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Issue Paper/
w
Solving Groundwater Flow Problems with Time
Series Analysis: You May Not Even Need
Another Model

by Mark Bakker' and Frans Schaars?

Abstract

Time series analysis is a data-driven approach to analyze time series of heads measured in an observation
well. Time series models are commonly much simpler and give much better fits than regular groundwater models.
Time series analysis with response functions gives insight into why heads vary, while such insight is difficult to
gain with black box models out of the artificial intelligence world. An important application is to quantify the
contributions to the head variation of different stresses on the aquifer, such as rainfall and evaporation, pumping,
and surface water levels. Time series analysis may be applied to answer many groundwater questions without the
need for a regular groundwater model, such as what is the drawdown caused by a pumping station? Or, how long
will it take before groundwater levels recover after a period of drought? Even when a regular groundwater model
is needed to solve a groundwater problem, time series analysis can be of great value. It can be used to clean up
the data, identify the major stresses on the aquifer, determine the most important processes that affect flow in the
aquifer, and give an indication of the fit that can be expected. In addition, it can be used to determine calibration
targets for steady-state models, and it can provide several alternative calibration methods for transient models.
In summary, the overarching message of this paper is that it would be wise to do time series analysis for any
application that uses measured groundwater heads.

heads in an observation well and the measured stresses
on the aquifer, such as rainfall and pumping. Time series
analysis can be applied to answer many groundwater
questions and it is much easier and quicker to apply than a
regular, spatial groundwater model. But even for questions
that require a spatial groundwater model, time series
analysis is an indispensable technique to analyze heads
before the development and calibration of a groundwater
model. In this paper, it is first reviewed why heads are
measured and what the advantages are of data-driven

Introduction

The objective of this issue paper is to discuss the
application of time series analysis of measured heads.
Time series analysis is a data-driven approach to find
a relationship between input and output signals. In
hydrogeology, a relationship is sought between measured
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modeling. Next, the method of response functions is
discussed in more detail. It is discussed what problems can
and cannot be solved with time series analysis, what the
challenges are in modeling time series of heads, and how
time series analysis can be applied in combination with
regular groundwater models. Finally, a short example of
time series analysis is presented to demonstrate how the
effect of a pumping well can be identified when the head
variations are dominated by tides and rainfall.
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Why Measure Heads?

Heads are measured in many observation wells
around the world. The coverage is very uneven: in some
areas there is a high density of wells, while in other areas
there are hardly any. In addition, measurement frequencies
vary (sometimes for the same well), observation periods
may be long or short, and there may be gaps in the
recording periods. In most observation wells, heads go
up and down continuously due to a number of inputs,
variably referred to as stresses, drivers, or forces. The
major stresses are rainfall, evaporation, surface water
levels, pumping, and barometric variations.

Observation wells are installed to measure heads for
a variety of reasons. Some are installed to quantify the
seasonal behavior of the head, or to monitor long-term
changes or trends in an aquifer. Others are installed
to determine the effect of one specific stress on an
aquifer, for example, the decline and recovery caused
by a period of drought followed by a period of rainfall,
or the drawdown caused by a well field. The measured
head variation is the combined effect of all the stresses
on the aquifer. The effect of a single stress can only
be determined by quantifying the contribution of all
significant stresses on the aquifer. For many applications,
such quantification needs to be accompanied by an
estimate of the uncertainty.

It is difficult to assess the actual information content
of a time series of head observations. Measured head
series represent a smoothed-out response to all the stresses
on the aquifer and may not contain enough information to
answer the question under consideration. The information
content of a time series of heads is a function of the
behavior of the system and of the number of significant
stresses that act on the aquifer, the variation of these
stresses, and the correlation between these stresses. For
example, increased evaporation in summer often coincides
with an increase in pumping, which can make it difficult
to differentiate between the effect of evaporation and the
effect of pumping.

Data-Driven Modeling

The analysis of a time series of measurements is a
common task in many fields. In this paper, the focus is
on the subset of methods that are referred to as system
identification, which is the study of models that translate
input signals into output signals (e.g., Wang and Garnier
2011). In hydrogeology, such identification and quantifica-
tion are traditionally carried out with groundwater models.
Groundwater models are analytical or numerical solutions
to (systems of) differential equations that describe the
flow of groundwater. Application of groundwater models
requires detailed knowledge (or rough approximations) of
both the subsurface and the physical boundary conditions
that cause the flow, and take a significant amount of time
to develop. These models are also referred to as white box
models.

In contrast to white box models, there are gray
box models and black box models. For either shade
of gray, there is no need for experimental (Darcy’s
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law) or physical (continuity) laws, let alone complicated
differential equations, detailed geological models, or GIS
coverages of spatial data. Instead, the entire analysis
is data driven. Gray box and black box models try to
determine a (mathematical) relation between input series
and output series (for hydrogeology: a relation between
time series of stresses on the aquifer and time series of
measured heads in an observation well) without going into
(too much) detail about what is actually happening in the
aquifer.

Formal definitions of gray box vs. black box models
differ. Here, black box models are defined as models that
apply some algorithm to translate the input signal into the
output signal, without any worries about the underlying
physics. Most methods for system identification are black
box models from the artificial intelligence world, but they
rarely provide physical insight into why the heads vary
the way they do (e.g., Siegel and Hinchey 2019). Gray
box models, also referred to as semi-physical models, are
models that apply algorithms that have some physical
basis. The operative word here is “some,” which can
mean as little as that the heads go up when it rains and
heads eventually go down when it stops raining. Gray
box models have a limited number of parameters that
can be tweaked to fit the modeled signal to the measured
signal. In the groundwater literature, application of gray
box and black box models for system identification is
often referred to as time series analysis, while this term
is rarely used for white box models even when applied
to simulate transient groundwater flow. Nevertheless, the
term “time series analysis” will be used in this paper.

Popular black box models include Box-Jenkins type
models (e.g. Changnon et al. 1988; Gehrels et al. 1994;
Van Geer and Zuur 1997), which originate from eco-
nomics (e.g., Box and Jenkins 1970), artificial neural net-
works (e.g., Daliakopoulos et al. 2005), and other artificial
intelligence approaches (e.g., Sahoo et al. 2017; Wunsch
et al. 2018). An increasingly popular gray box model is a
method that makes use of predefined, physically realistic
response functions (e.g. Von Asmuth et al. 2002). Some
may even argue that a simple groundwater model can be
considered a (light) gray box model (e.g., Obergfell et al.
2016).

Time series analysis is often seen as a statistical
technique where output is accompanied by an estimate of
the uncertainty. The residuals (the difference between the
modeled and measured values) of a transient groundwater
model are commonly serially correlated, where modeled
heads are above the measured heads for a period,
followed by a period where they are below the measured
heads. Estimation of uncertainty for models with serially
correlated residuals is challenging. One option that is
frequently used in time series analysis is to model the
serially correlated residuals with an appropriate noise
model. Performance of noise models varies, however, as
they do not always result in white noise.

Time series analysis requires the availability of mea-
sured head series and measured (or estimated) stresses.
The longer a time series, the better. Time series of the
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stresses preferably start before the time series of heads,
as the head measurements in the first part of a time series
are a function of what happened before the first head mea-
surement. The process of time series analysis consists of
three steps: select a model structure, apply an estimation
method to estimate the parameters of the model, and eval-
uate the model results to determine whether the model is
adequate for its intended application.

In the remainder of this paper, the pros and cons
are discussed of time series analysis of heads with
gray box models using predefined response functions.
Many groundwater questions can be answered with time
series analysis, without ever having to build a regular
groundwater model. Other questions can only be answered
with a regular groundwater model, but even then, time
series analysis can be of great value. In the following,
it is explained what time series analysis with response
functions is, how the method can be extended with other
linear or nonlinear concepts, what kind of problems can
and cannot be solved, and how time series analysis can
be used to improve regular groundwater models.

Time Series Analysis with Response Functions

The basic idea of a time series model based on
response functions is that the head in an observation well
is the sum of the individual effects on that head from
the different stresses that act on the aquifer. Successful
application of this method results in estimation of the
response function of each stress, including an estimate of
the uncertainty (if possible), and the contribution of each
stress to the total head variation. The response function
represents the relationship between the variation in the
stress and the variation in the head. An example of the
head response due to 1 day of rainfall, called the block
response, is shown in Figure la. As expected, the head
goes up after the rain starts and eventually comes back
down when it stops raining. The time between the start of
the rainfall and the time when the head is approximately
back to where it started is called the memory, #pem, of the
system (Figure 1). The head response due to continuous
rainfall starting at time ¢+ = 0 is shown in Figure 1b; this is
called the step response. When it rains at a constant rate
for a long time, the head eventually reaches a plateau.
This plateau is called the gain of the response function
(Figure 1b). The head at a point in time is a function of
all the rainfall in the past 7.y, days and can be obtained
through convolution of the time series of rainfall with the
response function (superposition in time, e.g., Von Asmuth
et al. 2002).

In time series modeling with response functions, sets
of physically realistic shapes are selected to estimate the
head response for a specific stress. Each response function
has a few shape parameters that can be tweaked to
optimize the fit between the measured and modeled heads.
Different stresses can have different types of response
functions. For example, the response to recharge can often
be described with a scaled Gamma distribution with three
parameters (e.g. Besbes and de Marsily 1984; Von Asmuth
et al. 2002). Analytic solutions to simple groundwater
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Figure 1. Example response functions. (a) Block response to
1 mm of rainfall in day 1. (b) Step response to 1 mm/days
of rainfall starting at t = 0.

flow problems are also good candidate response functions.
For example, the Hantush function can be used to simulate
the head response of pumping wells (e.g., Von Asmuth
et al. 2002). The use of analytic solutions of simple flow
problems as response functions has the additional benefit
that model parameters can be converted into estimates
of aquifer parameters. Care must be taken, of course,
that such a conversion only makes physical sense if the
analytic solution is a reasonable representation of the
actual aquifer system.

Time series analysis with response functions often
gives a very good fit to the data, commonly much better
than can be obtained with a regular groundwater model.
Time series models with response functions are relatively
simple, as they include only (a few) handful of parameters.
The estimated response functions give modelers physical
insight into why heads vary the way they do.

Time series analysis using response functions works
well for systems that are sufficiently linear. Nonlinear
processes may be added when they play an important
role. One nonlinear process that may be important is
the nonlinear relationship between measured rainfall and
reference evaporation on the one hand and groundwater
recharge on the other hand. This may be the case in
aquifers with thick unsaturated zones, in areas with
significant runoff, or in arid regions (e.g., Berendrecht
et al. 2006; Peterson and Western 2014). Another common
nonlinear process is when the head response is a function
of the head itself. An example is a system where surface
water features (ditches, drains, streams) carry water only
part of the year, so that the response function changes over
time depending on the head in the aquifer (e.g., Knotters
and de Gooijer 1999). These are just two examples of
nonlinear processes for which potential solutions have
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been developed in a time series framework, but there are
many other nonlinear processes for which solutions are
not yet available.

What Problems Can Be Solved with Time Series Analysis?

A common application of time series analysis in
hydrogeology is to detect or quantify a step or a trend
in the observed heads. Specialized techniques exist for
step and trend detection, including techniques that are
designed to find trends when they are obscured by sea-
sonal fluctuations (e.g., Helsel and Hirsch 2002). In the
framework of time series analysis, comprehensive step
and trend analyses can be conducted that take into account
all stresses on the system. A separate step or trend may be
added to the model if the stresses in the time series model
are not able to simulate the observed step or trend. In such
a case, further investigation is needed to identify the cause
of the step or trend. Steps and trends may be caused by a
number of interventions varying from land-use change to
an unknown increase in pumping. Steps may also simply
be measurement artifacts, for example, when a pressure
transducer is unintentionally reinstalled at a different
depth or a land survey has resulted in an updated measure-
ment of the elevation of the top of an observation well.
Another common application of time series analysis is
to quantify the long-term temporal or seasonal variability
of the head from shorter time series. Especially in areas
with shallow groundwater tables, the temporal variability
can be of great economic or ecological importance (e.g.,
Von Asmuth and Knotters 2004).

Head measurements reflect the combined effect of
all stresses on the aquifer. Time series analysis really
shines when it is applied to unravel the measured head
series to quantify the effect of individual stresses. Many
practical questions can be answered with this approach.
For example: What is the drawdown caused by a pumping
station? How long will it take before the heads recover
after a long period of drought? How high will heads
rise after a period of high rainfall? What is the effect of
changes in rainfall patterns, for example, due to changes in
the climate? As with any groundwater model, forecasting
of heads outside the measured range of head variations
is uncertain, unless it is known that the behavior of
the system will not change. Examples of changes in the
system behavior are surface water ponding as a result of
increased rainfall, or when an increase in pumping near a
river causes a disconnect between the groundwater table
and the river.

Many groundwater questions cannot be answered
with time series analysis, even if data is available, but
require the development of a spatial groundwater model.
Extensive discussions of the groundwater problems that
can be solved with spatial groundwater models can be
found in standard texts on groundwater modeling. For
example, Anderson et al. (2015) list a representative sam-
pling of eight groundwater questions that can be answered
with a groundwater model in the introduction of their book
on applied groundwater modeling. Several of these ques-
tions clearly need a spatial model such as questions about
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the capture area of a well field or the travel time of a con-
taminant, while others can be solved with time series anal-
ysis such as questions about the effect of pumping, water
diversions or climate change on groundwater levels. Ques-
tions about changes to the discharge into wetlands or sur-
face water bodies can potentially be answered with time
series analysis, but such data are rarely available while
spatial groundwater models provide estimates of both
head and flow.

Challenges of Modeling Time Series of Heads

Two challenges in transient groundwater modeling
are how to assess the goodness of fit of the model and
how to improve the model fit. These two challenges hold
just as well for white box models (regular groundwater
models) as for gray or black box models. Many metrics
exist to express the goodness of fit of a model or to assess
whether a model meets conditions to draw statistical
conclusions. Two of the most common goodness-of-fit
metrics are the root mean squared error (RMSE) and
the percentage of variance explained (also known as
the coefficient of determination or the Nash-Sutcliffe
coefficient).

If a time series analysis results in a poor fit, which
will happen regularly, the modeler is faced with the
challenge to determine why a poor fit is obtained. After
making sure that no elementary mistakes are made in
the analysis (input error, nonconverging solution, etc.),
the main suspects are (note that these challenges are
common to both regular groundwater models and time
series models):

1. Inaccurate head measurements, for example, poorly
installed or leaky observation wells, or problems with
automatic pressure transducers (e.g., Post and von
Asmuth 2013).

2. Missing or incomplete stresses, for example, undocu-
mented and/or illegal pumping, unknown surface water
level variations, a regional decline in heads caused by
an overall increase in pumping, or stresses that are not
measured before the change that is to be evaluated.

3. Inaccurate stresses, for example, poor well discharge
data, rainfall estimates from a weather station that is
too far away.

4. Overparametrization, for example, not enough data
and/or too complex a model to estimate the parameters.

5. Convergence to a local optimum, for example, the
parameter estimation algorithm finds a local optimum
but misses the global optimum.

6. Missing processes, for example, recharge is simulated
as a linear function of measured rainfall and reference
evaporation while the relationship is nonlinear, or
drainage systems prevent the head from rising above
the level of the drains.

7. A change in the system behavior, for example, land-use
change has changed the relationship between rainfall,
reference evaporation, and recharge. Or a stream is
dredged or deepened, as such removing or reducing

M. Bakker and F. Schaars Groundwater 57, no. 6: 826-833 829



the leaky stream bed, resulting in a different response
function (Obergfell et al. 2019).

As stated, all these challenges hold for both time
series analysis and regular groundwater modeling; only
the latter two may be easier to resolve with regular
groundwater models. The advantage of time series
analysis is that the modeler is constantly reminded of these
challenges, as the vast majority of the modeling work
consists of comparing measured and modeled heads and
trying to improve the model fit. In regular groundwater
models, there may be many other reasons why a poor fit
is obtained, including conceptualization of the subsurface,
spatial heterogeneity, and applied boundary conditions
(see e.g., Anderson et al. 2015), which means that
equifinality is lurking.

Application of Time Series Analysis in Combination
with Regular Groundwater Models

Head measurements are at the core of any groundwa-
ter model calibration. Measured heads need to be analyzed
thoroughly prior to the start of calibration. The first step
in any data analysis is to visualize the data. Visual inspec-
tion gives a first impression whether the measured heads
make any sense. Is the seasonal variation realistic? Are
there gaps in the data? Are there obvious outliers? Next,
time series analysis can be applied to detect, quantify, and
resolve many of these issues. If time series analysis results
in a good fit, it can be used to detect errors and iden-
tify outliers (e.g., Peterson et al. 2018), to fill gaps (e.g.,
Peterson and Western 2018), or to extend series towards
the past or future.

A time series model gives a good indication of the
suitability of a measured head series for the calibration
of a groundwater model. If a good fit is obtained, it is
known which stresses must be included in the model,
which processes are needed in the model, and what kind
of fit is possible prior to the start of calibration. As stated,
time series models commonly give a much better fit than
regular groundwater models. If a bad fit is obtained with
a time series model, it is likely that a groundwater model
based on the same stresses will not do much (if any)
better, and the modeler should be cautious in using that
head series for calibration, as the model is not a good
representation of what happens in the aquifer. Only if
the groundwater model includes significant (nonlinear)
processes that are not included in the time series model,
there may be some hope for a successful calibration.

Upon successful completion of time series analysis at
several observation wells, a spatial map of characteristics
of the estimated response functions may provide addi-
tional information to the modeler. For example, a map of
the gain of the response to recharge (the steady increase
of the head as a result of a uniform stress) should result
in a logical pattern: for example, a higher gain between
streams and a lower gain near streams. In the absence of
such a logical pattern, it will be difficult to calibrate a
regular groundwater model, which also produces logical
patterns. Similarly, if the gain caused by rainfall in an
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observation well next to a stream is significant, that is an
indication that the groundwater is not in full contact with
the stream, and a leaky stream bed should be included in
the groundwater model.

For steady-state groundwater models, time series
analysis can be applied to determine representative steady-
state values from a time series of head observations,
including corresponding steady-state stress values. This is
even more valuable when the observation periods differ
between observation wells (they do not even need to
overlap), or when the observation frequency changes.
Time series analysis can provide an uncertainty estimate
for the calculated steady response if conditions for
statistical inference are met, which allows the modeler
to assign weights in the calibration process, based on the
estimated uncertainty. Time series analysis may also be
used to estimate the steady response for one stress only,
leaving out the other stresses. These estimates may be
used as calibration targets for a model of that one specific
stress only.

Time series analysis provides alternative opportuni-
ties to calibrate transient groundwater models when the
response functions of the different stresses are estimated.
First, a transient model may be calibrated by using the
estimated response functions at different observation wells
as calibration targets. This way a few relatively short
transient model runs are sufficient to calibrate a transient
model, rather than a transient calibration over the entire
observation period. Second, characteristics of the response
functions can be used to calibrate transient groundwa-
ter models by calibrating a few steady models (Bakker
et al. 2008; Obergfell et al. 2013), including the gain and
the mean of the response function. Third, and similar to
steady models, a transient model can be calibrated on
the transient response of one single stress (e.g., pump-
ing) so that it is not obfuscated by the other stresses
like the weather, even if they have a larger contribution
to the head.

Example: Pumping Test in a Tidal Area

As an example application of time series analysis,
consider a pumping test where the pumping response
needs to be unraveled from the measured head variation.
The pumping test is conducted in the coastal area of
the Netherlands, where high artificial sand dunes are
constructed to protect the coastal zone from the effects
of sea-level rise. Artificial sand dunes are more natural
and flexible compared to conventional dikes. A mixture
of sand and saltwater is dumped on the beach by a
hopper dredger through a floating pipeline or by using
the rainbowing technique. Either way, a vast amount
of seawater is deposited on the beach, which may
result in saltwater intrusion and a short-term rise of the
groundwater table inland during construction. A pumping
test is conducted to estimate aquifer parameters to be
used in a regular groundwater model. The head response
is measured in 20 observation wells, of which one is
analyzed here. Three time series of stresses are involved:
the tidal fluctuation of the sea, a few rainfall events, and
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Figure 2. Measured time series of the example: (a) heads, (b) sea level, (c¢) rainfall, and (d) discharge of the pumping well.

Table 1
Results of Time Series Models of the Example for
Three Models with an Increasing Number of

Stresses
RMSE  Explained Model
Stresses (m)  Variance (%) Parameters
Sea 0.08 87.5 3
Sea + Rain 0.07 91.0 5
Sea + Rain + Well  0.05 95.1 7

the measured discharge of the pumping well (Figure 2).
The head is measured hourly for a period of 12days
while the pump is on for only 2 days. All the stresses
are available prior to the period of head measurements
(Figure 2b to 2d).

The head variation is dominated by the tide and
the effect of the pumping test is difficult to see in
the head measurements (Figure 2a). Time series analysis
with response functions is used to extract the pumping
response from the measured heads, using the open source
code Pastas (Collenteur et al., 2019). Three models are
developed with an increasing number of stresses to
evaluate the improvement of the model fit due to each
additional stress. For this simple setup, the response
function of each stress is an exponential function with
just two parameters. The RMSE, explained variance,
and number of parameters of each model are listed
in Table 1.
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The first model only includes the sealevel as a stress
and results in an explained variance of 87.5%, but the
simulated heads are lower than the measured heads at the
beginning of the measurement period and higher than the
measured heads during the time of pumping (not shown).
Next, rainfall is added as a stress and the explained
variance increases to 91%. Addition of rainfall to the
model improves the model fit in the first days of the
measurement period, but the simulated heads are still
too high during pumping. Finally, pumping is added and
the explained variance increases to 95.1%. The model fit
is now good over the entire measurement period. The
model fit and the contributions of the three stresses to
the head variation are shown in Figure 3. Addition of the
three contributions of Figure 3b plus a constant gives the
simulated head in Figure 3a. The estimated head response
due to the pumping test is estimated between 12 and 14 cm
in this observation well.

Time series analysis was conducted for all 20
observation wells to isolate the contribution of the
pumping test. The gains at the observation wells show a
logical pattern (both horizontally and vertically) and were
used in a steady-state analytical model to estimate the
aquifer parameters (not shown). The aquifer parameters
were implemented in a numerical transport model to
predict the impact of the construction of the dune. This
example demonstrates how time series analysis may be
used to extract the pumping response from a measured
head series even though it is barely visible in the
measured heads due to the effects of the other stresses on
the model.
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Conclusion and Discussion

Heads are measured in many observation wells and
for a variety of reasons, periods, and frequencies. Time
series analysis is a relatively simple data-driven approach
to analyze measured heads, and, when response functions
are used, gives insights into why the heads vary the way
they do. Meaningful analysis of measured heads requires
knowledge of the different stresses that cause the head
variation. Time series analysis may be used to answer
many groundwater questions without ever having to build
a regular groundwater model and many series of head
observations can be analyzed in batch.

Time series analysis is much quicker than the
development of a regular groundwater model. Each model
is relatively simple with a small number of parameters
and very few additional approximations. This in contrast
to regular groundwater models, which require extensive
approximations and parameterizations of the subsurface
and boundary conditions, all with their own uncertainty.
A much better fit is commonly obtained with time series
analysis than with a regular groundwater model, despite
all the additional information that is entered in the latter.

Not all time series models give a good fit. A poor fit
may indicate that some stresses are missing or that some
important processes are not included. These stresses and
or processes need to be identified before a groundwater
problem can be solved. It may even be questioned
whether it makes sense to keep on measuring heads if
the stresses that are causing the head variation are not
measured simultaneously.

Many groundwater questions can only be answered
with a regular groundwater model. In such a case, time
series analysis can still play an important role. Time series
analysis can clean up the data, can give an indication
of how good a fit can be expected with a regular
groundwater model, and what stresses and processes need
to be included. In addition, it can provide representative
calibration targets for steady groundwater models or
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provide efficient alternatives for calibration of transient
groundwater models.

There are several tools for time series analysis
of heads, including the commercial Menyanthes (Von
Asmuth et al. 2012), the open source matlab code
Hydrosight (Peterson and Western 2014), and the open
source Python code Pastas (Collenteur et al., 2019).
Methods for time series analysis are actively being
developed to enhance its capabilities in the future.
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