

Delft University of Technology

Preface

Harpe, Pieter; Baschirotto, Andrea; Makinwa, Kofi A.A.

Publication date 2023 **Document Version** Final published version

Published in Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Citation (APA)

Harpe, P., Baschirotto, A., & Makinwa, K. A. A. (2023). Preface. In Biomedical Electronics, Noise Shaping ADCs, and Frequency References: Advances in Analog Circuit Design 2022 (pp. v-vi). Springer.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Pieter Harpe • Andrea Baschirotto • Kofi A. A. Makinwa Editors

Biomedical Electronics, Noise Shaping ADCs, and Frequency References

Advances in Analog Circuit Design 2022

Editors Pieter Harpe Department of Electrical Engineering Eindhoven University of Technology Eindhoven, The Netherlands

Kofi A. A. Makinwa Department of Microelectronics Delft University of Technology Delft, The Netherlands Andrea Baschirotto Department of Physics University of Milan-Bicocca Milan, Italy

ISBN 978-3-031-28911-8 ISBN 978-3-031-28912-5 (eBook) https://doi.org/10.1007/978-3-031-28912-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This book is part of the Analog Circuit Design series and contains contributions of all 18 speakers of the 30th workshop on Advances in Analog Circuit Design (AACD). The event was organized by John Morrissey, Ivan O'Connell, Nicola Cooney, Paul Hyland, Kapil Bhate and Mary Kent and some students from MCCI – Microelectronic Circuits Centre Ireland, Tyndall National Institute, Cork, Ireland. The sponsors for this workshop were: Qualcomm, Analog Devices, AMD, Qorvo, Macom, Boston Scientific, Bosch, Renesas, Onsemi, u-blox, Infineon, Cadence, IDA Ireland, OTC Ireland, Vishay. The workshop was held in Cork, Ireland, from October 4 to 6, 2022.

ABOUT AACD

The aim of the AACD workshop is to bring together a group of expert designers to discuss new developments and future options. Each workshop is followed by the publication of a book by Springer in their successful series of Analog Circuit Design. This book is the 30th in this series. The book series can be seen as a reference for all people involved in analog and mixed-signal design. The full list of the previous books and topics in the series is included in this book.

ABOUT MCCI

Funded by Enterprise Ireland and the IDA, MCCI's mission is to deliver high impact research for the semiconductor industry and to generate innovative technology. MCCI is a national technology centre that works collaboratively in microelectronics circuit design to improve the performance of mixed-signal circuits required by their industry partners. MCCI's research focus is on mixed-signal, analog and RF circuits. The centre has established itself as a single point of contact in Ireland for access to high-calibre academic research in the field of microelectronics. MCCI is committed to the development of an engineering talent pipeline for the global semiconductor industry. For more information, visit www.mcci.ie

This book comprises three parts, each with six chapters from experts in the field, covering advanced analog and mixed-signal circuit design topics that are considered highly important by the circuit design community:

- Biomedical Electronics
- Noise Shaping ADCs
- Frequency References

We are confident that this book, like its predecessors, proves to be a valuable contribution to our analog and mixed-signal circuit design community.

Eindhoven, The Netherlands Milan, Italy Delft, The Netherlands Pieter Harpe Andrea Baschirotto Kofi A. A. Makinwa

The Topics Covered Before in This Series

Online	Analog Circuits for Machine Learning
	Current, Voltage and Temperature
	Sensors
	High-Speed Communication
Milan (Italy)	Next-Generation ADCs
	High-Performance Power Management
	Technology Considerations for
	Advanced Integrated Circuits
Edinburgh (Scotland)	Analog Techniques for Power
	Constrained Applications
	Sensors for Mobile Devices
	Energy Efficient Amplifiers and
	Drivers
Eindhoven (The Netherlands)	Hybrid ADCs
	Smart Sensors for the IoT
	Sub-1V & Advanced Node Analog
	Circuit Design
Villach (Austria)	Continuous-time $\Sigma \Delta$ Modulators for
	Transceivers
	Automotive Electronics
	Power Management
Neuchâtel (Switzerland)	Efficient Sensor Interfaces
	Advanced Amplifiers
	Low Power RF Systems
Lisbon (Portugal)	High-Performance AD and DA
	Converters
	IC Design in Scaled Technologies
	Time-Domain Signal Processing
	Online Milan (Italy) Edinburgh (Scotland) Eindhoven (The Netherlands) Villach (Austria) Neuchâtel (Switzerland) Lisbon (Portugal)

2013	Grenoble (France)	Frequency References
		Power Management for SoC
		Smart Wireless Interfaces
2012	Valkenburg (The Netherlands)	Nyquist A/D Converters
		Capacitive Sensor Interfaces
		Beyond Analog Circuit Design
2011	Leuven (Belgium)	Low-Voltage Low-Power Data
		Converters
		Short-Range Wireless Front-Ends
		Power Management and DC-DC
2010	Graz (Austria)	Robust Design
		Sigma Delta Converters
		RFID
2009	Lund (Sweden)	Smart Data Converters
		Filters on Chip
		Multimode Transmitters
2008	Pavia (Italy)	High-Speed Clock and Data Recovery
		High-Performance Amplifiers
		Power Management
2007	Oostende (Belgium)	Sensors, Actuators and Power Drivers
		for the Automotive and Industrial
		Environment
		Integrated PAs from Wireline to RF
		Very High Frequency Front Ends
2006	Maastricht (The Netherlands)	High-Speed AD Converters
		Automotive Electronics: EMC issues
		Ultra Low Power Wireless
2005	Limerick (Ireland)	RF Circuits: Wide Band, Front-Ends,
		DACs
		Design Methodology and Verification
		of RF and Mixed-Signal Systems
		Low Power and Low Voltage
2004	Montreux (Swiss)	Sensor and Actuator Interface
		Electronics
		Integrated High-Voltage Electronics
		and Power Management
		Low-Power and High-Resolution
2002	Graz (Austria)	ADUS Errotional N. Sunthasizora
2003	Graz (Ausuria)	Practional-IN Synthesizers
		Line and Due Drivers
		Line and Bus Drivers

2002	Spa (Belgium)	Structured Mixed-Mode Design
		Multi-bit Sigma-Delta Converters
		Short-Range RF Circuits
2001	Noordwijk (The Netherlands)	Scalable Analog Circuits
		High-Speed D/A Converters
		RF Power Amplifiers
2000	Munich (Germany)	High-Speed A/D Converters
		Mixed-Signal Design
		PLLs and Synthesizers
1999	Nice (France)	XDSL and Other Communication
		Systems
		RF-MOST Models and Behavioural
		Modelling
		Integrated Filters and Oscillators
1998	Copenhagen (Denmark)	1-Volt Electronics
		Mixed-Mode Systems
		LNAs and RF Power Amps for
		Telecom
1997	Como (Italy)	RF A/D Converters
		Sensor and Actuator Interfaces
		Low-Noise Oscillators, PLLs and
		Synthesizers
1996	Lausanne (Swiss)	RF CMOS Circuit Design
		Bandpass Sigma Delta and Other Data
		Converters
		Translinear Circuits
1995	Villach (Austria)	Low-Noise/Power/Voltage
		Mixed-Mode with CAD Tools
		Voltage, Current and Time References
1994	Eindhoven (The Netherlands)	Low-Power Low-Voltage
		Integrated Filters
		Smart Power
1993	Leuven (Belgium)	Mixed-Mode A/D Design
		Sensor Interfaces
		Communication Circuits
1992	Scheveningen (The Netherlands)	OpAmps
		ADC
		Analog CAD

Contents

Part I Biomedical Electronics

Overview of Design Challenges in High-Performance ExG Interfaces K. Badami, M. Pons Sole, T. Mavrogordatos, A. Fivaz, P. Persechini, O. Chételat, PF. Ruedi, and S. Emery	3
VCO-Based ADCs for Direct Digitization of ExG Signals Corentin Pochet and Drew A. Hall	21
Circuits and Architectures for Neural Recording Interfaces Carolina Mora Lopez and Xiaohua Huang	45
Chip-Integrated Spin Detection for Biomedical Applications Jens Anders, Daniel Krüger, Frederik Dreyer, Qing Yang, and Michal Kern	59
Models and Interfaces for Electrochemical Sensors: Architectures and Implementations Zhongzheng Wang, Anthony Wall, Alan O'Riordan, Daniel O'Hare, Gerardo Molina Salgado, and Ivan O'Connell	79
Next-Generation Molecular Detection with a CMOS Capacitive Sensor Tim Cummins and Brian O'Farrell	105
Part II Noise-Shaping ADCs	
The Evolution of Noise-Shaping Successive Approximation (SAR) ADC Michael P. Flynn and Seungjong Lee	135
Noise-Shaped SAR ADCs: Current Trends and Challenges Eric Thompson	147
Noise-Shaping SAR ADCs: From Discrete Time to Continuous Time Hanyue Li, Yuting Shen, Eugenio Cantatore, and Pieter Harpe	161

The Zoom ADC: An Evolving Architecture Efraïm Eland, Shubham Mehrotra, Shoubhik Karmakar, Robert van Veldhoven, and Kofi A. A. Makinwa	179
Pushing the Limits of kT/C Noise in Delta-Sigma Modulators Spyridon Kalogiros, Gerardo Salgado, Colin Lyden, Kevin McCarthy, and Ivan O'Connell	203
A Second-Order 5bit Hybrid CT/DT Delta-Sigma ADC Implementing Novel Techniques for ELD Compensation and Coefficient Trimming Roberto Modaffari, Paolo Pesenti, and Germano Nicollini	225
Part III Frequency References	
RC Frequency References Based on Dual RC FLLs Youngcheol Chae and Woojun Choi	245
RC Oscillators with Non-linear Temperature Compensation	259
RC Frequency References Based on Pulse-Density Trimmed Resistors Kyu-Sang Park and Pavan Kumar Hanumolu	269
Integrated BAW-Based Frequency References Danielle Griffith	289
MEMS Oscillators Revolutionizing the Precision Timing Market Kamran Souri and Sassan Tabatabaei	305
Fast Startup and Fully Differential Crystal OscillatorWim Kruiskamp	319
Index	337