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Abstract—Cyber Threat Intelligence (CTI) reporting is pivotal
in contemporary risk management strategies. As the volume
of CTI reports continues to surge, the demand for automated
tools to streamline report generation becomes increasingly ap-
parent. While Natural Language Processing techniques have
shown potential in handling text data, they often struggle to
address the complexity of diverse data sources and their intricate
interrelationships. Moreover, established paradigms like STIX
have emerged as de facto standards within the CTI community,
emphasizing the formal categorization of entities and relations
to facilitate consistent data sharing.

In this paper, we introduce AGIR (Automatic Generation
of Intelligence Reports), a transformative Natural Language
Generation tool specifically designed to address the pressing
challenges in the realm of CTI reporting. AGIR’s primary
objective is to empower security analysts by automating the labor-
intensive task of generating comprehensive intelligence reports
from formal representations of entity graphs. AGIR utilizes a
two-stage pipeline by combining the advantages of template-
based approaches and the capabilities of Large Language Mod-
els such as ChatGPT. We evaluate AGIR’s report generation
capabilities both quantitatively and qualitatively. The generated
reports accurately convey information expressed through formal
language, achieving a high recall value (0.99) without introducing
hallucination. Furthermore, we compare the fluency and utility
of the reports with state-of-the-art approaches, showing how
AGIR achieves higher scores in terms of Syntactic Log-Odds
Ratio (SLOR) and through questionnaires. By using our tool,
we estimate that the report writing time is reduced by more
than 40%, therefore streamlining the CTI production of any
organization and contributing to the automation of several CTI
tasks.

Index Terms—Cyber Threat Intelligence, Natural Language
Generation, Threat Reports, STIX

I. INTRODUCTION

The evolving cyber threat landscape has witnessed a dra-
matic surge in the frequency and sophistication of attacks in
recent years. From traditional phishing emails to the stealthy
and advanced operations of highly sophisticated cybercriminal
groups known as Advanced Persistent Threats (APTs), the dig-
ital realm has become a battleground for organizations seeking

to safeguard their data and infrastructure [1]. To counter
these evolving threats effectively, organizations have begun
implementing the discipline of Cyber Threat Intelligence
(CTI) to address them proactively. CTI involves systematically
collecting, analyzing, and disseminating data from diverse
sources, including network logs, social media, and dark web
forums, to identify, comprehend, and mitigate cyber threats.
By providing actionable insights into the Tactics, Techniques,
and Procedures (TTPs) employed by cybercriminals, as well
as the associated Indicators Of Compromise (IOCs), CTI can
enhance an organization’s situational awareness and reinforce
its ability to detect and respond to attacks swiftly, ultimately
reducing overall risk exposure [2].

An integral part of CTI is the production of comprehensive
security reports. Indeed, while several standards such as Struc-
tured Threat Information Expression (STIX) are employed
to facilitate the sharing of structured data, natural language
remains the most common and easily understandable format
to collect and disseminate intelligence [3]. These reports
are a repository of detailed information about cyber threats,
encompassing TTPs, exploited vulnerabilities, and IOCs. Fur-
thermore, they are vital in sharing CTI knowledge internally
within organizations and externally with law enforcement
agencies and other cybersecurity entities. Unfortunately, the
manual creation of these reports can be an exceptionally
time-consuming and resource-intensive task. Indeed, security
analysts must aggregate and analyze extensive datasets before
synthesizing their findings into clear and concise reports.
Additionally, the accurate reconstruction of a specific incident
or a threat might need the collaboration of several analysts
and the congregation of multiple intelligence sources, further
aggravating the complexity of the task [4]. To tackle this
challenge, Natural Language Generation (NLG) techniques
have emerged as a promising solution for automating the
report generation process [5]. Natural Language Generation
models are already deployed in many instances to facilitate
the production of textual data, such as financial summaries [6],
user tailoring and profiling in healthcare [7], and chatbots [8].
Thus, NLG tools can save security analysts substantial time
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and resources by automating structured data conversion into
well-crafted written content. However, despite the evident
advantages NLG offers, applying such tools within the realm
of cybersecurity, specifically for generating security reports,
remains partially unexplored.

Contribution. This paper aims to address this gap in the
cybersecurity literature by introducing AGIR, an NLG tool
designed to automate the creation of cybersecurity reports
from structured data. AGIR leverages STIX graphs, constituted
by threat entities and their relationships, to parse them with
a template-based approach and subsequently leverage a Large
Language Model (LLM) to improve the fluency and utility
of the generated report. While AGIR currently supports four
distinct report types, its pipeline is designed with extensibility
in mind, allowing for the incorporation of additional report
formats as needed. The quantitative evaluation of our approach
shows that the information in the structured data is conveyed
in the generated reports with almost perfect recall values
(0.99) without introducing any hallucination in the process.
Furthermore, we qualitatively evaluate the outputs of our tool
through the Syntactic Log-Odds Ratio (SLOR) metric and
questionnaires answered by experienced cyber threat analysts.
The results show that AGIR produces fluent reports that
outclass state-of-the-art models while maintaining a high level
of utility and reducing report writing time by 42.6%

Our contributions can be summarized as follows.
• We introduce AGIR, a Natural Language Generation

(NLG) tool designed to automate the creation of cyber-
security reports from structured data.

• We propose a pipeline design aimed at enhancing the
scalability of our tool and enabling the inclusion of a
wider range of supported report types.

• We assess AGIR’s performance through a combined
quantitative and qualitative approach, utilizing several
metrics and conducting surveys with expert threat ana-
lysts.

• We make several samples of the generated reports avail-
able at https://github.com/Mhackiori/AGIR.

Organization. The paper is organized as follows. In Sec-
tion II, we introduce key CTI and NLG concepts, setting the
stage for our discussion. In Section III, we explore the use
of Natural Language Processing (NLP) and NLG techniques
in the cybersecurity domain. Section IV gives an overview of
the system model and the possible implementations of AGIR.
Section V delves into the technical specification of AGIR,
offering insights into its pipeline. In Section VI, we evalu-
ate AGIR’s quantitative and qualitative performance through
human evaluation and SLOR metric. Finally, Section VII
concludes this work.

II. BACKGROUND

This section gives a more thorough background on the tech-
niques and notions we use in the methodology. In particular,
we focus on Cyber Threat Intelligence and the type of data that
this discipline deals with (Section II-A) and the core concepts
of Natural Language Generation (Section II-B).

A. Cyber Threat Intelligence
NIST, the National Institute of Standards and Technology,

defines Cyber Threat Intelligence as “any information that
can help an organization to identify, assess, monitor, and
respond to cyber-threats” [9]. This intelligence empowers
quicker, data-driven security decisions, shifting from a reactive
to a proactive stance against threat actors. Threat intelligence
sources encompass open source data, social media, device
logs, internet traffic, and deep and dark web information.
In today’s cybersecurity landscape, it is pivotal in enabling
organizations to proactively identify and mitigate potential
threats, making them more resilient against cyberattacks.

Threat intelligence can be divided into three main cate-
gories: strategic intelligence (intended for non-technical au-
diences and offering high-level insights into threats and vul-
nerabilities), tactical intelligence (intended for technically
prolific teams and providing immediate threat indicators),
and operational intelligence (intended for professionals and
offering in-depth insight into TTPs) [10]. Other sources instead
divide intelligence into four categories, with the addition of
technical intelligence, i.e., information that focuses on forensic
intelligence and technical descriptions [11]. Additionally, each
piece of intelligence undergoes a defined life cycle, from
planning and direction to dissemination and integration [12].

Each of the intelligence types can be shared among orga-
nizations in various formats. While natural language reports
are the most common medium when dealing with elaborate
threats, structured data standards have been created to facilitate
machine-readability and ease of dissemination. The most com-
mon standard in CTI is STIX (Structured Threat Information
Expression), which includes several entities and relationships
that allow for a graph representation of the intelligence [3].
Effectively, with STIX, intelligence is shared in JSON files that
can be represented as a connected graph of nodes and edges, in
which each node represents an entity and each edge represents
a relationship between entities. A graphical overview of one of
these graphs is shown in Figure 1. These JSON files constitute
part of AGIR’s input.

Asprox198.51.100.2

Malware Botnet Example

198.51.100.4 192.51.100.7

used-byconsists-of

consists-of consists-of

Fig. 1. Graphical example of a STIX graph. Icons used in this paper are from
the ’stix2-graphics’ repository by Bret Jordan [13].
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B. Natural Language Generation

Natural Language Generation (NLG) is a subset of Natural
Language Processing (NLP) centered on creating computer
systems capable of generating human-like language output,
such as documents and reports [5]. NLG can be categorized
into text-to-text and data-to-text applications. Text-to-text pro-
cesses utilize existing texts to generate coherent new text,
while data-to-text systems transform non-linguistic structured
data, like tables or graphs, into natural language text. Our focus
is on data-to-text generation, as it aligns with the contribution
of this paper.

Data-to-text generation approaches fall into three categories.
• Rule-based – These methods follow a three-stage

pipeline, starting with content selection and text struc-
turing in the Document Planner [14]. The Microplanner
combines sentence aggregation, lexicalization, and refer-
ring expression generation [15]. Finally, the Linguistic
Realizer generates grammatically correct sentences [16].

• Template-based – Unlike rule-based approaches,
template-based methods directly map non-linguistic
input to linguistic surface structure. Text generation
occurs through string manipulation, where users create
programs with string patterns containing empty slots to
be filled with relevant information.

• Neural-based – Neural approaches are data-driven and
require no manual feature engineering. They develop end-
to-end models where neural networks learn to generate
high-quality text descriptions directly from input data,
bypassing explicit modeling of intermediate stages.

In the early stages of NLG, rule-based systems were fa-
vored for embodying linguistic insights [17]. This perception
shifted with the developing of more sophisticated template-
based systems like D2D, which could adapt output based
on context and perform complex syntactic operations [18].
Template-based systems offer ease of development, control,
and speed but may sacrifice fluency, maintainability, and
flexibility compared to rule-based systems. In modern NLG,
neural-based approaches have taken precedence, thanks to
their superior generalization and output variation capabilities.
However, neural-based systems might lack control over the
generation process, potentially resulting in inaccurate text
generation. They also require extensive training data, limiting
their feasibility when large datasets are unavailable. Hybrid
approaches, which combine two or more methods, aim to
leverage the strengths of each approach. For instance, Kale
and Ratsogi implemented a two-stage pipeline combining
a template-based approach for a baseline response and a
pre-trained language model (T5) for rewriting the response
into coherent, natural-sounding text [19]. This hybrid method
blends the control and ease of development from templates
with the fluency and diversity offered by neural approaches.

III. RELATED WORKS

In this section, we overview related works on applying Nat-
ural Language Processing and Natural Language Generation

in the cybersecurity domain, respectively, in Section III-A and
Section III-B.

A. NLP for CTI

While the use of Natural Language Generation in Cy-
ber Threat Intelligence applications has not been thoroughly
explored in the literature, Natural Language Processing has
been extensively researched for Information Extraction (IE)
purposes. Indeed, automatically processing CTI reports to
retrieve entities and relationships can be pivotal for an organi-
zation seeking to gather intelligence with minimal time delays
and manpower. Effectively, these systems drive researchers
towards fully automating CTI reporting, making cyber defense
practices more accessible to all organizations. One of these
systems is STIXnet, which deploys several IE models to ex-
tract all STIX entities and relationships from natural language
reports [20]. By combining IE systems such as STIXnet with
AGIR, it will be possible to automatically process a multitude
of reports and parse their intelligence in one single report,
tailored according to the user’s needs.

B. NLG for CTI

To the best of our knowledge, only one NLG approach is
applied to CTI in a setting similar to ours, while only a few
instances are applied to the cybersecurity domain. One of these
examples involves Das and Varma’s work, who developed a
Recurrent Neural Networks (RNN) system to generate text for
advanced email masquerading [21]. Other instances instead
include implementing NLG models for cybersecurity educa-
tion and training purposes [22]. The usage of NLG models
for CTI report generation has also been explored by Ranade
et al. for poisoning attack purposes [23]. In their paper, the
authors use GPT-2 to generate fake CTI text to poison the
dataset of Cybersecurity Knowledge Graphs. However, while
this paper also treats the problem from an attacker’s perspec-
tive, it also utilizes textual inputs. It thus differs from our
application, which uses structured data as input. The research
work that deals with a setting similar to ours is the one by
S. Polzunov and J. Abraham, where they introduced Narrator,
a tool capable of creating intelligence reports from the JSON
representation of STIX graphs [24]. Narrator employs a rule-
based approach to generate four report types, which can be
edited and exported in PDF format. AGIR expands upon the
foundation laid by Narrator, enhancing overall performance. In
its first pipeline step, AGIR adopts a template-based approach
inspired by the D2D system. The second step incorporates a
technique akin to that employed by Kale and Ratsogi, utilizing
ChatGPT to rewrite reports in a more human-like manner.

IV. SYSTEM MODEL

As an automatic CTI report generation system, AGIR lever-
ages the STIX graphs of entities and relationships to fulfill its
objective. Thus, an underlying Knowledge Base (KB) can be
deployed to store the STIX data to maximize its capabilities.
The usage of a KB yields several advantages.
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• Intelligence Categorization – Entities and relations can
be stored and categorized using the STIX guidelines.

• Incident Recostruction – Several intelligence sources
can be parsed together to generate a single report contain-
ing the most information on a specific threat or incident.

• Threat Evolution – Intelligence collected over a period
of time can be aggregated to construct a timeline, pro-
viding insights into the evolution of a specific threat.

The Knowledge Base can be an instance of existing CTI
platforms that use STIX as the underlying model or can
be built from scratch. Several sources can be employed to
collect the intelligence stored in the KB. One example is
the MITRE ATT&CK framework, which publicly stores and
updates intelligence on threat groups, TTPs, mitigations, and
software [25]. Through the usage of APIs, it is also possible
to collect the intelligence automatically in a structured format,
which can then be converted to STIX. Reports and CTI
bulletins can also be used as a starting point for populating the
KB. Indeed, as anticipated in Section III-A, IE systems can be
deployed for this purpose, making CTI reporting almost fully
automatic.

The storage of entities, relations, and the reports from
which the intelligence has been collected allows for a more
flexible implementation of AGIR. Suppose the generation of a
report on a specific infrastructure is requested. The system
can automatically query the Knowledge Base with all the
intelligence related to that specific entity, reporting attributes,
dates, and other useful information. Users can dynamically
select the amount of intelligence they want to include by using
the service’s Graphical User Interface (GUI), expanding nodes
on the graphs as shown in Figure 2.

Malware Botnet
Example

consists-of consists-of consists-of

used-by

Malware Botnet
Example

198.51.100.4198.51.100.2 198.51.100.7

uses

Asprox

delivers

PhishingSQL Injection

Fig. 2. Proof-of-concept of AGIR’s GUI.

In this example, we use the same dummy data in Figure 1.
We first consider the “Malware Botnet Example” infrastructure
as a singular entity, which will constitute the main subject of
the report. By expanding the node, all the information about

IPv4 addresses and malware previously shown in Figure 1
appear. We can further expand those nodes, as it is possible to
see for the “Asprox” entity, which will introduce two attack
patterns in the graph. The selected STIX graph can then be fed
as input to AGIR, creating a CTI report accordingly. Figure 3
shows an overview of the overall system model.

Intelligence
Sources

STIX
Conversion

Knowledge
Base

AGIR

User Input

Report

Fig. 3. Overview of the system model.

V. METHODOLOGY

This section overviews the methodology that constitutes
AGIR and the modules that allow for generating CTI reports.
The template-base module and the neural-based are presented,
respectively, in Section V-A and Section V-B. An overview of
AGIR’s pipeline is shown in Figure 4.

A. Template Based Module

The template-based module is AGIR’s first module and,
thus, inherits its input, which is constituted as follows.

1) STIX Graph – A JSON file representing the graph from
which to generate the report.

2) Report Type – A parameter given by the user indicating
the type of report that the system should generate.

In the initial stage of the template-based module execution,
we analyze the report type parameter and designate the tem-
plate accordingly. Then, depending on the selected template, a
subset of entities and relationships is selected from the JSON
representation of the previously mentioned graph. The size
of this subset is determined by the number of intelligence
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STIX Graph

Template-Based Module

Report Type

Report Type
Filtering

Entity Lookup
Submodule

Knowledge Base

API

First Stage AGIR
Report

Fluency
Enhancement

LLM

API

Final AGIR
Report

Neural-Based Module

Fig. 4. Overview of AGIR’s pipeline.

contained in the JSON file and the type of intelligence required
by the template. This is done because of the specific type of
intelligence that each report template contains. Thus, by first
considering the template selection, we reduce the number of
API calls we need to perform to retrieve the entities from the
Knowledge Base. Indeed, our system supports four different
report types.

1) Overview Report – Provides a summary of information
from the STIX graph. Analysts can use this template to
understand a specific event portrayed in the JSON file.

2) Subject Report – This template focuses on specific
entities such as threat actors or intrusion sets. It also
includes relationships, IOCs, and MITRE sections for
all other selected entities. This type of intelligence helps
understand the landscape where the subject is inserted.

3) Timeline Report – Provides a timeline overview of the
entities related to the STIX graph. This template sorts
the events chronologically and reports them according
to their sequencing.

4) Vulnerability Report – Deals with vulnerabilities re-
lated to a specific entity and thus constitutes the most
specific template out of the four. Each vulnerability also
includes a table showing specific properties such as
CVSS (Common Vulnerability Scoring System) score,
mitigations, and vulnerable configurations.

After the template selection, we extract each entity in the
STIX graph’s type from the Knowledge Base, which will be
retrieved in conjunction with its unique identifier. The usage
of IDs allows for efficiently storing reports, relationships, and
events associated with a specific entity. Thus, each time an
entity is called from the Knowledge Base, we can retrieve
its history and previous relationships with other entities. To
do so, for each selected entity from the STIX graph, we
initialize a dictionary with the following six keys: overview,

relationships, stats, useful resources, IOCs, and TTPs. Based
on the entity ID, we query the KB through several API calls
to populate the dictionary accordingly. This means performing
content selection based on a predefined set of rules (e.g.,
properties specific to the entity are inserted in the overview
section, and information about related IOC is inserted in the
IOC section). Once all the information is available, the module
goes through each report template section and fills the gaps
with the appropriate piece of intelligence.

B. Neural Based Module

While the output of the template-based module can already
be considered a report, being generated from a set of rules
implies that it is naturally mechanic and not fluent. Thus, to
improve on this aspect, we use the neural-based module. To do
so, we use ChatGPT, a Large Language Model that, in recent
months, has attracted an incredible amount of attention due to
its efficiency in Natural Language Generation [26]. Through
its APIs, we prompt the model for a more fluent version of
the report, highlighting the need to keep the text’s information
unchanged. Once the generation is complete, the final result
is given as the output of the overall AGIR pipeline.

Two main challenges arise from using ChatGPT as a ”fine-
tuning” model for the report.

• Cost – While using the LLM through its graphical
interface is free for all registered users, the payment of
a fee is needed for each API call. At the time of the
development of AGIR, the cost of generating a single
report is, on average, 0.0024 US dollars. Since, in real-
world scenarios, the number of reports generated each day
is not exceptionally high, the price does not constitute an
obstacle for companies and organizations.

• Lack of Control – As stated in Section II-B, neural-
based NLG approaches present a lack of control over
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the generated output. To still assess the contribution of
this module on the overall fluency of the report, in
Section VI-B, we qualitatively evaluate the outputs of
both modules, proving the benefits of ChatGPT in the
report generation.

VI. EVALUATION

This section presents an experimental evaluation of our
system. We aim to write a precise human-like report that
supports analysts and reduces their time in the report-writing
process. Given the importance of content and style in gener-
ating a report, we split the evaluation into two parts. First, we
evaluate AGIR quantitatively, thus assessing the completeness
of intelligence contained in the output (Section VI-A). In the
second part, we evaluate the style of those reports in terms of
fluency and utility (Section VI-B).

A. Quantitative Results

We assess AGIR’s accuracy to determine whether the incor-
poration of ChatGPT has led to any instances of omission or
hallucination in the generated text. It’s worth noting that in this
analysis, we do not evaluate the initial step of AGIR singularly
(i.e., reports generated by the template-based module). This is
because the module relies entirely on predefined rules, and
unless there are implementation errors, they are not expected
to introduce accuracy concerns.

For the quantitative evaluation, we will use True Positives
(TP), False Positives (FP), and False Negatives (FN), which
in this specific application are defined as follows.
• True Positive – Information present both in the final

report and in the input JSON file.
• False Positive – Information present in the report but not

in the input JSON file.
• False Negative – Information present in the input JSON

file but is not found in the report.
Using these indicators, we use three metrics to evaluate AGIR
accuracy: precision, recall, and F1-score. These metrics are
defined as follows.

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1 = 2
Precision ·Recall

Precision+Recall
. (3)

To evaluate our system, we use a sample of 12 STIX graphs.
We execute AGIR and generate 12 reports from each of these
graphs, split equally between each report type. Each JSON
file underwent a manual process in which the intended report
information was identified and verified for its presence within
the generated report. Results of this evaluation are shown
in Table I. As evident from the results, the utilization of
ChatGPT consistently avoided introducing new information
(i.e., hallucination events) into the report. However, in a very
limited number of cases, the model did omit information from

the JSON file. Nonetheless, having a recall and F1 score value
close to 1 means that the generated reports almost always
contain the same amount of information from the JSON file,
highlighting the completeness of the reports.

TABLE I
AGIR’S QUANTITATIVE EVALUATION RESULTS.

Precision Recall F1 Score
1.000 0.993 0.996

B. Qualitative Results

We now perform a qualitative evaluation of the reports
generated by AGIR. Thus, we now focus on fluency, cor-
rectness, and utility of the information expressed in natural
language. To do so, we further divide the evaluation into two
parts: a syntactic evaluation (Section VI-B1) and a linguistic
evaluation (Section VI-B2).

1) Syntactic Evaluation: We introduce SLOR (Syntactic
Log-Odds Ratio) [27] for the syntactic evaluation of the
generated reports’ qualitative properties. We opted for this
metric because it is widely recognized as the de facto standard
for assessing text fluency in referenceless evaluations, which
aligns with our specific evaluation context. SLOR exhibits
the strongest correlation with human sentence acceptability
compared to various sentence probability-based scoring meth-
ods [28]. Furthermore, its effectiveness has been demonstrated
in unsupervised text compression tasks. SLOR assigns a score
to each sentence S by calculating its log probability using a
specific Language Model (LM). This score is then normalized
by the log probability of unigrams and the sentence’s length.

SLOR (S) =
1

S
(ln (pM (S)))− ln (pu (S)) . (4)

In Equation 4, pM (S) is the probability assigned to the sen-
tence under the LM, while pu (S) is the unigram probability
of the sentence S. These quantities are defined, respectively,
as follows.

pM (S) = p
(
〈t1, t2, ..., t|S|〉

)
= p (t1)

|S|∏
i=2

p (ti|t1, ..., ti−1) ,

(5)

pu (S) =
∏
t∈S

p (t) . (6)

The rationale behind subtracting unigram log probabilities is
to mitigate the impact of a token’s rarity when considered
individually, as opposed to its rarity in a specific sentence posi-
tion. Normalizing by sentence length is essential to ensure that
shorter sentences are not favored over equally fluent longer
ones. It is worth noting that the log probability of a sentence
normalized by its length corresponds to the negative cross-
entropy of that sentence, as per the employed language model
during the evaluation. To calculate sentence probabilities, we
utilize the pre-trained XLNet language model [29]. SLOR
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scores are theoretically unbounded, with higher scores indi-
cating better text fluency. The value range depends on many
factors, such as the dataset, language model, and the nature of
the text being evaluated. Thus, we are interested in comparing
the results from our testbed with other state-of-the-art NLG
models applied on CTI, such as Narrator. Furthermore, we
also evaluate the fluency of the reports in different stages of
the pipeline, thus assessing the contribution of each module.
Therefore, the three models we evaluate are the following:
Narrator, first step AGIR (i.e., the output of the template-
based module), and final AGIR (i.e., the output of the neural-
based module). The evaluation dataset is the same as the one
used for the quantitative evaluation in Section VI-A, and thus
comprises 3 STIX graphs for each report type supported by
AGIR. Results are shown in Table II. As we can see, the SLOR
score obtained by Narrator and first stage AGIR are very close
to one another, while final AGIR significantly increases the
score. These results confirm not only the contribution that the
neural-based module has on the overall quality of the reports
but also highlight the possible limitations of template-based
approaches when considered independently.

TABLE II
AVERAGE SLOR SCORES AND STANDARD DEVIATION OF NARRATOR AND

DIFFERENT STAGES OF AGIR’S PIPELINE.

Model SLOR
Narrator 2.13±0.90

First Step AGIR 2.16±1.07
Final AGIR 2.75±0.72

2) Linguistic Evaluation: By using SLOR, we can assess
the fluency of each report with formally defined metrics, thus
giving an objective perspective on AGIR’s efficacy. However,
given our system’s most important feature, we are also inter-
ested in the human perspective: the reduction of processing
times for CTI reporting. For this reason, we conduct another
type of qualitative evaluation based on the opinions shared by
expert threat analysts. All questioned analysts are employers
of Leonardo S.p.A., an Italian multinational company that
collaborated in this research. Opinions were collected in the
form of surveys, which involved rating the quality of the
reports based on the following three dimensions.
• Fluency – Whether the text is easy to read and under-

stand.
• Correctness – Whether the content of the text is true and

derivable from the input data.
• Utility – Whether the text helps the user to write the final

report faster.
The questionnaire collected opinions on all of these aspects
from 38 analysts. Fluency and correctness have been measured
using a Likert scale from 1 (not good) to 5 (very good) [30].
Instead, the utility dimension is evaluated by asking each
analyst how long it will take to write a final report starting
from the system’s output. The utility value is then compared
with a baseline score of 127.3 minutes, which was obtained
by asking all analysts how much time, on average, it takes for

them to write a report. To prevent the outcomes from being
biased by a single questionnaire instance, we have devised
three questionnaires with identical structures and distributed
the analysts evenly into three groups. Furthermore, the pre-
sented reports are unmarked, so analysts cannot know from
which model they are generated. The questionnaires consist
of four sections, each corresponding to a report type and
containing one report from each system, resulting in 12 reports
for each questionnaire. Each report is assessed based on the
three dimensions mentioned earlier. In Table III, we show the
obtained results from the survey. As we can see, we also notice
that first step AGIR still outclasss Narrator on every metric.
Moreover, final AGIR reports outperform the other models
used for comparison in all three dimensions. Fluency is the
metric most impacted by the neural-based module, confirming
our hypothesis and thus further asserting its contribution to
the report generation process. An increase in correctness from
first step AGIR to final AGIR stands out from this evaluation,
dispelling previous uncertainty about possible omissions or
hallucinations that could have appeared with the usage of
LLMs. As for the model’s utility, analysts believe that AGIR
can reduce report production times by 42.6% with respect to
the baseline, resulting in a total time reduction of 54 minutes.
It should be noted that the results shown here are averaged on
all the report types. A more detailed analysis can be found in
Appendix A.

TABLE III
QUESTIONNAIRE RESULTS GROUPED BY DIMENSION.

Model Fluency Correctness Utility
Narrator 2.98 3.00 97.5 min

First Step AGIR 3.48 3.77 79.6 min
Final AGIR 4.13 3.90 74.3 min

VII. CONCLUSIONS

Cyber Threat Intelligence is an important topic for all com-
panies and organizations. With the use of CTI, defenses against
threat actors can be built proactively and more efficiently, thus
increasing the security of each asset. However, the sharing of
CTI data is still anchored to natural language, which further
delays the integration of the intelligence and the application
of the defense mechanisms. Furthermore, the dissemination of
the information is extremely time-consuming, forcing analysts
to write several reports each day to distribute their data.

Contribution. In this paper, we presented AGIR, a system
for the Automatic Generation of Intelligence Reports. AGIR
takes in input the JSON representation of a STIX graph
and uses it to generate a report containing all entities and
relationships contained. AGIR uses two different approaches
for Natural Language Generation: a template-based module
used for building a baseline report and a neural-based module
used to increase its fluency. Using this pipeline, we allow for
the generation of four different types of reports (overview, sub-
ject, timeline, and vulnerability). We experimentally evaluated
AGIR both quantitatively and qualitatively. We showed that
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reports almost perfectly include the entities and relationships
contained in the STIX graph given in input (recall value of
0.99) without introducing any hallucination (precision value
of 1). Also, we assessed through Syntactic Log-Odds Ratio
scores and questionnaires that our reports are more fluent with
respect to other state-of-the-art models and that the usage of
AGIR can reduce production times by 42.6%.

Future Works. For future research endeavors, we aim to
validate the accuracy of the extrinsic evaluation results by
involving more domain experts who can assess AGIR in the
context of crafting actual security reports. Presently, AGIR
relies on ChatGPT, which may raise concerns related to cost
and privacy. An intriguing avenue for further investigation
would be to explore the development of an equivalent deep
learning model that can be employed locally, thereby mit-
igating the aforementioned issues. Additionally, a valuable
contribution could involve the creation of an extensive dataset
containing the pertinent STIX properties for a range of entities.
Such a dataset could serve as the foundation for training a
language model to generate initial reports, thus addressing the
maintainability challenge associated with template usage.
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APPENDIX A
QUESTIONNAIRES

In this appendix section, we give more details on the
questionnaires given to the expert analysts for the qualitative
evaluation of AGIR. In Appendix A-A, we show a sample of
the questionnaires and the reports provided to the analysts.
Moreover, we divide the evaluation of each model on each
report type and show their results in Appendix A-B.

A. Samples

The survey was conducted through a Google Forms module
sent to Leonardo’s employees. In particular, we focused on the
Security Operation Center (SOC) staff members, given their
experience in CTI and, in particular, in threat intelligence re-
porting. The questionnaires given to the analysts are structured
as follows. First, to establish a baseline to evaluate AGIR’s
utility, we ask each expert how much time, on average, it takes
for them to write a full report. Afterward, we do the following
for each of the four supported report types.

1) We describe the aim of the report type and the focus of
their entities and relationships. We also provide several
use cases to contextualize the usage of those particular
reports further.

2) We provide a graphical overview of the JSON input from
which the reports have been generated. Some examples
of those STIX graphs are shown in Figure 5, Figure 6,
and Figure 7.

3) We provide three examples of generated reports. Those
three samples are the report generated by Narrator, the
report generated by first step AGIR, and the report gen-
erated by final step AGIR. To avoid biases, the samples
are unmarked and randomized so that the analysts do not
know which report has been generated by our system.

4) We ask for an evaluation of each report’s accuracy,
described as the presence of true intelligence derivable
from the input.

5) We ask for an evaluation of each report’s fluency,
described as the quality of the text, its clarity, ease of
reading, and how close it is to a human-generated report.

6) We ask for an evaluation of each report’s utility, de-
scribed as how long the analyst would take to write a
full report starting from the presented one.

We provide several samples of the generated reports in our
publicly available repository.1

B. Results Divided by Report Type

The results of the survey divided into overview report,
subject report, timeline report, and vulnerability report are
shown, respectively, in Table IV, Table V, Table VI, and
Table VII. As we can see, the report type can heavily influence
the utility score, while fluency and correctness are more
consistent across the different templates. In particular, with
respect to Narrator, we can see a time reduction in report
production of 27.8% for overview reports, 20.7% for subject

1https://github.com/Mhackiori/AGIR/tree/main/Reports
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uses
target

target

usestarget

target related-toWinnti Group

Japan

ThailandT1014 - Rootkit

[Unknown Defense]

[Unknown Financial] 60.186.72.92

related-to
Cobalt Strike

unit42.paloaltonetworks.com

uses

ToddyCat

uses

Mustang Panda

PlugX

Fig. 5. JSON input example for Overview and Subject reports. We focus on
the “Winnti Group” entity when dealing with the Subject report.

uses uses

S0183 - Tor

uses

APT29

usesLeviathan uses CostaRicto

T1573.002
Asymmetric Cryptography

T1090.003
Multi-hop Proxy uses

APT28

uses

CostaRicto

uses

Operation Wocao

related-to

Test_Hash

Fig. 6. JSON input example for Timeline reports.
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has

has

BloodHound

CVE-2050-001

CVE-2050-002

mitigates

Privileged Account
Management

mitigates

User Training

mitigates

Restrict Web-Based Content

Fig. 7. JSON input example for Vulnerability reports.

reports, 6.2% in timeline reports, and 46.9% in vulnerability
reports (on average 25.4%).

TABLE IV
QUESTIONNAIRE RESULTS FOR THE OVERVIEW REPORTS.

Model Fluency Correctness Utility
Narrator 2.92 2.77 109.2 min

First Step AGIR 3.85 3.46 86.9 min
Final AGIR 4.08 4.23 78.9 min

TABLE V
QUESTIONNAIRE RESULTS FOR THE SUBJECT REPORTS.

Model Fluency Correctness Utility
Narrator 2.85 2.92 91.2 min

First Step AGIR 3.92 3.54 68.1 min
Final AGIR 4.00 4.15 72.3 min

TABLE VI
QUESTIONNAIRE RESULTS FOR THE TIMELINE REPORTS.

Model Fluency Correctness Utility
Narrator 3.38 3.15 111.5 min

First Step AGIR 3.46 3.38 114.6 min
Final AGIR 3.61 3.92 104.6 min

TABLE VII
QUESTIONNAIRE RESULTS FOR THE VULNERABILITY REPORTS.

Model Fluency Correctness Utility
Narrator 2.84 3.07 78.1 min

First Step AGIR 3.84 3.53 48.8 min
Final AGIR 3.92 4.23 41.5 min
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