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Abstract

The primary goal of this report is to provide a general overview of offline
change-point literature as it is known today. Change-point methods are impor-
tant statistical problems, where we are interested in determining whenever a
certain data-set changes in structure. Furthermore, the term off-line is meant
to indicate that the data itself is already known, whereas on the other hand
we have on-line methods which deal with situations where new data is yet be-
ing received during localisation of the change-points. In this report we mainly
consider off-line methods, as we feel off-line methods provide a more friendly
introduction into change-point analysis and on-line methods are in principle just
an extension of their off-line counterparts.

First off, these off-line change-point methods are considered under differ-
ent assumptions (parametric, non-parametric). In each case, we treat a solution
to the change-point problem under different models(normal and gamma model,
mean or varianche change etc.). Eventually we shall also treat some widely
used algorithms, meant to extend the problem into the localisation of multiple
change-points.

Aside from theoretical considerations, an equally important part of this
report will be focused on empirical results. Both for the statistics as algorithms
will there be a performance study where the different methods will be empir-
ically assessed and compared under different models, namely the robustness
against outliers(extreme data-values) will be investigated. So to complement
the primary goal, we will also focus on the following two subgoals:

1. Assessment and comparison of different change-point models

2. Evaluating and improving robustness against outliers
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1 Introduction

The subject that we will consider is that of change-point analysis. Briefly
speaking, a change-point problem consists of determining when a given data-
set structurally changes. What is meant specifically with a structural change
depends mainly on the scenario, and will become more clear as we consider the
problem under different assumptions.

As for the problem itself, change-point analysis has already been stud-
ied for quite a few decades(see [2], [4], [9]). Its first occurance was in the late
thirties, where it was used as a diagnostic tool within quality control to assess
whenever production levels were drastically changing. Adequately detecting
these changes within a reasonable amount of time, meant that potential dis-
asters or other unfortunate consequences could be timely averted. Since that
period, change-point analysis has gradually grown in importance within both
the statistical and computer science disciplines. As a result, the problem has
been studied under a wide variety of different assumptions over the years.

The problem is separated into two main branches : off-line and online
change-point analysis. In the former case, we are dealing with the situation
when the entirety of the data has already been given, so we are mainly conduct-
ing a retrospective analysis of the data. In contrast, the online method(also
called the sequential method) is devised to be able to conduct a change-point
analysis while new data is being received. In this report, we will exclusively
focus on off-line change-point models, as online models can be easily regarded
as a repeated occurence of an offline model by fixing the available data at every
timepoint.

We have described in general terms what change-point problems are, and
now we shall give a more formal problem formulation. Intuitively speaking,
when performing off-line change-point analysis, we wish to estimate two things:
the amount of change-points and their locations. To this end we are assuming
that the data’s mean value is piecewise constant, so in this case a change-point
location is wherever the data displays a noticeable break. In other words, a set of
estimated change-points corresponds with a certain segmentation of the data,
where the segments represent homogeneous sections of the data(i.e. sections
where the data’s mean remains roughly constant from a structural view).
Before we can state the problem more formally, we have to introduce some ter-
minology:

• The data is represented as y = {yt}Tt=1, where t is the index for time and T is
the end time(i.e. T is the length of the data)

• A subset of the data, from point a to point b, is either denoted as {yt}bt=a or
ya..b

• The total amount of change-points is denoted with K
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Figure 1: A plot of noisy data with a break at every 100 observations

• A set of estimated change-points will be denoted as τ = {τ1, τ2, ..., τK}

• Whenever the data is segmented, we denote with θi the relevant density pa-
rameter for the i-th segment

• The set of all possible segmentations of the data is denoted with Ω

In the course of the next two sections, we will consider several different
models for yt, and in general we assume that yt will be real-valued and inde-
pendently distributed with density function f(θ)(we will also consider the case
when f is unknown). The vector τ will then describe where yt undergoes a
change in its parameter θ.

We also make the additional assumption that the changes are abrupt, in-
stead of gradually occuring over a period of time. In the end, the question
remains how τ and its cardinality should be estimated.

An obvious first choice is visual inspection. This is especially effective
when the changes relate to the expectation of the data and these differences are
quite big. Obviously, this is quite an ideal situation, and certainly not something
we see often with real life data. Indeed, it is quite common for the data itself to
be concealed with noise. Moreover, the differences in location paramaters could
be a lot smaller, to the point where it is very difficult to discern any differences
with the naked eye. An example of such data is displayed above.
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The data contains relatively small breaks every 100 observations within
the large noise-levels, so any change in the data becomes almost impossible to
spot. This is of course an extreme example, but it is not difficult to imagine a
more nuanced example where the noise still remains an issue. We also had the
simplifying assumption that the changes referred to the expectations, which are
in general easier to discern than other parameters such as the variance.

We have shown that the change-point problem can not always be easily
solved in a direct manner, so we must turn to more formal means for our pur-
poses.
From a computational perspective, the change-point problem can be formulated
as an optimization problem:

min V (τ, y)
|τ |=K

= C =

K∑
k=0

c(yτk..τk+1
) (1)

Here we assume that τ0 = yt=1 and τK+1 = T , and this may also be a
maximization problem. Moreover, the function c is what we call a cost function,
it uses the assumed model for yt to produce a quantitative measure that allows
us to measure the goodness-of-fit of all subsets of the data as homogeneous seg-
ments. The more extreme the value of V (τ, y), the less/more well approximated
the data is by the segmentation corresponding to τ(whichever it is depends on
how c is defined). Therefore, our goal is to minimize(or maximize) V (τ, y), by
considering all possible segmentations τ of the data. However, as we will later
discuss, here we face another challenge since the set of possible segmentations
becomes very large even when the length of the data has a modest size. So large
in fact, that from a practical point of view it becomes simply impossible to find a
solution (at least within a reasonable time frame). With this problem in mind,
we will treat a search method that employs a non-traditional programming-
technique called dynamic programming. So, like cost-functions, search methods
are another crucial part of change-point problems.

Finally, before we can start solving the problem, we have to keep in mind
that the above problem has two forms depending on whether the amount of
changepoints K is known. The situation treated above corresponds to when K
is known.

However, when K is unknown the problem becomes slightly more compli-
cated as now we also have to concern ourselves with estimating K. We can not
formulate the problem in the same manner as before, as this does not prevent
overfitting : the amount of fitted change-points is far too large for the data con-
sidered. So, we have to make a slight adjustment to our optimization problem:

min V (τ, y)
τ∈Ω

=

K∑
k=0

c(yτk..τk+1
) + pen(τ) (2)

This time, we have added an artificial penalty term, that as the name im-
plies penalizes a certain segmentation based on the amount of change-points it

3



has. In this way, we try to strike a balance between overfitting and minimizing
the total cost V (τ, y). Of course, the problems do not stop here. There are
many extensions possible to the above problem, such as making the method
robust against outlying values and dealing with non-parametric or dependent
data.

Before we conclude this section, we shall summarize the change-point pro-
cedure as described above:

1) Firstly, an appropiate choice of the cost function c(·) needs to be made. The
choice depends mainly on the underlying model of the data(parametric/non-
parametric)

2) Secondly, we need to assume whether the amount of change-points K is known
or unknown

3) Finally, depending on the choice we made in step 2, we solve optimization
problem (1) or (2)

We will spend section 2 and 3 treating cost-functions/test-statistics for
both the parametric as non-parametric models under the assumption of a single
change-point. After that, we will start looking into search methods in section 4
to deal with steps 2 and 3.
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2 Parametric model

As stated before, the cost-functions used in the optimization problem
depend on the underlying model. There are many different models we can con-
sider, but they can be roughly categorized into parametric and non-parametric
models. In other words, we can either assume that the underlying distribution
of the data is known(parametric) or not(non-parametric). Thus, we start with
the parametric model, as this corresponds to the most basic model. More specif-
ically, we will look at various distributions from the parametric family, and use
different methods to derive cost-functions for the following problem:

H0 : θ1 = θ2 = · · · = θT = θ

H1 : θ1 = · · · = θk 6= θk+1 = · · · = θT

As mentioned, θ is the changing parameter that depends on the under-
lying model of yt, and k is the hypothesized change-point location. Also, we
only consider the case of a single change-point, but we extend this to multiple
change-points when we consider search methods in section 4.

Thus, the question remains how we should apply the cost-functions to test
the above hypotheses. In other words, how should we solve the change-point
problem from a statistical perspective(unlike problems (1) and (2), which are
only valid from a computational perspective)? First, we note that we will not di-
rectly apply the cost-function itself as a test-statistic, but rather combine them
into a so-called discrepancy-function d:

d(y1..k, yk+1..T ) = c(y1..T )− [c(y1..k) + c(yk+1..T )] (3)

It is this discrepancy that we will use as a test-statistic for every case that
we consider, since it directly compares the fit of the null and alternative model
to the data(instead of substraction we may also use division). We then repeat
this procedure for every possible change-point location, and eventually consider
for which case the discrepancy is maximized, thus obtaining a change-point
location estimate. Also, depending on the significance of the test, the critical
values may be determined by considering the upper quantiles of the empirical
distribution, which in turn is derived from a large number of simulations under
H0. The specific details will follow in section 2.3, where we conduct a simulation
study to assess and compare the parametric cost-functions.
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2.1 Normal distribution

We start with the normal distribution, as this is the most prevalent dis-
tribution in parametric change-point analysis. Let us assume that the data is
normal and independently distributed, i.e. yt ∼ N (µi, σ

2
i ) for t = 1,...,T and

i = 1,..,K. So we need to consider two different parameters: the expectation µ
and the variance σ2.

2.1.1 Mean change

To familiarize the reader with the problem, we have displayed a figure
below where a mean change is showcased. The approach that we consider here
is termed the likelihood based approach, and it starts with some hypotheses
about the change-point location. More specifically:

H0 : µ1 = µ2 = · · · = µT = µ

H1 : µ1 = · · · = µk 6= µk+1 = · · · = µT

The change-point location is denoted with k, and note that we are testing
for a single change-point only. However, as we will see later in our treatment of
search methods such as binary segmentation, multiple change-point problems
can easily be seen as a repeated occurence of a single change-point problem, so
it suffices to consider the above hypothesis problem. We consider both the cases

Figure 2: A plot of data with a change in mean at 20th observation
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when the variance is known and not.

2.1.1.1 Known variance

In order to test the hypotheses that we have defined above, we will use
the likelihood of the data under both hypotheses to derive a MLE-estimate for
the mean, and correspondingly an appropiate statistic for detecting a mean-
change(see [2], [3]). The technical details can be found in Appendix A1.1.

Here we used the assumptions that the data is normal and independently
distributed, and for the alternative hypothesis the two different means are de-
noted with µ1 and µT . The likelihood functions that were derived are the
probabilities of the data occuring for the given values of µ and σ2(null hypoth-
esis) or µ1, µT and σ2(alternative hypothesis).

Using the MLE-estimate of the mean, we can derive a test statistic for
testing a change. We define the following quantities:

S =

T∑
i=1

(yi − ȳ)2 (4a)

µ̂1 = yk =
1

k

k∑
i=1

yi (4b)

µ̂n = yT−k =
1

T − k

T∑
i=k+1

yi (4c)

Sk =

k∑
i=1

(yi − yk)2 +

T∑
i=k+1

(yi − yT−k)2 (4d)

We let S and Sk represent the null and alternative hypotheses respectively.
We can test for a change in mean by considering the difference between S and
Sk :

Mk = S − Sk (5)

Obviously, Mk provides a quantitative measure for the discrepancy between H0

and H1, i.e. no change-points or 1 change-point. The higher the value of Mk,
the more likely it is that a change-point has occured at time k. Therefore, we
wish to calculate Mk for all possible values of k and consider its highest value
as a potential candidate for a change-point, i.e.: M = max

1≤k≤T−1
Mk.
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2.1.1.2 Unknown variance

A more practically viable approach can be derived when we assume that
the variance is unknown. Here, we can for the most part use the likelihood like
we did before, except now we also need a MLE estimate for the variance(see
A1.2). The relevant likelihood functions are:

L0(µ, σ2) =
1

(
√

2πσ)T
e−

∑T
t=1(yt−µ)2/2σ2

(6a)

L1(µ1, µT , σ
2
1) =

1

(
√

2πσ1)T
e−

∑k
t=1(yt−µ1)2/2σ2

1−
∑T
t=k+1(yt−µT )2/2σ2

1 (6b)

As before, when we assume that the change-point is at location k, then
the corresponding MLEs are:

µ̂1 = yk =
1

k

k∑
t=1

yt, µ̂T = yT−k =
1

T − k

T∑
i=k+1

yt

and

σ̂2
1 =

1

T

[
k∑
t=1

(yt − yk)2 +

T∑
t=k+1

(yt − yT−k)2

]
.

Now, we could fill in these MLEs into equations (6) and consider their
discrepancy, but to make it a bit more manageable we instead adopt a method
from [21], where again as quantitative measures for the hypotheses we have:

S =

T∑
t=1

(yt − y)2 , Sk =

k∑
t=1

(yt − yk)2 +

T∑
t=k+1

(yt − yT−k)2.

We will need to define one more quantity before we can form the test statistic
from these cost-functions:

Ek = k(yk − yT )2 + (T − k)(yT−k − yT )2

It is easily verifiable through some simple algebra that S = Sk + Ek. Finally,
using these quantities we can define our likelihood based test statistic as follows:

C = max
1≤k≤T−1

S

Sk
= max

1≤k≤T−1
1 +

Ek
Sk

= max
1≤k≤T−1

1 +Nk (7)

This is equivalent to: N = max
1≤k≤T−1

Nk = max
1≤k≤T−1

Ek
Sk

= max
1≤k≤T−1

Ek
(S − Ek)

.
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2.1.2 Variance change

Now that we have shown how to treat a change in mean, we can similarly
derive how to detect a change in variance. We will treat two different methods
for this: first we will look at the likelihood-based approach, which will be quite
similar as before. Secondly, we will derive an alternative, model selection-based
method called the model-selection based approach. Again, we show a figure
below where a variance change is showcased.

Figure 3: A plot of data with a change in variance at 300th observation

2.1.2.1 Likelihood approach

Assume as before that the data is normally and independently distributed,
i.e. yt ∼ N (µ, σ2

i ) for t = 1, ..., T and i = 1, ...,K. Here, µ is assumed to be
known. As with the change in mean, we start with some hypotheses :

H0 : σ2
1 = σ2

2 = · · · = σ2
T = σ2

H1 : σ2
1 = · · · = σ2

τ1 6= σ2
τ1+1 = · · · = σ2

τ2 6= · · · 6= σ2
τK+1 = · · · = σ2

T

Here we test for multiple change-points, where τ = {τ1, τ2, ..., τK} denotes
the change-point locations and K the (unknown) amount of change-points. How-
ever, as we explained before, single change-point problems are a better starting
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point and can be easily extended to multiple change-points:

H0 : σ2
1 = σ2

2 = · · · = σ2
T = σ2

H1 : σ2
1 = · · · = σ2

k 6= σ2
k+1 = · · · = σ2

T

We will use the log-likelihood function, l(µ, σ2; y1, ..., yT ), and the MLE of the
variance to derive a cost-function, and with it a test-statistic. Indeed, we can
plug in the MLE into the log-likelihood and consider its difference under H0

and H1 to measure the discrepancy, just as we did when testing for a change in
mean. More specifically, under H0 we have:

l(σ2) = −T
2

ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

(yi − µ)2

σ̂2 =

T∑
i=1

(yi − µ)2

T
This leads to a maximum log-likelihood:

l(σ̂2) = −T
2

ln 2π − T

2
ln σ̂2 − T

2
(8)

Likewise, we can compute the maximum log-likelihood under the alterna-
tive hypothesis H1:

l(σ2
1 , σ

2
T ) = −T

2
ln 2π − k

2
ln σ2

1 −
T − k

2
ln σ2

T −

k∑
i=1

(yi − µ)2

2σ2
1

−

T∑
i=k+1

(yi − µ)2

2σ2
T

,

where σ2
1 and σ2

T are the variances before and after the change respectively.
Let σ̂2

1 , σ̂2
T denote their respective MLEs, then:

σ̂2
1 =

k∑
i=1

(yi − µ)2

k
, σ̂2

T =

T∑
i=k+1

(yi − µ)2

T − k
This eventually gives us a maximum log-likelihood of:

l(σ̂2
1 , σ̂

2
T ) = −T

2
ln 2π − k

2
ln σ̂2

1 −
T − k

2
ln σ̂2

T −
T

2
(9)

Subtracting these maximum likelihoods/cost-functions from each other,
and discarding all constants that do not depend on the observations, we obtain
at last the following test statistic for a change in variance:
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λvar = max
1<k<T−1

[T ln σ̂2 − kln σ̂2
1 − (T − k)ln σ̂2

T ] (10)

Again, our best candidate for a change-point is located at the timepoint k
such that the above statistic is maximized. For multiple change-points, say k,
we look at the k-highest values of λvar. In this sense, the approach is identical
to that of detecting a change in mean.

2.1.2.2 Model-selection based approach

We will now look at another method for change-point inference, the so-
called model-selection based approach(see [2], [6]).

To put it shortly, the model-selection based approach is based on selecting
the best fitting model out of a set of possible models. Here the models conform
to either no or 1 change-point. To be more specific, we have 1 model for the
case of no changpoints and a set of other models for 1 change-point, which all
correspond to a specific change-point location. By using model evaluating quan-
tities, we can search for the model that maximizes/minimizes these quantities.
A natural, first choice for such a measure is the Akaike Information Criterion[7]
or AIC for short:

AIC(m) = −2lnL(Θ̂m) + 2pm, m = 1, 2, ...,M (11)

Here, L(Θ̂m) denotes the maximum likelihood of model m, which obviously
serves as a model evaluation. Furthermore, pm is the amount of parameters in
model m. The parameters depend on the type of change-point problem, so for
detecting a single change in the variance while the mean is known, there is ei-
ther one parameter(variance) under H0 or there are two relevant parameters:
σ2

1 and σ2
T (the variances before and after the change-point) under H1. We are

interested in the model for which AIC(m) is minimized, or MAICE (Minimum
AIC Estimate).

However, as Schwarz(1978)[8] has shown, the MAICE may not always give
accurate results, especially when the data becomes large. Therefore, we will use
an alternative measure that Schwarz devised, called the Schwartz Information
Criterion or SIC :

SICm = −2lnL(Θ̂m) + pmln T, m = 1, 2, ...,M (12)

It is identical to AIC, except the second term has been altered. So how
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exactly can we find the change-point in this setup? First off, we need to calcu-
late the corresponding SIC-values under all the possible models, which we will
denote by SICvar(T)[no change-points] and SICvar(k)[1 change-point] respec-
tively:

SICvar(T ) = −2lnL0(µ, σ̂2) + ln T

= T ln 2π + T ln σ̂2 + T + ln T

SICvar(k) = −2lnL1(µ, σ̂2) + 2ln T

= T ln 2π + kln σ̂2
1 + (T − k)ln σ̂2

T + T + 2ln T

For the above formulae we used the maximum log-likelihoods that we de-
rived before. Note that SICvar(k) will have to be recalculated for every possible
change-point location k, and that due to our MLEs the possible locations for k
are constrained between 2 and T - 2. Once all these values are calculated, we
calculate the minimum value and make one of the following conclusions:

• If SICvar(T ) < min
2≤k≤T−2

SICvar(k), then the model describing no change-points

is the best fit, so we may conclude that there are no change-points.

• If there is a k such that SICvar(T ) > SICvar(k), then we reject this first model

and estimate the change-point location by k̂ such that SICvar(k̂)= min
2≤k≤T−2

SICvar(k)

In order to bring this method more in line with our standard hypothesis
testing procedure, we also require proper critical values cα(section 2.3) which
will serve to gauge significance. After all, if the SIC-values are closely located,
then the conclusions above may not be valid anymore as the results are likely
to be caused by random fluctuations of the data instead of an actual change.
Therefore, we adopt a method from [2], where it was shown that the critical
values may be estimated as:

cα '
{
− 1

a(log T )
log log[1− α+ exp(−2eb(log T ))]−

1
2 +

b(log T )

a(log T )

}2

− log T

(13)
where:

a(log T ) = (2log log T )
1
2 (14a)

b(log T ) = 2log log T +
1

2
log log log T − log Γ(

1

2
) (14b)

Here, Γ is the so-called gamma-function(see (15)). Using these criti-
cal values, we now accept the model of no change-points when SICvar(T ) <

min
2≤k≤T−2

SICvar(k) + cα, so it is harder to reject this model now. An important
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reason for defining this alternative model, is that it is more capable of detecting
change-points under the presence of outliers(see the simulation study in section
2.3).

2.2 Gamma distribution

Another well-known distribution from the parametric family that we will
look at is the gamma model. The underlying assumptions that we will make
about the data are identical to the normal model that we considered before,
namely that the data are independently and identically distributed. More for-
mally:

yt ∼
1

θξtΓ(ξ)
yξ−1
t e−(

yt
θt

), ξ, θt > 0, yt > 0, t = 1, ..., T

Here, ξ and θ are the two parameters, which we will call the shape and
scale respectively. Furthermore, Γ(ξ) is the so-called gamma function:

Γ(ξ) =

∫ ∞
0

xξ−1e−xdx (15)

For our change-point problem we will consider both the scale and the
shape, while simultaneously assuming that the other parameter is known. As
for practical uses, the gamma distribution itself encompasses some well-known
distributions, for example the exponential and chi-square distributions are spe-
cial cases of the general gamma family. As a result, the gamma distribution
is prominently featured in areas such as finance, reliability studies, survival
analysis and other relevant disciplines(see [2]). Therefore, it has become an im-
portant topic in the last decades to sufficiently detect any changes that might
occur in gamma-distributed variables. For a specific example, the shape param-
eter within a reliability problem directly controls the failure rate(it is decreasing,
increasing or constant whenever ξ - 1 is negative, positive or zero respectively).

The first change-point problem that we will look at is the general case, so
we will consider the scale and shape parameters separately. Our procedure here
is almost identical as for the normal case: we will still derive a solution using
the likelihood approach, but with a Bayesian element.
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2.2.1 Scale

Assume that ξ is known, we will try to determine when a change in θ takes
place. Obviously, the first step to accomplishing this is by defining appropiate
hypothesis tests as before:

H0 : θ1 = θ2 = · · · = θT = θ0

H1 : θ1 = · · · = θk = θ0 6= θk+1 = · · · = θT = θ0 + δ

Here, k is the unknown change-point position, θ0 is unknown and δ is
chosen such that | δ |> 0 and θ0 + δ > 0.

In order to become more acquainted with the scale-change problem, we
have plotted 2 figures below.

Figure 4: A plot of various gamma-densities with differing scales but constant
shape
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Figure 5: A plot of data with a decrease in scale at every 50th observation

As is apparent, the data becomes more ”condensed” as the scale decreases.
The problem generally arises when the differences in ”density” are more subtle,
to the point where directly trying to spot the change-points becomes an impos-
sible task. So we will treat a systematic approach, namely the likelihood/Bayes-
based approach[4].

2.2.1.1 Likelihood/Bayes based approach(Scale)

We mostly repeat the same procedure as for the normal model, as in we will
calculate the likelihood under both hypotheses, and use these to define an ap-
propiate test statistic(the precise technical details can be found in A2.1). How-
ever, before we can do so, we need to make an additional assumption about the
a priori distribution of the change-point. We will assume that every possible
change-point location is equally likely to occur, i.e. for k = 1, 2, ..., T − 1 the

probability of a change-point at k is
1

T − 1
. This a priori assumption will be

denoted with πT (j):

πT (j) =


1

T − 1
, j = 1, 2, ..., T − 1

0, otherwise

For the null hypothesis, it is quite straightforward to calculate the likelihood(the
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precise derivations may be found in appendix A2):

L0(θ0) =

∏T
t=1 y

ξ−1
t

(Γ(ξ))T
exp

[
T∑
t=1

(
− yt
θ0
− lnθξ0

)]
(16)

Likewise, under H1 we have:

L1(θ0, δ) =
1

T − 1

∏T
t=1 y

ξ−1
t

ΓT (ξ)

T−1∑
j=1

exp

[
j∑
t=1

(
− yt
θ0
− ln θξ0

)]
·exp

 T∑
t=j+1

(
− yt
θ0 + δ

− ln(θ0 + δ)ξ
)

The test statistic is based on the likelihood-ratio of the above hypotheses,
so in order to simplifiy our derivation a bit we will approximate the second term
of L1(θ0, δ) with a Taylor expansion as (δ/θ0)→ 0:

− yt
θ0 + δ

− ln(θ0 + δ)ξ = − yt
θ0
− ln θξ0 + δ

(
yt
θ2

0

− ξ

θ0

)
+ o

(
δ

θ0

)

Thus, our likelihood under H1 becomes:

L1(θ0, δ) =
1

T − 1

∏T
t=1 y

ξ−1
t

ΓT (ξ)

T−1∑
j=1

exp

[
j∑
t=1

(
− yt
θ0
− ln θξ0

)]
· exp

 T∑
t=j+1

(
− yt
θ0
− ln θξ0 +

ytδ

θ2
0

− ξδ

θ0
+ o(δ)

)
(17)

As stated, in order to conduct a change-point analysis we will use a
likelihood-ratio:

Λ =
L1(θ0, δ)

L0(θ0)
= 1 +

δ

θ0

 1

(T − 1)θ0

T−1∑
j=1

T∑
t=j+1

yt −
Tξ

2

+ o(δ) (18)

However, we can simplify our calculations a bit by only partly considering
the above expression. Since we are dealing with a likelihood ratio, it suffices to

only consider the terms depending on the observations, namely
1

θ0

T−1∑
j=1

T∑
t=j+1

yt.

Our new likelihood-ratio based test statistic is thus:

λ =
1

θ0

T−1∑
j=1

T∑
t=j+1

yt

16



=
1

θ0

T∑
t=2

(t− 1)yt

=
1

θ0

T−1∑
t=1

tyt+1

=
1

θ0

T∑
t=1

(t− 1)yt

Filling in the MLE of the scale, finally gives us the following statistic:

λsc =
Tξ∑T
t=1 yt

T∑
t=1

(t− 1)yt (19)

2.2.2 Shape

We consider the reversed situation, where a change has taken place in ξ
and θ remains constant. This leads to the following hypotheses:

H0 : ξ1 = ξ2 = · · · = ξT = ξ0

H1 : ξ1 = · · · = ξk = ξ0 6= ξk+1 = · · · = ξT = ξ0 + δ

Again, we assume that the value of the parameter is unknown. The ter-
minology that we use here is also identical to the previous problem. In order to
clarify what a change in shape entails, we have displayed two figures below:
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Figure 6: A plot of various gamma-densities with differing shapes but constant
scale

Figure 7: A plot of data with an increase in shape at every 50th observation

It is clear that increasing the scale both disperses the data as increases
its absolute value, though the example considered here is an obvious one. The
problem of course remains the same as we considered it before, so in the same
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way we will again treat a likelihood/Bayes-based approach[5].

2.2.2.1 Likelihood/Bayes-based approach(Shape)

The procedure remains the same, but as we shall see the details will vary
a bit. Again, we first calculate the likelihood under the above alternative hy-
pothesis, which turns out can be written as(see A.2.2):

L1(yt | ξ0, δ, θ, k) =

T∏
t=1

1

θξtΓ(ξt)
yξt−1
t e−(

yt
θ )

= (T−1)−1exp

{
−

T∑
t=1

yt
θ

+ η(yt; ξ, θ)

}
·
T−1∑
k=1

{
1 + δ

T∑
t=k+1

[lnyt − lnθ −Ψ(ξ) + o(δ)]

}
,

as δ → 0.

We are now in the position to derive a convenient expression for our
likelihood-ratio(when δ → 0):

Λ =
L1(yt | ξ0, δ, θ)
L0(ξ0, δ)

=
(T − 1)−1exp

{
−
∑T
t=1

yt
θ + η(yt; ξ, θ)

}
·
∑T−1
k=1

{
1 + δ

∑T
t=k+1[lnyt − lnθ −Ψ(ξ) + o(δ)]

}
∏T
t=1 y

ξ−1
t

ΓT (ξ)
exp

[∑T
t=1

(
− yt
θ0
− lnθξ0

)]

= 1 +
δ

T − 1

T−1∑
k=1

T∑
t=k+1

[lnyt − lnθ −Ψ(ξ)] + o(δ)

= 1 +
δ

T − 1

T−1∑
t=1

tlnyt+1 −
δT

2
{Ψ(ξ) + lnθ}+ o(δ)

In order to further simplify this expression, we will fill in the MLE-estimate
under H0 for the term Ψ(ξ)+ln θ̂ where θ̂ is the previously derived MLE-estimate
for the scale θ. The peculiarity here is that while an analytic MLE can be de-
rived for the specified term, this is not possible for the shape itself.
In the end, we obtain the following MLE-estimator:

Ψ(ξ0) + ln θ̂ =
1

T

T∑
t=1

lnyt (20)

Finally, returning to the likelihood-ratio from before we can now fill in
(17) to obtain:
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Λ =
L1(yt | ξ0, δ, θ)
L0(ξ0, δ)

= 1 +
δ

T − 1

T−1∑
t=1

tlnyt+1 −
δT

2
{Ψ(ξ) + lnθ}+ o(δ)

= 1+
δ

2(T − 1)

T∑
t=1

2(t−1)lnyt−
δ

2(T − 1)

T∑
t=1

(T−1)lnyt+o(δ)

= 1 +
δ

T − 1

T−1∑
t=1

tlnyt+1 −
δ

2

T∑
t=1

lnyt + o(δ)

= 1 +
δ

2(T − 1)

T∑
t=1

(2t− T − 1)lnyt + o(δ)

Hence, we take the monotonic part and use it as our test statistic for de-
tecting changes in shape:

λsh =

∣∣∣∣∣
T∑
t=1

(2t− T − 1)lnyt

∣∣∣∣∣ (21)

2.3 Simulation study(Parametric)

Now that we have defined the relevant cost-functions, we need to assess
their performance for a broad range of practical possibilities. As we have ex-
plained before, we will be assessing the discrepancy function formed from the
cost-functions, and use this as a test-statistic instead. The simulations will gen-
erally occur in two phases: in the first phase, we will empirically derive the
critical values under the null-hypothesis, by repeatedly simulating data with
no change-points and assessing the upper quantiles of the empirical distribu-
tion formed from the calculated discrepancy values. These critical values will in
turn be used for the second phase where we estimate the power and change-point
location τ̂ for data that does actually have a change-point(alternative hypoth-
esis). In essence, we will consider the effect from the following parameters on
the power and τ̂ :

• T, the length of the data.

• δ, the size of the change itself.

• τ , the actual location of the change-point.

All the simulations that we conduct from now on, will for both phases have
a size of 10000 with a significance level of α = 0.05. Aside from these parame-
ters, we will also study the effect of some more general changes. First we study
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the performance under the ideal situation of normally distributed data, after
which we slightly deviate to the student-t distribution. Not only does this allow
us to study the sensitivity towards a slight change in distributional form, but
also the robustness of the test-statistics against outlying values(the student-t
distribution has heavier tails). The R code for all subsequent simulations can
be found at the link displayed below1.

2.3.1 Normal distribution

First off, we start with the ideal situation where the data is normally
distributed. In order to study the effect of the mentioned parameters, we only
alternate in one given parameter while keeping the others constant. The rele-
vant table is shown below.

Parameters Mean change Variance change
T δ τ Power(M) τ̂M Power(N) τ̂N Power(λvar) τ̂λvar Power(SICvar) τ̂SICvar

30

0.1
5 0.045 13.39(10.14) 0.05 13.99(10.21) 0.771 5.28(3.25) 0.6 5.03(2.41)
10 0.056 14.62(9.93) 0.041 14.5(9.61) 0.92 9.73(2.72) 0.79 9.5(2.24)
15 0.0572 15.31(9.54) 0.061 15.7(9.22) 0.94 14.37(2.61) 0.7985 14.28(2.42)

1.1
5 0.398 6.71(4.89) 0.33 6.58(4.74) 0.051 14.4(10.26) 0.007 15.94(8.6)
10 0.59 10.77(4.32) 0.51 10.65(3.94) 0.06 16.34(10.32) 0.008 15.9(8.7)
15 0.67 15.11(3.81) 0.62 15.07(3.62) 0.04 15.13(10.37) 0.005 13.9(8.5)

2
5 0.92 5.38(2.14) 0.87 5.33(1.92) 0.078 13.1(9.57) 0.02 11.28(7.9)
10 0.99 10.11(1.69) 0.98 10.09(1.61) 0.13 12.96(7.99) 0.02 12.41(6.73)
15 0.998 15.002(1.55) 0.99 15(1.55) 0.13 14.78(7.93) 0.03 15.18(6.45)

100

0.1
5 0.0436 46.62(35.64) 0.048 43.93(35.67) 0.8388 5.97(8.66) 0.7311 5.51(5.65)
25 0.047 50.56(36.1) 0.043 49.53(35.3) 1 24.4(2.4) 1 24.3(2.5)
50 0.061 49.69(33.28) 0.0656 48.7(33.68) 1 49.2(2.48) 1 49.3(2.46)

1.1
5 0.38 11.42(18.4) 0.36 11.36(18.49) 0.049 42.34(36.71) 0.01 44.97(37.17)
25 0.98 25.71(6.44) 0.97 25.69(6.44) 0.072 46.99(38.6) 0.012 48.86(35.51)
50 0.9976 50.04(5.53) 0.9964 50.054(5.52) 0.066 53.9(37.51) 0.01 52.62(34.2)

2
5 0.94 5.73(5.24) 0.93 5.69(5.15) 0.079 35.22(35.09) 0.02 32.72(31.6)
25 1 25.04(1.45) 1 25.04(1.45) 0.269 33.23(22.05) 0.1039 31.81(17.8)
50 1 49.97(1.37) 1 49.97(1.37) 0.4188 51.85(17.7) 0.2055 52.1(14.15)

Table 1: A showcase of the power and change-point estimation, when the data
changes from N (0, 1) to N (δ, 1)[mean change] or N (0, δ)[variance change]
at change-point location τ . The values in parentheses indicate standard devia-
tions.

1https://github.com/StudBch96/Bachelor-project-R-code
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The first conclusion that we can draw, is that all the statistics considered
seem to work better when we move τ towards the middlepoint of the data.
Whenever τ is on the extreme end, we see that the performance may signifi-
cantly worsen if the change is not big enough, regardless of T. Thus under the
condition that τ is not close enough to the extreme ends, we may also make
the obvious observation that whenever T is bigger or δ differs more, the per-
formance will improve. As for the statistics themselves, we see that M and N
provide quite similar performance when T = 100. However, when T = 30 the
differences become more pronounced at a reasonable change size(δ = 1.1). Here,
M provides a somewhat better power, which is to be expected as N was derived
under the additional assumption that the variance was unknown. Furthermore,
it can clearly be observed that SICvar in general has a lower power than λvar,
though when the change is more drastic(δ = 0.1 or 2) it does tend to provide
better τ -approximations.

2.3.2 Student-t distribution

Now we have simulated data with the student-t distribution, which under
H0 has a mean of 0 and 3 degrees of freedom(df). We also introduce two sepa-
rate parameters, δ1 and δ2, to denote the change-sizes for the mean and degrees
of freedom(df) respectively. For the variance change, we have to keep in mind
that δ2 = −2 is the most drastic change, followed by the values 100 and 20.
In every possible situation we consider here, the data will have more outlying
values than the normal distribution we considered first.

We can immediately see from the table below, that the statistics in gen-
eral have worse performance. In particular, looking at M and N, the only case
for which they have good performance is when T = 100, δ1 = 2 and τ is far
enough from the edge. Otherwise they have subpar performance at best, though
it would appear that N does have somewhat better performance when δ1 is not
drastically small.

As before, the variance statistics do have more glaring differences. If we
consider the power, then SICvar is always superior in that respect, which is the
opposite of when the data was normally distributed. Still, even SICvar only
performs well when the change is very drastic(δ2 = -2). Furthermore, it can
easily be seen that change-point approximation is very bad in all situations,
so neither statistic is suited for precisely locating where a change has occured.
All in all, an easy conclusion that we can draw is that SICvar is more robust
against outliers than λvar.
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Parameters Mean change Variance change
T δ1 δ2 τ Power(M) τ̂M Power(N) τ̂N Power(λvar) τ̂λvar Power(SICvar) τ̂SICvar

30

0.1 -2
5 0.049 15.7(11.8) 0.051 15.6(12.6) 0.55 16.4(6.5) 0.76 15.8(6.72)
10 0.045 15.7(11.9) 0.048 15.2(12.7) 0.57 17.6(5.7) 0.76 16.9(5.8)
15 0.05 15.1(11.8) 0.047 15.4(12.8) 0.54 19.95(4.7) 0.71 19.3(4.9)

1.1 20
5 0.079 11.95(10.4) 0.1 9.5(9.4) 0.032 3.5(2.4) 0.08 5.4(5.4)
10 0.11 12.5(8.9) 0.19 11.6(7.2) 0.04 5.6(3.2) 0.13 7.4(4.7)
15 0.12 14.9(8.2) 0.18 14.98(6.9) 0.049 7.8(4.5) 0.15 9.53(5.4)

2 100
5 0.19 7.96(7.4) 0.33 6.3(5.2) 0.033 3.4(2.3) 0.09 4.9(4.5)
10 0.44 10.9(4.6) 0.57 10.6(3.8) 0.05 5.9(3.3) 0.14 7.2(4.68)
15 0.53 14.95(3.99) 0.63 14.96(3.4) 0.054 7.7(4.7) 0.16 9.31(5.3)

100

0.1 -2
5 0.044 48.7(43.7) 0.05 51.08(45.4) 0.74 51.2(24.6) 0.98 49.4(25.9)
25 0.054 52.2(42.99) 0.052 51.5(45.8) 0.85 49.7(20.97) 0.9937 48.1(21.2)
50 0.048 48.6(42.9) 0.054 51.3(45.2) 0.86 63.02(13.8) 0.9923 62.2(14.94)

1.1 20
5 0.069 37.4(41.1) 0.082 30.8(40.2) 0.017 3.3(1.8) 0.12 9.9(18.7)
25 0.3 30.4(20.9) 0.41 28.6(17.9) 0.059 14.6(7.7) 0.35 19.4(13.3)
50 0.47 50.04(15.4) 0.61 49.99(14.01) 0.065 26.4(15.7) 0.47 34.9(17.2)

2 100
5 0.18 17.7(29.2) 0.28 11.95(22.6) 0.019 3.6(1.6) 0.11 8.35(16.5)
25 0.95 25.8(7.8) 0.92 25.6(7.02) 0.064 15.1(7.7) 0.39 18.8(11.9)
50 0.99 49.98(6.2) 0.97 49.96(5.8) 0.076 27.5(15.4) 0.51 35.7(16.6)

Table 2: A showcase of the power and change-point estimation when the data
follows a student-t distribution. The data initially has a mean of zero and 3
df(degrees of freedom), and after the change has a mean of δ1 or 3 + δ2 df.

2.3.3 Robustness

As we saw, the parametric statistics performed significantly worse when
the data was heavier-tailed. In other words, they are not robust against outly-
ing values, which is to be expected as they were derived under the assumption
of normality. It is of practical importance that change-points, even under these
more extreme circumstances, can be reliably detected. Though it is always pos-
sible to screen the data before-hand and manually pick out the outliers, this
might be unpreferable due to time constraints. We will therefore discuss two
adjustments to the cost-functions in order to make them more robust.

The first adjustment we could make is to simply replace the estimators of
the relevant parameters with more robust versions. For example, while deriving
M and N we used the MLE-estimator of the mean:

µ̂ =

∑
yt
T

But erroneously big values of the data could easily have a likewise big
influence on the numerator of the MLE-estimator, thus any cost-functions us-
ing the estimator could similarly be biased towards the outlier. So we would
like to replace the MLE-estimator with a more robust one. Fortunately, such
an estimator is easy to define: the median. It simply orders the data based
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Parameters Mean change
T δ1 τ Power(M) τ̂M Power(N) τ̂N

100

0.1
5 0.06 55.6(39.74) 0.058 54.88(39.67)
25 0.054 56.06(40.19) 0.06 50.07(41.71)
50 0.059 57.06(39.76) 0.054 53.14(40.79)

1.1
5 0.11 34.95(38.99) 0.13 25.37(33.52)
25 0.5 29.02(16.24) 0.53 29.4(16.05)
50 0.74 50.52(13.36) 0.65 50.41(12.49)

2
5 0.38 12.37(21.38) 0.42 10.65(16.32)
25 0.99 25.65(6.57) 0.96 27.53(6.9)
50 1 49.97(4.97) 0.98 50.04(5.11)

Table 3: Power and change-point approximation when using robust estimators
and bounded cost-functions(with P = 5). The data follows a student-t distri-
bution as before.

on size(see (23)), and picks out the point in the middle(or the average of the
middle-points when the data-length is even) as an estimator for the mean. In
this way, large values will be assigned the highest rank and their effect will be
severely mitigated.

Aside from robust estimators, an additional improvement follows from the
observation that the cost-functions are unbounded. Even though a robust esti-
mator such as the median might perform well in the presence of one outlier, it
generally breaks down when the amount of outliers becomes too large. Thus,
additional robustness could be obtained by somehow making the cost-functions
bounded. This is also not hard to do, as it simply requires us to impose addi-
tional conditions(denote the cost function as c):

c(yt, θ) =

{
c(yt, θ), for | yt − θ |< P
C, for | yt − θ |≥ P

Here, the maximum admissable outlier is bounded at P, if it exceeds this
then c gets assigned the fixed constant C. So no matter the amount of outliers,
if a true change causes the cost-function to exceed the value C, then the method
should in theory become completely robust against outliers. However, the tricky
part lies in correctly choosing the value P. If on one hand P is chosen too large,
then we are being too lenient and if P is chosen too small, then we might need-
lessly disregard useful data. With both of these adjustments applied, we show
the performance for the mean-change statistics in table 3.

We see that unless δ1 = 0.1, the results have indeed improved both in the
form of a higher power and lower standard deviations. Especially M shows a
strong improvement, since it was particularly afflicted by the outliers due to its
quadratic nature.
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2.3.4 Bonferroni-correction

Aside from robustness, there is also an inherent problem with the sim-
ulations themselves. Basically, we try to find a change-point by consequtively
conducting hypothesis tests for every point between 2 and T - 2. If these tests
have a significance level of α, then the odds of wrongfully rejecting the null
hypothesis is also α(the so-called Type-I error). So, if one is conducting a series
of similar tests, then this chance of a false positive quickly adds up. For our
example, when we conduct T - 3 tests then the chance of at least detecting
one false positive is: 1 − (1 − α)T−3. For T = 100 and α = 0.05, this value is
approximately 0.99.

To counter-act this, we will apply the so-called Bonferroni-correction to
our critical values. This is a rather conservative method where we simply re-

duce the original α to
α

T − 3
, so in a sense we are trying to preserve the overall

significance of our testing procedure. Below, we again show our results for the
normally distributed data when T = 100.

A commonly directed criticism at the Bonferroni-correction is that in the
pursuit of eliminating false positives, it also drags down the power in the pro-
cess, and this is of course also very obvious from our results(unless the change
itself is big enough). But we can also see that in difficult situations where false
positives are more likely to occur, i.e. when the change is small or it occurs close
to the edges, the change-point approximations may improve. For example, when
δ = 0.1 and τ = 25, M provides a better τ -estimate.

Parameters Mean change Variance change
T δ τ Power(M) τ̂M Power(N) τ̂N Power(λvar) τ̂λvar Power(SICvar) τ̂SICvar

100

0.1
5 0 / 0 / 0.68 5.16(3.2) 0.22 4.8(1.38)
25 0.002 22.5(6.36) 0.002 26(1.41) 0.995 24.34(2.7) 0.91 24.27(2.2)
50 0.004 56.5(42.3) 0 / 1 49.17(2.56) 0.94 49.24(2.33)

1.1
5 0.026 8.31(12.65) 0.014 11.57(8.92) 0.003 75(29.46) 0 /
25 0.72 25.46(5.11) 0.29 26.46(6.13) 0.001 10(/) 0 /
50 0.86 49.85(5.012) 0.64 49.88(7.5) 0.001 98(/) 0 /

2
5 0.595 5.44(3.69) 0.27 7.02(6.14) 0.003 61.67(50.5) 0 /
25 1 25.06(1.33) 0.97 27.01(4.22) 0.014 30.93(19.99) 0 /
50 1 49.99(1.41) 0.999 50.1(3.59) 0.054 52.07(12.7) 0.0001 61(/)

Table 4: Power and change-point approximation with Bonferonni-correction.
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2.3.5 Gamma-distribution

Finally, we consider the gamma-statistics. Using the same simulation
setup for the normal and student-t distribution, we have displayed both the
power and change-point approximations in table 5.

What is readily apparent from the results, is that the change-point location
τ affects the results much more negatively than it did in previous simulations.
In general, unless τ is around the mid-point of the data and the changes are
big enough, the statistics perform very poorly. This is especially the case for
λsh, though this is unsurprising as before we have shown that shape changes
entail both the mean and variance, whereas scale changes mainly correspond
with variance(at least for the change sizes we considered here). Therefore, the
locations of shape changes in general will be harder to discern due to a relatively
higher amount of noise, and this is clearly demonstrated here.

It should be noted though that while λsh always provides a poor chang-
point approximation, its power is less influenced by τ when it moves away from
the mid-point, at least for δ2 = 2. So for big shape changes it may be harder
to discern their precise locations, but due to their more extreme overall change
the existence of a change-point may be more easily evidenced, even for less ideal
positions of τ .

Parameters Scale change Shape change
T δ1 δ2 τ Power(λsc) τ̂λsc Power(λsh) τ̂λsh

30

4 2
5 0.0081 13.37(3.26) 0.0335 25.34(5.85)
10 0.0915 12.55(1.97) 0.28 19.13(11.75)
15 0.8161 13.17(1.073) 0.5273 12.45(12.57)

2 0.5
5 0.005 13.74(3.16) 0.0071 18.35(12.008)
10 0.069 13.11(1.91) 0.0368 15.61(12.39)
15 0.356 13.49(1.35) 0.0463 13.17(12.33)

0.5 0.1
5 0.005 15.02(1.73) 0.0094 14.34(12.24)
10 0.0105 13.96(2.496) 0.0079 10.77(12.04)

. 15 0.0278 14.31(1.61) 0.017 11.54(11.89)

100

4 2
5 0.0022 48.77(3.52) 0 /
25 0.1945 44.46(5.27) 0.6138 76.68(38.38)
50 1 47.94(1.605) 0.9728 41.73(46.68)

2 0.5
5 0.0007 51.86(6.34) 0.0002 49(67.88)
25 0.0607 46.14(5.02) 0.0171 65.08(43.56)
50 0.9636 48.31(2.36) 0.0487 40.78(45.53)

0.5 0.1
5 0.001 48.1(4.48) 0.0001 4(/)
25 0.0043 47.86(3.83) 0.0008 72.13(43.62)

. 50 0.0785 49.49(3.65) 0.0033 45.42(46.38)

Table 5: Power and change-point approximations for the parametric gamma-
statistics, where the data changes from Γ(1, 1) to either Γ(1+δ1, 1) [scale change]
or Γ(1, 1 + δ2) [shape change].

26



3 Non-parametric model

Now we will consider a different class of change-point problems, namely
the non-parametric model. Unlike the parametric case, we may not make any
assumptions about the distributional structure of the data. In a practical sense,
working under these new conditions is obviously more realistic than making
presumptive guesses about the underlying distribution. Furthermore, if the
assumptions about alleged distributions happen to be completely misfounded,
then it will tend to have an adverse effect in the form of additional false posi-
tives(as we clearly saw for example when the parametric variance statistics were
evaluated under the student-t distribution).

This relaxation of the assumptions may make it seem like that the test-
statistics we derive under the new setting may perform worse than their para-
metric counterparts, since we have less information to work with. However, as
we will later show in a simulation study, the non-parametric test statistics will
generally perform better(in a non-Gaussian setting that is).

As before, we will consider both a single change in mean and variance.
However, since the distributions are now unknown we can also make a more
general inference: the change-points of distributions themselves. As for the rea-
soning of only considering a single change-point, we again refer to our treatment
of search methods in section 4, where it is shown how we can easily consider
multiple change-points from the framework that we set up here.

In order to set up a statistical framework for change-point detection, we
use the following hypothesis testing procedure:

H0 : yt ∼ F0 ∀t

H1 : yt ∼

{
F0, if t < τ

F1, otherwise

Note that now we can also consider general distributions, and not just
distribution-specific parameters like we did previously. Also, the way that we
define test-statistics will be more straight-forward. Instead of defining cost-
functions and using the discrepancy function (3) to define test-statistics, we
now immeadiately treat some well-established two-sample tests which them-
selves can serve as test-statistics. These will be denoted as Dτ,T .

From here on the idea remains the same as for the likelihood-approach. In
order to estimate a change-point location we will calculate the absolute value
of Dτ,T for all possible τ -locations and take the maximum value. Formally:

DT =| max
τ

Dτ,T − µDτ,T
σDτ,T

|, 1 < τ < T (22)
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As shown, we have made another slight modification to our standard pro-
cedure. For large samples we may invoke the central limit theorem to conclude
that Dτ,T is approximately normally distributed, and thus its standardized ver-
sion standard normally distributed. This is preferable of course, as critical
values and the like are readily available in that case. Also, standardizing the
test-statistic will make it less skewed by the change-point locations, as the vari-
ances of these statistics always seem to depend on τ(the statistics will primarily
use only the part of the data prior to τ). In other words, if a certain change-
point location causes a high variance, then obviously the absolute value of the
statistic will be biased towards that change-point location.

Finally, through simulations under H0 we may determine the upper(lower)
α quantile cα of the empirical null-distribution, and use this as a threshold for
DT so that H0 is rejected whenever DT > cα(DT < cα). We then simply extract
a change-point location τ̂ for which the maximization(minimization) holds and
which also exceeds the defined threshold.

3.1 Ranks

Instead of densities and the corresponding likelihood, we need to find
an alternative way to garner information about the data. Thankfully, at least
when it comes to detecting any changes in the mean or variance, the ranks of
the data-points seem to fit our purposes quite nicely.

Simply speaking, the ranks denote the relative positions of the data-points
when it comes to size. So the lowest rank denotes the smallest value, and vice-
versa. Formally, we may define the rank of a data-point yt as follows:

r(yt) =

T∑
t6=s

I(yt ≥ ys) (23)

Here, I(·) is the indicator-function. For now, we will use ranks to give
appropiate cost-functions and their correponding test-statistics Dτ,T as defined
previously. Their performance will be evaluated later in a simulation study,
where we shall also compare them with their parametric counterparts in both a
Gaussian as a non-Gaussian setting.

3.1.1 Mean change

In order to detect a change in mean, we will make use of the so-called
Mann-Whitney two-sample test[9]. Obviously the two considered samples are
the data-sets prior to and after the change-point, which we will respectively
denote with V and W(with sizes T1 and T2).

Furthermore, under the assumptions of no changes and tied ranks, it can
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easily be shown that the sum of the first T ranks is:

T (T + 1)

2

After all, it is nothing more than the sum of the first T positive integers.
With this sum, we can also easily obtain the expected rank under H0 by simply
taking the empirical mean, i.e. dividing by T. We can then measure the discrep-
ancy from H0 by summarizing over the differences between the actual ranks in
V and the expected rank under H0:

Uτ,T =

T1∑
t=1

(r(yt)−
T + 1

2
) (24)

In order to standardize Uτ,T , we use the following formulas for the mean
and variance(see [9]):

mUτ,T =
T1T2

2
(25a)

σUτ,T =

√
T1T2(T1 + T2 + 1)

12
(25b)

Finally, we repeat this procedure for every possible change-point location
and H0 is rejected whenever the maximum absolute value exceeds the defined
threshold cα.

Below we show a few figures of the Mann-Whitney statistic in action,
where alongside the actual data we have plotted all standardized values of Uτ,T
against the possible change-point locations.
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An increase in mean Corresponding standardized U-values

Figure 8: The effectiveness of Mann-Whitney displayed for an increase in mean. The
vertical dashed line marks the most likely candidate for a change-point

3.1.2 Variance change

We now consider a change in variance, by considering multiple distinct
test-statistics. As usual, we assume that the data is independent within each
sample, and that the samples themselves are also independent of each other.
We start with the Mood-statistic[10], which is essentially a direct extension of
the Mann-Whitney statistic.

3.1.2.1 Mood-statistic

As with the Mann-Whitney statistic, we again look directly at the discrep-
ancy between the ranks and the expected rank. But now we must summarize
over the squared differences in V:

MDτ,T =

T1∑
t=1

(r(yt)−
T + 1

2
)2 (26)

In order to standardize it, we use the following(see [10]):

mMDτ,T =
T1(T 2 − 1)

12
(27a)

σMDτ,T =

√
T1T2(T + 1)(T 2 − 4)

180
(27b)
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The basic idea is that the sum is large whenever the corresponding ranks
of the sample are large or small, which of course also coincides with a higher
variance(or a smaller variance when the sum is small). However, even though
the method is intuitively simple, it requires us to assume that the means of
the samples are equal. Any deviation from this assumption may lead to worse
performance(see table 7). The next statistic that we consider is a modification
of the Mood-statistic, meant to mitigate this problem.

3.1.2.2 Mood’s test(differing means)

Instead of measuring the discrepancy relative to the overall mean of the
ranks, we instead only consider the corresponding mean of the first sample V:

r =

T1∑
t=1

r(yt)

T1
(28)

We also divide it by T1−1 to make it a bit more robust, finally leading us to:

MTτ,T =
1

T1 − 1

T1∑
t=1

(r(yt)− r)2 (29a)

mMTτ,T =
T (T + 1)

12
(29b)

σMTτ,T =

√
TT2(T + 1)(3(T + 1)(T1 + 1)− TT1)

360T1(T1 − 1)
(29c)

So we lessen its dependence on the second sample, and thus its depen-
dence on the assumptions about the means, by only considering the expected
rank of the first sample. However, in those cases where the means are still
(roughly) identical we would be needlessly limiting the amount of information,
so we would expect the normal Mood test to still perform better then. We
now look at a more drastic change of the test setup, termed the Ansari-Bradley
method, which will hopefully not suffer from the same drawbacks.
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3.1.2.3 Ansari-Bradley

We now treat a novel method proposed in [11], where the use of ranks
still remains integral, but the test setup is different. Instead of mainly working
with one set of ranks, we now center the ranks around a mid-point. There-
fore, we have to make a distinction between two cases depending on whether
the data-length T1+T2 = T is even or odd(we shall denote the ranks as {r∗t }

T
t=1):

{r∗t }
T
t=1 =


1, 2, ...,

T

2
,
T

2
, ..., 2, 1 if T is even

1, 2, ...,
T − 1

2
,
T + 1

2
,
T − 1

2
, ..., 2, 1 if T is odd

For example, the smallest and largest values are both given a rank of 1.
Then the second-smallest and second-largest values are given a rank of 2, and
the same process is repeated until we assign a rank to the data-points in the
middle between the two extremes. This may seem like a peculiar setup, but for
detecting a change in variance between two samples it works well: the data-
points with the higher variance will more likely be assigned the smaller ranks.
Thus if we were to sum up the ranks from {r∗t }

T
t=1 that belong to a certain

sample, let us say V, then if it is significantly small we may be inclined to
conclude that V has a higher variance. Formally we write it down as follows:

ABτ,T =

T1∑
t=1

R∗t

mABτ,T =


T1(T + 2)

4
if T is even

T1(T + 1)

4T
if T is odd

σABτ,T =


√
T1T2(T + 2)(T − 2)

48(T − 1)
if T is even√

T1T2(T + 1)[3 + T 2]

48T 2
if T is odd

As mentioned, the R∗t denote the ranks of V from {r∗t }
T
t=1. It should also

be more obvious now why we had to assume that the difference in means could
not be too big, for if the variance-change is relatively small compared to the
mean-change, then the highly variant sample may not attain the extreme values
anymore, thus compromising the effectiveness of our test-statistic. In spite of
that, we still expect this statistic to be more robust than the Mood-statistic
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against different means, since ABτ,T does not have a quadratic nature.

3.2 General distributional changes

Since we do not make any assumptions about the distributions anymore,
we can now also consider the very general problem of detecting a change in
the distribution itself. However, this also means that if we do detect a change,
it usually becomes difficult to trace back the cause of the change. Indeed, in
the most general setting we can of course not assume anything about the type
of change. The causes may be included to: a mean and/or variance change,
a change in kurtosis of the underlying distributions, and in general any well-
defined characteristic of a distribution that we can think of.

Thus the use of ranks becomes impractible, and we have to likewise con-
sider a more general solution. Practically any method that deals with this
problem, employs so-called empirical cumulative distribution functions(ECDF):

F̂ (s) =
1

T

T∑
t=1

I(yt ≤ s) (30)

Using these approximations for the CDFs, we can measure the discrepancy
by considering the maximum distance between different ECDFs. As usual,
we assume that the data is continous, independent and contains 1 change-
point. We begin with the two-sample variant of a very popular statistic, namely
Kolmogorov-Smirnov([12], [13]).

3.2.1 Kolmogorov-Smirnov

We define a separate ECDF for each of the two samples, denoted as F̂V (s)
and F̂W (s). We then simply try to find the maximum absolute difference be-
tween the two:

KSτ,T = sup
s
| F̂V (s)− F̂W (s) | (31)

There is however a problem concerning its standardization, as to the best
of our knowledge there still is not an analytical expression for its mean and
variance. So since we can not adopt the KS-statistic into our existing frame-
work, we have to use an alternative method of testing its significance. Namely
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we will use p-values, denoted as pτ,T , which are defined as the probabilities of
observing a more extreme value than KSτ,T under H0. Clearly, the smaller this
value is, the less likely it is that we can attribute an unusual value of KSτ,T to
chance(thus providing stronger evidence against H0).

The question then remains of how to estimate pτ,T . We will adopt a
method outlined in [16], which will be briefly summarized here:

pτ,T = Q(KSτ,T

√
T1T2

T1 + T2
+ β) (32)

, where

Q(z) = 2
∞∑
i=1

(−1)i−1exp(−2i2z2)

≈ 2(exp(−2z2)− exp(−8z2)) and

β =



1

2
√
T1

, if T1 > 2T2

2

3
√
T1

, if T2 ≤ T1 ≤ 2T2 and T1 a multiple of T2

2

5
√
T1

, otherwise

Finally, in order to bring it more in line with the existing framework, we
define qτ,T = 1− pτ,T . Maximizing qτ,T is equivalent to minimizing pτ,T , so for
the change-point estimation we solve:

qT = max
1≤τ≤T−1

qτ,T (33)

So a change-point is detected at τ̂ when it maximizes qτ,T and it exceeds
a threshold cα.

3.2.2 Cramer-Von-Mises

An alternative test-statistic that we could use is the Cramer-Von-Mises
test([14], [15]), which similarly utilizes a distance-based statistic from the ECDFs:

CVMτ,T =

∫ ∞
−∞
| F̂V (s)− F̂W (s) |2 dF (s) (34)

However, in our case the independent variable s denotes the time, which
is discrete and finite. So instead of evaluating a complicated integral, we can
simply summarize over all yt:
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CVMτ,T =

T∑
t=1

| F̂V (yt)− F̂W (yt) |2 (35)

We use the following corrected form of the statistic, which should help
standardize it against variant data:

CVMcorr =
T1 · T2

T1 + T2
· CVMτ,T (36)

Here, T1 and T2 are the lengths of the subsegments resulting from the (po-
tential) change-point. The resulting manner in which we detect a change-point,
is identical as before.

3.3 Simulation study(Non-parametric)

In this simulation study, we do not only wish to assess the performance
of the relevant statistics, but also compare them with the parametric model.
Namely, we are interested if the rank-based statistics are indeed more robust
against outliers, so we will be conducting the same simulations as we did for
the student-t distribution. Afterwards, we will also be investigating whether
David’s test performes better when the mean and variance change simultane-
ously, which is what we hypothesized earlier. Finally we consider the general
distributional change-statistics, which we will assess under the student-t and
gamma distributions.

The simulation setup remains identical, except now we also outright apply
the Bonferroni-correction discussed during the previous study.

3.3.1 Rank-based statistics

On the next page we have displayed the results for the rank-based statis-
tics, which we have denoted as follows:

• MW: Mann-Whitney
• Mood: Mood’s test

• MT: Mood’s test(differing means)
• AB: Ansari-Bradley

Due to the fact that we mainly use ranks, which are generally more
robust againts outliers than likelihood-based statistics, we see that the results
have generally improved. Even accounting for the robustness-modifications that
we discussed for the parametric model(table 3), Mann-Whitney still performs
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better given the right circumstances. As for the variance-change statistics, their
change-point approximations still leave some things to be desired, but aside
from the marginal power decrease compared to SICvar their performance has
also increased somewhat. We can furthermore conclude that the Mood test and
Ansari-Bradley provide very similar performance, with Mood’s differing means
variant performing significantly worse.

We also wish to compare the latter against the other methods when a
change in mean has occured. To that end, we showcase the results when an
additional mean-change of 2 has occured in table 7. We can conclude that while
MT does provide higher power in some cases, in general it still performs worse
than the other statistics.

Parameters Mean change Variance change
T δ1 δ2 τ Power(MW) τ̂MW Power(Mood) τ̂Mood Power(MT) τ̂MT Power(AB) τ̂AB

30

0.1 -2
5 0.051 12.6(5.2) 0.98 10.1(5.5) 0.06 8.2(6.7) 0.98 11.1(5.4)
10 0.058 14.1(4.4) 0.97 13.7(5.9) 0.056 9.3(7.4) 0.95 14.7(5.9)
15 0.041 13.3(4.3) 0.92 16.9(6.2) 0.059 8.5(7.8) 0.91 17.8(6.2)

1.1 20
5 0.13 12.4(3.7) 0.44 10.4(8.6) 0.086 5.2(5.5) 0.43 12.2(9.1)
10 0.47 11.2(2.8) 0.47 10.7(8.5) 0.084 5.9(5.5) 0.46 12.7(8.9)
15 0.55 13.8(2.1) 0.5 9.7(7) 0.036 4.6(4.9) 0.5 11.3(7.8)

2 100
5 0.38 10.3(3.7) 0.44 10.6(8.7) 0.066 4.8(5.3) 0.43 12.7(9.2)
10 0.81 10.2(2) 0.52 10.1(7.8) 0.048 5.7(6.5) 0.48 11.2(7.9)
15 0.92 14.02(1.3) 0.5 10.03(7.2) 0.041 3.7(3.4) 0.49 11.6(7.9)

100

0.1 -2
5 0.053 48.6(9.5) 1 11.6(7.7) 0.06 22.5(16.5) 1 12.6(7.7)
25 0.053 47.4(11.2) 1 25.6(11.8) 0.069 28.2(15.02) 1 26.6(11.8)
50 0.073 49.8(9.6) 1 38.4(20.9) 0.08 20.6(12.7) 1 39.4(20.9)

1.1 20
5 0.084 45.98(8.96) 0.59 39.6(35.7) 0.07 16.8(12.5) 0.59 43.3(35.5)
25 0.77 34.7(9.7) 0.73 29.2(28.8) 0.086 19.7(12.4) 0.71 30.9(29.9)
50 0.98 49.3(3.97) 0.83 28.7(22.7) 0.058 21.8(13.4) 0.82 29.8(23.4)

2 100
5 0.097 46.1(8.4) 0.59 37.94(34.9) 0.056 20.5(14.5) 0.6 42.9(35.3)
25 0.995 29.2(7) 0.74 25.6(26.3) 0.06 18.7(11.7) 0.73 29.6(28.95)
50 1 48.96(1.8) 0.79 28.9(23.2) 0.055 19.1(11.8) 0.79 30.7(24.02)

Table 6: A showcase of the power and change-point estimation for the non-
parametric statistics when the data follows a student-t distribution. The data
initially has a mean of zero and 3 df(degrees of freedom), and after the change
has a mean of δ1 or 3 + δ2 df.
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Parameters Variance change
T δ2 τ Power(Mood) τ̂Mood Power(MT) τ̂MT Power(AB) τ̂AB

100

-2
5 1 19.38(14.82) 0.16 32.2(13.68) 1 20.38(14.82)
25 1 37.81(14.84) 0.92 41.6(20.41) 1 38.75(14.84)
50 0.99 58.7(15.97) 0.89 28.88(21.64) 0.99 59.43(16.21)

20
5 0.95 9.88(18.02) 0.11 33.84(12.12) 0.93 14.83(22.67)
25 1 24.14(10.05) 0.89 43.92(19.92) 0.99 26.42(11.41)
50 0.56 44.35(30.94) 0.86 32.21(21.45) 0.6 45.81(31.42)

100
5 0.96 9.31(16.49) 0.14 34.36(14.16) 0.94 13.88(20.95)
25 1 23.81(9.17) 0.89 43.44(19.96) 1 26.1(11)
50 0.62 42.06(31.89) 0.89 31.94(21.67) 0.64 45.9(32.46)

Table 7: The variance statistics evaluated when there is also a mean-change of
size 2.
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3.3.2 General distributional changes

For the final simulation study, we consider the general distribution change-
statistics Kolmogorov-Smirnoff and Cramer-von-Mises. We wish to compare
their performance to the parametric and rank-based statistics, and to that end
we have displayed the results below for both the student-t and gamma distri-
butions.

(a)

Parameters Mean change Variance change
T δ1 δ2 τ Power(KS) τ̂KS Power(CvM) τ̂CvM Power(KS) τ̂KS Power(CvM) τ̂CvM

30

0.1 -2
5 0 / 0 / 0.002 15.5(13.44) 0 /
10 0.003 26(2) 0.008 17.13(6.35) 0.009 20.78(7.87) 0.004 18.5(2.08)
15 0.001 28(/) 0.001 15(/) 0.004 27.5(0.58) 0.002 19(2.83)

1.1 20
5 0 / 0 / 0 / 0.001 19(/)
10 0.028 13.18(3.95) 0.049 11.71(3.2) 0 / 0.006 12.67(9.03)
15 0.078 16.68(3.31) 0.14 14.85(2.25) 0.001 4(/) 0.005 14.6(7.09)

2 100
5 0.34 5.87(2.34) 0.013 8(2.31) 0.006 6.17(3.66) 0.001 11(/)
10 0.51 10.3(2.13) 0.34 10.35(1.6) 0.005 10.2(9.04) 0 /

. 15 0.73 15.31(1.93) 0.53 14.94(1.71) 0.002 5.5(2.12) 0.002 13(5.66)

(b)

Parameters Scale change Shape change
T δ1 δ2 τ Power(KS) τ̂KS Power(CvM) τ̂CvM Power(KS) τ̂KS Power(CvM) τ̂CvM

30

4 2
5 0.054 7.78(3.97) 0.022 10.68(3.76) 0.086 5.29(1.43) 0.038 8.39(3.32)
10 0.12 11.05(2.53) 0.026 11.15(1.78) 0.17 10.41(1.58) 0.083 10.52(1.07)
15 0.5 15.81(2.44) 0.43 15.43(1.95) 0.53 15.01(2.17) 0.61 14.98(1.76)

2 0.5
5 0.021 9.33(5.17) 0 / 0.002 13.5(7.78) 0 /
10 0.051 12.2(4.12) 0.014 12(3.21) 0.005 14(3.32) 0.003 12.67(4.62)
15 0.17 16.27(3.26) 0.075 15.67(2.35) 0.022 15.77(2.76) 0.009 13.78(2.54)

0.5 0.1
5 0.001 20(/) 0 / 0.001 18(/) 0.001 12(/)
10 0.014 14.21(5.16) 0.002 19(11.31) 0.007 16.71(4.23) 0.001 24(/)

. 15 0.022 18(4.25) 0.007 17(3.27) 0.004 19.75(1.5) 0.004 19(7.07)

Table 8: Power and change-point approximation for Kolmogorov-Smirnoff(KS)
and Cramer von Mises(CvM). Table (a) displays the results for the student-t
distribution, while (b) shows them for the gamma-distribution.

We only consider T = 30, since computing the ECDFs requires subtantive
computational work. Beginning with the student-t distribution, we see that the
only reasonable performance is obtained for the biggest mean change, whereas
for every other situation the power tends to be very low. Surprisingly though,
we may get some relatively accurate change-point approximations even when
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the power is very low and the changes are not drastic. For example, when
δ2 = 20 we see that CvM gives some pretty accurate approximations for τ = 10
and τ = 15. This is of course the exception rather than the norm, as the same
method again performs poorly for the more drastic case of δ2 = −2. Aside from
these exceptions, we can still discern a general pattern when the performance
is not too low: the power of KS tends to be higher than CvM, while the latter
has lower standard deviations. Furthermore, comparing these to our previous
statistics, we can clearly see from table 6 that the rank-based statistics are
vastly superior. However, table 2 still shows that KS and CvM provide better
performance for a mean-change than the parametric statistics, even though the
Bonferroni-correction was not applied there. This shows us that KS and CvM
are still relatively more robust against outliers than the parametric statistics.

The comparison with the gamma-statistics in table 5 is more interesting.
While the power is still lower(especially if we consider the scale change), we
do see more accurate change-point approximations here. This is quite relieving,
since we clearly saw that the gamma-statistics were not well-suited for discerning
a precise change-point location(particularly the shape-change). So, whichever
statistic should one use? It depends on the original goal: if one simply seeks
to confirm the existence of a change-point, then the parametric statistics are
preferable, considering their superior power and computation time. If the pre-
cise location also needs to be determined, then we would advocate the use of
the general distributional statistics.
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4 Search methods

As we mentioned during the beginning of this report, change point detec-
tion procedures generally consist of three parts: cost functions, search methods
and penalty terms. We have dedicated the last two sections to treating various
cost functions, all valid under their own set of assumptions. However, we were
restricted to only consider the detection of a single change point, seeing as we
did not have dedicated search methods that could quickly skim over the data
and find the optimal segmentation to either solve problem (1) or (2). Also,
depending on which specific optimization problem we solve, we also need to
have a penalty term. The problem of finding an optimal penalty value is quite
difficult and we instead refer the interested reader to [20], where it is discussed
how an optimal penalty may be efficiently found from a range of values. With
a properly chosen penalty value, it is possible to strike a good balance between
goodness-of-fit and complexity.

For now, we will treat several search methods, each designed to find the
optimal segmentation in an unique way. We start with approximate algorithms,
as these are generally easier to implement than exact ones. R-code implement-
ing all treated search methods may be found below2.

4.1 Approximate algorithms

While approximate algorithms may not offer the same accuracy as ex-
act algorithms, they are still widely used in practice for their speed and ease
of implementation. Therefore, we will treat two widely known search methods
belonging to this category:

• Window sliding

• Binary segmentation

4.1.1 Window sliding

As the name implies, this search method offers a very intuitive way of
looking for multiple change-points. First, two windows are formed around the
change-point candidate, their widths specified by the user beforehand. Then we
simply slide these windows across the data, while using the discrepancy func-
tion (3) to continuously compute the discrepancy between the segmented data
at change-point candidate t and the unsegmented data:

d(yv..t, yt..w) = c(yv..w)− [c(yv..t) + c(yt..w)]

So the left side of the first window is at time-point v, and the right side

2https://github.com/StudBch96/Bachelor-project-R-code
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of the second window at time-point w. Afterwards, we will have obtained a
discrepancy curve, in which we will search for local maximum values as these
are the strongest indications of a structural change incurring. This procedure
is summarized in the figures below:

Figure 9: A plot of normally distributed data undergoing mean changes, alongside a
discrepancy curve generated by the window-sliding algorithm.

While intuitively simple, it is also computationally fast as the total amount
of calculations it needs to perform scales linearly with the length of the data(namely,
calculating the discrepancy curve). However, it also has a few serious disadvan-
tages. First off, we can not use it to detect any changes that are less than a
window-size located to the edges of the data, as we only consider the midpoint
of the windows as potential change-points. Therefore, especially when we are
working with big datasets and windows, we will be more prone to missing out
on actual change-points occuring closely to the edges.

Also, this algorithm will have trouble locating change-points close to each
other(as in, both are in the span of one window). After all, the cost function
was derived under the assumption of 1 change-point, so it will work poorly when
there are multiple change-points present.
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4.1.2 Binary Segmentation

As the second algorithm, we consider perhaps one of the most widely
used search methods in practice, namely the binary segmentation[17]. This al-
gorithm allows us to naturally expand on the single change-point problem by
sequentially trying to test for a single change for a given dataset, and repeating
the very same test for the two newly formed subsegments when a change has
been identified. This process is repeated until a certain stopping criterion is
fulfilled. A schematic overview of this procedure is displayed below:

Figure 10: A schematic overview of Binary Segmentation.

Just like the window-sliding algorithm, the binary segmentation is also
computationally fast(with a complexity of O(T log T ), see [13]). Unlike the pre-
vious algorithm though, it is sequential and above all else greedy : it is only
interested in the change-points that give the highest possible likelihood.

Although it might be preferable to have an intuitive algorithm that is
not as graphically dependent as the window-sliding algorithm, we may still run
into the same issues that we had before, namely a poor performance whenever
the minimum-distance between change-points is too small. To counter-act this
we discuss a relatively recent development, termed the wild binary segmenta-
tion[18], which naturally expands the standard method to specifically deal with
this problem.
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4.1.2.1 Wild Binary Segmentation

While still functionally identical, there is a key difference when selecting
the relevant subsegments for inferring a change. In contrast to the standard
method, where we chose fixed subsegments controlled entirely by the change-
points, we now generate random intervals whose starting/end points are uni-
formly distributed(within the range of the adjacent estimated change-points).

Why does this particular setup give superior performance when the change-
points are closely clustered? Basically, by adding a random element such as this,
we want to forcibly create a scenario where the cost function can perform bet-
ter(i.e. at most 1 change-point). In other words, what we are hoping for is
that in at least one of the simulated intervals around the potential change-point
location, there are no other (potential) change-points present so that the cost
function may give a more pronounced value(unaffected by any neighbouring
change-points). As we will show shortly, the wild binary segmentation provides
similar performance in the case of closely located change-points, though it will
come with an increased computational cost due to all the additional simulations
it has to perform.

4.2 Exact algorithms

When designing and implementing exact search methods, there are ad-
ditional problems that can arise. Namely, in order to gain an exact solution it
is basically required to search through the entire solution space. In the specific
case of change-point estimation, the corresponding computational cost can be
enormous:
• For the unconstrained optimization problem (1), there are 2T−1 possible so-
lutions(every location between 1 and T - 1 can be a change-point)

• For the constrained version (2) the amount decreases to

(
T − 1

K − 1

)
In both cases, even for moderate sizes of the data-length T and amount of

change-points K, the total cost can increase very quickly. For example, for T =

500 and K = 10, the amount of possible segmentations is

(
499

9

)
≈ 4.916 · 1018.

Therefore, it is simply imfeasible to iterize over all possible solutions, and it
is for this reason that traditional programming techniques are of no interest.
Thankfully, there is a separate branch within programming literature that deals
with problems like these: dynamic programming. In essence, it is possible to
turn difficult problems into a set of linked sub-problems, and by solving each of
these sub-problems we may eventually combine the solutions to solve the original
problem. The trick here is that for every consequent sub-problem, any previ-
ously obtained information should be used to efficiently obtain the new solutions.
We discuss a commonly used exact algorithm, the Segment-Neighbourhood[19],
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which will clearly demonstrate the principles of dynamic programming.

4.2.1 Segment Neighbourhood

A good way of efficiently searching through a solution space is with the
use of recursions, and change-point problems are no exception. If we denote
the optimal segmentation(let us assume for now that optimal is equivalent to
maximum likelihood) with K change-points for y1..t as {τ0, τ1, ..., τK+1} (where
τ0 = 1 and τK+1 = t), and denote its corresponding cost as cK,t then it is
possible to derive a recursion for the cost:

cK,t = max
τ

K∑
i=0

c(yτi+1:τi+1
)

= max
τK

〈
max

τ1:(K−1)

K−1∑
i=0

c(y(τi+1):τi+1
) + c(y(τK+1):τK+1

)

〉
= max

τK

〈
cK−1,τK + c(y(τK+1):τK+1

)
〉

= max
τK∈K,...,t−1

〈
cK−1,τK + c(y(τK+1):t)

〉
So in every iteration, we could consider 1 additional change-point and use

the above recursion to quickly find the optimal solution. Note that within each
iteration, this process needs to be repeated for t up until T, and for each t
the minimization/maximization also needs to performed(in order to locate the
change-point). Furthermore, we need to perform this whole process for ev-
ery possible amount of change-points, which for simplicity is constrained to K.
Taking all these computations together, means that this algorithm will have a
complexity of O(KT 2).

We see that as a trade-off for obtaining an exact algorithm, the compu-
tational cost has been increased quite a bit. Still, it is quite impressive that
the original seemingly impossible problem of considering every possible change-
point configuration, turns out to be pretty feasible due to dynamic progamming.
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4.3 A quick performance review

With the cost-functions and search methods now appropiately defined,
we may finally assess their performance for multiple-changepoints problems. To
this end, we consider two aspects of the algorithms:

• Speed

• Accuracy

With speed, we simply refer to the so-called run-time of the algorithms. As
for accuracy, we will primarily look at the discrepancy values that the algorithms
return for every changepoint-location. These values, as we explained in sections
2 and 3, are a quantitative measure for the significance of the change-point. So
if the algorithm provides a higher discrepancy value for a certain changepoint-
location, then it is more confident in that result.

We consider a relatively simple example, displayed in the figure below.
We now have multiple mean changes, and the first changes occuring are very
big in size and do not occur too closely to each other, so they should be easy
to detect. The last few change-points(occuring after time 300) have in contrast
smaller change sizes and are also more densely located, so these should be harder
to detect. For this particular data set, we have tabulated the performance of
the search methods in table 9(the cost-function used was the parametric mean
change from section 2).

Figure 11: A plot of data with multiple changes in its mean.
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Algorithm τ -location and discrepancy values Runtime(sec.)

Window-sliding
50 150 200 300 310 320 330

0.026
293.55 139.04 25.05 4.004 9.09 0.37 2.4

Bin.Segmentation
50 150 200 300 310 320 330

0.058
6627.22 6781.5 513.62 20.62 8.23 7.72 5.58

Wild Bin.Segmentation
50 150 200 300 310 320 330

9.56
6704.47 12412.99 495.63 19.93 27.84 8.11 11.33

Segm.Neighbourhood
50 150 200 300 310 320 330

0.52
14487.84 14415.85 14370.42 14363.5 14352.98 14343.54 14323.95

Table 9: A table displaying the accuracy and speed for the treated search meth-
ods. For the wild binary segmentation, 1000 intervals were simulated at every
iteration.

First, we see that in terms of speed the window-sliding algorithm performs
best, followed by the binary segmentation, the segment neighbourhood and the
wild binary segmentation. In particular the latter seems to be much slower,
which is mainly due to all the additional intervals that had to be simulated at
every iteration.

On the other hand, the window-sliding algorithms provides lower discrep-
ancy values across the board. It is still able to detect the first few changes with
relative ease, but it performs significantly worse for the closely located changes.
If we were to try and solve problem (2) with a penalty value of 10, then this
algorithm would not even be able to detect any of the latter changes, as none of
the discrepancy values would exceed the penalty threshold. The cause of course
lies in the fact that we only consider a small part of the data at once, so we are
disregarding a lot of information.

In this regard, the binary segmentation does offer better performance.
But it again does not provide good enough performance for the densely located
changes, which is what we hypothesized earlier. It is for this reason that we had
also treated the wild binary segmentation, and judging from the table it does
indeed provide better performance for these kind of changes(especially for points
310 and 330), though for point 320 it still only has a marginal improvement.
But as we just discussed, this comes at the cost of a big increase in run-time.

So if we ignore wild binary segmentation, then the approximate algorithms
are indeed fast, but offer poor performance for densely located change-points
and/or small change sizes. The wild binary segmentation mitigated this prob-
lem somewhat, but at the expense of a big increase in computational cost. If we
now finally consider the Segment Neighbourhood, then not only does it provide
vastly superiour performance for all the change-points, but also at only a mod-
est increase of run-time. The advantages of dynamic programming are clearly
demonstrated here: finding exact, accurate solutions in an efficient manner such
that the increase in computational cost is not too big. We conclude this perfor-
mance study by recommending binary segmentation when the changes are big
and sparsely located, and the segment neighbourhood when harder to discern
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changes causes the former to perform badly.

5 Discussion

In this report we have given a general analysis of change-point models un-
der a variety of different models and assumptions. We first defined change-point
models in a general sense, where we defined these models as being constituted
of the following three parts:

1) Cost functions
2) Search methods
3) Penalty terms

We then spent sections 2 and 3 on treating several different cost-functions.
Namely, in section 2 we focused on parametric models, where we could assume
a known form of the underlying distribution of the data. Specifically, the normal
and gamma models were treated, as these are some of the most used models in
practice([2], [4]). We also leaned into the practicality of these cost-functions, by
conducting a simulation study where the performance of the derived statistics
where evaluated under different situations. The main conclusion that we could
draw was that the parametric statistics were not robust against outliers, even
after we tried mitigating this with robust estimators and bounded cost-functions.

As a means of extending the practical use of change-point models, and
to perhaps also find a more robust method, we then treated non-parametric
models. There were no specific distribution functions/densities to work with
now, so we had to resort to rank-based statistics and empirical distribution
functions. As it turned out when we performed the same simulation studies,
these non-parametric statistics were a lot more robust against outliers(especially
the rank-based ones).

Finally, we treated some widely-used search methods, which we defined as
computational means of extending the single-changepoint problem to multiple
change-points. We saw that the approximate algorithms were fast, but did not
perform well when the changes were not so drastic and also densely located.
On the other hand, the exact algorithm provided vastly superior change-point
approximations in every scenario, albeit at the cost of a modest decrease in
speed.
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Appendix A

A1: Normal statistics

A1.1: Mean change(known variance)

Maximum likelihood mean

The likelihood functions for the null and alternative hypotheses respectively are:

L0(µ, σ2; y1, ..., yT ) =

T∏
i=1

fy(yi;µ, σ
2)

=

T∏
i=1

exp(− 1
2

(yi−µ)2

σ2 )

(2πσ2)
1
2

=

exp(− 1
2σ2

T∑
i=1

(yi − µ)2)

(2πσ2)
T
2

L1(µ1, µT , σ
2; y1, ..., yT ) = · · ·

=

exp

(−(

k∑
i=1

(yi − µ1)2 +

T∑
i=k+1

(yi − µT )2)

2

)
(2πσ2)

T
2

Since σ2 is already given, we can obtain unbiased estimators for the mean by
calculating the log-variant of the likelihood, maximize it with respect to µ and
obtain the MLE for µ :

l(µ, σ2; y1, ..., yT ) = ln(L(µ, σ2; y1, ..., yT ))

= ln

(
(2πσ2)

−T
2 exp

(
− 1

2σ2

T∑
i=1

(yi − µ)2

))

= ln
(

(2πσ2)
−T
2

)
+ ln

(
exp

(
− 1

2σ2

T∑
i=1

(yi − µ)2

))

= −T
2

ln(2πσ2)− 1

2σ2

T∑
i=1

(yi − µ)2

= −T
2

ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

(yi − µ)2

In order to maximize this expression for µ, we set its derivative with re-
spect to µ equal to zero(this will guarantee us a maximum as the logarithmic
function is increasing):
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∂

∂µ
l(µ, σ2; y1, ..., yT ) = 0⇒

∂

∂µ

(
−T

2
ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

(yi − µ)2

)
= 0⇒

1

σ2

T∑
i=1

(yi − µ) = 0⇒

1

σ2

(
T∑
i=1

yi − nµ

)
= 0⇒

T∑
i=1

yi − nµ = 0⇒

µ̂ = y =
1

T

T∑
i=1

yi

A1.2: Mean change(unknown variance)

Maximum likelihood variance

By taking the derivative w.r.t the variance of the log-likelihood and setting it
equal to zero:

∂

∂σ2
l(µ, σ2; y1, ..., yT ) = 0⇒

∂

∂σ2

(
−T

2
ln(2π)− T

2
ln(σ2)− 1

2σ2

T∑
i=1

(yi − µ)2

)
= 0⇒

− T

2σ2
−

[
1

2

T∑
i=1

(yi − µ)2

]
d

dσ2

(
1

σ2

)
= 0⇒

− T

2σ2
−

[
1

2

T∑
i=1

(yi − µ)2

](
− 1

(σ2)2

)
= 0⇒

− T

2σ2
+

[
1

2

T∑
i=1

(yi − µ)2

]
1

(σ2)2
= 0⇒

1

2σ2

[
1

σ2

T∑
i=1

(yi − µ)2 − T

]
= 0

Since σ2 6= 0, the above equation is only satisfied when σ̂2 =
1

T

T∑
i=1

(yi−y)2.
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S = Sk + Ek

First, we rewrite Sk as follows:

Sk =

k∑
t=1

(yt − yk)2 +

T∑
t=k+1

(yt − yT−k)2

=

k∑
t=1

(y2
t − 2ytyk + y2

k) +

T∑
t=k+1

(y2
t − 2ytyT−k + y2

T−k)

=

T∑
t=1

y2
t−2yk

k∑
t=1

yt+
(
∑k
t=1 yt)

2

k
−2yT−k

T∑
t=k+1

yt+
(
∑T
t=k+1 yt)

2

T − k

=

T∑
t=1

y2
t −

(
∑k
t=1 yt)

2

k
−

(
∑T
t=k+1 yt)

2

T − k

Furthermore, we may rewrite Ek as:

Ek = k(yk − yT )2 + (T − k)(yT−k − yT )2

= k(y2
k − 2ykyT + y2

T ) + (T − k)(y2
T−k − 2yT yT−k + y2

T )

= ky2
k+(T−k)y2

T−k+k(−2ykyT+y2
T )+(T−k)(−2yT yT−k+y2

T )

Finally, we can write:

Sk +Ek =

T∑
t=1

y2
t + k(−2ykyT + y2

T ) + (T − k)(−2yT yT−k + y2
T )

=

T∑
t=1

y2
t − 2yT

k∑
t=1

yt + ky2
T − 2yT

T∑
t=k+1

yt + (T − k)y2
T

=

T∑
t=1

y2
t − 2yT

T∑
t=1

yt + Ty2
T

=

T∑
t=1

(y2
t − 2ytyT + y2

T ) = S
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A2: Gamma statistics

A2.1: Scale change

Likelihood functions

L0(θ0) = f(y1, ..., yT ; θ0)

=

T∏
t=1

1

θξtΓ(ξ)
yξ−1
t e−(

yt
θt

)

=

∏T
t=1 y

ξ−1
t

ΓT (ξ)

T∏
t=1

1

θξt
e−(

yt
θt

)

=

∏T
t=1 y

ξ−1
t

ΓT (ξ)
exp

[
T∑
t=1

(
− yt
θ0
− lnθξ0

)]
L1(θ0, δ) = f(y1, ..., yT ; θ0, δ)

=

T−1∑
j=1

πT (j)f(y1, ..., yT ; θ0, δ) | j)

=
1

T − 1

T−1∑
j=1

( j∏
t=1

1

θξtΓ(ξ)
yξ−1
t e−(

yt
θt

)

) T∏
t=j+1

1

θξtΓ(ξ)
yξ−1
t e−(

yt
θt

)


=

1

T − 1

T−1∑
j=1

( j∏
t=1

1

θξtΓ(ξ)
yξ−1
t e−(

yt
θt

)

) T∏
t=j+1

1

(θ0 + δ)ξΓ(ξ)
yξ−1
t e

−(
yt

(θ0+δ)
)


=

1

T − 1

∏T
t=1 y

ξ−1
t

ΓT (ξ)

T−1∑
j=1

exp

[
j∑
t=1

(
− yt
θ0
− ln θξ0

)]

· exp

 T∑
t=j+1

(
− yt
θ0 + δ

− ln(θ0 + δ)ξ
)

Maximum likelihood scale

The likelihood function is:

T∏
t=1

1

θξΓ(ξ)
yξ−1
t e−(

yt
θ ) =

1

Γ(ξ)T
1

θTξ
e−

K
θ

T∏
t=1

yξ−1
t

Here we defined K as

T∑
t=1

yt. By applying the logarithm and deriving the
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resulting expression with respect to θ and equating it to zero, we obtain the
scale’s MLE estimate:

∂

∂θ
log(

1

Γ(ξ)T
1

θTξ
e−

K
θ

T∏
t=1

yξ−1
t ) = 0⇒

∂

∂θ
((ξ − 1)

T∑
t=1

logyt −
K

θ
+ (Tξ)log(

1

θ
)− T log(Γ(ξ))) = 0⇒

K

θ2
− Tξ 1

θ
= 0⇒

1

θ
(
K

θ
− Tξ) = 0⇒

θ̂ =
K

Tξ
=

∑T
t=1 yt
Tξ

Likelihood-ratio

Λ =
L1(θ0, δ)

L0(θ0)
=

1

T − 1

T−1∑
j=1

exp

 T∑
t=j+1

δyt
θ2

0

− ξδ

θ0
+ o(δ)


=

T−1∑
j=1

1

T − 1

1 +

T∑
t=j+1

[
δyt
θ2

0

− ξδ

θ0

]
+ (T − j)o(δ)


=

T−1∑
j=1

1

T − 1

1 +

T∑
t=j+1

[
δyt
θ2

0

− ξδ

θ0

]
+ o(δ)


= 1 +

1

T − 1

T−1∑
j=1

T∑
t=j+1

[
δyt
θ2

0

− ξδ

θ0

]
+ o(δ)

= 1 +
δ

θ0

 1

(T − 1)θ0

T−1∑
j=1

T∑
t=j+1

yt −
Tξ

2

+ o(δ)

A2.2: Shape change

Likelihood function

L1(yt | ξ0, δ, θ, k) =

T∏
t=1

1

θξtΓ(ξt)
yξt−1
t e−(

yt
θ )

= exp

{
−

T∑
t=1

yt
θ

}
T∏
t=1

yξt−1
t

T∏
t=1

1

θξt

T∏
t=1

1

Γ(ξt)
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= exp

{
−

T∑
t=1

yt
θ

+

k∑
t=1

[(ξ0 − 1) lnyt − lnΓ(ξ0)− ξ0 lnθ] +

T∑
t=k+1

[(ξ0 + δ − 1)lnyt − lnΓ(ξ0 + δ)− (ξ0 + δ)lnθ]

}
Now we define η(yt; ξ, θ) = (ξ − 1)lnyt − lnΓ(ξ) − ξlnθ, for t = 1, ..., T.

As before, we will derive a semi-bayesian approach where we make an a priori
assumption about the change-point location, i.e. that it is equally likely to oc-
cur on any of its possible locations. By summing over all the possible locations
k between 1 and T - 1, we now obtain for our likelihood under H1 :

L1(yt | ξ0, δ, θ) =

T−1∑
k=1

(T − 1)−1L1(yt | ξ0, δ, θ, k)

= (T − 1)−1exp

{
−

T∑
t=1

yt
θ

}
·
T−1∑
k=1

exp

{
k∑
t=1

η(yt; ξ, θ) +

T∑
t=k+1

η(yt; ξ + δ, θ)

}

Under the additional assumption that the jump δ is not too big, we can
obtain a more convenient expression for the likelihood. First, we note that
in a close neighbourhood of ξ (i.e. a small value of δ ), we can approximate
η(yt; ξ + δ, θ) as follows:

η(yt; ξ + δ, θ) = η(yt; ξ, θ) + δη′(yt; ξ, θ) + o(δ)

= η(yt; ξ, θ) + δ[lnyt − lnθ −Ψ(ξ)] + o(δ)

Here, we define Ψ(ξ) to be the first derivative of lnΓ(ξ). This allows us to
write the likelihood as follows:

L1(yt | ξ0, δ, θ) = (T − 1)−1exp

{
−

T∑
t=1

yt
θ

+ η(yt; ξ, θ)

}
·

T−1∑
k=1

exp

{
δ

T∑
t=k+1

[lnyt − lnθ −Ψ(ξ) + o(δ)]

}

= (T − 1)−1exp

{
−

T∑
t=1

yt
θ

+ η(yt; ξ, θ)

}
·

T−1∑
k=1

{
1 + δ

T∑
t=k+1

[lnyt − lnθ −Ψ(ξ) + o(δ)]

}
, as δ → 0.

Maximum likelihood Ψ(ξ) + ln θ̂

We start from the log-likelihood assuming H0 holds:
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l(ξ0) = lnL0(ξ0, θ̂) = ln

T∏
t=1

f(yt; ξ0, θ̂)

= ln

T∏
t=1

∏T
t=1 y

ξ0−1
t

ΓT (ξ0)
exp

[
T∑
t=1

(
− yt
θ̂0

− lnθ̂ξ00

)]

= (ξ0 − 1)

T∑
t=1

ln(yt)−
T∑
t=1

yt

θ̂
− Tk ln(θ̂)− T ln(Γ(ξ0))

= (ξ0 − 1)

T∑
t=1

lnyt − Tξ0 − Tξ0ln(

∑
yt

ξ0T
)− T ln(Γ(ξ))

Taking the derivative with respect to ξ then yields:

∂ξl(ξ0) =

T∑
t=1

lnyt−T−T ln(

∑
yt

ξ0T
)− T

Γ(ξ0)
·Γ′(ξ0)+Tξ0

ξ0T∑
yt

∑
yt
T

1

ξ2
0

=

T∑
t=1

lnyt − T ln(

∑
yt

ξ0T
)− T Γ′(ξ0)

Γ(ξ0)

Denoting
Γ′(ξ0)

Γ(ξ0)
as Ψ(ξ0) and equating the equation to zero finally leads

us to:

T∑
t=1

lnyt − T ln

T∑
t=1

yt + T lnξ0 + T lnT − TΨ(ξ0) = 0

The equation can not be simplified anymore in regards to ξ0, meaning that
it is not possible to derive an analytic expression for the MLE of ξ0. However,
using some clever mathematical reasoning we can derive a MLE-estimator for
Ψ(ξ0) + ln θ̂. First note that from the above equation we can write:

T (lnξ0 −Ψ(ξ0)) = T ln

T∑
t=1

yt −
T∑
t=1

lnyt − T lnT ⇒

lnξ0 −Ψ(ξ0) = ln

T∑
t=1

yt −
1

T

T∑
t=1

lnyt − lnT

= ln
1

T

T∑
t=1

yt −
1

T

T∑
t=1

lnyt

We now cleverly rewrite Ψ(ξ0) + ln θ̂:

Ψ(ξ0)− lnξ0 + lnξ0 + ln θ̂
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=
1

T

T∑
t=1

lnyt − ln
1

T

T∑
t=1

yt + lnξ0 + ln θ̂

=
1

T

T∑
t=1

lnyt − ln
1

T

T∑
t=1

yt + lnξ0 + ln
1

T

T∑
t=1

yt − lnξ0

=
1

T

T∑
t=1

lnyt
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