∂û

∂ξ
+

iû
Re

∂α

∂ξ
− α2û

)
e
i(
∫ x
x0
αds+βz)

. (4.27)

The term ∂2ûk/∂ξ
2 causes the equation to be elliptic (Westerbeek, 2020), and is thus neglected given that the order of

magnitude is much lesser than the other terms in the equation (Bertolotti, 1991). This slow varying assumption thus
helps parabolize the equations, and this remains valid if streamwise gradients remain small (Bertolotti, 1991; Westerbeek,
2020). Thus, ∂2ûk/∂ξ2 is neglected, and the demarcation of chordwise coordinates into slow-varying and fast-varying
coordinates is not considered further.

Now, the linearized perturbation equations (Equation 4.3 and Equation 4.6) need to rewritten by substituting the PSE
ansatz (Equation 4.8) into the perturbation equations. For this, the first step is deriving expressions for the first and
second derivatives of perturbation velocity. The expressions of perturbation velocity first and second derivatives in various
directions read

∂u′k
∂x

=

(
iαûk +

∂ûk
∂x

)
e
i(
∫ x
x0
αds+βz)

, (4.28)

∂u′k
∂y

=
∂ûk
∂y

e
i(
∫ x
x0
αds+βz)

, (4.29)
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∂u′k
∂z

= iβûke
i(
∫ x
x0
αds+βz)

, (4.30)

∂2u′k
∂x2

=

(
i2α

∂ûk
∂x

+ iûk
∂α

∂x
− α2ûk

)
e
i(
∫ x
x0
αds+βz)

, (4.31)

∂2u′k
∂y2

=
∂2ûk
∂y2

e
i(
∫ x
x0
αds+βz)

, (4.32)

∂2u′k
∂z2

= −β2ûke
i(
∫ x
x0
αds+βz)

. (4.33)

Similar expressions hold for pressure perturbation and aren’t repeated. These derivatives (Equation 4.28 to Equation 4.33)
are substituted into the perturbation equations (Equation 4.3 and Equation 4.6), and the common exponentials are cancelled
off to obtain the following equations:

iαû+
∂û

∂x
+
∂v̂

∂y
+ iβŵ = 0, (4.34)

iUBαû+UB
∂û

∂x
+VB

∂û

∂ŷ
+ iWBβû+ û

∂UB
∂x

+ v̂
∂UB
∂y

= −1

ρ

(
∂p̂

∂x
+ iαp̂

)
+ν

(
i2α

∂û

∂x
+ iû

∂α

∂x
+
∂2û

∂y2
− (α2+β2)û

)
,

(4.35)

iUBαv̂+UB
∂v̂

∂x
+ VB

∂v̂

∂ŷ
+ iWBβv̂+ û

∂VB
∂x

+ v̂
∂VB
∂y

= −1

ρ

∂p̂

∂y
+ ν

(
i2α

∂v̂

∂x
+ iv̂

∂α

∂x
+
∂2v̂

∂y2
− (α2 + β2)v̂

)
, (4.36)

iUBαŵ+UB
∂ŵ

∂x
+VB

∂ŵ

∂ŷ
+ iWBβŵ+ û

∂WB

∂x
+ v̂

∂WB

∂y
= − iβ

ρ
p̂+ν

(
i2α

∂û

∂x
+ iŵ

∂α

∂x
+
∂2ŵ

∂y2
−(α2+β2)ŵ

)
. (4.37)

These equations can be solved as a parabolic marching problem. The initial condition for this marching procedure
is a modal solution obtained from ILST. However, there are two problems that might be encountered while resorting to
parabolic marching. One is the upstream propagation of pressure or acoustic modes, which results in elliptic character of
the equation. These upstream propagating modes are usually rapidly decaying and weak (Herbert, 1994). Thus, either an
appropriately large step size for discretizing the equations can be selected to avoid the influence of such upstream modes
or the influence of upstream acoustic modes can be avoided by neglecting the effects of backward propagating modes
(Herbert, 1994).

The second problem is that ûk is not restricted in the above equations to grow slowly. This is done with a physical norm
which enforces the slow change of ûk by keeping perturbation energy per component constant at each chordwise location
(Herbert, 1994; Westerbeek, 2020), as per ∫

û†k
∂ûk
∂x

= 0. (4.38)

The maxima of |û†k| however can still vary from station to station, and might be slightly different from 1 as a result. This
means that amplitude purely obtained by growth rate integration might be wrong. Hence, while computing amplitude
evolution, the integration of growth rate and the maximum value of |û†| are multiplied to cancel out this discrepancy
(Westerbeek, 2020).

An in-house LPSE solver the TU Delft Low Speed Lab is used in this thesis. The inflow is initialized using the ILST
mode specified in Section 4.1. The no-slip condition is used at the wall, where perturbations go to zero near the freestream.
The forward marching procedure in x is conducted using a second-order scheme, wherein the grid is uniform. As for se-
lecting the step size, backward propagating modes are neglected as their consideration leads to an insufficiently resolved
grid for resolving perturbation characteristics. The grid in y is generated by discretizing the equations in y using Cheby-
shev polynomials (Malik, 1990), and the wall-normal derivatives have an accuracy of very high order due to spectral
convergence.
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4.3.4. Harmonic Linearized Navier Stokes Equations and Solver
Although the PSE accounts for multiple ILST limitations, the method might not predict instability behaviour correctly

in regions of high streamwise gradient (Franco et al., 1821). Thus, all terms that cause ellipticity are retained, and an
elliptic system of equations are solved using HLNS. To derive the equations to be solved, expressions for the derivatives
of perturbation are obtained by substituting the HLNS ansatz (Equation 4.9) in the derivative expansions as follows:

∂u′k
∂x

=
∂ũk
∂x

eiβz, (4.39)

∂u′k
∂y

=
∂ũk
∂y

eiβz, (4.40)

∂u′k
∂z

= iβũkeiβz, (4.41)

∂2u′k
∂x2

=
∂2ũk
∂x2

eiβz, (4.42)

∂2u′k
∂y2

=
∂2ũk
∂y2

eiβz, (4.43)

∂2u′k
∂z2

= −β2ũke
iβz. (4.44)

Similar expressions hold for pressure perturbation and aren’t repeated. These derivative expressions are substituted into
the perturbation continuity and momentum equation to yield

∂ũ

∂x
+
∂ṽ

∂y
+ iβw̃ = 0, (4.45)

UB
∂ũ

∂x
+ ũ

∂UB
∂x

+ VB
∂ũ

∂y
+ ṽ

∂UB
∂y

+ iWBβũ = −1

ρ

(
∂p̃

∂x

)
+ ν

(
∂2ũ

∂x2
+
∂2ũ

∂y2
− β2ũ

)
. (4.46)

UB
∂ṽ

∂x
+ ũ

∂UB
∂x

+ VB
∂ũ

∂y
+ ṽ

∂UB
∂y

+ iWBβṽ = −1

ρ

(
∂p̃

∂y

)
+ ν

(
∂2ṽ

∂x2
+
∂2ũ

∂y2
− β2ṽ

)
. (4.47)

UB
∂w̃

∂x
+ w̃

∂UB
∂x

+ VB
∂w̃

∂y
+ ṽ

∂UB
∂y

+ iWBβw̃ = −1

ρ

(
∂p̃

∂z

)
+ ν

(
∂2w̃

∂x2
+
∂2w̃

∂y2
− β2w̃

)
. (4.48)

These equations are fully elliptic. Hence they are not solved as a marching problem. Instead, the solution at all grid points
is simultaneously solved by casting the discretized form of the above equations into a matrix form.

An in-house HLNS solver developed at the TU Delft Low Speed Lab is used in this thesis. A uniform discretisation is
used in the chordwise direction, and derivatives in this direction are computed using a fourth-order central differencing
scheme. Chebyshev polynomials generated using methods proposed by Malik (1990) are used to discretize the equations
in y direction, resulting in a non-uniform grid in y direction. The inflow is initialized with an ILST solution. The outflow
conditions have to be specified such that unphysical information from the unknown outflow does not propagate backwards.
In the Navier Stokes equations, viscous terms and pressure terms allow for the backward propagation of information
(Streett & Macaraeg, 1989). Similarly, in the perturbation equations systems, perturbation pressure and viscous terms can
enhance the backward propagation of information from the outflow boundary. These terms are damped out by applying
a buffer (Joslin, 1992) to the chordwise and spanwise perturbation velocities. The wall-normal perturbation velocity and
pressure perturbation are also automatically attenuated by means of the continuity equation. The buffer region stretches
from 90% of the domain length to the end of the domain. The no-slip condition is satisfied at the wall, whereas the
perturbations are forced to damp down to 0 in the freestream. The discretized version of Equation 4.45 to Equation 4.48,
accounting for boundary conditions and procedures to calculate derivatives are cast into a matrix system, whose solution
yields perturbation velocity and pressure.
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4.4. Selection of Method to Model Perturbation Evolution
HLNS is the best-suited method for modelling perturbation evolution through regions of base flow deformation, given
that larger wall-normal velocity and streamwise gradients can be expected compared to the clean case. To prove the above
statement, the results of ILST, PSE and HLNS are compared when the ILST mode specified in Section 4.1 is initialized
upstream of the base flow deformation. The domain (refer Section 4.1) and grid (refer Section 4.5), and are consistent for
all methods. The results of amplitude evolution of |ũ| at its peak (A|ũ|) evaluated using ILST, PSE and HLNS are presented
in Figure 4.5 comparing the clean case with the−2.5pf 30w case. For the clean case, HLNS and PSE amplitude evolution
show good agreement with each other, but ILST underpredicts amplitude growth compared to these approaches due to
its inability to correctly capture perturbation growth rate in weak non-parallel flows like the clean case (Bippes, 1999).
For the deformed case, PSE and HLNS amplitude evolution show similar behaviour, but PSE underpredicts amplitude
compared to the HLNS. Although the exact reasons for HLNS and PSE amplitude mismatch are hard to pinpoint, an
attempt is made to list out potential reasons. It is known that the PSE assumes streamwise variation of flow to be small
over disturbance wavelength (Franco et al., 1821). However, streamwise changes in deformed base flow occur at the
order of the mean chordwise wavelength of the clean case (≈ 11δ0), potentially leading to deviation from HLNS results.
Also, the effects of ellipticity are neglected in the PSE, which could contribute to differences with respect to the HLNS
solution. ILST amplitude evolution trends show some similarity with respect to HLNS and PSE amplitude evolution
trends, with a reduction in amplitude growth evident in the vicinity of xst/δ0 = 0, but underpredicts amplitude evolution
to a large extent. Thus, HLNS is selected as the method for all perturbation simulations conducted in this thesis. However,
comparison with results of PSE and ILST feature in the discussion of modified modal behaviour in Section 6.4, where the
ILST solution, despite chances of being a very idealized representation of perturbation behaviour in the region of rapid
base flow deformation, is assumed to be representative of local modal behaviour.

Figure 4.5: Amplitude evolution of u′ perturbation in (a) clean case and (b) −2.5pf 30w case, where perturbation evolution is calculated using ILST
(dashed), PSE (dash-dotted with stars), and HLNS (solid); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition.

4.5. Grid for Selected Method
The grid for perturbation analysis has 1500 uniform divisions in x direction and 100 non-uniform divisions in y, such

that half the points are placed beneath y/δ0 = 0.2. The base flow is interpolated onto the perturbation analysis grid before
the perturbation equations are solved. To ensure that perturbation behaviour does not change with the grid considered, the
number of x and y elements are varied one at a time, testing one grid of lower resolution and one grid of higher resolution.
The amplitude evolution of u′ perturbation and its shape function at four different locations are evaluated for these grids
to present that changing the grid does not influence results. For x-refinement, grids with 1200, 1500 and 1800 divisions
are tested, and the results of u′ amplitude evolution for a reference deformed case (−2.5pf 30w) are shown in Figure 4.6,
and u′ shape at four different locations are shown in Figure 4.7. The results do not change with the change of grid. Results
of refinement in y show similar trends and are attached in Appendix B.5. Thus, the results obtained are not influenced by
the grid.
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Figure 4.6: Plot of wall-normal variation of normalized amplitude function of u′ in −2.5pf 30w case at xst/δ0 = (a) −0.6w, (b) −0.25w, (c)
0.25w, and (d) 0.6w whenNx = 1200 (grey circles), 1500 (light green solid), and 1800 (magenta dashed).

Figure 4.7: Plot of chordwise variation of |ũ| amplitude in −2.5pf 30w case whenNx = 1200 (grey circles), 1500 (light green solid), and 1800
(magenta dashed); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition.



5
Mathematical Framework to Explain

Perturbation Behaviour

The previous chapter addressed methods to identify unstable modes and monitor their evolution. This would provide the
result of perturbation amplitude evolution in rapidly deformed boundary layers. However, there exists a vacuum in litera-
ture wherein mechanisms to explain trends of amplitude evolution of stationary crossflow instability in rapidly deformed
boundary layers are still unclear, especially evident for a base flow deformed by an FFS (as explained in Section 1.8).
There appears to be an attempt to correlate growth to the existence of more than one inflection point (Eppink, 2020). This
theory appears correlational in nature, and seem better applicable in a LST sense, where inflection points give rise to invis-
cid instabilities (Rayleigh, 1879). Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) find that correlation of instability
growth with crossflow enhancement also does not exist, showing that directional profiles approximately aligned with the
crossflow direction in clean case (Mack, 1984; Bippes, 1999), probably do not govern instability evolution in deformed
boundary layers. This provides impetus to develop a spatial Reynolds-Orr framework to understand the mechanisms by
which perturbations gain or lose energy on interacting with a rapidly deformed base flow. The observation of non-modal
effects by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) in their FFS cases motivates a section on identifying
mechanisms and criteria to check if the incoming mode has a tendency to deviate from modal behaviour on interacting
with a deformed boundary layer. The analysis remains in the linear framework throughout this section as the scope of this
thesis is limited to studying linear perturbation evolution (refer Section 1.8).

5.1. Development of Spatial Reynolds-Orr Analysis
Reynolds-Orr equations are frequently used to study the evolution of 3D perturbations in 2D base flows using tem-

poral framework (Albensoeder et al., 2001), spatial framework (Karp & Hack, 2018), and spatio-temporal framework
(Lanzerstorfer & Kuhlmann, 2012) to explain mechanisms of perturbation growth or decay. However, their usage for sta-
tionary crossflow instability evolution in a 3D base flow, using the spatial framework has been limited to the visualization
of spanwise integrated production term by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022). Although the produc-
tion term could be indicative of mechanisms by which a perturbation gains or loses energy, it is necessary to derive a full
energy budget wherein energy growth in space can be related to the production term, to be sure that the production term is
the main term differentiating perturbation growth or decay. Thus, a derivation for the spanwise integrated Reynolds-Orr
equation is provided, which is valid in linear regimes of chordwise growing and spanwise periodic perturbations, which
can be extended in the future to non-linear regimes. This is followed by the identification of potentially dominant terms,
and a decomposition to explain which terms could be more relevant than others.

5.1.1. Preliminary Energy Balance Equation
The spatial momentum equations (Equation 4.6) are rearranged to obtain

−∂UB,k
∂xj

u′j − UB,j
∂u′k
∂xj

− ν

(
∂2u′k
∂x2j

)
+
∂p′

∂xk
= 0, (5.1)

where the index j reads summation over all j = 1, 2, and 3 while index k indicates individual components considered one
at a time. Another index l is also introduced further down the current section which behaves the same way as k.
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Since perturbation energy is a real-valued quantity, the full HLNS ansatz of u′k (Equation 4.9) is rewritten considering
real-valued contributions from u′, v′ and w′, thus requiring a summation of Fourier modes (0,1) and (0,-1) (the first index
in brackets indicates ω while the second indicates β, and the (0,1) mode is also called fundamental mode). Decomposing
the real-valued u′k into a xy dependency and a periodic z dependency, the ”basic ansatz” can be obtained as

u′k = u′k,(0,1) + u′k,(0,−1) = ũk e
iβz + ũ †

k e
−iβz = ũk e

iβz + c.c.. (5.2)

The xy dependency of perturbations, ũk (Equation 5.2) can be further simplified into amplitude function and phase depen-
dent parts as ũk = |ũk|eiϕk . Substituting this formulation of xy dependency into the ansatz for real u′k (Equation 5.2), the
”resolved ansatz” can be obtained as

u′k = |ũk|ei(ϕk+βz) + c.c.. (5.3)

The same basic ansatz and resolved ansatz apply for perturbation pressure, and hence the process is not repeated here.

The basic ansatz (Equation 5.2) can be substituted into the perturbation momentum equation (Equation 5.1), and the
exponential dependence in spanwise direction can be factored out to obtain a compact version of the momentum equation
which reads(
AI

k,(0,1)+AII
k,(0,1)+Fp

k,(0,1)+Fυ
k,(0,1)

)
eiβz+

(
AI

k,(0,−1)+AII
k,(0,−1)+Fp

k,(0,−1)+Fυ
k,(0,−1)

)
e−iβz = 0,

(5.4)
where

AI
k,(0,1) = −∂UB,k

∂xj
ũj , (5.5)

AII
k,(0,1) = −

(
UB

∂ũk
∂x

+ VB
∂ũk
∂y

+WB iβũk

)
, (5.6)

Fν
k,(0,1) = −ν

(
∂2ũk
∂x2

+
∂2ũk
∂y2

− ũkβ
2

)
, (5.7)

Fp
1,(0,1) =

∂p̃

∂x
, Fp

2,(0,1) =
∂p̃

∂y
, Fp

3,(0,1) = iβp̃. (5.8)

Here,AI
k,(0,1) corresponds to the influence of base flow derivatives,AII

k,(0,1) corresponds to the advection of perturba-
tion by base flow, Fυ

k,(0,1) corresponds to viscous terms and Fp
1,(0,1) corresponds to influence of perturbation pressure.

Noting that the second half of Equation 5.4 is the complex conjugate of the first half, Equation 5.4 can be simplified to(
AI

k,(0,1) +AII
k,(0,1) + Fp

k,(0,1) + Fυ
k,(0,1)

)
eiβz + c.c. = 0. (5.9)

To obtain the evolution equation for perturbation energy contained in each component k, the momentum equation (Equa-
tion 5.9) is multiplied by ũk to obtain(

ũk e
iβz + ũ †

k e
−iβz

)(
AI

k,(0,1) +AII
k,(0,1) + Fp

k,(0,1) + Fυ
k,(0,1)

)
eiβz + c.c. = 0. (5.10)

Interest is restricted to observing the behaviour of these equations in xy planes so as to capture any energy growth in
the chordwise direction. Thus, any spanwise dependencies in the perturbation energy equation (Equation 5.10) can be
removed by integrating in the spanwise direction over an interval 0 to 2π/β (corresponding to one spanwise wavelength)
to yield ∫ 2π/β

0

(((
ũk e

iβz + ũ †
k e

−iβz
)(

AI
k,(0,1) +AII

k,(0,1) + Fp
k,(0,1) + Fυ

k,(0,1)

)
eiβz

))
dz +

∫ 2π/β

0

(((
ũk e

iβz + ũ †
k e

−iβz
)(

AI
k,(0,−1) +AII

k,(0,−1) + Fp
k,(0,−1) + Fυ

k,(0,−1)

)
e−iβz

))
dz = 0.

(5.11)

Equation 5.11 can be grouped into four parts for further simplification as per

T1 + T2 + T3 + T4 = 0, (5.12)
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where

T1 =

(
ũk(AI

k,(0,1) +AII
k,(0,1) + Fp

k,(0,1) + Fυ
k,(0,1))

) ∫ 2π/β

0

e2iβzdz, (5.13)

T2 =

(
ũ†k(A

I
k,(0,1) +AII

k,(0,1) + Fp
k,(0,1) + Fυ

k,(0,1))

) ∫ 2π/β

0

dz, (5.14)

T3 =

(
ũk(AI

k,(0,−1) +AII
k,(0,−1) + Fp

k,(0,−1) + Fυ
k,(0,−1))

) ∫ 2π/β

0

dz, (5.15)

T4 =

(
ũ†k(A

I
k,(0,−1) +AII

k,(0,−1) + Fp
k,(0,−1) + Fυ

k,(0,−1))

) ∫ 2π/β

0

e−2iβzdz. (5.16)

Periodic exponentials of the form e−2iβz and e2iβz are composed of sines and cosines, which on integration from 0 to
2π/β yield 0. The integrals in the above equation thus take the form∫ 2π/β

0

dz =
2π

β
,

∫ 2π/β

0

e−2iβzdz = 0,

∫ 2π/β

0

e2iβzdz = 0. (5.17)

Thus, Equation 5.13 and Equation 5.16 simplify to 0, simplifying Equation 5.11 to

T2 + T3 = 0, (5.18)

2π

β

(
ũ †
k (A

I
k,(0,1)+AII

k,(0,1)+Fp
k,(0,1)+Fυ

k,(0,1))+ũk(AI
k,(0,−1)+AII

k,(0,−1)+Fp
k,(0,−1)+Fυ

k,(0,−1))

)
= 0.

(5.19)
Equation 5.19 can be decomposed into four terms accounting for production (Pk), transport (Tk), work of viscous forces
(Dk) and pressure work (Wk)

Pk + Tk +Dk +Wk = 0, (5.20)

Pk =
2π

β

(
ũ †
kA

I
k,(0,1) + ũkAI

k,(0,−1)

)
=

2π

β
ũ †
kA

I
k,(0,1) + c.c., (5.21)

Tk =
2π

β

(
ũ †
kA

II
k,(0,1) + ũkAII

k,(0,−1)

)
=

2π

β
ũ †
kA

II
k,(0,1) + c.c., (5.22)

Dk =
2π

β

(
ũ †
kF

υ
k,(0,1) + ũkFυ

k,(0,−1)

)
=

2π

β
ũ †
kF

υ
k,(0,1) + c.c., (5.23)

Wk =
2π

β

(
ũ †
kF

p
k,(0,1) + ũkFp

k,(0,−1)

)
=

2π

β
ũ †
kF

p
k,(0,1) + c.c.. (5.24)

This forms the equation of perturbation energy per component. To obtain the equation of total perturbation energy, the
terms are summed over x, y and z components to yield

P + T +D +W =

3∑
k=1

(Pk + Tk +Dk +Wk) = 0. (5.25)

This partially concludes the spatial Reynolds-Orr energy balance of linearized perturbation equations, with Equation 5.25
called the ”preliminary energy balance equation”. Equation 5.25 appears to be an incomplete version of the Reynolds-Orr
equation as the energy derivative in the chordwise direction doesn’t appear explicitly anywhere in the equation. Further
decomposition can be applied to the transport term to obtain this derivative, to bear resemblance to traditional Reynolds-
Orr analysis equations, where the energy derivative in space can be isolated, resembling the approach taken by Karp and
Hack (2018). Among terms of Equation 5.25, the production term represents kinetic energy exchange with the base flow
(Schmid & Henningson, 2001; Casacuberta, Hickel, Westerbeek, & Kotsonis, 2022), and has the potential of being the pri-
mary source of perturbation energy gain and loss, thus potentially being capable of differentiating regimes of perturbation
growth and stabilization. Hence its decomposition is considered to understand the physical mechanisms that determine
the production term’s behaviour. Contribution from the work of pressure is expected to be negligible and is not considered
further. The work of viscous force term is expected to have a consistent contribution of draining perturbation energy across
clean and deformed base flow cases, and is not expected to be a key differentiating factor between perturbation behaviour
in clean and deformed base flow cases. Hence, its decomposition is not considered further. Equation 5.25 is verified in
Section 6.3.
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5.1.2. Production Term Decomposition
To further simplify the production term, the expression ofAI

k,(0,1) from Equation 5.5 is substituted into Equation 5.21
to obtain

Pk =
2π

β

(
ũ †
k

∂UB,k
∂x

ũ+ ũ †
k

∂UB,k
∂y

ṽ

)
+ c.c.. (5.26)

The production term represents the energy exchange between base flow and perturbation components (Casacuberta, Hickel,
Westerbeek, & Kotsonis, 2022). The negative sign of the production term indicates a stabilizing influence on perturbation
evolution, whereas a positive sign of the production term indicates a destabilizing influence on perturbation evolution
(Albensoeder et al., 2001). The base flow affects perturbation stabilization or destabilization via flow deceleration or
acceleration captured by its x derivatives or via shear captured by its y derivatives as seen in Equation 5.26. This motivates
a decomposition of the production term along x and y derivatives of base flow, which reads

Pk =
2π

β

(
ũ †
k

∂UB,k
∂x

ũ+ c.c.

)
+

2π

β

(
ũ †
k

∂UB,k
∂y

ṽ + c.c.

)
= Pxd,k + Pyd,k, (5.27)

where xd and yd denote x and y partial derivative contributions respectively. This decomposition reveals competing
mechanisms that influence perturbation behaviour. The total Production term is obtained by summing Equation 5.27 from
k = 1 to 3 to yield

P =

3∑
k=1

Pk =

3∑
k=1

(
Pxd,k + Pyd,k

)
= Pxd

+ Pyd , (5.28)

where

Pxd
= −2π

β

3∑
k=1

ũ †
k

∂UB,k
∂x

ũ+ c.c., (5.29)

Pyd = −2π

β

3∑
k=1

ũ †
k

∂UB,k
∂y

ṽ + c.c.. (5.30)

The decomposition of production term carried out here bears resemblance to the analysis of Loiseau, Robinet, Cherubini,
and Leriche (2014), although they considered a different instability, conducted a temporal analysis, and also had non-
negligible base flow derivatives along z direction resulting in extra terms. Explicit expressions of Pxd

and Pyd can now
be elaborated by substituting the resolved ansatz into Equation 5.29 and Equation 5.30 to obtain

ũ †
k ũl + c.c. = |ũk|e−iϕk |ũl|eiϕl + c.c. = |ũk||ũl|ei(ϕl−ϕk) + c.c. = 2|ũk||ũl|cos(ϕl − ϕk), (5.31)

Pxd
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3∑
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(
Pxd,k

)
= −4π

β

(
|ũ|2 ∂UB

∂x
+ |ṽ||ũ|∂VB

∂x
cos(ϕ1 − ϕ2) + |w̃||ũ|∂WB

∂x
cos(ϕ1 − ϕ3)

)
, (5.32)

Pyd =

3∑
k=1

(
Pyd,k

)
= −4π

β

(
|ũ||ṽ|∂UB

∂y
cos(ϕ2 − ϕ1) + |ṽ|2 ∂VB

∂y
+ |w̃||ṽ|∂WB

∂y
cos(ϕ2 − ϕ3)

)
. (5.33)

To elaborate the physical understanding ofPxd
, the behaviour ofPxd,1 is considered. A positive sign ofPxd,1 represents

the transfer of energy to chordwise perturbation when the chordwise base flow decelerates. Considering the total flow, it
appears as if the chordwise perturbation component compensates for the energy not needed anymore by the chordwise base
flow component due to the continual decrease of chordwise base flow velocity in the chordwise direction. The opposite
scenario occurs when the chordwise base flow accelerates, where the chordwise perturbation has the potential to lose
energy. Considering the total flow, it appears as though some energy is taken away from the perturbation component to
compensate for the acceleration of the base flow component. Pxd,2 is possibly negligible compared to Pxd,1 and Pxd,3

terms as ∂VB/∂x = O(δ) << ∂UB/∂x = O(1), and |ṽ| << |ũ|. Pxd,3 has potential of being similar order of Pxd,1, but
the value of cos(ϕ1 − ϕ3) could influence the behaviour of Pxd,3. Similarities and differences between the behaviour of
Pxd,1 and Pxd,3 are thus elaborated upon while analyzing results in Section 6.3.1.
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On the other hand, the physical understanding of Pyd can be elaborated upon by observing the behaviour of Pyd,1.
Pyd,1 physically represents the transfer of momentum from chordwise base flow by wall-normal perturbation to chordwise
perturbation. The sign of energy transfer is determined by cos(ϕ2 − ϕ1) in a non-separated flow, where UBy is positive
throughout. Three scenarios can be considered to understand the effects of signs. The first is ϕ2 − ϕ1 = π, which
represents a positive sign ofPyd,1, which represents the potential for perturbation destabilization as per the scenario shown
in Figure 5.1 (a). This represents the scenario where v′ brings high momentum base flow downwards to the peak of u′, and
low momentum base flow upwards to the valley of u′. This results in a constructive interference, such that u′ peaks and
valleys grow larger, representing the potential for u′ to gain energy. The second scenario is ϕ2 − ϕ1 = 0 corresponding
to v′ bringing high chordwise momentum to regions of valleys of u′, and low chordwise momentum to regions of peaks
of u′. This represents a destructive interference, where u′ potentially loses energy and stabilizes as a result, as shown
in Figure 5.1 (b). The third scenario corresponds to ϕ2 − ϕ1 = π/2. Here, the cosine gives a zero value, completely
inhibiting the transfer of momentum from base flow to u′, as shown in Figure 5.1 (c). Pyd,2 is possibly negligible owing
to ∂VB/∂y = O(1) << ∂UB/∂y = O(1/δ), and |ṽ| << |ũ|. Pyd,3 has a similar physical interpretation as Pyd,1,
wherein v′ transfers spanwise base flow momentum to w′, resulting in constructive or destructive difference based on
phase interference between v′ and w′ perturbations.

Figure 5.1: Demonstration of v′ (purple) transferring momentum from base flow profile (grey) to initial u′ (brown dash-dotted) resulting in a new u′
profile (green) which (a) increases (ϕ2 − ϕ1 = π) (b) decreases (ϕ2 − ϕ1 = 0), and (c) remains same (ϕ2 − ϕ1 = π/2) relative to initial u′.

5.1.3. Transport Term Decomposition
The transport term Tk can be further simplified by first simplifying the expression forAII

k,(0,1). This is done by substi-
tuting the resolved ansatz (Equation 5.3) into the expression forAII

k,(0,1) (Equation 5.6) and applying the differentiation
chain rule to obtain

∂ũk
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(
1

|ũk|
∂|ũk|
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= ũk

(
1

|ũk|
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,

)
(5.34)
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. (5.35)

When this expression of AII
k,(0,1) is substituted into the definition of Tk (Equation 5.22), the resulting expression is

obtained as

ũ †
kA

II
k,(0,1) = −|ũk|2

(
UB
|ũk|

∂|ũk|
∂x

+
VB
|ũk|

∂|ũk|
∂y

+ i

(
UB

∂ϕk
∂x

+ VB
∂ϕk
∂y

+WBβ

))
, (5.36)

Tk =
2π

β
ũ †
kA

II
k,(0,1) + c.c. = −4π

β

(
UB |ũk|

∂|ũk|
∂x

+ VB |ũk|
∂|ũk|
∂x

)
= −2π

β

(
UB

∂Ẽk
∂x

+ VB
∂Ẽk
∂y

)
, (5.37)

where Ẽk corresponds to energy contained in each perturbation component ũk.

Ẽk =
ũ2k
2
. (5.38)
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The transport term physically represents the advection of perturbation energy by the base flow. ∂Ẽk/∂x captures
growth of perturbation energy per component in the x direction, while ∂Ẽk/∂y captures the shear of perturbation energy
per component. The total perturbation energy and transport term is obtained by summing over x, y and z contributions to
yield

Ẽ =
1

2

3∑
k=1

|ũk|2 =
1

2

(
|ũ|2 + |ṽ|2 + |w̃|2

)
(5.39)

T = −2π

β

3∑
k=1

(
UB |ũk|

∂|ũk|
∂x

+ VB |ũk|
∂|ũk|
∂x

)
= −2π

β

(
UB

∂Ẽ

∂x
+ VB

∂Ẽ

∂y

)
(5.40)

5.1.4. Final Energy Balance Equation
The final equation for perturbation energy per component can be obtained by substituting the expressions of transport and
production terms into Equation 5.20 to obtain

Pxd,k + Pyd,k −
2π

β

(
UB

∂Ẽk
∂x

+ VB
∂Ẽk
∂y

)
+Dk +Wk = 0. (5.41)

Now, the final equation of perturbation energy can be obtained by summing Equation 5.41 over x, y and z components,
which reads

Pxd
+ Pyd − 2π

β

(
UB

∂Ẽ

∂x
+ VB

∂Ẽ

∂y

)
+D +W = 0. (5.42)

To obtain a traditional representation of the Reynolds-Orr equation, isolating the spatial perturbation energy derivative to
one side along the lines of Karp and Hack (2018), Equation 5.41 and Equation 5.42 are manipulated to obtain

∂Ẽk
∂x

=
1

UB

(
− VB

∂Ẽk
∂y

+
β

2π
(Pxd,k + Pyd,k) +

β

2π
(Dk +Wk)

)
, (5.43)

∂Ẽ

∂x
=

1

UB

(
− VB

∂Ẽ

∂y
+

β

2π
(Pxd

+ Pyd) +
β

2π
(D +W)

)
. (5.44)

Perturbation energy growth (Ẽx) is isolated on the left-hand side of Equation 5.44, and the factors affecting it are presented
on the right-hand side of Equation 5.44 (also referred as ”final energy balance equation”). The production term acts as
a source term in Equation 5.44, and is most likely the driving mechanism for perturbation stabilization or destabilization
in case pressure work is negligible and work of viscous forces consistently drains perturbation energy across all cases.
However, it is important to note that−VBẼy also exists in Equation 5.44. This can be responsible for perturbation energy
advection in the wall-normal direction, such that perturbation energy growth does not directly mimic the effects of the
production term, even when the pressure work and the work of viscous forces are less important. The connection of
energy growth with production term and the role of −VBẼy are elaborated upon later in Section 6.3.2. It should be noted
that a per-component and total perturbation energy analysis have both been presented here so that either one can be used
to elaborate perturbation behaviour depending on whether single component behaviour or perturbation energy behaviour
are selected for studying instability evolution (elaborated upon in Section 6.2).

5.2. Modified modal behaviour
As specified in Section 1.7.3, a rapidly changing base flow in the FFS has the potential to modify the behaviour of an
incoming mode, such that the usually destabilizing lift-up effect in modal clean case evolution changes character, and
criteria in literature indicate the presence of base flow deformed non-modal effects. There is a chance that such effects
dictate instability evolution in base flow deformed cases considered in this thesis, and might represent changes with respect
to clean case modal evolution. This could hint towards a deviation from modal character and the potential presence of
base flow deformed non-modality. In this section, deviation from modal character is examined through the perspective
of mechanisms relevant to initial condition driven non-modality, i.e. the lift-up effect and Orr mechanism. Methods to
identify these mechanisms are first presented, and their potential to explain the deviation from clean case modal behaviour
is examined. The local ILST solution is more representative of local modal behaviour than the behaviour of the clean case.
Hence, pointers on comparing the HLNS results and ILST results through the perspective of these mechanisms are then
presented. Dissimilar behaviour of theHLNS and ILST solutions in deformed cases from themechanism perspectivewould
hint towards deviation from local modal behaviour. In case evidence of such deviations is found, criteria are presented
that can test the presence of base flow deformed non-modality.
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5.2.1. Mechanisms
Lift-up effect
As stated in Section 1.7.3. the lift-up effect in base flow deformed cases can be analyzed by decomposing the perturba-

tion into base flow tangential (u′t) and normal (u′n) fields, decomposing the production term based on these perturbation
fields, and observing the behaviour of the I2 component (Albensoeder et al., 2001; Lanzerstorfer & Kuhlmann, 2012;
Loiseau et al., 2016; Picella et al., 2018; Casacuberta, Hickel, & Kotsonis, 2022). Physically, the base flow tangen-
tial field represents streaky structures, whereas the base flow normal field represents counter-rotating rollers (Picella et
al., 2018). The I2 term represents the transport of base flow momentum to streaky structures via counter-rotating rollers
(Picella et al., 2018). In the clean case where the wall-normal base flow is negligible, the base flow normal and wall-normal
perturbation components can be assumed to be the same, whereas the tangential field is a vector sum of the chordwise and
spanwise perturbation fields. However, a deformed base flow is associated with significant values of wall-normal base
flow velocity, which tilts the base flow streamlines upwards or downwards, thus implying that the base flow tangential
and normal perturbation field are no longer similar to the clean case. Hence, a detailed derivation of base flow tangential
and normal perturbation fields adapted from the work of Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) is first
considered. The fundamental perturbation field in vector notation is given by

υ′
(0,1) = u′(0,1) î+ v′(0,1) ĵ+ w′

(0,1) k̂, (5.45)

where υ′
(0,1) is the fundamental total perturbation vector field and u

′
(0,1), v

′
(0,1) and w

′
(0,1) are the complex fundamental

perturbation fields in x, y, and z, respectively. υ′
(0,1) can now be decomposed into a component following the base flow

(υ′
t,(0,1)) and another component orthogonal to it (υ

′
n,(0,1)) as per

υ′
(0,1) = υ′

t,(0,1) + υ′
n,(0,1). (5.46)

The derivation of the base flow tangential perturbation field is first considered, which can be written in terms of a complex-
valued perturbation component (τ ′(0,1)) and the base flow tangential direction unit vector ( t̂ ) as

υ′
t,(0,1) = τ ′(0,1) t̂. (5.47)

The unit vector aligned along the base flow vector can be obtained as

t̂ =
VB

||VB ||
, (5.48)

where VB is the vector field of base flow, given by

VB = UB î+ VB ĵ+WB k̂. (5.49)

Now the focus shifts to obtaining τ ′(0,1). The standard expression for projecting vectors onto one another can be used to
obtain

τ ′(0,1) =
Re(υ′

(0,1)) · VB
||VB ||

+ 1i
Im(υ′

(0,1)) .VB
||VB ||

. (5.50)

To write τ ′(0,1) in simpler notation, an operator ⊠ can be defined such that

υ′
(0,1) ⊠ VB = Re(υ′

(0,1)) .VB + 1i Im(υ′
(0,1)). (5.51)

The basic ansatz (Equation 5.2) can be substituted into Equation 5.51 to obtain

υ′
(0,1) ⊠ VB = (ũUB + ṽVB + w̃WB)e

iβz (5.52)

The definition presented in Equation 5.52 can be substituted in Equation 5.50 to get a simplified expression for τ ′0,1 which
reads

τ ′(0,1) =
1

||VB ||

(
υ′
(0,1) ⊠ VB

)
=
ũUB + ṽVB + w̃WB

||VB ||
eiβz = τ̃ eiβz, (5.53)

where τ̃ is the xy dependency of τ ′(0,1). Now, the final expression for the tangential perturbation field can be obtained by
substituting the expressions of τ ′(0,1) (Equation 5.53) and t̂ (Equation 5.48) into Equation 5.47 to obtain

υ′
t,(0,1) =

UB τ̃

||VB||
eiβz î+

VB τ̃

||VB||
eiβz ĵ+

WB τ̃

||VB||
eiβz k̂. (5.54)

Rewriting Equation 5.54 in Einstein convention,

u′k,t,(0,1) =
UB,k τ̃

||VB||
eiβz = ũk,te

iβz, (5.55)

where ũk,t represents the xy dependency of the kth component of base flow tangential perturbation field.
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Subtracting the tangential perturbation vector field from the perturbation vector field yields the normal perturbation
vector field, expressed as

υ′
n,(0,1) = υ′

(0,1) − υ′
t,(0,1). (5.56)

In Einstein convention, the xy dependency of the kth component of the base flow normal perturbation field can be ex-
pressed by cancelling all z dependencies in Equation 5.56 to obtain

ũk,n = ũk − ũk,t. (5.57)

This concludes the derivation of base flow normal and tangential perturbation fields.

Now, to decompose the production term to obtain I2, the expression of P (Equation 5.28) is rewritten as

P = −2π

β

3∑
k=1

ũ †
k

∂UB,k
∂xj

ũj + c.c., (5.58)

where contributions from j = 3 terms are zero due to spanwise derivatives of base flow being zero. ũk can be written as
ũk,n+ ũk,t as per Equation 5.57, and substituted into Equation 5.58 to yield another decomposition of the production term
which reads

P = I1 + I2 + I3 + I4, (5.59)

where

I1 = −2π

β

3∑
k=1

ũ †
k,n

∂UB,k
∂xj

ũj,n + c.c. (5.60)

I2 = −2π

β

3∑
k=1

ũ †
k,n

∂UB,k
∂xj

ũj,t + c.c. (5.61)

I3 = −2π

β

3∑
k=1

ũ †
k,t

∂UB,k
∂xj

ũj,n + c.c. (5.62)

I4 = −2π

β

3∑
k=1

ũ †
k,t

∂UB,k
∂xj

ũj,t + c.c. (5.63)

The I2 term represents the lift-up effect. A term-by-term decomposition of I2 can be conducted to obtain

I2 = −2π

β

(
ũ †
t

∂UB
∂x

ũn + ũ †
t

∂UB
∂y

ṽn + ṽ †
t

∂VB
∂x

ũn + ṽ †
t

∂VB
∂y

ṽn + w̃ †
t

∂WB

∂x
ũn + w̃ †

t

∂WB

∂y
ṽn

)
+ c.c. (5.64)

As per observations of Casacuberta, Hickel, andKotsonis (2022), the second and sixth terms of Equation 5.64 added to their
complex conjugates are dominant, andmimic each other’s behaviour in the FFS cases. Similarities could be expected in the
cases simulated in this thesis, and the signs of these terms can help determine whether the lift-up effect acts destabilizing
like the clean case or acts in a stabilizing sense. The second term of Equation 5.64 can be denoted I2,b and expressed as

I2,b = −2π

β

(
ũ †
t

∂UB
∂y

ṽn

)
+ c.c. = −4π

β

∂UB
∂y

|ũt||ṽn| cos(ϕ2,n − ϕ1,t). (5.65)

Whereas, the sixth term of Equation 5.64 can be denoted I2,f and expressed as

I2,f = −2π

β

(
w̃ †
t

∂WB

∂y
ṽn

)
+ c.c. = −4π

β

∂WB

∂y
|w̃t||ṽn| cos(ϕ2,n − ϕ3,t). (5.66)

Signs of cos(ϕ2,n − ϕ1,t) and cos(ϕ2,n − ϕ3,t) can thereby reveal the sign of I2,b and I2,f , since UBy and −WBy are
positive throughout. The sign of I2 can be determined by observing either component if I2,b and I2,f behave similarly
as in the cases considered by Casacuberta, Hickel, and Kotsonis (2022). Any stabilization encountered while considering
the lift-up effect would be indicative of deviation from modal clean case behaviour. To check whether this translates to
deviation from the local modal solution, indicators are provided in Section 5.2.1.
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Orr mechanism
In initial condition driven non-modality, the Orr mechanism corresponds to tilting of perturbation streamfunction or

vorticity fields to generate growth of perturbation. These effects are easier to explain in 2D flows via the vorticity analogue,
where perturbation vorticity in one direction is conserved (Lindzen, 1988), or by expressing the production term in terms
of stream function, where the stream function can easily be calculated and perturbation tilt can be related to growth (Butler
& Farrell, 1992) (refer Section 1.7.1). Since the evolution of an initially modal 3D perturbation is considered, where all
perturbation components grow simultaneously, a constant perturbation vorticity component is impossible to find. The
definition of a three-dimensional streamfunction presents significant difficulty, and recasting the production term into
streamfunction components is challenging. Thus, instead of choosing either of these approaches, the tilt of the perturbation
velocity field is observed, which has been linked to the Orr mechanism by Tempelmann et al. (2010) and Lucas (2014) in
the case of three-dimensional initial condition driven non-modality (refer subsection 1.7.1), wherein the downstream streak
fields were tilted in an opposite direction to the upstream inviscidly aligned vortex field when observed on the crossflow
plane. Instead of choosing the crossflow plane, observations of tilt are conducted in the yz plane, with the assumption that
shears would affect tilt in any plane considered. The tilt of perturbation in the yz planes can easily be considered by noting
the difference of wall-normal variation of ϕ at various x stations as explained in Section 4.3.1. Contour plots on yz planes
can further provide conclusive evidence of this behaviour. Any changes in the tilt of perturbation with a change of spatial
location can be potentially linked to the Orr mechanism, with changing base flow shear being a candidate to cause such
changes. In this thesis, emphasis is placed on observing the tilt of chordwise perturbation, one of the main contributors to
perturbation energy in cases of stationary crossflow instability. A framework can be developed to understand the factors
that can influence perturbation tilt, and its potential consequences that can help explain deviation from modal behaviour.
The momentum equation is reconsidered as per Equation 4.6, which reads

−∂UB,k
∂xj

u′j − UB,j
∂u′k
∂xj

− ν

(
∂2u′k
∂x2j

)
+
∂p′

∂xk
= 0. (5.67)

Here, the fact that both (0,1) and (0,-1) perturbation simultaneously satisfy the perturbation momentum equation is ex-
ploited (as stated in Section 4.3). The basic ansatz of (0,1) perturbation is substituted in Equation 5.1 to yield the first half
of the compact version of momentum equation (Equation 5.9) given by(

AI
k,(0,1) +AII

k,(0,1) + Fp
k,(0,1) + Fυ

k,(0,1)

)
eiβz = 0. (5.68)

Equation 5.68 is now multiplied by the (0,-1) component, following which the spanwise periodic term cancels off yielding

ũ †
k

(
AI

k,(0,1) +AII
k,(0,1) + Fp

k,(0,1) + Fυ
k,(0,1)

)
= 0. (5.69)

Here, ũ †
kAII

k,(0,1) is expanded in more detail by substituting the expression ofAII
k,(0,1) derived in Equation 5.6 to yield

ũ †
kA

II
k,(0,1) = −|ũk|2

(
UB

1

|ũk|
∂|ũk|
∂x

+ VB
1

|ũk|
∂|ũk|
∂y

+ i

(
UB

∂ϕk
∂x

+ VB
∂ϕk
∂y

+WBβ

))
, (5.70)

Here, it is noted that the imaginary part of ũ †
kAII

k,(0,1) contains details of the evolution of ϕk in chordwise direction.
Hence, the aim would now be to take the imaginary parts of each of the terms of Equation 5.69, and obtain an evolution
equation for ϕk which reads

−UB
∂ϕk
∂x

− VB
∂ϕk
∂y

−WBβ +
1

|ũk|2
Im

(
AI
k,(0,1) + ũ †

kF
p
k,(0,1) + ũ †

kF
υ
k,(0,1)

)
= 0. (5.71)

Rearranging Equation 5.71, ϕk can be isolated on one side to obtain

∂ϕk
∂x

= −WB

UB
β − VB

UB

∂ϕk
∂y

+
1

UB |ũk|2
Im

(
ũ †
kA

I
k,(0,1) + ũ †

kF
p
k,(0,1) + ũ †

kF
υ
k,(0,1)

)
= 0 (5.72)

Now, the focus is placed only on the evolution of ϕ1. To obtain a more detailed version of the evolution equation for ϕ1,
Im(ũ †

1AI
1,(0,1)) can be simplified by substituting the expression of A

I
1,(0,1) in Equation 5.5 to obtain

Im
(
ũ †
1AI

1,(0,1))
)
= −Im

(
|ũ|2
(
∂UB
∂x

+
∂UB
∂y

|ṽ|
|ũ|
ei(ϕ2−ϕ1)

))
= −|ũ|2

(
∂UB
∂y

|ṽ|
|ũ|

sin(ϕ2 − ϕ1)

)
, (5.73)
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The viscous and pressure terms are not simplified further since their detailed analysis doesn’t yield simplified terms. Now,
substituting Equation 5.73 into Equation 5.71 with k = 1 yields

∂ϕ1
∂x

= −WB

UB
β − VB

UB

∂ϕ1
∂y

− ∂UB
∂y

|ṽ|
UB |ũ|

sin(ϕ2 − ϕ1) +
1

UB |ũ|2
Im

(
ũ †
1Fp

1,(0,1) + ũ †
1Fυ

1,(0,1)

)
= 0. (5.74)

Equation 5.74 is verified in Section 6.4.2. Monitoring ϕ1x and the terms in its evolution equation at different wall-
normal levels can provide insight into why a particular perturbation could tilt differently for different base flows. If the
tilt observed at various x stations is similar, it implies that ϕ1x remains constant across any wall-normal level considered.
Equation 5.74 evaluated at different wall-normal levels would then yield an understanding of what terms help keep ϕ1x
the same at different levels, revealing reasons for nearly constant perturbation tilt. Since ϕ1x determines the angle a
xz line of constant phase makes with the x axis (as shown in subsection 4.3.1), its constant value across different wall-
normal levels would imply that a single xz line of constant phase is representative for the entire u′ perturbation field (refer
subsection 4.3.1). A wavenumber vector direction can be identified in such cases, perpendicular to the representative line
of constant phase. The lines of constant phase in traditional modal evolution would lie within degrees of the inviscid
streamline (Bippes, 1999). However, if the tilt of ϕ1 were to rapidly change with the change of x station, ϕ1x would vary
with wall-normal height. Equation 5.74 evaluated at different wall-normal levels would then yield an understanding of
what terms potentially force different values of ϕ1x at different levels, forcing the perturbation to tilt differently at different
x stations. If ϕ1x is not found to be similar at different levels, there is no single representative line of constant phase (refer
subsection 4.3.1), which raises doubts about the existence of a wavenumber direction in such a scenario. This would
potentially indicate a deviation from modal behaviour.

Thus, if the tilt of u′ changes with the change of x location, and a single representative line of constant phase can’t be
defined, it is counted as a manifestation of the Orr mechanism, deviating from traditionally observed modal behaviour
of the identification of one representative line of constant phase perpendicular to wavenumber vector. The presence of a
base flow shear term influencing perturbation tilt ratifies the link to the Orr mechanism since its manifestation in initial
condition driven non-modality entails the tilting of perturbation under the influence of base flow shear (Section 1.7.1).
There is also a similarity between the shear term and Pyd,1/(UB |ũ|2), where the sine and cosine are interchanged, which
shows that the identification of the Orr mechanism might have some indirect influence on energy exchange mechanisms
between base flow and perturbation. This lead is however not considered further.

Comparison between ILST and HLNS results
The potential observation of stabilized lift-up effect in deformed cases and its comparisonwith the destabilizing tendency

of the lift-up effect in the clean case might not provide sufficient evidence of deviation from modal behaviour. In a regime
of rapid deformation, the underlying change of base flow might change the behaviour of the local crossflow mode, which
could deviate from the behaviour of a clean case crossflow mode. Although it is challenging to define a local mode in
deformed base flow, an ILST solution is considered to be an approximation of local modal behaviour. ILST solutions
neglect streamwise derivatives and wall-normal velocity, which significantly affect perturbation behaviour in deformed
base flow, and could lead to the different behaviour of the lift-up effect compared to the more accurate description of
the HLNS solution. However, the aim here is not to check how accurate or inaccurate the ILST solution is, but instead
to find if the lift-up effect observed through an ILST solution varies in stabilizing or destabilizing character from the
HLNS solution. If for instance, I2 computed using the HLNS and ILST solutions both provide a stabilizing influence, the
stabilizing observation of the lift-up effect would not correspond to a deviation from locally observed modal behaviour.
Whereas, if I2 computed for HLNS provides a stabilizing influence when the I2 computed for ILST provides a destabilizing
influence, this can be counted as a deviation from locally observed modal behaviour.

The computation of I2 for ILST requires casting the ILST ansatz Equation 4.7 back into the HLNS ansatz Equation 4.9.
This involves removing the z influences and equating the rest of the ILST ansatz to ũk to yield

ũk = ûk(y) e
iα(x−x0), (5.75)

where x0 is subtracted from x to account for a non-zero initial position of stability computation. This value of ũk can be
used to compute I2 by the procedure shown in Section 5.2.1. However, there remains doubt on whether to consider or
neglect the contributions of VB while calculating base flow and tangential perturbation fields, which is neglected while
computing ILST solutions. This issue can be relevant as it determines whether the base flow tangential component in
the wall-normal direction exists or not (refer Equation 5.55). Thus, two different versions of I2 are computed, one which
would not account for VB , and one which would account for VB . This also helps evaluate the effect of the influence of VB
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on the I2 term. While comparing HLNS results with ILST results, PSE can act as a helpful intermediary. Proximity of the
I2 term computed with the PSE solution towards the I2 term of HLNS solution instead of the ILST solution would suggest
that the neglect of streamwise derivatives, wall-normal velocity or history effects in the ILST ansatz would be the potential
cause of the difference in ILST and HLNS I2 observations. Whereas in case the I2 term computed by PSE matches the
I2 term computed with ILST better than the I2 term computed by HLNS solution, ellipticity effects and different growth
rates across components could potentially be attributed to observations of difference in ILST and HLNS I2 observations.
The computation of I2 using PSE requires the PSE ansatz to be recasted into the HLNS ansatz by equating spanwise
independent terms to ũk which yields

ũk = ûk(x, y) e
i(
∫ x
x0
αds)

. (5.76)
Following this, the values of tangential and normal perturbation can be computed and the value of I2 can be obtained as
per the procedure shown in Section 5.2.1.

On the other hand, the observation of Orr mechanism can directly explain the departure frommodal character, be it local
or clean case behaviour. This occurs since the ILST ansatz prescribes the existence of a unique value of αr at any given
chordwise station, which would indicate a preferred direction of lines of constant phase in xz plane given by

αr(x− x0) + βz = C, (5.77)

which is perpendicular to the wavenumber vector. The variation of phase in the wall-normal direction is assumed to be a
local effect, and assumed not to have an effect on the computation of these lines of constant phase. PSE lines of constant
phase can once again be plotted to check if the behaviour bears more similarity to either HLNS or ILST by recasting the
PSE ansatz into the HLNS ansatz.

5.2.2. Criteria
If evidence of deviation from modal behaviour is obtained, the next step would be to test if non-modal effects could

govern instability evolution in regions of deformed base flow. Casacuberta, Hickel, Westerbeek, and Kotsonis (2022)
present criteria to identify non-modal character in the form of difference in growth rate of base flow tangential and total
perturbation vector fields at the location of fundamental perturbation peak. They evaluate the growth rate of these quantities
by using the standard growth rate expressions given by

αi,ξ = − 1

Aξ

∂Aξ
∂x

, (5.78)

where αi,ξ is the growth rate of a quantity ξ, which is either the amplitude function of τ ′ or the norm of υ′
(0,1), and Aξ

represents the value of ξ at its primary peak. If the growth rates are dissimilar, Casacuberta, Hickel, Westerbeek, and
Kotsonis (2022) claim that non-modal effects could play a role in governing instability evolution.

In addition to the difference in growth rates, Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) suggest that per-
turbation vector misalignment with the base flow can provide evidence of non-modal effects being active. Casacuberta,
Hickel, Westerbeek, and Kotsonis (2022) monitor the angle between total and base flow tangential perturbation vector to
quantify misalignment. Standard methods for finding an angle between real vector fields fail here as a clear definition
of dot products between complex and real spaces lacks definition. Thus, Casacuberta, Hickel, Westerbeek, and Kotso-
nis (2022) state that the angle between the perturbation velocity vector field and the base flow is equivalent to the angle
between the former and the component of perturbation velocity vector field tangential to base flow, which is expressed as

cos (ζ(0,1)) =
υ′
(0,1) · υ

′
t,(0,1)

||υ′
(0,1)|| ||υ

′
t,(0,1)||

, (5.79)

where a dot product in complex space is defined by the Hermitian dot product (Scharnhorst, 2001). It should be noted that

υ′
(0,1) · υ

′
t,(0,1) = (υ′

t,(0,1) + υ′
n,(0,1)) · υ

′
t,(0,1) = υ′

t,(0,1) · υ
′
t,(0,1) = ||υ′

t,(0,1)||
2 , (5.80)

which simplifies the expression of Equation 5.79 to

cos (ζ(0,1)) =
||υ′

t,(0,1)||
||υ′

(0,1)||
. (5.81)

A value of cos (ζ(0,1)) close to one would indicate that the total perturbation vector and perturbation vector tangential to
base flow are aligned with each other, and thus suggest the dominance of modal mechanisms. Values away from one would
suggest misalignment and the presence of non-modal effects. Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) also
further decompose the expression of Equation 5.81 to find that that misalignment of total perturbation vector and base
flow can directly be linked to the growth rates of tangential and total perturbation being different from each other.





6
Perturbation Response to Base Flow

Deformation
This chapter considers the interaction of stationary crossflow instability with a base flow deformed via a two-way pressure
variation imposed on the clean case pressure distribution which possesses a favourable pressure gradient. Relevant features
of base flow that potentially affect perturbation behaviour are first investigated. This is followed by an investigation of
perturbation behaviour via observation of its normalized amplitude function and its amplitude evolution. The spanwise
integrated Reynold Orr framework developed in Section 5.1 is then used to explain the trends of amplitude evolution. The
focus then shifts to identifying the lift-up effect and the Orr mechanism as prescribed in Section 5.2.1. The action of these
mechanisms on actual perturbation evolution and ILST solution evolution (representative of local modal behaviour) are
compared to find traces of deviation of perturbation from modal character. Criteria specified in Section 5.2.2 are then
examined to claim whether the identified deviation from modal character translates to the development of non-modal
character.

Figure 6.1: ∆P distribution of 2.5pf 30w (blue) and −2.5pf 30w (red) cases, denoting first and second half of pressure variation, and adverse
(abbreviated as adv.) and favourable (abbreviated as fav.) ∆P regimes; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition.

Before beginning the discussion on base flow characteristics, the nomenclature used in this chapter is considered. To
ease the interpretation of results, the region where∆P is imposed is divided into the first half of deformation demarcated
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by the region between xst = −w/2 and xst = 0, and the second half of deformation demarcated by the region between
xst = 0 and xst = w/2, as shown in Figure 6.1. A region of positive slope of ∆P v/s x is called adverse, approximately
corresponding to a region of reduced effective pressure gradient (less negative or positive) than the clean case. Whereas,
a region of negative slope of ∆P v/s x is called favourable, approximately corresponding to a region of higher negative
effective pressure gradient than the clean case (noting that effective pressure gradient, external pressure gradient and base
flow pressure gradient are synonymous for boundary layer solver base flows). The first half in positive pf and second
half in negative pf cases corresponds to a favourable ∆P region, whereas the first half in negative pf and second half in
positive pf cases corresponds to an adverse∆P region. The favourable and adverse∆P regions are marked in Figure 6.1.
Throughout the chapter, a comparison of the results of clean, 2.5pf 30w, and −2.5pf 30w cases proposed in Section 2.4
are primarily presented through contours and plots. These are referred to as ”reference cases”, with the latter two cases
being referred to as ”reference deformed cases”, and their selection is grounded in the width scale being the average width
scale and the pressure factor being the highest, making changes of base flow and perturbation behaviour easily perceptible.
Similarities and differences with the behaviour of medium (±1.5) and lowest (±2.5) pf 30δ0 cases and cases of other
width scales are occasionally highlighted when necessary.

6.1. Base Flow Characteristics
In the boundary layer solver, the modification of external pressure distribution is directly taken into account by the

variation of external velocity via the Bernoulli equation. The external velocity profiles for the 30δ0 cases are shown in
Figure 6.2 (a). The external velocity increases at a rate faster than the clean case through most of the favourable ∆P
region due to the deformed case possessing a relatively more favourable effective pressure gradient compared to the clean
case. On the other hand, the external velocity grows slower than the clean case or starts decreasing through most of the
adverse∆P region due to the deformed case possessing a relatively less favourable or adverse effective pressure gradient
compared to the clean case. The term ”most” is used as the external pressure gradient of the clean case has a negative
pressure gradient, implying that any ∆P distribution superposed on the clean case external profile will result in slightly
asymmetrical acceleration or deceleration of external velocity in the region of deformation. The changes in external
velocity profiles relative to the clean case are higher for higher pf values, owing to the increase in strength of pressure
variation imposed.

Figure 6.2: Chordwise evolution of (a) External Velocity and (b) Boundary layer thickness in 30δ0 cases; −2.0pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region

of∆P imposition in deformed cases.

A visualization of boundary layer thickness in Figure 6.2 (b) elucidates how the changes in inviscid flow deform the
boundary layer. The clean case possesses a gradually thickening boundary layer. Before the region of pressure change,
all flows have the same boundary layer thickness, as evidence of the parabolicity of boundary layer solvers only affecting
changes downstream of the imposed pressure change. In positive pf cases, throughmost of the first half of deformation, the
boundary layer thickness reduces relative to the clean case. This can be explained with the z vorticity analogue (Abernathy,
1968; Vos & Farokhi, 2015), where viscosity potentially has lesser time to diffuse z vorticity due to higher external velocity
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relative to the clean case, leading to a thinner boundary layer. Note that even though the external velocity increases in the
clean case and the first half of 0.5pf 30w case, its boundary layer does not decrease in an absolute sense, showing that
the decrease of boundary layer thickness in an absolute sense only occurs when the change of external velocity occurs
sufficiently fast over a short width scale (close to the orders of boundary layer thickness). On the other hand, in most of
the first half of negative pf cases, a thicker boundary layer is observed relative to the clean case, potentially due to the
increased time available to viscosity to spread z vorticity as a consequence of lower external velocity relative to the clean
case. It is noted that the increase of boundary layer thickness relative to the clean case occurs even for the −0.5pf 30w
case, where the effective pressure gradient is fully favourable. This highlights that explaining results in terms of the nature
of∆P region, which approximately indicates whether the effective pressure gradient is more negative or less negative (or
positive) than the clean case, is more appropriate than commenting on results based on the adverse or favourable nature
of effective pressure gradient. The behaviour of boundary layer thickness reverses on approaching the end of the first half
of deformation through the second half of deformation in the deformed cases i.e. a boundary layer initially thicker than
the clean case in the first half of deformation eventually falls beneath clean case boundary layer thickness in the second
half of deformation and vice versa. This is potentially due to the change in behaviour of external velocity in the second
half relative to the first half of deformation, which potentially dictates boundary layer thickness behaviour by virtue of
viscosity having more or less time to spread z vorticity in the second half relative to the first half of deformation. At the
end of the second half of deformation, the boundary layer thickness starts saturating to values close to those of the clean
case, showing the localization of imposed deformation. The same trends are observed across the pf cases of different
width scales as shown in Appendix C.1. The local increase or decrease of boundary layer thickness implies a change in
the near-wall chordwise momentum distribution, motivating an investigation of the underlying chordwise velocity field.

Figure 6.3: Contours of chordwise velocity in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black solid lines show constant velocity
contour lines; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.4: Contours of chordwise derivative of chordwise velocity in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted
lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.
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Figure 6.5: Contours of wall-normal velocity in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

In the clean case, a mildly favourable pressure gradient accelerates near-wall chordwise velocity. However, the effect
of a gradually increasing boundary layer counters the effect of this acceleration, reducing the chordwise velocity at near-
wall levels. The competition of these effects results in the constant contour lines of chordwise velocity almost remaining
horizontal in the near-wall region in the clean case as observed in Figure 6.3 (a) relative to the behaviour of constant contour
lines in deformed cases, resulting in negligible values ofUBx

as seen in Figure 6.4 (a). In positive pf cases, a more negative
effective pressure gradient relative to the clean case in most of the favourable∆P region forces the chordwise velocity to
accelerate as seen for the reference case in Figure 6.4 (b). This causes a downward deflection of constant contour lines
of UB , as seen for the reference case in Figure 6.3 (b), bringing more momentum to the near-wall region, consistent with
the effect of a contracting boundary layer. The effect of boundary layer size appears to complement the effect of pressure
gradient in terms of influencing UBx behaviour in deformed cases, unlike the clean case. Whereas, in a negative pf case,
a positive effective pressure gradient (or a less negative effective pressure gradient relative to the clean case for the lowest
negative pf case) in most of the adverse ∆P region forces the chordwise velocity to decelerate as seen for the reference
case in Figure 6.4 (b). This causes an upward deflection of constant contour lines of UB as seen for the reference case in
Figure 6.3 (b), taking away momentum from near-wall regions. From the end of the first half of deformation through most
of the second half of deformation, the behaviour of effective pressure gradient changes relative to its behaviour in most of
the first half of deformation, causing a change in the behaviour of UBx (observed in Figure 6.4 (b) and (c)) and deflection
of UB constant contour lines (observed in Figure 6.3 (b) and (c)). There remains a third region of non-negligible UBx

at the end of the second half of deformation, most prominent in the highest positive and negative pf cases, evidenced in
Figure 6.4 (b) and (c). This is attributed to the eventual relaxation of the deformed boundary layer to characteristics of the
clean boundary layer. The sign of UBx

in this region resembles the sign of UBx
in the first half of deformation, although

its magnitude is much reduced compared to the first half of deformation. Decreasing the pf for a fixed width decreases
the magnitude of UBx as a consequence of a weaker change of effective pressure, as shown in Appendix C.3. However,
the value of UBx

is much higher than the clean case for all deformed cases, making it a key feature of a ”rapid” base flow
deformation. The behaviour of UB and UBx

influences VB and UBy
, which are subsequently considered.

The behaviour of VB can directly be interpreted from the behaviour of UBx
by integrating the continuity equation

(Equation 3.6) to obtain

VB = −
∫ y

0

∂UB
∂x

dy + VB(y = 0) = −
∫ y

0

∂UB
∂x

dy, (6.1)

since VB is zero at the wall by means of the no-slip condition. Relative to the deformed cases, the clean case has much
smaller values of UBx

, resulting in negligible values of VB as shown in Figure 6.5 (a). For the deformed cases, UBx
can

be assumed to have a consistent sign at a given chordwise position in regions of deformation, as seen for the reference
cases in Figure 6.4 (b) and (c). Thus, via Equation 6.1, a region of positive UBx corresponds to a region of downwash, and
a region of negative UBx corresponds to a region of upwash, as seen for the reference cases by comparing Figure 6.4 (b)
and (c) with Figure 6.5 (b) and (c). VB magnitude reduces with a reduction of pf due to the reduction of UBx

magnitude
for a given width scale, as shown in Appendix C.3, but remains much higher than clean case values, making it another key
feature of a rapid base flow deformation.
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Figure 6.6: Wall-normal variation of chordwise velocity in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w case (red) at xst/δ0 = (a)
-0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w.

Figure 6.7: Wall-normal variation of chordwise velocity shear in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w case (red) at xst/δ0 =
(a) -0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w.

The behaviour of chordwise velocity shear depends on the chordwise momentum near the wall. Higher near-wall
chordwise momentum results in a larger y derivative of UB , resulting in higher chordwise velocity shear and vice versa.
Plots of wall-normal variation of chordwise velocity and chordwise shear are shown at four different locations in Figure 6.6
and Figure 6.7, respectively, for the reference cases to demonstrate these trends, wherein the first two locations are in the
first half of deformation and the latter two locations are in the second half of deformation. In positive pf cases, the increase
of near-wall momentum relative to the clean case in the first half of deformation leads to an increase of chordwise velocity
shear. The subsequent decrease of near-wall momentum in the second half relative to the first half of deformation leads to a
reduction of chordwise velocity shear. The behaviour of chordwise velocity shear can similarly be interpreted for negative
pf cases, with reduced shear in the first half of deformation relative to the clean case due to reduced near-wall momentum,
and increased shear in the second half relative to the first half of deformation due to increased near-wall momentum. For
the same width scale, the extent of reduction or increase of shear is lower for lower pf cases relative to higher pf cases in
regions of deformation, as shown in Appendix C.4, due to the weaker deformation of baseflow. Development of inflection
points in the UB distribution are evidenced by observing that the UBy distribution peaks at a location other than y/δ0 = 0
in adverse ∆P regions of both reference positive and negative pf cases. This occurs due to the boundary layer being
subjected to an adverse effective pressure gradient. However, these inflection points do not develop in the lowest pf cases
due to the consistently favourable nature of pressure gradient, as observed in Appendix C.4. The existence or absence
of inflection points is of significance, as it is used by Eppink (2020) to justify instability amplification in regions where
multiple inflection points exist.
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Figure 6.8: Contours of spanwise velocity in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black solid lines show constant velocity
contour lines; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.9: Contours of chordwise derivative of spanwise velocity in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines
at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.10: Wall-normal variation of spanwise velocity shear of clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w case (red) at xst/δ0 =
(a) -0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w.

The field ofUB and VB together influence the field ofWB , as a pressure gradient is absent in the z direction. To elucidate
mechanisms that might influence the chordwise evolution of spanwise velocity, the base flow z-momentum equation is
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rearranged to bringWBx
to the left-hand side to obtain

∂WB

∂x
= −VB

UB

∂WB

∂y︸ ︷︷ ︸
Vw

+
ν

UB

∂2WB

∂y2︸ ︷︷ ︸
Dw

. (6.2)

An illustration of plots of Equation 6.2 on two different wall-normal levels for reference cases in Figure 6.11 shows that Vw
drives the development ofWBx

in the deformed region. The sign of Vw depends directly on the sign of VB (which in turn is
related to the sign of UBx

) sinceWBy
has a negative sign negating the other negative sign. A region of chordwise velocity

deceleration corresponds to a region of upwash, which makes Vw positive, resulting in a positive value of WBx
, which

implies a deceleration of the spanwise component (sinceWe is negative). The vice versa is true for a region of downwash
or chordwise velocity acceleration. Thus, the trends of −WBx in clean and deformed cases (shown for reference cases
in Figure 6.9) match the trends of UBx (shown for reference cases in Figure 6.4). This in turn results in the upward
and downward movement of constant contour lines of spanwise velocity in the majority of adverse ∆P and favourable
∆P near-wall regions, respectively, as observed for reference deformed cases in Figure 6.8 (b) and (c). The reduction
of spanwise near-wall momentum goes hand in hand in hand with a reduction of −WBy

and vice versa, as observed in
Figure 6.10. The extent of reduction or increase ofWB , magnitude of sign changedWBx

, and change ofWBy
behaviour

in lower pf cases occur to a reduced degree compared to the reference positive and negative pf cases due to weaker
deformation of base flow, as shown in Appendix C.2, Appendix C.3, and Appendix C.4, respectively. The behaviour of
WBx

is the third key feature differentiating a rapidly deformed base flow from clean case base flow behaviour (the first
two features being UBx

and VB).

Figure 6.11: Plot of the evolution of terms in Equation 6.2,Ω =WBx (magenta with squares), Vw , (green with stars), and Dw (grey with circles) of
clean case (a,d), 2.5pf 30w case (b,e), and −2.5pf 30w case (c,f) at y/δ0 = 0.5 (top) and y/δ0 = 1 (bottom); black dotted lines at

xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

With the understanding of UB , VB andWB fields, an investigation of near-wall streamlines can be conducted since a
large streamline deflection has the potential of forcing an initially modal perturbation not to follow the base flow anymore.
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Figure 6.12: Plot of xz projection of 3D streamlines seeded at y/δ0, z/δ0 = (i) 0.05, 8π (circle), (ii) 0.25, 6π (plus), (iii) 0.5, 4π (square), (iv) 1, 2π
(cross), and (v) 2, 0 (diamond) in (a) 2.5pf 30w case and (b) −2.5pf 30w case; black dash-dotted lines show clean case near-wall streamline and

far-wall streamline; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.13: Wall-normal variation of crossflow velocity in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w (red) case at xst/δ0 = (a)
-0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w.

This could in turn result in non-modal effects similar to those observed by Casacuberta, Hickel, Westerbeek, and Kotsonis
(2022). Near-wall streamlines for reference deformed cases (shown in Figure 6.12) show an outboard deflection in the
adverse ∆P region and an inboard deflection in the favourable ∆P region, potentially due to the stronger adverse and
favourable pressure gradient regimes compared to the clean case. The outboard and inboard turn of near-wall streamlines
in regions of local adverse and favourable pressure gradient, respectively, are also observed by Casacuberta, Hickel, West-
erbeek, and Kotsonis (2022). The lowest pf cases hardly show any streamline deflection in the near-wall region potentially
due to the effective pressure gradient not undergoing a sign change. Whereas the medium pf cases show similar behaviour
with reduced extent when compared with the highest pf cases of same sign due to reduced extent of base flow deformation.
The observed trends of streamline deflection have consequences for crossflow velocity behaviour, whose investigation is
relevant since the crossflow profiles are aligned within a few degrees of clean case directional profiles (Bippes, 1999),
which govern modal growth characteristics (Mack, 1984). The crossflow velocity (WB,s) is expressed by

WB,s =WBcos(θs)− UBsin(θs), (6.3)

where the inviscid streamline angle is given by

θs = arctan

(
W∞

Ue

)
. (6.4)
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For the clean case, in the coordinate conventions considered here, the crossflow component is consistently positive.
Deformed base flows present a chance for deviation from clean case crossflow properties, wherein a region of local adverse
pressure gradient has been related to crossflow reversal and a region of stronger favourable pressure gradient than clean
case has been related to crossflow enhancement in the studies of FFS base flow (Eppink, 2020; Rius-Vidales & Kotsonis,
2021). In the first half of deformation of the reference positive pf case, the inboard turn of streamlines results in enhanced
crossflow compared to the clean case as observed in Figure 6.13 (a) and (b), possibly due to the more negative effective
pressure gradient. On the other hand, the outboard turn of streamlines in the first half of the reference negative pf case
results in reduced crossflow than the clean case, which eventually reverses direction, possibly due to the adverse effective
pressure gradient. In the second half of deformation, crossflow enhancement is noted in the reference negative pf case and
crossflow reduction in the reference positive pf case, relative to the first half of deformation, possibly due to the change
in behaviour of effective pressure gradient in the second half of deformation. The region where crossflow enhancement
and reduction occurs remains the same for the same sign of pf , with the extent of enhancement and reduction curtailed
due to the weaker pressure deformation, as shown in Appendix C.5. Crossflow does not reverse in the lowest positive and
negative pf cases potentially due to a fully favourable pressure gradient distribution. Crossflow also does not reverse in
the medium positive and negative pf cases potentially due to a weaker adverse pressure gradient than the highest positive
and negative pf case, and might have reversed had the same adverse pressure gradient region existed over a larger width
scale.

Figure 6.14: Wall-normal variation of normalized amplitude function of u′ in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w case (red)
at xst/δ0 = (a) −0.75w, (b) −0.4w, (c) −0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.

6.2. Perturbation Evolution
The amplitude function of perturbations is first examined to identify if secondary peaks are present in the amplitude

function of u′, and to find which perturbation components are dominant contributors to total perturbation energy. Sec-
ondary peaks are associated with near-wall streaks by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022), and the
authors claim that amplitude evolution at the primary peak is more representative of the behaviour of crossflow insta-
bility, even when the |ũ| value at the secondary peak is higher than its value at primary peak. Wall-normal variation of
|ũ| normalized perturbation amplitude function (defined as perturbation amplitude function at a chordwise location nor-
malized by maxima of |ũ| at that location), shown for reference cases at various locations in the first and second half
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of deformation in Figure 6.14, show that secondary peaks do not develop when the u′ perturbation evolves through the
reference deformed base flow considered here, meaning additional near-wall streaks are absent. Secondary peaks are also
not observed when the perturbation evolves through non-reference deformed base flows, as shown for the 30δ0 cases in
section D.1. In addition, the normalized amplitude function peak stays approximately at a constant height in the clean
case, whereas it undergoes an upward motion in the adverse ∆P half and a downward motion in the favourable ∆P half
in deformed base flow cases, with movement increasing with an increase of pf magnitude, as seen in section D.1. The
w′ normalized amplitude function does not develop secondary peaks, and also shows the upward and downward trends of
peak movement noted for u′ normalized amplitude function. The value of w′ amplitude function peak is comparable to
that of the u′ amplitude function peak (shown in Appendix D.1). Examination of v′ normalized amplitude function (shown
in Appendix D.1) reveals that v′ is a much smaller perturbation component than u′ with values of amplitude less than 10%
of the amplitude of u′ perturbation at any given chordwise location. The appearance of secondary peaks makes a trend
for v′ peaks difficult to identify clearly. Thus, u′ and w′ bear the bulk of perturbation energy. A potential explanation for
the upward and downward movement of peaks of u′ and w′ in the region of base flow deformation is provided later in
Section 6.3.2.

Figure 6.15: Chordwise evolution of growth rate of u′ (solid with circles), v′ (dashed with diamonds), and w′ (dash-dotted with stars) in clean case
(black) and −2.5pf 30w case (red); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in the deformed case.

The growth rate of a perturbation component (αi,k) can be calculated at its amplitude function maxima (Ak,max at the
wall-normal location ”max”) by

αi,k = − 1

Ak,max

dAk,max
dx

, (6.5)

In analysis of modal growth with tools such as ILST, all perturbation components are assumed to grow with the same
growth rate. In case of the propagation of a stationary crossflow instability in a weakly non-parallel boundary layer like
the clean case, the assumption of similar growth rates across all components is valid, as shown in Figure 6.15. However,
in a deformed boundary layer like the reference negative pf case, the growth rate of u′, v′ and w′ have potential to differ
from each other, as shown in Figure 6.15. This is also evidenced in the FFS step cases of Casacuberta et al. (2021). Even
though v′ accounts for very little perturbation energy as presented earlier, representing growth rate and amplitude based on
the norm of total perturbation vector ( |ũtot| =

√
|ũ|2 + |ṽ|2 + |w̃|2 =

√
2Ẽ ) is better suited for deformed cases (whose

trends would be dominated by the growth rate and amplitude of u′ andw′ perturbation, since these components contain the
bulk of perturbation energy). This metric has also been used to quantify growth and amplitude evolution by Casacuberta
et al. (2021) and Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) in their FFS cases, thus ratifying its choice.



6.3. Mechanisms Governing Perturbation Evolution 63

Figure 6.16: Chordwise evolution of (a) growth rate and (b) Amplitude in 30δ0 cases; −2.5pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

The evolution of growth rate (αi) and Amplitude (A) of |ũtot| are presented in Figure 6.16 (a) and (b), respectively, for the
30δ0 cases. A negative growth rate corresponds to destabilization and a positive growth rate corresponds to stabilization.
The clean case has a negative growth rate with minor variation along the chordwise direction. For the deformed cases,
the growth rate originally has the same value as the clean case, and starts deviating slightly upstream of the first half of
deformation. Comparing αi in positive pf cases against αi in the clean case, less negative values are observed in the first
half of deformation, followed by more negative values from the end of the first half through most of the second half of
deformation, followed by less negative values at the end of the second half of deformation. Comparing αi in negative
pf cases against αi in the clean case, more negative values are observed in the first half of deformation, followed by less
negative values (or positive values) from the end of the first half through most of the second half of deformation, followed
by more negative values at the end of the second half of deformation. Similar trends of growth rate are observed for larger
and smaller width scale cases as shown in Appendix D.2, indicating that the explanation of trends for 30δ0 cases would
apply to cases of other width scales. The amplitude evolution trends show that the change of growth rate in deformation
hardly has any long-term increase or reduction of amplitude beyond regions of base flow deformation in positive pf cases.
However, considerable long-term amplitude reduction is observed in the highest negative pf case due to a positive growth
rate in some parts of the deformation. Even though the lower negative pf cases don’t have a change in sign of growth rate,
minor long-term amplitude stabilization is observed due to the considerably reduced growth rate compared to the clean
case from the end of the first half to the second half of deformation.

Some of the results qualitatively match the behaviour noted by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) in
a region of local adverse pressure gradient sufficiently upstream of the FFS, where secondary structures do not appear in the
u′ amplitude function. They observe that perturbations grow linearly and faster than the clean case. The best comparison
with their results would be in the form of comparing the -2.5 pf cases, where local regions of effective adverse pressure
gradient are imposed in the first∆P half. In this case, an initial increase in amplitude is noted compared to the clean case
in the adverse effective pressure gradient region, similar to the results of Casacuberta, Hickel, Westerbeek, and Kotsonis
(2022) in their FFS upstream region. Now, the challenge remains to understand what mechanism could potentially cause
the perturbation growth rate and amplitude to behave in the manner shown in Figure 6.16. While it appears appealing to
directly correlate the trends seen in the simulated cases to the nature of directional profiles or the appearance of inflection
points, the next section elucidates why such theories would not work in the cases considered here, and thus leads to the
demonstration of an energy framework to understand mechanisms influencing perturbation amplitude evolution.

6.3. Mechanisms Governing Perturbation Evolution
Two theories traditionally used to explain the behaviour of crossflow instability are the behaviour of directional pro-

file (Mack, 1984) and the appearance of multiple inflection points (Eppink, 2020; Hosseinverdi & Fasel, 2016). In the
clean case, the directional profile roughly matches the crossflow profile (Casacuberta, Hickel, Westerbeek, & Kotsonis,
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2022). Regions of enhanced crossflow are correlated with higher growth of crossflow instability in Falkner-Skan-Cooke
boundary layers by Mack (1984). In deformed cases, a directional profile can be difficult to obtain, as explained later in
Section 6.4.2. Thus, an attempt is made to directly correlate perturbation behaviour with the nature of crossflow profiles to
prove that this approach wouldn’t work in the cases considered here. In the favourable∆P region of the positive pf cases
considered in this study, lower growth of instability is observed compared to the clean case (Figure 6.16) in a region of
enhanced crossflow (Figure 6.13). Similarly, in the adverse ∆P region of negative pf cases, enhanced instability growth
in comparison with the clean case (Figure 6.16) occurs in a region of reduced crossflow (Figure 6.13). This suggests that
the correlation of crossflow instability characteristics with local crossflow enhancement or decay would not be a suitable
way to describe instability growth or decay in a region of rapidly deformed base flow, reaffirming the doubts expressed
by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) in using such an approach in their FFS cases.

The second theory involves finding if an additional inflection point appears in theUB profile in addition to the inflection
point already existing in the crossflow profile, to correlate additional destabilization with respect to the clean case to the
appearance of the new inflection point in the UB profile in addition to the already existing inflection point in the crossflow
profile (Hosseinverdi & Fasel, 2016; Eppink, 2020). The results of - 0.5pf 30w case wherein perturbation amplitude
experiences enhanced growth relative to the clean case in the adverse ∆P half, without the appearance of any additional
inflection points in theUB profile (refer Section 6.1), casts doubt onwhether the increase of inflection points can actually be
correlated to additional growth of the crossflow instability. Hence, the energy balance framework presented in Section 5.1
is considered to explain mechanisms of perturbation behaviour in regions of deformed flow. Only the results of reference
cases are shown here, with the occasional mention of results in non-reference 30δ0 cases.

Figure 6.17: Budget of Reynold Orr Equation Equation 5.25, χ =
∫
Pdy (light green),

∫
T dy (magenta),

∫
Ddy (brown),

∫
Wdy (grey), and∫

(P + T +D +W)dy (sky blue dashed) of (a) clean case, (b) 2.5pf 30w case, (c) −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

The preliminary energy balance equation given by Equation 5.25 is reconsidered. Whether the sum of terms in Equa-
tion 5.25 sums to zero needs to be verified. For this purpose, the wall-normal integrated production, transport, work of
viscous forces, work of pressure, and their total sum are presented for reference cases in Figure 6.17. It can be noted that
the total sums to zero showing that the derived analysis (Equation 5.25) is correct. The work of pressure takes negligi-
ble values and thus is not analyzed further. The work of viscous forces acts as a means for perturbation to lose energy
uniformly throughout all cases, without a perceptible change in character for deformed and clean cases, thus justifying
the choice not to study its behaviour further. On the other hand, the production term which acts as a source for pertur-
bation stabilization or destabilization, and the transport term which contains terms indicating energy growth rates, have
comparable magnitudes. Comparing the production integral with the transport integral of individual cases shows that the
transport integral appears to mirror the character of the production integral in regions where the latter is positive, with a
reduced extent due to some energy lost to the work of viscous forces. These terms also have differing behaviour in clean
and deformed cases, and have the potential to explain the differences in perturbation amplitude evolution between clean
and deformed cases. Hence, they are decomposed as per Section 5.1.2 and Section 5.1.3, and considered in further detail.
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6.3.1. Analysis of Production Term Evolution
The production term for the clean case shown in Figure 6.18 (a) remains positive and shows a monotonically increas-

ing trend in chordwise direction, representing a consistent destabilizing tendency (refer subsection 5.1.2). Although the
production term remains destabilizing in the positive pf cases, it loses its monotonic behaviour as shown for the reference
positive pf case in Figure 6.18 (b). In the lower negative pf cases, the production term remains positive and non-monotonic
like the positive pf cases. However, the reference negative pf case shows a region of negative production term, which
represents a large potential for perturbation stabilization, as seen in Figure 6.18 (c). An explanation for the trends of the
production term is not readily evident, and hence P is decomposed into Pxd

and Pyd as described in Section 5.1.2, to first
understand their trends.

Figure 6.18: Contours of production term in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.19: Contours of Pxd in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

To understand the trends of Pxd
, shown for reference cases in Figure 6.19, its decomposition is considered as per

Equation 5.32, which reads

Pxd
= −4π

β

(
|ũ|2 ∂UB

∂x

)
︸ ︷︷ ︸

Pxd,1

−4π

β

(
|ṽ||ũ|∂VB

∂x
cos(ϕ1 − ϕ2)

)
︸ ︷︷ ︸

Pxd,2

−4π

β

(
|w̃||ũ|∂WB

∂x
cos(ϕ1 − ϕ3)

)
︸ ︷︷ ︸

Pxd,3

. (6.6)

The contribution of Pxd,2 is negligible compared to the contribution of Pxd,1 and Pxd,3 in this balance as shown by wall-
normal integrated terms in Figure 6.20, possibly by means of the order of magnitude argument stated in Section 5.1.2.
Thus, the character of Pxd

is determined by Pxd,1 and Pxd,3, whose wall-normal integrals behave similarly in Figure 6.20.
The sign of Pxd,1 is directly determined by −UBx

. On the other hand, the sign of Pxd,3 is determined by −WBx
and

cos(ϕ1 − ϕ3). The latter remains -1 throughout regions relevant for energy transfer mechanisms as seen in Figure 6.21
for reference cases and in Appendix D.3.1 for non-reference cases. Since −WBx

and UBx
have the same sign throughout
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Figure 6.20: Evolution of χ =
∫
Pxd,1dy (dash-dotted with stars),

∫
Pxd,2dy (dashed), and

∫
Pxd,3dy (solid) in (a) clean case, (b) 2.5pf 30w

case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.21: Contours of cos(ϕ1 − ϕ3) in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

regions of deformation (refer Figure 6.9 and Figure 6.4),Pxd,1 andPxd,3 constructively interfere with each other (as shown
in Figure 6.20). Hence, trends of Pxd

can be explained by examining either of the two terms, motivating an investigation
of the trends of Pxd,1 (which is influenced by the sign of UBx

seen in Equation 6.6).

UBx
is negligible in the clean case resulting in negligible Pxd,1

, explaining the negligible values of Pxd
seen in Fig-

ure 6.19 (a). In the deformed cases, wall-tangential base flow x derivatives have higher magnitudes than the clean case
in three regions, the first region spanning most of the first half of deformation, the second region spanning the end of the
first half through the second half of deformation, and the third region starting at the end of second half spanning through
a short chordwise distance post the second half of deformation as shown for reference cases in Figure 6.4 and Figure 6.9.
Thus Pxd1

is non-zero in these three regions taking the exact same sign of −UB,x, resulting in non-zero values of Pxd

in these regions, as shown for reference deformed cases in Figure 6.19 (b) and (c). It should be noted that the values in
the third region are invisible in the contour plot of reference negative pf case in Figure 6.19 (c), as the third region has
much lower values of UBx and WBx compared to the first two regions, as can be noted in Figure 6.4 (c) and Figure 6.9
(c). Positive values of Pxd

physically imply that the perturbation has the potential to take up the energy not needed by
the wall-tangential base flow when it decelerates in the chordwise direction, resulting in the potential for perturbation
destabilization. Whereas, negative values of Pxd

imply that the perturbation has the potential to lose energy when the base
flow accelerates, resulting in the potential for perturbation stabilization.
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Figure 6.22: Contours of Pyd in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

Figure 6.23: Evolution of χ =
∫
Pyd,1dy (dash-dotted with stars),

∫
Pyd,2dy (dashed), and

∫
Pyd,3dy (solid) in (a) clean case, (b) 2.5pf 30w case,

and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Now, the trends of Pyd are analyzed, whose contours in reference cases are shown in Figure 6.22. To understand the
terms controlling its behaviour, its decomposition is considered, given by Equation 5.33, which reads

Pyd = −4π

β

(
|ũ||ṽ|∂UB

∂y
cos(ϕ2 − ϕ1)

)
︸ ︷︷ ︸

Pyd,1

−4π

β

(
|ṽ|2 ∂VB

∂y

)
︸ ︷︷ ︸

Pyd,2

−4π

β

(
|w̃||ṽ|∂WB

∂y
cos(ϕ2 − ϕ3)

)
︸ ︷︷ ︸

Pyd,3

(6.7)

The termsPyd,1 andPyd,3 dominate overPyd,2 as shown by visualizing the evolution of their wall-normal integrated values
in Figure 6.23. This dominance is potentially explained by order of magnitude arguments provided in Section 5.1.2. Pyd,3
behaves in a manner similar to Pyd,1 as evidenced in Figure 6.23, due to three reasons. The first reason is the similarity
of behaviour of −WBy and UBy , wherein these shears reduce in adverse∆P regions due to movement of wall-tangential
momentum away from the wall, and increase in favourable ∆P regions due to movement of wall-tangential momentum
towards the wall as shown in Figure 6.7 and Figure 6.10. The second reason is the similarity in behaviour of |ũ| and |w̃|
evolution. The third reason is similar behaviour of cos(ϕ2−ϕ1) and−cos(ϕ2−ϕ3) in regions relevant for energy transfer,
since the value of cos(ϕ1 − ϕ3) is -1 in these regions, as observed in Appendix D.3.1. Hence, studying the behaviour of
Pyd,1 is enough to comment upon the behaviour of Pyd . Since Pyd,1 depends on multiple parameters, commenting upon
its increase or decrease relative to previous positions when the sign doesn’t change is challenging and thus not considered
in detail. However, there exists a potential for sign change which is explored further.

The sign of Pyd,1 is determined by cos(ϕ2 − ϕ1) since UBy
does not change sign throughout the cases considered

here, due to absence of separation in cases considered. The contours of cos(ϕ2 − ϕ1) for reference cases are plotted in
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Figure 6.24. A negative sign of this quantity would provide a destabilizing contribution whereas a positive sign would
provide a stabilizing contribution. In the clean case, in the region where Pyd is active (approximately 0.5<y/δ0<1.5, refer
Figure 6.22 (a)), a value close to -1 is noted. The physical implication is that the v′ perturbation has a phase difference close
to 180 degree with u′ perturbation, meaning that u′ has peaks where v′ transfers high base flow momentum downwards
and u′ has valleys where v′ transfers low momentum upwards, thus providing potential for u′ to grow as explained earlier
in Figure 5.1. In the vicinity of y/δ0 = 2, the sign of cosine changes, and its behaviour indicates Pyd,1 has the potential to
be stabilizing. These correspond to regions where v′ valleys don’t align with u′ peaks, but rather in a phase-shifted manner
such that u′ has the potential to lose energy. However, these are located in the vicinity where Pyd and P have negligible
values possibly due to lower values of UBy in these regions, thus not leading to any significant stabilization, as seen in
Figure 6.22 (a).

In deformed cases, constant contour lines of cos(ϕ2 − ϕ1) tend to take a downward trajectory in the favourable ∆P
region and an upward trajectory in the adverse ∆P region, as shown for reference cases in Figure 6.24 (b) and (c), and
for non-reference cases in Appendix D.3.1. The upward and downward deflection of cos(ϕ2 − ϕ1) constant contour lines
appear to increase with the increase of pf for a given width scale, as seen in Appendix D.3.1, hinting that this deflection
is influenced by the strength of base flow deformation. The value of cosine monotonically increases in y till a level
of about y/δ0 = 0.75 (the exact level varies from case to case as seen for reference cases in Figure 6.24 (b) and (c)),
implying that any downward deflection of cos(ϕ2 − ϕ1) contour lines in this region would correspond to an increase of
cos(ϕ2−ϕ1) and vice versa. Thus in the near-wall region, an adverse∆P region corresponds to a reduction of cos(ϕ2−ϕ1)
and a favourable ∆P region corresponds to an increase of cos(ϕ2 − ϕ1), as shown with line plots for further clarity in
Appendix D.3.1. Furthermore, in some parts of the near-wall region of adverse∆P regions, the reduction of cos(ϕ2−ϕ1)
exposes near-zero sign changed values. In these regions, UBy

itself is not negligible meaning that the near-zero positive
values of cos(ϕ2 − ϕ1) result in much-reduced values of Pyd relative to the clean case. This is clearly visible in the
reference cases by reduced values of Pyd in the adverse ∆P region in Figure 6.22 (b) and (c) at the level y/δ0 = 0.5,
where the clean case had stronger positive Pyd values, as observed in Figure 6.22 (a).

Figure 6.24: Contours of cos(ϕ2 − ϕ1) in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; white solid lines show constant cosine
contour lines in the range -1 to -0.4; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Since the effects of Pxd
and Pyd have been considered individually, their combination is now studied at two different

heights y/δ0 = 0.5 and y/δ0 = 1 (here on referred as lower and higher height respectively), for reference cases in
Figure 6.25 to draw final comments on the behaviour of the Production term. The different heights studied correspond
to the different behaviour of Pyd terms in regions of deformed flow where P is active. For instance, in Figure 6.22 (c),
Pyd appears to reduce along a line drawn along y/δ0 = 0.5 and does not appear to change significantly along y/δ0 = 1.
Concrete comments can only be made about the sign of Pxd

and Pyd . ”Potential reasons” can be provided accounting for
their increase or decrease when their signs are consistent, which are speculative to some degree.

In the clean case, Pxd
is negligible as seen in Figure 6.25 (a) and (d), and all contributions to the production term occur

through Pyd , which is destabilizing throughout the considered region of evolution as seen in Figure 6.25 (b) and (e). The
negligible value of Pxd

occurs due to the negligible values of UBx
and WBx

in the clean case. In the deformed cases,
the influence of Pxd

becomes prominent in the region where pressure change is imposed, and it has similar orders of
magnitude compared to the Pyd term. A potential explanation of matching orders can be obtained by examining the orders
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Figure 6.25: Evolution of Pxd (a,d), Pyd (b,e), P (c,f) in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w (red) at y/δ0 = 0.5 (top) and
y/δ0 = 1 (bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

of magnitude of the uncommon terms in Pxd,1 and Pyd,1, and noting the order of cos(ϕ2 − ϕ1) to be O(1). Even though
UBx

is approximately 10 orders of magnitude lesser than UBy
, the fact that |ũ| is about 10 times |ṽ| potentially ensures

that

O

(
∂UB
∂x

|ũ|

)
≈ O

(
∂UB
∂y

|ṽ|

)
, (6.8)

resulting in similar orders of Pxd,1 and Pyd,1 in regions of deformed flow. The same can be said for Pxd,3 and Pyd,3, and
thus Pxd

and Pyd have comparable orders.

At both heights in the deformed cases, positive values of Pxd
are obtained in regions of wall-tangential base flow

deceleration, and negative values are obtained in regions of wall-tangential base flow acceleration, as seen for reference
deformed cases in Figure 6.25 (a) and (d). At the lower height, Pyd approximately appears to fall below clean case levels
in adverse ∆P regions, and appears to rise over clean case levels in favourable ∆P regions, as observed for reference
deformed cases in Figure 6.25 (b), potentially triggered by the decrease and increase of cos(ϕ2−ϕ1) (and−cos(ϕ2−ϕ3))
in adverse and favourable ∆P regions, respectively. The sign changed values of Pyd are also noted in adverse ∆P
regions of reference deformed cases due to the sign change of cos(ϕ2 − ϕ1) (and −cos(ϕ2 − ϕ3)). Beyond these two
regions of deformation, Pyd does not take similar values as the clean case. This could potentially be due to the changed
values of cos(ϕ2 − ϕ1) taking some chordwise length to return back to clean case levels and the values of |ũ| and |ṽ|
changing permanently beyond the deformation. At the higher height, Pyd remains destabilizing like the clean case, as
seen by comparing deformed case trends with clean case trends for reference cases in Figure 6.25 (e). The behaviour
of P in the first and second half of deformation, although influenced both by Pxd

and Pyd , reduces beneath clean case
levels approximately in regions of negative Pxd

or wall-tangential base flow acceleration, and increases above clean case
levels approximately in regions of positive Pxd

or wall-tangential base flow deceleration, as seen for reference cases in
Figure 6.25 (c) and (f) and for non-reference 30δ0 cases in Appendix D.3.2. The reduction of P to near zero values or
to negative values in the vicinity of the lower height is stronger when a region of wall-tangential base flow deceleration
precedes a region of wall-tangential base flow acceleration. This is evidenced by negative values at the beginning of the
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second half of deformation in the reference negative pf case and near-zero values near the second half of deformation in
the reference positive pf case in Figure 6.25 (c). This occurs since Pyd already reduces compared to the clean case in
the adverse∆P region at the lower height (approximately in a region of wall-tangential flow deceleration), and it doesn’t
recover to clean case levels by the location at which wall-tangential flow acceleration sets in, allowing a negative Pxd

to
significantly reduce or change the sign of P . Post the two halves of deformation, the behaviour of P is governed solely
by the behaviour of Pyd .

Figure 6.26: Contours of transport term in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at
xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

6.3.2. Analysis of Transport Term Evolution
The transport term shown in Figure 6.26 shows amirrored behaviour compared to the production term shown in Figure 6.18
for each of the individual cases. When P is positive, the effect of the production term is distributed among the work of
viscous forces and the transport term as per the preliminary energy balance equation, thereby ensuring that the magnitude
of the transport term would be lesser than the magnitude of production term. The vice versa is true when P is negative,
where the transport term magnitude is larger than the production term magnitude since it contributes to loss of energy to
both the production and work of viscous force term. The decomposition of the transport term shown in Equation 5.40 is
given by

T = −2π

β

(
UB

∂Ẽ

∂x

)
︸ ︷︷ ︸

Txc

−2π

β

(
VB

∂Ẽ

∂y

)
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Tyc

, (6.9)

where xc and yc denote x and y contributions, respectively. To understand the behaviour of Ẽx, which contains valuable
information on perturbation energy growth trends in regions of deformed flow, the behaviour of Tyc needs to be interpreted
first, since

Ẽx = − β

2πUB
(T − Tyc). (6.10)

Tyc depends on VB , which is negligible in the clean case, thus resulting in near-zero values of Tyc as shown in Figure 6.27
(a). Tyc is non-negligible in deformed cases when significant values of VB are encountered. The non-negligible values
occur in three regions (likeUBx ), the first region spanning most of the first half of deformation, the second region spanning
the end of the first half through the second half of deformation, and the third region starting at the end of second half
spanning through a short chordwise distance post the second half of deformation (the trends of VB in these three regions
follow a negative-positive-negative behaviour in positive pf cases and a positive-negative-positive behaviour in negative
pf cases, as seen for reference cases in Figure 6.5 (b) and (c)). Tyc also depends on the shears of perturbation energy, which
are likely to resemble the behaviour of shears of |ũ| and |w̃|, since the contribution of |ṽ| to perturbation energy is much
smaller than |ũ| and |w̃|. An observation of the normalized amplitude function of |ũ| (refer Figure 6.14) for instance can
help understand the trends of perturbation energy shear. The shear is positive until the peakwherein |ũ| increases with y and
negative from the point of peak upwards, wherein |ũ| reduces with y. To fully understand the behaviour of Tyc , two regions
can be considered by y/δ0 < 1 and y/δ0 > 1, where perturbation energy shear is approximately positive and negative,
respectively. In regions of upwash, Tyc takes away energy from the lower region and transports it to the higher region, and
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Figure 6.27: Contours of Tyc in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

in regions of downwash, Tyc takes away energy from the higher region and transports it to the lower region (explaining the
alternating behaviour seen in top and bottom region through regions of different VB behaviour in Figure 6.27 (b) and (c)).
Tyc , earlier referred to as an agent for advection of energy in the wall-normal direction in Section 5.1.3, physically acts
as an energy redistributor, wherein it takes away energy from a region of negative Tyc and pushes energy to a region of
positive Tyc . The close correspondence of upwash to an adverse ∆P region potentially explains why the peaks of u′ and
w′ perturbation amplitude function shift upwards in these regions since energy is taken away from the wall in a region of
upwash. By similar reasoning, downward moving peaks of u′ and w′ peaks can be explained in a favourable ∆P region,
closely corresponding to a region of downwash, where energy is transported to near-wall heights.

Figure 6.28: Contours of Txc in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

Since Tyc locally acts as a redistributor, the behaviour of Txc corresponds to the behaviour of T modulated by Tyc . The
behaviour of Ẽx (shown for reference cases in Figure 6.29) closely corresponds to the mirrored behaviour of Txc

(shown
for reference cases in Figure 6.28) since UB does not change sign. The final energy balance equation (Equation 5.44) is
reconsidered to explain trends of Ẽx which reads

∂Ẽ

∂x
≈ 1

UB

(
β

2π
(Pxd

+ Pyd)− VB
∂Ẽ

∂y
+

β

2π
D

)
, (6.11)

where work of pressure is neglected due to its negligible value. In the clean case, the production term dominated by the
behaviour of Pyd acts as a source for energy growth wherein the base flow provides energy to the perturbation through the
action of Pyd,1. Some of this source energy is lost to the work of viscous forces, but the rest of the energy is utilized by the
perturbation to growmonotonically as evidenced in Figure 6.29 (a). Since Tyc is negligible, Ẽx mimics the behaviour ofP .
In the deformed cases, the production term does not increase monotonically in the chordwise direction, and its regions of
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Figure 6.29: Contours of chordwise derivative of perturbation energy in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black solid
lines shows location of ”max”; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

increase and decrease with respect to clean case approximately correspond to regions of flow deceleration and acceleration,
respectively, as shown in Section 6.3.1. When the production term is positive (and higher than the magnitude of work of
viscous forces), as is the case in the reference positive pf case and most regions of the reference negative pf case (refer
Figure 6.18), the base flow acts as a source of energy such that some of the provided energy is lost by work of viscous
forces. Some energy is redistributed among layers by the action of Tyc . A region which receives redistributed energy has
a positive value of Ẽx corresponding to the perturbation energy experiencing strong growth. A region which loses energy
due to redistribution has a reduced positive value of Ẽx compared to the former region or a negative value of Ẽx, resulting
in a non-uniform wall-normal behaviour of Ẽx. On the other hand when the production term is negative (or lower than
the magnitude of work of viscous forces), as seen in some regions of the reference negative pf case (refer Figure 6.18
(c)), the perturbation taps into its already existing energy, such that energy after being redistributed between layers is lost
to work of viscous forces and to the base flow by the production term, causing the perturbation to lose energy in the
wall-normal region post its perturbation energy wall-normal distribution peak. In deformed cases, a chordwise section of
reduced or negative production term compared to the clean case (approximately corresponding to a chordwise section of
wall-tangential base flow acceleration) corresponds well with a chordwise section of less positive or negative Ẽx, which
further corresponds well with a region of less negative growth rate compared to the clean case or positive growth rate,
as observed for the reference cases by comparing Figure 6.18, Figure 6.29, and Figure 6.16 (a). Similarly, a region of
higher production term (approximately corresponding to a chordwise section of wall-tangential base flow deceleration)
with respect to the clean case corresponds well with a region of more negative growth rate compared to the clean case. It
is evident from these trends that the production term is the differentiating factor between regions of perturbation growth or
loss. Thus, mechanisms of perturbation amplitude evolution are primarily controlled by the behaviour of the production
term. The large stabilization occurring in the amplitude of the reference negative pf case can be attributed to a region of
negative production term.

6.3.3. Potential Pitfalls
Potential pitfalls in this analysis include the usage of an idealized base flow to simulate perturbation evolution. The

order of chordwise derivatives of wall-tangential base flow, which primarily differentiate the synthetic deformed base
flows from the clean case, are different for the idealized BLS base flow compared to the full Navier Stokes representation.
Thus, relative orders of UBx and UBy in the synthetic deformation cases simulated by BLS could be different from those
imposed by a natural base flow deformation. This would result in idealized predictions of perturbation behaviour, and
mechanisms influencing its amplitude evolution depending on the balance of Pxd

and Pyd may also only be applicable to
idealized cases. The movement of constant contour lines of cos(ϕ2 −ϕ1) which influences the sign of Pyd could also just
be an artefact of an idealized base flow. Thus, Chapter 7 examines if the order of chordwise derivatives of wall-tangential
base flow and mechanisms governing instability amplitude evolution in a natural base flow deformation (i.e. an FFS case)
bear resemblance to those in a synthetic base flow deformation with similar pressure characteristics.

6.4. Deviation from Modal Character
The analysis presented in the above sections shows that a deformed base flow affects the methods by which a stationary

crossflow perturbation grows or decays. This brings into question on whether a stationary instability growing via modal
mechanisms retains its original modal character on interacting with a base flow. Mechanisms such as the lift-up effect and
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Orr mechanism are usually associated with non-modal character in the case of an initial condition driven non-modality
in 3D flows (refer subsection 1.7.2), wherein an initially modal perturbation with non-modal growth characteristics gets
modified to a perturbation with modal growth characteristics for the underlying base flow. Thus, the perturbation can be
interpreted to initially have non-modal character with respect to the underlying base flow before it shows modal character
at a downstream location. It can be hypothesized that a base flow deformation presents an opportunity to view this from an
alternative perspective, i.e. an incoming mode interacts with a rapid base flow, and thus has the potential to deviate from
modal character. Mechanisms such as the lift-up effect and Orr mechanism have the potential of being active in the region
of base flow deformation, and their identification (as per subsection 5.2.1 and Equation 5.2.1) can provide insight into
deviation from local modal character (identified as per Equation 5.2.1). The results presented conclude with a discussion
of criteria in literature (as per subsection 5.2.2) to claim if the perturbation has traces of non-modal character.

Figure 6.30: Evolution of χ =
∫
Pdy (solid),

∫
I2dy (dash-dotted with stars), and

∫
(I1 + I3 + I4)dy (dashed) in (a) clean case, (b) 2.5pf 30w

case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure 6.31: Contours of I2 in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

6.4.1. Lift-up Effect
The I2 component of production term decomposition, as per Section 5.2.1 denotes the influence of the lift-up effect

(Casacuberta, Hickel, & Kotsonis, 2022; Lanzerstorfer & Kuhlmann, 2012). Thus, the production term is decomposed in
base flow normal-tangential coordinates to understand the influence of I2 as per the procedure suggested by Casacuberta,
Hickel, Westerbeek, andKotsonis (2022) (shown in Section 5.2.1). It is noted that I2 is the dominant component and almost
resembles the production term evolution across all cases, implying that the lift-up effect is the dominant mechanism in
the cases considered here, as shown for reference cases in Figure 6.30. Thus, I2 mimics the behaviour of P when its
contours are plotted in Figure 6.31. The lift-up effect has a destabilizing tendency in the modal clean case. However, it
has a stabilizing influence in the deformed cases as noted in Figure 6.31 (c). This mimics behaviour noted by Casacuberta,
Hickel, and Kotsonis (2022), where they claim that the ”reverse lift-up effect” has a stabilizing influence as opposed
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to the conventional lift-up effect which has a destabilizing influence. The change of behaviour of the lift-up effect can
thereby provide a preliminary indication of deviation frommodal behaviour, which needs to be compared with local modal
behaviour to draw any final conclusions (as discussed in Section 5.2). To understand why a sign change of I2 can occur,
I2 is decomposed to its 6 components as per Equation 5.64, which reads

I2 = −2π

β

(
ũ †
t

∂UB
∂x

ũn + ũ †
t

∂UB
∂y

ṽn + ṽ †
t

∂VB
∂x

ũn + ṽ †
t

∂VB
∂y

ṽn + w̃ †
t

∂WB

∂x
ũn + w̃ †

t

∂WB

∂y
ṽn

)
+ c.c.. (6.12)

Figure 6.32: Evolution of χ =
∫
I2,bdy (dash-dotted with stars),

∫
I2,fdy (solid) and

∫
(I2 − I2,b − I2,f )dy (dashed) in (a) clean case, (b)

2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

The dominant terms in the evolution of I2 are found to be I2,b and I2,f , which are the second and sixth terms added to
their corresponding complex conjugates in Equation 6.12. This is evidenced by integrating the various components of I2
in the y direction and comparing their influence in Figure 6.32. The dominance of I2,b and I2,f is consistent with results
of Casacuberta, Hickel, and Kotsonis (2022) in their FFS cases. The behaviour of I2 can thus be explained by explaining
the behaviour of either I2,b or I2,f . Hence, an attempt is made to explain the behaviour of I2,b, especially from the sign
perspective, to understand why the lift-up effect might have a stabilizing influence. I2,b can be expressed as

I2,b = −2π

β

(
ũ †
t

∂UB
∂y

ṽn

)
+ c.c. = −4π

β

(
|ũt||ṽn|

∂UB
∂y

cos(ϕ2,n − ϕ1,t)

)
(6.13)

The sign of this quantity can be determined by cos(ϕ2,n − ϕ1,t), since UBy
is consistently positive throughout the cases

considered here. Despite base flow tangential and base flow normal components having physical significance as fields
representative of streaks and rollers, respectively (Picella et al., 2018), the direct interpretation of their phase difference is
difficult due to the convoluted nature of mathematics that goes into deriving their expressions. The key to understanding
the behaviour of cos(ϕ2,n − ϕ1,t) is to relate the phase difference of ṽn and ũt to the phase difference between ṽ and ũ,
whose behaviour has already presented in Figure 6.24. To find this relation, an expression for ũ †

t ṽn is written as

ũ †
t ṽn = ũ †

t (ṽ − ṽt) = ũ †
t ṽ − ũ †

t ṽt, (6.14)

where the relation between ṽn, ṽt and ṽ is given by Equation 5.57. Referring to Equation 5.58, the term ũ †
t ṽt in Equa-

tion 6.14 can be expressed as

ũ †
t ṽt =

UBτ
†VBτ

||VB ||2
=
UBVB |τ |2

||VB ||2
= |ũt|

VB |τ |
||VB ||

. (6.15)

Rewriting the rest of the terms of equation Equation 6.14 in terms of exponentials,

|ũt||ṽn|ei(ϕ2,n−ϕ1,t) = |ũt||ṽ|ei(ϕ2−ϕ1,t) − |ũt|
VB |τ |
||VB ||

. (6.16)

Uniformly cancelling |ũt| in Equation 6.16,

|ṽn|ei(ϕ2,n−ϕ1,t) = |ṽ|ei(ϕ2−ϕ1,t) − VB |τ |
||VB ||

. (6.17)
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Taking the real part of Equation 6.17,

|ṽn|cos(ϕ2,n − ϕ1,t) = |ṽ|cos(ϕ2 − ϕ1,t)−
VB |τ |
||VB ||

. (6.18)

Equation 6.18 makes it easier to interpret the behaviour of cos(ϕ2,n − ϕ1,t). cos(ϕ2 − ϕ1,t) represents a term similar
to cos(ϕ2 − ϕ1), which played a role in determining the sign of the production term. ϕ1 and ϕ1,t take similar values
potentially due to the base flow normal component in x direction being extremely small, i.e.

ũt = ũ− ũn ≈ ũ, (6.19)

ϕ1,t ≈ ϕ1. (6.20)

The similarity in values of ϕ1 and ϕ1,t is evidenced in the field of cos(ϕ1,t−ϕ1) and sin(ϕ1,t−ϕ1) shown in Appendix D.4,
which take values close to one and zero, respectively, in both clean and deformed cases. Thus

cos(ϕ2 − ϕ1,t) ≈ cos(ϕ2 − ϕ1). (6.21)

Figure 6.33: Phase plots of η = ϕ2 − ϕ1 (dotted with circles) and ϕ2,n − ϕ1,t (dotted with stars) in the clean case at xst/δ0 = (a) −0.75w, (b)
−0.4w, (c) −0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.

VB on the other hand behaves in a manner similar to UBx
, wherein it changes signs in regions of base flow deformation,

as shown for reference cases in Figure 6.5. Thus, the phase difference between v′n and u′t leads or lags the phase difference
between v′ and u′ based on the influence of VB . This presents the picture that the I2 term can capture the influence of
sign of Pyd terms via cos(ϕ2 − ϕ1) and that of Pxd

terms via VB effects, providing insight into why I2 fully captures the
behaviour of P . An examination of the relation between cos(ϕ2 − ϕ1) and cos(ϕ2,n − ϕ1,t), and its connection to VB is
confirmed by examining plots of phase of ϕ2−ϕ1 and ϕ2,n−ϕ1,t for the clean and reference negative pf case as shown in
Figure 6.33 and Figure 6.34, respectively, at a level y/δ0 = 0.5, a level where stabilization is encountered in the I2 terms
of the reference negative pf case.

In the clean case, cos(ϕ2 − ϕ1) and cos(ϕ2,n − ϕ1,t) take close negative values as seen in Figure 6.33, due to the
negligible influence of VB . Negative sign of cos(ϕ2,n − ϕ1,t) denotes a destabilizing tendency of the lift-up effect. In the
reference negative pf case, cos(ϕ2,n − ϕ1,t) lags cos(ϕ2 − ϕ1) through most of the adverse∆P region as VB is positive,
as seen in Figure 6.34 (a), (b), and (c). cos(ϕ2,n − ϕ1,t) appears to be negative and thus, I2 is destabilizing. This lagging
tendency changes to a leading tendency at the end of the adverse∆P region through most of the favourable∆P region as
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Figure 6.34: Phase plots of η = ϕ2 − ϕ1 (dotted with circles) and ϕ2,n − ϕ1,t (dotted with stars) in the −2.5pf 30w case at xst/δ0 = (a) −0.75w,
(b)−0.4w, (c) −0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.

seen in Figure 6.34 (d), (e), and (f) due to the change of sign of VB , before both cos(ϕ2 − ϕ1) and cos(ϕ2,n − ϕ1,t) take
similar values towards the end of the deformation as observed in Figure 6.34 (g) and (h). During the transition from lag to
lead of cos(ϕ2,n−ϕ1,t)with respect to cos(ϕ2−ϕ1), Figure 6.34 (d) and (e) show a positive value of cos(ϕ2,n−ϕ1,t) even
when cos(ϕ2 − ϕ1) is negative due to the action of changed VB direction, thus yielding a stabilization of I2, amounting
to the observation of the reverse lift-up effect. This stabilizing influence only occurs in the reference negative pf case but
not in the reference positive pf case since I2 directly captures the effects of the production term, which only stabilizes in
the former and not in the latter. I2 stabilizes only in the cases where the production term becomes negative, and it can
be claimed that those particular cases show preliminary hints of deviation from modal character. Whether the stabilizing
tendency of the lift-up effect seen here translates to deviation from modal character is explored in Section 6.4.3, where
comparisons against local modal behaviour provide a final conclusion on this matter.

6.4.2. Orr Mechanism

As stated in Section 5.2.1, conventional observations of the Orr mechanism in terms of observing tilt of streamfunction or
constant vorticity are difficult in the framework of initially modal 3D perturbations. Hence, observation of u′ perturbation
tilt, given by the slope of wall-normal variation of ϕ1 is considered here (Section 4.3.1), and in case their wall-normal
variation differs with the change of chordwise station, the Orr mechanism is presumed to be active (Section 5.2.1). In
case the tilt differs at different x stations, phase variation on different y levels are evaluated to conclude that there is no
existence of a unique line of constant phase in xz plane, perpendicular to wavenumber direction, which is a property of
modal evolution (as explained in Section 5.2.1). With the above approach in mind, the wall-normal variation of ϕ1 is
observed at three chordwise stations, one prior to the imposed deformation, another in the first half of deformation and
another in the second half of deformation, as shown for reference cases in Figure 6.35, and the manifestation of ϕ1 tilt is
shown in yz plane contours of the real-valued u′ field for further clarity in Figure 6.36.
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Figure 6.35: Wall-normal variation of −ϕ1 (solid with circles) in clean case (black), 2.5pf 30w case (blue), and −2.5pf 30w case (red) at xst/δ0 =
(a) −0.75w, (b) −0.2w, and (c) 0.4w.

Figure 6.36: Contours of real-valued u′ on yz planes for clean case (a,d,g), 2.5pf 30w case (b,e,h), and−2.5pf 30w case (c,f,i) at xst/δ0 =−0.75w
(top), −0.2w (middle), and 0.4w (bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

At the first station, Figure 6.35 (a) shows the same wall-normal variation of ϕ1 throughout all cases. Thus, the u′ tilt is
the same across all reference cases, as shown in Figure 6.36 (a) to (c), where there is virtually no difference in perturbation
tilt. At the second station located within the first half of pressure deformation, the wall-normal variation of ϕ1 is no longer
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the same across clean and deformed cases as shown in Figure 6.35 (b), indicating that perturbation tilt is different for each
case. An attempt is made to differentiate these based on how tilted the ϕ1 distributions appear; more tilt corresponds to a
higher gradient of ϕ1 with y at a particular station. Also, the behaviour of ϕ is studied in two different regions; one near
the wall (y/δ0 ≈ 0.5) and one slightly further from the wall (y/δ0 ≈ 1.0). ϕ1 is tilted more in the near-wall region for
the negative pf cases compared to the clean case, whereas the ϕ1 distribution is tilted less in case of the positive pf cases
compared to the clean case. In a region slightly further away from the wall, the ϕ1 distributions appear with similar slopes,
phase shifted from each other. Thus, in the contour plots of chordwise perturbation, it can be noted that the near-wall
region corresponds to differences in ϕ1 tilt between clean and deformed cases, whereas the region slightly further from
wall appears to have a similar ϕ1 tilt, as seen in Figure 6.36 (d) to (f).

In the second half of the pressure deformation, an opposite behaviour is noted in the near-wall region, evidenced in
Figure 6.35 (c) and Figure 6.36 (g) to (i). The reference positive pf case has a higher tilt compared to the previous
station, whereas the reference negative pf case exhibits a lower tilt compared to the previous station, as seen by comparing
Figure 6.35 (c) with (b). Again, in the region further from the wall the differences in tilt are minor. This opposing behaviour
for positive and negative pf cases suggests a link with the nature of the base flow in adverse and favourable ∆P regions.
It appears as though perturbations have a tendency to tilt more in adverse ∆P regions, whereas they have a tendency to
tilt less in the favourable∆P region, also evidenced for non-reference cases in Appendix D.5.

An attempt to explain the above-observed behaviour is made by considering the evolution equation of ϕ1 (Equation 5.74)
and evaluating it at two different levels y/δ0 ≈ 0.5 and y/δ0 ≈ 1. The evolution equation of ϕ1 (Equation 5.74) reads

∂ϕ1
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UB
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. (6.22)

The evolution of ϕ1x captured by finite difference is found to be the same as the evolution of ϕ1x captured by summing the
terms on the right-hand side of Equation 6.22, as shown for the reference cases in Figure 6.37, thus verifying the equation.
The abbreviations in Equation 6.22 are explained in more detail. BA denotes the influence of base flow angle, as the base
flow projected onto a xz plane at a fixed wall-normal height makes an angle θB = atan(WB/UB) with the x axis. PS
denotes perturbation phase shear influence, which is likely to play a role when VB has a considerable value in deformed
regions. BS denotes base flow shear influence and depends upon the shear of base flow, the phase difference between
chordwise and wall-normal perturbations, and their respective amplitude functions. In a region slightly far from wall
(y/δ0 ≈ 1), the influence of BS would be negligible as ϕ2 − ϕ1 is close to π, evidenced by values of cos(ϕ2 − ϕ1) = −1
in Figure 6.24, leading to negligible values of sin(ϕ2 − ϕ1). But in a region closer to the wall, BS should play a more
important role as ϕ2 − ϕ1 deviates from π. VP denotes the influence of perturbation pressure and viscous terms. As
explained in Section 4.3.1, if ϕ1x has similar values for all levels, it implies that the ϕ1 wall-normal distribution at any
location would be a replication of the initial ϕ1 wall-normal distribution. On the other hand, if ϕ1x is different in two
different levels, it would indicate that the perturbation tilt changes with respect to its initial alignment.

The results of Equation 6.22 evaluated for reference clean and base flow deformed cases at the two different levels
mentioned above are shown in Figure 6.37. In the clean case at a higher height shown in Figure 6.37 (d), it is noted that
ϕ1x almost matches BA due to the values of BS tending to zero by virtue of sin(ϕ2 − ϕ1) ≈ 0. This implies that

1
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, (6.23)

θP = atan

(
− 1

β

∂ϕ1
∂x

)
≈ atan

(
WB

UB

)
= θB , (6.24)

where θP corresponds to the angle made by the lines of constant phase of u′ in the xz plane with the x axis (refer subsec-
tion 4.3.1 for a detailed explanation). This implies that the stationary crossflow instability follows the base flow at this
particular level. At the lower height (shown in Figure 6.37 (a)), it is noted that in addition to BA, BS also determines ϕ1x
behaviour. However, ϕ1x appears to have the same value across both higher and lower levels. It appears as though BS
compensates for the effect of base flow angle not being the same at two different heights through a non-negligible value of
sin(ϕ2 − ϕ1) at the lower level. Variations of ϕ1 with x remain similar at other heights to the variation observed at these
two different heights, implying that the change of phase distribution in y would not change significantly when moving
from one x station to another. This is evidenced by the above observation of ϕ1 distributions having similar tilt across
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Figure 6.37: Budget of ϕ1 evolution equation (Equation 6.22), Ω = ϕ1x (orange solid with stars; calculated by finite difference), BA (magenta solid
with circles), BS (light green solid with stars), PS (grey solid with circles), VP (purple solid with diamonds), and ϕ1x (sky blue dashed with
diamonds; calculated evaluating Equation 5.74) of (a) clean case, (b) 2.5pf 30w case, (c) −2.5pf 30w case at y/δ0 = 0.5 (top) and y/δ0 = 1

(bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

all x stations considered in Figure 6.35. In the deformed cases, the behaviour of similar evolution of ϕ1x at two different
levels does not occur, evidenced by comparing its values for the reference positive pf case in Figure 6.37 (b) and (e),
and the reference negative pf case in Figure 6.37 (c) and (f). The exact cause for this phenomenon is difficult to identify
since the non-unique behaviour at different levels of all terms in the right-hand side of Equation 6.22 seem to affect ϕ1x
to some extent or the other. The difference of ϕ1x at two different levels within the region of deformation explains that
the wall-normal variation of ϕ1 would not be the same at two different x stations considered within the deformation, as
evidenced in Figure 6.37 (b), (c), (e), and (f). Thus, the perturbation has a tendency to tilt when observed in the yz plane.
The issue of higher or lower tilt at the lower height can be addressed by observing the rate of perturbation phase change
at y/δ0 = 0.5. At the lower height, for deformed cases, BA and BS have the same influence of slowing ϕ1x in favourable
∆P regions and enhancing ϕ1x in adverse ∆P regions with respect to clean case behaviour. Thus, at y/δ0 = 0.5 in the
reference positive pf case (seen in Figure 6.37 (b)), ϕ1 appears slowed down initially and then enhanced compared to the
clean case whereas the vice versa occurs in the reference negative pf case (seen in Figure 6.37 (c)). A similar trend occurs
for all heights below y/δ0 = 0.5 in both reference and non-reference cases (not shown here explicitly), contributing to ϕ1
uniformly being slowed down below y/δ0 = 0.5 in a favourable ∆P region, leading to the decrease of tilt. The opposite
occurs for an adverse ∆P region leading to the increase of tilt.

The different evolution of ϕ1 at different heights implies that lines of constant phase in the xz plane do not remain in
the same direction with a change of wall-normal height, as would be expected in the clean case. This leads to doubts
about whether the lines of constant phase would remain aligned with the inviscid flow, as observed in the conventional
modal evolution of crossflow instability (Bippes, 1999). The difference between the inviscid streamline angle and local
angle of lines of constant phase (denoted ϕd) at a given height is shown in Figure 6.38 to elaborate on this observation. In
Figure 6.38 (a), it is noted that the clean case has a nearly constant ϕd of approximately 2.5 degrees, whereas the deformed
cases have ϕd of up to 5 degrees more or less than that of the clean case. The variation of ϕd with height in Figure 6.38
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Figure 6.38: Contours of ϕd in (a) clean case, (b) 2.5pf 30w case, and (c) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2
show the region of∆P imposition in deformed cases.

(b) and (c) also shows that lines of constant phase do not remain constant with an increase of height. Thus, whereas no
direct evidence is found of the Orr mechanism influencing perturbation energy gain or loss mechanisms, its influence on
perturbation lines of constant phase in the xz plane being misaligned or aligned with the inviscid flow is clear. Doubts
are expressed as to whether a wavenumber direction can be defined in regions of deformed flow since the perturbation
lines of constant phase of u′ perturbation in xz plane can’t be replaced by a single representative line of constant phase
in xz plane. Thus, the observation of the difference in direction of propagation of lines of constant phase in xz planes in
deformed regions of flow hints towards a deviation from traditionally observed modal behaviour. The deviation of lines of
constant phase from inviscid flow is most prominent for the highest pf cases, progressively reducing for lower pf cases,
as shown in Appendix D.5.

6.4.3. Comparison with Local Modal Behaviour
ILST solutions are assumed to provide an estimate of local modal behaviour. The results of HLNS and ILST are

compared by the perspective of the lift-up and Orr mechanism with PSE acting as an intermediary to understand the
difference of ILST and HLNS results, as explained in Section 5.2.1. The lift-up effect is first evaluated, via a representation
of the I2 term, to check whether I2 generated via the ILST and PSE solutions show a reverse lift-up effect in regions where
I2 generated via the HLNS solution becomes negative. To calculate the I2 term, all perturbation results are cast into the
HLNS ansatz as per Equation 5.2.1. It is observed that PSE and HLNS predict similar I2 evolution across all cases,
including those where I2 stabilizes, as evidenced by comparing the I2 evolution for reference cases generated by PSE
shown in Figure 6.39 (g), (h), and (i) with those generated by HLNS in Figure 6.31. This highlights that the action of
the dominant mechanism in the tangential-normal decomposition of production term, given by I2, has the same character
for HLNS and PSE even though the amplitude values don’t fully match for both methods in deformed cases, as shown in
Section 4.4.

There remains some ambiguity on the consideration of VB while computing I2 terms for ILST solutions, since VB
itself is neglected when ILST solves for eigenmodes. Thus, the effect of considering VB while computing I2 (shown
for reference cases in Figure 6.39 (a), (b), and (c)) and neglecting VB while computing I2 (shown for reference cases in
Figure 6.39 (d), (e), and (f)) are evaluated separately for ILST. I2 calculations for ILST solutions including VB effects
seem to approximately match the trends of I2 predicted by PSE and HLNS, as seen for the reference cases by comparing
the bottom two rows of Figure 6.39. The most surprising result is that the ILST computations of I2 including wall-normal
velocity give a stabilizing value of lift-up effect in the reference negative pf case shown in Figure 6.39 (f), in a region very
similar to the region of stabilization seen in PSE (shown in Figure 6.39 (h)) and HLNS. The reason for such stabilization
can be understood by first considering the I2 computation that neglects VB for the reference negative pf case (shown in
Figure 6.39 (c)). Here the sign of I2 is just governed by cos(ϕ2 − ϕ1), since v′n = v′ when VB = 0 (refer Equation 5.55).
The field of cos(ϕ2 − ϕ1), visualized for reference cases in Figure 6.40, shows upward and downward movement of
constant contour levels in regions of adverse and favourable ∆P , respectively, similar to observations in the contours of
cos(ϕ2−ϕ1) in both PSE (Figure 6.40) and HLNS (Figure 6.24). The change in sign of the ILST cos(ϕ2−ϕ1) field in the
adverse ∆P region is observed at a very high height compared to the PSE cos(ϕ2 − ϕ1) field, exposing larger regions of
positive cos(ϕ2−ϕ1), subsequently leading to some degree of stabilization in I2 seen in Figure 6.39 (c). On considering the
effects of wall-normal velocity, there is a phase difference between v′n and v′ attributed to non-zero wall-normal velocity
(as demonstrated in subsection 5.2.1), which leads to additional stabilization.
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Figure 6.39: Contours of I2 in clean case (a,d,g), 2.5pf 30w case (b,e,h), and−2.5pf 30w case (c,f,i) generated using solutions of ILST ignoring VB
(top), ILST considering VB (top), and PSE (bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in

deformed cases.

Figure 6.40: Contours of cos(ϕ2 − ϕ1) in clean case (a,d), 2.5pf 30w case (b,e), and −2.5pf 30w case (c,f) solved using ILST (top) and PSE
(bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases..
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Thus, the local modal descriptions can capture some extent of lift-up driven stabilization without considering wall-
normal base flow velocity, but the full extent of stabilization can only be captured by considering the effects of wall-normal
base flow velocity. The effects of the reference positive pf and clean case aren’t considered in further detail as the lift-up
effect is uniformly destabilizing in both cases. The consistent stabilization of I2 across results of all solvers considered
here with varying levels of approximation in the reference negative pf case hints that the reversal of the lift-up effect is
not an indication of deviation from local modal behaviour.

From the perspective of the Orr mechanism, perturbation tilt is very similar across ILST, PSE and HLNS solutions for
the clean case seen by comparing Figure 6.42 (a), (d), and (g). However, the ϕ1 distributions tilt similarly for HLNS and
PSE solutions but differently for ILST solutions in regions of deformation in positive and negative pf cases, as seen by
observing the trends of reference positive and negative pf case in the second and third column of Figure 6.42, respectively.
A potential reason cannot be pinpointed since an evolution equation for ϕ1x is impossible to formulate using ILST as it
is a local method, but it can be hypothesized that the neglect of upstream information and neglect of strong streamwise
derivatives could result in deviations in deformed cases. Perturbation tilt in yz planes and lines of constant phase in xz
planes potentially have nothing to do with each other in ILST solutions, as ILST predicts a single representative line of
constant phase (given by αrx + βz = C) perpendicular to the wavenumber vector. Whereas in PSE and HLNS, the
different yz plane tilt in different x stations leads to different values of ϕ1x at different wall-normal levels, which in turn
leads to the absence of a unique line of constant phase with the change of wall-normal height. A comparison of the angle
made between the lines of constant phase in xz plane and inviscid flow (their difference denoted ϕd) provides more insight
into the behaviour of xz lines of constant phase across solvers. ILST, PSE, and HLNS solutions show the same behaviour
of ϕd evolution in the clean case evidenced by comparing Figure 6.41 (a) and (c), implying the existence of a unique
line of constant phase in xz plane, aligned almost to the direction of inviscid flow. In the deformed cases, ILST predicts
some differences in ϕd evolution compared to the clean case (as evidenced for reference deformed cases in Figure 6.41
(b) and (c)), but these are minor compared to ϕd predicted by HLNS and PSE solutions (as evidenced for PSE solutions of
reference deformed cases in Figure 6.41 (e) and (f), noting PSE and HLNS both predict very similar ϕd evolution trends).
Thus, the observation of the Orr mechanism is linked to deviation from local modal behaviour, as lines of constant phase
do not tend to align with the inviscid flow to the extent the representative line of constant phase of the local modal solution
aligns with the inviscid flow. The direction of a local wavenumber vector also seems difficult to perceive in the HLNS and
PSE solutions in deformed regions of flow due to the inability to find a representative xz line of constant phase, but can
easily be constructed for the ILST solution in deformed regions of flow. The idea of a ”directional profile” thus potentially
collapses in regions of highly deformed base flow.

Figure 6.41: Contours of ϕd in clean case (a,d), 2.5pf 30w case (b,e), and −2.5pf 30w case (c,f) generated using ILST data (top) and PSE data
(bottom); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.
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Figure 6.42: Wall-normal variation of −ϕ1 in clean case (a,d,g), 2.5pf 30w case (b,e,h), and −2.5pf 30w case (c,f,i) at xst/δ0 = −0.75w (top),
−0.2w (middle), and 0.4w (bottom) generated using HLNS data (solid with circles), PSE data (dash-dotted with stars), and ILST data (dashed with

diamonds).

6.4.4. Non-modal Behaviour Criteria
As there is evidence of the action of the Orr mechanism in deformed base flows resulting in a potential deviation from

modal behaviour, non-modal behaviour criteria prescribed in Section 5.2.2 are evaluated in this section to find whether
non-modal effects could govern instability evolution in regions of base flow deformation. The comparison of the growth
rate of base flow tangential and total perturbation of reference cases are presented in Figure 6.43, where the growth rates
are computed at the ”max” location since no secondary peaks appear in the amplitude function of τ ′ or the norm of υ′

(0,1).
The growth rates superpose on each other through clean and deformed cases, indicating that non-modal effects are absent.
The comparison of the cosine of the angle between base flow tangential and total perturbation vector for reference cases at
themax level of τ ′, shown in Figure 6.44, also yields a value very close to one across deformed and clean cases, indicating
that these vectors are also aligned with each other. This further suggests that non-modal effects aren’t observed in the cases
considered here. Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) find that the misalignment of total perturbation
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vector with tangential perturbation vector depends on growth rates of tangential and normal perturbation being different
from each other. Since the growth rates are similar at max level, cos (ζ(0,1)) at max level show negligible difference
among clean and deformed cases. Only at a location extremely close to the wall given by y/δ0 = 0.05, some angular
difference is noted between the evolution of deformed and clean cases. A potential reason for this is the strong streamline
deflection seen at these levels as shown in Figure 6.12. However, these heights are not relevant for energy exchange
mechanisms, as observed in Figure 6.18 since the values of production term are negligible beneath y/δ0 ≈ 0.2. Hence, it
can be concluded that non-modal character is not observed in the current cases considered here.

Figure 6.43: Chordwise variation of growth rate of base flow tangential perturbation (solid with circles) and total perturbation (solid with squares) in
(a) clean case (black), (b) 2.5pf 30w case (blue), and (c) −2.5pf 30w case (red); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region

of∆P imposition in deformed cases.

Figure 6.44: Chordwise variation of ζ(0,1) atmax (dotted with diamonds) and y/δ0 = 0.05 (solid) in (a) clean case (black), (b) 2.5pf 30w case
(blue), and (c) −2.5pf 30w case (red); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.



7
Comparison with the FFS

As mentioned in Section 3.5, boundary layer solvers manage to provide a local near-wall base flow pressure change at
the expense of providing wall-normal velocity and wall-tangential base flow chordwise derivative fields totally different
from the full Navier Stokes representation given by DNS. The idealization of base flow implies that the perturbation
evolution trends through this base flow might also end up being an idealization (refer subsection 6.3.3), and might be
unrepresentative of perturbation behaviour observed in instances of natural base flow deformation such as an FFS. Hence,
this chapter first aims to critically examine if characteristics of base flow influencing mechanisms of perturbation evolution
(i.e. the production term) in an FFS bear resemblance to a synthetic three-way base flow deformation with similar pressure
characteristics. The chapter then aims to compare perturbation evolution in the region of base flow deformation, with
an emphasis on production term behaviour, to comment on whether a synthetic base flow deformation can capture the
influence of an FFS on perturbation evolution. All three synthetic three-way cases show similar observations of base
flow and perturbation behaviour, and hence only the details of the highest pf case are primarily considered here i.e. the
2.5pf 30w×2 case (also denoted reference synthetic three-way case). Results generated using the data of the medium FFS
height simulated by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) are primarily considered here, with this FFS
case being termed as the ”reference FFS case”. The base flow and perturbation behaviour of the reference FFS case and
lowest height FFS simulated by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) show similar trends. Although the
base flow characteristics of the largest FFS case and reference FFS are similar, the perturbation shows different behaviour in
the FFS downstream region, possibly due to the very strong base flow deformation it imposes and is hence only mentioned
while considering recommendations for future work (Section 8.2).

7.1. Base Flow Comparison

The character of ∆P i.e. adverse or favourable was used in Chapter 6 to split the base flow deformation into parts
for ease of interpreting behaviour trends in each of these parts. Thus, values of ∆P for the reference three-way and
step cases are shown in Figure 7.1 (a) and (d). In the synthetic cases, ∆P is imposed at the top and propagates down to
the wall. Whereas in the FFS case, the local pressure differences w.r.t to the clean case (also termed ∆P ) are naturally
generated by the presence of a sharp geometrical discontinuity in the form of an FFS. The∆P distribution of the FFS case
is more powerful than the synthetically imposed ∆P distribution, and shows wall-normal variation, reducing gradually
away from the wall, as opposed to the uniform synthetically imposed∆P distribution. Both the three-way and FFS cases
have a three-way∆P distribution, as demonstrated in Figure 2.6 and Figure 2.1, respectively. The FFS cases have a much
shorter region of favourable ∆P (approximately at xst/δ0 = 0) in comparison with the 2.5pf 30w × 2 case, flanked by
two adverse ∆P regions of similar width.
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Figure 7.1: Contours of∆P (a,d), UB (b,e), andWB (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case (bottom); black dotted lines at
xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.

Figure 7.2: Contours of VB (a,d), UBx (b,e), and −WBx (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case (bottom); black dotted
lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.

The∆P distributions affect the base flow in deformed regions withmechanisms similar to those explained in Section 6.1.
In the reference cases, the adverse ∆P region results in a chordwise deceleration of chordwise base flow, as shown in
Figure 7.2 (b) and (e), and subsequent upward movement of contour levels, as shown in Figure 7.1 (b) and (e), due to a
local adverse pressure gradient in this region. Whereas a favourable∆P region in the reference case results in chordwise
acceleration of chordwise base flow, and downward movement of contour levels due to a locally higher favourable base
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flow pressure gradient in reference cases compared to the clean case. It should be noted that behaviour in the non-reference
cases can be explained with exactly the same explanation as reference cases with the exception of flow behaviour in the
adverse∆P region of the lowest pf synthetic three-way case, where flow deceleration occurs due to an effective pressure
gradient less favourable than the clean case, instead of an adverse effective pressure gradient. Values of UBx directly
correspond to the opposite sign ofVBy

by virtue of the continuity equation (as seen for reference cases comparing Figure 7.3
(a) and (d) with Figure 7.2 (b) and (e)). The behaviour of VB follows from the behaviour of -UBx

, wherein an upwash
persists in regions of decelerated chordwise base flow, by means of the integrated continuity equation (Equation 6.1)
argument stated in Section 6.1), as seen for reference cases by comparing Figure 7.2 (a) and (d) with Figure 7.2 (b) and
(e). Although a downwash persists in regions of accelerated chordwise base flow in synthetic deformations, an upwash is
noted in regions of accelerated chordwise base flow in the FFS base flows. In the FFS case, the geometrical obstruction
induces upwash upstream of the step in the adverse∆P , which does not change sign in the favourable∆P region. Instead,
the peak of positive VB undergoes an abrupt shift very near to the wall on encountering the step (Eppink, 2018), by means
of which VBy

remains negative throughout the wall-normal height post the VB peak. This results in a positive UBx
in

wall-normal heights post the VB peak even when VB is positive. Such behaviour doesn’t occur in the favourable ∆P
region of the reference synthetic three-way case where VB gradually increases with the increase of wall-normal height,
thus mimicking the sign of −UBx .

Figure 7.3: Contours of VBy (a,d), UBy (b,e), and −WBy (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case (bottom); black dotted
lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.

The character of VB primarily plays a role in determining the sign of WBx
as explained in Section 6.1 through Equa-

tion 6.2 (assuming thatWBxx is much lower thanWByy ). In the synthetic three-way case,−WBx andUBx assume a similar
character in both adverse and favourable∆P regions, as regions of accelerated chordwise base flow co-exist with regions
of downwash, which in turn induces spanwise velocity acceleration (and vice versa for regions of decelerated chordwise
base flow), as seen for the reference synthetic case in Figure 7.2 (c). However, since VB remains positive throughout the
adverse and favourable∆P regions of the FFS case (as seen for the reference FFS in Figure 7.2 (e)), −WBx

only takes a
positive sign throughout (as seen for the reference FFS in Figure 7.2 (f)). This in turn influences the behaviour of theWB

contours, as shown for reference cases in Figure 7.1 (f), wherein the contour levels keep risingwithout any downwardmove-
ment in FFS cases owing to continuous deceleration. Whereas characteristic up-down-up movement of constant contour
levels is seen in the synthetically deformed three-way cases due to the chordwise deceleration-acceleration-deceleration
behaviour of spanwise base flow velocity component, as observed for the reference synthetic cases in Figure 7.1 (c).

The characteristic upward and downward movement of UB andWB momentum in the near-wall region evidenced by
contour level movement in their respective contour plots were used to explain the behaviour of shears of these profiles
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in Section 6.1. This explanation works in adverse ∆P regions of both FFS and synthetic deformation cases, with a
progressive reduction of shear in the chordwise direction in both the reference three-way synthetic and FFS case, as
evidenced in reference case contours of UBy (Figure 7.3 (b) and (e)), and −WBy (Figure 7.3 (c) and (f)). However, at
the step location in the FFS cases, the abrupt geometrical obstruction causes an abrupt concentration of chordwise and
spanwise momentum at the step location relative to the upstream location prior to the step, leading to a large enhancement
in the shear of UB andWB , as evidenced in their contours for the reference FFS case in Figure 7.3 (e) and (f), respectively.
The shear distribution in the favourable ∆P region of synthetic cases can be explained by the increase of chordwise and
spanwise momentum in the near-wall region due to the downward movement of constant contour levels, as evidenced
in the shear contours in Figure 7.3 (b) and (c). Even though the reference synthetic three-way and FFS cases have very
different sources of ∆P , multiple similarities have been identified in the features of base flow. Remarkably, the order of
wall-tangential base flow x derivatives in both the FFS and synthetic three-way case are similar, with higher magnitude
values in the FFS due to a stronger ∆P . The wall-tangential base flow shear terms also have similar orders in both the
reference FFS and synthetic three-way case, but this result is more expected, as these are close to orders experienced in the
clean case. The similarity in orders of chordwise derivatives and shears of wall-tangential base flow implies that there is a
chance that Pxd

and Pyd terms could have similarities in order when perturbation equations are evaluated for both cases.
Some degree of similarity in the trends of synthetic deformation and FFS is also found in terms of increase and decrease
of wall-tangential shear, and acceleration and deceleration of UB in favourable and adverse ∆P regions, respectively,
implying that once the perturbation behaviour is evaluated, Pxd

and Pyd might bear similar trends for both cases.

7.2. Perturbation Evolution Comparison
The perturbation data are generated using linear HLNS for synthetic three-way cases and non-linear DNS for FFS

cases, where the behaviour of perturbation in the step upstream region is linear (Casacuberta, Hickel, Westerbeek, &
Kotsonis, 2022). In case of an FFS, when the perturbation evolves through the region of base flow deformation, its u′
amplitude function develops secondary peaks upstream of the step, which remains active for a short region downstream
of the step. These secondary peaks are not observed when the perturbation evolves through a synthetically deformed base
flow (refer Appendix E). Since secondary peaks are associated with near-wall streaks (Casacuberta, Hickel, Westerbeek,
& Kotsonis, 2022), and carry different physical significance compared to the primary peak itself, their absence implies
that the synthetic cases cannot fully capture the effects of an FFS on perturbation evolution. A possible reason for the
lack of these secondary peaks in the synthetically deformed cases is the lack of separation, whose presence can cause
a much stronger base flow deformation. Furthermore, the appearance of non-linear effects downstream of step location
implies that its direct comparison with linear perturbation evolution through the synthetic base flow deformation might not
be appropriate, as these harmonics could eventually influence the behaviour of the fundamental mode (sum of (0,1) and
(0,-1)). However, the production term evolution of the fundamental mode would still play an important role in governing
the mechanisms by which the fundamental perturbation grows or decays, and can thus be compared for the synthetic and
FFS case. This would also demonstrate the effectiveness of the Pxd

and Pyd decomposition in explaining trends of P for
an instance of naturally deformed base flow. The step upstream region entails linear perturbation evolution approximately
till the point secondary peaks appear. Hence, the behaviour of perturbation growth rate in this regime can be directly
compared to the first adverse ∆P region of synthetic base flow deformations. In both the synthetic deformation and the
FFS, perturbations are found to grow faster than the clean case in the first adverse∆P region, and an investigation of the
production term behaviour relative to the clean case elucidates why this occurs (as shown in Section 6.3.2).

Observations ofP (shown for reference cases in Figure 7.4 (a) and (d)) without decomposition lack clarity on the type of
base flow parameter distinguishing the production term’s regions of stabilizing and destabilizing influence. It is noted that
different initial amplitudes result in different magnitudes of P in synthetically deformed and FFS cases (unit amplitude
is assumed in HLNS as its values do not influence linear perturbation evolution). Its decomposition shows that the Pxd

and Pyd term are both active in the region of ∆P imposition in the synthetic three-way cases and FFS cases, as seen for
reference cases in Figure 7.4. This shows that the orders of Pxd

and Pyd are comparable even in instances of natural
base flow deformations, alleviating concerns of idealized behaviour raised in Section 6.3.3. The Pxd

term can further
be decomposed to find that Pxd,1 and Pxd,3 are the dominant contributors (as shown for reference cases in Figure 7.5),
consistent with trends seen in Section 6.3.1. The sign of UBx

controls the sign of Pxd,1, thus implying destabilizing
tendency or positive values in regions of chordwise base flow deceleration and stabilizing tendency in regions of chordwise
base flow acceleration, evidenced in the contours of Pxd,1 of reference cases in Figure 7.5 (a) and (d). Since the sign of
cos(ϕ1−ϕ3) is -1 in both cases in heights relevant for energy transfer mechanisms (as seen for reference cases in Figure 7.6
(a) and (d)), the sign of WBx controls the sign of Pxd,3. Pxd,3 thus remains destabilizing throughout the upstream and
downstream near-step region, as shown for the reference FFS step in Figure 7.5 (f), not fully mimicking the behaviour of
Pxd,1 due to difference in the behaviour of UBx

and −WBx
at the FFS location. Whereas, in synthetic three-way cases,

the behaviour of Pxd,3 mimics the behaviour of Pxd,1, as shown for the reference case comparing Figure 7.5 (c) and (a).
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Figure 7.4: Contours of Γ = P (a,d), Pxd (b,e), and Pyd (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case (bottom); black dotted
lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.

Figure 7.5: Contours of Γ = Pxd,1 (a,d), Pxd,2 (b,e), and Pxd,3 (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case (bottom); black
dotted lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.



90 Chapter 7. Comparison with the FFS

Figure 7.6: Contours of η = cos(ϕ1 − ϕ3) (a,d), cos(ϕ2 − ϕ1) (b,e), and -cos(ϕ2 − ϕ3) (c,f) in the 2.5pf 30w× 2 case (top) and the reference FFS
(bottom) case; black dotted lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.

Figure 7.7: Contours of Γ = Pyd,1 (a,d), Pyd,2 (b,e), and Pyd,3 (c,f) in the 2.5pf 30w × 2 case (top) and the reference FFS case; black dotted lines
at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition.
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ConsideringPyd , its behaviour is controlled byPyd,1 andPyd,3 in the synthetic three-way and FFS cases, as seen for the
reference cases in Figure 7.7, consistent with trends presented in Section 6.3.1. Pyd,1 and Pyd,3 have very similar trends
of evolution, and an attempt to explain Pyd behaviour can be made explaining the behaviour of either term. Here, Pyd,1
is chosen and appears to be slightly stabilizing towards the end of both adverse ∆P regions in the reference synthetic
three-way case but remains destabilizing otherwise. Pyd,1 also appears to be stabilizing in regions near the wall for the
FFS cases in the vicinity of the step, and the extent of stabilization seems to be much more than that synthetically deformed
cases, evidenced for the reference FFS case by negative values with magnitude comparable to the highest positive values of
Pyd,1 in the cropped domain (as seen in Figure 7.7 (b)). The stabilization occurs in regions of positive shear and hence can
be attributed to cos(ϕ2−ϕ1) changing sign. The contours of cos(ϕ2−ϕ1) for the synthetic three-way and FFS case show
a characteristic upward and downward trend approximately in adverse and favourable∆P regions, respectively, as shown
for reference cases in Figure 7.6 (a) and (d), respectively. This upward and downward movement of cos(ϕ2−ϕ1) contour
levels in adverse and favourable ∆P regions for a naturally deformed base flow alleviates concerns of such behaviour
being an artefact of an idealized base flow in synthetic cases (mentioned in Section 6.3.3). The upward movement in the
first adverse ∆P region exposes regions of sign changed cos(ϕ2 − ϕ1) in the near-wall region, where the sign changes
from negative to positive, explaining stabilizing tendencies in both synthetic three-way and FFS cases as per mechanisms
explained in Section 5.1.2. However, the cosines in FFS cases take much larger positive values (much nearer to one) than
the synthetically deformed cases in adverse∆P regions, resulting in a stronger near-wall stabilizing tendency of Pyd .

The behaviour ofP is now considered. Regions of increased and decreasedP with respect to the clean case appear to be
approximately correlated with regions of positive and negative Pxd

in the first adverse and favourable∆P region, as seen
for the reference FFS in Figure 7.8. However, this does not hold at the lower height throughout the second adverse ∆P
region. The exact extent of increase or reduction of P with respect to the clean case can only be determined by a balance
of Pxd

and Pyd . The trends of P for synthetic cases are presented in Appendix E, showing an increase with respect to
clean case approximately in regions of wall-tangential base flow deceleration and vice versa. Since the production term
is identified as the source of linear perturbation growth in Section 6.3.2, it can be concluded that in the linear region of
growth upstream of the step, where secondary structures in perturbation shape function are absent, the extra amplification
with respect to the clean case can be attributed to a region of decelerated wall-tangential base flow. Similar behaviour
is also captured in the first adverse ∆P region of synthetic three-way cases, wherein the increase of P relative to clean
case closely corresponds to the region of positive Pxd

or wall-tangential base flow deceleration, resulting in an increase
of amplitude relative to the clean case (amplitude trends are shown in Appendix E). This also shows the effectiveness of
decomposingP intoPxd

andPyd terms in identifying wall-tangential base flow acceleration or deceleration as a base flow
property that can demarcate regions of perturbation stabilization or destabilization when it evolves linearly.

Figure 7.8: Evolution of Pxd (a,d), Pyd (b,e), P (c,f) in reference FFS case (magenta) and clean case (black) at y/δ0 = 1 (top) and y/δ0 = 1.5
(bottom)
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Conclusion and Recommendations for

Future Work

8.1. Conclusion
In literature, there is confusion surrounding mechanisms governing the interaction of an incoming crossflow mode

with a rapid base flow deformation such as an FFS placed on a swept wing or a swept flat plate. This motivates the
current thesis, where the evolution of primary stationary crossflow instability in its linear phase is studied in a spanwise
invariant, synthetically generated, rapid base flow deformation. In the FFS, a local pressure change over a chordwise
length scale (of orders of boundary layer thickness) much smaller than the scale of pressure change of the favourable
pressure gradient region of a swept flat plate (also referred to as the clean case), contributes to the development of a rapid
base flow deformation. Inspired by the FFS, a synthetic rapid base flow deformation is devised by imposing a Gaussian-
like pressure variation (∆P ) on the external pressure gradient of the clean case, and propagating the resulting effective
pressure distribution down to the wall. The Gaussian-like pressure variation is parametrized by three parameters. The first
parameter is the width, which is assumed to be of the order of 10δ0 (where δ0 is the δ99 at the inlet) to ensure the base
flow pressure changes over a much shorter width scale than the clean case. The second parameter is the pressure factor,
which provides a simplified method to quantify the gradient of the ∆P distribution. An increase in the magnitude of pf
results in a stronger pressure variation. A positive sign of pf results in a region of negative∆P (favourable) followed by
positive ∆P (adverse) and a negative sign of pf results in a region of adverse ∆P followed by favourable ∆P . Relative
to the clean case, the imposition of a positive pf ∆P distribution results in an effective pressure distribution with a region
of more negative pressure gradient followed by a region of less negative (or positive) pressure gradient. The opposite
trend is followed for negative pf cases, where the effective pressure distribution consists of a region of less negative (or
positive) pressure gradient followed by a region of more negative pressure gradient. The third parameter is the location
of ∆P imposition which is chosen to be the FFS location considered by Casacuberta, Hickel, Westerbeek, and Kotsonis
(2022). The boundary layer solver is found to be the best base flow solution technique to ensure that the developed effective
pressure distributions propagate unaltered to the wall, thus resulting in a rapid base flow deformation within the boundary
layer. However, the results of the boundary layer solver are valid under boundary layer theory approximations, which do
not hold for the full Navier Stokes equation solution wherein base flow pressure is not found to be invariant with y. This
implies that the synthetic deformations developed in this thesis are ”idealized”.

Characteristics of the BLS base flow such as boundary layer thickness are found to be better characterised by the nature
of effective pressure distribution relative to the clean case rather than the effective pressure gradient itself being favourable
or adverse. The most convenient way to characterize base flow properties is thus in terms of favourable and adverse ∆P
regions, which approximately correspond to regions of relatively more negative and relatively less negative (or positive)
effective pressure gradient compared to the clean case, respectively. The base flow deformation is divided into halves
based on the halves of the Gaussian-like∆P , with each half spanningw/2 on either side of the location of∆P imposition.
The chordwise base flow accelerates in most of the favourable∆P region owing to a higher favourable pressure gradient
compared to the clean case and decelerates in most of the adverse∆P region owing to a lower favourable pressure gradient
compared to the clean case or adverse pressure gradient depending on the case considered. Thus, in positive pf cases, most
of the favourable ∆P half has positive valued UBx

, followed by negative valued UBx
in the region spanning the end of

the favourable ∆P half through most of the adverse ∆P half. Whereas in negative pf cases, most of the adverse ∆P
half has negative valued UBx

, followed by positive valued UBx
from the region spanning the end of the adverse∆P half
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through most of the favourable ∆P half. Towards the end of the second half of base flow deformation, another region
of accelerated or decelerated base flow exists, with the same sign of UBx

in the first half of pressure deformation. The
chordwise and wall-normal extent of this region is short and it is associated with the relaxation back to the clean case
pressure gradient after the region of deformation. A region of accelerated chordwise base flow closely corresponds to a
region of downwash (explained via integrating the continuity equation) and accelerated spanwise base flow (explained via
analysis of the z base flow momentum equation), with the vice versa applicable for a region of decelerated chordwise base
flow. The higher magnitudes of chordwise derivatives of wall-tangential base flow components and wall-normal velocity
in regions of base flow deformation compared to clean case values differentiate a rapid base flow deformation from a
smooth base flow evolution represented by the clean case. Regions of chordwise base flow acceleration and deceleration
also correspond to regions of increased and decreased near-wall chordwise momentum, leading to an increase and decrease
of shear, respectively. The decrease of chordwise base flow shear leads to the development of inflection points in case the
effective pressure gradient is adverse. Regions of spanwise base flow acceleration and deceleration similarly correspond
to regions of increased and decreased near-wall spanwise velocity shear. The behaviour of UB , VB , and WB together
determine the behaviour of near-wall streamlines and crossflow. Near-wall streamlines tend to take an inboard turn in
regions of favourable effective pressure gradient more negative than the clean case and an outboard turn in regions of
adverse effective pressure gradient, with no perceptible change in behaviour of near-wall streamlines when the sign of
effective pressure gradient does not change. Crossflow changes behaviour in deformed cases, reducing approximately
in regions of adverse ∆P and increasing approximately in regions of favourable ∆P , potentially linked to the effect
of reduced and increased effective pressure gradient compared to the clean case in adverse and favourable ∆P halves,
respectively. The strongest base flow deformations also lead to negative crossflow (opposite to the consistent positive
crossflow noted in the clean case), and this reversal is linked to the strong nature of adverse effective pressure gradient.

To study the response of stationary crossflow instability to the above-described synthetically deformed base flow, the
instability is initialized as a 7.5 mm spanwise periodic mode, and its linear evolution is simulated using HLNS, due to its
ability to solve the system of elliptic perturbation equations without a range of assumptions common in PSE and ILST. As
for the structure of instability, chordwise and spanwise perturbation amplitude functions do not develop secondary peaks,
whereas the wall-normal velocity perturbation develops secondary peaks. The growth rates of u′, v′ and w′ do not match,
leading to the usage of a total perturbation vector norm for characterizing perturbation growth and amplitude evolution.
In the clean case, the growth rate almost remains constant and negative, leading to a consistent increase in amplitude.
Whereas in deformed cases, regions of favourable ∆P approximately correspond to growth rate becoming less negative
than the clean case, whereas regions of adverse ∆P approximately correspond to regions of growth rate more negative
than the clean case. The growth rate is also found to increase or decrease with respect to the clean case in a short region at
the end of the second half of deformation, as per behaviour in the first half of deformation. The growth rate changes sign
for strong negative pf base flow deformations (an example being the−2.5pf30w case), leading to amplitude stabilization
in the region of positive growth rate, which appears to contribute to a long-term reduction of amplitude compared to the
clean case post the deformation. To explain the trends of amplitude evolution, a correlation to the nature of crossflow
profile and double inflection point criteria are both tested, and they do not explain trends in all cases, casting doubt on the
universality of these theories. This leads to the development of an energy balance framework to understand mechanisms
by which a perturbation grows or decays.

The energy balance equation is derived in a spanwise integrated sense to focus only on energy growth in the x direction,
inspired by the work of Karp and Hack (2018). The growth of energy in the chordwise direction is governed by

∂Ẽ

∂x
≈ 1

UB

(
β

2π
(Pxd

+ Pyd)︸ ︷︷ ︸
P

−VB
∂Ẽ

∂y︸ ︷︷ ︸
R

+
β

2π
D

)
, (8.1)

where the work of pressure forces is neglected due to its negligible contribution. As per Equation 8.1, in case P (the
production term) is positive and greater than the magnitude of D (the work of viscous forces), the base flow provides
energy to the perturbation by P . Some of this energy is lost to the work of viscous forces, while some of the energy is
redistributed (through R) in the boundary layer depending on the action of VB . Redistribution is negligible in the clean
case due to negligible values of VB but is active in regions of deformed flow, predominantly transferring energy away
from the wall in regions of upwash and transferring energy towards the wall in regions of downwash. In wall-normal
levels where there is surplus energy, the perturbation absorbs energy resulting in energy growth. However, there also
exists some wall-normal levels from where energy is taken away by the redistribution term, resulting in reduced energy
growth or decay compared to the wall-normal levels where the redistribution term injects energy. On the other hand, when
P is negative (or positive but lower than the magnitude of D), the perturbation taps into a part of its own energy reserves,
some of which gets redistributed byR in the boundary layer, following which the redistributed energy is lost to the work
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of viscous forces and the base flow (via production). This results in perturbation energy stabilization, especially strong
in wall-normal levels where the redistribution term takes energy away. The change of sign of production term acts as a
differentiating factor between chordwise stations at which a perturbation gains or loses energy, and its behaviour governs
perturbation amplitude evolution. Understanding its trends is thus critical, and decomposing it into contributions from
base flow x derivative (Pxd

), and y derivative terms (Pyd ) greatly aids this process.

Pxd
represents the potential for perturbations to gain energy not required by the wall-tangential base flow when it

decelerates or to lose energywhen the wall-tangential base flow accelerates. In the clean case, the contribution ofPxd
to the

production term is negligible whereas it makes a significant contribution to the production term in deformed cases within
the region of deformation where chordwise derivatives of wall-tangential base flow are active. Whereas Pyd represents
the potential of v′ to transfer wall-tangential base flow momentum to wall-tangential perturbation components. The sign
of Pyd in regions of positive UBy

(orWBy
) is determined by the sign of cos(ϕ2-ϕ1) (or -cos(ϕ2-ϕ3)) i.e. the cosine of the

phase difference between v′ and u′ (or −w′) perturbations in the synthetic deformation. Destabilizing tendency occurs
when v′ and u′ (or -w′) are phase shifted between π/2 and π implying that downward action of v′ brings high base flow
momentum to regions near peaks of u′ (or -w′), thereby providing the potential to enhance u′ (or -w′). Stabilizing tendency
occurs when the phase of v′ differs from the phase of u′ (or -w′) by values between 0 and π/2, where the downward action
of v′ brings high base flow momentum to regions near valleys of u′ (or -w′), thereby providing the potential to stabilize
u′ (or -w′). In the clean case, the destabilizing behaviour of the production term is owed to the destabilizing behaviour of
Pyd due to a consistent negative value of cos(ϕ2-ϕ1) in regions where energy transfer mechanisms are active, leading to
a consistent positive Ẽx or gain of energy, subsequently leading to a consistent negative growth rate. In majority of the
deformation in positive and negative pf cases, the behaviour of Pyd is destabilizing aided by cos(ϕ2-ϕ1) being negative.
At wall-normal heights with y/δ0 < 0.5, Pyd increases with respect to the clean case in favourable ∆P regions and
reduces with respect to the clean case in adverse ∆P regions, potentially due to cos(ϕ2-ϕ1) becoming more negative in
favourable ∆P regions and less negative adverse ∆P regions at these heights. In adverse ∆P regions of large pf cases,
cos(ϕ2-ϕ1) changes sign to positive values very near zero, resulting in a mild stabilizing tendency of Pyd at these heights
(y/δ0 < 0.5). Although both Pyd and Pxd

determine the behaviour of P , the increase and decrease of P with respect to
the clean case approximately corresponds to regions wherePxd

is positive and negative, respectively. This implies that the
perturbation gains energy at a slower rate than the clean case or loses energy approximately in regions of wall-tangential
base flow acceleration, and gains energy at a faster rate than the clean case approximately in regions of wall-tangential
base flow deceleration. This corresponds well with the trends of growth rate (Figure 6.16 (a)) where enhanced or reduced
growth rate in deformed cases with respect to the clean case occur in three regions, with enhanced growth rate observed
in regions of wall-tangential base flow deceleration and reduced growth observed in regions of wall-tangential base flow
acceleration. The potential for perturbation stabilization is maximised while switching from a region of wall-tangential
base flow deceleration to a region of wall-tangential base flow acceleration. At wall-normal heights close to y/δ0 < 0.5,
the former region contributes to reduced values of Pyd (potentially due to reduction of cos(ϕ2-ϕ1) in an adverse ∆P
region), which do not recover to clean case Pyd levels by the beginning of the latter region. At the beginning of the latter
region, a negative Pxd

exploits the reduced values of Pyd to push P to negative values (or positive values very close to
zero).

The change in the method by which the perturbation exchanges energy with the base flow in regions of deformed base
flow brings into question whether the perturbation deviates from modal character on interacting with regions of base flow
deformation. Deviation from modal behaviour is first evaluated through the identification of mechanisms prevalent in
initial condition driven non-modality (refer Section 1.7.3) and finding whether these mechanisms show a difference when
evaluated using the HLNS solution with respect to the ILST solution in regions of deformation. Observation of the lift-
up effect involves decomposition of the perturbation into base flow tangential and normal components, representative of
streaks and rollers respectively, and the computation of I2, which physically captures the growth of streaks via transfer
of base flow momentum by rollers (Picella et al., 2018). Even after decomposing the production term into I1 to I4, I2
appears to capture production term evolution fully. The lift-up effect thus appears to be destabilizing in the clean case and
positive pf cases but stabilizing in those negative pf cases where regions of negative production term can be identified,
thus behaving differently from the classic lift-up effect which is destabilizing. The stabilization is attributed to the sign
change of the phase difference between the representative field of rollers and streaks. This sign change is explained by
relating this phase difference to the phase difference of v′ and u′, wherein it is found that the effects of a negative wall-
normal base flow velocity cause the phase difference between rollers and streaks to take a value in the fourth quadrant
(stabilizing), leading the phase difference of u′ and v′ which lies in the third quadrant (destabilizing), in the transition
region from the end of adverse ∆P to the beginning of the favourable ∆P region where VB changes sign. However, the
stabilization of the lift-up effect is also noted for the local ILST solution (computed for the negative pf base flow that
shows negative P), exactly in regions where the HLNS solution stabilizes. The stabilization encountered shows that the
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stabilized lift-up effect is possibly just a manifestation of a stabilized mode in regions of deformed base flow.

The Orr mechanism is evaluated next via the observation of tilt of ϕ1 i.e. the xy variation of u′ phase, quantified by
its wall-normal gradient. The clean case shows consistent tilt throughout different x stations. This implies that ϕ1x is
constant for different wall-normal heights. ϕ1x determines the angle made by a line of constant phase on the xz plane with
the x axis, and its constant value across wall-normal heights implies that lines of constant phase in any xz plane follow
a unique direction, which is almost aligned with the inviscid streamline (approximately 2.5 degrees) and perpendicular
to the wavenumber direction. Whereas in deformed cases, perturbation tilt does not remain the same in the deformed
region, with a tendency of increased tilt in near-wall regions on encountering an adverse ∆P region and a tendency of
decreased tilt in near-wall regions on encountering a favourable ∆P region. The change of tilt in regions of deformed
flow is assumed to be a manifestation of the Orr mechanism, possibly triggered to some degree by the change of base flow
direction and the change of shears of chordwise base flow. The lack of consistent tilt in ϕ1 across x stations implies that
ϕ1x is not constant at every height considered, further implying that lines of constant phase in the xz plane do not have a
unique direction. Comparing the angle difference between the direction of lines of constant phase in xz planes at different
heights and the direction of inviscid flow further shows that the angle difference (ϕd) is relatively larger in some regions
of base flow deformation than the 2.5 degree value obtained for clean case, with ϕd values found to be closer to the clean
case value with reduction of pf . This counts as a deviation from modal behaviour wherein the instability is expected to
be almost aligned with the inviscid streamline (Bippes, 1999). The characteristic xz line of constant phase of the ILST
solution assumed to be defined by αrx + βz = C, in a direction perpendicular to the wavenumber vector, are found to
follow inviscid streamlines much better than the HLNS solution. Thus, the HLNS solution which is representative of actual
perturbation behaviour presents hints of deviation from local modal behaviour from the perspective of the Orr mechanism.
However, none of the criteria suggested by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) to find signs of non-
modal character are satisfied in the cases simulated here leading to the conclusion that the instability is an instance of a
base flow deformed mode, with hints of deviation from local modal behaviour via the action of the Orr mechanism.

Unfortunately, the idealized BLS solution generated for synthetically deformed base flows predicts different orders of
magnitude of UBx

and VB compared to the full Navier Stokes solution generated using DNS. The major reason for the
mismatch of results is the assumption of y momentum equation being reduced to PBy

= 0 in BLS base flows, which does
not hold in DNS base flows, potentially due to changes in external flow being imposed in the orders of boundary layer
thickness. The difference in orders of magnitude of chordwise derivatives of wall-tangential base flow between a BLS and
DNS base flow calls into question if P , responsible for predicting linear perturbation evolution trends, is actually driven
by a balance of Pxd

and Pyd terms, as these terms have similar orders only due to the significant increase in the order
of chordwise derivatives of wall-tangential base flow in the region of deformation in BLS base flows. This motivates a
validation study comparing combinations of two two-way cases resulting in synthetic three-way cases with the data of FFS
cases from Casacuberta, Hickel, Westerbeek, and Kotsonis (2022). Synthetic three-way and FFS cases both have a region
of favourable ∆P flanked on either side by a region of adverse ∆P . The orders of magnitude of chordwise derivatives
and shears of wall-tangential base flow in regions of base flow deformation are found to be similar in both the synthetic
three-way and FFS case, with higher magnitude noted in FFS cases due to the strength of base flow deformation. Some
degree of similarity in the trends of synthetic deformation and FFS is also found in terms of the increase and decrease of
wall-tangential shear, and the acceleration and deceleration of UB approximately in favourable and adverse ∆P regions,
respectively. The underlying similarities in base flow result in Pxd

and Pyd being of similar orders for both synthetic
three-way and FFS cases, providing evidence that their balance is not an artefact of an idealized base flow. The stabilizing
or destabilizing influence of Pyd is determined by the sign of cos(ϕ2 − ϕ1). Across synthetically deformed and two FFS
cases of lower height, the constant contours levels of cos(ϕ2 − ϕ1) show upward and downward movement in adverse
and favourable ∆P regions, respectively, leading to its local near-wall decrease and increase. This shows that the local
near-wall increase and decrease of cos(ϕ2 − ϕ1), also observed in two-way synthetically deformed cases, is also not an
artefact of an idealized base flow. Multiple similarities are found in the evolution of Pxd

and Pyd between the synthetic
base flow deformation and FFS, but perturbation evolution through the former does not give rise to secondary peaks in
u′ amplitude function present in the latter, possibly due to the lack of separation, whose presence generates a much more
rapid base flow deformation in the FFS cases. Nevertheless, there exists a region upstream of the FFS where a perturbation
grows linearly without the development of secondary structures. Perturbations grow faster than the clean case in this step
upstream region. Perturbation amplitude also increases with respect to the clean case in the first adverse ∆P region of
synthetic three-way cases. This behaviour in both the FFS and synthetic three-way cases is attributed to a positive Pxd

due to wall-tangential base flow deceleration, which results in enhanced production term with respect to the clean case
even when Pyd shows stabilizing behaviour in certain parts of the considered region. Thus, the effect of an FFS on an
incoming stationary crossflow instability in the step upstream region is captured to a good extent by a synthetic base flow
deformation.
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Considering the broader outlook, this thesis provides a direction to develop natural manifestations of base flow defor-
mation which do not deform the flow as much as a step, but somewhere close to the negative pf synthetic deformations,
which can damp the linear primary phase of perturbation growth through mechanisms proposed here. This can possibly
lead to the delayed growth of subsequent stages, thereby potentially leading to the development of new transition delay
techniques for stationary crossflow instability induced transition.

8.2. Recommendations for Future Work
• The evolution of stationary crossflow instability through swept wing boundary layers deformed via a natural source
such as a hump should be tested, and the mechanisms of perturbation evolution could be studied using frameworks
similar to those developed in this thesis. The hump for instance could potentially have a region of wall-tangential
base flow deceleration followed by a region of wall-tangential base flow acceleration if its velocity fields are viewed
in the xy Cartesian coordinate system (similar to the reference negative pf case shown in Figure 6.3 (C)), which
might help stabilize the crossflow instability via the results found here. The energy balance procedure can either
be adapted to the curvilinear coordinate system in which perturbation equations are usually solved by accounting
for a boundary layer with curved obstacles. Or, the energy balance procedure can be performed on a fine Cartesian
grid, wherein the results on this grid are obtained as a result of coordinate transformation and interpolation from the
curvilinear coordinate system. In either approach, the production term behaviour needs to be explicitly related to
the energy partial derivative in the desired direction, which should then be able to ratify the trends of perturbation
growth or decay. A surface indentation can also be tested, although its effectiveness in damping an incoming sta-
tionary crossflow mode might not be as strong since it would potentially entail a region of wall-tangential base flow
acceleration followed by wall-tangential base flow deceleration when viewed in the Cartesian xy coordinate system
(similar to the reference positive pf case shown in Figure 6.3 (b)).

• An extension of the spanwise integrated Reynolds-Orr tool to model non-linear terms in primary instability evolution
could be undertaken. A potential use case would be the study of an FFS to understand how the harmonics, prominent
in step downstream regions, gain energy and how their growth affects the development of the fundamental pertur-
bation. Studies on the effects of varying initial amplitude can also be conducted, starting from a small amplitude
and increasing to a large amplitude, since this parameter would also play a major role in governing the extent of
non-linear effects.

• The behaviour of cos(ϕ2 − ϕ1) needs to be studied in detail in future studies since an exact reason explaining its
near-wall increase and decrease in base flow deformed regions could not be found in this thesis. Understanding the
behaviour of this parameter is important since its decrease plays a role in aiding stabilization when a decelerating
base flow starts accelerating. The first step would be to understand the behaviour of cos(ϕ2 − ϕ1) in the clean case
for different wavelengths. Since cos(ϕ2 − ϕ1) takes negative values causing consistent destabilization in the clean
case of 7.5 mmwavelength, there is a chance that the behaviour is dependent on whether the crossflow mode is itself
a growing or decaying mode, with a locally stable mode possibly yielding positive values of cos(ϕ2 − ϕ1). The
variation of cos(ϕ2−ϕ1)with spanwise wavelength in clean cases can be studied via ILST solutions since ILST, PSE,
andHLNS all predict the same field of cos(ϕ2−ϕ1) for the single wavelength simulated in the clean case. The second
stepwould be to study the evolution of cos(ϕ2−ϕ1) by seeding stationary crossflow instabilities of different spanwise
wavelengths and studying the linear evolution of each of these through the synthetic deformed base flows developed
in this thesis. This will help understand if the tendency of upward and downward movement of their constant
contour lines, resulting in reduction and increase in near-wall regions in adverse ∆P and favourable ∆P regions,
respectively, are universal for all spanwise wavelengths considered. Even if a fully mathematical explanation can’t
be worked out, a correlation relating the behaviour of cos(ϕ2 − ϕ1) possibly to parameters of base flow such as
boundary layer change with respect to the clean case could be formulated. Once the behaviour of cos(ϕ1 − ϕ2) is
understood, the behaviour ofPyd will be understood to a much better extent. Asymmetric∆P distributions can then
be tried out, varying the size of regions of base flow acceleration and deceleration, to understand if these asymmetric
distributions work more effectively than symmetric distributions in stabilizing incoming perturbations.

• A study on understanding potential reasons for secondary peaks appearing in u′ amplitude function in the FFS (but
not in the synthetic deformations simulated here) needs to be undertaken. The emergence of secondary peaks might
be related to the behaviour of cos(ϕ2−ϕ1). Regions where cos(ϕ2−ϕ1) takes high positive values close to one, are
close to regions of secondary peak appearance in FFS cases, which could to some extent be correlated to the presence
of a very strong adverse pressure gradient upstream and downstream of the step, which deforms the flow much more
than the synthetic deformations tested here. The strong stabilization seen in the production term of the highest FFS
case simulated by Casacuberta, Hickel, Westerbeek, and Kotsonis (2022) occurs in the second adverse ∆P region,
in a region not only close to the presence of secondary peaks but also in the region of decay of these secondary peaks,
providing further evidence that the study of the behaviour of these peaks is extremely important. The stabilization
of P in the largest FFS case can be attributed to a sudden reversal of cos(ϕ2 − ϕ1) sign from negative to positive
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(the stabilization of Pyd terms is so strong that even when the Pxd
terms are destabilizing, P stabilizes). The full

energy balance considering the x derivative of energy, instead of just the production term, would perhaps yield an
understanding of how the reversal of cos(ϕ2 − ϕ1) sign affects the development of secondary peaks. Also in the
case of competing primary and secondary peaks, it would be more instructive to integrate the perturbation amplitude
function in the wall-normal direction, while checking if the perturbation grows or decays in x. A good use case to
study secondary peak development could be the study of crossflow instability evolution over a separation bubble
similar to the setup used by Hosseinverdi and Fasel (2016), where separation would possibly trigger secondary peak
development.
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A
Additional Test Case Details

A.1. Clean Case Pressure Distribution
The clean case external pressure distribution is shown in Figure A.1. The external pressure is propagated uniformly down
to the wall, implying invariance of pressure with wall-normal height.

Figure A.1: External pressure distribution of clean case

A.2. Tabulated Test Case Properties
Some additional details of the test-matrix of two-way cases simulated in the thesis are provided here. The gradient

of ∆P distributions, and the maximum and minimum values of effective pressure gradient are compared for all two-way
pressure variation cases in Table A.1. The values of clean case are presented for reference in the row corresponding to case
19. The maximum values of d(|∆P |)/dx lie between 0.5E-3 and 0.9E-3 for the low pf cases, between 2.2E-3 and 2.9E-3
for the medium pf cases, and between 4E-3 and 5.3E-3 for the large pf cases, showing the similarities in the maximum
d(|∆P |)/dx values for a given value of pf . The highest pf cases have maximum favourable pressure gradient of about
five times the pressure gradient of clean case, and adverse pressure gradient of about three times the pressure gradient of
clean case. Whereas the lowest pf cases have pressure gradients much nearer to the clean case, with absence of adverse
pressure gradient regions evidenced by the negative values of dPe/dxmax.
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Case pf w/δ0
d(|∆P |)/dxmax
(δ0/P∞ × 103)

dPe/dxmin
(δ0/P∞ × 103)

dPe/dxmax
(δ0/P∞ × 103)

1 0.5 10 0.523 -1.709 -0.642
2 1.5 10 2.231 -3.413 1.063
3 2.5 10 4.131 -5.313 2.962
4 -0.5 10 0.523 -1.688 -0.662
5 -1.5 10 2.231 -3.399 1.048
6 -2.5 10 4.131 -5.300 2.949
7 0.5 30 0.744 -1.942 -0.411
8 1.5 30 2.736 -3.930 1.578
9 2.5 30 4.904 -6.096 3.744
10 -0.5 30 0.744 -1.898 -0.454
11 -1.5 30 2.736 -3.895 1.543
12 -2.5 30 4.904 -6.063 3.711
13 0.5 50 0.826 -2.036 -0.318
14 1.5 50 2.942 -4.146 1.793
15 2.5 50 5.224 -6.426 4.073
16 -0.5 50 0.826 -1.971 -0.383
17 -1.5 50 2.942 -4.091 1.738
18 -2.5 50 4.069 -5.219 2.866
19 0 - - -1.262 -1.109

Table A.1: Properties of two-way pressure variation distributions and their corresponding effective pressure distributions.

The ∆P gradient and pressure gradient data for three-way cases are provided in Table A.2. The absolute value of
maximum d(∆P )/dx is approximately half the absolute value of the minimum d(∆P )/dx, showing the steeper value
of favourable ∆P gradient compared to the adverse ∆P regions, as evident in Figure 2.6. Also, it can be noted that
dPe/dxmax never turns positive in the lowest pf case. As seen in the two-way pressure variation cases, the discrepancy
between pressure gradient of deformed cases and the pressure gradient of the clean case increases with an increase of pf .

Case pf w/δ0
(d(∆P )/dxmin
δ0/P∞ × 103)

d(∆P )/dxmax
(δ0/P∞ × 103)

dPe/dxmin
(δ0/P∞ × 103)

dPe/dxmax
(δ0/P∞ × 103)

1 0.5 30 -1.484 0.714 -2.660 -0.419
2 1.5 30 -5.092 2.709 -6.267 1.571
3 2.5 30 -8.634 4.877 -9.809 3.739
4 0 - - - -1.262 -1.109

Table A.2: Properties of three-way pressure variation distributions and their corresponding effective pressure distributions.



B
Additional Details on Modelling Base

Flow and Perturbation Evolution

B.1. Domain
The domain used for base flow and perturbation computations is shown in Figure B.1. The base flow domain extends

from y/δ0 = 0 to 516. Whereas, the perturbation domain is a cropped version of the base flow domain, extending from
extending from x/δ0 = 140 to 273. The location of pressure variation imposition of the largest deformation width is also
shown, and it can be observed that the location of stationary crossflow mode initialization (i.e. the inlet of perturbation
domain) is sufficiently upstream of the largest width base flow deformation.

Figure B.1: Domain for baseflow computation (solid black) and domain for perturbation computation (dash-dotted red); location of µ (dashed green)
at x/δ0 = 177.62; location of x/δ0 = µ− w/2 and µ+ w/2 (dotted blue) when w = 50.

B.2. Derivation of Boundary Layer Equations
To obtain the boundary layer equations from the Navier Stokes equations, a number of assumptions need to be applied.

A reference is made to Schlichting and Gersten (2000) to derive these assumptions. The original equations were presented
for two-dimensional flat plates by the author, but in the current case, the assumptions are extended to three-dimensional
swept flat plate boundary layers. The first assumption relates the thickness of boundary layer ’δ’ and a characteristic length
scale ’l’, representative of the swept flat plate by

δ << l. (B.1)

Physically this implies that changes in the boundary layer occur over a very thin region (order of δ) compared to the
changes in streamwise direction (occuring over l). Emperically, at large Reynolds numbers based on the flat plate length
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scale (Re = U∞l/ν), it is found that
δ

l
∝ 1√

Re
. (B.2)

At large Reynolds numbers, the RHS of Equation B.2 tends to a very small number. Thus, Equation B.1 holds in the
limit of large Reynolds number. The continuity and momentum equations (Equations Equation 3.1 to Equation 3.4) are
non dimensionalized by the length scale of the flat plate l and freestream velocity U∞ to further study the impact of this
assumption, yielding

∂UB
∗

∂x∗︸ ︷︷ ︸
O(1)

+
∂VB

∗

∂y∗︸ ︷︷ ︸
O(1)

= 0, (B.3)
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, (B.4)
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where x∗ = x/l and y∗ = y/l = yδ∗/δ. The estimated order of magnitudes of each of the terms in the above equations
are also mentioned beneath the terms to allow further simplification of the equations. First, the order of magnitudes in the
non-dimensionalized continuity equation (Equation B.4) are considered. UB∗ and x∗ are ratios of quantities with similar
scale and thus have an order of magnitude 1. This implies that ∂UB∗/∂x∗ = O(1). Whereas since y has a length scale
comparable to δ, y∗ = O(δ∗). In the inviscid limit, δ∗ tends to zero. For the continuity equation to not tend to infinity in
this limit, VB∗ and y∗ should have the same order of magnitude. Thus, VB = O(δ∗).

The order of magnitudes in the xmomentum equation (Equation B.4) are now considered. The order of the x advection
term is self-explanatory, knowing the order of UB and ∂UB∗/∂x∗. In the y advection term, the order of ∂UB∗/∂y∗ is
a division of orders of each term resulting in 1/δ∗. When multiplied by VB , the resulting order is O(1) term. On the
right hand side, pressure should have an O(1) magnitude to match the order of x∗, leading to an O(1) magnitude for
the derivative. Moving to the next term, the effect of viscosity has to be manifested by at least one term to ensure that
the inviscid solution and the viscous solution vary from each other. ∂2UB∗/∂y∗2 clearly has a much greater order than
∂2UB

∗/∂x∗2 due to y∗ having a much smaller order than x∗. Therefore, its order is balanced off by the Reynolds number
which now has to have a O(δ∗)2 limit, so that the whole viscous term has an order of one, similar to the convection terms
of the equation. The treatment of the viscous terms results in the second assumption from order of magnitude analysis
which reads

∂2UB
∗

∂y∗2
>>

∂2UB
∗

∂x∗2
. (B.7)

A similar treatment can be applied to the non-dimensionalized z momentum equation yielding

∂2WB
∗

∂y∗2
>>

∂2WB
∗

∂x∗2
. (B.8)

Now, the y momentum (Equation B.5) equation is considered. All terms yield an O(δ∗) magnitude using the order of
magnitude analysis technique proposed above except the y pressure gradient term, which has O(1/δ∗) magnitude. Thus,
this is the dominating term in the equation. Removing all lower order terms out results in the third assumption of boundary
layer which reads

∂PB
∗

∂y∗
= 0. (B.9)

This assumption implies that any pressure gradient imposed at the top boundary or in the inviscid flow region is directly
felt at the wall. Schlichting and Gersten (2000) explains that this assumption physically corresponds to a particle having no
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mass or experiencing no friction while moving in the wall-normal direction in the boundary layer. The resulting equations
are brought back to dimensional form, after removing terms omitted by the order of magnitude analysis to yield

∂UB
∂x

+
∂VB
∂y

= 0, (B.10)

UB
∂UB
∂x

+ VB
∂UB
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= −1

ρ
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, (B.11)

∂PB
∂y

= 0, (B.12)

UB
∂WB

∂x
+ VB

∂WB

∂y
= ν

∂2WB

∂y2
. (B.13)

The pressure in Equation B.11 can be eliminated by considering the conditions of the inviscid layer placed above the
boundary layer, where UBy

and UByy
are infinitesimally small, simplifying the equation to the Bernoulli equation in

differential form given by

Ue
∂Ue
∂x

= −1

ρ

∂Pe
∂x

(B.14)

The subscript ”e” corresponds to external flow in the inviscid region. Since there is no vartion of pressure in y, PB = Pe.
This eliminates pressure from Equation B.11 to yield

UB
∂UB
∂x

+ VB
∂UB
∂y

= Ue
∂Ue
∂x

+ ν
∂2UB
∂y2

. (B.15)

B.3. DNS and BLS Base Flow Differences
Additional plots on the differences between the BLS and DNS base flow of the −2.5pf30w case are shown in this

section, whose preliminary results are shown in Section 3.5. Pe and PB (at y/δ0 = 0.75) distributions of DNS and BLS
base flows are contrasted in Figure B.2 (a) and (b) respectively. Ve and VB (at y/δ0 = 0.75) distributions of DNS and
BLS base flows are contrasted in Figure B.2 (a) and (b) respectively. Uex and UBx (at y/δ0 = 0.75) distributions of DNS
and BLS base flows are contrasted in Figure B.4 (a) and (b) respectively.

Figure B.2: Chordwise variation of (a) Pe and (b) PB (at y/δ0 = 0.75) in the −2.5pf30w case simulated by DNS (magenta) and BLS (light green);
black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of∆P imposition.
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Figure B.3: Chordwise variation of (a) Ve and (b) VB (at y/δ0 = 0.75) in the −2.5pf30w case simulated by DNS (magenta) and BLS (light green);
black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of∆P imposition.

Figure B.4: Chordwise variation of (a) Uex and (b) UBx (at y/δ0 = 0.75) in the −2.5pf30w case simulated by DNS (magenta) and BLS (light
green); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of∆P imposition.

B.4. Wall-normal Grid Independence of BLS Solution

The grid independence in y direction is shown in Figure B.5 and Figure B.6, with three different levels of refinement
considered keeping the x discretization constant, Nx = 15000.
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Figure B.5: Plot of wall-normal variation of chordwise velocity in the−2.5pf 30w case at xst/δ0 = (a) −0.6w, (b) −0.25w, (c) 0.25w, and (d)
0.6w whenNy = 75 (sky blue with circles), 100 (light green), and 125 (brown).

Figure B.6: Plot of chordwise variation of displacement thickness in the −2.5pf 30w case whenNy = 75 (sky blue with circles), 100 (light green),
and 125 (brown); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition.

B.5. Wall-normal Grid Independence of HLNS Solution

The grid independence in y direction is shown in Figure B.7 and Figure B.8, with three different levels of refinement
considered keeping the x discretization constant, Nx = 1500.
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Figure B.7: Plot of wall-normal variation of normalized amplitude function of u′ in −2.5pf 30w case at xst/δ0 = (a) −0.6w, (b) −0.25w, (c)
0.25w, and (d) 0.6w whenNy = 75 (sky blue with circles), 100 (light green), and 125 (brown).

Figure B.8: Plot of chordwise variation of |ũ| amplitude in −2.5pf 30w case whenNy = 75 (sky blue with circles), 100 (light green), and 125
(brown); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of∆P imposition.



C
Base Flow Properties of Two-way Cases

In this chapter, properties of base flow of non-reference two-way cases are presented. Not that base flows with pressure
variation of w = 30δ0 are simultaneously also denoted as 30δ0 or 30δ0 cases.

C.1. External Velocity and Boundary Layer Properties
The chordwise variation of external velocity and boundary layer size in 10δ0 and 50δ0 cases shown in Figure C.1 and
Figure C.2 respectively show the same properties as those noted in 30δ0 cases shown in Figure 6.2. The extent of increase
or decrease of external velocity and boundary layer thickness compared to the clean case increases with the increase of
width scale for the same pf , due to a larger exposure to regions of deformed flow in the larger width scale cases.

Figure C.1: Chordwise evolution of (a) External Velocity and (b) Boundary layer thickness in 10δ0 cases; −2.5pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of

∆P imposition in deformed cases.
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Figure C.2: Chordwise evolution of (a) External Velocity and (b) Boundary layer thickness in 50δ0 cases; −2.0pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of

∆P imposition in deformed cases.

C.2. Wall-tangential Base Flow

The chordwise evolution of UB andWB at two different wall-normal heights (y/δ0 = 0.5 and y/δ0 = 1) in 30δ0 cases
are considered in Figure C.3 and Figure C.4 respectively.

Figure C.3: Chordwise evolution of chordwise velocity in 30δ0 cases at y/δ0 = (a) 0.5 and (b) 1.0; −2.5pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of

∆P imposition in deformed cases.
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Figure C.4: Chordwise evolution of spanwise velocity in 30δ0 cases at y/δ0 = (a) 0.5 and (b) 1.0;−2.5pf (red),−1.5pf (orange),−0.5pf (yellow),
0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of∆P

imposition in deformed cases.

C.3. Wall-normal Velocity and Chordwise Derivative of Wall-tangential
Base Flow

The chordwise evolution of UBx
, VB , andWBx

at a particular wall-normal height (y/δ0 = 0.75) in 30δ0 cases are consid-
ered in Figure C.5 (a), (b), and (c) respectively. Only one height is considered as the trends of UBx

, VB , andWB remain
consistently similar to those shown in Figure C.5 within the boundary layer.

Figure C.5: Chordwise evolution of (a) UBx , (b) VB , and (c) −WBx in 30δ0 cases at y/δ0 = 0.75; −2.5pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of

∆P imposition in deformed cases.

C.4. Base Flow Shear Profiles
The wall-normal variation of shear of UB andWB are shown in Figure C.6 and Figure C.7 for 30δ0 cases at four different
positions, two in the first half of deformation and two in the second half of deformation.
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Figure C.6: Wall-normal variation of chordwise velocity shear in 30δ0 cases at xst/δ0 = (a) -0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w; −2.5pf (red),
−1.5pf (orange), −0.5pf (yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black).

Figure C.7: Wall-normal variation of chordwise velocity shear in 30δ0 cases at xst/δ0 = (a) -0.3w, (b) -0.1w, (c) 0.1w, and (d) 0.3w; −2.5pf (red),
−1.5pf (orange), −0.5pf (yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black).

C.5. Crossflow Velocity Variation

The chordwise evolution of crossflow velocity at two different wall-normal heights (y/δ0 = 0.05 and y/δ0 = 0.25) in
30δ0 cases is considered in Figure C.8.
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Figure C.8: Chordwise evolution of crossflow velocity in 30δ0 cases at y/δ0 = (a) 0.05 and (b) 0.25; −2.5pf (red), −1.5pf (orange), −0.5pf
(yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show region of

∆P imposition in deformed cases.





D
Perturbation Properties of Two-Way

cases

D.1. Evolution of Normalized Amplitude Function

Figure D.1: Wall-normal variation of normalized amplitude function of u′ in clean case (black), 0.5pf 30w case (cyan), 1.5pf 30w case (dark green),
2.5pf 30w case (blue), −0.5pf 30w case (yellow), −1.5pf 30w case (orange), and −2.5pf 30w (red) at xst/δ0 = (a) −0.75w, (b) −0.4w, (c)

−0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.

The wall-normal variation of normalized amplitude function of perturbation, wherein the perturbation amplitude function
is normalized by the maximum value of ũ is shown for 30δ0 cases for u′ in Figure D.1, v′ in Figure D.2, w′ in Figure D.3
at various locations.
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Figure D.2: Wall-normal variation of normalized amplitude function of v′ in clean case (black), 0.5pf 30w case (cyan), 1.5pf 30w case (dark green),
2.5pf 30w case (blue), −0.5pf 30w case (yellow), −1.5pf 30w case (orange), and −2.5pf 30w (red) at xst/δ0 = (a) −0.75w, (b) −0.4w, (c)

−0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.
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Figure D.3: Wall-normal variation of normalized amplitude function of w′ in clean case (black), 0.5pf 30w case (cyan), 1.5pf 30w case (dark green),
2.5pf 30w case (blue), −0.5pf 30w case (yellow), −1.5pf 30w case (orange), and −2.5pf 30w (red) at xst/δ0 = (a) −0.75w, (b) −0.4w, (c)

−0.2w, (d) −0.05w, (e) 0.05w, (f) 0.2w, (g) 0.4w, and (h) 0.75w.

D.2. Amplitude and Growth Rate Evolution

The amplitude and growth rate evolution in 10δ0 and 50δ0 cases considered in the thesis are shown in Figure D.4 and
Figure D.5 respectively, where their behaviour is consistent with the behaviour seen in the 30δ0 cases for both positive
and negative pf cases.
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Figure D.4: Chordwise evolution of (a) growth rate and (b) Amplitude in 10δ0 cases; −2.5pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

Figure D.5: Chordwise evolution of (a) growth rate and (b) Amplitude in 50δ0 cases; −2.0pf (red), −1.5pf (orange), −0.5pf (yellow), 0.5pf
(cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

D.3. Production Term Trends

D.3.1. Cosine of Phase Difference
The trends of cos(ϕ1 −ϕ3), cos(ϕ1 −ϕ2), and−cos(ϕ3 −ϕ2) are shown for 30δ0 cases in Figure D.6, Figure D.7, and

Figure D.8 respectively. To further show the local increase and decrease of cos(ϕ1 − ϕ2) in favourable and adverse ∆P
regions respectively, its evolution is plotted at two different wall-normal heights in Figure D.9.
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Figure D.6: Contours of cos(ϕ1 − ϕ3) in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w case,
and (f) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure D.7: Contours of cos(ϕ2 − ϕ1) in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w case,
and (f) −2.5pf 30w case; white solid lines show constant cosine contour lines in the range -1 to -0.4; black dotted lines at

xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.
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Figure D.8: Contours of -cos(ϕ2 − ϕ3) in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w case,
and (f) −2.5pf 30w case; white solid lines show constant cosine contour lines in the range -1 to -0.4; black dotted lines at

xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure D.9: Chordwise evolution of cos(ϕ2 − ϕ1) in 30δ0 cases at y/δ0 = (a) 0.5 and (b) 1.0; −2.5pf (red), −1.5pf (orange), −0.5pf (yellow),
0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P

imposition in deformed cases.

D.3.2. Pxd and Pyd Trends
The chordwise variation of Pxd

, Pyd , and P at two different wall-normal heights for 30δ0 cases are shown in Figure D.10.
Enhanced P with respect to clean case is observed in regions of positive Pxd

or flow deceleration and vice versa.
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Figure D.10: Evolution of Pxd (a,d), Pyd (b,e), P (c,f) in clean case (black), 0.5pf 30w case (cyan), 1.5pf 30w case (dark green), 2.5pf 30w case
(blue),−0.5pf 30w case (yellow),−1.5pf 30w case (orange), and−2.5pf 30w (red) at y/δ0 = 0.5 (top) and y/δ0 = 1 (bottom); black dash-dotted

lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

D.4. Lift-up Effect

The contours of cos(ϕ1,t− ϕ1) and sin(ϕ1,t− ϕ1) are shown for 30δ0 in Figure D.12 and Figure D.11 to show that they
take values close to 1 and 0 respectively, proving that ϕ1,t and ϕ1 take values close to each other.
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Figure D.11: Contours of cos(ϕ1,t − ϕ1) in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w
case, and (f) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

Figure D.12: Contours of sin(ϕ1,t − ϕ1) in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w
case, and (f) −2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

The chordwise evolution of cos(ϕ1−ϕ2) and cos(ϕ1,t−ϕ2,n) in 30δ0 cases are compared in Figure D.13 at y/δ0 = 0.5
to show that VB consistently causes cos(ϕ1 − ϕ2) to deviate from cos(ϕ1,t − ϕ2,n) in case the underlying base flow is
synthetically deformed.
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Figure D.13: Chordwise evolution of cos(η) where η = ϕ2 − ϕ1 (solid) and ϕ2,n − ϕ1,t (dashed) in 30δ0 cases; −2.0pf (red), −1.5pf (orange),
−0.5pf (yellow), 0.5pf (cyan), 1.5pf (dark green), 2.5pf (blue), and clean case (black); low pf cases shown in (a), medium pf cases shown in (b),

and high pf cases shown in (c); black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.

D.5. Orr Mechanism

The wall-normal variation of −ϕ1 is compared at three different chordwise locations in 30δ0 cases in Figure D.14.

Figure D.14: Wall-normal variation of −ϕ1 in clean case (black), 0.5pf 30w case (cyan), 1.5pf 30w case (dark green), 2.5pf 30w case (blue),
−0.5pf 30w case (yellow), −1.5pf 30w case (orange), and −2.5pf 30w case (red) at xst/δ0 = (a) −0.75w, (b) −0.2w, and (c) 0.4w.

Contours of ϕd are shown for 30δ0 cases in Figure D.15, where it appears that the influence of Orr mechanism drasti-
cally decreases with decrease of pf .
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Figure D.15: Contours of ϕd in (a) 0.5pf 30w case, (b) 1.5pf 30w case, (c) 2.5pf 30w case, (d) −0.5pf 30w case, (e) −1.5pf 30w case, and (f)
−2.5pf 30w case; black dotted lines at xst/δ0 = −w/2, 0, andw/2 show the region of∆P imposition in deformed cases.
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Figure E.1: Wall-normal variation of normalized amplitude function of u′ in three-way cases; 0.5pf (light green), 1.5pf (grey), 2.5pf (purple), and
clean case (black) at xst/δ0 = (a) −0.4w, (b) −0.25w, (c) −0.15w, (d) −0.05w, (e) 0.05w, (f) 0.15w, (g) 0.25w, and (h) 0.4w.

The wall-normal variation of normalized amplitude function of u′, wherein the perturbation amplitude function is nor-
malized by the maximum value of ũ is shown for 30δ0 cases in Figure E.1. No secondary peaks emerge. Amplitude
evolution trends in synthetic three-way and step cases are shown in Figure E.2 (b) and Figure E.3 respectively. In both
cases, amplitude growth with respect to the clean case is enhanced in the first region of wall-tangential base flow deceler-
ation used for comparison i.e. most of the first adverse ∆P region of synthetic three-way cases and the adverse pressure
gradient region before xst/δ0 = −4 in FFS cases.
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Figure E.2: Chordwise evolution of (a) growth rate and (b) Amplitude in three-way cases; 0.5pf (light green), 1.5pf (grey), 2.5pf (purple), and clean
case (black); black dotted lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition in deformed cases.

Figure E.3: Chordwise amplitude evolution based on the value of total fundamental perturbation vector norm (denoted as ψ) at primary peak (top) in
the smooth case (thick solid black), step case I (dotted orange), step case II (dashed-dotted blue), and step case III (thin solid red); reproduced from

Casacuberta, Hickel, Westerbeek, and Kotsonis (2022).

The chordwise variation of Pxd
, Pyd , and P at two different wall-normal heights for three-way cases are shown in

Figure E.4. Enhanced P with respect to clean case is observed in regions of positive Pxd
or flow deceleration and vice

versa.
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Figure E.4: Evolution of Pxd (a,d), Pyd (b,e), P (c,f) in three-way cases; 0.5pf (light green), 1.5pf (grey), 2.5pf (purple), and clean case (black);
black dotted lines at xst/δ0 = −3w/4, −w/4, w/4, and 3w/4 show the region of∆P imposition in deformed cases.


	Preface
	Abstract
	Nomenclature
	Introduction
	Motivation
	Organization and Conventions
	Boundary Layer and Transition
	Analysis of Modal Growth
	Crossflow Instability
	Interaction of FFS with Stationary Crossflow Instability
	Effects of FFS on Base Flow
	Effects of FFS on Perturbation Evolution

	Analysis of Non-modal Growth
	2D Flows
	3D flows
	Step Flows

	Gaps in Literature and Scope of Thesis
	Research Questions and Objective
	Outline
	Unique Contributions

	Synthetic Base Flow Deformation Design
	Clean Case Pressure Distribution
	Inspiration from the FFS
	Development of Gaussian-like Pressure Variation
	Two-way P cases
	Three-way P cases

	Modelling Base Flow Evolution
	Base Flow Problem Definition
	Full Navier Stokes Equation
	Direct Numerical Simulation
	Boundary Layer Equations and Solver
	Comparison of DNS and BLS Base Flow
	Grid for Selected Method

	Modelling Perturbation Evolution
	Perturbation Evolution Problem Definition
	Linearized Perturbation Equations
	Ansatz and Solution Techniques
	Ansatz
	Incompressible Local Stability Equations and Solver
	Linear Parabolized Stability Equations and Solver
	Harmonic Linearized Navier Stokes Equations and Solver

	Selection of Method to Model Perturbation Evolution
	Grid for Selected Method

	Mathematical Framework to Explain Perturbation Behaviour
	Development of Spatial Reynolds-Orr Analysis
	Preliminary Energy Balance Equation
	Production Term Decomposition
	Transport Term Decomposition
	Final Energy Balance Equation

	Modified modal behaviour
	Mechanisms
	Criteria


	Perturbation Response to Base Flow Deformation
	Base Flow Characteristics
	Perturbation Evolution
	Mechanisms Governing Perturbation Evolution
	Analysis of Production Term Evolution
	Analysis of Transport Term Evolution
	Potential Pitfalls

	Deviation from Modal Character
	Lift-up Effect
	Orr Mechanism
	Comparison with Local Modal Behaviour
	Non-modal Behaviour Criteria


	Comparison with the FFS
	Base Flow Comparison
	Perturbation Evolution Comparison

	Conclusion and Recommendations for Future Work
	Conclusion
	Recommendations for Future Work
	References

	Additional Test Case Details
	Clean Case Pressure Distribution
	Tabulated Test Case Properties

	Additional Details on Modelling Base Flow and Perturbation Evolution
	Domain
	Derivation of Boundary Layer Equations
	DNS and BLS Base Flow Differences
	Wall-normal Grid Independence of BLS Solution
	Wall-normal Grid Independence of HLNS Solution

	Base Flow Properties of Two-way Cases
	External Velocity and Boundary Layer Properties
	Wall-tangential Base Flow
	Wall-normal Velocity and Chordwise Derivative of Wall-tangential Base Flow
	Base Flow Shear Profiles
	Crossflow Velocity Variation

	Perturbation Properties of Two-Way cases
	Evolution of Normalized Amplitude Function
	Amplitude and Growth Rate Evolution
	Production Term Trends
	Cosine of Phase Difference
	Pxd and Pyd Trends

	Lift-up Effect
	Orr Mechanism

	Perturbation Properties of Three-way cases

