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ABSTRACT
Sequential decision making techniques hold great promise to im-
prove the performance of many real-world systems, but computa-
tional complexity hampers their principled application. Influence-
based abstraction aims to gain leverage by modeling local subprob-
lems together with the ‘influence’ that the rest of the system exerts
on them. While computing exact representations of such influence
might be intractable, learning approximate representations offers
a promising approach to enable scalable solutions. This paper in-
vestigates the performance of such approaches from a theoretical
perspective. The primary contribution is the derivation of suffi-
cient conditions on approximate influence representations that can
guarantee solutions with small value loss. In particular we show
that neural networks trained with cross entropy are well suited to
learn approximate influence representations. Moreover, we provide
a sample based formulation of the bounds, which reduces the gap
to applications. Finally, driven by our theoretical insights, we pro-
pose approximation error estimators, which empirically reveal to
correlate well with the value loss.
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1 INTRODUCTION
Sequential decision making methods have the potential to improve
control in distributed or networked systems that can involve many
agents and complex environments. However, applying these meth-
ods in a principled manner is often difficult due to computational
complexity. One idea to improve scalability is using abstractions,
compressed representations of the sufficient information for an
agent to perform optimal decisions. Many abstraction approaches
have been suggested [3, 17, 23] but in order to ensure small value
loss, they only allow abstracting states of the environment with sim-
ilar dynamics. A body of work on localized abstractions [4, 5, 38, 42]
tries to overcome this issue, allowing to abstract large part of the
system away. These approaches leverage the sparse interaction
structures of many real-world domains where the agent’s reward
and observations depend directly only on few (local) state variables.
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Influence-based abstraction (IBA) [33] generalizes over these ap-
proaches and provides a unified framework for localized abstrac-
tions for a general class of multiagent problems. The basic idea is
to decompose structured multiagent systems into small submodels
for each agent where only few local variables are included. The
‘influence’ summarizes the indirect effects of other agents poli-
cies and the rest of the environment on the local variables of a
single agent. Unlike existing methods to compute best responses
[26, 30, 34] which involve reasoning over the entire state space
and other agents action-observation histories, IBA ensures that the
decision maker needs to reason only over few local state variables.
As a result, the best-response problem can be solved much more ef-
ficiently in the local model without any loss in value. This approach
may not only enable speedups in best-response problems but may
serve also as the foundation for scalable multiagent approaches
based, for instance, on searching in the space of influences [42].

However, even though IBA provides a lossless abstraction, in gen-
eral, deducing an exact representation of the influence itself is com-
putationally intractable even for simple problems. Given the rapid
progress in learning methods for sequence prediction [2, 20, 22], we
envision that inducing approximate representations of the influence
offers a promising approach to scalable solutions. This raises a fun-
damental question: to what extent are such existing methods (and
their proxy-loss functions) aligned with the actual influence-base
abstraction objective of achieving near-optimal value?

In this work we address this issue, showing that there is theo-
retical and empirical evidence that employing existing sequence
predictors can lead to good approximate influence representations.
In particular, we derive a performance loss bound as well as a
probabilistic version that provides quality guarantees on approxi-
mate influence to ensure near-optimal solutions. Like bounds based
on the Bellman error, our bounds themselves are computationally
intractable for large problems. This is to be expected: the perfor-
mance loss is characterized by the quality of each possible predic-
tion. Therefore, deriving an exact bound essentially corresponds
to computing the exact generalization error of the employed ma-
chine learning model. Nevertheless, we show that a neural network
trained with cross-entropy loss seems well suited for the prediction
task, as the training objective is aligned with the bound we derived.
Finally, we empirically demonstrate that it is possible to compute
statistics, based on the empirical test error of approximate influence,
that correlate well with the actual value loss.

In summary, our contributions in this paper are:
(1) Sufficient conditions for the quality of the influence approxima-

tion in terms of value loss.
(2) Discussing how these conditions are aligned with usual opti-

mization of neural networks trained with cross entropy loss.
(3) An empirical evaluation showing that optimizing cross entropy

loss of influence predictors leads to lower performance loss.
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2 RELATEDWORK
Abstraction has been widely studied as a technique to accelerate
learning and improve scalability in complex (multiagent) problems.
Many abstraction approaches have been suggested [1, 14, 15, 17,
23, 35] but they all share a common limitation: in order to guar-
antee bounded loss, the ground states in the same abstract states
(which are clusters of ground states) must all share similar transi-
tion probabilities. However, when we want to abstract away entire
sets of state variables such guarantees will typically not be possible.
Influence-based abstraction differs essentially from these kind of
abstractions. In fact, it enables abstracting entire factors still pro-
viding guarantees of optimality when the aggregated states have
typically very different transition probabilities.

3 BACKGROUND
First we outline the background on sequential decision making.

3.1 Sequential Decision Making Framework
We consider a general class of multiagent problems that can be
modeled as partially observable stochastic games [19].

Definition 1 (POSG). A Partially Observable Stochastic Game is a
tuple 𝑀 = (𝑛, 𝑆,𝐴,𝑂,𝑇 ,Ω, 𝑅, ℎ, 𝑏0) where 𝑛 agents interact in the
finite state space 𝑆 .𝐴 = 𝐴1 × · · · ×𝐴𝑛 and𝑂 = 𝑂1 × · · · ×𝑂𝑛 are the
finite spaces of joint actions and observations. 𝑇 models the transi-
tion probabilities as 𝑇 (𝑠 ′ |𝑠, 𝑎) = P(𝑠 ′ |𝑠, 𝑎), namely the probability
of resulting in state 𝑠 ′ when actions 𝑎 = (𝑎1, . . . , 𝑎𝑛) are chosen in
state 𝑠 . Ω is the observation distribution, Ω(𝑜 ′ |𝑎, 𝑠 ′) = P(𝑜 ′ |𝑎, 𝑠 ′),
the probability of receiving observations 𝑜 = (𝑜1, . . . , 𝑜𝑛) when per-
forming actions𝑎 results in state 𝑠 ′.𝑅(𝑠, 𝑎) = (𝑅1 (𝑠, 𝑎), . . . , 𝑅𝑛 (𝑠, 𝑎))
specifies the immediate reward function for each agent for taking
actions 𝑎 in state 𝑠 . Finally, ℎ defines the process horizon and 𝑏0

the initial state distribution.

In a POSG, each agent 𝑖 employs a policy 𝜋𝑖 that corresponds to a
possibly stochastic map from the action-observation history to the
action space. A joint policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) is a tuple of policies
for each of the agents. Given a joint policy 𝜋 , we can define the
corresponding expected cumulative reward function for an agent 𝑖:
𝑉 𝜋
𝑖

= E
[∑ℎ

𝑡=1 𝑅
𝑡
𝑖
| 𝜋,𝑏0

]
.

Different optimization problems and corresponding solution con-
cepts can be considered according to the adversarial or cooperative
nature of the agents. In the first case, the problem consists of search-
ing for a Nash equilibrium (NE)[27]: a joint policy 𝜋 = (𝜋𝑖 , 𝜋−𝑖 )
such that each agent 𝑖 draws no advantage from deviating from
its policy 𝜋𝑖 given the policies of the others 𝜋−𝑖 . In cooperative
settings modeled by decentralized partially observable Markov de-
cision processes (Dec-POMDPs) [7, 29], the solution consists of the
optimal join policy 𝜋 maximizing the value function shared by all
players. Many solutions methods for searching NE (e.g. fictitious
play [6, 11], double oracle [25], parallel Nash memory [31]) and for
optimal policies for Dec-POMDPs (e.g. influence search [42]) use
best-response computations as their inner loop. A best response
policy 𝜋∗

𝑖
for agent 𝑖 against fixed policies 𝜋−𝑖 for the other agents

maximizes the value function max𝜋𝑖 𝑉
(𝜋𝑖 ,𝜋−𝑖 )
𝑖

.

However, computing best responses implies reasoning over the
entire state space and other agents beliefs [26]. To ease this task we

want to exploit the structural properties of the environment to build
local abstractions. Frequently, in fact, the state space can be thought
as composed of different state variables, or factors [10]. In this case,
the model is called factored POSG and every state 𝑠 ∈ 𝑆 can be
represented as a tuple of factors instantiations 𝑠 = (𝑥1, . . . , 𝑥𝑚). This
structure allows to decompose the system into (weakly) coupled
subproblems, the local models, for single agents including only few
factors. Thus, the idea is to define an equivalent problem to the best
response in which the agent needs only to reason over the factors
included in the local model.

3.2 Influence-Based Abstraction
Influence-based abstraction [33] formalizes the concept of the local
model for an agent in a factored POSG and provides the formal
framework of the local abstraction for the best-response problem.

To simplify the discussion, we restrict to locally fully-observable
POSGs [18]. We use capital letters to denote state variables and
small letters for variable instantiations.

Definition 2 (Fully Observable Local Model). Given a factored
POSG, a Fully Observable Local Model for an agent is a subset of
fully observable state variables, called modeled factors, including all
the state variables directly affecting the observations and reward.
We denote the local state, that is the collection of all the modeled
factors, as 𝑋 and the complementary collection of non-modeled
factors as 𝑌 .

The idea of the local model is to exclude those factors that are not
necessary to compute the best response from the subset of variables
over which the agent needs to reason and that can therefore be
abstracted away. In a local model, we distinguish between modeled
factors that are only affected by other factors and actions that are
modeled, called only-locally affected factors, and the non-locally
affected factors that are modeled factors affected by at least one
factor or action of the external part.We denote by𝑋loc the collection
of the only-locally affected factors.

Definition 3. We refer to the non-modeled factors or external ac-
tions that directly exert an influence on at least one of the modeled
factor as the influence sources 𝑌src. We define the influence desti-
nations 𝑋dest as the modeled factors that directly experience the
influence of the external part of the system through the influence
sources.

Thus, the local state 𝑋 can be thought as 𝑋 = (𝑋loc, 𝑋dest).
In other words, the local model comprises only few modeled-

factors. Some of them are influenced by the external part and there-
fore are called influence destinations. The non-modeled factors or
actions that directly exert this influence on the modeled factors are
accordingly the sources of the influence. See Section 3.2 in [33] for
the formal definitions of the general, not fully-observable, case.

When abstracting away the non-modeled factors 𝑌 , the dynam-
ics of 𝑋dest become non-Markovian. Accordingly, the local state
transitions are not well defined. To define the local state dynamics,
we need to include as part of the abstract state space the history of
relevant modeled actions and factors to infer the influence sources
𝑌src. The notion of d-separating set (d-set) [9] formalizes this con-
cept. The d-set at time 𝑡 , 𝐷𝑡 contains the histories of the modeled
factors and actions necessary to predict the influence sources 𝑌 𝑡src.
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Definition 4 (Influence Point). The exact influence point (EIP)
𝐼 = (𝐼0, . . . , 𝐼ℎ−1) is a collection of conditional probability distri-
butions 𝐼𝑡 (𝑌 𝑡src |𝐷𝑡 ) ≜ P(𝑌 𝑡src |𝐷𝑡 , 𝜋−𝑖 , 𝑏0) of the influence sources
𝑌 𝑡src given the possible instantiations of the d-set.

We refer to Section 4.1 in [33] for extensive definitions of influ-
ence point and d-separating set. The local model dynamics is for-
malized by the influence-augmented local model, a factored Markov
decision process (MDP) where the state space consists of the local
state augmented with the d-set.

Definition 5 (IALM). Consider a fully observable local model for
agent 𝑖 in a factored POSG𝑀 = (𝑛, 𝑆,𝐴,𝑂,𝑇 ,Ω, 𝑅, ℎ, 𝑏0), that iden-
tifies modeled factors 𝑋 . Fix the policies 𝜋−𝑖 for the other agents.
An Influence Augmented Local Model M𝑖 = (S̄𝑖 , 𝐴𝑖 ,T𝑖 , 𝑅𝑖 , ℎ, 𝑏0) is
a factored MDP where the action space 𝐴𝑖 and rewards 𝑅𝑖 corre-
spond to the POSG agent 𝑖’s actions and rewards. The augmented
state space S̄𝑖 consists of local states and d-separating sets as
𝑠𝑡 = (𝑥𝑡 , 𝑑𝑡 ) = ((𝑥𝑡loc, 𝑥

𝑡
dest), 𝑑

𝑡 ). The transition functions are de-
rived as

T𝑖 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) = 𝑇 (𝑥𝑡+1
loc |𝑥

𝑡 , 𝑎𝑡 )
∑
𝑦𝑡src

𝑇 (𝑥𝑡+1
dest |𝑥

𝑡 , 𝑦𝑡src, 𝑎
𝑡 ) 𝐼𝑡 (𝑦𝑡src |𝑑𝑡 )

(1)

This model defines an equivalent problem to the best-response
problem for agent 𝑖 against 𝜋−𝑖 . Namely, the optimal policy for the
MDP defined by the IALM M𝑖 corresponds to the best response
against policies 𝜋−𝑖 in the factored POSG 𝑀 . The claim and com-
plete proof that IBA provides a lossless abstraction can be found in
Section 6 [33].

3.3 Influence in Planetary Exploration
To give a concrete intuition of influence-based abstraction we use a
version of the planetary exploration environment [42]. A rover has
to explore a planet, and its navigation may be guided by a plan from
a satellite. The goal of the rover is to move until it reaches a target
site, where it will collect a positive reward. However, any time it
fails to step forward, it will receive a penalty. The satellite might
help the rover by providing a plan which increases the likelihood
of a successful step.

Figure 1 shows a dynamic Bayesian network (DBN) [10] that
compactly represents the problem. At each time 𝑡 the rover can ob-
serve its position 𝑝𝑜𝑠 and if a plan 𝑝𝑙 was available at the previous
time step. The rover’s local state consists of 𝑋 = (𝑝𝑜𝑠, 𝑝𝑙). The plan
𝑝𝑙 is the influence destination since it is directly affected by the
non-modeled satellite action 𝑎sat which is accordingly the influence
source. Contrarily, the position 𝑝𝑜𝑠 is only directly affected by local
variables. The decisions of the satellite might depend on its level of
battery, the charge, which only indirectly affects the local model
through the satellite actions. Potentially, the decision-making prob-
lem of the satellite might depend on a conceivably larger number
of variables: it has to manage its own resources, send plans to other
rovers etc. However, the only information the rover needs to re-
trieve to act optimally is whether the satellite will make available
a routing plan at the next step. Therefore, it can abstract away all
the other state variables and try to infer the satellite’s action, given
all the relevant information that it has in the local model. In this
scenario, it turns out that all it has to remember is the history of

the availability of plans at each time step. Therefore the influence
point consists of the distribution of the satellite’s actions 𝑌 𝑡src = 𝑎𝑡sat,
given the local history of the plan 𝐷𝑡 = (𝑝𝑙0, . . . , 𝑝𝑙𝑡 ).

Figure 1: A DBN of the planetary exploration domain. The
dotted red square delimits the local model of the rover, in-
cluding the modeled factors 𝑋 . The external part comprises
the non-modeled factors𝑌 . Among them, the satellite action
𝑎sat directly affects the availability of a plan 𝑝𝑙 and therefore
is the influence source. The gray circles constitute the d-set
𝐷1 to infer the action 𝑎sat at time 𝑡 = 1. Namely, the history
of the plan (𝑝𝑙0, 𝑝𝑙1) retains the sufficient local information
to infer the satellite action 𝑎1

sat. The influence on the local
model at the next time step 𝑡 = 2 is experienced directly by
the modeled factor plan 𝑝𝑙2 that is thus the influence desti-
nation.

4 PLANNINGWITH APPROXIMATE
INFLUENCE REPRESENTATIONS

IBA has the potential to enable faster planning in complex do-
mains where using the entire model would typically be too heavy
and computational demanding with no information loss. However,
exact influence computation requires solving a large number of
intractable inference problems. In fact, in most applications, the size
of the d-set increases linearly in time, resulting in an exponentially
increasing number of instantiations of the d-set. This means that
representing an EIP takes exponential space, and computing an EIP
requires solving exponentially many and possibly hard inference
problems. This motivates the idea of using approximate influence
point (AIP) representations: we instead use advances in machine
learning that allow us to generalize AIPs over d-separating sets. The
overall idea consists of transforming the global model into a new ap-
proximate influence-augmented local model at which any solution
method can be applied. Our method is therefore complementary
to the planning method. The advantage lies in the reduction of the
problem size and therefore in computational complexity.

The approach is straightforward but sketched in Algorithm 1
for completeness: first we collect samples of the d-set 𝐷𝑡 , the local
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history sufficient to predict the influence sources 𝑌 𝑡src in the global
model using an exploratory policy 𝜋

Exp
𝑖

for agent 𝑖 (lines 1-3). In
the second step, we learn the approximate influence point 𝐼𝑡 using
the 𝑁 trajectories of

(
𝐷𝑡 , 𝑌 𝑡src

)
as training set (lines 4-5). Then, we

construct the approximate local transitions T̂𝑖 using the learned
influence point 𝐼 according to 1 (line 6). Then, we assume that
the resulting local problem might be solved by simulation-based
planning or RL approaches to derive a near optimal best-response
𝜋∗
𝑖
for agent 𝑖 (line 7-9). Note that in line 8 any solution method

can be used to solve the MDP problem. The idea is that this phase
uses 𝑀 ≫ 𝑁 episodes, thus making the initial cost of using the
expensive global simulations negligible.

While planning with a learned approximate influence could lead
to significant speedups, there is also a risk as the approximate
influence point may induce inaccurate state transitions, leading
to a loss in value. A key question therefore is: what constitutes
good AIPs? What conditions need to hold on 𝐼 , for 𝜋∗

𝑖
to be close

to optimal?

Algorithm 1 Exact Best Response to Approximate Influence

Require: exploratory policy 𝜋
Exp
𝑖

, policies 𝜋−𝑖
1: {Simulation:}
2: Create a dataset of 𝑁 trajectories of the global model
3: Extract

(
𝑑𝑡
𝑘
, 𝑦𝑡src,𝑘

)
𝑘=1:𝑁,𝑡=1:ℎ

.
4: {Train a Prediction Algorithm:}
5: Learn approximate influence 𝐼𝑡 from

(
𝑑𝑡
𝑘
, 𝑦𝑡src,𝑘

)
𝑘=1:𝑁

for any
𝑡 = 0, . . . , ℎ

6: Compute approximate local transitions T̂𝑖 from 𝐼

7: {Solve the local planning/RL problem:}
8: Compute 𝜋∗

𝑖
= MDPSolver(T̂𝑖 )

9: return 𝜋∗
𝑖

5 THEORETICAL LOSS BOUNDS
Here we want to discuss guarantees on the value loss when using
AIPs instead of EIPs to derive best-response policies. Such kind of
results allow us to derive conditions for approximate influence to
yield near-optimal solutions.

Formally, we consider two IALMs M = (S̄, 𝐴,T , 𝑅, ℎ, 𝑏0) and
M̂ = (S̄, 𝐴, T̂ , 𝑅, ℎ, 𝑏0) sharing the same augmented state space,
action space and rewards. They differ only in the transition func-
tions T and T̂ that are induced respectively by the EIP 𝐼 and an
AIP 𝐼 according to 1. We see M̂ as an approximation to M. We
omit the subscript 𝑖 when referring to an IALM for agent 𝑖 to ease
the notation.

5.1 𝐿1 Loss Bound
We introduce first the necessary notation. We use V∗ to denote
the objective optimal value forM. 𝜋∗ refers to the optimal policy
in the approximate IALM M̂.V𝜋∗

denotes the value achieved by
policy 𝜋∗ in the IALMM. Our aim is to bound the value loss given
by the differenceV∗ −V𝜋∗

. We define |𝑅 | ≜ max𝑎,𝑠 |𝑅(𝑠, 𝑎) |. We
use | | . | |1 and 𝐷𝐾𝐿 to denote the 1-norm and the KL divergence
between probability distributions.

The proof of the value loss bound derived is divided into two
steps. We proceed first by bounding the value loss with the dif-
ference between the IALM transitions functions | |T − T̂ | |1. Then,
we prove an upper bound for | |T − T̂ | |1 in terms of the difference
| |𝐼 − 𝐼 | |1. Finally, combining these two results we derive an upper
bound for the value loss in terms of the distance between the EIP
and the AIP | |𝐼 − 𝐼 | |1. We collect the proofs of all the following
claims in the appendix of the extended version of this paper [13].

Since the IALM M̂ is essentially an approximation of the exact
influence IALM M with imprecise transitions, we apply the loss
bounds for MDPs with uncertain transition probabilities [16, 24, 37]
to the case of the IALMs.

Theorem 1. Consider the two IALMs M and M̂, the following
loss bound holds:

| |V∗−V𝜋∗
| |∞ ≤ 2ℎ2 |𝑅 | max

𝑡
max
𝑠𝑡 ,𝑎𝑡

| | (T (·|𝑠𝑡 , 𝑎𝑡 )−T̂ (·|𝑠𝑡 , 𝑎𝑡 ) | |1 (2)

The importance is that we can bound the value loss when the
IALM transition functions T , T̂ induced by 𝐼 , 𝐼 are sufficiently
close.

For the second step, we use the relation between the IALM tran-
sitions T and the influence point 𝐼 expressed by 1.

Lemma 1. Consider the IALMs transitions T and T̂ . For any 𝑡 ,
augmented state 𝑠𝑡 = (𝑥𝑡 , 𝑑𝑡 ) and action 𝑎𝑡 ,

| | (T (·|𝑠𝑡 , 𝑎𝑡 ) − T̂ (·|𝑠𝑡 , 𝑎𝑡 ) | |1 ≤ ||(𝐼𝑡 (·| 𝑑𝑡 ) − 𝐼𝑡 (·| 𝑑𝑡 ) | |1 (3)

Combining Theorem 1 and Lemma 1, we obtain the 𝐿1 loss
bound.

Theorem 2. Consider an IALM M = (S, 𝐴,T , 𝑅, ℎ, 𝑏0) and an
AIP 𝐼 inducing M̂ = (S, 𝐴, T̂ , 𝑅, ℎ, 𝑏0). Then, a value loss bound in
terms of the 1-norm error is given by

| |V∗ −V𝜋∗
| |∞ ≤ 2ℎ2 |𝑅 | max

𝑡, 𝑑𝑡
| | (𝐼𝑡 (·| 𝑑𝑡 ) − 𝐼𝑡 (·| 𝑑𝑡 ) | |1 (4)

This shows that the value loss is bounded by the worst case
𝐿1-distance between the exact and the approximate influence over
all the possible d-set instantiations.

5.2 KL Divergence Bound
We now present a loss bound in terms of the KL divergence between
the approximate and the exact influence. Since the cross entropy
and KL divergence differ solely by an additive constant, this result
establishes a relation between the value loss and the cross entropy
error for influence approximation.

Corollary 1. Consider an IALM M = (S, 𝐴,T , 𝑅, ℎ, 𝑏0) and an
AIP 𝐼 inducing M̂ = (S, 𝐴, T̂ , 𝑅, ℎ, 𝑏0). Then, a value loss bound in
terms of KL divergence error is given by

| |V∗ −V𝜋∗
| |∞ ≤ 2ℎ2 |𝑅 | max

𝑡,𝑑𝑡

√
2𝐷𝐾𝐿 (𝐼𝑡 (·| 𝑑𝑡 ) | |𝐼𝑡 (·| 𝑑𝑡 )) (5)

We see that the performance loss can be bounded by the max
KL divergence. Cross entropy loss optimizes the mean of such
loss E𝑡,𝐷𝑡

[
𝐷𝐾𝐿 (𝐼𝑡 (·|𝐷𝑡 )) | |𝐼𝑡 (·|𝐷𝑡 )

]
and therefore is aligned with

this bound: even though it does not optimize the max itself, it is
intuitively clear that in many problems a low mean will imply a low
max error, even the more since the mean is known to be sensitive
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to outliers. Moreover, this is an asymptotically tight bound. That is,
when the KL divergence tends to zero the approximate influence
solution approaches the true optimal one. This suggests that neural
networks learning approaches are well suited for the approximate
influence learning task and that the cross entropy, which has been
widely used as test error, can give a priori insight on the value loss.

5.3 Probabilistic Loss Bound
The previous section gives an idea of what AIPs properties can
guarantee bounded value loss. However, the direct application of
Theorem 2 and Corollary 1 requires the distance to the true in-
fluence point 𝐼 , which is unknown. In this section, we present an
approach to overcome this limitation: a probabilistic loss bound de-
pending only on the distance to an empirical influence distribution,
which can be measured using a test set.

Precisely, assume that for a given instatiation 𝑑𝑡 of the d-set at
time 𝑡 wehave𝑁 samples of the influence sources

{
𝑦𝑡src,1, . . . , 𝑦

𝑡
src,𝑁

}
and let

𝐼𝑡𝑁 (𝑦𝑡src | 𝑑𝑡 ) =
1
𝑁

𝑁∑
𝑘=1

𝛿𝑦𝑡src,𝑘
(𝑦𝑡src)

denote the empirical conditional distribution. Our result presents
a value loss bound in terms of the distance between the empirical
influence 𝐼𝑡

𝑁
and the approximate 𝐼𝑡 .

Theorem 3. Consider an IALMM = (S, 𝐴,T , 𝑅, ℎ, 𝑏0) and an AIP
𝐼 inducing M̂ = (S, 𝐴, T̂ , 𝑅, ℎ, 𝑏0). Assume that for every time 𝑡
and d-set instantiation 𝑑𝑡 , we have at least an sample of size 𝑁 of
influence sources. Then for every 𝜀 > 0

P

(
| |V∗ −V𝜋∗

| |∞ ≤ 2ℎ2 |𝑅 | max
𝑡,𝑑𝑡

| | (𝐼𝑡𝑁 (·| 𝑑𝑡 ) − 𝐼𝑡 (·| 𝑑𝑡 ) | |1 + 𝜀

)
≥

1 − ℎ |𝐷ℎ | (2 |𝑌src | − 2)𝑒−𝑁
𝜀2
2 (6)

where |𝑌src | is the cardinality of the influence sources space and
|𝐷ℎ | the cardinality of the d-sets space at time ℎ.

This theorem states that, with high probability, the value loss of
using an AIP 𝐼 is upper bounded by the empirical error (that we can
measure using a test set). We believe that this is a first step towards
bounds that can be used in practical applications.

However, the bound in Theorem 3, still requires an intractable
maximization over all possible instantiations of d-sets (and needs
𝑁 > log(ℎ |𝐷ℎ |2 |𝑌src |) samples for each of these). Moreover, the
maximization over d-sets might be too conservative in many cases.
Namely, the right-hand side of (5) corresponds to the loss one agent
would incur if every time step the mistake is caused by the worst-
case approximation of the influence over d-sets. We think that the
maximizationmay be replaced with an appropriate expectation over
instantiations. In this respect, identifying versions of these bounds
that work with expectations over d-sets, rather than maximization,
is one of the important directions of future work that our paper
identifies.

6 MULTIAGENT IMPLICATIONS
So far, we have focused on the perspective of a single agent, that
computes a best response against the fixed policies of other agents.
However, the results in this paper can have important implications

also for settings where we optimize or solve for the policies of
multiple agents at the same time. In fact, the insights of influence-
based abstraction originated from the study of multiagent systems
[4, 5, 32, 36, 38–44], so these implications should hardly be surpris-
ing. Nevertheless, we think it is useful to spell out some of these
implications and will do so in the remainder of this section.

First, we point out that the best-response setting that we consider
is very general. In fact, the notion of a ‘fixed policy’ of an agent
in a POSG is very powerful: such a fixed policy is a mapping from
histories of actions and observations to distributions over actions
and therefore powerful enough to model learning agents. This
means that the fixed policies that we compute a best response
against could include, e.g., a Q-learning agent.

A second implication is for the computation of equilibria in
POSGs. Many methods for computing Nash equilibria in POSGs
[6, 11, 21, 25, 31], use best-response computation as an inner loop.
In many cases, such as in the double-oracle algorithm [25] or the
parallel Nash Memory [31], replacing such a best-response com-
putation with an 𝜖-best response computation can enable us to
compute 𝜖-approximate Nash Equilibria (𝜖-NEs) [27], in which no
player can benefit more than 𝜖 from deviating. As such, our results
– that show under what conditions on the influence predictions
we can compute an 𝜖-approximate best response – may lead to
computationally feasible paths to compute 𝜖-NEs.

Even in cases where computing 𝜖-NEs will remain out of reach,
our results can provide insight in complex MAS.

Observation 1. Given a method 𝐸 to estimate an AIP with an error
(maximum 𝐿1 norm) of at most 𝜖1, we can verify if a particular joint
policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) is an (2ℎ2 |𝑅 |𝜖1)-NE as follows: 1) use 𝐸 to
estimate the influence 𝐼𝑖 on each agent 𝑖 2) verifying if 𝜋𝑖 is an
optimal solution in the IALM constructed for agent 𝑖 .

Of course, the question of how to develop such estimators 𝐸 is
not trivial in the general case, but there are many special cases with
compact influence descriptions where this is possible [12, 33].

Moreover, IBA serves as the basis for influence search [5, 42, 44]
in cooperative settings. The key idea is that an influence point
captures all the relevant information about many different policies
of the other agents. That is, different joint policies might induce
the same influences on the local models of the agents. Thus, the
space of ‘joint influence points’ 𝐼 = (𝐼1, . . . , 𝐼𝑛) can be much smaller
than the space of joint policies 𝜋 = (𝜋1, . . . , 𝜋𝑛), and it can be much
more efficient to search through the former. [43].1

7 EMPIRICAL EVALUATION
The bounds presented in Section 5 establish a relation between the
value loss and the cross entropy of the influence approximations. In
particular, they suggest that the mean cross entropy loss is aligned
with the objective of minimizing the performance loss.

Here we evaluate if this alignment translates into practical set-
tings by investigating the relation between the mean cross entropy

CE(𝐼 , 𝐼 ) ≜ E𝑡,𝐷𝑡

[
CE(𝐼𝑡 (·|𝐷𝑡 ), 𝐼𝑡 (·|𝐷𝑡 ))

]
1Roughly speaking, an influence search algorithm searches in the space of possible
joint influences, and for each joint influence point 𝐼 = (𝐼1, . . . , 𝐼𝑛) , it solves a local
constrained best-response problem for each agent (possibly in parallel): each agent 𝑖
computes a best-response 𝜋∗ (𝐼 ) to 𝐼𝑖 constrained to inducing influences 𝐼−𝑖 on the
local models of the other agents.

Main Track AAMAS 2021, May 3-7, 2021, Online

381



(a) Test errors for increasing training epochs. (b) Value achieved by 𝜋∗ compared to the optimal value
for increasing training epochs.

(c) Correlation between value loss and 𝑒𝑟𝑟𝑜𝑟CE. (d) Correlation between value loss and 𝑒𝑟𝑟𝑜𝑟norm1.

Figure 2: Planetary Exploration.

and the performance lossV∗ −V𝜋∗
. Namely, we expect to see that

a better influence approximation in terms of cross entropy loss,
indeed, leads to a smaller value loss. Here we try to validate this
hypothesis.

Similarly, we investigate to what extent the mean 1-norm error

| |𝐼 − 𝐼 | |1 ≜ E𝑡,𝐷𝑡

[
| |𝐼𝑡 (·|𝐷𝑡 ) − 𝐼𝑡 (·|𝐷𝑡 ) | |1

]
allows to a priori assess the quality of the approximations in terms
of the value loss. In fact, according to the results in Section 5,
the 1-norm has the potential to provide a tighter bound for the
performance loss. If experimentally confirmed, this would motivate
future work to investigate the possibility to use different training
losses based on 𝐿1 distance.

7.1 Experimental Setup
We follow the procedure sketched in Algorithm 1. That is, we first
run the simulations from the global model using an exploratory
random policy 𝜋Exp for the local agent and the set of fixed policies
for the other agents. We collect the samples of influence sources and

Figure 3: Traffic network. The local model is delimited by
the dotted square. The blue triangles represent the vehicles
and the green bars the traffic lights.

d-sets {𝑦𝑡src,k, 𝑑
𝑡
𝑘
}𝑡=1:ℎ,𝑘=1:𝑁 . We train a LSTM neural network with

cross entropy loss to induce the approximate influence 𝐼𝑡 ( · |𝐷𝑡 ). At
different training epochs, for the corresponding approximations of
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(a) Test errors for increasing training epochs. (b) Value achieved by 𝜋∗ for increasing training epochs
computed every 4 epochs.

(c) Correlation between value loss and 𝑒𝑟𝑟𝑜𝑟CE. (d) Correlation between value loss and 𝑒𝑟𝑟𝑜𝑟norm1.

Figure 4: Traffic network.

the influence, we build the approximate-influence local model. Then,
we compute the optimal policy 𝜋∗ in the approximate-influence
model through value iteration [8]. We evaluate the policy 𝜋∗ in the
global model using𝑀 simulations to obtain the value achievedV𝜋∗

.
Note that since we use an exact solution method to compute the
policy 𝜋∗ in the approximate-influence model, any other solution
method would get lower performance in the local model. For each
epoch, to assess the quality of the approximation, we use Monte
Carlo estimators for themean cross entropy CE(𝐼 , 𝐼 ) and the 1-norm
error | |𝐼 − 𝐼 | |1, computed using a test set as

𝑒𝑟𝑟𝑜𝑟CE = − 1
ℎ

ℎ∑
𝑡=1

1
𝑁

𝑁∑
𝑘=1

ln
(
𝐼𝑡 (𝑦𝑡src,k | 𝑑𝑡

𝑘
)
)

𝑒𝑟𝑟𝑜𝑟norm1 =
1
ℎ

ℎ∑
𝑡=1

1
𝑁

𝑁∑
𝑘=1

𝛿𝑦𝑡src,k ( · ) − 𝐼𝑡 ( · | 𝑑𝑡
𝑘
)


1
(7)

We compute the average and standard deviation of the 𝑒𝑟𝑟𝑜𝑟CE
and 𝑒𝑟𝑟𝑜𝑟norm1 over different iterations of the same experiment.
For any iteration, we repeat entirely the steps described above: we

recollect training and testing samples from the global model, retrain
the neural network etc. When the problem is sufficiently easy to
solve, we compute the optimal value V∗ and then we measure
the correlation between 𝑒𝑟𝑟𝑜𝑟CE, 𝑒𝑟𝑟𝑜𝑟norm1 and the value loss
V∗ −V𝜋∗

. Otherwise, we measure the correlation between the test
errors and −V𝜋∗

. In fact, since the optimal value V∗ is constant
for increasing epochs, it does not affect the correlation. That is,
𝐶𝑜𝑟𝑟 (𝑒𝑟𝑟𝑜𝑟,V∗ −V𝜋∗ ) = 𝐶𝑜𝑟𝑟 (𝑒𝑟𝑟𝑜𝑟,−V𝜋∗ ).

We run the experiments in three domains: a version of the plane-
tary exploration [42], a traffic domain and the fire fighters problem
[28]. Section 3.3 provides the overview of the planetary exploration
domain and high level descriptions of the other domains follow. For
more details we refer to the appendix [13]. Our codebase is available
at https://github.com/INFLUENCEorg/Approx-IBA-Planning.

7.1.1 Traffic Network. In this domain, we simulate a traffic network
with 4 intersections (see Figure 3). The sensors of the traffic lights
at each intersection provide information on the 3 × 3 local grid
around them. In Figure 3, the dotted red square represents the local
model for the protagonist agent. The other traffic lights employ
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hand-coded policies prioritizing fixed lanes. The goal of the agent
is to minimize the total number of vehicles waiting at the local
intersection. In order to act optimally, the local agent only needs to
predict if there will be incoming cars from the 𝑒𝑎𝑠𝑡 and 𝑛𝑜𝑟𝑡ℎ lanes
of the local model the next time step. The outgoing cars have some
probability to re-enter in the network from other lanes. That is, the
outgoing vehicles from 𝑠𝑜𝑢𝑡ℎ and𝑤𝑒𝑠𝑡 can affect the decisions of
other traffic lights and consequently, the vehicles inflow in the local
model at future time steps.

7.1.2 Fire fighters. We model a team of 2 agents that need to co-
operate to extinguish fires in a row of 3 houses. At every time
step, every agent can choose to fight fires at one of its 2 neighbor-
ing houses. The goal of each agent is to minimize the number of
neighboring houses that are burning. We take the perspective of
one agent with a local model including only the two neighboring
houses.

7.2 Experimental Results
Figures 2(a), 4(a), 5(a) show the test errors measured by 𝑒𝑟𝑟𝑜𝑟CE
and 𝑒𝑟𝑟𝑜𝑟norm1 7, as functions of the training epochs for the three
domains. They show that performance in terms of cross entropy
and 1-norm test errors improves monotonically with the number of
epochs. These trends suggest that the AIP improves with training,
the question is if this also corresponds to a value loss decrease.
Looking at Figure 2(b) this seems to be the case in the planetary
exploration setting. We see that the performance of the policy de-
rived from the approximate-influence IALM is very close to optimal
from 6 epochs onward, right about when the training of the neural
network starts to stagnate. Moreover, Figure 2(c) and 2(d) show
that the decrease in mean empirical cross entropy or 1-norm error
indeed correlates well with actual value loss. In the traffic domain,
we also see that there is a significant improvement in the value
achieved by the approximate-influence policy 𝜋∗ for increasing
number of epochs in Figure 4(b). The test errors seem still well
aligned with the value loss in Figures 4(c), 4(d). For the fire fighters
domain, Figure 5(b) shows that the value improves over training
epochs coherently with the decrease of the test errors.

For more results on correlation analysis on different settings of
the planetary exploration, see the Supplementary Material of the
extended version of this paper [13].

We can conclude that both the empirical cross entropy error and
the 1-norm errors correlate well with the value loss and therefore
provide a priori insight on the quality of the influence-approximation
in terms of the value achieved.

8 CONCLUSIONS AND DISCUSSION
In this paper, we provided a priori quality guarantees for the value
loss resulting from approximating the influence point. Our results
show that the objective of a neural network trained with the cross
entropy loss is well aligned with the goal of minimizing the value
loss. Our empirical results demonstrate that empirical (mean) es-
timators of the cross entropy and the 1-norm are predictive of
the value loss. We used this insight to evaluate the transfer of our
theoretical results to practical scenarios.

In this work, we limit the discussion to fully observable local
models. However, in the general case, we would be dealing with a

(a) Test errors for increasing training epochs.

(b) Value achieved by 𝜋∗ for increasing training epochs
computed every 5 epochs.

Figure 5: Fire Fighters Problem.

local POMDP. We believe that a generalization of our bound in the
partially observable case can be obtained for instance leveraging
the ‘back-projected value vectors’ formulation [32]. As future work,
we intend to further investigate this.

The current formulation of the loss bounds involves a maximiza-
tion over the space of all the possible instantiations of the d-set,
which might grow exponentially in time. In future work, we would
like to derive expressions that do not need a maximization, but for
example are in expectation over a sampling process. This would
lead to tighter bounds, which could be used in practice for model
selection or value loss estimation.
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