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Dependently typed languages such as Agda have the potential to revolutionize the way we write software
because they allow the programmer to catch more bugs at compile time than classical languages. Nonetheless,
dependently typed languages are hardly used in practice. One of the reasons is the lack of mature compilers
for them.

This paper describes the implementation of a new Agda compiler that targets the Higher-Order Virtual
Machine (HVM). Firstly we outline the theoretical benefits of using an optimal functional language such as
HVM. Secondly, we present the problems we faced and the solutions we devised in the implementation of the
agda2hvm compiler. Lastly, we compare our implementation to the current best Agda compilers by running
benchmarks and analyzing both time and space performance. We obtained results ranging from our compiler
being exponentially faster than the state-of-the-art to being exponentially slower.
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1 INTRODUCTION
In the XXI century, many aspects of our lives depend on software. Making sure that it is correct
and bug-free is thus a crucial problem. In recent years computer scientists have developed a new
family of programming languages called dependently typed programming languages which have
the potential to be part of the solution to this problem. Some languages that are in this family are for
example Agda [Norell 2007], Coq [Barras et al. 1997], Idris [Brady 2013], Cayenne [Augustsson 1998],
and Twelf [Pfenning and Schürmann 1999]. These languages allow programmers to mathematically
prove properties about code using induction and assign additional constraints to the type system to
catch more errors at compile time. Nonetheless, according to the research presented in [Hausmann
et al. 2015] most of these systems focus on theorem proving rather than efficient execution and
very few have a mature compiler. As a result, these languages are hardly used in practice.

This paper focuses on the implementation of a compiler for the Agda language using the
HVM language [Taelin 2022] as a core language. At the time of writing there are four main
implementations of compilers for Agda:

Agda to Haskell (MAlonzo) [Benke 2007] uses unsafe typecasts to solve the issues which
arise from the fact that Agda’s type system is more powerful than Haskell’s. It relies on
GHC to perform code optimizations.

Agda to Epic [Fredriksson and Gustafsson 2011] "is the most ambitious existing Agda com-
piler in terms of optimizations, and clearly shows the viability of compiling Agda to an
untyped core language. Sadly, it has not been actively maintained and does not support all
current Agda features." [Hausmann et al. 2015, p. 17]

Agda to JavaScript [Jeffrey 2013] is intended as a tool to write better web and GUI code, not
as a tool to generate Agda binaries since JavaScript is an interpreted language.

Agda to UHC [Hausmann et al. 2015] transpiles Agda to a modified version of the Utrecht
Haskell Compiler’s core language. However, in [Hausmann et al. 2015] the authors state
that this compiler does not outperform the MAlonzo backend because the Utrecht compiler
does not perform optimizations.
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Despite many attempts at writing a good compiler for Agda, better results might be obtained
using a different core language. In this paper, we will assess whether the High-Order Virtual
Machine (HVM) is a good candidate. We picked it because its author Victor Taelin claims that
HVM achieves optimality by implementing Interaction Nets [Lafont 1989] to perform computations
which can make it asymptotically faster than most functional runtimes in some cases but also
introduces a run-time overhead.
This paper aims to test these claims and determine precisely how HVM performs compared to

other core languages. It is structured in the following way:
• We give some background information on Agda and HVM.
• We describe the compilation from Agda to HVM.
• We present the results of the benchmarks of the different backends.
• We report our conclusions and our ideas for future work.

2 BACKGROUND
Agda and HVM are quite peculiar languages: the former is a dependently typed language and the
latter is based on Interaction Nets.

In [Brady 2005] Edwin Brady states that the characteristic feature of dependent type systems is
that types can be predicated on values which allows the programmer to give a more precise type to
a value with the effect that more errors can be caught at compile time. Since Agda is a dependently
typed language it has the potential to revolutionize the way we write software, leading to more
robust and safe implementations through type-driven development [Brady 2017].

In [Asperti 2017] Andrea Asperti discusses the problem of sharing computations, showing that
both innermost and outermost reduction strategies lead to duplication of work. To mitigate this
problem, Haskell, which implements outermost reduction, uses thunks that are essentially a form
of memoization and lead to more efficient reductions at the cost of using more memory. While
this implementation is quite efficient, it is not optimal because there are cases where even Haskell
duplicates work. In particular, Haskell does not share computations inside lambdas. Interaction Nets
are a computational model developed over the years since 1989 [Lafont 1989; Lamping 1989] which
allows for optimal reduction, so no work is ever duplicated. The problem with Interaction Nets is
that they require bookkeeping work, which leads to less efficient code even if it is theoretically
optimal.

2.1 Agda
The rest of this section will present a sample case where dependent types are useful.

Agda and many other dependently typed languages use the Peano representation of natural
numbers because it allows for simple yet effective type constraints as we will see in example 2. In
this representation every number is defined as the successor of another number:

Example 1. Peano representation of natural numbers

data Nat : Set where
zero : Nat
suc : Nat → Nat

zero ⇒ 0
suc zero ⇒ 1
suc (suc zero) ⇒ 2
suc (suc (suc zero)) ⇒ 3
...

https://github.com/VictorTaelin
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With this representation of numbers, it is now possible to distinguish between an empty vector
and a non-empty one by indexing their type on the list length (example 2).

Example 2. Finite size list

data Vector (A : Set) : Nat → Set where
[] : Vector A zero
_::_ : {n : Nat} → A → Vector A n → Vector A (suc n)

Since an empty vector and a non-empty one have different types it is for example possible to
define a safe head function without the need for Maybe in the return type because the compiler
will reject programs that call head on Vector A zero instead of Vector A (suc n) (example 3).

Example 3. Safe head function

head : {A : Set}{n : Nat} → Vector A (suc n) → A
head (x :: xs) = x

head (1 :: 2 :: []) ⇒ 1
head [] ⇒ Type Error

From a performance perspective, indexed types can potentially introduce an overhead if the
compiler is not optimized. This is the case because an instance of Vector requires its length as an
additional parameter, even though it is not used at run-time but only during type-checking. The
overhead can be mitigated by erasing the unused arguments. This optimization is called forcing
and it is discussed in more detail in [Brady et al. 2004].

2.2 HVM
HVM is a functional programming language with a very simple syntax. It is compiled to C, which
makes it quite fast since C compilers perform a multitude of code optimizations. It is lazily evaluated
and supports lambdas and pattern matching. It does not have a type system, which simplifies the
compilation from Agda since the problem of "converting" a dependently typed system to a statically
typed system is avoided while maintaining type safety since Agda type checks the program before
the compilation to HVM. Another feature of HVM is that it performs computations and memory
management with Interaction Nets [Lafont 1989] which eliminate the need for a garbage collector,
allow it to automatically parallelize work, and share computations inside lambdas. If the reader is
interested in learning about Interaction Nets, how they are related to lambda calculus and how they
can be manipulated to reduce a program to its normal form we recommend reading paper [Hassan
et al. 2010]. Despite having multiple benefits, HVM also has disadvantages that are discussed in
section 4.4.

Example 4. An HVM program to calculate prime numbers

(If 1 t e) = t
(If 0 t e) = e

(In (Cons y ys) x) = (If (== x y) 1 (In ys x))
(In Nil x) = 0

(ListDiff (Cons x xs) ys) = (If (In ys x) (ListDiff xs ys) (Cons x
(ListDiff xs ys)))

(ListDiff Nil ys) = Nil
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(Range bot top step) = (If (< bot top) (Cons bot (Range (+ bot step) top
step)) Nil)

(Sieve m (Cons x xs)) = (Cons x (Sieve m (ListDiff xs (Range x m x))))
(Sieve m Nil) = Nil

(Main n) = (Sieve n (Range 2 n 1))

3 METHODOLOGY
This research is comprised of an initial literature survey on existing Agda backends and on the
concept of Interaction Nets upon which HVM is implemented, followed by the implementation of
a new backend targeting the HVM language and consequent benchmarks and comparisons with
the existing ones.

The implementation of the new backend is open source and can be found on GitHub1. We have
largely taken inspiration from Jesper Cockx’s implementation of a Chez Scheme backend [Cockx
2022] and partly from the MAlonzo compiler which can be found in the official Agda repository
[Benke 2022]. These three compilers follow the same implementation design: they are written
in Haskell and they are built around the Agda Language Library [Norell and Team 2022]. This
library provides a parser and some additional transformations of the input Agda program that are
described in section 4, and it is designed to facilitate the implementation of new backends through
user-provided hooks.
The benchmark programs used to test our implementation are incorporated in the agda2HVM

repository and are discussed in further detail in section 5. To automate the benchmarking we have
written a Python script that runs two executables with multiple inputs and plots the execution time
and another script to measure the memory usage.

4 COMPILING AGDA TO HVM
The task of transforming Agda code into machine code is divided into multiple steps (figure 1).
Agda provides the initial steps of parsing and type-checking, and outputs Agda Internal Syntax.
This internal representation can be transformed into an even simpler representation called Agda
Treeless Syntax with the function Agda.Compiler.toTreeless at the cost of losing the information
about types and names. Agda revealed itself to be quite straightforward to get compiled to HVM,
but we also encountered some inadequacies that are explained at the end of this section.

Fig. 1. The Agda compilation pipeline

1https://github.com/judomat/agda2hvm

https://github.com/judomat/agda2hvm
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4.1 Agda Internal Syntax
The Agda Internal Syntax represents a definition of a construct. Listed below are the most important
constructs and a brief explanation of how they are compiled to HVM.

• Axiom: it is the simplest definition because it does not have a body. They are introduced
with the postulate keyword.

Example 5. An axiom definition

postulate
A : Set

Postulates should only be used during type-checking and their evaluation at run-time causes
an error. Thus their compilation yields no counterpart in HVM.

• Function: a function definition is first transformed to Agda Treeless Syntax and then
compiled to HVM with this simpler representation.

Example 6. A function definition and its HVM counterpart

Agda:
if_then_else_ : {A : Set} → Bool → A → A → A
if true then x else y = x
if false then x else y = y
⇒
HVM:
(If_then_else__0) = (@a (@b (@c (@d (If_then_else__4 a b c d)))))
(If_then_else__4 a b c d) = (If_then_else__split_b_4 a b c d)

(If_then_else__split_b_4 a (False) c d) = (d)
(If_then_else__split_b_4 a (True) c d) = (c)

As shown in example 6, the HVM compiler produces two definitions of the if_then_else_
function. This is because HVM does not support currying of top-level definitions but only
of lambdas, so we wrap If_then_else__4 in the lambda If_then_else__0 to solve this issue.

• Constructor: Since in HVM there is no difference between a constructor and a top-level
function, we were able to compile Agda constructors almost in the same way as functions.
Except that in this case, the body of the definition is the name of the Agda constructor.
While this may be obscure at first, it becomes clear with an example:

Example 7. A constructor definition and its HVM counterpart

Agda:
data List (A : Set) : Set where

Nil : List A
Cons : A → List A → List A

⇒
HVM:
(Nil_0) = (Nil)

(Cons_0) = (@a (@b (Cons_2 a b)))
(Cons_2 a b) = (Cons a b)
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Like in the case of the function definition, to support currying we wrap the constructor in a
lambda.

4.2 Agda Treeless Syntax
The Agda Treeless Syntax represents a term of an Agda program. The majority of Agda terms have
direct correspondence with HVM terms. Only the compilation of case splitting is achieved indirectly.
Examples of termswith direct correspondence are variables, primitive operations, definitions, function
application, lambdas, literals, constructors, and let expressions.
Case split: an Agda case split tree is specific to only one variable and is comprised of multiple

alternative branches and a fallback branch.

Fig. 2. A case split for the fib function. In blue the variable to split on, in green the alternative branches, and
in red the fallback branch

We say that the correspondence is indirect because pattern matching in HVM can only happen
in top-level definitions, so we had to lift the case-split terms to top-level (example 8).

Example 8. Case split lifting of fib function

Agda:
fib : Nat → Nat
fib 0 = 0
fib 1 = 1
fib (suc n@(suc m)) = fib n + fib m
⇒
HVM:
(Fib_0) = (@a (Fib_1 a))
(Fib_1 a) = (Fib_split_a_1 a)

(Fib_split_a_1 0) = 0
(Fib_split_a_1 1) = 1
(Fib_split_a_1 a) = let b = (Fib_b_1 a); (+ ((Fib_0) (- (a) 1))
((Fib_0) (b)))
(Fib_b_1 a) = (- (a) 2)

Using this case-split lifting technique we were able to achieve the correct functionality even
when case splitting on multiple variables and nested constructors.

4.3 Optimizations
This research aims to determine whether HVM is a viable core language for Agda, concentrating
more on the asymptotics of the running time and memory consumption rather than head-to-head
efficiency comparison. The main reason is that the compiler targetted by MAlonzo, GHC, is a
mature compiler developed by hundreds of people over many years while HVM is a prototype
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developed in a few months. It was never our goal to implement as many optimizations as GHC.
Instead, we focused on one optimization that if not implemented would affect the running time
asymptotics. This optimization is called primitive data representation and it concerns the way
numbers are represented in the executable code. The default way Agda defines numbers is through
the Peano representation for natural numbers presented in example 1. This representation is
not space-efficient since the space required to store a number m is O(m). Furthermore, primitive
operations such as addition or multiplication are also not efficient because they require linear time.
By compiling natural numbers to primitive machine integers, the bounds become constant space
for representation and constant time for operations.

4.4 Inadequacies of HVM
The fact that HVM is still a prototype manifested itself on several occasions. While some problems
were due to missing features, others arose from bugs in the very implementation of the HVM
compiler (version 0.1.24). It is worth noting that HVM comes with both an interpreter and a compiler,
but for the sake of this project, we only used and tested the compiler.

• Floating-point numbers are not supported and cause a parse error.
• Unbounded integers are not supported. The maximum size of an integer in HVM is 32 bits.
In case of an overflow, HVM does not report the error but instead silently wraps around.

• Foreign Function Interface with C is not supported. This severely limits the possibility of
using HVM in practice since it is impossible to perform real-world IO tasks such as opening
files and communicating over sockets.

• Not all programs run as expected even if the code is syntactically correct. The smallest
program we could find to showcase this is shown in example 9. In this example, the issue
seems to be variable b in the second line. Removing it makes the program behave as expected.

Example 9. Execution of this code outputs wrong result

(Append Nil ys) = ys
(Append (Cons x xs) ys) = let b = xs; (Cons x (Append xs ys))

(Main) = (Append [0, 1, 2] [3, 4, 5])
⇒
Output: Nil
Expected: [0, 1, 2, 3, 4, 5]

• Running time is sometimes asymptotically worse than Haskell. We were not expecting
this to be possible since HVM is advertised as an optimal reduction machine. We give more
details about this in section 5.3.

• Memory usage is sometimes asymptotically worse than Haskell. In [Asperti 2017] the
author refers to his implementation of an optimal language (BOHM) [Asperti et al. 1996])
based on Interaction Nets and states that the main problem in the implementation was
memory consumption. The author attributes the cause of this issue to the relation between
time and space asymptotics where often improving the former worsens the latter and
vice-versa. We give more information on which programs cause this difference in memory
consumption in section 5.3.

5 BENCHMARKS
To determine in which cases HVM is better or worse than other Agda core languages, we have
chosen to compare the HVM backend against the MAlonzo Haskell backend, Jesper Cockx’s Scheme
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backend, and in certain benchmarks against Andrea Asperti’s BOHM [Asperti et al. 1996]. We
selected the first backend because it is the most widely used Agda compiler, and the second one
because its target language is used by other dependently-typed languages such as Coq [Barras et al.
1997] and Idris [Brady 2013]. Furthermore, the BOHM language was included because, like HVM,
it implements optimal higher-order computational machines based on interaction nets so we use
it as a control to check that they perform similarly. The BOHM benchmarks have been manually
translated from Agda because BOHM is not targeted by any Agda backends.

5.1 Optimal benchmark
Algorithm: perform 2𝑛 compositions of the identity function
Theoretical time complexity: 𝑂 (2𝑛)
HVM: Linear time
BOHM: Linear time
Haskell: Exponential time
Scheme: Exponential time

The graph (figure 3) indicates that there is a difference in the asymptotics of the running time of
the two families of programming languages: the ’classical’ family (Scheme and Haskell) runs in
exponential time with respect to n, whereas the family of optimal languages (HVM, BOHM) runs
in linear time.
This result was expected since BOHM and HVM are designed to share computations inside

lambdas and this benchmark was purposely aimed at testing this feature.

Fig. 3. Running time of different backends.
The program computes 2𝑛 lambda compositions

5.2 Parallelizable benchmark
Algorithm: sum elements of a binary tree of size 2𝑛
Theoretical time complexity: 𝑂 (2𝑛)
HVM: Exponential time
Haskell: Exponential time
Scheme: Exponential time

As expected, all backends run in exponential time. HVM performs well and sometimes even
beats Haskell. While one may think that this is due to HVM being more efficient than Haskell, this
is not true. HVM performs well because this benchmark is parallelizable and HVM is designed to
automatically take advantage of all CPU cores (6 on the test machine).
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Fig. 4. Running time of different backends.
The program computes the sum of the elements of a binary tree with 2𝑛 elements

5.3 Unexpected results
Algorithm: sum all triples (x,y,z) such that 𝑥2 + 𝑦2 = 𝑧2 with 𝑥,𝑦, 𝑧 < 𝑛

Theoretical time complexity: 𝑂 (𝑛3)
HVM: Exponential time
BOHM: Exponential time
Haskell: Polynomial time
Scheme: Polynomial time

We were expecting all four languages to have the same polynomial 𝑂 (𝑛3) running time for this
benchmark. To our surprise, both optimal languages we tested were manifesting an exponential
behavior (figure 5 left plot), to the extent that it was impossible to get a result after 𝑛 ≈ 40. After
this boundary, HVM crashes and BOHM takes so long to complete that we had to kill the process.

To provide more evidence that the running time of HVM and BOHM is exponential, we plotted
in figure 5 on the right plot the same data as on the left one but on a logarithmic scale and only for
HVM. If the running time is exponential, the graph should show a straight line:

𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑎𝑛

𝑙𝑜𝑔𝑏 (𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒) = 𝑙𝑜𝑔𝑏 (𝑎𝑛)
= 𝑛 · 𝑙𝑜𝑔𝑏 (𝑎)
≈ 𝑛

(1)

The graph can in fact be approximated to a line, but only after 𝑛 ≈ 20.

Fig. 5. On the left: Running time of different backends. The program computes the sum of cartesian triples
(x,y,z) with x,y,z <= n
On the right: Running time of HVM on a logarithmic scale, fitted to a line
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An initial hypothesis we formulated was that our compiler could have introduced some overhead
that was negatively affecting performance. To test this hypothesis we manually translated the Agda
code to HVM but obtained the same results. We thus decided to continue testing this program and
measured the memory usage.

Theoretical memory complexity: 𝑂 (𝑛3)
HVM: Exponential memory
Haskell: Polynomial memory
Scheme: Polynomial memory

What we found was that HVM used an exponential amount of memory with respect to the input n,
while Scheme and Haskell only required a polynomial amount (figure 6 left plot).

Like in the case of the time analysis we plotted the memory consumption on a logarithmic scale
and overlapped it with a line to verify that the curve is exponential (figure 6 right plot). The result
was strikingly similar to its time counterpart, with the line fitting after 𝑛 ≈ 20.

Fig. 6. On the left: Memory usage of different backends. The program computes the sum of cartesian triples
(x,y,z) with x,y,z <= n
On the right: Memory usage of HVM on a logarithmic scale, fitted to a line

Despite our efforts, we do not have proof of what is causing this difference in performance.
Instead, we could only formulate some hypotheses. One is that there could be something wrong in
the implementation of BOHM, HVM, and possibly other optimal functional languages. Another
one is that there could be an error in the theory behind these languages. Lastly, the exponential
consumption of memory in this benchmark could be the cause of the exponential running time, so
with infinite memory, the running time would actually be polynomial.

5.4 Interpretation
By running these benchmarks we have found that the main advantages of using HVM as a core
language for Agda are:

• HVM can be asymptotically faster than Haskell when the target program performs heavy
lambda computations.

• HVM parallelizes computations more often than Haskell, especially when operating on a
tree data structure rather than a list.

And that the main disadvantages compared to the MAlonzo backend are:
• HVM is not stable yet and would undermine the safety of programming in Agda since
unexpected HVM errors can happen at run-time.
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• There are programs that if compiled to HVM perform worse than their theoretical time and
memory complexity while the same program compiled to Haskell performs as expected.
This is a serious problem whose causes could not be identified with certainty.

6 RELATEDWORK
In section 1 of this paper, we listed the different backend compilers of the Agda languages. The
most notable and used among them are the MAlonzo [Benke 2007] compiler, which targets the
Haskell language and relies on GHC to produce the executables, and the EPIC compiler which
targets the EPIC language and performs several optimizations but is no longer maintained and
has been removed from the Agda source code. In addition to these backends, we also present the
agda2scheme backend and BOHM optimal languages that are used in the benchmarks in section 5.

6.1 MAlonzo backend
The MAlonzo backend is the principal Agda compiler. Furthermore, it generally produces the
fastest code since the Haskell compiler upon which it relies is heavily optimized. Still, this does not
mean that there is no margin for improvement: in [Hausmann et al. 2015] the author states that
this compiler overcomes the differences between the Haskell and Agda type systems using type
coercions and that these coercions can lead to a blowup in the size of the generated Haskell code
and can prevent GHC from applying certain type-directed optimization.

In example 10, such coercions are represented by the applications of the coe function, which is a
wrapper around the unsafeCoerce function defined in the Unsafe.Coerce package.

One of the main advantages of the MAlonzo backend is that it provides a Foreign Function
Interface (FFI) to Haskell. This FFI allows programmers to call Haskell functions from Agda, export
Agda functions to Haskell, and reuse Haskell data types in Agda. This is essential to transform
Agda from a proof assistant into an industry-ready programming language as it allows to reuse all
the existing Haskell infrastructure. For instance, the Agda Standard Library [Community 2022]
heavily relies on it to provide IO functions that directly interface with the operating system such
as file manipulation.

Example 10. Hello World Agda program compiled with MAlonzo

main = coe d_main_2
-- HelloWorld.main
d_main_2 ::

MAlonzo.Code.Agda.Builtin.IO.T_IO_8
AgdaAny MAlonzo.Code.Level.T_Lift_8

d_main_2
= coe

MAlonzo.Code.IO.Base.du_run_88 (coe MAlonzo.Code.Level.d_0l_22)
(coe

MAlonzo.Code.IO.Finite.d_putStrLn_34
(coe MAlonzo.Code.Level.d_0l_22)
(coe ("Hello , World!" :: Data.Text.Text)))

6.2 Epic backend
The Epic backend [Fredriksson and Gustafsson 2011] targets the Epic2 language, which is a core
language specifically designed by Edwin Brady for dependently typed languages. Unlike HVM, it

2Epigram Compiler
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is strictly evaluated and has type annotations, but they are not checked. Epic also has a Foreign
Function Interface but instead of targeting a high-level language like the MAlonzo backend, it
targets the C language.
What differentiates this backend from other ones is that it implements multiple code optimiza-

tions, which are mostly inspired by Edwin Brady’s Ph.D. thesis [Brady 2005]. The most important
ones are:

• Forcing: consists in removing unused arguments from functions and constructors. It is par-
ticularly important when compiling a Dependently Typed language where many arguments
are used only during type-checking and not at run-time.

• Primitive Data: instead of representing numbers through the default Peano representation
(example 1) which is not efficient, numbers are compiled to machine words to improve the
running time and space asymptotical bounds (section 4.3).

Despite implementing all these features, this backend is no longer maintained and has been
removed from the Agda language repository. For this reason, we decided not to use it in the
benchmarks (section 5).

6.3 agda2scheme backend
The agda2scheme backend has been implemented by the supervisor of this research Professor Jesper
Cockx. The target language of this backend is Chez Scheme [Dybvig 2009], which is a LISP-like
untyped strict functional language. Although Scheme is strictly evaluated by default, this backend
also supports lazy evaluation by applying the delay and force operators in the generated Scheme
code. Like the Epic backend, agda2scheme implements forcing and primitive data representation.

6.4 BOHM language
In paper [Asperti et al. 1996], the authors of The Bologna Optimal Higher-order Machine (BOHM)
state that their language is an implementation of Lamping’s optimal graph reduction technique for
reducing 𝜆-expressions. The authors further explain that this technique consists in representing all
syntactical operators as nodes in a graph and reducing the program with well-defined interaction
rules among these nodes.

For these characteristics, BOHM is similar to HVM and could be considered its ancestor. Given
the latter, we decided to include BOHM in some of our benchmarks (section 5) even though no
Agda backend targets BOHM.

BOHM and HVM also have some differences, the main ones being that BOHM cannot be com-
piled but only interpreted, and unlike HVM it relies on a garbage collector to perform memory
management.

7 REPRODUCIBILITY OF RESULTS
The source code of agda2HVM and the other backends we have used for benchmarking are open
source and freely available:

Software Dependencies
agda2HVM Haskell Stack
agda2scheme [Cockx 2022] Haskell Cabal
MAlonzo [Benke 2022] Haskell Stack
HVM [Taelin 2022] Rust compiler
BOHM [Andrea Asperti 2022] gcc
Benchmark scripts Python, GNU time, Agda Standard Library



Code Extraction from Agda to HVM 13

We wrote every benchmark program in two slightly different versions: one without importing
the Agda Standard Library that we compiled with the HVM and Scheme backends, and another
with this import that we compiled with the MAlonzo backend. We use the Agda standard library
to read the program arguments supplied by the benchmarking scripts. Since this library cannot
be compiled with the HVM and Scheme backends, we use specific features of these languages to
get the program arguments. This does not affect the benchmark results because apart from this
difference in how the input is fetched the benchmark programs are identical.

8 CONCLUSIONS
We have implemented a compiler for Agda targeting the HVM language. We were able to compile
programs that use dependent types without inserting type-casts thanks to the untyped nature
of HVM and transform Agda constructs to HVM relatively easily due to HVM’s combination of
simplicity and functional programming features. We have tested our compiler against the state-of-
the-art of Agda backends. Our HVM compiler can in some cases be much faster than the Haskell
backend, in other cases it can match the performance, and we also found some programs for which
it is asymptotically slower. This was surprising because HVM should at least in theory have the
same asymptotical running time. We performed a multitude of tests but were unable to identify the
causes. Further research is needed to investigate the effectiveness of optimal functional languages
as a target language for compilers of dependently typed languages.

At its current state, our backend is not ready to be used for practical purposes given that HVM is
still in its early development. Before HVM can be considered a viable and reliable target language it
would need to become stable, support all primitive data like floating-point numbers and unbounded
integers, and have a foreign function interface with C to allow low-level communication with the
operating system. Lastly, the problem of unexpected exponential time and memory consumption
would have to be studied in greater detail and be solved.
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