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1
Introduction

1.1 Project Context and Motivation
In the past years, there has been a rapid growth in air traffic volume [12]. With this increase in total air transport, it is important
that flight safety is continuously enhanced. As flight-control-related issues are a major deterrent to flight safety and often a
source of catastrophe, significant responsibility befalls flight control engineers in addressing the impending need for enhanc-
ing flight safety.

Due to this responsibility, flight control engineers have sought more advanced control techniques than the often-used lin-
ear control techniques. Historically, in the automatic flight control of both commercial and military aircraft, a broadly applied
strategy is to rely on local linear controllers and use gain-scheduling to synthesize a global controller. This entails partitioning
the flight envelope, linearizing the plant’s dynamics about a steady-state condition in every partition, and therein designing
local linear controllers. During flight, the correct gains are used. However, gain-scheduling requires that parameters change
slowly, which may not be fulfilled in aggressive maneuvers. Additionally, whenever the state departs significantly from the
points of linearization, gain-scheduling is not always able to ensure closed-loop stability [13]. This is because linear controllers
are by construction only valid for a small range of operation, and when a larger range of operation is required, the linear con-
troller behaves poorly. Model uncertainty also presents a major setback to linear control methods.

These limitations of linear control and the ability of nonlinear control to address these problems, as discussed in [14], have
propelled an interest in nonlinear flight control. Nonlinear control methods can be tailored to handle uncertainties in model
designs, as is the case in robust controllers and adaptive controllers. Nonlinear controllers are designed to handle nonlineari-
ties which can make them suitable for large ranges of operation. Sometimes, nonlinear controllers can have a simpler design
than ones based on linear control. Moreover, nonlinear controllers can, sometimes, be more cost effective while providing
better performance than linear controllers [14].

Important nonlinear control techniques that emerged are nonlinear dynamic inversion, sliding mode control, and back-
stepping control [13, 15]. While these techniques do not suffer from a limited operation range as in the case of gain-scheduling,
they do demonstrate significant dependence on the plant model. Thus, these nonlinear control techniques are not robust to
cases of model mismatch.

In order to alleviate the dependence on plant model, incremental variants of these control methods were developed, as
well as hybridizations of these methods [16–18]. The incremental forms of these controllers permit the usage of sensor infor-
mation which makes the performance more resilient in the case of model mismatches. Indeed, incremental control techniques
have demonstrated many recent successes and have been the subject of increasing attention, due to their robustness to un-
certainties and their looser dependence on the model of the controlled plant [19]. Despite their demonstrated effectiveness,
several theoretical gaps remain regarding their robustness. Specifically, the analyses of robustness of those methods regard-
ing uncertainties, pure time-delays, as well as regarding the controller sampling frequency, need to be investigated [20].

First, the theoretical gap regarding the controller sampling frequency shall be elaborated on. Due to the assumptions
that are made in the construction of incremental controllers, these control techniques require that the controller sampling
frequency is "high enough". Indeed, the detrimental effect of smaller controller sampling frequencies on performance of an
INDI-controlled motion control system can be seen from fig. 1.1, where a decreased sampling frequency had led to an increase
in the normalized force error.

This theoretical gap regarding the controller sampling frequency means that what comprises a "high-enough controller
sampling frequency" has not been quantified in the literature. In principle, the controller sampling frequency could simply be
made exceedingly high, had it not been for hardware limitations. A dramatic example of limitations on the controller sam-
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4.5. SIMULATION RESULTS
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Figure 4.14: Force tracking errors of the CdP the INDI at different sampling rates

LOWER SAMPLING RATE

The previous simulations are executed with a 5000 Hz control sampling rate, which is the

same as the actual sampling rate of the CdP controller on the SRS. The motion control

computer (MCC) of the SRS featured a 1GHz PowerPC 750GX processor for the motion

control. Compared with the CdP control law given in Eq. (4.36), the computational cost

of the INDI control law in Eq. (4.12) is even smaller, which makes the discussed 5000 Hz

practical for the new controller on the SRS as well as other hydraulic hexapod systems

with a decent modern computer. However, it is still of concern how a lower frequency

will affect the control performance of the INDI. Simulations with nominal parameters

for the INDI at different frequencies are executed and the force tracking error of one of

the actuators are presented in Fig. 4.14. As a comparison, the tracking error of the CdP

controller is also included. When the sampling rate is reduced to 2500 Hz, the control

performance of the INDI is just slightly influenced and is still much better than that of

the CdP. When the frequency is reduced to 1000 Hz and 500 Hz, obvious oscillations are

observed when the actuator is in the stationary position, however, the tracking perfor-

mances are just slightly influenced when the actuator is in motion and remain superior

to the CdP. It is noted that much more severe oscillation phenomenon is observed when

the actuator is controlled to be static than it is in the maneuver. This is explained by

the fact that in the model of hydraulic actuator given by Eq. (4.5), based on which the

INDI control law is derived, the sign function and square root of valve spool displace-

ment xm are present. Thus the hydraulic subsystem is highly nonlinear near the zero

valve opening situation where the velocity of the actuator is around zero. Thus as an

incremental control strategy, the INDI suffers the most when the actuator is stationary.

The INDI controller provides decent motion performance even at 500 Hz, however, the

Figure 1.1: Influence of the sampling rate on the performance of the INDI control of a motion control system [1]

pling frequency occur in the case of spacecraft control systems where a controller sampling frequency of only a few Hz can be
attained [21].

In principle, the problem of selecting a sampling-rate is a multi-dimensional one. That is, several factors need to be ac-
counted for in this selection. This includes abiding by the sampling theorem as well as ensuring stability. In addition, there
are a number of performance-related aspects that need to be considered. These include the effect of the sampling rate on the
time response, smoothness, and arising time-delays, its influence on the effectiveness of the system in handling disturbances
and parameter variations, as well as its effect on the error that arises due to measurement noise [4]. However, in this case, only
the stability problem will be considered. In order to analyze the stability, the control system has to be represented appropri-
ately. In principle, a computer-controlled system is a sampled-data system, a subset class of the more general class of hybrid
dynamical systems. In general, there are three main ways that have been used to analyze sampled-data systems: as discrete-
time systems, as time-delay systems, or as hybrid systems [22]. With regards to the analysis in discrete-time, the information
between two sampling instances is lost. That is why, this approach is not favoured. As for the latter two, they are both consid-
ered in the analysis of sampled-data systems [22]. While the analysis as a hybrid dynamical system is expected to be a more
accurate representation as it accommodates for the discrete nature of the controller and the continuous nature of the plant,
the time-delay representation serves as a good starting point, that tackles the problem of determining the stable regions in
the delay space of the control system.

As mentioned earlier, another of the theoretical gaps regarding the robustness of incremental controllers are time-delays.
Delays are an inevitable part of control systems [23]. In aerospace computer-controlled systems, there are many sources of
delay. Besides the pure time-delays occurring due to controller sampling and hold processes, time-delays may occur due to
signal transmission delays, computation delays, sensor measurement delays, and physical transport delays [3, 4, 23–27]. An-
other source of delay that needs to mentioned is the data bus [28].

It is well known that the human operator is also a source of delay in the closed-loop control system. This is due to the
physical limitations in the performance of humans; they require some time in order to perceive stimuli, process the sensory in-
formation, and react accordingly. Delays occurring from visual perception are usually±350 ms; whereas, the vestibular system
introduces slightly smaller delays which are usually less than 150 ms [26].

However, a well-known empirical result from cybernetics is the crossover model [29]. According to this model, humans, in
general, adapt their control strategy so that the open-loop transfer function in the crossover region is of the form shown in

YOL( jω) = Yp ( jω)Yc ( jω) = ωc

jω
e− jωτe (1.1)

whereωc denotes the crossover frequency
∣∣YOL( jω)

∣∣
ω=ωc

= 1.0 and τe represents an effective time-delay that accounts
for information-processing delays of the pilot.

The presence of delays has an impact on stability and performance [30], and this makes the analysis of stability regions in
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the delay space of control systems a subject of increasing interest [31]. For aerospace control systems, the effect of time-delays
on stability and performance translates to an impact on flight safety. This is supported by the fact that it has been seen that
time-delays could lead to pilot induced oscillations as well as persistent errors [32].

In alignment with this relation to flight safety, the stability regions in the delay space of a control system are important
for the certification of aerospace control systems [33]. This is especially relevant for more advanced control techniques. The
certification gap for adaptive control, for example, has been discussed in [33]. The authors mention that while there are intu-
itive metrics for robustness and performance for classical linear control methods, these metrics cannot be used for nonlinear
systems. However, the time-delay margin has been proposed as one of the possible metrics that may be used to close the
certification gap [33, 34].

Additionally, time-delays are particularly interesting for the stability analysis of the incremental control approaches. Be-
sides that these approaches make use of state measurements and/or state estimates from previous timesteps, the effect of
control input increments on the output need to be seen by the controller before further control increments can be determined
and applied [35]. Furthermore, the need to account for delay in the analysis of incremental nonlinear dynamic inversion has
been previously expressed in the literature involving the use of INDI control, as is the case in the work of Sieberling et al.,
Smeur et al, as well as Huang et al. [1, 3, 27]. Similarly, the performance degradation in the presence of time-delays of another
incremental control technique, Incremental Backstepping (IBS), has been expressed by Koschorke [36].

To the knowledge of the author, so far, the attempts to determine the stability regions in the delay space of aerospace
control systems utilizing incremental nonlinear controllers, have been limited. Towards this end, an attempt has been made
based on a discretization approach of the sampled-data system for the case of a control system employing incremental non-
linear dynamic inversion (INDI) [19]. Another attempt was made for estimating the time-delay margin for the case of a system
utilizing IBS controller which was an analysis in continuous time [36]. For the former, this means that the inter-sample infor-
mation is lost. As for the latter, the closed-loop formulation used in this method is based on neglecting the higher-order terms
as well as the assumption of time-scale separation (thus the assumptions made in the construction of the controller were also
applied to the controlled plant as well). Additionally, the analysis did not consider the effect of uncertainties [36].

The preceding discussion indicates a clear knowledge gap and a design research problem to be addressed. It can, thus, be
seen that there is a pressing need to investigate the effects of time-delays on the stability of incremental nonlinear dynamic
inversion and to establish a reliable and versatile method to estimate the time-delay intervals for which the control system is
robustly stable.

1.2 Research Objective and Research Framework
Based on the project context discussed, the following research objective has been formulated for the research problem at hand.

The research objective is to ensure the robust stability of a flight system, controlled by an incremental nonlinear con-
troller, in the presence of time-delays by designing a tool that can determine the stable regions in the delay space of
the closed-loop control system while considering uncertainties and actuator dynamics.

Based on this research objective, the research framework depicted in fig. 1.2 was constructed. The formulation of the re-
search framework is as follows: (a) A study of general theory on time-delay systems, as well as time domain techniques and
frequency domain techniques for stability analysis leads to a collection of suitable techniques to determine the stability re-
gions in the delay space, (b) by means of which the closed-loop linear time-delay system will be analyzed and the stability
regions in the delay space of the aerospace controlled system will be determined. (c) Finally, the means to make the analysis
robust are determined and implemented.

1.3 Research Questions
Subdividing the research framework shown in fig. 1.2 leads to the resulting central research questions. The first central re-
search question reads as follows:

Q1 - What are the ways to represent the nonlinear system and the incremental controller, which is implemented on a digital computer,
in order to obtain the closed-loop formulation in the form of a linear time-delay system?

The second central question is related to the confrontation occurring at the bottom left part of the research framework.

Q2 - What methods are suitable to analyze the stability of linear time-delay systems?
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Figure 1.2: Research Framework

The final central question would be related to the rightmost part of the research framework, the confrontation occurring at
the right part of the research framework.

Q3 - What are the additional steps that need to be taken to make the stability analysis robust to uncertainties in the control system?

In order to fill the knowledge gap and provide the answer to the central questions, it helps to address the following sub-
questions first:

Q1.1 - What are the steps involved in constructing an INDI controller?

Q1.2 - What are the possibilities for modeling a sampled-data system as a fully continuous control system?

As for the second central questions, the sub-questions are:

Q2.1 - What are time-delay systems?

Q2.2 - What techniques can be used for the stability analysis of linear time-delay systems in the frequency domain?

Q2.3 - What techniques can be used for the stability analysis of linear time-delay systems in the time domain?

And finally, for the third central question, the following sub-questions emerge:



1.4. Report Structure 7

Q3.1 - What are suitable ways to characterize the uncertainties in the TDS system?

Q3.2 - Which existing robust stability analysis techniques for TDSs are applicable for the linear TDS obtained?

Q3.3 - Can a new technique for the robust stability analysis of time-delay systems be developed?

Moreover, subquestion Q3.3 can be further subdivided into parts:

Q3.3.1 - What are techniques, that have been used for the robust stability analysis of systems without time-delays, which can be used
to inspire a new robust stability analysis technique for the linear time-delay systems considered?

Q3.3.2 - What are the steps that can be taken in order to augment the delay-dependent stability analysis techniques implemented with
those newly considered techniques, in order to make the resultant method applicable to the robust stability analysis of time-delay systems?

1.4 Report Structure
The articulated research objective and the formulated research questions define a clear scope for the research work intended
for this thesis. The remainder of this report presents the thesis work that emerged from the research that has been done in the
pursuit of addressing these questions.

The structure of the rest of the report is as follows. The next part of the report is an article summarizing the main scientific
contribution of this thesis work. The part after that presents a literature review of the relevant building blocks in the research
framework. This includes a review of the nonlinear control technique Nonlinear Dynamic Inversion (NDI) and its incremental
counterpart, Incremental Nonlinear Dynamic Inversion (INDI). These are discussed in chapter 2. Thereafter, in chapter 3, a
brief introduction to sampled-data systems is made, and several ways to model sampled-data systems are presented.

The three chapters after that include literature on time-delay systems. The first of these chapters, chapter 4, gives an in-
troduction to time-delay systems which includes a discussion on the dual nature of the effects of delays on stability, the ways
to represent time-delays, a classification of time-delay systems, and finally, some of the spectral properties of time-delay sys-
tems. Next, chapter 5 offers a discussion on frequency domain techniques to analyze the stability of time-delay systems, and
in chapter 6 the time-domain techniques are discussed, which all mainly fall under the category of Lyapunov-based methods.

After the literature review, a part on preliminary thesis results is presented. This single-chaptered part, chapter 7, demon-
strates the INDI control of a damped pendulum. It also applies a selection of techniques that were presented in the earlier
chapters. Methods from both chapter 5 and chapter 6 are implemented. The determined stability regions from the imple-
mented methods are in accord with one another. Moreover, partial verification of the results was done through simulation.1

Thereafter, the part that follows is dedicated to presenting relevant additional literature that has been instrumental to the
final results presented in the article, which is mainly on the robust stability analysis of TDS. In particular, chapter 8 discusses
the topic of uncertainty characterization, and chapter 9 presents a number of concepts, tools, and principles that can be used
for the robust stability analysis of TDSs.

The part that follows, which is the one that is before the last, presents some additional results. Specifically, chapter 10
presents a derivation of new stability results in the time domain for neutral TDSs. The matrix inequalities were tested on an
example from the literature. The results have proven to be efficient in comparison to existing matrix inequalities for neutral
TDSs. However, it is suspected that the stability results as well as their implementation might need further verification and
testing.

The last part of this report is a wrap up of this thesis work. Chapter 11 summarizes the results obtained in this thesis. It also
reflects back on the research questions formulated at the beginning of the report and checks the progress on addressing these
questions. After this assessment, recommendations for future research are made.

1Note that, chapter 2, chapter 3, chapter 4, chapter 5, chapter 6, and chapter 7 are previously graded chapters.
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Determination of Stable Time-delay Regions in
Incremental Control Systems

Isabelle El-Hajj

Abstract

Incremental control techniques such as Incremental Nonlinear Dynamic Inversion (INDI) and Incremental Backstepping (IBS)
have gained recent popularity, especially in the aerospace community, due to their versatility and effectiveness which entails
robustness to imprecise knowledge about the controlled system as well as robustness to external disturbances. Despite a control
authority that has been proven, in several applications, to exceed that of classical control techniques, there is yet much to be
studied about these control techniques. Theoretical gaps include the effectiveness of these techniques in handling time-delays as
well as their robustness to sampling rates. Addressing this theoretical gap has been the focus of the research that is presented in
this note. To meet this research aim, the control system has been analyzed through the lens of the Time-Delay System (TDS)
framework. In particular, the analytic curve frequency sweeping approach as well as a set of suitable matrix inequalities that are
based on the discretized Lyapunov functional method have been applied to perform this analysis in the frequency domain and
the time domain, respectively. Moreover, a new robust stability analysis technique is presented which is based on combining the
analytic curve frequency sweeping approach with the edge theorem. The effectiveness of these methods has been shown through
their application to an INDI-controlled damped pendulum and to the INDI-controlled short period dynamics of a fixed-wing
aircraft. Finally, a number of recommendations for future research are made.

Index Terms

Time-delay systems, incremental control, robust stability analysis, analytic curve frequency sweeping approach, edge
theorem, linear matrix inequality, Bessel-Legendre inequality, Legendre polynomials, discretized Lyapunov functional method,
commensurate delays, parametric uncertainty.

NOMENCLATURE

A0 Matrix associated with the delay-free state vec-
tor.

A1 Matrix associated with the delayed state vector.
a Coefficient vector of a quasipolynomial.
b Dampling coefficient of the pendulum (kg·m

2

s ).
C Matrix associated with the derivative of the

delayed state vector.
Ek Edge of a polytope.
F Family of uncertain quasipolynomials.
f System dynamics.
fλ Derivative of f with respect to λ.
fτ Derivative of f with respect to τ .
g Gravitational acceleration of an object in a

vacuum near the surface of the Earth (ms2 ).
G Control effectiveness matrix.
GN Matrix to transform from ξN (t) to x̃N (t).
HN Matrix to transform from ξN (t) to ˙̃xN (t).
I Moment of inertia of the pendulum (kg ·m2).
In Identity matrix of dimensions n by n.
I Imaginary part of a complex variable.
JN Matrix to transform from ψN (t) to ξN (t).
kd Derivative gain.
kp Proportional gain.
l Length of the pendulum (m).

Lk(s) Legendre polynomial.
N Discretization variable.
P Symmetric matrix.
PN Positive-definite matrix.
Q Uncertainty bounding set, Matrix that is part of

stability result.
q Pitch rate (rad/s).
r Exponent coefficient vector of a quasipolyno-

mial.
R Symmetric positive-definite matrix.
R Real part of complex variable.
RN Symmetric positive-definite matrix.
S Symmetric positive-definite matrix.
S+
n Set of symmetric positive-definite matrices.

TD(t) Solution operator of a time-delay system.
TN (t) Solution operator of a time-delay system.
t Time (s).
u Control input vector.
VF Value set of family of quasipolynomials.
X Symmetric matrix.
x State vector.
x̃N (t) Augmented state vector.
Y Symmetric positive-definite matrix.
y Output vector.

I. El-Hajj is a graduate student at the Control and Simulation Group at the Faculty of Aerospace Engineering at Delft University of Technology Kluyverweg
1, 2629HS Delft, the Netherlands.
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z Variable to denote e−jωτ .
z̃ Augmented state vector.
α Angle of attack (rad).
γ Part of the matrix ΓN .
ΓN Matrix that is part of the matrix HN .
∆ Increment in one time-step.
ζ Initial condition for the input of the time-delay

system.
θ Time-delay (s), Angular deflection of the pen-

dulum (rad).
λ Characteristic root (rad/s).
µ Portion of an edge of a polytope.

ν Virtual control input vector.
ξN (t) Augmented state vector.
σ Spectrum of the delay-difference equation.
σe Essential spectrum of the delay-difference

equation.
τ Time-delay (s).
φ Initial condition for the state of the time-delay

system.
ψN (t) Augmented state vector.
ω Imaginary part of the characteristic root (rad/s).
∇ Gradient operator.

I. INTRODUCTION

Processes in real systems do not occur instantaneously. This makes delays an inevitable part of control systems [1]. The
presence of delays has an impact on stability and performance [2], and this makes the analysis of stability regions in the
delay space of control systems an important aspect [3]. This issue, alongside other reasons, has led to an increased interest in
Time-delay Systems (TDS)s (which are also known as hereditary systems or systems with aftereffects [4]), and this is reflected
in the tremendous amount of research that has been performed on the subject.

In the field of aerospace, notwithstandingly, the importance of taking the presence of delays into account in the stability
analyses is great. In aerospace computer-controlled systems, there are many sources of delay. Besides the pure time-delays
occurring due to controller sampling and hold processes, time-delays may occur due to signal transmission delays, computation
delays, sensor measurement delays, and physical transport delays [1], [4]–[9]. Another source of delay that needs to be
mentioned is the data bus [10]. Furthermore, if the vehicle is piloted, the human operator introduces another source of delay
in the closed-loop control system. This is due to the physical limitations in the performance of humans; they require some
time in order to perceive stimuli, process the sensory information, and react accordingly [8].

Furthermore, for aerospace control systems, the effect of time-delays on stability and performance translates to an impact
on flight safety. This is supported by the fact that it has been seen that time-delays could lead to pilot induced oscillations as
well as persistent errors [11]. In alignment with this relation to flight safety, the stability regions in the delay space of a control
system are important for the certification of aerospace control systems [12]. This is especially relevant for more advanced
control techniques. The certification gap for adaptive control, for example, has been discussed in [12]. The authors mention
that while there are intuitive metrics for robustness and performance for classical linear control methods, these metrics cannot
be used for other classes of control systems, such as nonlinear systems. However, the time-delay margin has been proposed
as one of the possible metrics that may be used to close the certification gap [12], [13].

Additionally, time-delays are particularly interesting for the stability analysis of the incremental control approaches, a group
of techniques that has demonstrated many recent successes and has been the subject of increasing attention, due to its robustness
to uncertainties and its looser dependence on the model of the controlled plant [14]. Besides that these approaches make use
of state measurements and/or state estimates from previous time-steps, the effect of the control input increments on the output
needs to be seen by the controller before further control increments can be determined and applied [15]. The need to account
for time-delays in the analysis of INDI has been expressed by Sieberling et al., Smeur et al, as well as Huang et al. [6], [9],
[16]. Similarly, another incremental control technique, Incremental Backstepping (IBS), has shown performance degradation in
the presence of time-delays [17]. An analysis of the robustness regarding time-delays presents one of the theoretical knowledge
gaps regarding incremental control techniques.

Another related theoretical gap is the robustness of an incremental control system to the sampling rate. Due to the assumptions
that are made in the construction of incremental controllers, these control techniques require that the controller sampling
frequency is ”high”. Indeed, the detrimental effect of smaller controller sampling frequencies on the performance of an INDI-
controlled motion control system can be seen in the work of Huang et al. [16]. The theoretical gap regarding the controller
sampling frequency means that what comprises a ”high-enough” controller sampling frequency has not been quantified in the
literature. Despite being a complex and multifaceted problem, the selection of a suitable sampling rate, in relation to its effect
on stability, is connected to the problem of determination of the stable time-delay regions in the delay space of the control
system. Therefore, the two aforementioned knowledge gaps can be tackled though determining the stability regions in the
time-delay space of incremental control systems.

To the knowledge of the author, so far, there have been two main attempts to determine the stability regions in the delay
space of aerospace control systems utilizing incremental nonlinear controllers. One has been based on a discretization approach
of the sampled-data system for the case of a control system employing incremental non-linear dynamic inversion (INDI) [14].
The other attempt was made for estimating the time-delay margin for the case of a system utilizing Incremental Backstepping
(IBS) controller which was an analysis in continuous time [17]. In the case of the discretization approach, this means that the
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inter-sample information is lost. As for the latter attempt, the closed-loop formulation used in this method is based on neglecting
the higher-order terms as well as the assumption of time-scale separation (thus the assumptions made in the construction of
the controller were also applied to the controlled plant). Additionally, the analysis did not consider the effect of uncertainties
[17].

In this article, this knowledge gap is addressed through the implementations of techniques in both the frequency domain
and the time domain that can determine the time-delay intervals for which the control system is robustly stable. Specifically,
this article implements the analytic curve frequency sweeping approach. It also applies a set of matrix inequalities that are
based on the discretized Lyapunov functional method. The analysis in the frequency domain is made robust through the edge
theorem. As for the time domain analysis, vertex results can be leveraged in the case of subpolytopic uncertainty, and the
results obtained corroborate those from the frequency domain analysis.

The organization of the article is as follows. First, a brief review of INDI is presented in section II. Thereafter, a primer
on TDSs is discussed in section III. This is followed by section IV, which represents a select number of stability methods
that will be applied to the stability analysis of the system. After that, a discussion on a number of concepts and theorems
that are relevant for the robust stability analysis of TDSs is presented in section V. The proposed methods are applied on an
INDI-controlled pendulum in section VI and on the INDI control of short period dynamics in section VII. The final section,
section VIII, summarizes the contribution of this article and presents a number of recommendations for future research.

II. INCREMENTAL NONLINEAR DYNAMIC INVERSION (INDI)

The INDI control approach emerged as a more robust variant of NDI by alleviating the dependency control approach on
the plant model. This is realized by linearizing the system about the current state and control input. The incremental form that
arises allows to feed back sensor measurements. As will be seen in the following, for INDI, only the knowledge of the value
of the control effectiveness matrix is needed.

In the following, the continuous-time formulation for INDI will be presented. It should be noted that for INDI, a system
which is affine in the control should be considered. A general example of such a system is shown in eq. (1). This equation is
the starting point for the discussion on the continuous-time formulation of INDI.

ẋ = f(x) +G(x)u
y = h(x)

(1)

Linearizing the dynamics in this equation leads to eq. (2).

ẋ ≈ ẋ0 + G (x0) (u− u0) +
∂[f(x) + G(x)u]

∂x

∣∣∣∣
0

(x− x0) + O
[
(x− x0)

2
]

(2)

Neglecting the higher order terms in the linearized system dynamics shown in eq. (2) leads to the following:

ẋ ≈ ẋ0 + G (x0) (u− u0) +
∂[f(x) + G(x)u]

∂x

∣∣∣∣
0

(x− x0) (3)

As mentioned in the introduction, this simplification holds for cases where the control sampling frequency is ”high”, but
for which a specific requirement has not been previously quantified in the literature [16], [18].

Furthermore, following the usual derivation pipeline of INDI, time-scale separation is assumed. This means that the actuator
dynamics are assumed to be fast and that the evolution of the state variables is quite slow in comparison. This assumption
allows to neglect the term involving the change in state, which leaves eq. (4).

ẋ ≈ ẋ0 + G (x0) (u− u0) = ẋ ≈ ẋ0 + G (x0) ∆u (4)

After the linearization, the virtual control ν can replace ẋ and the inversion of the dynamics is performed. Thereafter, the
incremental control is obtained.

∆u = Ĝ−1 (ν − ẋ0) (5)

Thus, the control law is of the form shown in eq. (6).

u = u0 + Ĝ−1 (ν − ẋ0) (6)
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III. TIME-DELAY SYSTEMS

A. Representation of Time-delay Systems

Time delay systems are usually described by functional differential equations. Equation (7) shows a functional differential
equation that represents a generic TDS [19].





ẋ(t) = f (t, x(t), xt, ut)
xt0 = φ(θ), ∀θ ∈ [t0 − τ, t0]
ut0 = ζ(θ), ∀θ ∈ [t0 − τ, t0]

(7)

In this equation, φ and ξ denote the initial conditions for the state and the input, respectively. Moreover, τ denotes a
time-delay, and as such τ > 0. As for xt, it is defined according to eq. (8):

xt :

{
[−τ, 0]→ Rn
θ 7→ xt(θ) = x(t+ θ)

(8)

and ut is defined according to eq. (9):

ut :

{
[−τ, 0]→ Rn
θ 7→ ut(θ) = u(t+ θ)

(9)

The notation xt and ut corresponding to the definitions in eq. (8) and eq. (9) is referred to as the Shimanov notation.
Moreover, it is clear that eq. (7) shows the dependence of the functional differential equation on current as well as past states
and inputs.

B. Classification of Time-delay Systems

TDSs are described and categorized based on a number of aspects including the model of the delay, the number of delays
in the systems, and the type of delays in the system. Each of these categories will be discussed in the following.

1) Model of Delay: Discrete or Distributed
There are two main ways to model delays: either as discrete (also referred to as point-wise delays) or as distributed delays.

States with discrete delays in their arguments such as x(t− τ) can be understood as values from a specific moment in the past
which is in this case t− τ . Furthermore, a discrete delay may either be constant or may vary with time. This again means that
the dynamics depend on a precise moment in the past, but this pointwise moment varies with time.

The choice of whether to model a time-delay as fixed or as time-varying is important for the validity of the results.
Furthermore, when the systems with discrete delays are compared with the systems with time-varying delays, the phenomenon
of quenching is witnessed. That is, quenching happens at certain time-delays at which the system with discrete time-delays is
stable but for which when the time-delays are assumed to be time-varying, stability is lost (or vice versa, i.e. having stable
delay intervals for the case of time-varying delays for which the TDS with discrete delays is no longer stable) [20].

As for distributed delays, the states from an interval of time occurring in the past [−τ1,−τ2], where τ1 > τ2 ≥ 0, are used.
This interval is then weighed with a kernel. It is this information that is incorporated into the dynamics [21]. An example of
a system with distributed delay is shown in eq. (10) [22].

ẋ(t) =

∫ 0

−r
c(θ)x(t+ θ)dθ (10)

It should be remarked that the information captured by modeling the dependence on past information through distributed
delays is a more complex but richer representation. Distributed delays are able to incorporate ”memory” of a sequence occurring
in the past which is more insightful than just looking at discrete points in the past. An example of using distributed delays in
the representation of a system is in the case of describing the delay response of human drivers. Physically, the interpretation
for the use of distributed delays rather than discrete delays is that drivers make use of a cumulative continuous stream of past
information they have perceived to take a control action [23].

Besides their use in the system representation, distributed time-delays are also important in the derivation of delay-dependent
stability criteria in the time-domain, for TDSs with point-wise delays.

2) Type of Delay: Retarded or Neutral
Another important classifying aspect for TDSs is how the delay influences the states or the derivatives of the states in the

system [21]. There are three main ways in which delays influence the states or the derivatives of the states in the system.
Those are the retarded type TDSs, the neutral type TDSs, and the advanced type TDSs. It is important to make this distinction
between the types because the type has important implications on the properties of the system, on the necessary conditions for
their stability, and consequently, on the approaches for stability analysis. In the following, it is explained how to differentiate
between those three types.
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In the case of retarded TDSs, the highest order derivative in the system is not affected by time-delays. The general form of
the retarded type TDS is given by the functional differential equation given in eq. (11) [24].

ẋ(t) = f (t, xt) (11)

A generic example of a retarded TDS is eq. (12).

ẋ(t) = A0x(t) +
m∑

i=1

Aix (t− τi) (12)

However, for neutral TDSs, there are two terms with the highest-order derivative, one that does depend on the time-delay
and another that does not. The general form of the neutral type TDS is given by the functional differential equation in eq. (13)
[24].

ẋ(t) = f (t, xt, ẋt) (13)

A generic example of neutral TDS is eq. (14), where the term indicated with the underbrace is commonly referred to as the
delay-difference operator.

d

dt



x(t) +

m∑

k=1

Cx (t− τk)

︸ ︷︷ ︸
Delay-difference operator




= A0x(t) +
m∑

i=1

Aix (t− τi) (14)

Moreover, the equation based on the delay-difference operator (also known as the discrete kernel operator [24]), shown in
eq. (15), is that of associated delay-difference equation. The stability of this equation is tied to that of the neutral TDS as will
be discussed later.

x(t) +
m∑

k=1

Cx (t− τk) = 0 (15)

As for the case where there is only one term for the highest-order derivative and this term depends on the time-delay, this
case characterizes an advanced type TDS [21], [24], [25].

The distinction between the three types is further clarified with the examples of the scalar systems shown in eq. (16), eq. (17)
(as taken from [26]), and eq. (18). From eq. (16), it can be seen that the highest order derivative which is a second order
derivative does not depend on the state, but the first order derivative does. Thus, although there are state derivatives that depend
on the delays in the system, this is a retarded type TDS.

ẍ(t) = aẋ(t− τ) + bx(t), x(t) ∈ R (16)

As for eq. (17), it can be seen that the highest-order derivative does also depend on the time-delay: ẍ(t− τ). Therefore, this
system is of neutral type.

ẍ(t) = aẍ(t− τ) + bx(t), x(t) ∈ R (17)

Moreover, if the case where the ẍ(t) of eq. (17) is no longer part of the equation is encountered, as in the case shown
in eq. (18), this becomes an advanced type TDS since the term with the highest order derivative, aẍ(t − τ), depends on the
time-delay.

aẍ(t− τ) + bx(t) + ẋ(t) = 0, x(t) ∈ R (18)

It should be noted however that, for the sake of engineering applications, the advanced type is not as relevant [24]. The
reason for this is that, in an advanced type TDS, the quantity described by the dynamics depends on its future values [27].
Since the dependence of a state on future values is not physically possible, only the retarded and the neutral types will be
discussed in the parts to follow.

One main difference between retarded TDSs and neutral TDSs is the smoothness of solutions of the system. While for the
case retarded TDSs, the solutions become smoother with the passing of time, such a smoothing effect does not always occur
in the case of neutral TDS.

Another difference occurs in the spectral properties of the TDSs. In the case of retarded TDSs, it is guaranteed that there
will be a finite number of roots to the right side of any vertical line drawn in the complex plane. However, in the case of
neutral TDSs, there may be an infinite number of unstable roots. The stability of the delay-difference operator however induces
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the number of unstable roots for the neutral TDS to become finite. The discussion on the spectral properties will be further
developed in section III-C.

3) Number of Delays: Single or Multiple Delays
The final aspect to consider in the classification of TDSs relates to the number of delays in the system. The two categories

here are the case of single delay in the system or multiple delays. If there are multiple delays in the system, it may either be
the case of commensurate delays (when the delays are multiple of a certain baseline delay) or incommensurate delays [21].

It should be noted that a slightly confusing terminology has been adopted in the literature to describe systems with
commensurate delays. Despite there being multiple delays in such a system, the system is referred to as a single delay
system. In order to determine what multiple of the baseline delay occur in the system, the commensurate degree (denoted by
L) is introduced. Therefore, when the terms x1(t− τ), x2(t− 2τ) and x3(t− 3τ) are present in the system, the commensurate
degree is 3, i.e. L = 3. As for the case of a system with a single delay, the commensurate degree is 1, i.e. L = 1.

Dealing with TDSs with incomensurate delays is often much more complicated than dealing with TDSs with commensurate
delays. One key challenge is the computational complexity which in the case of the stability analysis of multiple-delay systems
is NP-hard. Here, NP stands for non-deterministic polynomial time. However, it should be noted that NP-hard problems
constitute a completely different set of problems than that of NP problems. For both classes of problems, it is not possible
to obtain a solution that is tractable and scalable with the size of the problem. Here, tractable means that the problem can be
solved in polynomial time even in worst-case scenarios. The key difference between NP and NP-hard problems is that for
NP problems verifying a postulated solution is possible using a polynomial-time algorithm while for NP-hard problems, it
isn’t. This makes NP-hard problems the toughest class of problems to deal with.

To give an intuition of why the problem of analyzing the stability of TDSs with incommensurate delays is NP-hard, consider
the stability analysis of a system with two distinct delays. This problem may be considered as the stability analysis of a system
with commensurate delays but whereby all possible ratios between the two delays are attempted. Clearly, this makes it an
intractable problem [21]. A formal proof of the NP-hardness of the stability analysis in the case of incommensurate delays
is provided by Gu et al. in [22].

C. Spectral Properties of Time-delay Systems

It is important to discuss the spectral properties of TDSs, as the spectral properties provide useful insights for the stability
analysis techniques that will be explained later. Some of the spectral properties of retarded TDSs and of neutral TDSs will be
individually discussed. However, before this discussion ensues, there are main properties that are applicable to the spectra of
both retarded and neutral TDSs that need to be mentioned.

First and foremost, TDSs have infinitely many roots, and this is one of the aspects that reflect the infinite dimensional nature
of TDSs. This property is easily seen from examining the characteristic quasipolynomial of any TDS. The Laplace transform
of delayed terms such as x(t− τ) leads to exponential terms in the characteristic equation. Since the exponential function is
a transcendental function, its presence in the characteristic equation leads to an infinite number of zeros [28], [29].

Another important property of the spectrum of both retarded and neutral type TDSs is that when the coefficients of the
quasipolynomial are real, the spectrum is symmetric with respect to the x-axis. This is applicable in the case of both retarded
and neutral TDSs.

1) Spectral Properties of Retarded Time-delay Systems
Despite there being infinitely many characteristic roots, usually there is a finite number of unstable roots. For retarded

systems, this is always applicable. As for neutral systems, this is guaranteed when the delay-difference operator is stable [29].
Conversely, when the delay-difference operator is unstable, there can appear infinitely many unstable roots for the neutral TDS
[3].

For retarded TDSs, if there is a sequence of roots whose magnitude tends to +∞, then the real part of those roots tends to
−∞. [29]. This is in alignment with the property that retarded systems have a finite number of unstable roots. That is, if the
magnitude is getting increasingly large and it is known that the number of unstable roots has to be finite, then it must be that
those roots are tending towards the extremes of the other half-plane. If there exists a sequence {λk} of characteristic roots of
the retarded system such that limk→∞R (λk)→ −∞ [29].

Additionally, there is a finite number of roots within any vertical strip in the complex plane. The vertical strip is formally
expressed in eq. (19) where α, β ∈ R and α < β.

{λ ∈ C : α < R(λ) < β} (19)

A special case of this property occurs when this vertical strip is narrowed down to an infinitesimally thin strip about the
imaginary axis. Thus, it can be said that the number of eigenvalues on the imaginary axis is always finite.

Another property is that there is a vertical line to the left-side of which will be all the roots of the retarded TDS. Let this
vertical line be represented with x = γ. Formally, this is described with eq. (20).

{λ ∈ C : <(λ) < γ} (20)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 7

10 Chapter 1. Spectral properties of linear time-delay systems

−14 −12 −10 −8 −6 −4 −2 0 2
−100

−80

−60

−40

−20

0

20

40

60

80

100

ℜ(λ)

ℑ
(λ

)

Figure 1.2. Envelope curve on the characteristic roots for the system (1.3) with α = 2 and
τ = 1/3 (solid line). The characteristic roots are indicated by+.

Indeed, observe first that the (auxiliary real) function

f :�+  →�, f (x) := x −	A0	2−
m


i=1

	Ai	2e−rτi

is differentiable and strictly increasing. Next, since f (0) < 0 and limx→∞ f (x) =∞, it
follows straightforwardly that there exists a unique positive root r0 > 0 such that f (r0) =
0. In conclusion, the rightmost root λr in the complex plane verifies the inequalityℜ(λr )≤
r0. Consider now a root in the imaginary axis, that is, λ0 = jω0 (with ω0 ∈ �). The
inequality (1.12) provides the following upper bound:

|ω0|≤
m


i=0

	Ai	2, (1.13)

meaning that the interval over the imaginary axis where we can find characteristic roots
(if any?!) is independent of the delay values. The next result will simply show how the 2
norm can be replaced by any induced matrix Q norm, thus leading to a better estimation
of such an interval:

	A	2Q =max
i
λi (A

T QA), (1.14)

where Q = QT ∈ �n×n is an arbitrary positive-definite real matrix. More precisely, we
have the following estimates of the upper bound:

Proposition 1.12. Let Q =Q � > 0 ∈�n×n be given. If μ ∈�+ is such that

μQ >
m


i=0

AT
i QAi , (1.15)

then any solution of the characteristic equation (1.8) on the imaginary axis λ = jω satisfies
|ω|≤�μ(m+ 1).

Fig. 1: Example curve envelope of the spectrum of a TDS [29].

An even stronger case of the latter is the proposition that yields the envelope curve of the spectrum. For the retarded TDS
described by eq. (12), the envelope is described by eq. (21). The proof for this proposition is provided by Michiels et al. in
[29]. An example of such an envelope is shown in fig. 1.

|λ|≤ ‖A0‖2 +
m∑

i=1

‖Ai‖2 e−N(λ)τi (21)

The envelope curve provides very nice information regarding the location of the Critical Imaginary Root (CIR)s which are
the roots of the characteristic equation that occur on the imaginary axis of the complex plane. Knowing about the presence
and location of the CIRs is important because, for retarded systems, the gain or loss of stability is related to the crossing of
the imaginary axis. Being imaginary roots, λ in eq. (21) can be replaced with jω. Moreover, the real part of the characteristic
root is zero i.e. N(jω) = 0. This leads to eq. (22) [29].

|jω| ≤ ‖A0‖2 +

m∑

i=1

‖Ai‖2 e0

=⇒ |ω| ≤ ‖A0‖2 +
m∑

i=1

‖Ai‖2

=⇒ |ω| ≤
m∑

i=0

‖Ai‖2 (22)

From eq. (22), it is known that there is an interval over the imaginary axis of finite width that is guaranteed to contain the
CIRs. It can also be noted, based on this inequality, that this interval is independent of the delay values [29].

The spectra of retarded TDSs also possess nice continuity properties. That is, the characteristic roots behave continuously
with respect to the variations of system matrices and delays. Additionally, the spectral abscissa, which is the largest real part
available from the roots in the spectrum i.e. maxi {Re (λi)}, is also continuous with respect to these variations.

2) Spectral Properties of Neutral Time-delay Systems
The properties of the spectrum of the associated delay-difference equation, shown in eq. (15), heavily dictate those of the

spectrum of the neutral type TDS. It is also this aspect that leads to the additionaly necessary stability condition for the
exponential stability of the null solution of the neutral type TDS, which is the exponential stability of the null solution of the
delay-difference equation [29].

An important aspect of the relation between the spectrum of the neutral type TDS and that of the associated delay difference
equation is that the real part of the sequence of characteristic roots {λn}n≥1 of the neutral type TDS (eq. (14)) tends to the
limit of that of the delay-difference equation, denoted by ζ. Moreover, the imaginary part of the sequence of characteristic
roots tends to infinity; thus, the neutral TDS is said to have vertical asymptotic chains [30]. Both of these characteristics are
expressed in eq. (23).

lim
n→∞

< (λn) = ζ, lim
n→∞

= = (λn) =∞ (23)
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Figure 1.4. (Left) Characteristic roots of the neutral system (1.37)–(1.38). (Right) Eigenvalues

of the corresponding operator �N (1).

A very important result in what follows, which connects the spectra of �N (t ) and �D (t ),
is the following:

σe (�N (t )) = σ(�D (t )). (1.36)

Example 1.19. We consider the neutral system

d
d t

�
x(t )− 3

4
x(t −τ1)+

1
2

x(t −τ2)
�
=

1
4

x(t )+
3
4

x(t −τ1), (1.37)

where
�τ = (1,2). (1.38)

In Figure 1.4 we plot the characteristic roots λ, which are the eigenvalues of the operator�N ,
as well as the eigenvalues z of the operator �N (1). These are connected via the relation z = eλ.
The operator �N only features a point spectrum; in particular, the characteristic roots are
all isolated and of finite multiplicity. The operator �N (1) features an essential spectrum that
corresponds to the accumulation points of the eigenvalues given by

z±e =
3±23 j

8
. (1.39)

In Figure 1.5 we plot the characteristic roots of the associated delay-difference equation

x(t ) =
3
4

x(t −τ1)−
1
2

x(t −τ2). (1.40)

The characteristic roots can be computed analytically as follows:

1− 3
4

e−λ+
1
2

e−2λ = 0 (1.41)

⇔ eλ =
3±23 j

8
(1.42)

⇔ λ=− log 2± j


atan


23
3
+ 2πl

�
, l ∈ �. (1.43)

The fact that the right-hand sides of (1.39) and (1.42) are equal is a consequence of (1.35)–(1.36).

(a) Spectrum of the neutral type TDS [29].
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Figure 1.5. (Left) Characteristic roots of the delay-difference equation (1.40)–(1.38). (Right)
Eigenvalues of �D (1).

1.2.3 Asymptotic growth rate of solutions and stability

The definition of stability notions is similar to that for ODEs and DDEs of retarded type:

Definition 1.20. The null solution of (1.25) is asymptotically stable4 if and only if

∀ε> 0 ∃δ > 0 ∀φ ∈� ([−τ, 0],�n) (	φ	s < δ)⇒ (∀t ≥ 0 	xt (φ)	s < ε) ,
∀φ ∈� ([−τ, 0],�n) limt→+∞ x(φ)(t ) = 0.

Definition 1.21. The null solution of (1.25) is exponentially stable if and only if there exist
constants C > 0 and γ > 0 such that

∀φ ∈� ([−τ, 0],�n) 	xt (φ)	s ≤C e−γ t	φ	s .
It is clear that exponential stability implies asymptotic stability. Contrary to the case

of linear delay equations of retarded type, the converse does not hold in general, as illus-
trated by an example in [393] (see also [50]).

The asymptotic behavior of the solutions of (1.25), and thus their stability properties,
is determined by the spectral radius rσ (�N (1)). In particular we have the following result:

Proposition 1.22. The null solution of (1.25) is exponentially stable if and only if

rσ (�N (1))< 1,

or, equivalently, all characteristic roots are located in the open left half plane and bounded
away from the imaginary axis.

For the delay-difference equation (1.28), associated with (1.25), stability definitions
and their relation with spectral properties are similar. We have, for instance:

Definition 1.23. The null solution of (1.28) is exponentially stable if and only if there exist
constants C > 0 and γ > 0 such that

∀φ ∈�D ([−τ, 0],�n) 	yt (φ)	s ≤C e−γ t	φ	s .
4For reasons of conciseness we will often use the less precise formulation “the system (1.25) is asymptotically

stable.”

(b) Spectrum of the corresponding delay-difference equation
[29].

Fig. 2: Spectrum of a neutral type TDS and that of the corresponding delay-difference equation.

An example spectrum demonstrating these properties is shown in fig. 2. Examining the spectrum of the neutral TDS shown
in fig. 2a, it can be seen that the sequence of eigenvalues tends to the vertical line at around -0.35, which happens to be the
location of where all the roots of the delay-difference equation are located, as seen in fig. 2b.

Another property is that neutral type time-delay equation has a finite number of roots that are in the right-half plane and
that are to the right of the spectral abscissa of the delay-difference equation, which is denoted by cD. This again can be seen
from fig. 2a where it can be seen that there is only one root in the right half-plane, which also happens to be on the right-hand
side of the spectral abscissa of the characteristic roots of the delay-difference operator which occurs at about -0.35.

Small perturbations can remove the stability of the delay-difference equation, which is known as the delay sensitivity problem
of the delay-difference equation. This susceptibility to small perturbations is eliminated when the delay-difference equation is
strongly stable, which is ensured when condition eq. (24) is satisfied. In this case, it can also be said that the delay-difference
operator is strongly stable.

m∑

k=1

‖C‖ < 1 (24)

When the strong stability of the delay-difference operator is ensured, the loss or gain of stability, as in the case of retarded
TDSs, is related to crossing the imaginary axis in the complex plane. This ties to the fact that, as mentioned earlier, the strong
stability of the delay-difference operator induces a finite number of unstable roots.

IV. METHODOLOGY FOR STABILITY ANALYSIS

In the following, two approaches for the stability analysis of TDSs, which will be applied later on, are discussed: the
analytic curve frequency sweeping approach and the stability results in the form of matrix inequalities based on the discretized
Lyapunov functional method. The former method involves an analysis in the frequency-domain, while the latter results are
constructed for an analysis in the time domain. The reason to consider methods that pertain to each of the frequency domain
and the time domain is that each presents its own set of advantages. Particularly, the main advantage of the frequency domain
methods is their relative simplicity in comparison to the time-domain-based methods. Their main drawback, however, is their
exclusive applicability to LTI systems. In relation to this aspect, the stability results that are derived in the time-domain have
the advantage that they can more readily deal with nonlinearities and time-varying systems [22]. Their major drawback is that
the stability results are applicable to the systems for which they were derived, which have a specific structure.

A. Analytic Curve Frequency Sweeping Approach

The stability analysis of LTI systems can usually be performed by examining the real parts of the eigenvalues of a control
system. However, in the case of LTI TDSs, due to their infinite-dimensional nature, it is preferable to circumvent determining
the eigenvalues of the closed-loop system, and some of the properties mentioned earlier allow that.

One of the properties of TDSs that have been previously discussed is that there is a finite number of characteristic roots in the
right half-plane for retarded TDSs and for neutral TDSs with strongly stable delay-difference operators. Moreover, this property
bore a stability property: that the gain or loss of stability of these systems is determined by the crossing of the imaginary axis.
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Therefore, the stability problem gets transformed into one of counting the number of unstable roots as the time-delay(s) is/are
varied. This is done based on determining the crossings with the imaginary axis and determining the time-delays at which these
crossings occur. The combinations of the CIRs with their associated time-delays are known as critical pairs. With the delay
intervals or regions (for the case of multiple delays) established, the final step is to determine whether the intervals/regions are
stable or not. It should be noted that there have been many different methods discussed in the literature for the implementation
of the first two od the three previously mentioned steps.

The analytic curve frequency sweeping approach, described in [28], is a stability analysis method that follows these three
main steps. It makes use of frequency sweeping in order to determine the critical pairs. The frequency sweeping is combined
with an eigenvalue perturbation-based approach to study the asymptotic behaviour of the critical pairs. Finally, the stable
time-delay regions are determined through thorough book-keeping of the number of unstable roots. In the following, the details
of these three main steps for this outlined approach are discussed.

1) Critical Pairs
One of the ways to detect CIRs is through the frequency sweeping curves. The construction of frequency sweeping curve(s)

is as follows. The frequencies in a certain range with a certain step size are iterated over. For each frequency, the value(s) for
z are determined, where z is defined as z = e−jωτ . Thereafter, the magnitude(s) of the z value(s) are obtained. These values
are plotted against the values of ω at which they were obtained. Note that each z expression corresponds to one frequency
sweeping plot. The CIRs are the intersections with the horizontal line Γ = 1.

It can be seen that frequency sweeping can be done programmatically as well. The risk of this, however, is that an automated
procedure eliminates the human’s role in determining the CIRs. This means that if the steps used in the frequency sweeps are
too large, that some roots may be missed.

In order to make use of the automated determination of the CIRs through programmatic frequency sweeping and avoid
problems of undetected roots, the frequency sweeping curves can be generated as well, which can be later checked to verify
whether all the CIRs have been determined. If the possibility of missed roots is noticed, the analysis is repeated using smaller
frequency steps.

2) Asymptotic Behaviour of Critical Pairs
The crossing direction of an imaginary root is defined as the sign of the change in the value of eigenvalues around the

imaginary axis with respect to an increase in the time-delay. This is shown in eq. (25).

CDIR = sign

[
dλ

dτ

]

λ=ωC,i

(25)

If a CIR is simple, then the asymptotic behaviour can be studied based on the implicit function theorem from which it holds
that expression for dλ

dτ can be determined with eq. (26).

dλ

dτ
= −fτ

fλ
(26)

However, when the multiplicity of the root is larger than 1, then the implicit function theorem no longer applies. In this
case, an alternative is to study the asymptotic behaviour through a series expansion of the relation between a time-delay τ
and the characteristic root λ. Since the Puiseux series allows to describe the local behaviour of a power series, the asymptotic
behaviour can be studied through n Puiseux series, where n is an important index that will be explained in the following
paragraphs [28]. To the knowledge of the author, Chen et al. were the first to use an eigenvalue perturbation-based approach
to determine the asymptotic behaviour of the CIRs and to consequently determine the regions of stability [31].

The procedure for obtaining the Puiseux series is summarized with algorithm 1, obtained from [28]. However, before
proceeding with presenting the algorithm, there are two important non-negative indices that need to be discussed, the indices
n and g, that are associated with a critical pair (λa, τa,k). The index n is defined according to eq. (27).

fλ0 = · · · = fλn−1 = 0, fλn 6= 0 (27)

From this definition, it can be seen that the index n corresponds to the multiplicity of a critical pair. As for the index g, it
is defined according to eq. (28).

fτ0 = · · · = fτg−1 = 0, fτg 6= 0 (28)

It should be noted that both of the indices are guaranteed to be bounded if the CIR to which they are associated is not zero
[28]. Moreover, one of the properties is that the index g is constant for all τα,k. However, the index n can possibly vary with
τα,k.

Now that the definitions of those two important indices have been established, the algorithm for obtaining the Puiseux series
of a quasipolynomial at a critical pair can be presented, and it reads as shown in algorithm 1.
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Algorithm 1 Algorithm to determine the Puiseux series [28]

1: procedure GETPUISEUXSERIES(f(λ, τ), n, g)
2: α0 ← 0
3: β0 ← g
4: while True do
5: µ← max

{
β0−β
α−α0

> 0 : Lαβ 6= 0, α > α0, β < β0

}
. Note that Lil = fλiτ

l

(i+l)!

(
i+ l
i

)(
i+ l
i

)

6: if µ exists then
7: Determine all nonzero Lαβ such that β0−β

α−α0
= µ

8: Form the set
{
Lα1β1(∆λ)α1(∆τ)β1 , Lα2β2(∆λ)α2(∆τ)β2 , . . .

}
such that α1 > α2 > . . .

9: Determine coefficients satisfying the equation Lα1β1
Cα1−α0 + Lα2β2

Cα2−α0 + · · ·+ Lα0β0
= 0 . denoted

C̃µ,l
10: ∆λ← C̃µ,l(∆τ)µ + o ((∆τ)µ) , l = 1, . . . , α1 − α0

11: α0 ← α1

12: β0 ← β1

13: else
14: return ∆λ(∆τ)
15: end if
16: end while
17: end procedure

Once the Puiseux series ∆λ(∆τ) are obtained, the effect of ∆τ = +ε and ∆τ = −ε on the real part of ∆λ can be
determined. Based on this, it is possible to tell what the asymptotic behaviour is when the time-delay changes from τα − ε to
τα + ε.

However, in some cases which are referred to as degenerate cases, the resultant Puiseux series involves only an imaginary
term. This means that the first order Puiseux series is insufficient. In order to address this issue, higher order Puiseux series
need to be determined, which is done by applying algorithm 1, iteratively [28].

3) Stability Regions in the Delay Space
After having determined the critical pairs and the asymptotic behaviour associated with them, it finally remains to determine

the stability regions in the delay space of the TDS. This entails monitoring the change in the number of unstable roots and
keeping track of the number of unstable roots pertaining to the time-delay intervals. The change in the number of unstable
roots is mathematically described in eq. (29) [28].

∆NUα(β) , NUα
(
β+
)
−NUα

(
β−
)

(29)

The notation ∆NUα(β) signifies the change in the number of unstable roots that is associated with the critical pair (α, β),
with α being the CIR and β being the associated critical time-delay. As shown from eq. (29), ∆NUα(β) corresponds to the
change that occurs when the time-delay is increased from β− to β+.

B. Matrix Inequalities

There are many stability results that have been proposed in the literature for the stability analysis of TDSs in the time-domain.
However, since the interest is in time-domain stability results that would corroborate the results obtained from the frequency
domain analysis (which are exact results), the set of candidate stability results is narrowed down to the results that are based
on the discretized Lyapunov functional method because, for increasing N, the solutions of these matrix inequalities tend to
those exact results. Several matrix inequalities based on the discretized Lyapunov functional method have been derived in the
literature [32]–[35]. However, more recently, stability results, that are based on the use of the Bessel-Legendre inequality (see
Lemma 1) as well as the use of Legendre polynomials (see Definition 1) as a basis for the discretization, have proven to be
particularly efficient in comparison to other stability results in this category.

Lemma 1 (Bessel-Legendre Inequality [36]): Let x ∈ L2 (I → Rn) and R ∈ S+
n . The integral inequality

∫ 0

−τ
x(u)Rx(u)du ≥ 1

τ




Ω0

...
ΩN




T

RN




Ω0

...
ΩN


 (30)
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holds, for all N ∈ N, where
RN = diag(R, 3R, . . . , (2N + 1)R)

Ωk =

∫ 0

−τ
Lk(u)x(u)du, for all k ∈ N

(31)

Definition 1 (Legendre Polynomial [36]): The Legendre polynomials considered over the interval [−τ, 0] are defined
by:

∀k ∈ N, Lk(u) = (−1)k
k∑

l=0

pkl

(
u+ τ

τ

)l
(32)

with pkl = (−1)l
(
k
l

)(
k + l
l

)
.

Two such stability results have been been derived for retarded TDSs with single delays [36], [37]. Because they are comparable
results, only one of them will be presented in the following.

Consider the retarded TDS with a single delay shown in eq. (33).

ẋ(t) = A0x(t) +A1x(t− τ), τ ≥ 0 (33)

As mentioned in the earlier paragraphs, two similar stability results that are based on the discretized Lyapunov functional
method, and the use of Bessel-Legendre inequality as well as the use of Legendre polynomials as basis for the discretization,
have been developed in the literature [36], [37]. In the following, only one of the results will be presented. In particular,
Theorem 1 presents the stability result that has been derived in [37].

Theorem 1 ( [37]): For a given N and a constant delay τ , assume that there exist a matrix PN ∈ S(N+1)n and two
matrices S,R ∈ S+

n such that

ΘN (τ) =





PN � 0, if N = 0

PN + 1
τ




0
S

. . .
(2N − 1)S


 � 0, if N > 0

ΦN (τ) = ΦN0(τ)−




ΓN (0)
...

ΓN (N)




>



R
3R

. . .
(2N + 1)R







ΓN (0)
...

ΓN (N)


 ≺ 0

ΦN0(τ) = He
(
G>N (τ)PNHN

)
+ S̃N + (τ)2F>NRFN

S̃N = diag {S,−S, 0Nn}
SN = diag{S, 3S, . . . , (2N + 1)S}
FN =

[
A0 A1 0n,nN

]

GN (τ) =

[
In 0n 0n,nN

0nN,n 0nN,n τInN

]

HN =
[
F>N Γ>N (0) Γ>N (1) . . .Γ>N (N − 1)

]>

(34)

where ΓN (k) for all k = 0, . . . , N are defined as follows:

ΓN (k) =

{
[I − I], if N = 0

I (−1)k+1I γ0
NkI . . . γ

N−1
Nk I

]
, if N > 0

γiNk =

{
−(2i+ 1)

(
1− (−1)k+i

)
, if i ≤ k

0, if i > k

(35)

The stability intervals of the retarded TDS with a single delay (eq. (33)) are the values of time-delay for which eq. (34)
is satisfied.
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V. ROBUST STABILITY ANALYSIS

For real-world applications, it is practically impossible to describe a system precisely. Uncertainties in the linear system
representation occur due to many reasons. These include approximate or incorrect knowledge about certain parameters in the
system. Another source of uncertainty is the linearization of system dynamics; some parameters may be time-varying because of
nonlinearities in the actual system dynamics or because of different operating conditions. Furthermore, the limited measurement
accuracy of sensors introduces uncertainties in the signals in the system. In some situations, despite having accurate insight
about the plant model, it may be preferred to deal with a deliberately simplified version of the model and to represent the
parts that were neglected with uncertainties [38].

Considering the inevitable presence of uncertainties in practice, it is important to make the analysis robust to such
uncertainties. It should be noted that, in the case of TDSs, uncertainties may arise in two main ways: either as uncertainties in
the coefficients or as uncertainties in the time-delay parameters themselves. For the case of the problem analyzed in this thesis,
the research aim is to determine the time-delays for which the stability of the control system is ensured while considering
uncertainties in the knowledge about the modelled parts of the system, rather than assessing the stability for time-delay intervals
that are known a priori. Therefore, in this article, the concern is with uncertainties in the coefficient matrices (in the case of
the time domain) or the coefficient vectors of the quasipolynomials (in the case of the frequency domain).

A. Preliminaries

Because of their relevance to the methods that will be discussed in section V-B, two preliminary concepts will be explained.
Those are the concept of uncertain quasipolynomials and that of the value set.

1) Uncertain Quasipolynomial
Consider the quasipolynomial defined in eq. (36).

f(λ) =

n∑

j=0

m∑

i=0

ajiλ
n−je−τiλ =

m∑

i=0

pi(λ)e−τiλ where 0 = τ0 < τ1 < . . . < τm (36)

There are two vectors defined in association with the equation of the quasipolynomial in eq. (36): the coefficient vector
shown in eq. (37) and the exponent coefficient vector seen in eq. (38) [22].

a = (a00, . . . , a0n, a10, . . . , a1n, . . . , amn) (37)

r = (r1, r2, . . . , rm) (38)

In the case of uncertainties, where the uncertain parameters belong to some uncertainty bounding set QF , the result is a
family of uncertain quasipolynomials, denoted by F :

F = {f(s,a, r)|(a, r) ∈ Q} (39)

However, as previously mentioned, uncertainties in the time-delays will not be considered. Only the cases where there are
uncertainties in the coefficient vector a will be of concern in this thesis. Thus, the elements of the coefficient vector may be
in terms of a number of uncertain elements, where such uncertain elements shall be denoted by qi.

2) Value Set
The value set is an important tool for the robust stability analysis of uncertain functions. However, before explaining why

it is such an important concept, a definition of the value set will be presented, in the context of uncertain quasipolynomials.
Informally stated, the value set is the range of an uncertain function at a particular imaginary frequency.

Definition 2 (Value Set [22]): The value set of a family of quasipolynomials F is defined according to:

VF (λ0) = {f (λ0) |f ∈ F} (40)

where λ0 is a complex number and specifically a pure imaginary complex number at which the value set is evaluated.

One particular reason why the value set is considered to be important is that it is needed to check for the zero-exclusion
principle which is one of the more general principles that are applicable across the different uncertainty structures in the
hierarchy, and which will be explained in the following subsection. Moreover, since the zero-exclusion principle has been
instrumental to the derivation of several other theorems, the value set, by extension, can be needed to check the conditions of
other theorems as well, as is the case, for example, for the Finite Inclusions Theorem. Another important, and often convenient,
property of the value set is that it is always two-dimensional, irrespective of the nature of the uncertain function or of the type
of uncertainty structure involved.
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B. Robust Analytic Curve Frequency Sweeping Approach

1) Affine Uncertainty Structure
The edge theorem was originally developed for the stability of uncertain polynomials that have an affine uncertainty structure.

This theorem was later extended to the case of retarded uncertain quasipolynomials by Fu et al. [39]. These results were further
extended to the case of neutral TDS by the same researchers [40].

The theorem states that when the system can be described as a polytopic family of quasipolynomials, the stability of that
family can be deduced from the stability of the edges of its polytope. Specifically, the family is stable if and only if all the
edges of the family are stable.

Given the affine uncertainty structure, the quasipolynomial describing an edge can be determined from the linear combination
of two vertex quasipolynomials pertaining to a particular edge, denoted by f0(s) and f1(s). This is shown in eq. (41).

fµ(λ) = (1− µ)f0(λ) + µf1(λ), where µ ∈ [0, 1] (41)

In the literature, Tuzcu et al. have used the edge theorem to extend the stability analysis approach based on the direct method
to the case of TDS with polytopic uncertainty [41]. Along this line of research, it was interesting to attempt to extended the
analytic curve frequency sweeping approach with the edge theorem. As the analytic curve frequency sweeping approach is
more general than the direct method, this extension will lead to a robust stability analysis technique in the frequency domain
that is applicable to the wider group of TDSs, consisting of TDS with commensurate delays. To the knowledge of the author,
this had not been previously presented in the literature. This extension has been made and its results will be presented in this
article.

There exist graphical methods for checking the stability of a TDS with affine uncertainty. One such test has been proposed
by Fu et al., which allows to verify the results that are obtained based on a robust stability analysis method applied to a system
with polytopic uncertainty. The theorem reads as follows:

Theorem 2 ( [39]): Consider a polytope of n-th order (real or complex) quasipolynomials P. E1, E2, . . . Et are used
to denote the edges of P and pk0(λ) and pk1(λ) to denote the vertix quasipolynomials of Ek. Then, P is stable if and
only if the following two conditions apply for every Ek, 1 ≤ k ≤ t:
• the frequency response plot of pk0(jω)/(jω + 1)n does not enclose the origin.
• the plot of pk1(jω)

pk0(jω) does not cross (−∞, 0] (the non-positive part of the real axis).
where n is is the order of the principal term.

2) Multilinear Uncertainty Structure
In the case of multilinear uncertainty structure, vertex and edge results cannot be used for studying the robust stability of

uncertain functions with multilinear uncertainty. For example, it may be the case that the system is stable for the parameters
on the edges of the uncertainty bounding set. However, there may still be a point in the interior of the uncertainty bounding
set such that the system is unstable.

This problem can be dealt with using the mapping theorem, which states that for a set of uncertain parameters qi (the set
of which is denoted by Q) and a multilinear function f, such that f(Q) = {f(q) : q ∈ Q}, the convex hull of f(Q) is equal
to the convex hull of the set {f(qi)} [42]. Such overbounding of the value set with a convex polytope means that the edge
theorem can now be applied to the overbounded value set.

It should be noted that this solution comes at the cost of conservativeness. This means that the stability of the overbounded
region is only sufficient for the stability of the actual range of the uncertain quasipolynomial. Hence, if the case where the
overbounded system is unstable is encountered, then a conclusion cannot be made about the stability of the system.

3) Polynomic Uncertainty Structure
As in the case of dealing with a multilinear uncertainty structure, here too, the problem has to be transformed into that

of analyzing the stability of an uncertain system with an affine uncertainty structure, in order to be able to apply the edge
theorem.

It has already been established that a system with multilinear uncertainty can be overbounded with a system of an affine
uncertainty structure. Thus, for the case of a system with polynomic uncertainty, only the means to transform a system with
a polynomic uncertainty structure to that of a system with a multilinear uncertainty structure needs to be found. The solution
to this problem, in the case of uncertain polynomials, is the following theorem which was proposed by Sideris and Sanchez
Pena [43].

Theorem 3 ( [43] as seen in [42]): Consider the family of polynomials P = {p(·, q) : q ∈ Q} with p(s, q) having
polynomic uncertainty structure and uncertainty bounding set Q which is a polytope. Then there exists a second family
of polynomials P̃ = {p̃(·, q̃) : q̃ ∈ Q̃} such that p̃(s, q̃) has multilinear uncertainty structure Q̃ is a polytope and

P̃ = P (42)
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Although this theorem has been developed for families of polynomials, this theorem may also be used to obtain an
overbounding set of the polynomic family of quasipolynomials. The reason for this is that a quasipolynomial is the sum
of the product of polynomial and exponential terms. Thus, if the polynomic polynomials are transformed into equivalent
polynomials with a multilinear structure, then a quasipolynomial with multilinear uncertainty is obtained.

Remark 1 (Refinement for Tighter Bound on the Value Set): Note, how in the construction of the convex hull, the
relations that occur between the variables that are introduced because of Theorem 3 are not accounted for. In order to
heed this dependence, a concept from interval analysis which is refinement can be used.

VI. EXAMPLE: INDI CONTROL OF A DAMPED PENDULUM

The forced pendulum with friction is modeled by eq. (43).

θ̈ +
b

I
θ̇ +

mgl

I
sin θ = u (43)

where θ denotes the angular deflection of the pendulum (reference chosen to be the bottom position), u is the input to
the system, I is the moment of inertia of the pendulum, b is the damping coefficient of the pendulum, l is the length of the
pendulum, and m is the mass of the pendulum. This second order equation, eq. (43), can be transformed into a system of two
first-order equations. By setting x1 = θ and x2 = θ̇, eq. (44) is obtained.

ẋ1 = x2

ẋ2 = u− b

I
x2 −

mgl

I
sin(x1)

(44)

Linearizing this system of equations about (x1,0, x2,0) leads to the following system of equations:

ẋ1 = x2

ẋ2 = u− b

I
x2 −

mgl

I
sin(x1)− mgl

I
· cos(x1,0)(x1 − x1,0)

(45)

It can be seen from eq. (45) that x2,0 gets canceled in the linearization process and that only the remnant x1,0 is relevant for
the linearized dynamics. In order to perform IO linearization, a suitable choice of the output variable needs to be made. An
important concern related to making this choice are the internal dynamics. Specifically, the choice of output should ensure that
the control system either does not have any internal dynamics or if it does, that the internal dynamics are stable. To elaborate
on the importance of ensuring the latter, the presence of internal dynamics means that full controllability is not guaranteed, in
exception of the cases where it is known that the internal dynamics are stable.

First, the consequences of taking the output to be x2 are examined. From this choice, it can be seen that there are internal
dynamics since a single differentiation of the output equation leads to the appearance of the control input, meaning that the
relative degree of the system is equal to 1 which is less than the order of the system, which is 2.

If the output is taken to be y = x1 instead, then the output needs to be differentiated twice in order for the control input to
appear, as shown below.

ÿ = ẍ1 = ẋ2 = u− b

I
x2 −

mgl

I
sin(x1) (46)

In this case, the relative degree is zero and the closed-loop system does not have any internal dynamics, which further means
that the system is fully controllable. As a result, the output is selected to be x1.

In INDI, linearization is performed about the current state and control input. In the case of the system shown in eq. (43),
linearizing eq. (46) followed by applying the time-scale separation principle leads to:

ÿ = ÿ0 + β(x0)∆u+ δ(z,∆t) (47)

where δ(z,∆t) denotes the higher order terms. These terms can usually be neglected which reduces eq. (47) to:

ÿ = ÿ0 + ∆u (48)

Setting the virtual control equal to ÿ, eq. (48) is re-written as:

∆u = ν − ÿ0 (49)
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TABLE I: Parameters used in the implementation of the INDI control of the pendulum control system.

m (kg) b (kg/s) l (m) I (kgm2) x1,0 (rad) x2,0 (rad/s) u0 (rad/s2) kp kd
Actuator
model

Sensor
model 1

Sensor
model 2

0.3 0.1 1 1 0.1 0 1 25 7 1
s+20

1 1

For a tracking problem, the outer-loop linear control is again set such that stable error dynamics are obtained i.e. ν =
ÿref + kp(yref − y) + kd(ẏref − ẏ), which leads to the following incremental control ∆u.

∆u = ÿref + kp(yref − y) + kd(ẏref − ẏ)− ÿ0 (50)

Finally, the expression for the control law becomes:

u = ∆u+ u0 = ÿref + kp(yref − y) + kd(ẏref − ẏ)− ÿ0 + u0 (51)

The block diagram of a control system that applies INDI control is shown in fig. 20. Based on this structure and the
manipulation of transfer functions, it is possible to obtain the closed-loop formulation for the system dynamics in the frequency
domain, for which later a time-domain realization is set up.

In the following, the stability analysis of the INDI-controlled damped pendulum will be discussed, specifically, a pendulum
control system whose parameters are shown in table I. First, the analyses in the frequency domain will be discussed. This is
followed by a discussion on the analysis in the time-domain. A number of simulation tests verify the results. Thereafter, the
robust stability analysis is discussed, both in the frequency and in the time-domain.

1) Direct Method and Analytic Curve Frequency Sweeping Approach
In the following, two frequency domain techniques will be used to analyze the stability of the control system at hand.

Besides the analytic curve frequency sweeping approach, which was the chosen method for stability analysis in the frequency
domain and which was discussed in section IV-A, another method in the frequency domain will be applied which is called
the direct method. This method is specific to systems with a single delay; therefore, it is less general than the analytic curve
frequency sweeping approach [44]. However, as the example considered is a TDS with a single time-delay, the application
of the direct method can serve as additional verification of the results obtained. In the following, the discussion commences
with the application of the direct method. After that, the application of the analytic curve frequency sweeping approach to the
pendulum control system is discussed.

The core of the direct method is to eliminate the exponential term that appears in the characteristic equation of the TDS
with a single delay whose form is as that of the characteristic equation shown in eq. (52).

P (λ) +Q(λ) · e−τ ·λ = 0 (52)

If eq. (52) is rearranged, this leads to eq. (53).

e−τ ·λ =
−P (λ)

Q(λ)
(53)

Since the interest is in the intersection with the y-axis in the pole-zero map, then λ can be replaced by jω, and ‖e−τ ·jω‖
is equal to 1. This leads to the magnitude equation shown in eq. (54).

‖P (jω)‖−‖Q(jω)‖= 0 (54)

Since the solution of the magnitude equation will be the , then those solutions are the critical angular frequency values,
each denoted by ωC,i. For the case of the pendulum control system considered, this leads to two CIRs which are 1.3207 rad/s
and 2.0534 rad/s. Actually, it should be noted that there will be crossings at -1.3207 rad/s and -2.0534 rad/s as well, due to
symmetry property of the spectrum. However, for a simpler discussion, only the positive frequencies will be considered, and
this simplification will be accounted for in the part concerning the determination of the number of unstable roots for different
time-delay values [28].

After having determined the CIRs, it is possible to proceed to solving for the critical time-delays. For that, the argument of
e−τ ·jω is used, since that yields the product of the CIR and the critical time-delay as shown in eq. (55).

arg(e−τ ·jωC,i) = −τ · ωC,i (55)

In order to obtain an expression for the critical time-delay, another expression for the argument of e−τ ·jω is needed. It can
be obtained by applying the argument operator on either side of eq. (53). Thus,
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arg(e−τ ·jωC,i) = arg

(−P (jωC,i)

Q(jωC,i)

)
+ 2πk (56)

By combining eq. (55) and eq. (56), eq. (57) is obtained.

τ =
1

−ωC,i
·
(

arg

(−P (jωC,i)

Q(jωC,i)

)
+ 2πk

)
(57)

Evaluatingeq. (57) at ωC,1 = 1.3207 rad/s and ωC,2 = 2.0534 rad/s leads to the following expressions for the critical
time-delays:

τωC,1=1.3207 rad/s = −2.216270 + 4.757412 · k (58)
τωC,2=2.0534 rad/s = 0.305067 + 3.059841 · k (59)

It is known that for TDSs, for every critical frequency ωC,i, there correspond infinitely many critical time-delays, and this is
clear here because of the presence of the variable k.

With the expressions for the critical time-delays obtained, it remains to determine the stability intervals. This consists of
three main steps, the first of which is determine the number of unstable roots when the time-delay is zero. The step that
follows is to determine the Crossing Direction of Imaginary Root (CDIR) associated with the critical roots. Finally, the critical
time-delays are sorted in increasing order, and the book-keeping of the number of unstable roots is performed for the intervals
between the critical time-delays. This is done based on the determined CDIRs.

Thus, first, the stability of the control system without any time-delays is studied. For the case of the pendulum control
system, based on the input values mentioned above, the 3 roots obtained at τ = 0 are: -19.71 rad/s, - 0.1963 - 2.013i rad/s,
and - 0.1963 + 2.013i rad/s. These three roots are all stable, therefore the starting count for the number of unstable roots is
zero.

The CDIR can be obtained based on eq. (25) and eq. (26) which for convenience is repeated in eq. (60). As mentioned in
section IV-A2, this is only applicable when the CIRs are simple [45], [46].

CDIR = sign

[
dλ

dτ

]

λ=ωC,i

= sign

[
−fτ
fλ

]

λ=ωC,i

(60)

Moreover, as discussed in section III, according to the invariance property, for all critical time-delay pertaining to a certain
crossing-frequency, the crossing direction will be the same [28]. For the case of the pendulum control system, based on
eq. (60), the CDIR corresponding to 1.3207 rad/s is -1. That is, whenever there is a crossing at 1.3207 rad/s, if the time-delay
is increased further this particular pole will move to the left-half plane. As for the critical angular frequency 2.0534, the CDIR
is +1.

With the CDIRs established, it remains to perform thorough book-keeping of the number of unstable roots. The time-delay
intervals based on the sorted sequence of critical time-delays are shown in the first column of table II. The starting score is
equal to the number of unstable roots when there are no delays in the systems, which was determined to be zero. For the result
of the scores, every time a critical time-delay with a CDIR of +1 is encountered, the score is increased by 2 (this corresponds
to a +1 for the positive frequency crossing and another +1 for the conjugate CIR). Conversely, when a critical time-delay with
a CDIR of -1 is encountered, the score is decreased by 2. This leads to the scores shown in the second column of table II.

For the pendulum control system, the results of this final step are shown in the right column of table II. From this table as
well as fig. 3, it can be seen that the number of unstable roots, denoted by NU , is zero for the time-delay intervals [0,0.305069]
and [2.541144, 3.364915] seconds which are the stability intervals. This concludes the discussion on the application of the
direct method to the pendulum control system, and in the following, the use of the analytic curve frequency sweeping approach
to the pendulum control system will be discussed.

As mentioned in section IV-A, frequency sweeping can be used to determine the critical angular frequencies either graphically
or programmatically. In order to perform frequency sweeping, it is required that the variable z replaces the expression e−τ ·λ

in the characteristic quasipolynomial, and that the variable λ is replaced by jω. For the pendulum control system, this leads
to the bivariate equation of the form shown in eq. (61).

c0 + c1 · jω + c2 · z + c3 · jω · z + c4 · (jω)2 + c5 · (jω)3 = 0 (61)

The frequency sweeping curves are constructed by ”sweeping” the frequency, and at each frequency, substituting in eq. (61)
computing the values of z, and plotting the magnitude of that. In the case of the pendulum, there is only one frequency
sweeping curve which has two intersections with Γ = 1. The curve is shown in fig. 4, and it is clear from this curve that the
two intersection points are at 1.3207 rad/s and 2.0534 rad/s. This is in alignment with the CIRs obtained in the analysis based
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TABLE II: Stability Sequence for Pendulum
Control System

Critical Time-delay Intervals (s) Number of Unstable Roots

[0 , 0.305069] 0
[0.305069 , 2.541144] 2
[2.541144 , 3.364915] 0
[3.364915 , 6.424762] 2
[6.424762 , 7.298558] 4
[7.298558 , 9.484609] 2

[9.484609 , 12.055972] 4
[12.055972 , 12.544459] 2
[12.544459 , 15.604303] 4
[15.604303 , 16.813387] 6
[16.813387 , 18.664149] 4
[18.664149 , 21.570801] 6
[21.570801 , 21.723996] 4
[21.723996 , 24.783843] 6
[24.783843 , 26.328215] 8
[26.328215 , 27.843690] 6

Fig. 3: Plot of the number of unstable roots versus time for the considered
pendulum control system.

Fig. 4: Frequency sweeping curve for the pendulum control system

on the direct method. Moreover, the associated critical time-delays are obtained in a similar fashion to the way in which they
were determined for the case of the direct method.

As for the asymptotic behaviour, it can be determined based upon constructing and analyzing the Puiseux series at a each
critical imaginary pair. The procedure to obtain the Puiseux series is an implementation of the pseudocode shown in algorithm 1.

For the critical imaginary pair (1.3207j,- 2.216270 + 4.757412 · k), the following series is obtained:

∆λ = (−0.246395− 0.284083 · j) ·∆τ + o(∆τ) (62)

Since ∆τ in eq. (62) does not have a fractional power, the series is in fact a special form of the Puiseux series and is in fact
a Taylor series. This is expected because the critical roots are simple. Moreover, based on this Taylor series, it can be seen
that a small positive increase in τ , i.e. ∆τ = +ε leads to a decrease in the real part of λ which means that the CDIR is -1.

As for the critical pair (2.0534j,0.305067 + 3.059841 · k), the following series is obtained:

∆λ = (0.665318− 0.123293 · j) ·∆τ + o(∆τ) (63)

Here, again, since the CIR is a simple root, the series in eq. (63) is a Taylor series. Moreover, based on this obtained series,
it can be seen that, for ∆τ = +ε, the real part of ∆λ will be positive, which means that the CDIR is +1.

This can also be verified by examining the frequency sweeping curves. From the curve in fig. 4, it can be confirmed that
the CDIR is -1 for ωC,1 = 1.3207 rad/s and the CDIR is +1 for ωC,2 = 2.0534 rad/s. This is deduced based on the slope of
the curve at their intersection with the horizontal line Γ = 1, whereby a positive slope corresponds to a CDIR equal to +1,
and a negative slope corresponds to a CDIR equal to -1.

Since the obtained CIRs and the critical time-delays are the same, the stability sequence will also be the same, and the same
stable time-delay regions are obtained: [0,0.305069] and [2.541144, 3.364915] seconds.
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2) Time-domain Analysis
Now, the time-domain approach will be used to further verify the results that were obtained from the frequency domain

analyses. Specifically, the matrix inequalities described in eq. (34) and eq. (35) will be used. They are used to study the stability
of systems of the form:

{
ẋ(t) = A0x(t) +A1x(t− τ), ∀t ≥ 0
x(t) = φ(t), ∀t ∈ [−τ, 0]

(64)

Thus, the matrices A0 and A1 have to be determined for the pendulum control system. As it is easier to determine the overall
system representation for an LTI system in the frequency domain, the characteristic equation of the pendulum control system
(that had been already determined for the above analyses) is used to obtain an equivalent description in the time domain, which
entails applying the inverse Laplace transform to the control system’s characteristic equation. The obtained delay-differential
equation is of the form shown in eq. (65), with a1 . . . a2 and b0, b1 being the appropriate coefficients.

...
x + a0 · x+ a1 · ẋ+ a2 · ẍ+ b0 · x(t− τ) + b1 · ẋ(t− τ) = 0 (65)

It is clear from the structure of eq. (65) that the pendulum is a retarded type TDS. The highest order of the derivative of x
without time-delay is 3; whereas, the order of derivative including a time-delay is 1. Since the former is strictly greater than
the latter, the system is a retarded system.

In order to obtain a state space representation from the differential equation eq. (65), a state vector denoted by z̃ =
[
x, ẋ, ẍ

]>
is proposed. Re-writing eq. (65) in terms of z̃ leads to eq. (66).





˙̃z = A0z̃ +A1z̃(t− τ)

A0 =




0 1 0

0 0 1

−a0 −a1 −a2




A1 =




0 0 0

0 0 0

−b0 −b1 0




(66)

Since eq. (66) has the form that is suitable for the stability results in eq. (34) and eq. (35), it is possible to proceed to the
step of solving for the matrix inequalities for the determined A0 and A1 matrices of the pendulum control system. Although,
an efficient way to solve those matrix inequalities (which happen to be bilinear matrix inequalities) has not been found, it is
still possible to check the feasibility of the solution of the matrix inequalities for different values of time-delay.

a) Checking for the first interval [0,0.305069]s
The correctness of the first stability interval, [0,0.305069]s, can be verified by checking the feasibility of the solution of

the matrix inequalities in eq. (34) and eq. (35) for the entirety of this interval. Moreover, once the limit of the first interval
is reached, the set of matrix inequalities no longer has a feasible solution, not until the second stability interval. This is clear
from fig. 5, where the residuals of V and V̇ constraints both reach zero at what is visibly around 0.305 s.

For finer results on the upper bound of this stability interval, starting with τ = 0.3s and taking increments of 0.0001s, the
matrix inequalities are feasible up to 0.3050s. N ≥ 1 is sufficient to obtain this result. If the steps are taken to be 0.000001,
N≥ 3 is sufficient to obtain 0.305068 as the largest number that makes the matrix inequalities feasible (for the first stability
interval). The value of N that is sufficient to obtain a certain precision is also dependent on the constraints set for the matrix
inequalities.

b) Checking for the second interval [2.541144,3.364915]s
A similar procedure is applied to check the second stability interval. To do so, checking the feasibility of the matrix

inequalities is broken down into two tests. Both tests start by checking the feasibility of some interior point for the interval,
say 3s. One test would apply delay decrements to this initial starting delay, and the other would apply delay increments.
The results of those tests in terms of constraint residuals, for the Lyapunov functional constraint and the Lyapunov functional
derivative constraint, are shown in fig. 6 and fig. 7, respectively. It is seen from fig. 6 that the solution of the set of matrix
inequalities does not have a feasible solution for values that are smaller than around 2.54s (and which are larger than 0.305069s)
because the V̇ constraint residual had already reached zero at this limit. In fig. 7, it is seen how the plots of the constraint
residuals terminate at around 3.365s.

To attain the bound 2.541144s with a precision of 6 decimal points (2.541144s as 2.541143s is already in the infeasible
region), if one starts with a value larger than 2.541144s and takes decrements with step size 0.000001s, the value of 2.541144s
is attained with N≥ 8.

The bound 3.364915s can be checked in the same manner that was used for the upper bound of the first stability interval,
through delay increments. To attain a value of 3.364915s, N≥ 8 is needed.
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Fig. 5: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional
derivative condition.

Fig. 6: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional
derivative condition.

Fig. 7: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional
derivative condition.

3) Verification with the Simulink Model
Based on simulations of the control system considered (at a rate of 10,000Hz), to a 0 reference signal (stabilization), leads

to the system responses which are shown in fig. 8a, fig. 8b, fig. 8c, fig. 8d, fig. 8e, fig. 8f, fig. 8g, and fig. 8h. From those
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results, the system appears to be stable for the cases of τ = 0.1s (see fig. 8a) and τ = 3s (see fig. 8e), and it appears to be
stable for τ = 0.32s, τ = 2s, τ = 4s, and τ = 6s. Based on fig. 8d and fig. 8f, it appears that the system is on the verge
stability/instability for the cases of τ = 2.55s and τ = 3.365s.

These results concur with the stability intervals obtained. It should be noted that the reddish hue in those plots indicates that
there has been an onset of increase in amplitude that continues till the end of the plot (although it has only been indicated for
the top part of the plots).

Remark 2 (Case of Neutral Time-delays for the Pendulum Control System):
It has been discussed that in order to obtain a neutral TDS, the polynomials pertaining to each of the delayed parts
and the non-delayed parts have to have the same order. In order to investigate the possibility of such occurrence for
the pendulum control system, the symbolic expression of the characteristic equation of the pendulum control system is
investigated:
(
10 · tfactuator · λ+ 100 · I · tfactuator · λ2 − 100 · I · tfactuator · λ2 · tfsensor1 + 981 · tfactuator · l ·m · cos(x1,0)

−100 · I ·Kp · tfactuator · tfsensor2 − 100 · I · kd · tfactuator · λ · tfsensor2) · e(−λ·τ

− 100 · I · λ2 − 10 · λ− 981 · l ·m · cos(x1,0) = 0
(67)

Based on the expression on the left-hand side, the order of the non-delayed part which is the expression −100 · I ·λ2−
10 · λ− 981 · l ·m · cos(x1,0) is 2 and cannot be affected by the symbolic parameters, because the parameters involved
in this expression take scalar values. Thus, in order to obtain a neutral TDS, the ”delayed” expression has to have the
same order which is 2. It can be seen that in order to obtain this order, at least one of the λ2 terms appearing in the
expression has to remain. Since the transfer function of the actuator appears in both these terms, then it becomes clear
that the actuator dynamics cannot be represented by a strictly proper transfer function. The only means for this system
to be neutral is for the actuator to have a biproper transfer function, where the number of zeros is equal to the number
of poles. This is usually not the case encountered, as actuator are often modeled with strictly proper transfer functions,
usually as first or second order transfer functions. One may assume however that for an overall system with a different
structure, having neutral delays may be possible for the pendulum control system. In any case, it should be noted that
if sensor 1 is ideal, then the terms involving λ2 will cancel out. Thus, some dynamics need to be taken for this sensor.
As for the dynamics of the second sensor, they have no influence on the resulting type of TDS. For now, the discussion
on the neutral time-delays is reserved for the second of the presented examples, which is that of the INDI-controlled
short period dynamics, where this type of delay has ”naturally” occurred. The reason for that is the difference in the
transfer functions of the pendulum model and that of the short period dynamics. In the case of the pendulum control
system, its transfer function has a relative degree 2, with the denominator being a second order polynomial and the
numerator being 1. As for the short period dynamics, they have a relative degree of one because the numerator is a
first order polynomial and the denominator is a second order polynomial.

A. Robust Stability Regions in the Delay Space of the Pendulum Control System

In order to discuss robust stability, first, the type of uncertainty structure that the control system possesses needs to be
determined. To establish the type of uncertainty structure, where and how the uncertain parameters appear in the characteristic
equation need to be determined. That is why, the symbolic expression for the pendulum control system, which is shown in
eq. (67), should be examined.

1) Uncertainty in the Length
If uncertainties in the length of the pendulum are considered, it can be seen from the symbolic expression for the

characteristic quasipolynomial of the pendulum control system shown in eq. (67) that the uncertainties appear in two terms in
the quasipolynomial: (981 · tfactuator · l ·m · cos(x1,0)) ·eλ·τ and −981 · l ·m ·cos(x1,0). This means that there is a dependence
between the expressions, and in this case, there is an affine uncertainty structure. Thus, it is possible to make use of the edge
theorem in the robust stability analysis of this uncertain system.

As an example, if l is no longer equal to 1m and can take any value between 0.8m and 1.2m, then, based on the analysis
based on the analytic curve frequency sweeping approach combined with the edge theorem, the stability regions become:
[0,0.3030]s and [3.0807,3.1745]s. This a region that is within the original one: [0,0.3051]s and [2.5411, 3.3649]s.

The robust stability analysis can be done in the time-domain as well. In this particular case, the system matrices have the
following structure:




0 1.0 0
0 0 1

−58.5660 · l −2.9283 · l − 2.0 −20.1


 (68)
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(a) Response corresponding to a delay of 0.10s for the first 20s. (b) Response corresponding to a delay of 0.32s for the first 20s.

(c) Response corresponding to a delay of 2s for the first 20s. (d) Response corresponding to a delay of 2.55s for the first 20s.

(e) Response corresponding to a delay of 3s for the first 20s. (f) Response corresponding to a delay of 3.365s for the first 40s.

(g) Response corresponding to a delay of 4s for the first 20s. (h) Response corresponding to a delay of 6s for the first 20s.

Fig. 8: Plots of the response of the pendulum control system, shown for the first 20 s, for different time-delays.
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(a) Stability regions pertaining to different points along edge 1. (b) Stability regions pertaining to different points along edge 2.

(c) Stability regions pertaining to different points along edge 3. (d) Stability regions pertaining to different points along edge 4.

(e) Overlay of the stability regions along the different points on the
edges of the polytope.

(f) Zoomed-in view of the stability regions along the different points
on the edges of the polytope.

Fig. 9: Stability intervals obtained along the four edges of the polytopic family of quasipolynomials.

Clearly, the matrices are polytopic in the length parameter. Thus, it is possible to analyze the vertices of the polytope for
the stability of the uncertain system. Specifically, there are two vertices here. In the case of the first vertex, the following
stability intervals are obtained: [0,0.30304]s and [3.08075,3.59968]s. In the case of the second vertex, the stability intervals
are [0,0.30698]s and [2.2225,3.17448]s. Clearly, the intersection of these two stability intervals are the intervals which had
been determined from the analysis in the frequency domain as well.

2) Uncertainty in the Mass and Length
As for the case of uncertainties in both the mass and the length, it can be seen from eq. (67) that the mass and length variables

both appear in the same two expressions mentioned before. This means that despite there being two uncertain variables, since
they are always multiplied together, it is possible to think of m·l as a single uncertain variable, which means that the ucnertainty
structure is effectively affine or polytopic, in this case as well.

For the case when the mass take any values between 0.25 and 0.35 kg (thus l belongs to the range [0.8,1.2]m and m belongs
to the range [0.25,0.35]kg), the resultant stability region based on the analysis that assumes polytopic uncertainty is the region
[0,0.3016]s. In this case, the enlargement of the uncertainty set has completely eliminated the second stability interval.

The plots of the evolution of the stability regions over the edges are shown in fig. 9a fig. 9b fig. 9c, and fig. 9d. Combining
these plots leads to fig. 9e.

The stability interval obtained based on the grid approach is [0,0.3016]s. It is clear that increasing the mass has a more
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dramatic effect on the size of the robust stability intervals.

Fig. 10: Pendulum control system response curves for different values of l and m such that l ∈ [0.8, 1.2]m and
m ∈ [0.25, 0.35]kg, showing that the system is still robustly stable at τ = 0.3s.

B. Stability Regions in the Delay Space of the Pendulum Control System including Zero-order Hold

In this case, the control system is assumed to have the block diagram shown in fig. 21. From the analytic curve frequency
sweeping analysis, the result for the system based on the parameters in table I and a sampling period if 0.1s is that the system
is hyperbollically stable. That is, the system is always stable irrespective of what the feedback delay is. There are no resultant
CIRs, and there are no unstable roots when there are no delays in the system. This is verified by the frequency sweeping curve
shown in fig. 15a, from which it is clearly seen that the curve approaches the horizontal line at 1 but there are no intersections
with it.

However, when the sample period is increased to 0.2s, the hyperbolic stability is lost, and instead, there is now a finite
number of stability regions. The frequency sweeping curve for this control system is shown in fig. 15b, and it shows that
there are two CIRs. Applying the analytic frequency sweeping approach leads ultimately to the following stability regions: [
0, 0.5804]s, [ 1.5898, 4.1460]s [ 5.3817, 7.7116]s, [ 9.1736, 11.2772]s, [ 12.9655, 14.8428]s, [ 16.7574, 18.4084]s, [ 20.5493,
21.9740]s, [ 24.3412, 25.5396]s, [ 28.1330, 29.1052]s [ 31.9249, 32.6708]s, [ 35.7168, 36.2365]s, [ 39.5087, 39.8021]s, and
[ 43.3006, 43.3677]s.

As for the case when the sampling period is 0.5s, the resultant frequency sweeping curve is the one shown in fig. 15c, and
the stability regions are [ 0, 0.1485]s, [ 1.8697, 3.5010]s, [ 5.9657, 6.8534]s, and [ 10.0617, 10.2058]s.

It is clear that as the sample period is increased, the number and size of the stability regions decrease. These obtained results
have also been verified with simulations based on the Simulink R©model of the control system which is based off the structure
of the block diagram shown in fig. 21.

VII. EXAMPLE: INDI CONTROL OF SHORT PERIOD DYNAMICS

The dynamics of the short period eigenmotion are shown in eq. (69).

Fig. 11: Pendulum control system response curves for
different values of l and m such that l ∈ [0.8, 1.2]m
and m ∈ [0.25, 0.35]kg, showing that the system is still
robustly stable at τ = 0.3s (Profile view).

Fig. 12: Pendulum control system response curves for
different values of l and m such that l ∈ [0.8, 1.2]m
and m ∈ [0.25, 0.35]kg, showing that the system is still
robustly stable at τ = 0.3s (Zoomed profile view).
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Fig. 13: Pendulum control system response curves for
different values of l and m such that l ∈ [0.8, 1.2]m and
m ∈ [0.25, 0.35]kg, showing the onset of instability for
τ = 0.302s (Profile view).

Fig. 14: Pendulum control system response curves for
different values of l and m such that l ∈ [0.8, 1.2]m and
m ∈ [0.25, 0.35]kg, showing the onset of instability for
τ = 0.302s (Zoomed profile view).

(a) Frequency Sweeping Curve for the pendulum control system
with the zero-order hold filter at a sampling period of 0.1s

(b) Frequency Sweeping Curve for the pendulum control system
with the zero-order hold filter at a sampling period of 0.2s

(c) Frequency Sweeping Curve for the pendulum control system with the zero-order hold filter at a sampling period of 0.5s

Fig. 15: Frequency Sweeping Curve for the pendulum control system with the zero-order hold filter at different sampling
periods.

[
CZα + (CZα̇ − 2µc)Dc CZq + 2µc

Cmα + Cmα̇Dc Cmq − 2µcK
2
YDc

] [
α
qc̄
V

]
=

[
−CZδe
−Cmδe

] [
δe
]

⇐⇒
[

(CZα̇ − 2µc) 0
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] [
Dcα
Dc

qc̄
V

]
= −1 ·

[
CZα CZq + 2µc
Cmα Cmq

] [
α
qc̄
V

]
+

[
−CZδe
−Cmδe

] [
δe
] (69)

Given that Dc = c̄
V
d
dt , eq. (69) becomes:

[
(CZα̇ − 2µc) · c̄V 0

Cmα̇ · c̄V −2µcK
2
Y · c̄V

]

︸ ︷︷ ︸
M0

[
α̇
q̇c̄
V

]
= −1 ·

[
CZα CZq + 2µc
Cmα Cmq

]

︸ ︷︷ ︸
A0

[
α
qc̄
V

]
+

[
−CZδe
−Cmδe

]

︸ ︷︷ ︸
B0

[
δe
]

(70)
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TABLE III: Parameters used in the implementation of the INDI control of the short period dynamics.

Cmα Cmα̇ Cmq Cmδe
Czα Czα̇ Czq Czδe c̄(m) V (m/s) µc K2

Y kp kd α0(rad)

-0.43 -3.7 -7.04 -1.553 -5.16 -1.43 -3.86 -0.6238 2.022 59.9 102.7 0.98 25 7 0.1

It is desired to write the system dynamics in state-space form, i.e. in the form shown in eq. (71).
[
α̇
q̇c̄
V

]
= A

[
α
qc̄
V

]
+B

[
δe
]

(71)

This means that the matrices A and B must have the following entries:




A = M−1
0 ·A0 =




−Czα
( c̄V ·(Czα̇−2·µc))

(−Czq−2·µc)
( c̄V ·(Czα̇−2·µc))

((−Czα̇+2·µc)·Cmα+Cmα̇·Cza)
(2· c̄V ·(−Czα̇+2·µc)·µc·K2

Y )

((2·Cmq+2·Cmα̇)·µc−Cmq ·Czα̇+Cmα̇·Czq)
(2· c̄V ·(−Czα̇+2·µc)·µc·K2

Y )




B = M−1
0 ·B0 =




Czδe
((−Czα̇+2·µc)· c̄V )

((−Czα̇+2·µc)·Cmδe+Cmα̇ ·Czδe )

(2· c̄V ·(−Czα̇+2·µc)·µc·K2
Y )




(72)

Since for INDI, the lower triangular form is required, some assumptions need to be made regarding the system dynamics.
In particular, in the short period oscillation, it can be assumed that the flight path angle γ is constant. As a result, the relation
in eq. (73) can be assumed for α̇.

α̇ =
qc̄

V
(73)

Thus, the system matrices become:





A =

[
0 1

((−Czα̇+2·µc)·Cmα+Cmα̇·Cza)
(2· c̄V ·(−Czα̇+2·µc)·µc·K2

Y )

((2·Cmq+2·Cmα̇)·µc−Cmq ·Czα̇+Cmα̇·Czq)
(2· c̄V ·(−Czα̇+2·µc)·µc·K2

Y )

]

B =

[
0

((−Czα̇+2·µc)·Cmδe+Cmα̇ ·Czδe )

(2· c̄V ·(−Czα̇+2·µc)·µc·K2
Y )

] (74)

This means that the control effectiveness is equal to ((−Czα̇+2·µc)·Cmδe+Cmα̇ ·Czδe )

(2· c̄V ·(−Czα̇+2·µc)·µc·K2
Y )

. Thus,

Ĝ−1 =
(2 · c̄V · (−Czα̇ + 2 · µc) · µc ·K2

Y )

((−Czα̇ + 2 · µc) · Cmδe + Cmα̇ · Czδe)
(75)

Moreover, the output is chosen to be the angle of attack α, which means that the matrices C and D are given by eq. (76).




C =
[
1 0

]

D =
[
0
] (76)

For the construction of the close-loop transfer function of the system, the reader is again referred to the block diagram of
the generic INDI-controlled system shown in fig. 20, and the values of the parameters used for the case of this control system
are shown in table III.

As commented before, for the case considered of the INDI-control of short period dynamics, a closed-loop system which is
a TDS of the neutral type is obtained. This means that for the analysis in the frequency domain, the behaviour of the frequency
sweeping curves as ω →∞ has to be examined. Specifically, it is required that the frequency sweeping curve remains above
the horizontal line Γ = 1 for when ω →∞, because this condition ensures the strong stability of the delay-difference operator
in the dynamics of the neutral TDS [28].

A. Stability Regions in the Delay Space of INDI-controlled Short Period Dynamics

The obtained stable time-delay interval is [ 0, 0.1080529]s, for the case of replacing α equation for the kinematics only
for the controller design. The obtained frequency sweeping curve for the control system is shown for different ranges of ω
in fig. 16a and in fig. 16b. While fig. 16a more clearly shows the CIR, fig. 16b shows that the Schur-Cohn stability of the
delay-difference operator is guaranteed because the frequency sweeping curve remains above Γ = 1.
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(a) Frequency sweeping curve for the INDI-controlled short
period dynamics.

(b) Frequency sweeping curve for the INDI-controlled short
period dynamics for ω ∈ [0, 200] rad/s.

B. Robust Stability Regions in the Delay Space of INDI-controlled Short Period Dynamics

For the robust stability analysis of this control system, the concern will be with the stability derivatives Cmα and Cmq , and the
control derivative Cmδe . Moreover, it is desired to investigate cases of different uncertainty structures. Those derivatives allow
for discussions on polytopic and multilinear uncertainty. However, since, for polynomic uncertainty, the uncertain parameter
needs to have a power that is larger than 1, another parameter needs to be considered. Specifically, the stability derivative Cmα̇
will be considered as an uncertain parameter in one of the following illustrative examples.

Before proceeding further, the characteristic equation in terms of the parameters Cmα , Cmq , Cmδe , and Cmα̇ needs to be
presented, and it is of the form shown in eq. (77).

((a1 · Cmα̇ + a2 · Cmδe + a3 · Cmq + a4 · C2
mα̇ + a5 · Cmα · Cmα̇

+ a6 · Cmα · Cmδe + a7 · Cmα̇ · Cmδe + a8 · Cmα̇ · Cmq + a9 · Cmδe · Cmq )
+ (a10 + a11 · Cmα̇ + a12 · Cmδe + a13 · Cmq + a14 · C2

mα̇ + a15 · Cmα̇ · Cmδe + a16 · Cmα̇ · Cmq + a17 · Cmδe · Cmq ) · λ
+ (+a18 · Cmα̇ + a19 · Cmδe + a20 · Cmq + a21) · λ2

+ a22 · λ3) · e−λ·τ+

(b1 · C2
mα̇ + b2 · Cmα · Cmα̇ + b3 · Cmα · Cmδe + b4 · Cmα̇ · Cmδe + b5 · Cmα̇ · Cmq + b6 · Cmδe · Cmq )

+ (b7 · Cmδe + b8 · Cmα̇ + b9 · C2
mα̇ + b10 · Cmα · Cmα̇

+ b11 · Cmα · Cmδe + b12 · Cmα̇ · Cmδe + b13 · Cmα̇ · Cmq + b14 · Cmδe · Cmq ) · λ
+ (+b15 · Cmα̇ + b16 · Cmδe + b17 · C2

mα̇ + b18 · Cmα̇ · Cmδe + b19 · Cmα̇ · Cmq + b20 · Cmδe · Cmq ) · λ2

+ b21 · Cmα̇ · λ3 + b22 · Cmδe · λ3

(77)

It should be noted that, for this example a larger number of decimal points is taken in order to be able to notice the influence
of some of the uncertain parameters on the obtained stability intervals.

1) Uncertainty in Cmα
For the case when there is uncertainty in the parameter Cmα , specifically that it belongs to [−0.6,−0.35], the resultant stability

region is reduced from [ 0, 0.1080529]s to [0,0.1077114]s. This example showcases the polytopic uncertainty structure because
the parameter Cmα appears in several places in the quasipolynomial, but it does not appear with powers higher than one in the
characteristic equation. For this analysis, the edge theorem could be readily used, and as there was one uncertain parameter,
there was one edge. Since this is an example with polytopic structure, the stability interval obtained is the actual stability
interval, and that has been verified through applying the grid approach.

2) Uncertainty in Cmα and Cmq
For the case when there are uncertainties in the parameters Cmα and Cmq , specifically that they belong to [−0.473,−0.387]

and [−7.744,−6.336] respectively (which corresponds to a 10 % variation from the nominal values), the resultant stability
region is reduced from [ 0, 0.1080529]s to [0,0.1079465]s. A verification of these results is seen in fig. 17 and fig. 18. This
is another example of a system exhibiting a polytopic uncertainty structure because the coefficients Cmα and Cmq do not
appear in the same coefficients together. This means that the results obtained from the analysis based on the edge theorem are
expected to be exact, and indeed they are. The grid approach applied with steps 0.0086 and 0.1408 has also yielded the same
stability interval for first seven decimal places [0,0.1079465]s.

3) Uncertainty in Cmα and Cmδe
In this example, uncertainties in Cmα and Cmδe are considered, whereby Cmα ∈ [−0.473,−0.387] and Cmδe ∈

[−1.7083,−1.3977]. This example showcases a multilinear uncertainty structure because Cmα and Cmδe are seen multiplied
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Fig. 17: Profile view for τ = 0.1079s for case of
uncertainties in Cmα and Cmq

Fig. 18: Profile view for τ = 0.1080s for case of
uncertainties in Cmα and Cmq

together in some of the coefficients of the quasipolynomials. This means that the results obtained from the analysis based on
the edge theorem are expected to be conservative.

The analysis based on applying the robust analytic curve frequency sweeping approach with increments in µ equal to 0.01,
the stability interval obtained is [0,0.10656334]s. The result obtained from a grid approach, using a step of 0.0086 for Cmα
and 0.03106 for Cmδe , leads to the stability interval [0,0.1065634]s, which happens to be equal to value determined from the
robust analytic frequency sweeping approach. This is because the range for the coefficients leads to value sets that are almost
polytopic. Indeed, the coefficients a6 and b11 in eq. (67) have the same value but opposite signs, which hints at the possibility
that the contributions of the multilinear components may be canceling each other.

(a) Value set of the quasipolynomial pertaining to the short
period dynamics at λ = 1j rad/s and τ = 0.1s (blue scatter
plot) and the overbounding contour (red plot) based on applying
Theorem 3.

(b) Zoomed view of the top left part of the value set of the
quasipolynomial pertaining to the short period dynamics at λ =
1j rad/s and τ = 0.1s (blue scatter plot) and the overbounding
contour (red plot) based on applying Theorem 3.

(c) Zoomed view of the middle part of the value set of the
quasipolynomial pertaining to the short period dynamics at λ =
1j rad/s and τ = 0.1s (blue scatter plot) and the overbounding
contour (red plot) based on applying Theorem 3.

(d) Zoomed view of the bottom right part of the value set of the
quasipolynomial pertaining to the short period dynamics at λ =
1j rad/s and τ = 0.1s (blue scatter plot) and the overbounding
contour (red plot) based on applying Theorem 3.

4) Uncertainty in Cmα̇
In this case, uncertainty in the value of Cmα̇ is assumed. Specifically, it is assumed that Cmα̇ ∈ [−4.07,−3.33]. As can be

seen from eq. (77), Cmα̇ appears with a power of two in some locations in the characteristic equation. This means that, in this
example, a polynomic uncertainty structure is being dealt with.

The result of performing the analysis based on applying Theorem 3, the multilinear theorem, and the edge theorem is
[0,0.1080514]s. This is clearly a small decrease in the stability interval from the nominal one which is [ 0, 0.1080529]s. The
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effect of uncertainties in Cmα̇ is small because it appears in terms where the coefficient is orders of magnitude smaller than
some of the other coefficients. Since the value sets are overbounded, it is expected that the stability interval [0,0.1080514]s
is an underapproximation of the actual robust stability region. This is clear from the example value sets of the characteristic
quasipolynomial of the short period dynamics, which shown over four figures: fig. 19a, fig. 19b, fig. 19c, and fig. 19d. Note
that, the value set is an arc in this case. Moreover, the application of Theorem 3 led to a quadrilateral enclosure around this
arc, and it is the edges of this quadrilateral that were used in the robust analytic curve frequency sweeping approach.

In order to check the actual robust stability regions, the grid approach is applied, with the stability analysis performed
for different values of Cmα̇ varying between -4.07 and -3.33 with a step size of 0.00074. The result is the stability interval
[0,0.1080527]s.

VIII. CONCLUSIONS AND RECOMMENDATIONS

In conclusion, this article set out to determine the robustly stable time-delay regions of the incremental controller, INDI.
Through the use of the analytic curve frequency sweeping approach combined with the edge theorem, a suitable robust stability
analysis technique in the frequency domain has been obtained. As for the stability analysis in the time-domain, for the case
of retarded TDSs, the stability analysis has been done based on the application of the stability results presented in [37]. The
analysis of robust stability in the time-domain for the case of the sub-polytopic uncertainty is relatively easy as only vertex
results need to be checked. Moreover, the determined robust stability regions are verified through simulation. Finally, a number
of stability results for the control system incorporating the zero-order hold filter are also presented based on the frequency
approach. The effectiveness of these stability analysis methods is demonstrated through their application to a pendulum control
system and to the INDI-controlled short period dynamics.

Many recommendations can made for future research as this research is merely the beginning for such an analysis on
incremental controllers. However, a select few are promoted in the following. First, it is recommended to apply the methods
proposed in this thesis to the stability analysis of IBS-controlled systems. IBS is a sibling and competing incremental control
technique to INDI, and part of unraveling the theoretical gaps regarding incremental control is to compare those two methods.
It is particularly interesting to show how the time-delay stability regions for these control techniques compare. In reality,
incommensurate delays occur in a system. That is why, the stability results need to be extended to the case of multiple
incommensurate delays. In the frequency domain, such an extension of the analytic curve frequency sweeping approach has
already been proposed in the literature, and it is called the ”Iterative Frequency Sweeping Approach” [47]. As for the analysis
in the time-domain, the stability results for both the retarded and neutral cases need to be extended to the case of multiple
delays, possibly following the steps outlined in [22]. Moreover, it is recommended to derive matrix inequalities that account
for norm-bounded uncertainty because the analyses in this case can be more tractable (although more conservative) than the
robust analyses presented in this article. Finally, it is recommended to develop the time-domain stability results for the case
of distributed delays. The reason for this is that, for some control applications, distributed delays are more representative of
reality for that system. The results of the analyses based on the systems with different time-delay models are not equivalent,
and this discrepancy manifests itself in the phenomenon of quenching.

APPENDIX A
BLOCK DIAGRAMS

A generic block diagram of an INDI-controlled system with time-delays in the feedback signals fig. 20, and a block diagram
of an INDI-controlled system with time-delays in the feedback signals but that also incorporates the ZOH filter is shown in
fig. 21.
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2
Nonlinear Control

This chapter will give a review of the model-based nonlinear control method, Nonlinear Dynamic Inversion (NDI), as well as its
incremental form, Incremental Nonlinear Dynamic Inversion (INDI). As the main focus of this thesis is on incremental control
techniques, advancements and implementations of INDI will be provided as well.

The structure of the chapter is as follows. First, the principles of NDI will be explained in section 2.1, and the extension of
NDI into INDI, in its several variants, will be discussed in section 2.2. This section concludes with a survey of academic publi-
cations on INDI.

2.1 Nonlinear Dynamic Inversion
Nonlinear Dynamic Inversion (NDI), which is also commonly known as feedback linearization, is a nonlinear control technique.
It relies on inverting the plant dynamics in order to cancel the nonlinearities in the system, either fully or partially. As opposed
to traditional linearization techniques, NDI reaps the benefit that the linearization is usually applicable, if not globally, to a
larger region than in the case of Jacobian linearization, for instance.

The first discussion is on the feedback linearization of systems in the controllability canonical form (also referred to as the
companion form). This is a good entering point for the discussions because the controllability canonical form is required for
feedback linearization. Thus, beginning with a system that is already in the "correct" form helps to intuitively convey the main
idea behind the control technique.

The discussions in the following parts on NDI get progressively more involved. After introducing feedback linearization,
the discussion that follows generalizes to the cases when the system provided is not in the controllability canonical form. Since
the form is important for the inversion of the dynamics, the means to transform the system into the companion form will re-
ceive their due attention. This discussion includes a presentation of mathematical topics such as diffeomorphisms, Lie deriva-
tives, and the Frobenius theorem.

Besides whether or not the system is in the controllability canonical form, another complication appears. Depending on
the system’s output equation, it may be the case that the input-output relation does not fully linearize the system. This means
that a part of the system is unobservable. This part is adequately referred to as the internal dynamics. The consideration of
internal dynamics is important because the stability of the internal dynamics is necessary for the effectiveness of NDI in solving
the stabilization or tracking problem.

While input-state linearization is, by definition, a full linearization, i.e. one that does not lead to any internal dynamics,
input-output linearization accommodates the possibility that there may be internal dynamics in the system. This makes input-
output linearization the encompassing topic among the presented topics. Being the most general of the three, input-output
linearization will be discussed for the MIMO case as well.

The structure of this section is as follows. First, the application of NDI to systems with a controllability canonical form will
be shown in section 2.1.1. Input-state linearization will be dealt with in section 2.1.2, and the mathematical concepts will first
be introduced in this subsection as well. Several of these concepts will be encountered again in the subsection that follows, sec-
tion 2.1.3, which discusses input-output linearization. As mentioned earlier, since input-output linearization offers the most
general discussion on NDI, the MIMO case will be covered in that subsection.

2.1.1 NDI and the Controllability Canonical Form
As previously mentioned, a convenient way to convey the gist of NDI is to discuss its application on systems that have the
controllability canonical form which is also known as the companion form. A general representation of system dynamics in
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44 2. Nonlinear Control

canonical form is shown in eq. (2.1). As seen from the equation, a key feature of the controllability canonical form is that there
are no derivatives of the control input.

x(n) = f (x)+b(x)u (2.1)
In order to represent eq. (2.1) in a state-space form, the equation is augmented with equations of the form x(r ) = d

d t x(r−1)

for r < n. This leads to eq. (2.2).

d

d t


x1
...

xn−1

xn

=


x2
...

xn

b(x)+a(x)u

 (2.2)

The nonlinearities that appear in the bottom row, on the right-hand side of eq. (2.2) need to eliminated. In order to do that,
the control input is selected to have the form shown in eq. (2.3).

u = a−1(x)[ν−b(x)] (2.3)

In other words, the variable ν, which is referred to as the virtual control input, is defined to be equal to the expression shown
in eq. (2.4).

ν, a(x)[u+b(x)] (2.4)
Substituting the expression for u, eq. (2.3), into eq. (2.2) leads to the linear input-output relation shown in eq. (2.5).

d

d t


x1

x2
...

xn−1

xn

=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0




x1

x2
...

xn−1

xn

+


0
0
...
0
1

ν=


x2
...

xn

ν

 (2.5)

The linearization leads to the multiple integrator form in the bottom row of eq. (2.5), which is shown for convenience in eq. (2.6).
d xn

d t
= ν (2.6)

After the linearization of the dynamics in the inner-loop, it remains to design an outer-loop linear controller. For stabilization
problems which are also referred to as regulation problems, the virtual control takes the form shown in eq. (2.7).

ν=−k0x −k1
d x

d t
−k2

d 2x

d t 2 −·· ·−kn−1
d n−1x

d t n−1 (2.7)

The reason for taking this form becomes clear after substituting the expression for ν from eq. (2.7) into eq. (2.6), which leads
to the closed-loop system shown in eq. (2.8).

d n x

d t n +kn−1
d n−1x

d t n−1 +·· ·+k2
d 2x

d t 2 +k1
d x

d t
+k0x = 0 (2.8)

It can be seen that, through as suitable choice of the gains k0,k1, · · · ,kn−1 based on linear control design techniques (such
as root locus, pole placement, and bode plots), the closed-loop system can be made to be asymptotically stable. Consequently,
this means that the variable that needs to be stabilized tends to zero.
As for tracking problems, the outer-loop linear control takes the form shown in eq. (2.9).

ν=−k0
(
x −xd

)−k1
d

(
x −xd

)
d t

−k2
d 2

(
x −xd

)
d t 2 −·· ·−kn−1

d n−1
(
x −xd

)
d t n−1 + d n xd

d t n (2.9)

which leads to the following closed-loop system:

d n x

d t n − d n xd

d t n =−k0e −k1
de

d t
−k2

d 2e

d t 2 −·· ·−kn−1
d n−1e

d t n−1 = d ne

d t n (2.10)

Alternatively, the closed-loop system can be written in terms of the tracking error as shown in eq. (2.11).

d ne

d t n +kn−1
d n−1e

d t n−1 +·· ·+k2
d 2e

d t 2 +k1
de

d t
+k0e = 0 (2.11)

Similar to the case of the stabilization control problem, a suitable choice of the gains [k0,k1,k2, ...,kn−1] ensures that a
stable closed-loop system is obtained and that the tracking error tends to zero.
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2.1.2 Input-State Linearization
Input-state linearization is a two-step approach. The first step is to transform the inputs and states in order to fully linearize
the system, and the second step is to design a suitable controller for the linearized dynamics. For the first step, the feasibility of
the state and input transformations requires certain conditions to be satisfied. In the following, these conditions as well as the
steps involved in the transformations will be discussed. As for the choice of the control gains, the same guidelines presented
in the previous subsection apply here again.

Consider the input-state equation, with a single input, shown in eq. (2.12).

ẋ = f(x,u) (2.12)

For the input transformation to be possible, the input-state equation should be affine in the control input, which is the case
for the input-state equation shown in eq. (2.13). Note that the vector fields f and g in the equation are smooth, meaning that
they are infinitely differentiable.

ẋ = f(x)+g(x)u (2.13)

More general than the applicability of an input transformation to eq. (2.13), the input transformation is also possible for
systems of the form shown in eq. (2.14), where the scalar function t is an invertible function. Note, that, here too, the vector
fields are smooth.

ẋ = f(x)+g(x)t [u +φ(x)] (2.14)

The rationale behind this generalization can be seen through a replacement of the expression t [u+φ(x)], with some tem-
porary variable w , which returns the form of eq. (2.13). As the function w is invertible, one can design for the variable w and
then determine the control input variable u based on the relation u = t−1(w)−φ(x).

Before moving on to discussing the conditions for the state transformation, the definition of state-linearization is pre-
sented to cement the previously discussed concepts and to bridge to the discussion on the conditions for state transformation.

Definition 2.1 (Input-state Linearization): The system shown in eq. (2.13) is considered to be input-state linearizable if there
is a diffeomorphism T :Ω→ Rn which is applied upon the state vector to obtain the new state variables z = T(x), and if there is
a nonlinear input transformation given by eq. (2.15)

u =α(x)+β(x)ν (2.15)

such that together these transformations lead to a linear time-invariant relation

ż = Az+bν (2.16)

such that

A =



0 1 0 ..0
0 0 1 ..
. . ..
. . ..
. . ..
0 0 0 .1
0 0 ..0


b =



0
0
.
.
0
1


(2.17)

Note, that A and b are in the linear companion form [14].

Starting with the form for the input-state equation in eq. (2.13), the following theorem presents the conditions for a feasible
state transformation.

Theorem 2.1 (Conditions for Input-state Linearization [14]): The nonlinear system of the form considered in eq. (2.13) is
input-state linearizable if and only if, there exists a regionΩ such that the following conditions hold:

• the vector fields
{

g, adfg, . . . , ad n−1
f g

}
are linearly independent inΩ, where adfg denotes the Lie bracket of f and g ,

the definition of which is given in Definition 2.3.
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• the set
{

g, adfg, . . . , ad n−2
f g

}
is involutive inΩ, where the involutive property is explained in Definition 2.4.

The complete proof can be found in [14]. However, for completeness, the intuition behind those conditions will be pre-
sented. Since the goal of the transformation z = T(x) is to bring the system into the controllability canonical form, it is known
that after the transformation is performed (if feasible at all), the control input u will only appear in the final equation of
eq. (2.18).

ż1 = ∂T1
∂x f+ ∂T1

∂x gu = T2

ż2 = ∂T2
∂x f+ ∂T2

∂x gu = T3

· · ·
żn = ∂Tn

∂x f+ ∂Tn
∂x gu = ν

(2.18)

Since it is desired that only the last equation depend on the control input, it is known that T1, . . . ,Tn are independent of
u, and only ν depends on u. In order to simplify the notation, one may use the Lie derivatives, defined as follows.

Definition 2.2 (Lie Derivative [14]): Let h be a smooth scalar function and f a smooth vector field. The Lie derivative of h with
respect to f is a vector field that is defined according to eq. (2.19).

Lfh =∇hf =
n∑

i=1

∂h(x)

∂xi
fi (x) (2.19)

Higher orders of the Lie derivative are obtained, recursively, as shown in eq. (2.20):

Lk
f h(x) = Lf

[
Lk−1

f h(x)
]
=∇

[
Lk−1

f h(x)
]

f(x) (2.20)

Thus, the kth Lie derivative can be traced back to the 0th Lie derivative which is simply equal to the function whose Lie derivative it
is desired to compute, as shown in eq. (2.21).

L0
f h(x) = h(x) (2.21)

As for the case when the Lie derivative is with respect to another vector field, the calculation goes as follows:

LgLfh =∇(Lfh)g (2.22)

Based on this definition, the partial differential equations in eq. (2.18) can be rewritten using Lie derivatives, and the result
is shown in eq. (2.23).

LfT1 +LgT1u = T2

LfT2 +LgT2u = T3

· · ·
LfTn +LgTnu = ν

(2.23)

Since the control input only appears in the bottom-most equation, it is deduced that:

LgT1 = LgT2 = . . . . = LgTn−1 = 0 LgTn 6= 0
LfTi = Ti+1 i = 1,2, . . . ,n −1

(2.24)

Definition 2.3 (Lie Bracket [14]): For two given vector fields f and g , defined onRn , the Lie bracket of f and g , which is often
denoted by adfg, is defined according to eq. (2.25).

[f,g] =∇gf−∇fg = Lfg−Lgf (2.25)

Moreover, higher orders of the Lie bracket are obtained recursively according to eq. (2.26).

ad i
f g = [f, ad i−1

f g] i = 1,2, · · · (2.26)

and knowing that:
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ad 0
f g = g (2.27)

Equation (2.28) describes the Jacobi identity, which is one of the properties of the Lie Bracket.

Ladfgh = LfLgh −LgLfh

⇐⇒ ∇h[f,g] =∇(Lgh)f−∇(Lfh)g (2.28)

The Jacobi identity can be used to rewrite the constraints in eq. (2.24) only in terms of T1, which is part of the overall dif-
feomorphism T (x). This is done as follows.

∇T1[f,g] =∇(LgT1)f−∇(LfT1)g (2.29)

According to eq. (2.24), LgT1 = 0 and LfT1 = T2, thus:

∇T1[f,g] =∇(0)f−∇(T2)g

= 0−LgT2 = 0 (2.30)

This finding can be generalized to the result in eq. (2.31).

∇T1ad k
f g = 0 k = 0,1,2, . . . ,n −2 (2.31)

It can also be shown that this property is not valid when k = n-1, i.e.

∇T1ad n−1
f g 6= 0 (2.32)

Together, eq. (2.31) and eq. (2.32) are the equivalent constraints to those of eq. (2.24). The result in eq. (2.31) shows a system
of differential equations with an unknown variable which is T1. According to the Frobenius theorem, an unknown function
defined as the solution of a set of partial differential equations can be obtained if and only if the vector fields involved in this
set of differential equations are involutive. In words, the involutive property means that the Lie Bracket of any chosen pair from
the set {f1, f2, . . . , fm} can be written as the linear combination all of the vector fields in that set. This is formally described as
follows:

Definition 2.4 (Involutive Property): A linearly independent set of vector fields
{

f1, f2, . . . , fm
}

onRn is said to be involutive if,
and only if, there are scalar functionsαi j k :Rn →R such that:

[
fi , f j

]
(x) =

m∑
k=1

αi j k (x)fk (x) ∀i , j (2.33)

where
[

fi , f j

]
denotes the Lie bracket of fi and f j .

If the conditions for input-state linearization, according to the theorem, are satisfied, it follows to try to find T1 such that
eq. (2.31) and eq. (2.32) are satisfied. Moreover, from the feasibility analysis presented above, it can be deduced that the state
transformation is z = T (x) = (T1 L f T1 · · ·Ln−1

f T1)T , and the input transformation is of the form:

u =α(x)+β(x) · v (2.34)

where:

α(x) =− Lfz1

LgLn−1
f z1

(2.35)

β(x) = 1

LgLn−1
f z1

(2.36)

As mentioned in the introduction of this section, input-state linearization is a specific case of input-output linearization
where full linearization is achieved. Lemma 2.1 formally states the relation between input-state linearization and input-output
linearization.
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Lemma 2.1 (Input-state Linearization as a special case of Input-output Linearization [14]): An nth-order nonlinear sys-
tem is input-state linearizable if, and only if, there exists a function λ(x) such that the input-output linearization with λ(x) as
output function has relative degree n.

This Lemma brings attention to the concept of the relative degree which is formally defined for a SISO system as shown in
the following.

Definition 2.5 (Relative degree of a SISO system): The SISO system is said to have a relative degree r in a regionΩ if∀x ∈Ω

LgL j
f h(x) = 0 0 ≤ i < r −1

LgLr−1
f h(x) 6= 0

(2.37)

As for the case of a MIMO system, the definition is slightly more involved, and it reads:

Definition 2.6 (Relative degree for MIMO system): The MIMO system is said to have relative degree (r1, · · · ,rm ) at x0 if there
exists a neighborhoodΩ of x0 such that∀x ∈Ω

Lgi Lk
f h j (x) = 0 0 ≤ k < ri −1 (2.38)

and that the decoupling matrix shown in eq. (2.59) is non-singular. Moreover, the total relative degree of the system is defined
according to eq. (2.39).

r = r1 +·· ·+ rm (2.39)

In the following part, the input-output linearization is discussed. It is mentioned what additional considerations need to
be taken into account in comparison with input-state linearization. Moreover, the MIMO case will also be discussed there.

2.1.3 Input-Output Linearization
As in the case of input-state linearization, the procedure for input-output linearization consists of performing state and input
transformations first which are followed by designing a linear controller for the linearized dynamics. Section 2.1.3.1 will discuss
the SISO case, and the discussion on the MIMO case which is more involved will follow in section 2.1.3.2.

2.1.3.1 Single Input Single Output Systems

The starting point for input-output linearization is the input-state-output equations, shown for the SISO case in eq. (2.40).

ẋ = f(x,u)
y = h(x)

(2.40)

Similar to the case of input-state linearization, the system dynamics have to be affine in the control input u. Therefore,
input-output linearization is more specifically applicable to eq. (2.41), for the SISO case.

ẋ = f(x)+g(x)u
y = h(x)

(2.41)

Since the system output information is fed back and relied upon to invert the dynamics, an explicit relation between the
input and the output of the system is needed. However, the output equation may not explicitly be in terms of the input. In order
to obtain an explicit relation between the output and the input, the output equation is differentiated until the input variable
u appears. For the system in eq. (2.41), taking the derivative of the output equation with respect, according to the chain rule,
to time gives eq. (2.42).

ẏ = ∂h(x)

∂x
· ẋ = ∂h(x)

∂x
· (f(x)+g(x)u) (2.42)

As the derivative of a scalar function with respect to a vector is nothing else than the gradient of that scalar function relative
to that vector, eq. (2.42) is equivalent to eq. (2.43).

ẏ =∇h(f+gu) (2.43)

Making use of the definition of the Lie derivative (Definition 2.2), eq. (2.43) can be rewritten as eq. (2.44).
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ẏ = Lfh(x)+Lgh(x)u (2.44)
If Lgh(x) = 0, which means that the term involving the control input vanishes, the output equation needs to differentiated

again. Moreover, the derivative is taken repeatedly until the control input appears in the expression. A general expression for
the ith derivative of the output equation is derived, and the result for that is shown in eq. (2.45).

y (i ) = Li
f h(x)+LgLi−1

f h(x)u (2.45)
This expression hints that similar to the input-state linearization, the state transformation that needs to be performed will

involve (T1 L f T1 · · ·Lr−1
f T1)T . However, different from the case of input-state linearization, the exponent r may have a value

that is less than n, and the remaining n − r terms of the diffeomorphism may still need to be determined. More on that is
presented in the following two subsections for each of the SISO and the MIMO cases.

Building on the fact that the order of the output derivative at which the control term appears (r) may be less than the order
of the system (n), the transformation of states that needs to be performed (from the state vector x to the state vector z) takes
the form shown in eq. (2.46),

z = T(x) =



T1(x)
T2(x)

...
Tr (x)

Tr+1(x)
...

Tn(x)


(2.46)

where the functions T1(x),T2(x), ...,Tr (x) are defined according to eq. (2.47).

T1(x) = h(x)

T2(x) = L f h(x)

· · · = · · ·
Tr (x) = Lr−1

f h(x)

(2.47)

and Tr+1(x), ...,Tn(x) are chosen such that Lg Ti (x) = 0 (for all r +1 ≤ i ≤ n).
Applying this state transformation leads to the system shown in eq. (2.48).

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = b(z)+a(z)u
żr+1 = qr+1(z)
· · ·
żn = qn(z)

(2.48)

where

a(z) = Lg Lr−1
f h (x) = Lg Lr−1

f h
[

T−1(z)
]

, b(z) = Lr
f h (x) = Lr

f h
[

T−1(z)
]

(2.49)

and

qi (x) = L f Ti (x)+Lg Ti (x)u (2.50)
Similar to what was done earlier, it is now possible to completely linearize the first r equations by setting the virtual control

equal to the right hand side of the rth differential equation in the system.

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = ν

(2.51)
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2.1.3.2 Multiple Input Multiple Output Systems

In the MIMO case, a similar discussion ensues as that in the SISO case. For the MIMO case, the starting point is eq. (2.52) where
the input and output are now vectors.

ẋ = f(x,u)
y = h(x)

(2.52)

The system needs to be affine in the input. Thus, the discussion is limited to systems of the form given in eq. (2.53),

ẋ = f(x)+G(x)u
y = h(x)

(2.53)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, f : Rn → Rm ,h : Rn → Rm are smooth vector fields and G :
Rn →Rn×m is a smooth function. Moreover, both of the vectors f(x) and h(x) are m-dimensional:

f(x) = [
f1(x), f2(x), · · · , fm(x)

]
, h(x) = [

h1(x),h2(x), · · · ,hm(x)
]

(2.54)

The transformation applied in the MIMO case is the same as the transformation shown in eq. (2.46), but this transformation
is applied to each output function hi (x).

T i
1 (x) = L0

f hi (x) = hi (x)

T i
2 (x) = L1

f hi (x)

· · ·
T i

ri
(x) = Lri−1

f hi (x)

(2.55)

The result of the state transformation for one of the output functions hi (x) is shown in eq. (2.56).

Ṫ i
1 (x) = T i

2 (x)
. . .
Ṫ i

ri−1(x) = T i
ri

(x)

Ṫ i
ri

(x) = Lr
f hi (x)+∑m

j=1 Lg j Lr−1
f hi (x)u j

(2.56)

Moreover, considering all output functions, i.e. 1 ≤ i ≤ m, this leads to the following result:

u = A−1(x)[ν(x)−b(x)] (2.57)

where

ν(x) =


Ṫ 1

r
Ṫ 2

r2
...

Ṫ m
rm

 b(x) =


Lr

f h1(x)

Lr2
f h2(x)

...
Lrm

f hm(x)

 (2.58)

and

A(x) =


Lg1 Lr1−1

f h1(x) Lg2 Lr1−1
f h1(x) · · · Lgm Lr1−1

f h1(x)

Lg1 Lr2−1
f h2(x) Lg2 Lr2−1

f h2(x) · · · Lgm Lr2−1
f h2(x)

Lg1 Lrm−1
f hm(x) Lg2 Lrm−1

f hm(x) · · · Lgm Lrm−1
f hm(x)

 (2.59)

Moreover, as in the SISO, the equations up to ri are linearized for each i ∈ [1,2, · · · ,m]. Additionally, the resultant equa-
tions are decoupled. That is, there is a virtual control input corresponding to each input. More generally, the controllabil-
ity canonical form is established for every input. This is illustrated by the complete input-output linearization for each i ∈
[1,2, · · · ,m], as shown in eq. (2.60).

Ṫ i
1 (x) = T i

2 (x)
· · ·
Ṫ i

ri−1(x) = T i
ri

(x)

Ṫ i
ri

(x) = vi

(2.60)
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2.1.4 Additional Considerations
When the relative degree is smaller than the degree of the system, there will be internal dynamics. The presence of internal
dynamics means that part of the system dynamics is unobservable. Thus, it is important to check the stability of the internal
dynamics analytically.

As studying the stability of internal dynamics is not always an easy task, an alternative is to examine the stability of the
zero dynamics of the system. The zero dynamics are the internal dynamics of the control system when the input is such that
the output of the system is zero [14].

It should be noted that the stability of the zero dynamics is only a guarantee of local stability. If the zero dynamics of a
system are asymptotically stable, the (nonlinear) system is described as an asymptotically minimum phase system. In the case
of a linear system, the system is said to be minimum phase.

Perhaps, one of the most limiting aspects of NDI is its full dependency on the model of the system being controlled and its
requirement of the full knowledge of the states of the system. If the system dynamics are not known precisely, an estimate
of these unknown parts of the model have to be made through some system identification techniques. Moreover, in the case
that the latter requirement cannot be fulfilled (if the states cannot be directly and fully obtained), alternative measures need
to be implemented in the closed loop system. One possibility is to implement a nonlinear observer which is a deterministic
estimator. Another option is to implement a nonlinear state estimator which is a stochastic option.

Another limitation of NDI is it that it can be applied to systems that have the same number of inputs and outputs. In situ-
ations where this is not the case, control allocation problems arise that need to be solved.

Moreover, NDI is suitable for systems affine in the control input. While they can still be applied to systems that are not
affine in control, it becomes a more cumbersome process as nonlinear solvers would be needed to formulate the expression
for the controller.

Furthermore, care should be taken during the inversion that singularities are checked for. The results are then only valid
when the singularities are not encountered. Thus, the inversion in the inner loop alongside the linear compensation in the
outer loop are not always applicable globally [14].

In the presence of internal dynamics, the effectiveness of the feedback linearization control technique hangs upon the
stability of those internal dynamics, in the sense of Bounded Input Bounded Output stability. Since the system is only partly
linearized, if the internal dynamics happen to be unstable, a different output equation should be chosen that would lead to
stable internal dynamics, if possible. Otherwise, a different control technique should be utilized [14].

2.2 Incremental Nonlinear Dynamic Inversion
The INDI control approach emerged as a more robust variant of NDI by alleviating the dependency control approach on the
plant model. This is realized by linearizing the system about the current state and control input of every sample period. The
incremental form that arises allows to feed back sensor measurements. As will be seen in the following, for INDI, only the
knowledge of the value of the control effectiveness matrix is needed. Moreover, three different formulations of INDI will be
presented here.

2.2.1 Continuous-time Formulation
For the derivation of INDI control, the system in eq. (2.53) which is affine in the control is considered. The equation is linearized
as shown in eq. (2.61).

ẋ ≈ ẋ0 +G
(
x0

)(
u−u0

)+ ∂[ f (x)+G(x)u]

∂x

∣∣∣∣∣
0

(
x−x0

)+O
[(

x−x0
)2

]
(2.61)

The higher order terms in the linearized system dynamics are often neglected, and this leads to the form in eq. (2.61):

ẋ ≈ ẋ0 +G
(
x0

)(
u−u0

)+ ∂[ f (x)+G(x)u]

∂x

∣∣∣∣∣
0

(
x−x0

)
(2.62)

In the usual derivation of INDI, time-scale separation is assumed. This assumptions means that the actuator dynamics are
quite fast, and that the evolution of the state variables is quite slow in comparison. This assumption allows to neglect the term
involving the change in state. This leaves eq. (2.63).

ẋ ≈ ẋ0 +G
(
x0

)(
u−u0

)= ẋ ≈ ẋ0 +G
(
x0

)
∆u (2.63)

After the linearization, the virtual control ν can replace ẋ and the inversion of the dynamics is performed. Thereafter, the
incremental control is obtained.
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∆u = Ĝ−1 (
v− ẋ0

)
(2.64)

Thus, the final control law is given by eq. (2.65).

u = u0 + ˆG−1
(
v− ẋ0

)
(2.65)

2.2.2 Continuous-time Formulation Including Internal Dynamics
Despite the demonstrated effectiveness of INDI, the original formulation of INDI control makes use of time-scale separation
and omits higher-order terms. Furthermore, it can only be applied to systems of relative degree one. That is why, Wang et al.
derived a new formulation of INDI, which does not assume time-scale separation, which takes into consideration the internal
dynamics, and which is applicable to systems of any relative degree. For the complete derivation of the new formulation, the
reader is referred to [12].

2.2.3 Discrete-time Formulation
Obtaining the discrete-time formulation of INDI can be done through discretizing the continuous system the linearizing the
result, or through reversing the order of these two steps. Van ’t Veld has shown that either order leads to the same end result
[28]. In the following, the approach where discretization is applied first is presented.

xk+1 = xk +
∫ tk+1

tk

f (x,u)d t (2.66)

If f (x,u) is assumed to be constant between two instances of time, the right-hand side of eq. (2.66) can be simplified, and
this simplification yields:

xk+1 ≈ xk + (tk+1 − tk )f
(
xk ,uk

)= xk +∆t f
(
xk ,uk

)
(2.67)

Rearranging eq. (2.67) leads to the following:

xk+1 −xk

∆t
= f

(
xk ,uk

)
(2.68)

In order to avoid the evaluation of f (x,u) which may be computationally intensive (if f is a complicated function), f (x,u)
can instead be linearized about the state and input values pertaining to the timestep tk−1.

xk+1 −xk

∆t
≈ f

(
xk−1,uk−1

)+ ∂f(x,u)

∂x

∣∣∣∣∣x=xk−1,
u=uk−1

(
xk −xk−1

)+ ∂ f (x,u)

∂u

∣∣∣∣∣x=xk−1,
u=uk−1

(
uk −uk−1

)
(2.69)

Let

F
(
xk−1,uk−1

)
, ∂f(x,u)

∂x

∣∣∣∣∣x=xk−1,
u=uk−1

(2.70)

G
(
xk−1,uk−1

)
, ∂f(x,u)

∂u

∣∣∣∣∣x=xk−1,
u=uk−1

(2.71)

This turns eq. (2.69) into

xk+1 −xk

∆t
≈ f

(
xk−1,uk−1

)+F
(
xk−1,uk−1

)(
xk −xk−1

)+G
(
xk−1,uk−1

)(
uk −uk−1

)
(2.72)

By adjusting the subscripts in eq. (2.68) appropriately, an expression to replace f
(
xk−1,uk−1

)
is obtained. This replacement

turns eq. (2.72) into eq. (2.73).

xk+1 −xk

∆t
≈ xk −xk−1

∆t
+F

(
xk−1,uk−1

)(
xk −xk−1

)+G
(
xk−1,uk−1

)(
uk −uk−1

)
(2.73)

Applying the time-scale separation principle to eq. (2.73) leads to:

xk+1 −xk

∆t
≈ xk −xk−1

∆t
+G

(
xk−1,uk−1

)(
uk −uk−1

)
(2.74)

Inverting eq. (2.73) leads to
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uk = uk−1 +G−1 (
xk−1,uk−1

)(
νk −

xk −xk−1

∆t

)
(2.75)

where νk is defined in eq. (2.76).
νk = xk+1 −xk

∆t
(2.76)

2.2.4 Literature Survey of INDI
The birth of the idea of INDI already began in the 1990s. Several terms were used to refer to it including "simplified nonlinear
dynamic inversion", "modified nonlinear dynamic inversion", and "implicitly nonlinear dynamic inversion" [37–39]. The concept
of INDI was reintroduced by Sieberling et al. in 2010 [27]. It emerged as a control approach that would allow resilience to
model mismatch, and this is attained through relying on sensor measurements. The application of INDI presented in the paper
was for the control of a UAV with a T tail and rear-mounted engines. Moreover, it was first assumed that the measurements
of the angular accelerations were available and could be fed back directly, but angular acceleration measurements are not
always readily available. Thus, the authors also made use of a linear predictive filter to obtain the angular acceleration from
the angular velocity measurements. The robustness of the control approach was demonstrated through reduced sensitivity to
aerodynamic model mismatch, center of gravity mismatch and inertia mismatch [27].

Several applications of INDI, to different platforms, followed Sieberling et al.’s pioneering work. Falkena et al. applied INDI
to the control of small aircraft due to the rising interest in personal aerial vehicles [40]. An application that shortly followed was
the development of an INDI controller for spacecraft attitude control [41]. Thereafter, the INDI control of a Reusable Launch
Vehicle (RLV) was implemented and tested in simulation [42]. INDI was shown to be eligible for the control of the AD-33 heli-
copter based on the feedback of acceleration measurements. The resultant controller was tested and proven, in simulation, to
be capable of tracking commanded references efficiently [43]. Yet another platform onto which an INDI controller was applied
was a tilt rotor Unmanned Aerial Vehicle (UAV). The significance of this application lies in the fact that tilt rotor UAVs have a
large flight envelope whose dynamics are highly nonlinear throughout the envelope. Nonetheless, the paper demonstrates
through simulation the effectiveness of INDI in controlling this platform [44]. Lin et al. present the implementation of INDI for
the attitude control of an autogyro [45]. INDI was also applied in the attitude control of a Vertical/Short Takeoff and Landing
(V/STOL) aircraft across all of its flight envelope [46]. Liu et al. also used INDI for the control of a Vertical Takeoff and Landing
(VTOL) UAV [47]. Moreover, INDI was applied successfully for the first time onboard a CS-25 certified aircraft [48].

Apart from aerial vehicles, INDI was successfully used with flight simulators. Specifically, Huang et al. have shown that
INDI can be used for the inner-loop control of motion systems for flight simulation [49–51]. While the simulator’s hydraulic
actuators achieve high precision, they also add a number of challenges. Their dynamics are highly nonlinear. Moreover, they
make the control system highly susceptible to disturbances for reasons including nonlinear friction in hydraulic actuation, the
possibility of oil leakage, as well unmodelled dynamics. Because of its inherent robustness to uncertainties, INDI has shown
big improvements in the tracking accuracy in comparison to previously used techniques for motion control [1, 52]. This is clearly
seen from fig. 2.1, where INDI with 50% model mismatch outperforms NDI with 10% model mismatch.
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Figure 4.23: Force and position tracking errors for NDI and INDI in nominal and parameter mismatch condi-

tions for actuator 2 with the aggressive manoeuvre of motion profile 2.
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Figure 4.24: Position tracking performance in horizontal plane for NDI and INDI in nominal and parameter

mismatch conditions for motion profile 2.

Figure 2.1: Effectiveness of INDI in comparison to NDI han-
dling model mismatches [1]

7

194 FLEXIBLE AIRCRAFT GLA WITH INDI

of the vertical load factor from its nominal value ñz = nz −nz∗ , and the derivation of the
wing root bending moment M̃r = Mr −Mr∗ are chosen as two performance metrics.

Figs. 7.13-7.17 illustrate the dynamic responses of the flexible aircraft flying through
a von Kármán turbulence field (Fig. 7.3), in which “Open” means responses without con-
trol. “INDI” means the closed-loop responses of the system under INDI GLA control,
where the states and their derivatives are assumed to be available. “KF” refers to the
closed-loop system responses, when the estimated elastic states and their derivatives
are used by the controller. The root mean square (rms) value as well as the peaks of ñz

and M̃r are summarized in Table 7.2. It can be seen from Fig. 7.13 and Table 7.2 that the
proposed INDI GLA controller effectively alleviates both the vertical load and the wing
root bending moment. Because of the unsteady aerodynamic effects, the load responses
in Fig. 7.13 are smoother than the results in [38] where quasi-steady aerodynamics are
used. INDI is able to tolerate the state estimation errors (Sec. 7.4.3) since the closed-loop
responses using the estimated states only have small deteriorations as compared to the
ideal case.
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Figure 7.13: Vertical load factor and wing root bending moment responses under turbulence excitation.

Table 7.2: The maximum and rms values of the load deviations under turbulence excitation.

max(ñz ) [g] σ̂(ñz ) [g] max(M̃r ) [N·m] σ̂(M̃r ) [N·m]
Open 0.186 0.0616 1.80×104 6.04×103

INDI 0.072 (61.3%) 0.0386 (37.4%) 1.63×103 (90.9%) 815 (86.5%)
KF 0.074 (60.1%) 0.0392 (36.4%) 2.71×103 (84.9% ) 1.08 ×103 (82.2%)

Fig. 7.15 shows the responses of the generalized elastic displacements, namely the
first bending qr1 , second bending qr2 , and the first torsion ξr1 modes of the right wing.
For this flexible aircraft configuration, only one set of aileron is available on the wing,
which aims at wing bending and torsion modes suppression, vertical load control and
roll rate control at the same time. However, according to the controllability analysis, this
configuration is unable to achieve a decoupled control for all its missions. For example,

Figure 2.2: Effect of INDI in alleviating vertical load factor and the root bending moment
[2]

Besides its versatile applicability to different platforms, INDI has tackled several specific control applications. For example,
in one of the examples already mentioned, which was the use of INDI in the control of a small aircraft, INDI was used as part



54 2. Nonlinear Control

of a flight envelope protection control system, although the paper showed that the strategy based on INDI was not the very
best one for the task [40].Pavel et al. have demonstrated the use of INDI as part of the Stability Augmentation System (SAS) of
an Apache AH-64 helicopter [53]. INDI was also used as part of the control during take-off of the quadrotor. This application is
important because during take-off a lot of dynamic effects take place such as the ground effect.

Another success of INDI was in its effectiveness as a Fault-tolerant Control (FTC) technique. For example, Lu et al. had
proposed the use of INDI for the control of a quadrotor in the case of losing a rotor, which was demonstrated through simulation
[54]. Another example of the application of INDI for fault-tolerant control is in aircraft trajectory control. It has been shown
that a trajectory controller based on INDI is able to cope well with model uncertainties and actuator faults [55]. In another
example of adaptive and fault-tolerant control, INDI was used in the control of an aircraft with a partly failing active high-lift
system [56].

One of the main strengths of INDI is its greater overall robustness in comparison to NDI. This encompasses robustness to
model uncertainties as well as the capacity for disturbance rejection. The former was demonstrated by Smeur et al when they
showed that INDI handle gusts well, both through a wind tunnel experiment and an outdoor experiment [3]. The comparison
of the tracking performance of INDI in comparison to that of PID is shown in fig. 2.3 and fig. 2.4. Another disturbance rejection
application was performed in [57]. This was done by adding INDI to the outer loop control.
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Figure 2.3: Top view of the experiment which allows to compare the per-
formance of INDI to that of PID in the task of flying under the influence of
gusts [3]
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Figure 2.4: Comparison of the horizontal position error of INDI to that of
PID in the task of flying under the influence of gusts [3]

The increasing use of lighter and more flexible structures poses another control challenge which INDI has adequately dealt
with. The challenge comes from the fact that the eigenfrequencies of the structure and the rigid-body modes become close.
Therefore, the presence of turbulence may excite the rigid-body dynamics as well as the structural dynamics and can induce
their interaction. Wang et al. presented an INDI Gust Load Alleviation (GLA) controller that is specifically for quasi-rigid aircraft
[2, 58].

A recent and interesting control application of INDI was demonstrated by Pollack et al. which involved the use of INDI for
servo current control. That is, INDI was used to provide the current control inputs to the electro-mechanical actuators. The
success of this application was proven through simulation as well as many flight tests. Moreover, this integrated approach
allows to harness the power of INDI and to leverage the benefits of FBW systems which inclu direct haptic feedback as well as
passive and active load alleviation in the presence of gust loads [59].

In relation to control architecture, INDI is often used in inner loop control. In [60], INDI was used for the angular acceler-
ation control of a quadrotor, and in the outer loop NDI, was used for the attitude control. This architecture enabled accurate
tracking of position, velocity, acceleration, jerk, snap, as well as yaw angle, yaw rate, and yaw acceleration. The RMS attained
for the position was 4 cm [60]. In [61], the control of the quadrotor system consists of three loops. In this architecture, the two
outer loops used NDI, and INDI was used in the innermost-loop. It should be noted that in this example, the innermost-loop
comprised of dynamics in a non-affine form which means that NDI cannot be used for that loop because, as mentioned earlier,
NDI requires a controllability canonical form. However, INDI can handle a non-affine form which is indeed an advantage of
INDI over NDI.

Another advantage of INDI in relation to control architecture is that the use of INDI in a cascaded control structure ensures
that internal dynamics are avoided. However, it should be mentioned that the cascaded structure makes stability guarantees
difficult to prove [18].

One of the prominent challenges of INDI is handling measurement and actuator delays. In the problem of controlling the
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attitude with INDI, the angular acceleration is in the feedback loop. Usually when measurements of the angular acceleration
are available, they are quite noisy, and filtering the measurements leads to the introduction of a time-delays. When measure-
ment of the angular acceleration are unavailable, the angular acceleration is estimated from measurements of the angular
rate, and that would usually require the use of a filter (due to the noise in the gyroscope output as well as the additional noise
obtained from differentiation of the angular rate measurements). In the case of either method, since a filter is applied, there
is the need to deal with time delays that arise. Previously, and as mentioned earlier, the issue of the measurement delays has
been dealt with predictive filtering. However, this approach requires further modeling [27]. An alternative approach would be
to make use of multiple accelerometer measurements [62]. However, that is a cumbersome and complicated method to apply
as pointed out in [63]. As an alternative solution, Smeur et al. were able to take into account the time delay happening as a
result of filtering the gyroscope measurements, by applying the same filter to the input [63]. This leads to the delay of the input
by the same amount at which the feedback signal is delayed because of filtering the measurements. Moreover, filtering the
input leads to a transfer function from the virtual control to the angular rate measurement and all that remains is the actuator
dynamics. Clearly, this transfer function does not contain the measurement delays any longer.

Cakiroglu et al. used an angular accelerometer sensor for acceleration measurements needed for feedback rather than
obtaining the acceleration from differentiating the angular rate measurements [64].

Su et al. have proposed a modified version of INDI which is able to handle time-delays arising from measurements. As was
in the case of [63], this approach called Finite Time Convergence Incremental Nonlinear Dynamic Inversion (FINDI) does not
propose a new method for obtaining the angular acceleration accurately. Rather, the novelty of the method lies in reducing the
effect of the time-delay on performance, and this is done by incorporating command differential signals into the outer-loop
linear controller [65].

Another main concern for INDI is dealing with time-varying control effectiveness matrix. Smeur et al. address this chal-
lenge by estimating the control effectiveness, which lead to an adaptive variant of INDI [63].

Actuator saturation is a threat to stability, and INDI is also vulnerable to this threat. When control allocation is applied to
a platform where INDI is used as a controller, this leads to signficant interaction between the control allocation frame and the
dynamics of the actuators which is usually detrimental to performance. In their work, Li et al. present a way to compensate
for actuator saturation in this case [66]. Moreover, Van ’t Veld et al. have applied Pseudo-Control Hedging (PCH) to deal with
actuator saturation [19].

Augmenting INDI with adaptive control techniques to enhance the robustness is needed because the formulation of INDI
relies on the time-scale separation assumption as well as the omission of higher-order terms. This means that perturbation
terms remain present in the closed-loop system. It is those remnants that compromise the effectiveness of the incremental
method. To address this problem, adaptive augmentation is used to determine parametric uncertainties in the system to make
the INDI controller more robust.
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3
Sampled-data Systems

Many control systems nowadays make use of digital computers or digital microprocessors to perform control computations.
This conversion has its advantages. In general, digital computers can be more accurate because digital signals are not as sus-
ceptible to noise and power supply drift as is the case for analog signals. In relation to this, implementation errors are more
likely to occur when analog computers are used because performing calculations based on analog signals requires that the
analog signals are manipulated using resistors and capacitors, whose properties may change over time. Another key advan-
tage of digital controllers over analog controllers is their flexibility. While the control is implemented in hardware for the case
of an analog controller (making it difficult and cumbersome to modify), it is implemented in software or firmware for the case
of a digital controller, which makes adjusting the implementation of the control laws much simpler. Furthermore, digital con-
trollers are economical because the cost of digital controllers has been continuously decreasing [5].

The use of digital computers introduces discrete signals into the control system. Since there are often also continuous
signals in the control system, for instance as outputs of the controlled plant, the system has a hybrid nature. In order for control
to be possible in a hybrid system, suitable conversion techniques that transform the signals from digital to continuous and vice
versa, are needed. These conversions are performed by analog-to-digital converters and digital-to-analog converters.

Essential to those conversion techniques are two processes: sampling and data holding. In an analog-to-digital converter,
a signal is sampled, and then it is digitized (a process known as quanitization). It is because of the sampling that the control
system is, specifically, referred to as a sampled-data system [4]. As for the case of a digital-to-analog converter, the analog
signal is computed as a weighted sum of the digital bits. Thereafter, the signal is held for the duration of the sampling period,
in order for a piecewise continuous signal to be available. The sample and hold processes show how the sampling period affects
the signals in the control system and gives a hint on why the sampling period may have an influence on the performance of
the control system [6].

The analysis of sampled-data systems is usually considered to be harder than that of systems that consist of purely continu-
ous signals or purely discrete signals. In order to perform an analysis of a sampled-data system that is aligned with the physical
reality, both the continuous and discrete nature of the signals need to considered, and the conversion that occurs between the
signals needs to be accounted for [4].

In this chapter, suitable models for sampled-data systems will be discussed, with a focus on systems that are entirely con-
tinuous. First the model of the digital computer will be presented in section 3.1. Thereafter, a number of models will be dis-
cussed in section 3.2.

3.1 Model of the Digital Computer
In this section, the modeling of a digital computer will be presented. A generic example of a basic digital control system is
shown in fig. 3.1. A more specific example is shown in fig. 3.2, showing a (sampled-data) engine control system.

The digital-to-analog converters and the analog-to-digital converters are seen in both diagrams, fig. 3.1 and fig. 3.2, and as
mentioned ealier, that is because the conversion techniques are essential in a digital control systems. Therefore, they will be
discussed in section 3.1.1 and section 3.1.2.

3.1.1 Analog-to-Digital Conversion
In contrast to digital-to-analog conversion, analog-to-digital conversion consists of two steps and does not occur instanta-
neously. This means that there will be a delay between the time that the analog input is received and that at which the digital
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Figure 3.1: General Block Diagram of a Digital Control System [4]

Figure 3.2: Engine Control System [5].

output is obtained. The two steps involved are the conversion to a sampled signal followed by a conversion of the sampled
signal to a binary signal [6].

The first step involved is to sample the analog signal. The (non-ideal) sampling generally occurs through a finite pulse-
width sampler, with the width of the pulses denoted by TW . A special case of the finite pulse-width sampler is the ideal sampler,
where the width of the pulses tends to zero, and the pulses become delta Dirac functions. In general, the operation of the finite
pulse-width sampler can be understood from fig. 3.3.

The equation for the sampled waveform is shown in eq. (3.1).

f ∗
TW

(t ) = f (t )s(t ) = f (t )
∞∑

k=−∞
u(t −kT )−u(t −kT −TW ) (3.1)

It is clear that obtaining the Laplace transform of this signal would be difficult, due to the product of two signals in the
time domain. However, if it is assumed that TW is much smaller than the sampling period T , then a simplication can be made.
Specifically, it will be assumed that f (t ) is constant over the span of a sampling interval. This means that f (t ) = f (kT ) can be
assumed, and eq. (3.1) can be transformed in eq. (3.2) [6].

f ∗
TW

(t ) =
∞∑

k=−∞
f (kT )

[
u(t −kT )−u

(
t −kT −TW

)]
(3.2)
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Figure 3.3: Diagram showing the operation of the sampler [6]

Now that the f (t ) is replaced by a piecewise constant function f (kT ), taking the Laplace transform of f ∗
TW

(t ) is no longer
a complex task. The Laplace transform of eq. (3.2) is shown in eq. (3.3).

F∗
TW

(s) =
∞∑

k=−∞
f (kT )

[
e−kTs

s
− e−kTs−Tw s

s

]
=

∞∑
k=−∞

f (kT )

[
1−e−Tw s

s

]
e−kTs (3.3)

Reusing the assumption of TW being small, and making a first order approximation of the exponential term based on its
series expansion leads to the expression for F∗

TW
(s) shown in eq. (3.4).

F∗
TW

(s) =
∞∑

k=−∞
f (kT )

[
TW s

s

]
e−kTs =

∞∑
k=−∞

f (kT )TW e−kTs (3.4)

Taking the inverse Laplace transform of eq. (3.4) leads to eq. (3.5).

f ∗
TW

(t ) = TW

∞∑
k=−∞

f (kT )δ(t −kT ) (3.5)

In the case of ideal impulse sampling, the equation for sampling in the time-domain is the one shown in eq. (3.6).

f ∗
TW

(t ) =
∞∑

k=−∞
f (kT )δ(t −kT ) (3.6)

As mentioned earlier, the second step in the digital-to-analog conversion is the quantization step. In order to perform this
step, the dynamic range of the sampled-signals needs to be determined first. The obtained range is then divided into a number
of discrete levels. Finally, a digital number is assigned to each of the discrete levels [6].

3.1.2 Digital-to-Analog Conversion
Digital-to-analog conversion is a one-step procedure that occurs almost instantaneously. The analog output is obtained through
computing a weighted sum of the bits of the digital input. This can be explained through the example digital-to-analog con-
verter shown in fig. 3.4. Consider the case where the binary number is 110. Based on the weights shown in the blocks of the
figure, the output analog voltage will be 6 volts [6]. Note, that the switches in fig. 3.4 are "on" whenever a bit with the value of
1 is encountered and closed whenever a bit with the value of 0 is encountered.
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Figure 3.4: Example of a digital-to-analog converter [6].

After this analog value is obtained, then the signal is held for the duration of the sample period. This is also referred to as
data-reconstruction. The data-reconstruction can be based on a Zero-Order-Hold (ZOH), which is described in eq. (3.7) [5].

{u(k)}
ZOH−→ u(t ) = u(k),kT ≤ t < (k +1)T, k = 0,1,2, . . . (3.7)

There are alternatives to the ZOH filter. This includes the first-order hold and the second-order hold. While the former
performs linear interpolation between the sample points, the latter interpolates the data using parabolas. However, the ZOH
is most commonly used [5], and it is this data-extrapolation technique that will be considered for the rest of this report.

In the case of ZOH, the signal is held constant for the duration of the sample period until a new digital signal is provided
by the computer. The working of the ZOH is illustrated through fig. 3.5.

Figure 3.5: Effect of a zero-order hold filter [5]

From this figure, it can be seen that the impulse response of a ZOH is a step function. In order to get the transfer function
corresponding to the zero-order hold, the Laplace transform of the elements in fig. 3.5 need to be taken. The Laplace transform
of an impulse is unity. This means that the transfer function of the ZOH is equal to the Laplace transform of the pulse with the
width T. The pulse is equivalent to the difference of two heaviside functions H(t ) and H(t −T ). Since the Laplace transform of
a heaviside function is 1

s and the Laplace transform of a heaviside function with a delay is 1
s · e−s·T , then the transfer function

of a ZOH is given by eq. (3.8) [5].

GZOH (s) = 1−e−sT

s
(3.8)

3.2 Modeling of Sampled-data Systems
Digital control systems can be modelled in several ways [7]. Before presenting a number of these models, the means to check
the fidelity of the models needs to be mentioned. In brief, this was done based on a Fourier analysis of a Simulink®model that
is assumed to be an accurate representation of the control system, which involves a discrete controller as well as a ZOH block.
For information on the Fourier routine that was implemented to perform this analysis, the reader is referred to [7].

There were five models that were studied by Noijen. The first one involved a continuous form of the digital controller.
A representative diagram of this model is shown in fig. 3.6. Conversely, all the analog components of the system can be dis-
cretized. Then, the overall discrete transfer function can be analyzed. A model that is similar to the baseline model is the one
shown in fig. 3.7. However, of course, this model is fully continuous but includes the ZOH filter. Another model comprised of



3.2. Modeling of Sampled-data Systems 61

adding delays in the feedback signals to represent the pure delay that occurs due to sampling. A variant of the previous model
is to include the delay in the main loop. The resultant model is shown in fig. 3.9.

Figure 3.6: Continuous model of a sampled-data systems obtained by using the continuous form of the controller [7]

Figure 3.7: Sampled-data model [7]

Figure 3.8: Analog controller and components with delay corresponding to the sampling period in the feedback signal [7].

According to the discussion by Noijen, the models with the highest fidelity are the ones shown in fig. 3.7 and fig. 3.9. Based
on this discussion as well as the one from the previous chapter, a suitable model of the control system is shown in fig. 3.10.
Note that, for stabilization problems fig. 3.9 would be equivalent to fig. 3.8. This means that another model which is suitable
to model the system is the one that is shown in fig. 3.11.
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Figure 3.9: Analog controller and components with delay corresponding to the sampling period in the main loop [7].
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Figure 3.10: Block diagram of a control system relying on INDI control(with n-th order inversion) and including feedback delays as well as a zero-order hold
filter.
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Figure 3.11: Block diagram of a control system relying on INDI control(with n-th order inversion) and including feedback delays.



4
Introduction to Time-delay Systems

Processes in real systems do not occur instantaneously. This is due to transport and propagation phenomena as well aftereffect
phenomena within the components in the system, the sources of which are multifaceted. As a result, time-delays arise in those
systems. There are several ways to refer to such systems including TDSs, hereditary systems, and systems with aftereffects [25].

Interest in the TDSs over the past few decades is reflected in the tremendous amount of research that has been performed
on the subject. Several reasons for this interest have been postulated by Richard [31], including the fact that the analysis of
time-delays is an applied problem (time-delays are always present) and the effect of time-delays on a system’s stability and
performance.

This chapter is dedicated to giving an introduction to the class of TDSs. The first section discusses the effect of delays on
stability. Then, the ways to represent the TDSs are shown in section 4.2. Thereafter, the taxonomy for the classification of TDSs
will be presented in section 4.3. Finally, a discussion on the spectral properties of TDSs is given.

4.1 Effects of Delay on Stability
It comes as no surprise that some of the initial studies on TDSs, as early as in the 1930s, were focused on the effects of delays
on stability of a TDSs. It may be intuitively guessed that the presence of delays may induce instability in a control system.
For example, when a controller makes use of past information about the states in a system, the output it provides may be
unsuitable for the current state of the system. The tardiness in the information availability to the controller is due to any delays
occuring in the closed-loop system such as the delays in the propagation of information between the elements in the control
system, the time needed for a sensor to return a signal (sensor delay), or the reaction-time of actuators (actuator delay), as
well as the digital nature of the controller. Moreover, even if it is idealized that the information is delivered instantaneously
to the controller, delays occuring at the level of the controller also make the output of the controller unsuitable and with the
potential to destabilize the system.

However, there is a dual effect to the nature of TDSs [67]. It may also be the case that time-delays may restore stability to
a system. This may occur in the case of oscillatory systems. Given the possibility of a stabilizing effect, time-delays have been
intentionally introduced into a control system to stabilize it.

There are also examples where the presence of delays does not affect the system’s stability, irrespectively of how large the
delay may become. This is known as the case of delay-independent (in)stability. this is a (un)fortunate property of the system
considered.

In general, it is not always practical to analyze or design a system for delay-independent stability, as those results are often
excessively conservative. Instead, and in alignment with the research objective of this thesis, it is more reasonable to search
for the stability regions in the delay-space of the control system. That is why, the focus will be on delay-dependent stability.

It should be noted, however, that some of the discussions on delay-independent stability are sometimes relevant or are
pre-requisites for the derivation of delay-dependent stability results, and they will be discussed in this light. The discussions
on both the approaches for delay-independent and delay-dependent stability analysis will be returned to in chapter 5 and
chapter 6.

4.2 Representation of Time-delay Systems
Dugard et al. discuss three ways to represent TDSs mathematically: as differential equations on abstract space [68] (as cited
in [25, 69]), as differential equations on functional spaces i.e. as functional differential equations [70] (as cited in [25, 69]), and
as differential equations over rings or operators [71] (as cited in [25, 69]).

63
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Classification of Time-delay Systems

Model of delay
Discrete Delays

•Constant
•Time-varying

Distributed Delays

Type of delay Retarded Neutral

Number of delays Single Delay
Multiple Delays
•Commensurate

•Incommensurate

Figure 4.1: Classification of Time-delay Systems

However, TDS s are usually described by functional differential equations. In exception of the discussion on the matrix
pencil approach for the determination of the characteristic equations in a certain right half plane (in section 5.2.2), the other
two representations will not be encountered in this report. As a result, only the functional differential representation will be
discussed in the subsequent paragraphs.

Equation (4.1) shows a functional differential equation that represents a generic TDS [72].
ẋ(t ) = f

(
t , x(t ), xt ,ut

)
xt0 =φ(θ), ∀θ ∈ [

t0 −τ, t0
]

ut0 = ζ(θ), ∀θ ∈ [
t0 −τ, t0

] (4.1)

In this equation,φ and ξdenote the initial conditions for the state and the input, respectively. Moreover,τdenotes a time-
delay, and as such τ> 0. As for xt , it is defined according to eq. (4.2):

xt :

{
[−τ,0] →Rn

θ 7→ xt (θ) = x(t +θ)
(4.2)

and ut is defined according to eq. (4.3):

ut :

{
[−τ,0] →Rn

θ 7→ ut (θ) = u(t +θ)
(4.3)

The notation xt and ut corresponding to the definitions in eq. (4.2) and eq. (4.3) is referred to as the Shimanov notation.
Moreover, it is clear that eq. (4.1) shows the dependence of the functional differential equation on current as well as past states
and inputs.

4.3 Classification of Time-delay Systems
In this section, TDSs are described and categorized based on a number of dimensions. Of particular relevance are the model
of the delay, the number of delays in the systems, and the type of delays in the system. The categories as well as the possible
options for each of category are summarized in fig. 4.1.

4.3.1 Model of Delay: Discrete or Distributed
Following the taxonomy shown in fig. 4.1, it can be seen that there are two main ways to model delays: either as discrete (also
referred to as point-wise delays) or distributed delays. States with discrete delays in their arguments such as x(t−τ) can be un-
derstood as values from a specific moment in the past which is in this case t −τ. Furthermore, referring again to the taxonomy,
it is seen that a discrete delay may either be constant or vary with time.

The choice of whether to model a time-delay as fixed or as time-varying is important for the validity of the results. When
the analyses of systems with discrete delays are compared with those of systems with time-varying delays, the phenomenon
of quenching is witnessed. That is, quenching happens at certain time-delays at which the system with discrete time-delays is
stable but for which when the time-delays are assumed to be time-varying, stability is lost (or vice versa, having stable delay
intervals for the case of time-varying delays for which the TDS with discrete delays is no longer stable) [73].
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As for distributed delays, use is made of values from an interval of time occuring in the past
[−τ1,−τ2

]
, whereτ1 > τ2 ≥ 0.

This interval is then weighed with a kernel. It is this information that is incorporated into the dynamics [74]. An example of a
system with distributed delay is shown in eq. (4.4) [75].

ẋ(t ) =
∫ 0

−r
c(θ)x(t +θ)dθ (4.4)

It should be remarked that the information captured by modeling the dependence on past information through distributed
delays is a more complex but richer representation. Distributed delays are able to incorporate "memory" of a sequence occur-
ing in the past which is more insightful than just looking at discrete points in the past.

Examples of using distributed delays in the description of a TDS is in the case of the delay response of human drivers. Phys-
ically, the interpretation for the use of distributed delays rather than discrete delays is that drivers make use of a cumulative
continuous stream of past information they have perceived to take a control action [76]. Distributed delays are also used to
describe the time delays occuring in stochastic thermodynamics, specifically the dynamics of a particle inside a heat reservoir
with memory effects [77].

Besides their use in the system representation, distributed time-delays are also important in the derivation of delay-dependent
stability criteria in the time-domain, for TDSs with point-wise delays. This will be seen in chapter 6.

4.3.2 Type of Delay: Retarded or Neutral
An important aspect is how the delay influences the states or the derivatives of the states in the system [74]. There are three
main ways in which delays influence the states or the derivatives of the states in the system. Those are retarded type TDSs,
neutral type TDSs, and advanced type TDSs. It is important to make this distinction between the types because the type has
important implications on the properties of the system, on the necessary conditions for their stability, and consequently, on
the approaches for stability analysis. In the following, it is explained how to differentiate between those three types.

In the case of retarded TDSs, the highest order derivative in the system is not affected by time-delays. The general form of
the retarded type TDS is given by the functional differential equation in eq. (4.5) [78].

ẋ(t ) = f
(
t , xt

)
(4.5)

A generic example of a retarded TDS is eq. (4.6).

ẋ(t ) = A0x(t )+
m∑

i=1
Ai x

(
t −τi

)
(4.6)

However, for neutral TDSs, there are two terms with the highest-order derivative, one that does depend on the time-delay
and another that does not. The general form of the neutral type TDS is given by the functional differential equation in eq. (4.7)
[78].

ẋ(t ) = f
(
t , xt , ẋt

)
(4.7)

A generic example of neutral time-delay system is eq. (4.8), where the term indicated with the underbrace is commonly
referred to as the delay-difference operator.

d

d t

x(t )+
m∑

k=1
C x

(
t −τk

)
︸ ︷︷ ︸

Delay-difference operator

= A0x(t )+
m∑

i=1
Ai x

(
t −τi

)
(4.8)

Moreover, the equation based on the delay-difference operator (also known as the discrete kernel operator [78]), shown in
eq. (4.9), is that of associated delay-difference equation. The stability of this equation is tied to that of the neutral TDS as will
be discussed later.

x(t )+
m∑

k=1
C x

(
t −τk

)= 0 (4.9)

As for the case where there is only one term for the highest-order derivative and this term depends on the time-delay, this
case characterizes an advanced type TDS [74, 78, 79].

The distinction between the three types is further clarified with the examples of the scalar systems shown in eq. (4.10) and
eq. (4.11) (as taken from [22]) and eq. (4.12). From eq. (4.10), it can be seen that the highest order derivative which is a second



66 4. Introduction to Time-delay Systems

order derivative does not depend on the state, but the first order derivative does. Thus, although there are state derivatives
that depend on the delays in the system, this is a retarded type TDS.

ẍ(t ) = aẋ(t −h)+bx(t ), x(t ) ∈R (4.10)

As for eq. (4.11), it can be seen that the highest-order derivative does also depend on the time-delay: ẍ(t −h). Therefore,
this system is of neutral type.

ẍ(t ) = aẍ(t −h)+bx(t ), x(t ) ∈R (4.11)

Moreover, if the case where the ẍ(t ) of eq. (4.11) is no longer part of the equation is encountered, as in the case shown in
eq. (4.12), since the highest order derivative depends on the time-delay aẍ(t −h), this is an advanced type TDS.

aẍ(t −h)+bx(t )+ ẋ(t ) = 0, x(t ) ∈R (4.12)

It should be noted however that, for the sake of engineering applications, the advanced type is not as relevant [78]. The
reason for this is that, in an advanced type TDS, the quantity described by the dynamics depends on its future values [80].
Since the dependence of a state on future values is not physically possible, only the retarded and the neutral types will be
discussed in the parts to follow.

One main difference between retarded TDSs and neutral TDSs is the smoothness of solutions of the system. While for the
case retarded TDSs, the solutions become smoother with the passing of time, such a smoothing effect does not always occur
in the case of neutral TDS.

Another difference occurs in the spectral properties of the TDSs. In the case of retarded TDSs, it is guaranteed that there
will be a finite number of roots to the right side of any vertical line drawn in the complex plane. However, in the case of neutral
TDSs, there may be an infinite number of unstable roots. The stability of the delay-difference operator however induces the
number of unstable roots for the neutral TDS to become finite. However, the disussion on the spectral properties will be further
developed in section 4.4.

4.3.3 Number of Delays: Single or Multiple Delays
The final part of the taxonomy shown in fig. 4.1 deals with the number of delays in the system. The two categories here are
the case of single delay in the system or multiple delays. If there are multiple delays in the system, it may be the case of either
commensurate delays (when the delays are multiple of a certain baseline delay) or incommensurate delays [74].

It should be noted that a slightly confusing terminology has been adopted in the literature to describe systems with com-
mensurate delays. Despite there being multiple delays in such a system, the system is referred to as a single delay system. In
order to determine what multiple of the baseline delay occur in the system, the commensurate degree (denoted by L) is intro-
duced. Therefore, the terms x1(t −τ), x2(t −2τ) and x3(t −3τ) present in the system, the commensurate degree is L = 3. As
for the case of a system with a single delay, the commensurate degree is L = 1.

Dealing with multiple-delay systems is often much more complicated than that of the single-delay systems. One key chal-
lenge is the computational complexity which in the case of the stability analysis of multiple-delay systems is N P -hard. Here,
N P stands for non-deterministic polynomial time. However, it should be noted that N P -hard problems constitute a com-
pletely different set of problems than that of N P problems. For both classes of problems, it is not possible to obtain a solution
that is tractable and scalable with the size of the problem. Here, tractable means that the problem can be solved in polynomial
time even in worst-case scenarios. The key difference between N P and N P -hard problems is that for N P problems ver-
ifying a postulated solution is possible using a polynomial-time algorithm while for N P -hard problems, it isn’t. This makes
N P -hard problems the toughest class of problems to deal with.

To give an intuition of why this problem is N P -hard, consider the stability analysis of a system with two distinct delays.
This problem may be considered as the stability analysis of a system with commensurate delays but whereby all possible ratios
between the two delays are attempted. Clearly, this makes it an intractable problem [74]. A formal proof of N P -hardness of
stability analysis in the case of incommensurate delays is provided by Gu et al. in [75].

4.4 Spectral Properties of Time-delay Systems
It is important to discuss the spectral properties of TDSs, as the spectral properties provide useful insights for the stability
analysis techniques that will be explained later. Some of the spectral properties of retarded TDSs and of neutral TDSs will be
individually discussed. However, before this discussion ensues, there are main properties that are applicable to the spectra of
both retarded and neutral TDSs that need to be mentioned.

First and foremost, TDSs have infinitely many roots, and this is one of the aspects that reflect the infinite dimensional na-
ture of TDSs. This property is easily seen from examining the characteristic quasipolynomial of any TDS. The Laplace transform
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Figure 1.2. Envelope curve on the characteristic roots for the system (1.3) with α = 2 and
τ = 1/3 (solid line). The characteristic roots are indicated by+.

Indeed, observe first that the (auxiliary real) function

f :�+  →�, f (x) := x −	A0	2−
m


i=1

	Ai	2e−rτi

is differentiable and strictly increasing. Next, since f (0) < 0 and limx→∞ f (x) =∞, it
follows straightforwardly that there exists a unique positive root r0 > 0 such that f (r0) =
0. In conclusion, the rightmost root λr in the complex plane verifies the inequalityℜ(λr )≤
r0. Consider now a root in the imaginary axis, that is, λ0 = jω0 (with ω0 ∈ �). The
inequality (1.12) provides the following upper bound:

|ω0|≤
m


i=0

	Ai	2, (1.13)

meaning that the interval over the imaginary axis where we can find characteristic roots
(if any?!) is independent of the delay values. The next result will simply show how the 2
norm can be replaced by any induced matrix Q norm, thus leading to a better estimation
of such an interval:

	A	2Q =max
i
λi (A

T QA), (1.14)

where Q = QT ∈ �n×n is an arbitrary positive-definite real matrix. More precisely, we
have the following estimates of the upper bound:

Proposition 1.12. Let Q =Q � > 0 ∈�n×n be given. If μ ∈�+ is such that

μQ >
m


i=0

AT
i QAi , (1.15)

then any solution of the characteristic equation (1.8) on the imaginary axis λ = jω satisfies
|ω|≤�μ(m+ 1).

Figure 4.2: Example curve envelope of the spectrum of a TDS [8].

of delayed terms such as x(t −τ) leads to exponential terms in the characteristic equation. Since the exponential function is a
transcendental function, its presence in the characteristic equation leads to an infinite number of zeros [8, 9].

Another important property of the spectrum of both retarded and neutral type TDSs is that when the coefficients of the
quasipolynomial are real, the spectrum is symmetric with respect to the x-axis. This is applicable in the case of both retarded
and neutral TDSs.

4.4.1 Spectral Properties of Retarded Time-delay Systems
Despite there being infinitely many characteristic roots, usually there is a finite number of unstable roots. For retarded systems,
this is always applicable. As for neutral systems, this is guaranteed when the delay-difference operator is stable [8]. Conversely,
when the delay-difference operator is unstable, there can appear infinitely many unstable roots for the neutral TDS [31].

For retarded TDSs, if there is a sequence of roots whose magnitude tends to +∞, then the real part of those roots tends
to −∞.[8]. This is in alignment with the property that retarded systems have a finite number of unstable roots. That is, if the
magnitude is getting increasingly large and it is known that the number of unstable roots has to be finite, then it must be that
those roots are tending towards the extremes of the other half-plane. If there exists a sequence {λk } of characteristic roots of
the retarded system such that limk→∞R

(
λk

)→−∞ [8].
Additionally, there is a finite number of roots within any vertical strip in the complex plane. The vertical strip is formally

expressed in eq. (4.13) whereα,β ∈R andα<β.

{λ ∈C :α<R(λ) <β} (4.13)

A special case of this property occurs when this vertical strip is narrowed down to an infinitesimally thin strip about the
imaginary axis. Thus, it is deduced that the number of eigenvalues on the imaginary axis is always finite.

Another property is that there is a vertical line to the left-side of which will be all the roots of the retarded TDS. Let this
vertical line be represented with x = γ. Formally, this is described with eq. (4.14).

{λ ∈C : ℜ(λ) < γ} (4.14)

An even stronger case of the latter is the proposition that yields the envelope curve of the spectrum. For the retarded TDS
described by eq. (4.6), the envelope is described by eq. (4.15). The proof for this proposition is provided by Michiels et al. in [8].
An example of such an envelope is shown in fig. 4.2.

|λ| ≤ ∥∥A0
∥∥

2 +
m∑

i=1

∥∥Ai
∥∥

2 e−N(λ)τi (4.15)
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Figure 1.4. (Left) Characteristic roots of the neutral system (1.37)–(1.38). (Right) Eigenvalues
of the corresponding operator �N (1).

A very important result in what follows, which connects the spectra of �N (t ) and �D (t ),
is the following:

σe (�N (t )) = σ(�D (t )). (1.36)

Example 1.19. We consider the neutral system

d
d t

�
x(t )− 3

4
x(t −τ1)+

1
2

x(t −τ2)
�
=

1
4

x(t )+
3
4

x(t −τ1), (1.37)

where
�τ = (1,2). (1.38)

In Figure 1.4 we plot the characteristic roots λ, which are the eigenvalues of the operator�N ,
as well as the eigenvalues z of the operator �N (1). These are connected via the relation z = eλ.
The operator �N only features a point spectrum; in particular, the characteristic roots are
all isolated and of finite multiplicity. The operator �N (1) features an essential spectrum that
corresponds to the accumulation points of the eigenvalues given by

z±e =
3±23 j

8
. (1.39)

In Figure 1.5 we plot the characteristic roots of the associated delay-difference equation

x(t ) =
3
4

x(t −τ1)−
1
2

x(t −τ2). (1.40)

The characteristic roots can be computed analytically as follows:

1− 3
4

e−λ+
1
2

e−2λ = 0 (1.41)

⇔ eλ =
3±23 j

8
(1.42)

⇔ λ=− log 2± j


atan


23
3
+ 2πl

�
, l ∈ �. (1.43)

The fact that the right-hand sides of (1.39) and (1.42) are equal is a consequence of (1.35)–(1.36).

(a) Spectrum of the neutral type TDS [8].
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Figure 1.5. (Left) Characteristic roots of the delay-difference equation (1.40)–(1.38). (Right)
Eigenvalues of �D (1).

1.2.3 Asymptotic growth rate of solutions and stability

The definition of stability notions is similar to that for ODEs and DDEs of retarded type:

Definition 1.20. The null solution of (1.25) is asymptotically stable4 if and only if

∀ε> 0 ∃δ > 0 ∀φ ∈� ([−τ, 0],�n) (	φ	s < δ)⇒ (∀t ≥ 0 	xt (φ)	s < ε) ,
∀φ ∈� ([−τ, 0],�n) limt→+∞ x(φ)(t ) = 0.

Definition 1.21. The null solution of (1.25) is exponentially stable if and only if there exist
constants C > 0 and γ > 0 such that

∀φ ∈� ([−τ, 0],�n) 	xt (φ)	s ≤C e−γ t	φ	s .
It is clear that exponential stability implies asymptotic stability. Contrary to the case

of linear delay equations of retarded type, the converse does not hold in general, as illus-
trated by an example in [393] (see also [50]).

The asymptotic behavior of the solutions of (1.25), and thus their stability properties,
is determined by the spectral radius rσ (�N (1)). In particular we have the following result:

Proposition 1.22. The null solution of (1.25) is exponentially stable if and only if

rσ (�N (1))< 1,

or, equivalently, all characteristic roots are located in the open left half plane and bounded
away from the imaginary axis.

For the delay-difference equation (1.28), associated with (1.25), stability definitions
and their relation with spectral properties are similar. We have, for instance:

Definition 1.23. The null solution of (1.28) is exponentially stable if and only if there exist
constants C > 0 and γ > 0 such that

∀φ ∈�D ([−τ, 0],�n) 	yt (φ)	s ≤C e−γ t	φ	s .
4For reasons of conciseness we will often use the less precise formulation “the system (1.25) is asymptotically

stable.”

(b) Spectrum of the corresponding delay-difference equation [8].

Figure 4.3: Spectrum of a neutral type TDS and that of the corresponding delay-difference equation.

The envelope curve provides very nice information regarding the location of the critical imaginary roots which are the roots
of the characteristic equation that occur on the imaginary axis of the complex plane. Knowing about the presence and location
of the critical imaginary roots is important because, for retarded systems, the gain or loss of stability is related to the crossing of
the imaginary axis. Being imaginary roots,λ in eq. (4.15) can be replaced with jω. Moreover, the real part of the characteristic
root is zero i.e. N( jω) = 0. This leads to eq. (4.16) [8].

| jω| ≤ ∥∥A0
∥∥

2 +
m∑

i=1

∥∥Ai
∥∥

2 e0

=⇒ |ω| ≤ ∥∥A0
∥∥

2 +
m∑

i=1

∥∥Ai
∥∥

2

=⇒ |ω| ≤
m∑

i=0

∥∥Ai
∥∥

2 (4.16)

From eq. (4.16), it is clear that there is an interval over the imaginary axis of finite width that is guaranteed to contain the
critical imaginary roots. It can also be noted, based on this inequality, that this interval is independent of the delay values [8].

The spectra of retarded TDSs also possess nice continuity properties. That is, the characteristic roots behave continuously
with respect to the variations of system matrices and delays. Additionally, the spectral abscissa, which is the largest real part
available from the roots in the spectrum i.e. maxi

{
Re

(
λi

)}
, is also continuous with respect to these variations.

4.4.2 Spectral Properties of Neutral Time-delay Systems
The properties of the spectrum of the associated delay-difference equation, shown in eq. (4.9), heavily dictate those of the
spectrum of the neutral type TDS. It is also this aspect that leads to the additionaly necessary stability condition for the ex-
ponential stability of the null solution of the neutral type TDS, which is the exponential stability of the null solution of the
delay-difference equation [8].

An important aspect of the relation between the spectrum of the neutral type TDS and that of the associated delay differ-
ence equation is that the real part of the sequence of characteristic roots

{
λn

}
n≥1 of the neutral type TDS (eq. (4.8)) tends to

the limit of that of the delay-difference equation, denoted by ζ. Moreover, the imaginary part of the sequence of characteristic
roots tends to infinity; thus, the neutral TDS is said to have vertical asymptotic chains [81]. Both of these characteristics are
expressed in eq. (4.17).

lim
n→∞ℜ(

λn
)= ζ, lim

n→∞=ℑ(
λn

)=∞ (4.17)

An example spectrum demonstrating these properties is shown in fig. 4.3. Examining the spectrum of the neutral TDS
shown in fig. 9.1a, it is seen that the sequence of eigenvalues tends to the vertical line at around -0.35, which happens to be
location of where all the roots of the delay-difference equation are located, as seen in fig. 9.1h.

Another property is that neutral type time-delay equation has a finite number of roots that are in the right-half plane and
that are to the right of the spectral abscissa of the delay-difference equation, which is denoted by cD . This again can be seen
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from fig. 9.1a where it can be seen that there is only one root in the right half-plane, which also happens to be on the right-hand
side of the spectral abscissa of the characteristic roots of the delay-difference operator which occurs at about -0.35.

Small perturbations can remove the stability of the delay-difference equation, which is known as the delay sensitivity prob-
lem of the delay-difference equation. This susceptibility to small perturbations is eliminated when the delay-difference equa-
tion is strongly stable, which is ensured when condition eq. (4.18) is satisfied. In this case, it can also be said that the delay-
difference operator is strongly stable.

m∑
k=1

‖C‖ < 1 (4.18)

When the strong stability of the delay-difference operator is ensured, the loss or gain of stability, as in the case of retarded
TDSs, is related to crossing the imaginary axis in the complex plane. This ties to the fact that, as mentioned earlier, the strong
stability of the delay-difference operator induces a finite number of unstable roots.
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5
Frequency-domain Techniques

Frequency-domain techniques are often preferred for their simplicity, and they can be often computationally efficient [75].
The discussion in this chapter is devoted to giving an overview of frequency-domain techniques for analyzing the stability of
Linear Time-invariant (LTI) TDSs. Due to the vast amount of literature on the subject matter, a comprehensive review of all the
academic contributions is not possible within the scope of this thesis. However, in this chapter, the attempt was to assemble a
thorough discussion of more recent frequency-domain techniques.

The development of frequency domain techniques for the stability analysis of LTI TDSs emerged as early as the 1949 with
the work of Chebotarev and Neimark [82, 83]. Moreover, the study of zeros of quasipolynomials was investigated by Pontryagin
in 1955. However, the first systematic application of frequency-domain methods on TDSs was performed by Bellman and Cooke
[79, 84]. Beyond these classical results, a number of more recent and more versatile techniques emerged, and as mentioned,
the focus will be on discussing these methods. These techniques will be grouped into three main categories, which are the
delay-independent stability techniques discussed in section 5.1, the spectrum computation techniques that will be discussed
in section 5.2, and the techniques that determine the critical pairs and study asymptotic behaviour to analyze delay-dependent
stability. The latter are discussed in section 5.3. A number of concluding remarks are presented in section 5.4.

5.1 Frequency Sweeping Tests for Delay-independent Stability
It was previously mentioned that the main interest is in discussing delay-dependent stability. However, when analyzing for
delay-dependent stability, it is possible that hyperbolic cases are encountered. This means that the system is either stable or
unstable irrespective of the value of the delays occurring in the system. For such cases, it may be useful to verify the analysis
with a number of delay-independent stability tests. That is why, some tests for delay-independent stability that have been
encountered in the literature will be presented. Namely, the results for TDSs with single delay (Theorem 5.1 and Theorem 5.2),
for TDSs with commensurate delays (Theorem 5.3 and Theorem 5.4), and for TDSs with incommensurate delays (Theorem 5.5)
will be presented. These stability results can be tested using frequency sweeping tests.

For a TDS with a single delay of retarded type as the one shown in eq. (5.1),

ẋ(t ) = A0x(t )+ A1x(t −τ), τ≥ 0 (5.1)

the following delay-independent result has been derived in the literature [75].

Theorem 5.1 (Delay-independent Stability Test for TDS with a Single Delay [75]): The system eq. (5.1) is stable indepen-
dent of delay if and only if

1. A0 is stable.

2. A0 + A1 is stable.

3. ρ
((

jωI − A0
)−1 A1

)
< 1, ∀ω> 0 whereρ(·) denotes the spectral radius of a matrix.

This result is equivalent to the one shown in Theorem 5.2.

71
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Theorem 5.2 (Delay-independent Stability Test for TDS with a Single Delay[75]): The system eq. (5.1) is stable indepen-
dent of delay if and only if

1. A0 is stable.

2. A0 + A1 is stable.

3. ρ
(

jωI − A0, A1
)> 1, ∀ω> 0.

As for a TDS with commensurate delays shown in eq. (5.2),

ẋ(t ) = A0x(t )+
m∑

k=1
Ak x(t −kτ), τ≥ 0 (5.2)

the following stability result was obtained:

Theorem 5.3 (Delay-independent Stability Test for TDS with Commensurate Delays [75]): The system eq. (5.2) is stable
independent of delay if and only if

1. A0 is stable.

2. A0 +∑m
k=1 Ak is stable.

3. ρ
(
Mm( jω)

)< 1, ∀ω> 0. where

Mm(s) :=


(
sI − A0

)−1 A1 · · · (
sI − A0

)−1 Am−1
(
sI − A0

)−1 Am

I · · · 0 0
...

. . .
...

...
0 · · · I 0

 (5.3)

Remark 5.1: If the system with commensurate delays is expressed as differential-difference equation

y (n)(t )+
n−1∑
i=0

q∑
k=0

aki y (i )(t −kτ) = 0, τ≥ 0 (5.4)

it can be transformed into the form of eq. (5.2) by taking the matrices A0 and A1 in eq. (5.2) as follows:

A0 =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a00 −a01 · · · −a0,n−1

 (5.5)

Ak =


0 0 · · · 0
...

... · · · ...
0 0 · · · 0

−ak0 −ak1 · · · −ak,n−1

 (5.6)

Applying the transformation mentioned in Remark 5.1 to Theorem 5.3, the following theorem is obtained:

Theorem 5.4 (Delay-independent Stability Test for TDS with Commensurate Delays[75]): The system eq. (5.4) is stable
independent of delay if and only if

1. a0(s) is stable

2. a0(s)+∑q
k=1 ak (s) is stable
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3. ρ
(
Ma( jω)

)< 1, ∀ω> 0 where

Ma(s) :=


− a1(s)

a0(s) · · · − aq−1(s)
a0(s) − aq (s)

a0(s)
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 (5.7)

As for a system with incommensurate delays shown in eq. (5.8),

ẋ(t ) = A0x(t )+
m∑

i=1
Ai x

(
t −τi

)
, τi ≥ 0 (5.8)

the following stability result is applicable:

Theorem 5.5 (Delay-independent Stability for TDS with Incommensurate Delays): Let rk ≥ 0,k = 1,2, · · · ,m be inde-
pendent, incommensurate delays. Then the system eq. (5.8) is independent of delay if and only if

1. A0 is stable

2. A0 + A1 is stable

3. µXm (M( jω)) < 1, ∀ω> 0 where

M(s) :=


I
...
I

(
sI − A0

)−1
[

A1 · · · Am

]
(5.9)

5.2 Spectrum Computation
A well-known approach for studying the stability of an LTI system described in the frequency domain is to determine the eigen-
values of that system. However, as expressed previously, since TDSs belong to the class of infinite dimensional systems and
have infinitely-many roots [68], it is impractical to try to obtain all the eigenvalues of the system, and in the following, two
approaches to deal with this issue are presented.

The first one is to approximate the transcendental terms in the characteristic equation which are the exponential terms
with finite-dimensional approximations. This leads to an finite-dimensional approximation of the overall system, for which a
finite number of roots may be obtained.

The second option is to only investigate the eigenvalues belonging to a certain right half-plane. This is appropriate because
the number of roots in this case will be finite (For retarded TDSs, this is always applicable; whereas, for neutral TDSs, this holds
when the delay-difference operator is strongly stable). Determining those eigenvalues is done through the discretization of
the solution operator first, which leads to a matrix pencil approximation of the solution operator. Thus, the operator eigenvalue
problem is transformed to that of a matrix eigenvalue problem which can be numerically solved [8, 85].

5.2.1 Finite-dimensional Approximation
As mentioned in the introduction of this section, it is possible to approximate the exponential terms with truncated power
series or rational approximations thereof. In general, the rational approximations of an exponential term are of the form shown
in eq. (5.10), where p is a polynomial that does not have any roots that belong to the right half-plane [31].

e−τs ≈ p(−τs)

p(τs)
(5.10)

An example of a finite-dimensional approximation of the exponential term is a first order Taylor series approximation,
which is shown in eq. (5.11).

e−τs ≈ 1−τs (5.11)

Other examples of finite-dimensional approximations include Padé approximations, the Laguerre-Fourier series, and the
Kautz series [31].
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In the case of finite-dimensional approximations, the resultant stability regions are approximations of the true stability
regions [81]. A discussion on this limitation, specifically in the case of taking Padé approximation of the exponential terms, is
presented in [81].

5.2.2 Spectral Discretization
The main idea behind this approach is to first perform a spectral discretization of the solution operator, which will be explained
shortly, in order to transform the eigenvalue problem into a discretized eigenvalue problem. The resultant matrix pencil can be
solved for to determine the characteristic roots in a certain right half plane. The results are often crude, but they can be refined
by using Newton’s method on the characteristic equation. The refinement is necessary because the goal here is to robustly
determine the characteristic roots of the system that belong to the a certain right half plane [8].

Before discussing the discretization procedure that leads to the final matrix pencils whose solution yields the character-
istic roots, the concepts of a solution operator and infinitesimal operator need to be understood first. Before, presenting the
mathematical definition of the solution operator and infinitesimal generator, it is first important to give an overview of how it
is in general possible to determine the solution of a TDS.

Consider the retarded TDS shown in eq. (5.8), with the initial condition defined on an interval
[−τm ,0

]
as shown in eq. (5.12).

φ ∈C
([−τm ,0

]
,Rn

)
(5.12)

The solution of a TDS can be determined using the method of steps. Specifically, the initial condition eq. (5.12) can replace
the delayed terms in the equation of the retarded TDS. This leads to an ordinary differential equation, seen in eq. (5.13), with
the initial condition being ξ1(0) = x(0) =φ(0).

ξ̇1(t ) = A0ξ1(t )+
m∑

i=1
Aiφ

(
t −τi

)
(5.13)

The solution of this initial value problem is the state of the system for the interval
[
0,τm

]
, or a "piece of the trajectory"

of the system pertaining to that interval of time-delays. This is repeated for following time-steps. In other words, in order to
obtain the state for the interval

[
τm ,2τm

]
, it is required to obtain the solution of eq. (5.14) with the initial condition ξ2(τm)

which was obtained by evaluating the previously obtained solution ξ1 at τm , i.e. ξ2(τm) = x(τm) = ξ1(τm).

ξ̇2(t ) = A0ξ2(t )+
m∑

i=1
Aiξ1

(
t −τi

)
(5.14)

This procedure can be repeated for as many intervals as desired. That is because for the case of retarded TDSs, the solution
becomes smoother, the more pieces of the trajectories are solved for.

Through the method of steps, it can be seen that obtaining the solution for the TDS is constructed by obtaining these so-
called forwards solutions, ξk , which represent parts of the trajectory of the TDS. An operator has been defined to denote this
mapping. Since the method of steps allows to obtain the solution of the TDS, the operator is called the solution operator T (t ).
The mapping itself from the initial conditions to the state of the system at time t denoted by xt (φ)(θ) = x(φ)(t +θ), using the
solution operator, is mathematically described in eq. (5.15).

xt (φ)(θ) = x(φ)(t +θ) = (T (t )φ)(θ), θ ∈ [−τm ,0
]

(5.15)

The infinitesimal generator A of the solution operator T is defined in eq. (5.16).

D(A ) =
{
φ ∈C

([−τm ,0
]

,Rn
)

: dφ
dθ ∈C

([−τm ,0
]

,Rn
)
φ(0) = A0φ(0)+∑m

k=1 Akφ
(−τk

)}
A φ= dφ

dθ

(5.16)

Based on this definition, it is possible to write the relation A φ = dφ
dθ in the form of an eigenvalue problem, as seen in

eq. (5.17).

A φ=λφ, λ ∈C,φ ∈C
([−τmax,0

]
,Rn

)
,φ 6= 0 (5.17)

The importance of the infinitesimal generator is that it allows for a different representation of the TDS, specifically as an
abstract ordinary differential equation, which subscribes to the catergory of represenation of TDSs on abstract spaces, as men-
tioned in section 4.2. As seen from eq. (5.16), the representation based on the infinitesimal generator allows to interpret the
problem as an eigenvalue problem.



5.2. Spectrum Computation 75

While the initial formulation of the eigenvalue problem was a nonlinear but finite-dimensional one, the new formulation
is an equivalent linear but infinte-dimensional eigenvalue problem. Thus, instead of obtaining the roots of the characteris-
tic equation of the TDS, λ is solved for in eq. (5.17). However, in order to solve for that, the infinitesimal generator has to be
discretized because the discretization allows to approximate the infinitesimal generator with a matrix, which means that the
eigenvalue problem can be solved numerically. The first step in this direction is to discretize the interval

[−τm ,0
]

,

ΩN = {
θN ,i , i = 1, . . . , N +1

}
(5.18)

such that

−τm ≤ θN ,1 < ·· · < θN ,N+1 = 0 (5.19)

Then, the discretized version of the continuous initial conditionφ, which is denoted by x, consists of elements where each
of these elements, denoted by xi , is described by eq. (5.20).

xi =φ
(
θN ,i

) ∈Cn , i = 1, . . . , N +1 (5.20)

Note that, x represents the discretization of the range of the continuous functionφdefined on the domain
[−τm ,0

]
. With

the discretized domain (eq. (5.19)) and the discretized range (eq. (5.20)) established, it is possible to determine the unique
polynomial mapping between them which is denoted by LN x,x ∈ XN . This means that:

(
LN x

)(
θN ,i

)= xi , i = 1, . . . , N +1 (5.21)

It is now possible to write the equivalent of eq. (5.16) using the discretized counterparts. This leads to:(
AN x

)
i =

(
LN x

)′ (
θN ,i

)
, i = 1, . . . , N(

AN x
)

N+1 = A0
(
LN x

)
(0)+∑m

k=1 Ak
(
LN x

)(−τk
) (5.22)

In order to obtain the expression for the entries of AN , the Lagrange polynomials are used as a basis.

AN =


a1,1 · · · a1,N+1

...
. . .

...
aN+1,1 · · · aN+1,N+1

 ∈Cn(N+1)×n(N+1) (5.23)

ai l =
{
`′l

(
θN ,i

)
In , l ∈ {1, . . . , N +1}, i ∈ {1, . . . , N }∑m

k=0 Ak`l
(−τk

)
l ∈ {1, . . . , N +1}, i = N +1

(5.24)

The concept of a forward solution, which is encountered in the method of steps, appears here again even for the discretized
variant of the problem.

AN x =λx, λ ∈C, x ∈Cn(N+1), x 6= 0 (5.25)

5.2.2.1 Retarded Time-delay System

The choice of the grid for the interval
[−τm ,0

]
(eq. (5.18) and eq. (5.19)) has not yet been defined. One possibility shown in

eq. (5.26) has been seen in the literature [8].

θN ,i = τm

2

(
αN ,i −1

)
, αN ,i =−cos

πi

N +1
, i = 1, . . . , N +1 (5.26)

It has been proven that, with this choice, spectral convergence is guaranteed. Moreover, the discretization leads to the
eigenvalue problem of the form in eq. (5.27), which involves a linear matrix pencil (ΣN ,ΠN ),

(
ΣN −λΠN

)
c = 0, λ ∈C, c ∈C(N+1)n , c 6= 0 (5.27)

where
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ΠN = τm

4



4
τm

4
τm

4
τm

· · · · · · 4
τm

2 0 −1
1
2 0 − 1

2
1
3 0

. . .

1
4

. . . − 1
N−2

. . . 0 − 1
N−1

1
N 0


⊗ In (5.28)

and

ΣN =


R0 R1 · · · RN

In
. . .

In

 (5.29)

where

Ri = A0 +
m∑

k=1
Ak Ti

(
−2

τk

τm
+1

)
, i = 0, . . . , N (5.30)

and Ti are Chebyshev polynomials of the first kind, which are defined by recursive relations.
Furthermore, the process of determining the discretization points is automated through an algorithm which is described

in detail in [8]. The selection of the number of discretization points is a central aspect because a large number of discretization
points leads to a significant increase in the computation needed, yet if the number of discretization points is too small, the
accuracy of the estimated characteristic roots may be very poor such that even the corrections based on Newton’s method are
futile and do not converge [8].

5.2.2.2 Neutral Time-delay System

The overall procedure to calculating the characteristic roots in the case of neutral type TDS based on a spectral discretization
is provided in the work of Breda et al. [86]. Their results show that the computation of the characteristic roots is done through
solving for the roots of eq. (5.31).

det

λ
[

E (1) 0
0 −A(22)

0

]
−

m∑
i=0

[
A(11)

i A(12)
i

0 0

]
pN

(−τi ;λ
)−[

0 0
A(21)

0 0

]
p ′

N (0;λ)−
m∑

i=1

[
0 0

A(21)
i A(22)

i

]
p ′

N

(−τi ;λ
)

(5.31)
where pN is a degree N polynomial defined in eq. (5.32).{

pN (0;λ) = 1
p ′

N

(
θN ,i ;λ

)=λpN
(
θN ,i ;λ

)
,1 ≤ i ≤ N

(5.32)

However, it is known that the roots of neutral time-delay equation are the same as those of the corresponding DDAE, in
expection of the case of the presence of zero as a root. The form of the DDAE is shown in eq. (5.33).

E ẋ(t ) = A0x(t )+
m∑

i=1
Ai x

(
t −τi

)
(5.33)

Therefore, the spectral discretization can be applied to the DDAE instead. Solving for the roots of DDAE involves solving
for the matrix pencil (EN ,AN ), i.e. solving for: (

λEN −AN
)

x = 0 (5.34)

where AN is defined according to eq. (5.23) and eq. (5.24), and EN is defined in eq. (5.35).

EN =
[

InN 0
0 E

]
(5.35)
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Moreover, it was also shown that solving for the characteristic roots of the DDAE led to smaller errors. That is why, it is
preferred to use the matrix pencil (EN ,AN ) to determine the characteristic roots of the neutral TDS that belong to some half-
plane such thatR(z) >α for some finiteα.

5.3 Critical Pairs and Root Tendency
The paradigm presented in this section circumvents the determination of the eigenvalues of the closed-loop system. In order
to do so, some of the spectral properties and stability properties of TDSs that had been discussed in chapter 4 are harnessed.
Specifically, one spectral property is that there is a finite number of characteristic roots in the right half-plane for retarded
TDSs and for neutral TDSs with strongly stable delay-difference operators. Recall also, that this property bore the stability
property: that the gain or loss of stability of these systems is determined by the crossing of the imaginary axis. Therefore, the
stability problem now is turned into one of counting the number of unstable roots as the time-delay(s) is/are varied. This is
done based on determining the crossings with the imaginary axis and determining the time-delays at which these crossings
occur. The combinations of the critical imaginary roots with their associated time-delays are known as critical pairs. With the
delay intervals or regions (for the case of multiple delays) established, it remains to determine whether the intervals/regions
are stable or not.

5.3.1 Determining the Critical Pairs
As mentioned in the introduction of this section, the first part is to determine the critical pairs of the TDS. There are several
methods in the literature that show how this can be done, and those will be discussed in the following. It should be noted,
that for all the methods that will be discussed in this subsection, it is assumed that λ = 0 is not a root of the characteristic
quasipolynomial because this degenrate case implies that the system may not be asymptotically stable [9, 11].

5.3.1.1 Direct Method

The direct method was developed by Walton and Marshal for TDSs that have a single delay [87]. At the core of this approach is
the elimination of the exponential term in the TDS, which is why it is referred to as the direct method. In the following, it will
be explained how this elimination is done. The steps that follow and that lead to the determination of the critical imaginary
roots and their corresponding critical time-delays will also be explained.

For an LTI system with a single time-delay, the characteristic equation takes the form shown in eq. (5.36).

f
(
λ,e−τλ

)
= P (λ)+Q(λ)e−τλ (5.36)

According to the conjugate symmetry property, if a quasipolynomial has a root at some complex valueλ, then the conju-
gate characteristic equation has a root at the conjugate ofλ.

Thus, if the characteristic equation has a root at jω,

P ( jω)+Q( jω)e− jτω = 0 (5.37)

then the following holds true as well.

P (− jω)+Q(− jω)e jτω = 0 (5.38)

Those two equations, eq. (5.37) eq. (5.38), can then be combined by eliminating e jτω to obtain the polynomial eq. (5.39),
which is referred to as the magnitude equation. ∣∣P ( jω)

∣∣2 − ∣∣Q( jω)
∣∣2 = 0 (5.39)

Let θi = τi ·ωi . Then, based on eq. (5.37),

e− jθi =−1 ·
(

P ( jω)

Q( jω)

)
=⇒ e jθi =−1 ·

(
Q( jω)

P ( jω)

)
=⇒ ∠e jθi =∠−1+∠

(
Q( jω)

P ( jω)

)
(5.40)

θi =
 ∠Q( jωi )

P ( jω) +π, 0 ≤∠Q( jωi )
P ( jω) ≤π

∠Q( jωi )
P ( jω) −π, π<∠Q( jωi )

P ( jω) ≤ 2π
(5.41)

Since theωi values are obtained from solving for the roots of eq. (5.39), and that theθi values are obtainable with eq. (5.41),
the set of τi values, the set of critical times, can be computed.
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5.3.1.2 Bilinear Transformation: Pseudo-delay Techniques

In this method, the exponential term is replaced using a bilinear transformation. It should be noted that these substitutions
are exact and are not approximations (in contrast to the finite dimensional approximations discussed in section 5.2.1). After
the transformation, the new characteristic equation is expected to be easier to analyze. However, it should also be noted that
applying this approach is not guaranteed to be an easy task.

One of the earliest and most notable pseudo-delay techniques relies on the Rekasius substitution [88], shown in eq. (5.42).
It is the variable T in the equation that is referred to as the pseudo-delay [25].

e− jωτ = 1− jωT

1+ jωT
, T > 0 (5.42)

It was noticed that the Rekasius substitution in fact only maps [0,∞] onto a semi-circle [89]. For the mapping to cover
an entire circle, the values of T need to be both positive and negative. As a result, another type of bilinear substitution was
proposed, shown in eq. (5.43), which is similar to the Rekasius substitution. This transformation involves the square of the
term in the Rekasius substitution. As a result, it simplifies the analysis to only the consideration of T > 0 [90].

e− jωτ =
(

1− jωT

1+ jωT

)2

, T > 0 (5.43)

Olgac and Sipahi used the Rekasius substitution to determine the critical imaginary roots [91]. In order for the transforma-
tion to be exact at the imaginary axis, the phase and magnitude of the right hand side of the transformation have to be equal
to those of the left hand side. This may lead to conditions that need to be satisfied to ensure the exactness. These conditions
will be determined for the case of the Rekasius substitution.

It can be seen that the condition for equal magnitudes is readily satisfied.

∣∣∣e− jτω
∣∣∣= 1,

∣∣∣∣∣1− jωT

1+ jωT

∣∣∣∣∣=
√

1+ (−Tω)2√
1+ (Tω)2

= 1 (5.44)

As for the phases to be equal, the following derivation leads to a condition that needs to be ensured, which is in the form
of a relation between τ andω and T [74].

∠e− jτω =−τω, ∠
(

1− jωT

1+ jωT

)
=∠(1− jωT )−∠(1+ jωT )

=⇒ −τω= tan−1(−ωT )− tan−1(ωT )

=⇒ τ` =
2

ω

(
tan−1(ωT )∓`π

) (5.45)

Consider the characteristic equation of a TDS shown in eq. (5.46).

f
(
λ;e−τλ

)
:=

n∑
k=0

Pk (λ)e−kτλ (5.46)

If the Rekasius transformation is applied to this characteristic equation, the following is obtained:

F̃ (s;T ) :=
n∑

k=0
Pk (s)

(
1−Ts

1+Ts

)k

(5.47)

For easier handling, by multiplying with the polynomial term in the denominator that has the highest order, i.e. (1+sT )n ,
the terms in the denominator are cancelled out. The result is the polynomial shown in eq. (5.48).

F (λ;T ) := (1+Tλ)n F̃ (λ;T ) =
n∑

k=0
Pk (λ)(1−Tλ)k (1+Tλ)n−k (5.48)

Of course, it should be checked whether the multiplied terms lead to any additional roots, i.e. to check whether 1+Tλ= 0
leads to be any feasible solution. Since the analysis concerns the case of the intersection with the imaginary axis, the expression
that needs to be checked becomes 1+T · jω = 0. It is desired that this expression does not have any feasible roots because
they would be artificial roots that are not the roots of the original characteristic equation that was considered. However, it is
clear that the expression 1+T · jω= 0 will never be satisfied for real values of T andω. Thus, it can be concluded that the roots
of the F (λ;T ) are the same as those of F̃ (λ;T ).
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Figure 5.1: Example Frequency Sweeping Curves (zoomed-out view on the left and zoomed-in view on the right side) [9]

With the appropriate bivariate polynomial established, it remains to determine the crossings of F (λ;T ) with the imagi-
nary axis. Since the characteristic equation has been transformed into a bivariate polynomial, it is possible to use the stability
tests for multivariable polynomials. This includes finding the values that satisfy the Routh Hurwitz criterion or through the
simultaneous solution of real and imaginary parts of the bivariate complex polynomial F ( jω;T ) [75].

5.3.1.3 Frequency Sweeping Tests

The idea behind the frequency sweeping tests is generic and is easy to apply in several contexts. As such, the frequency sweep-
ing tests will be encountered in several parts of this chapter. The gist of frequency sweeping is to vary the frequency and to
check for a certain parameter or condition that may give insights about either delay-independent or delay-dependent stabil-
ity. In the context of critical pairs and root tendency, frequency sweeping can be used to derive the critical imaginary roots as
well as the asymptotic behaviour of critical pairs.

In frequency sweeping, there is neither a need to replace the exponential terms nor to eliminate them. It is usually easy to
implement, but in certain situations the problem may not be solvable in a finite number of computations. Another drawback of
frequency sweeping tests is that the precision of the results depends on the choice of the frequency grid. In certain situations,
insufficient resolution may lead to missed detection of critical pairs.

Frequency Sweeping Curves One of the ways to detect critical imaginary roots is through the frequency sweeping curves.
The construction of frequency sweeping curve(s) is as follows. The frequencies in a certain range with a certain step size are
iterated over. For each frequency, the value(s) for z are determined, where z is defined as z = e− jωτ. Thereafter, the mag-
nitude(s) of the z value(s) are obtained. These values are plotted against the values of ω at which they were obtained. Note
that each z expression corresponds to one frequency sweeping plot. The critical imaginary roots are the intersections with the
horizontal lineΓ= 1.

This can be illustrated with the following example, shown in fig. 5.1. From these curves, three intersections with the hori-
zontal line at one can be spotted, which are atω= {0.1638,1,182.6684}. Those are the critical imaginary roots of the analyzed
system.

It can be seen that frequency sweeping can be done programmatically as well. The risk of this, however, is that an auto-
mated procedure eliminates the human’s role in determining the critical imaginary roots. This means that if the steps used in
the frequency sweeps are too large, that some roots may be missed.

In order to make use of the automated determination of the critical imaginary roots through programmatic frequency
sweeping and avoid problems of undetected roots, the frequency sweeping curves can be generated as well, which can be later
checked to verify whether all the critical imaginary roots have been determined. If the possibility of missed roots is noticed,
the analysis is repeated using smaller frequency steps.

Frequency-dependent matrix pencils
Frequency-sweeping tests can also be applied to solve for frequency-dependent matrix pencils which would determine

the critical imaginary roots. The following three theorems are delay-dependent results for systems with single delay, systems
with commensurate delays, and systems with commensurate delays expressed as differential-difference equations (eq. (5.4)),
respectively.



80 5. Frequency-domain Techniques

Theorem 5.6 (Stability dependent on delay [92]): Suppose that the system described in eq. (5.1) is stable atτ= 0. Let

rank
(

A1
)= q (5.49)

Furthermore, define

τ̄i :=


min 1≤k≤n

ωk

θi
k

ωk
k

ifλi

(
jωi

k I − A0, A1

)
= e− jθi

k

for someωi
k ∈ (0,∞),θi

k ∈ [0,2π]
∞ ifρ

(
jωI − A0, A1

)> 1,∀ω ∈ (0,∞)

(5.50)

Then,
τ̄ := min

1≤i≤q
τ̄i (5.51)

That is, the system described in eq. (5.1) is stable for allτ ∈ [0, τ̄) but becomes unstable forτ= τ̄.

Theorem 5.7 ([75]): Suppose that the system eq. (5.2) is stable atτ= 0, and let q = rank
(

Am
)

. Furthermore, define

τ̄i :=


min1≤k≤n

θi
i

ω∗
k

ifλi

(
G

(
jωi

k

)
, H

(
jωi

k

))
= e− jθi

k

for someωi
k ∈ (0,∞),θi

k ∈ [0,2π]
∞ ifρ(G( jω), H( jω)) > 1,∀ω ∈ (0,∞)

(5.52)

where

G(s) :=


0 I · · · 0
...

...
. . .

...
0 0 · · · I

−(
sI − A0

)
A1 · · · Am−1

 (5.53)

and
H(s) := diag

(
I · · · I −Am

)
(5.54)

Then,
τ̄ := min

1≤i≤q+n(m−1)
τ̄i (5.55)

the system eq. (5.2) is stable for allτ ∈ [0, τ̄) but becomes unstable atτ= τ̄

Theorem 5.8 ([75]): Suppose that the system eq. (5.4) is stable atτ= 0. Define

τ̄i :=


min 1≤k≤n

ωk

θi
k

ωk
ifλi

(
Ga

(
jωi

k

)
, Ha

(
jωi

k

))
= e− jθi

k

1≤k≤n
θi

k
ωk

for someωi
k ∈ (0,∞),θi

k ∈ [0,2π]

∞ ifρ
(
Ga( jω), Ha( jω)

)> 1,∀ω ∈ (0,∞)

(5.56)

where

Ga(s) :=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0(s) −a1(s) · · · −aq−1(s)

 (5.57)

and
Ha(s) := diag

(
1 1 · · · aq (s)

)
(5.58)

Then,
τ̄ := min

1≤i≤q
τ̄i (5.59)

The system eq. (5.2) is stable for allτ ∈ [0, τ̄) but becomes unstable atτ= τ̄
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5.3.1.4 Constant Matrix Stability Tests

Matrix-pencil approaches emerged as a more computationally efficient alternative to several previous methods that relied on
symbolic calculation to determine the time-delay margin. Besides computational efficiency, precision was also an issue for
some of the methods, namely the frequency-sweeping approach, as mentioned earlier. In the case of the frequency-sweeping
approach, the precision of the results is dependent on the chosen step-size of the frequency sweeps.

The main idea behind the use of matrix-pencil approach to determine the critical imaginary roots is to compute the eigen-
values and the generalized eigenvalues of constant matrices. Due to this numerical scheme, the matrix-pencil approaches are
computationally efficient. Additionally, they may also be completed in a finite number of steps.

To the knowledge of the author, the analysis of constant matrices and matrix-pencils in order to determine critical imagi-
nary pairs was first proposed by Chen et. al. [93]. The resultant constant matrices here are based off the frequency-dependent
matrices discussed in the previous section of frequency sweeping approaches [94].

The method based on constant matrix stability tests is applicable to LTI systems. It allows to effectively determine the crit-
ical imaginary roots and the corresponding critical imaginary delays. It is a two step procedure. First, the generalized eigen-
values of a constant matrix pencil are computed, and then the eigenvalues of a constant matrix are computed in the second
step.

Retarded TDSs To the knowledge of the author, the first attempt to use the matrix pencil approach to determine the delay
margin of a linear retarded TDS was made by Chen et al. [93]. In their paper, several theorems are proposed and proven. The
purpose of these theorems is to be able to compute the delay margin for two classes of models: the differential-difference
equations and the differential-difference equations in state-space form.

The goal of this technique, as is the case for the other techniques discussed in section 5.3.1, is to determine the critical
imaginary roots. As was encountered before, the characteristic equation of a TDS can be interpreted as a bivariate polynomial,
by replacing the exponential terms with a new variable (z = e−τλ), or with a bilinear transformation involving a new variable
as was the case in section 5.3.1.2. This means that finding the zero-crossings of the characteristic bivariate polynomial, denoted
by f (s, z), amounts to finding the values for s and z such that (s, z) ∈ ∂C+×∂D.

Consider, for example, the characteristic equation eq. (5.60):

p
(
s,e−τs) :=

n∑
k=0

ak (s)e−kτs = 0 (5.60)

If the expression e−τλ is replaced with a variable z, the following bivariate polynomial would be obtained:

p
(
s, z

)
:=

n∑
k=0

ak (s)z = 0 (5.61)

If the parameter s = jω is fixed to some value such that ω ∈ (0,∞) (since it is required that s ∈ ∂C+), then the bivariate
polynomial reduces to a function of a single variable z, as seen in eq. (5.62).

p(z) = a0zn +a1zn−1 +·· ·+an , a0 6= 0 (5.62)

Now, it should be determined whether eq. (5.62) has any the solution such that |z| = 1, as it was established that the zero
crossing corresponds to z ∈ ∂D.

The Orlando Formula which relates the roots of p(z) to the determinant of the Schur-Cohn matrix provides the link be-
tween the problem of determining the zero-crossings of the characteristic quasipolynomial and obtaining a constant matrix
test. The following Lemma shows this relation:

Theorem 5.9 (Orlando Formula [75, 95]): Let zi , i = 1, · · · ,n be the roots of the complex polynomial p(z) = ∑n
k=0 ak zk

whose corresponding Schur-Cohn-Fujiwara matrix is denoted by H. Then,

det(H) = ∣∣an
∣∣2n

n∏
i , j=1

(
1− zi z̄ j

)
(5.63)

Since complex conjugates have the same magnitude, and it is desired to determine z such that |z| = 1, then |z̄| = 1. This
makes the right-hand side of eq. (5.63) equal to 0. This means that the Schur-Cohn-Fujiwara matrix H is required to be singular
for determining a zero crossing, i.e. det(H) = 0.
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Now that it is established that det(H) = 0 is the condition that needs to be ensured in order to determine the critical pairs,
the next step would be to try to express the det(H) in terms of the coefficients of the polynomial p(z). In order to proceed
further, the definition of the Schur-Cohn-Fujiwara matrix needs to be given, which is seen in eq. (5.64).

H = q(S)H q(S)−p(S)H p(S) (5.64)

In the equation, a number of new elements appear. The operator (·)H denotes the Hermitian transpose, which means that
the matrix is first transposed, then the conjugate of the entries of the transpose matrix are determined. Moreover, S in eq. (5.64)
which is called the shift matrix and whose definition is shown in eq. (5.65), has nonzero entries only on the superdiagonal. It
is referred to as the shift matrix because pre-multiplying by this matrix leads to the shift of the elements of the multiplicand
by one entry location upwards.

S =


0 1 0 · · · 0
0 0 1 · · · 0

0 · · · 0
. . . · · ·

0 · · · 0 · · · 1
0 0 0 · · · 0

 (5.65)

Moreover, the term q in eq. (5.64) is the "complex reverse" polynomial associated with p(z) or simply the conjugate poly-
nomial of p(z), and its definition is given in eq. (5.66).

q(z) = zn p(1/z) = ān zn + ān−1zn−1 +·· ·+ ā0 (5.66)

In principle, now it may be attempted to start expressing det(H) in terms of ak . However, there is an important Lemma that
relates the determinant of the Schur-Cohn-Fujiwara to the determinant of the Schur-Cohn matrix, which makes it worthwhile
to check for the possibility of a diversion to a simpler derivation of a stability criterion. The Schur-Cohn matrix (the test matrix
for the Schur-Cohn criterion) is defined in eq. (5.67)

∆ :=

 pT (S)
(
p̄T (S)

)H

p̄T (S)
(
pT (S)

)H

 (5.67)

Moreover, the relation between the determinants of the two matrices is shown in eq. (5.68).

det(H) = (−1)n det(∆) (5.68)

This relation is proven based on the Schur determinant complement which is shown in eq. (5.69) [75].

det

(
A B
C D

)
= det(D)det

(
A−BD−1C

)
(5.69)

The proof of the relation eq. (5.68) looks like this:

det(H) = det
(
p̄ H (S)p̄(S)−p H (S)p(S)

)
= det

(
p̄ H (S)p̄(S)p−1(S)−p H (S)

)
det(p(S))

= (−1)n det
(
p H (S)− p̄ H (S)p−1(S)p̄(S)

)
det(p(S))

= (−1)n det

(
p(S) p̄(S)

p̄ H (S) p H (S)

)

= (−1)n det
(

p H (S) p H (S)
)H

= (−1)n det

 pT (S)
(
p̄T (S)

)H

p̄T (S)
(
pT (S)

)H



(5.70)

Thus, now, it is instead possible to try to obtain a stability criterion based on det(∆) = 0. Therefore, the next steps are
about expressing det(∆) with the coefficients of p(z). Based on the definition of the Schur-Cohn matrix in eq. (5.67), the terms
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pT (S) and
(
p̄T (S)

)H
and p̄T (S) and

(
pT (S)

)H
need to be determined. Beginning with p(S), and based on eq. (5.62), p(S) will

correspond to:

p(S) = a0Sn +a1Sn−1 +·· ·+anI (5.71)

As explained earlier, a shift matrix leads to a shift in the entries of the matrix by an entry location upwards. That is why, if
the shift matrix is raised to a certain power, let it be denoted by k , the resultant matrix corresponds to a matrix of the same size
with the entries shifted upwards by k entries. It should be noted, however, that the non-zero entries may rotate depending on
the value of k . Thus, the following expression for p(S) is obtained.

p(S) =


an an−1 · · · a1

0 an · · · a2

· · · · · ·
0 0 · · · an

 (5.72)

Note that
(
p̄T (S)

)H = p(S). Thus,

pT (S) =


a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
an−1 an−2 · · · a0

 ,
(
p̄T (S)

)H =


an an−1 · · · a1

0 an · · · a2
...

...
. . .

...
0 0 · · · an

 (5.73)

Applying the Schur determinant complement identity (eq. (5.69)) to the Schur-Cohn matrix∆ leads to eq. (5.74).

det(∆) = det

 pT (S)
(
p̄T (S)

)H

p̄T (S)
(
pT (S)

)H

= det

((
pT (S)

)H
)

det

(
pT (S)−

(
p̄T (S)

)H
((

pT (S)
)H

)−1

p̄T (S)

)
(5.74)

Knowing that
(
p̄T (S)

)H = p(S) leads to the following simplifications:

det(∆) = det

((
pT (S)

)H
)

det

(
pT (S)−

(
p̄T (S)

)H
((

pT (S)
)H

)−1

p̄T (S)

)
(5.75)

= det

((
pT (S)

)H
)

det

(
pT (S)−

(
p̄T (S)

)H
((

pT (S)
)H

)−1

p̄T (S)

)
(5.76)

Note that, det(∆) corresponds to a polynomial in ω. The positive real solutions of this equation are the values of ω for
which a z that belongs to the unit circle may be found. As the value forω is obtained, the corresponding values for z may be
determined from solving for p(s, z) = 0.

Moreover, a consequence of Schur’s complement for the determinant is the following Lemma.

Lemma 5.1 (Consequence of the Schur Complement Identity [75]): For any z ∈C and Pk ∈Cn×n ,k = 0,1, · · · ,m

det

(
m∑

k=0
Pk zk

)
= det

z


I

. . .
I

Pm

−


0 I · · · 0
...

...
. . .

...
0 0 · · · I

−P0 −P1 · · · −Pm−1


 (5.77)

This discussion leads to the following theorem, which was derived in [93].

Theorem 5.10 ([93]):
Consider a retarded TDS described by the differential-difference equation shown in eq. (5.78),
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y (n)(t )+
n−1∑
i=0

q∑
k=0

aki y (i )(t −kτ) = 0 (5.78)

and whose characteristic equation is given by eq. (5.79).

a
(
s,e−hs

)
=

q∑
k=0

ak (s)e−khs

a0(s) = sn +
n−1∑
i=0

a0i si

ak (s) =
n−1∑
i=0

aki si , k = 1, · · · , q

(5.79)

Tn := 0, Hn :=


0 · · · 0 1
0 · · · 1 0
... . . .

. . . ...
1 · · · 0 0

 (5.80)

Ti :=


aq′ aq−1,i · · · a1i

0 aqi · · · a2i
...

. . .
. . .

...
0 0 · · · aqi

 (5.81)

Hi :=


0 · · · 0 a0i

0 · · · a0i a1i
... . . .

. . . ...
a0i · · · aq−2,i aq−1,i

 (5.82)

P, :=
[

(− j )iTi ( j )i Hi

(− j )i H T
i ( j )iT T

i

]
(5.83)

P :=


0 I · · · 0
...

...
. . .

...
0 0 · · · I

−P−1
n P0 −P−1

n P1 · · · −P−1
n Pn−1

 (5.84)

F (s) :=


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0(s) −a1(s) · · · −aq−1(s)

 (5.85)

G(s) := diag
(
1 · · · 1 aq (s)

)
(5.86)

τ∗ := min
1≤k≤2nq

αk

ωk
(5.87)

where ωk belongs to the set of eigenvalues of the matrix P and αk belongs to the set of eigenvalues of the matrix pencil
(F

(
jωk

)
,G

(
jωk

)
).

As mentioned in the introduction of this part on constant matrix stability tests, the overall procedure for the implementa-
tion of the above theorem consists of two steps. The first step is to determine the generalized eigenvalues of a constant matrix,
and the second step is to determine the eigenvalues of another constant matrix. Note that, the theorem makes the assumption
that the system is stable when there are no delays present. .

As for the stability results corresponding to the equivalent state-space form, it is presented in the following. Consider the
state-space form shown in eq. (5.88),
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ẋ(t ) = A0x(t )+
q∑

k=1
Ak x(t −kτ), h ≥ 0 (5.88)

where Ak ∈Rn×n are real matrices and τ denotes the time-delay, the result is presented in Theorem 5.11.

Theorem 5.11 ([93]):
Let the matrices Bk ∈Rn2

, k = 0,1, · · · ,2q be defined as:

Bq−k = I ⊗ AT
k ,k = 1, · · · , q

Bq = A0 ⊕ AT
0

Bq+k = Ak ⊗ I ,k = 1, · · · , q

(5.89)

Let the matrices U and V be defined as:

U :=


I

. . .
I

B2q

 (5.90)

and

V :=


0 I · · · 0
...

...
. . .

...
0 0 · · · I

−B0 −B1 · · · −B2q−1

 (5.91)

If there is not at least one generalized eigenvalue of this pair of matrices,σ(U ,V ), whose magnitude is equal to 1, then the TDS is
stable for all h ∈ [0,∞]. Otherwise, the time-delay margin is given by

τ∗ := min
1≤k≤2n2q

αk

ωk
(5.92)

whereαk ∈ [0,2π] and e− jαk ∈σ(U ,V ) and jω ∈σ
(∑q

m=0 Ame− j mαk

)
.

As can be seen from the theorem, some important operations for this approach appear, which are the Kronecker product
and the Kronecker summation. The Kronecker product is the extension of the outer product, or the cross product, to matrices
[74].

cαβ = ai j bkl (5.93)

where

α≡ p(i −1)+k
β≡ q( j −1)+ l

(5.94)

As for the Kronecker summation, it is defined in terms of the Kronecker product:

A⊕B = A⊗ Ib + Ia ⊗B (5.95)

This approach was extended to compute multiple stability intervals by Niculescu et al. [96].

Neutral TDSs with Commensurate Delays This methodology was extended to the case of neutral TDSs by Fu et al. [97]. As
discussed in chapter 4, the stability analysis of neutral TDS involves an additional necessary requirement for stability, which is
the stability of the delay-difference operator.

As in the case of the previous discussion, two theorems were proposed in the work of Fu et al., one for the differential-
difference form and one for the corresponding state-space form [97]. The reader is referred to [97] for those two theorems, as
well as their proofs which are similar to the proofs of the theorems proposed by Chen et al. [93].
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5.3.2 Asymptotic Behaviour of the Critical Imaginary Roots
While the methods discussed in the previous part indicate where the stability switches may occur, they do not indicate whether
the switch, if at all present, is to stability or instability. Without this information, the stability regions cannot be determined.

By studying the tendencies of the critical imaginary roots, one is able to keep track of the number of unstable roots and
consequently, infer the information about the presence and the type of stability switch (whether it is towards stability or to-
wards instability). Those tendencies are referred to as the asymptotic behaviour of the critical imaginary root. The asymptotic
behaviour can be studied either graphically or analytically. The advantage of the graphical approach is its simplicity; whereas,
the advantage of the analytical approach is that it allows for automation.

In the next two parts, solving the problem of determining the asymptotic behaviour of the critical imaginary root using
each of the the graphical and the analytical approaches will be discussed, and in this order. Note that, the asymptotic behaviour
is analyzed at a specific critical pair. As there are infinitely many critical pairs, it may seem intractable to analyze the asymptotic
behaviour at all critical time-delays. However, this issue was addressed when the invariance property was proven for systems
with commensurate delays in [9] and later on for incommensurate delays in [11]. This property implies that the asymptotic
behaviour at all critical time-delays associated with a certain critical imaginary root is the same. Therefore, it suffices to study
the asymptotic behaviour of a critical imaginary root at one of the infinitely many time-delays associated with. This, along with
the fact that there is a finite number of crossings with the imaginary axis, means that there are only a finite number of cases
for which the asymptotic behaviour will need to be studied.

5.3.2.1 Frequency Sweeping Tests

Through frequency-sweeping tests, the sign of |z| − 1 close to the determined critical imaginary roots is studied. If the sign
changes from negative to positive, this means that the crossing direction is from the left half-plane to the right half-plane.
Conversely, when the sign changes from positive to negative, the crossing direction is into the stable left half-plane. Graphi-
cally, the former condition corresponds to the frequency sweeping curve crossing the horizontal line Γ= 1 from below. As for
the latter case, the crossing is from top to bottom.

However, it should be noted that the frequency sweeping curves can show some complex features even when the case of
simple critical imaginary roots is encountered [9]. This makes it difficult, in certain cases, to infer the asymptotic behaviour
from the frequency sweeping test. An example case was shown by [9].

For the case of neutral TDSs, the stability of the delay-difference operator can also be examined graphically. The means to
do this is to check that for very large values ofω, the frequency sweeping curve is still higher than the horizontal lineΓ= 1.

5.3.2.2 Eigenvalue Pertubation-based Approach and Puiseux Series

The crossing direction of an imaginary root is defined as the sign of the change in the value of eigenvalues around the imaginary
axis with respect to an increase in the time-delay. This is shown in eq. (5.96).

C D I R = sign

[
dλ

dτ

]
λ=ωC ,i

(5.96)

To the knowledge of the author, Chen et al. were the first to use an eigenvalue perturbation-based approach to determine
the asymptotic behaviour of the critical imaginary roots and to consequently determine the regions of stability [98].

If a critical imaginary root is simple, then the asymptotic behaviour can be studied based on the implicit function theorem
from which it holds that expression for dλ

dτ can be determined with eq. (5.97).

dλ

dτ
=− fτ

fλ
(5.97)

However, when the multiplicity of the root is larger than 1, then the implicit function theorem no longer applies. In this
case, an alternative is to study the asymptotic behaviour through a series expansion of the relation between a time-delay τ
and the characteristic root λ. Since the Puiseux series allows to describe the local behaviour of a power series, the asymp-
totic behaviour can be studied through n Puiseux series, where n is an important index that will be explained in the following
paragraphs [9]. To the knowledge of the author, Chen et al. were the first to use an eigenvalue perturbation-based approach
to determine the asymptotic behaviour of the critical imaginary roots and to consequently determine the regions of stability
[98].

The procedure for obtaining the Puiseux series is summarized with algorithm 1, obtained from [9]. However, before pro-
ceeding with presenting the algorithm, there are two important non-negative indices that need to be discussed, the indices n
and g, that are associated with a critical pair (λa ,τa,k ). The index n is defined according to eq. (5.98).
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fλ0 = ·· · = fλn−1 = 0, fλn 6= 0 (5.98)

From this definition, it can be seen that the index n corresponds to the multiplicity of a critical pair. As for the index g, it is
defined according to eq. (5.99).

fτ0 = ·· · = fτg−1 = 0, fτg 6= 0 (5.99)

It should be noted that both of the indices are guaranteed to be bounded if the critical imaginary root to which they are
associated is not zero [9]. Moreover, one of the properties is that the index g is constant for all τα,k . However, the index n can
possibly vary with τα,k .

Now that the definitions of those two important indices have been established, the algorithm for obtaining the Puiseux
series of a quasipolynomial at a critical pair can be presented, and it reads as shown in algorithm 1.

Algorithm 1 Algorithm to determine the Puiseux series [9]
1: procedure getPuiseuxSeries( f (λ,τ),n, g )
2: α0 ← 0
3: β0 ← g
4: while True do

5: µ← max
{
β0−β
α−α0

> 0 : Lαβ 6= 0,α>α0,β<β0

}
.Note that Li l = fλi τ

l

(i+l )!

(
i + l

i

)(
i + l

i

)
6: if µ exists then
7: Determine all nonzero Lαβ such that β0−β

α−α0
=µ

8: Form the set
{

Lα1β1 (∆λ)α1 (∆τ)β1 ,Lα2β2 (∆λ)α2 (∆τ)β2 , . . .
}

such thatα1 >α2 > . . .

9: Determine coefficients satisfying the equation Lα1β1Cα1−α0 +Lα2β2Cα2−α0 +·· ·+Lα0β0 = 0.denoted C̃µ,l

10: ∆λ← C̃µ,l (∆τ)µ+o
(
(∆τ)µ

)
, l = 1, . . . ,α1 −α0

11: α0 ←α1

12: β0 ←β1

13: else
14: return∆λ(∆τ)
15: end if
16: end while
17: end procedure

Once the Puiseux series∆λ(∆τ) are obtained, the effect of∆τ=+εand∆τ=−εon the real part of∆λ can be determined.
Based on this, it is possible to tell what the asymptotic behaviour is when the time-delay changes from τα−ε to τα+ε.

However, in some cases which are referred to as degenerate cases, the resultant Puiseux series involves only an imaginary
term. This means that the first order Puiseux series is insufficient. In order to address this issue, higher order Puiseux series
need to be determined, which is done by applying algorithm 1, iteratively [9].

5.3.3 Stability Regions in the Delay Space
After having determined the critical pairs and the asymptotic behaviour associated with them, it finally remains to determine
the stability regions in the delay space of the TDS. This entails monitoring the change in the number of unstable roots and
keeping track of the number of unstable roots pertaining to the time-delay intervals. The change in the number of unstable
roots is mathematically described in eq. (5.100) [9].

∆NUα(β), NUα

(
β+)−NUα

(
β−)

(5.100)

The notation∆NUα(β) signifies the change in the number of unstable roots that is associated with the critical pair (α,β),
withα being the critical imaginary root and β being the associated critical time-delay. As shown from eq. (5.100),∆NUα(β)
corresponds to the change that occurs when the time-delay is increased fromβ− toβ+.

Remark 5.2 (Remark on the Analytic Curve Frequency Sweeping Approach): In principle, the analytic curve frequency
sweeping approach, described in [9], is nothing more than the frequency sweeping approach used to determine the critical pairs
from section 5.3.1.3 combined with the eigenvalue perturbation-based approach (and the use of series expansions) to study
the asymptotic behaviour (possibly also combined with the verification of the analysis on the asymptotic behaviour through
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examining frequency sweeping curves). It has been presented in this section in such a segmented fashion in order to emphasize the
three main steps of the outlined approach which are to determine the critical pairs, to study the asymptotic behaviour of a critical
pair and, finally, to determine the stability regions in the delay space. Through this structure, it is possible to group all the relevant
techniques that can be used to execute either of these three steps.

Another, yet unrelated, note needs to be made regarding this approach. It hosts a special feature. Specifically, as formally described
in the book [9], the approach has also been augmented to solve for the complete stability problem of TDSs with commensurate
delays. What is meant by complete stability is that the ultimate stability is also addressed, which is the stability of the system
when the time-delay tends to infinity. The study of complete stability often is not of practical relevance as engineers often strive to
minimize the occurrence of delays in control systems. Consequently, the order of magnitude of the time-delays in a system is usually
known. However, in case such an analysis is needed, the aspects that need to be considered to check for ultimate stability can be
reviewed from the 9th chapter of the book [9].

5.3.4 Iterative Frequency Sweeping Approach
The iterative Frequency Sweeping Approach [11] is an extension of the analytic curve frequency sweeping approach [9], and it
allows to the study the complete stability of a TDS with multiple incommesurate delays. The gist of the approach is to analyze
the stability with respect to a delay vector, denoted by

−→
τ# =

(
τ#

1, . . . ,τ#
L

)
(where the # indicates that a value is fixed), sequen-

tially. At each step, one of the delay parameters is "freed" while the others are kept fixed. The following will explain the steps
of this approach more clearly.

Consider the characteristic quasipolynomial of a TDS with incommensurate delays which is given in eq. (5.101).

f (λ,~τ) = det

(
λI − A−

L∑
`=1

B`e−τ`λ
)

(5.101)

Before proceeding with the steps of the algorithm, some notation needs to be established. For convenience, the time-delay
vector~τ, of length L, can be represented according to eq. (5.102),

~τ=
L∑
`=1

τ`δ(`) (5.102)

where δ(`) is given by eq. (5.103).

δi (`) =
{

0, if i 6= `
1, if i = ` (5.103)

This new notation is useful for the concept of freeing one time-delay component and fixing the others, which will be seen
in the following.

Let the index of a time-delay component in the time-delay vector that is free be denoted by χ, i.e. τχ(χ ∈ {1, . . . ,L}) is the
free component in the vector, and the rest of the elements (` 6= x) are fixed. The previously introduced notation in eq. (5.102)
and eq. (5.103) allows to write the delay vector as follows.

~τ= τχδ(χ)+Fχ (5.104)

where

Fχ =
∑
6̀=χ
τ#
`δ(`) (5.105)

With the notation clarified, it is possible to proceed to the steps of the algorithm, which are shown in algorithm 2.
Based on this algorithm, it is seen that in order to check for the stability in a region, the stability of many such delay vectors

need to be checked. This is in alignment with what was mentioned before, that when the delays are incommensurate, the
problem becomes very difficult to solve and is considered to have an N P -hard computational complexity [74, 75, 99].
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Algorithm 2 Algorithm to perform the iterative frequency sweeping approach [11]
1: procedure iterativeFrequencySweepingApproach( f (λ,~τ))
2: F1 ← F1 = (0, . . . ,0)
3: forχ← 1,L do
4: NU

(
Fχ+εδ(χ)

)
← NU

(
Fχ

)
+ the number of values inC+ of the Puiseux series for all the corresponding CIRs when τχ =

0 with∆τχ =+ε . It is assumed that f (λ,~τ) does not have CIRs when τχ = 0

5: Plot the frequency sweeping curves denoted byΓχ,i (ω), i = 1, . . . , qχ, obtained from p
(
λ,τχ,Fχ

)
= 0

6: Fχ← Fχ−1 +τ#
χ−1δ(χ−1)

7: end for
8: if f (λ,~τ) has no CIRs when~τ= ~τ# then
9: if NU = 0 then

10: isStableBool ← True
11: else
12: isStableBool ← False
13: end if
14: return NU (

−→
τ#), isStableBool

15: else
16: Plot the frequency sweeping curves, denoted byΓ#

`,i (ω), i = 1′, . . . , q`,`= 1, . . . ,L, pertaining to p
(
λ,τ`,F #

`

)
= 0

with F #
`
=∑

κ 6=`τ#
κδ(κ)

17: Analyze the asymptotic behaviour when~τ= ~τ# with respect to each delay element in the delay vector.
18: return whether increasing or decreasing a delay element τ` would stabilize the system
19: end if

20: end procedure

5.4 Concluding Remarks
To conclude, this chapter set out to present a number of techniques that can be used for the stability analysis of TDSs in the
frequency domain. Of the methods for the analysis of delay-dependent stability, two main directions were identified: one that
relies on discretization of either the transcendental terms or of the spectrum, and another that involves identifying the pairs
of frequencies and time-delays, referred to as critical pairs, for which stability crossing occurs and studying their asymptotic
behaviour. Of the two, the latter set of approaches is preferred, and in the following, it will be explained why.

In the class of spectrum computation approaches, the method relying on finite-dimensional approximation has already
been denounced as a method because of the need to ensure that the determined stability regions do not enclose the actual
stability regions.

With regards to the spectral discretization method, while an elegant method, it has its drawbacks. One issue is that this
method is computationally intensive. A related concern is that the convergence of the numerical scheme depends on the cho-
sen number of discretization points, and a suitable choice of this parameter is a trade-off between computational intensive-
ness and accuracy. However, as previously mentioned, a procedure for the determination of the discretization points has been
developed by Michiels et al. which partially alleviates this concern [8].

However, the second group of methods offers the possibility for much simpler, more versatile techniques that are devoid
of the possibility of this type of complications. That is why, the second group is preferred.

The methods subscribing to the preferred group involve three main steps. The first of these steps is to determine the critical
pairs of the TDS. This is followed by determining the asymptotic behaviour associated with these pairs. Finally, the stability
regions are established through sorting the critical time-delays and book-keeping the number of unstable roots in between
the critical time-delays. For the third step, there aren’t any choices to be made. As for the second step, there is no need to choose
between or the other.

For the first step, four methods were discussed: the direct method, pseudo-delay techniques, frequency sweeping ap-
proaches, and constant matrix stability tests. The main limitation of the direct method is that it is only applicable to systems
with single delays. As for the pseudo-delay techniques, they are more versatile, but they may be more difficult to automate
due to the need to check conditions such as the presence of artificial roots as well as to ensure stability conditions based on a
Routh Hurwitz table, for example. The frequency sweeping approaches are simple in comparison to the other methods, but
they face the issue that a crude step size in the frequency sweeps may lead to missed roots. Finally, the constant matrix stability
tests offer the advantages of computational efficiency and precision which makes them a seeming best option. However, to
the knowledge of the author, such tests have not yet been derived for the case of TDSs with incommensurate delays. However,
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for the frequency sweeping approach, such an extension has been derived, and in the interest of choosing a method that can
be later applied to the case of TDSs with incommensurate delays, the frequency sweeping approach (and specifically the ana-
lytic curve frequency sweeping approach) is promoted as the method that will be used for the stability analysis of the TDSs in
the frequency domain.



6
Lyapunov’s Second Method

The Lyapunov notion of stability is a powerful one; however, classical Lyapunov theory cannot be directly applied to TDSs.
There are two main extensions of Lyapunov’s second method that have been developed for TDSs, which are the Lyapunov-
Krasovskii (LK) and Lyapunov-Razumikhin (LR) approaches. The evolution of the stability results based on the Razumikhin and
Krasovskii approaches will be delineated in this chapter, for the case of linear TDSs. Furthermore, although the interest is in
delay-dependent stability, both delay-independent and delay-dependent stability will be discussed. This is because, as will be
seen, the delay-independent stability results prove to be instrumental to some of the delay-dependent results.

The structure of the chapter is as follows. First, the extensions of the Lyapunov theory to the case of TDSs is presented in
section 6.1. Thereafter, a number of important tools for deriving stability conditions in the time-domain, namely, model trans-
formations and integral inequalities, are presented in section 6.2 and section 6.3, respectively. Next, several stability results
based on the LR theorem are derived in section 6.4. Section 6.5 discusses stability results that are based on the LK theorem.
In section 6.6, the discretized Lyapunov functional method is discussed, and some interesting stability results are presented.
Finally, a number of concluding remarks are made in section 6.7.

6.1 Extensions of Lyapunov Theory for Time-delay Systems
The classical Lyapunov theory does not directly apply to TDSs because the delayed states in the TDS may violate the monotonic
decrease of a Lyapunov function, which is a requirement for Lyapunov functions in the classical Lypanunov theory [100]. This
shortcoming created the need to extend the classical Lyapunov theory to make it applicable to the study of the stability of
TDSs in the time-domain, which is the topic of this section. Section 6.1.1 presents a number of stability definitions for TDSs,
and section 6.1.2 and section 6.1.3 discuss the theoretical extensions of Lyapunov theory to TDSs.

6.1.1 Stability Definitions for the Case of Time-delay Systems
The notion of stability, for the case of a TDS, concerns how much the system trajectory deviates from a system solution. While
the main interest is in studying the stability of non-trivial solutions of a TDS, through a change of variables, it is possible to
transform the stability analysis to that of the trivial solution. Furthermore, in the case of linear systems, the stability of the
trivial solution can be used to deduce the stability of all other solutions [22].

The definitions of stability themselves do not differ from those of non-autonomous systems without delay [75]. In the case
of non-autonomous systems, there is a dependence on the initial time. That is why, the initial time is included in the definition
of stability for non-autonomous systems [14]. In general, it is desirable that the stability is robust to the initial time, and this
aspect of the stability concept is known as uniformity.

The trivial solution is said to be uniformly stable in the initial time t0 "if∀t0 ∈Rand∀ε< 0 there exists someδ(ε) > 0 such
that ‖xt0‖C < δ(ε) for all t ≥ t0". A solution is said to be uniformly asymptotically stable if "it is uniformly stable and there
exists δa > 0 such that for any η > 0 there exists a T (δa ,η) such that ‖xt0‖C < δa implies |x(t )| < η for all t > t0 +T (δa ,η)
and t0 ∈ R". Finally, a solution is said to be globally uniformly asymptotically stable if "δa can be an arbitrarily large, finite
number" [22]. Those concepts of stability will be encountered in both the LK theorem and the LR theorem.

6.1.2 Lyapunov-Krasovskii Theorem
In the case of a delay-free system, the Lyapunov function expression involves the state of the system, because it is desired to see
how much the state deviates from the trivial solution. In a similar fashion, for TDSs, the state should be part of the Lyapunov
expression [101]. However, the difference between TDSs and systems free of delay is that the state in the case of a TDS is not
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a vector at an instant t. It is instead a function taken over an interval whose width is the time-delay, i.e. over the interval [t-τ,t]
[72]. That is why, the Lyapunov term involves xt rather than x(t).

Following this intuition gives a hunch of why Krasovskii’s extension of Lyapunov’s second method for TDSs involves func-
tionals. This extension is formally presented through the LK stability theorem, which reads:

Theorem 6.1 (Lyapunov-Krasovskii Stability Theorem [75]): Suppose that the function

f :R≥t0 ×C
(
[−τ,0],Rn)→Rn (6.1)

in eq. (6.10) maps R≥t0× (bounded sets of C
(
[−τ,0],Rn ) into bounded sets of Rn , and u, v, w : R≥0 → R≥0 are continuous

nondecreasing functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0.
Assume further that there exists a continuous differentiable functional

V :R×C
(
[−τ,0],Rn)→R (6.2)

such that
u(‖φ(0)‖) ≤V (t ,φ) ≤ v

(‖φ‖c
)

(6.3)

and
V̇ (t ,φ) := limsup

ε→0+

[
V

(
t +ε, xt+ε(t ,φ)

)−V (t ,φ)
]
≤−w(‖φ(0)‖) (6.4)

Then, the trivial solution of eq. (6.10) is uniformly stable. Moreover, if w(s) > 0 for s > 0, then it is uniformly asymptotically
stable. If, in addition, lims→+∞ u(s) =+∞, then it is globally uniformly asymptotically stable.

6.1.3 Lyapunov-Razumikhin Theorem
The idea behind the LR theorem emerged as a way to avoid having to deal with functionals and to use functions instead [101].
This is done by choosing a function V (x) such that V (x) < maxθ∈[−τ,0] V (x(t +θ)). Based on the LK theorem, the functional
V (x(t+θ)) should not grow and should have a negative-semidefinite derivative. Based on the relation, V (x) < maxθ∈[−τ,0] V (x(t+
θ)), only that the function V (x) has a negative derivative when it is equal to the functional needs to be ensured. The theorem
is formally stated as follows:

Theorem 6.2 (Lyapunov-Razumikhin Stability Theorem [75]): Suppose that the function

f :R≥t0 ×C
(
[−τ,0],Rn)→Rn (6.5)

in eq. (6.10) maps R≥t0× (bounded sets of C
(
[−τ,0],Rn ) into bounded sets of Rn , and u, v, w : R≥0 → R≥0 are continuous

nondecreasing functions, u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0.
Assume further that there exists a continuous differentiable function

V :R×Rn →R (6.6)

verifying
u(‖x‖) ≤V (t , x) ≤ v(‖x‖), for t ≥ t0 and x ∈Rn (6.7)

and such that the derivative of V along the solution of eq. (6.10) satisfies

V̇ (t , x(t )) ≤−w(‖x(t )‖) whenever V (t +θ, x(t +θ)) ≤V (t , x(t )) (6.8)

for allθ ∈ [−τ,0]. Then, the system eq. (6.10) is uniformly stable.

If, moreover, w(s) > 0 for s > 0 and there exists a continuous nondecreasing function p(s) > S for s > 0 such that the condition
eq. (6.8) is strengthened to

V̇ (t , x(t )) ≤−w(‖x(t )‖) if V (t +θ, x(t +θ)) ≤ p(V (t , x(t ))) (6.9)

for all θ ∈ [−τ,0], then the system eq. (6.10) is uniformly asymptotically stable. If, in addition, lims→+∞ u(s) = +∞ then the
system eq. (6.10) is globally uniformly asymptotically stable.
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Figure 6.1: Overview of derivation steps for stability results that are based on Lyapunov’s Second Method for Time-delay Systems
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6.2 Model Transformations and Comparison Systems
Model transformations are an important tool in the analysis of TDSs. The transformation could turn the TDS into another
type of system. The resultant model is called the comparison model (or comparison system). Usually, the comparison model
is supposed to be easier to analyze, and from analyzing the stability of the comparison model, some conclusions about the
stability of the original system should be deduced.

It should be mentioned that model transformations are often utilized with many analysis techniques. This includes several
robust stability analysis techniques such as Linear Fractional Transformation (LFT), and Integral Quadratic Constraint (IQC).
Moreover, model transformations can be combined with the general time-domain analysis approaches of TDSs, such as the LK
and LR approaches [102].

One main complication that arises with the application of model transformations is that possible additional dynamics may
appear. This is important because in case there are additional dynamics and the comparison model is unstable, it is not possible
to make conclusions about the stability of the original system (as the instability may originate from the additional dynamics)
[102].

In the following, three model transformations will be discussed: Newton-Leibniz Transformation, Parametrized Newton-
Leibniz Transformation, and the Descriptor Model Transformation. For each case, the presence of additional dynamics is ana-
lyzed in [102]. This is done by examining the characteristic equation of the comparison models. Only the findings of the analysis
on the additional dynamics will be presented here. For the following discussions in this section, the LTI TDS with a constant
time-delay, as described in eq. (6.10), will be considered.

ẋ(t ) = A0x(t )+ A1x(t −τ)
x(θ) =ϕ(θ), θ ∈ [−τ,0]

(6.10)

6.2.1 Newton-Leibniz Transformation
The Newton-Leibniz transformation is the first model transformation to be used in the analysis of TDS [103]. As the name of
the transformation suggests, the Newton-Leibniz transformation is based on the Newton-Leibniz formula, shown in eq. (6.11).

x(t −τ) = x(t )−
∫ t

t−τ
ẋ(θ)dθ (6.11)

Substituting eq. (6.11) into eq. (6.10), produces the comparison model, shown in eq. (6.12).

ẋ(t ) = (
A0 + A1

)
x(t )− A1

∫ t

t−τ
[

A0x(s)+ A1x(s −τ)
]

d s (6.12)

In the case of this comparison model, there are additional dynamics, which only depend on the system. Because of the
additional dynamics, the stability of the original system is ensured in the cases where the eigenvalues of the matrix A1 lie on
the negative real axis. Otherwise, the comparison model does not help in making inferences about the stability of the original
system [102].

6.2.2 Parametrized Newton-Leibniz Transformation
This transformatiton is a more general form of the Newton-Leibniz transformation. It introduces a free parameter C ∈ Rn×n ,
and this parameter is multiplied throughout the Newton-Leibniz formula (eq. (6.11)) which yields eq. (6.13).

C x(t −τ) =C x(t )−C
∫ t

t−τ
ẋ(θ)dθ (6.13)

Applying this model transformation to the system dynamics (eq. (6.10)) leads to eq. (6.14).

ẋ(t ) = (A0 +C )x(t )+ (
A1 −C

)
x(t −τ)−C

∫ t

t−τ
[

A0x(s)+ A1x(s −τ)
]

d s (6.14)

The analysis in [102] shows the characteristic equation of the system as well as its factorization into the characteristic equa-
tions corresponding to the original dynamics and to the additional dynamics. The result shows that the parameter C appears
in the characteristic equation of the additional dynamics:

∆a(s) := det

(
I −C

1−e−sτ

s

)
(6.15)

From this characteristic equation, it becomes clear that a convenient choice of the parameter C can be made to ensure that
the additional dynamics are stable, which would sustain the usefulness of the comparison system for analyzing the original
TDS [102].
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6.2.3 Descriptor Model Transformation
The desriptor model transformation was first introduced by Fridman [104]. The main idea behind this transformation is to aug-
ment the state with the derivative of the state vector, i.e. the new state vector becomes

[
x>(t ), ẋ>(t )

]>
[105]. For example,

if this transformation is to be applied to a simple TDS such as the system in eq. (6.10), leads to the comparison system shown
in eq. (6.16).

E
d

d t

[
x(t )
ẋ(t )

]
=

[
0 I

A0 −I

][
x(t )
ẋ(t )

]
+

[
0

A1

]
x(t −τ)

E =
[

I 0
0 0

] (6.16)

Briat shows that this comparison model has the same characteristic equation as that of the original system (eq. (6.10))
which means that it does not introduce any additional dynamics. However, this is at the cost of needing more complex tools
for analyzing stability of the more complicated comparison model.

6.3 Integral Inequalities
Integral inequalities are an essential part of deriving stability conditions based on the LK approach. Since the LK functionals
involve integrals, some integrals may remain as a part of the functional derivatives. As the expression for the derivative of the
Lyapunov-functional needs to be expressed in a quadratic form in order to enforce the negative definite condition upon it, the
remnant integrals need to be replaced with quadratic terms. This replacement cannot be done exactly, so, instead, integral
inequalities are resorted to.

Many examples of integral inequalities exist in the literature [106–111]. Being inequalities, they inherently introduce con-
servatism into the analysis. Therefore, there has been an interest in trying to discover integral inequalities that are decreas-
ingly conservative. Following the order of their proposal in the literature, some of the most known integral inequalities include
Jensen’s inequality, Wirtinger-based integral inequality, as well as Bessel-Legendre integral inequality [106, 107, 110].

To the knowledge of the author, the first application of an integral inequality to the derivation of stability criteria for TDSs
was made by Gu [106]. The integral inequality proposed, referred to as Jensen’s inequality, is shown in eq. (6.17).

Theorem 6.3 (Jensen’s Inequality [106]):

γ

∫ γ

0
x>(u)Rx(u)du ≥

(∫ γ

0
x(u)du

)>
R

(∫ 0

−τ
x(u)du

)>
M

(∫ γ

0
x(u)du

)
(6.17)

When applied to a TDS, the bounds are changed to [−τ,0], and the inequality is rewritten into eq. (6.18).

τ

∫ 0

−τ
x>(u)Rx(u)du ≥

(∫ 0

−τ
x(u)du

)>
R

(∫ 0

−τ
x(u)du

)
(6.18)

As for the Wirtinger-based integral inequality, it was proposed by Seuret et al.[107]. As implied by the name, the integral
inequality is based on Wirtinger’s inequality, an inequality that has been previously used in other applications in automatic
control [72]. This inequality is shown in eq. (6.19) which demonstrates how the inequality relates the integral of the derivative
of a function to the integral of the function.∫ 0

−τ
ż>(u)Rż(u)du ≥ π2

h2

∫ 0

−τ
z>(u)Rz(u)du (6.19)

Theorem 6.4 (Wirtinger-based Inequality [107]):

∫ 0

−τ
x>(u)Rx(u)du ≥ 1

τ

[
Ω0(x)
Ω1(x)

]>[
R
π2

4 R

][
Ω0(x)
Ω1(x)

]
(6.20)

where

Ω0(x) = ∫ 0
−τ x(u)du

Ω1(x) = ∫ 0
−τ x(u)du − 2

τ

∫ 0
−τ

∫ u
−τ x(s)dsdu

(6.21)
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Seuret and Gouaisbaut proposed an integral inequality whose conservativeness can be made arbitrarily small, through the
choice of a suitable N (see eq. (6.22)). This integral inequality is referred to as the Bessel-Legendre inequality, and it is shown
in eq. (6.22) [110, 112].

Theorem 6.5 (Bessel-Legendre Inequality [110]):

∫ 0

−τ
x(u)Rx(u)du ≥ 1

τ


Ω0

...
ΩN


>

RN


Ω0

...
ΩN

 (6.22)

where

RN = diag(R,3R, . . . , (2N +1)R)

Ωk =
∫ 0

−τ
Lk (u)x(u)du, for all k ∈N

(6.23)

6.4 Lyapunov-Razumikhin Approach
According to the discussions in the literature, the LR approach often leads to more conservative results than the LK approach.
However, the derivation of LR stability results is often simpler [75]. The following subsections discuss the steps of this approach.

As will be the case for the LK approach, it is important to discuss the steps of obtaining both delay-independent and delay-
dependent stability criteria. This is because the delay-dependent results sometimes make use of delay-independent stability
conditions derived (which happens when an explicit model transformation is applied).

6.4.1 Delay-independent Stability
The first step in the LR approach is the choice of a LR function. A commonly used function has the quadratic form x> ·P ·x. The
corresponding expression for V̇ (x) is given by:

V̇ (x) = 2 · x> ·P · ẋ (6.24)

Ultimately, the goal is to establish a quadratic form for V̇ (x) or an upper bound on V̇ (x) that is in a quadratic form. Then,
ensuring the negative definiteness of the matrices involved ensures the negative definiteness the negative definiteness of the
expression for V (x) or the upper bound on V̇ (x). This will guarantee that the Lyapunov derivative condition is satisfied.

The approach to construct the quadratic form will be more clearly explained with examples. Section 6.4.1.1 presents an
example derivation for the case of a TDS with discrete delays, and section 6.4.1.2 briefly presents an example for the case of a
TDS with distributed delays.

6.4.1.1 Retarded Time-delay System with Discrete Delays

Consider a TDS with a single discrete delay (eq. (6.10)). The availability of the system dynamics allows to replace the expression
for ẋ in eq. (6.24). The result of the replacement is shown in eq. (6.25).

V̇ (x(t )) = 2 · x> ·P · [A0x(t )+ A1x(t −τ)] (6.25)

However, eq. (6.25) does not include all the terms needed to obtain the quadratic form, so they need to be added somehow.
One way to achieve this is through the following steps. Consider some constant p such that eq. (6.26) holds.

V (x(t +θ)) < pV (x(t )) for all −τ≤ θ ≤ 0 (6.26)

A re-arrangement of the expression and its subsequent multiplication by some positiveα> 0 leads to eq. (6.27).

α
(
pV (x(t ))−V (x(t +θ))

)=α(
p · x>(t ) ·P · x(t )−x>(t −τ) ·P · x(t −τ)

)
> 0 (6.27)

Being a positive expression,α
(
p · x>(t ) ·P · x(t )−x>(t −τ) ·P · x(t −τ)

)
helps establish an upper bound for V̇ (x(t )):

V̇ (x(t )) ≤ V̇ (x(t ))+α
(
p · x>(t ) ·P · x(t )−x>(t −τ) ·P · x(t −τ)

)
(6.28)
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The upper bound, in its more elaborate form, is shown in eq. (6.29).

2 · x> ·P · A0x(t )+2 · x> ·P · A1x(t −τ)+α
(
p · x>(t ) ·P · x(t )−x>(t −τ) ·P · x(t −τ)

)
(6.29)

Moreover, this expression can be written as the product of the transpose of the state vector, some matrix M, and the state

vector, i.e.
[

x>(t ) x>(t −τ)
]
·M ·

[
x(t )

x(t −τ)

]
where

M =
[

2PA0 +αpP 2PA1

0 −αP

]
(6.30)

To make the matrix M symmetric, the operation in eq. (6.31) is applied.

M̄ = M +M>

2
(6.31)

The following demonstrates an important aspect regarding matrix transposition. Consider a matrix N that is composed of
sub-matrices N1, N2, N3 and N4:

N =
[

N1 N2

N3 N4

]
(6.32)

The transpose of matrix N is given by eq. (6.33).

N> =
[

N>
1 N>

3
N>

2 N>
4

]
(6.33)

Applying this to obtain the transpose of M shown in eq. (6.30) leads to eq. (6.34).

M> =
[
αpP>+2A>

0 P> 0
2A>

1 P> −αP>

]
(6.34)

Since P is symmetric, P = P>. Thus, replacing eq. (6.34) in eq. (6.31) and simplifying leads to eq. (6.35).

M̄ =
[

PA0 + A>
0 P +αpP PA1

A>
1 P −αP

]
(6.35)

To satisfy the Lyapunov derivative criterion, eq. (6.36) needs to be satisfied.

[
x>(t ) x>(t −τ)

]
·
[

PA0 + A>
0 P +αpP PA1

A>
1 P −αP

]
·
[

x(t )
x(t −τ)

]
< 0 (6.36)

Therefore, the final stability result is that the negative definiteness of M̄ needs to be guaranteed.

M̄ =
[

PA0 + A>
0 P +αpP PA1

A>
1 P −αP

]
< 0 (6.37)

6.4.1.2 Retarded Time-delay System with Distributed Delays

Now, consider a system with distributed time-delays such as the one shown in eq. (6.38).

ẋ(t ) = A0(t )x(t )+
∫ 0

−r (t )
A(t ,θ)x(t +τ(t ,θ))dθ (6.38)

Replacing the system dynamics into the expression for V̇ (x) in eq. (6.24) leads to eq. (6.39).

V̇ (x(t )) = 2x>(t )P

[
A0x(t )+

∫ 0

−τ
A(θ)x(t +θ)dθ

]
(6.39)

The procedure that was applied in the case of the system with a discrete delay is applied again, and this finally leads to the
stability result seen in eq. (6.40).
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PA0 + A>
0 P +

∫ 0

−τ
R(θ)dθ < 0(

α(θ)P −R(θ) PA(θ)
A>(θ)P −α(θ)P

)
< 0 for 0 ≤ θ ≤ r

(6.40)

Notice that this stability result is not a single matrix inequality. It is possible to perform operations to combine the two in-
equalities into a single matrix inequality. However, these additional steps are omitted from the discussion, and the interested
reader is referred to the book of Gu et al. for more information regarding these steps [75].

6.4.2 Delay-dependent Stability
This subsection presents two methods that lead to delay-dependent stability results that are based on the LR approach. Both
methods involve a form of model transformation, which is performed either on the system dynamics or on the expression for
V̇ (x).

The first method involves transforming the original TDS with the discrete delays into a system with distributed delays.
This is known as "explicit model transformation", and it is an important step because it induces the appearance of time-delays
in the inequalities that emerge. The step following the transformation is to apply the delay-independent results derived for
systems with distributed delays onto the transformed system. The outcome of this step is usually in quadratic form, so any
further simplifications are optional. These inequalities may be matrix inequalities or equation inequalities, or a combination
thereof.

As for the second method, the transformation is applied to the expression of V̇ (x), rather than to the TDS. Namely, this
transformation helps in establishing the quadratic form. It may be, however, still necessary to perform additional manipula-
tions to obtain the needed quadratic form.

The workings of the approaches are demonstrated through their application to an example of a TDS with a discrete time-
delay (eq. (6.10)). Section 6.4.2.1 presents the application of the approach that relies on the explicit model transformation, and
section 6.4.2.2 presents the application of the method that uses the implicit model transformation. Moreover, the overview of
the steps of those two methods is presented in fig. 6.1.

6.4.2.1 Retarded Time-delay System with Discrete Delays: Explicit Model Transformation

As mentioned, the first step is to apply an explicit model transformation to the TDS. Specifically, the Newton-Leibniz trans-
formation (see section 6.2) will be applied here. The model transformation leads to distributed time-delays in the system
dynamics, as shown in eq. (6.41).

ẋ(t ) = A0x(t )+ A1x(t −τ) (6.41)

= A0x(t )+ A1

[
x(t )−

∫ t

t−τ
ẋ(θ)dθ

]

= A0x(t )+ A1

[
x(t )−

∫ t

t−τ
(

A0x(θ)+ A1x(θ−τ)
)

dθ

]

= [
A0 + A1

]
x(t )+

∫ 0

−τ
[−A1 A0x(t +θ)− A1 A1x(t −τ+θ)

]
dθ

As shown in fig. 6.1, it follows to apply the delay independent stability conditions derived for the case of system with dis-
tributed delays. Those results were obtained in the previous parts. Specifically, the conditions shown in eq. (6.40) will be ap-
plied. However, before this can be done, eq. (6.41) has to be put in the form of the system for which eq. (6.40) was derived, i.e.
for the system with distributed delays ẋ(t ) = A0x(t )+∫ 0

−τ A(θ)x(t+θ)dθ. By comparing to the form shown in eq. (6.41), it can
be seen that for the first term, a new matrix needs to be defined, Ā, which is equal to A0 + A1. As for the integral terms, it can
be seen that there are two state delays x(t +θ) and x(t −τ+θ), whereas in the equation for which the stability condition was
derived, there is only one term which is x(t +θ). To deal with this, a change of variable on the term involving x(t −τ+θ) needs
to be performed. The outcome of this step is shown in eq. (6.44). Finally, since the bounds of the integrals are not overlapping,
this may written as cases. This is shown in eq. (6.45).
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ẋ(t ) = [
A0 + A1

]
x(t )+

∫ 0

−τ
[−A1 A0x(t +θ)− A1 A1x(t −τ+θ)

]
dθ (6.42)

= [
A0 + A1

]
x(t )+

∫ 0

−τ
−A1 A0x(t +θ)dθ+

∫ 0

−τ
−A1 A1x(t −τ+θ︸ ︷︷ ︸

Let s=−τ+θ
)dθ (6.43)

= [
A0 + A1

]
x(t )+

∫ 0

−τ
−A1 A0x(t +θ)dθ+

∫ −τ

−2τ
−A1 A1x(t +θ)dθ (6.44)

=



[
A0 + A1

]︸ ︷︷ ︸
Ā

x(t )+∫ 0
−τ−A1 A0︸ ︷︷ ︸

Ā(θ)

x(t +θ)dθ θ ∈ [−τ,0]

[
A0 + A1

]︸ ︷︷ ︸
Ā

x(t )+∫ −τ
−2τ−A1 A1︸ ︷︷ ︸

Ā(θ)

x(t +θ)dθ θ ∈ [−2τ,−τ)
(6.45)

This result is summarized with the notation in eq. (6.46).
Ā0 = A0 + A1

Ā(θ) =−A1 A0,θ ∈ [−τ,0]
Ā(θ) =−A1 A1,θ ∈ [−2τ,−τ)

(6.46)

Finally, after applying eq. (6.40) to the system eq. (6.45) leads to the stability result shown in eq. (6.47).

P
(

A0 + A1
)+ (

A0 + A1
)> P +τ(

R0 +R1
)< 0(

αk P −Rk −PA1 Ak

−A>
k A>

1 P −αk P

)
< 0,k = 0,1 (6.47)

6.4.2.2 Retarded Time-delay System with Discrete Delays: Implicit Model Transformation

As previously mentioned, the first step in this method, after having determined the time derivative of the Razumikhin function
V̇ (x) (see eq. (6.25)), is to apply the implicit model transformation. For that, consider matrices X , Y , and Z such that X > =
X ,Y , Z> = Z and

(
X Y

Y > Z

)
> 0. Since the matrix is positive definite, then by definition, the quadratic form involving the

matrix is positive. Furthermore, the integral of that expression is expected to be positive as well:

∫ 0
−τ

(
x>(t ) d

dθ x>(t +θ)
)( X Y

Y > Z

)(
x(t )

d
dθ x(t +θ)

)
dθ > 0 (6.48)

Being positive, adding eq. (6.48) (which is the implicit transformation referred to here) to the expression for V̇ (x) leads to
an upper bound on V̇ (x).

V̇ (x) =2x>(t )P
[

A0x(t )+ A1x(t −τ)
]

≤2x>(t )P
[

A0x(t )+ A1x(t −τ)
]

+
∫ 0

−τ

(
x>(t )

d

dθ
x>(t +θ)

)
(

X Y
Y > Z

)(
x(t )

d
dθ x(t +θ)

)
dθ

(6.49)

If the matrix multiplication inside the integral in eq. (6.49), i.e. eq. (6.48), is expanded, this leads to:

∫ 0

−τ

(
x>(t )

d

dθ
x>(t +θ)

)(
X Y

Y > Z

)(
x(t )

d
dθ x(t +θ)

)

=
∫ 0

−τ

x>(t )X x(t )︸ ︷︷ ︸
Term 1

+x>(t ) ·Y · d

dθ
x(t +θ)︸ ︷︷ ︸

Term 2

+ d

dθ
x>(t +θ) ·Y > · x(t )︸ ︷︷ ︸

Term 3

+ d

dθ
x>(t +θ) ·Z · d

dθ
x(t +θ)︸ ︷︷ ︸

Term 4

dθ (6.50)
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From eq. (6.50), it can be seen that term 1 may be directly pulled out of the integral, as the integral is with respect toθ, and
the term itself is only a function of t.∫ 0

−τ
x>(t )X x(t )dθ = x>(t )X x(t ) · (0− (−τ)) = r · x>(t )X x(t ) (6.51)

As for term 2, using Leibniz’ rule for differentiation under the integral sign, it is possible to evaluate the integral of term 2
with respect to θ.

∫ 0

−τ
x>(t ) ·Y · d

dθ
x(t +θ)dθ

= x>(t ) ·Y ·
∫ 0

−τ
d

dθ
x(t +θ)dθ

= x>(t ) ·Y · (x(t +θ)
) |0−τ

= x>(t ) ·Y · (x(t )−x(t −τ)
)

= x>(t ) ·Y · x(t )−x>(t ) ·Y · x(t −τ) (6.52)

Similarly, for term 3, this leads to:

∫ 0

−τ
d

dθ
x>(t +θ) ·Y > · x(t )

=
(
x>(t )−x>(t −τ)

)
·Y > · x(t )

= x>(t ) ·Y > · x(t )−x>(t −τ) ·Y > · x(t ) (6.53)

As for term 4, it will not be possible to take it out of the integral. However, the chain rule can be applied to the expression
for d

dθ x(t +θ), and this leads to eq. (6.54).

d

dθ
x( t +θ︸︷︷︸

Let U=t+θ
) = d

dU
x(U ) · d

dθ
U

= d

dU
x(U )

= A0x(U )+ A1 · x(U −τ)

= A0x(t +θ)+ A1 · x(t +θ−τ) (6.54)

Incorporating this result into the expression for term 4 leads to eq. (6.56).∫ 0

−τ
d

dθ
x>(t +θ) ·Z · d

dθ
x(t +θ)dθ

=
∫ 0

−τ
[A0x(t +θ)+ A1 · x(t +θ−τ)]> ·Z · [A0x(t +θ)+ A1 · x(t +θ−τ)]dθ

=
∫ 0

−τ
[x>(t +θ) · A>

0 +x>(t +θ−τ) · A>
1 ] ·Z · [A0x(t +θ)+ A1 · x(t +θ−τ)]dθ

=
∫ 0

−τ

(
x>(t +θ) · A>

0 Z A0 · x(t +θ)+x>(t +θ) · A>
0 Z A1 · x(t +θ−τ)+x>(t +θ−τ) · A>

1 Z A0 · x(t +θ)+x>(t +θ−τ) · A>
1 Z A1 · x(t +θ−τ)

)
dθ (6.55)

=
∫ 0

−τ
[x>(t +θ)x>(t +θ−τ)]

(
A>

0 Z A0 A>
0 Z A1

A>
1 Z A0 A>

1 Z A1

)(
x(t +θ)

x(t +θ−τ)

)
dθ (6.56)

Define the vector xtr (θ):

xtr (θ) =
(

x(t +θ)
x(t +θ−τ)

)
(6.57)

Thus, xtr (0) is

xtr (0) =
(

x(t )
x(t −τ)

)
(6.58)
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Thus, the expression for term 4 can be simplified into eq. (6.59).∫ 0

−τ
x>

tr (θ)

(
A>

0 Z A0 A>
0 Z A1

A>
1 Z A0 A>

1 Z A1

)
xtr (θ)dθ (6.59)

So far, the upper bound for the V̇ (x) is given by

2x>(t )PA0x(t )+2x>(t )PA1x(t −τ)+ r · x>(t ) ·X · x(t )+x>(t ) ·Y · x(t )−x>(t ) ·Y · x(t −τ)+x>(t ) ·Y > · x(t )−x>(t −τ) ·Y > · x(t )

+
∫ 0

−τ
x>

tr (θ)

(
A>

0 Z A0 A>
0 Z A1

A>
1 Z A0 A>

1 Z A1

)
xtr (θ)dθ

= x>
tr (0) ·

(
2PA0 +Y +Y >+ r X 2PA1 −Y

−Y > 0

)
· xtr (0)+

∫ 0

−τ
x>

tr (θ)

(
A>

0 Z A0 A>
0 Z A1

A>
1 Z A0 A>

1 Z A1

)
xtr (θ)dθ (6.60)

For computational purposes, it is often desirable that the matrices occurring in eq. (6.60) are symmetric. The second matrix
of eq. (6.60) is clearly symmetric, so only the symmetric version of the first matrix occurring in eq. (6.60) needs to be obtained.
This is done using eq. (6.30) and eq. (6.31):

1

2
·
(

2PA0 +Y +Y >+ r X 2PA1 −Y
−Y > 0

)
+

(
2A>

0 P>+Y +Y >+ r X > −Y
2A>

1 P>−Y > 0

)
=

(
A>

0 P +PA0 +Y +Y >+ r X PA1 −Y
−Y >+ A>

1 P 0

)
(6.61)

Thus, the expression for the upper bound of V̇ (x) becomes

x>
tr (0) ·

(
A>

0 P +PA0 +Y +Y >+ r X PA1 −Y
−Y >+ A>

1 P 0

)
· xtr (0)+

∫ 0

−τ
x>

tr (θ)

(
A>

0 Z A0 A>
0 Z A1

A>
1 Z A0 A>

1 Z A1

)
xtr (θ)dθ (6.62)

From eq. (6.62), it can be seen that there is a zero in the fourth entry of the first matrix. The presence of the diagonal terms
needs to be ensured in order to guarantee that the problem with the matrix inequality is not ill-posed.

This is done by making use of the LR equation. That is, it can be assumed that for some p > 1, eq. (6.63) holds.

V (x(t +θ)) < pV (x(t )) for all −2τ≤ θ ≤ 0 (6.63)

Thus, for some positiveα (which is to be determined in the final stability criterion),

α
[

px>(t )P x(t )−x>(t −τ)P x(t −τ)
]
> 0 (6.64)

So overall, eq. (6.63) can be added.

α
[

px>(t )P x(t )−x>(t −τ)P x(t −τ)
]

+α0
∫ 0
−τ

[
px>(t )P x(t )−x>(t +θ)P x(t +θ)

]
dθ

+α1
∫ 0
−τ

[
px>(t )P x(t )−x>(t +θ−τ)P x(t +θ−τ)

]
dθ ≥ 0

forα≥ 0,α0 ≥ 0,α1 ≥ 0

(6.65)

Again, some terms can be pulled out from the integrals in eq. (6.65), and this leads to the additive term eq. (6.66).[
α+ (α0 +α1)r

]
px>(t )P x(t )−αx>(t −τ)P x(t −τ)

+α0
∫ 0
−τ

[
−x>(t +θ)P x(t +θ)

]
dθ

+α1
∫ 0
−τ

[
−x>(t +θ−τ)P x(t +θ−τ)

]
dθ ≥ 0

forα≥ 0,α0 ≥ 0,α1 ≥ 0

(6.66)

Adding eq. (6.66) to eq. (6.62) leads to the final results shown in eq. (6.67),
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(
∆+ (

α+α0r +α1r
)

P PA1 −Y(
PA1 −Y

)> −αP

)
< 0(

A>
0 Z A0 −α0P A>

0 Z A1

A>
1 Z A0 A>

1 Z A1 −α1P

)
< 0

(6.67)

where

∆= PA0 + A>
0 P + r X +Y +Y > (6.68)

6.5 Lyapunov-Krasovskii Approach
The first step is to select a suitable LK functional. For asymptotic stability, this functional is required to satisfy two conditions
which are the Lyapunov positive functional criterion and the Lyapunov derivative condition.

In the literature that appeared earlier on, Lyapunov functionals that were sufficient but not necessary for stability were
proposed. These are now known as simple LK functionals. Sufficiency of a stability condition means that if that condition
is satisfied, stability is guaranteed. However, if one knows that the stability is satisfied, then that does not mean that the
aforementioned condition is satisfied. This means that the stability conditions obtained from using the simple LK functionals
are conservative.

In order to address the conservativeness that arises because of this class of functionals, new LK functionals were con-
structed based on prescribed desired derivatives. The resultant functionals are known as complete LK functionals. They pro-
vide sufficient and necessary condition for stability of the TDS. This means that, provided there is a tractable way to solve for
parameters of the complete LK functional, the exact analytical solution for the stability intervals of a system can be obtained
using this functional.

Thus, ultimately, the relation between the simple and the complete functionals is that the simple functionals are specific
and simplified cases of the complete LK functionals. The "incompleteness" of the simple LK functionals leads to conservative-
ness.

As mentioned, the main drawback of the complete LK functionals is that they are very difficult to determine the param-
eters of the functionals that would satisfy the Lyapunov derivative condition. As a solution to this problem, a discretization
technique was introduced. This discretization technique involves modeling the parameters of the complete LK functionals.
They can be modeled as piecewise linear functions, or as sum-of-squares polynomials. Recently, there has been other polyno-
mial used as a basis such as the Legendre polynomials.

First, the stability results based on the simple LK functionals will be discussed. Then, the complete LK functionals as well
as the discretization method will be discussed.

6.5.1 Simple Lyapunov-Krasovskii Functional: Delay-independent Stability
As mentioned in the introduction of this section, simple LK functionals lead to conservative stability results. However, they
preceded the complete Lyapunov functionals, and as mentioned, solving for the parameters of the LK functional can be a lot
easier for the case of simple LK functionals. That is why, the derivation of delay-independent stability results based on simple
LK will be presented in this subsection.

6.5.1.1 Retarded Time-delay System with Discrete Delays

Following the steps outlined in fig. 6.1, first, a LK functional is proposed. For the retarded type system with discrete delays
eq. (6.10), the functional in eq. (6.69) is proposed.

V
(
xt

)= x>(t )P x(t )+
∫ t

t−τ
x>(θ)Sx(θ)dθ (6.69)

Taking the derivative of this functional and while making use of the fundamental theorem of calculus leads to the result
shown in eq. (6.70).



6.5. Lyapunov-Krasovskii Approach 103

V̇ (xt ) = 2 · x>(t )P ẋ(t )+ d

d t

∫ t

t−τ
x>(θ)Sx(θ)dθ

= 2 · x>(t )PA0x(t )+2 · x>(t )PA1x(t −τ)]+x>(t )Sx(t )−x>(t −τ)Sx(t −τ)

=
(

x>(t ) x>(t −τ)
)(

2PA0 +S 2PA1

0 −S

)(
x(t )
x(t −τ)

)

=
(

x>(t ) x>(t −τ)
)(

A>
0 P +PA0 +S PA1

A>
1 P −S

)(
x(t )
x(t −τ)

)
(6.70)

As was done in the derivation of some of the previous stability results, the last step in eq. (6.70) was to make the matrix sym-
metric. In order to ensure stability, this matrix needs to be negative definite. Thus, the stability condition reduces to eq. (6.71).(

PA0 + A>
0 P +S PA1

A>
1 P −S

)
< 0 (6.71)

It is seen that the matrix inequality does not depend on the time-delay. Hence, it is a delay-independent condition. More-
over, as for the procedure steps, it is seen in the derivation that there were no remaining integrals in the derivative eq. (6.70),
and there was no need for an integral inequality.

6.5.1.2 Retarded Time-delay System with Distributed Delays

For a system with distributed delays, a simple functional of a similar structure to that of eq. (6.69) is proposed, which is the one
shown in eq. (6.72).

V (xt ) = x>
t (0)P xt (0)+

∫ 0

−τ

[∫ 0

θ
x>

t (θ)S(θ)xt (θ)dθ

]
dθ (6.72)

The derivative of eq. (6.72) is obtained in eq. (6.73). Similar to what was done before, here again, Leibniz’ integral rule,
which allows to interchange the order of differentiation and integration, i.e. d

d x

∫ b
a f (x, t )d t = ∫ b

a
∂
∂x f (x, t )d t , is used. Next,

the fundamental theorem of calculus, which states that if F (x) = ∫ x
a f (t )d t then F ′(x) = f (x), may also be used.

V (xt ) = 2x>
t (0)P ẋt (0)+ d

d t

∫ 0

−τ

[∫ 0

θ
x>

t (θ)S(θ)xt (θ)dθ

]
dθ

= 2x>
t (0)P ẋt (0)+

∫ 0

−τ
d

d t

[∫ 0

θ
x>

t (θ)S(θ)xt (θ)dθ

]
dθ

= 2x>
t (0)P ẋt (0)+

∫ 0

−τ

[
x>

t (0)S(θ)xt (0)
]
−

[
x>

t (θ)S(θ)xt (θ)
]

dθ

= 2x>
t (0)P

[
A0xt (0)+

∫ 0

−τ
A(θ)xt (θ)dθ

]
+

∫ 0

−τ
x>

t (0)S(θ)xt (0)dθ−
∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

= 2x>
t (0)PA0xt (0)+2x>

t (0)P
∫ 0

−τ
A(θ)xt (θ)dθ+x>

t (0)

[∫ 0

−τ
S(θ)dθ

]
xt (0)−

∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

= x>
t (0)

[
PA0 + A>

0 P
∫ 0

−τ
S(θ)dθ

]
xt (0)+2x>

t (0)P
∫ 0

−τ
A(θ)xt (θ)dθ−

∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

= x>
t (0)

[
PA0 + A>

0 P
∫ 0

−τ
S(θ)dθ

]
xt (0)+

∫ 0

−τ

(
2x>

t (0)PA(θ)xt (θ)−x>
t (θ)S(θ)xt (θ)

)
dθ

= x>
t (0)

[
PA0 + A>

0 P
∫ 0

−τ
S(θ)dθ

]
︸ ︷︷ ︸xt (0)+

∫ 0

−τ

(
x>

t (0) x>
t (θ)

)(
S(θ)−R(θ) PA(θ)

A>(θ)P −S(θ)

)
︸ ︷︷ ︸

(
xt (0)
xt (θ)

)
dθ (6.73)

Thus, in order to ensure that eq. (6.73) is negative, the negative-definiteness of the terms indicated with the underbrace in
eq. (6.73) needs to be ensured. These resultant conditions are shown in eq. (6.74).
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PA0 + A>
0 P +∫ 0

−τR(θ)dθ < 0(
S(θ)−R(θ) PA(θ)

A>(θ)P −S(θ)

)
< 0, θ ∈ [−τ,0]

(6.74)

6.5.2 Simple LKF: Delay-dependent Stability
Analogous to the discussion in section 6.4.2, there are two pipelines for obtaining delay-dependent stability results based on
the LR approach. The first one relies on an explicit transformation; whereas, the second one relies on an implicit transforma-
tion.

6.5.2.1 Retarded Time-delay System with Discrete Delays: Explicit Model Transformation

Applying the Leibniz Newton model transformation to the TDS with the discrete delays then applying the delay-independent
stability results for the case of distributed time-delays in eq. (6.74) leads to the stability condition in eq. (6.75).

The stability results is shown in eq. (6.75)[
P

(
A0 + A1

)+ (
A0 + A1

)> P
]
+ r

(
R0 +R1

)< 0(
Sk −Rk −PA1 Ak

−A>
k A>

1 P −Sk

)
< 0,k = 0,1

(6.75)

6.5.2.2 Retarded Time-delay System with Discrete Delays: Implicit Model Transformation

The starting point for the analysis is the functional in eq. (6.76).

V (xt ) = x>
t (0)P xt (0)+

∫ 0

−τ

∫ 0

θ
f > (

xt θ
)

Z f
(
xt θ

)
dθdθ+

∫ 0

−τ
x>

t (θ)Sxt (θ)dθ (6.76)

The next step is to calculate the derivative of the functional V̇ (xt ).

V̇ (xt ) = 2x>
t (0)P ẋt (0)+ d

d t

∫ 0

−τ

∫ 0

θ
f > (

xt θ
)

Z f
(
xt θ

)
dθdθ+ d

d t

∫ 0

−τ
x>

t (θ)Sxt (θ)dθ

= 2x>
t (0)P ẋt (0)+

∫ 0

−τ
d

d t

∫ 0

θ
f > (

xt θ
)

Z f
(
xt θ

)
dθdθ+ d

d t

∫ 0

−τ
x>

t (θ)Sxt (θ)dθ

= 2x>
t (0)PA0xt (0)+2x>

t (0)P
∫ 0

−τ
A(θ)xt (θ)dθ+

∫ 0

−τ

[
f >(xt )Z f (xt )− f > (

xt θ
)

Z f
(
xt θ

)]
dθ+x>

t (0)Sxt (0)−x>
t (−τ)Sxt (−τ)

(6.77)

The final stability result is  N̂ PA1 −Y −A>
0 Y >

A>
1 P −Y > −S −A>

1 Y >

−Y A0 −Y A1 − 1
r X

< 0 (6.78)

where

N̂ = PA0 + A0P +S + r X +Y +Y > (6.79)

6.5.3 Complete Lyapunov-Krasovskii Functional
The complete type LK functionals were first introduced by Kharitonov and Zhabko [113]. They pointed out that up until that
point the functionals that had been proposed in the literature only admitted a lower cubic bound, instead of a quadratic lower
bound. This shortcoming makes them inadequate for TDSs with uncertainty. This is because for a robust analysis, the deriva-
tive of the Lyapunov functionals should depend on the past and present states, when in the case of the functionals that have
preceded their work, the derivatives only dependend on the present states [114].

However, for exponential stability, it is important to have a lower quadratic bound, according to the following theorem, as
taken from Kharitonov’s book [115].
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Theorem 6.6 ([115]): A TDS is exponentially stable if there exists a functional which is a piece-wise continuous, which is formally
written as:

v : PC
(
[−τ,0],Rn)→ R (6.80)

This functional is supposed to satisfy the following two conditions. The first one is that for someα1 andα2

α1‖ϕ(0)‖2 ≤ v(ϕ) ≤α2‖ϕ‖2
τ, ϕ ∈ PC

(
[−τ,0],Rn)

(6.81)

Moreover, the second condition is that for someβ> 0, the following inequality is satisfied along the trajectories of the system.

d

dt
v

(
xt

)≤−β‖x(t )‖2, t ≥ 0 (6.82)

Therefore, they introduced functionals that admit upper and lower quadratic bounds, which are termed functionals of
the complete type. Furthermore, a criterion that guarantees exponential stability means that it is one that minimizes conser-
vatism. This means that the stability criteria based on the Complete LK functionals are necessary and sufficient for stability
[116, 117].

The starting point to constructing complete LK functionals is the prescribed derivative of the functional. While the deriva-
tion of these functionals is beyond the scope of this research, being familiar with some results of the complete Lyapunov func-
tionals in important. Therefore, in the following, some results of derived complete Lyapunov functionals are presented. More-
over, as the main focus in this thesis will be on the discrete delays, only the complete functionals pertaining to such systems
will be presented.

Time-delay Systems of Retarded Type The derivation of quadratic LK functional of the complete type for a retarded TDS is
detailed in [114], and the resultant complete LK functional is the following:

V
(
xt

)=x>(t )P x(t )+2x>(t )
∫ 0

−τ
Q(θ)xt (θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x>

t

(
θ1

)
T

(
θ1,θ2

)
xt

(
θ2

)
dθ1dθ2

+
∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

It should be noted that the functional eq. (6.83) is also applicable to systems with multiple delays as discussed in Propo-
sition 7.4 on page 236 of the book [75]. However, in this case, the matrices will have discontinuities when θ1 and θ2 are equal
to −τi , i = 1,2, . . . ,K −1. However, the equivalent complete quadratic Lyapunov functional for the case of retarded TDS with
multiple delays, shown in eq. (6.83), circumvents having to deal with these discontinuities [75].

V
(
xt

)=xT
t (0)P xt (0)+2

K∑
i=1

xT
t (0)

∫ 0

−τi

Q i (θ)xt (θ)dθ

+
K∑

i=1

∫ 0

−τi

xT
t (θ)Si (θ)xt (θ)dθ

+
K∑

i=1

K∑
j=1

∫ 0

−τi

[∫ 0

−τ j

xT
t (θ)R i j (θ,η)xt (η)dη

]
dθ

(6.83)

Neutral Type with Single Delay As for the case of a neutral TDS, the complete Lyapunov functional which was proposed by
Xu-guang et al. [118], and the result is shown in the following.
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V
(
xt

)=[
x(t )−C x (t −τ)

]> ·P · [x(t )−C x (t −τ)
]+2 · [x(t )−C x (t −τ)

]> ∫ 0

−τ
Q(θ)xt (θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x>

t

(
θ1

)
T

(
θ1,θ2

)
xt

(
θ2

)
dθ1dθ2

+
∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

+
∫ 0

−τ
ẋ>

t (θ)S(θ)ẋt (θ)dθ (6.84)

6.6 Discretized Lyapunov Functional Method
As mentioned earlier, solving for the parameters of the complete LK functional can be an intractable problem for systems with
a high dimension, and a method that was developed to deal with this problem is the discretized Lyapunov functional method.
The main idea behind the discretized Lyapunov functional method is to discretize the parameters that need to be determined.
The discretization allows to write the Lyapunov functional as well as its derivative in the form of a matrix inequalities. This
reformulation is often easier to solve than the original problem. For example, in the case of linear discretization, the resul-
tant stability results are in the form of linear matrix inequalities which allows to leverage the bounty of available numerical
algorithms that solve for linear matrix inequalities.

In the following parts, the steps of the discretized Lyapunov functional method will be explained, and some stability results
based on implementing this method are presented thereafter.

The first step of this method is to discretize the matrices of the functional that is being used. The discretization of the
matrices of the Lyapunov functionals can take different forms. This includes piecewise-linear discretization, polynomial dis-
cretization, as well as discretization based on special basis functions such as the Legendre basis [73, 110, 119–121]. The former
two discretization techniques have been used with the complete Lyapunov functionals as the initial intention was to determine
the matrices of the complete Lyapunov functionals.

However, the increased interest in effective methods for discretization gave leeway to using the discretization technique
to reduce the complexity and conservatism (based on a suitable discretization technique), which was not the initial intention
of the discretized Lyapunov functional method. This meant that the discretization could be used to reduce the complete Lya-
punov functionals to simple Lyapunov functionals which could still lead to matrix inequalities whose solution tends to the
analytical results. This was demonstrated by Seuret and Gouaisbaut [110].

The step after that is to rewrite the Lyapunov functional, replacing the integrals with summations, which is due to the dis-
cretization that was made. Thereafter, a number of manipulations may need to be performed in order to put the functional in
an appropriate form in order to enforce the positive definiteness condition. That is followed by the usual procedure to obtain
the expression for the derivative of the functional. A combination of a number of manipulations to put the derivative expres-
sion in quadratic form and imposing the negative definiteness condition on the expression of V̇ leads to the stability results in
the form of matrix inequalities.

As an example, the piecewise-linear discretization will be presented. The delay segment is divided into N equal parts. This
means that the square formed by [−τ,0]× [−τ,0] is divided into N ×N smaller squares. In the case of the squares, they are
further sub-divided into two triangles. Moreover, the matrices are assumed to be linear within a segment or within a traingular
region. Thus, this discretization of matrices Q, S, and R is mathematically described as shown in eq. (6.85) and eq. (6.86).

Q
(
θp +αh

)
=Q(p)(α) = (1−α)Qp +αQp−1

S
(
θp +αh

)
= S(p)(α) = (1−α)Sp +αSp−1

(6.85)

R
(
θp +αh,θq +βh

)
=R(pq)(α,β)

=
{

(1−α)Rpq +βRp−1,q−1 + (α−β)Rp−1,q , α≥β
(1−β)Rpq +αRp−1,q−1 + (β−α)Rp,q−1, α<β

(6.86)

For an elaboration on the other steps of the procedure using this discretization scheme, the reader is referred to [75, 121].
Several such matrix inequalities based on the discretized Lyapunov functional method have been derived in the literature

[105, 121–123]. However, recently there has been a set of matrix inequalities that are particularly efficient in comparison to
other stability results in this category. The derivation of those results is based on the Bessel-Legendre inequality (see Theorem
6.5) as well as the use of Legendre polynomials (see Definition 6.1) as basis for the discretization [110, 112].
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Definition 6.1 (Legendre Polynomial [110]): The Legendre polynomials considered over the interval [−τ,0] are defined by:

∀k ∈N, Lk (u) = (−1)k
k∑

l=0
pk

l

(
u +τ
τ

)l

(6.87)

with pk
l = (−1)l

(
k
l

)(
k + l

l

)
.

In the following, a review of the steps to derive the stability results obtained in [110] are presented. The starting point
for the derivation is the LK functional which is a complete LK Functional for a retarded TDS, shown in eq. (6.88), where P is a
symmetric and positive-definite matrix. As for Q, S, and T, they are differentiable matrices. This functional was first proposed
by Kharitonov and Zhabko [113].

V
(
xt

)= x>(t )P x(t )+2x>(t )
∫ 0

−τ
Q(θ)xt (θ)dθ+

∫ 0

−τ

∫ 0

−τ
xt

(
θ1

)
T

(
θ1,θ2

)
xt

(
θ2

)
dθ1dθ2 +

∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ (6.88)

The matrices Q and T are discretized with the Legendre basis, as seen in eq. (6.89).

Q(θ) =
N∑

i=0
Qi Li (θ), T (θ, s) =

N∑
i=0

N∑
j=0

Li (θ)L j (s)Ti j (6.89)

As for matrix S, it is assumed to be piecewise linear and is discretized linearly, as seen in eq. (6.90).

S(θ) = S + (τ+θ)R (6.90)

These discretization steps lead to a new form of the LK functional seen in eq. (6.91).

VN
(
xt

)= x̃>
N (t )PN x̃N (t )+

∫ t

t−τ
x>(s)(S + (τ− t + s)R)x(s)ds (6.91)

where

PN =


P Q0 . . . QN

Q>
0 T00 . . . T0N
...

...
...

Q>
N TN 0 . . . TN N

 (6.92)

and

x̃N (t ) =


xt (0)∫ 0

−τL0(s)xt (s)ds
...∫ 0

−τLN (s)xt (s)ds

 , N ≥ 0 (6.93)

Expanding the right-most term in eq. (6.91) leads to eq. (6.94).

VN
(
xt

)= x̃>
N (t )PN x̃N (t )+

∫ t

t−τ
x>(s)(S + (τ− t + s)R)x(s)ds

= x̃>
N (t )PN x̃N (t )+

∫ t

t−τ
x>(s)Sx(s)ds +

∫ t

t−τ
(τ− t + s)x>(s)Rx(s)ds

(6.94)

The positive definiteness of this functional needs to be guaranteed. To do that, the matrices PN , S, and R can be con-
strained to be positive definite. However, it is better to try to combine the terms involved to reduce the conservativeness, and
the opportunity to use the Bessel-Legendre inequality to do that presents itself. The Bessel-Lengendre inequality, obtained
from [110], dictates that eq. (6.95) holds.

∫ 0

−τ
x>(s)Sx(s)ds ≥ 1

τ


∫ 0
−τL0(s)x(s)ds

...∫ 0
−τLN (s)x(s)ds


>

diag(S,3S, . . . , (2N +1)S)


∫ 0
−τL0(s)x(s)ds

...∫ 0
−τLN (s)x(s)ds

 (6.95)
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Moreover, if the vectors involved in the inequality with xt (0) are augmented, eq. (6.96) is obtained.

∫ 0

−τ
x>(s)Sx(s)ds ≥ 1

τ


xt (0)∫ 0

−τL0(s)x(s)ds
...∫ 0

−τLN (s)x(s)ds


>

diag(0,S,3S, . . . , (2N +1)S)


xt (0)∫ 0

−τL0(s)x(s)ds
...∫ 0

−τLN (s)x(s)ds

 (6.96)

Thus, ∫ 0

−τ
x>(s)Sx(s)ds ≥ 1

τ
x̃>

N (t )diag(0,S,3S, . . . , (2N +1)S)x̃N (t ) (6.97)

However, in the expression for VN
(
xt

)
, there are different integral bounds, namely the integral is

∫ t
t−τ x>(s)Sx(s)ds rather

than
∫ 0
−τ x>(s)Sx(s)ds. This can be resolved through a change of variables. Let q = s − t . The differential obtained from

this transformation is d q = d s, and the lower and upper bounds are now t −τ and t , respectively. Thus,
∫ 0
−τ x>(s)Sx(s)ds =∫ t

t−τ x>(s)Sx(s)ds. Taking that into account, and applying the resultant inequality to eq. (6.94) allows to obtain a lower bound
on VN

(
xt

)
which is shown in eq. (6.98),

VN
(
xt

)≥ x̃>
N (t )Φ+

N (τ)x̃N (t )+
∫ t

t−τ
(τ− t + s)x>(s)Rx(s)ds (6.98)

where

Φ+
N (τ) := PN + 1

τ
diag(0,S,3S, . . . , (2N +1)S) (6.99)

Based on eq. (6.98) and eq. (6.99), in order to ensure the positive definiteness of the expression for VN
(
xt

)
as a whole,

matricesΦ+
N (τ), R, and S are required to be positive definite.

The next step is to obtain the expression for the derivative of the Lyapunov functionals, i.e. V̇N
(
xt

)
. In doing so, Leibniz’

rule for differentiation under the integral sign is used, i.e. d
d x

(∫ b(x)
a(x) f (x, t )d t

)
= f (x,b(x)) · d

d x b(x)− f (x, a(x)) · d
d x a(x)+

∫ b(x)
a(x)

∂
∂x f (x, t )d t in order to evaluate d

d t

∫ t
t−τ x>(s)[S + (τ− t + s)R]x(s)︸ ︷︷ ︸

f (t ,s)

d s

:

d

d t

∫ t

t−τ
x>(s)[S + (τ− t + s)R]x(s)︸ ︷︷ ︸

f (t ,s)

d s


= f (t , t )

d

d t
(t )− f (t , t −τ)

d

d t
(t −τ)++

∫ t

t−τ
d

d t
f (t , s)d s

= x>(t )[S + (τ− t + t )R]x(t ) ·1−x>(t −τ)[S + (τ− t + t −τ)R]x(t −τ) ·1

+
∫ t

t−τ
∂

∂t

[
x>(s)Sx(s)+x>(s)(τ− t + s)Rx(s)

]
d s

= x>(t )[S + (τ− t + t )R]x(t )−x>(t −τ)[S + (τ− t + t −τ)R]x(t −τ)

+
∫ t

t−τ
(−1)x>(s)Rx(s)d s

= x>
t (0)(S +τR)xt (0)−x>

t (−τ)Sxt (−τ)+
∫ θ=0

θ=−τ
(−1) · xT

t (θ)Rxt (θ)dθ

(6.100)

This leads to eq. (6.101).

V̇N
(
xt

)= 2x̃>
N (t )PN ˙̃xN (t )+x>(t )(S + (τ− t + t )R)x(t )−x>(t −τ)(S + (τ− t + t −τ)R)x(t −τ)−

∫ 0

−τ
x>

t (s)Rxt (s)ds

= 2x̃>
N (t )PN ˙̃xN (t )+x>(t )(S +τR)x(t )−x>(t −τ)Sx(t −τ)−

∫ 0

−τ
x>(t + s)Rx(t + s)ds

(6.101)
Recalling the Shimanov notation xt (θ), x(t +θ), the expression for V̇N

(
xt

)
is rewritten as:
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V̇N
(
xt

)= 2x̃>
N (t )PN ˙̃xN (t )+x>

t (0)(S +τR)xt (0)−x>
t (−τ)Sxt (−τ)−

∫ 0

−τ
x>

t (s)Rxt (s)ds (6.102)

As in the cases before, here again, ultimately, the goal is to be able to get to a quadratic form for V̇N
(
xt

)
or for an upper

bound of V̇N
(
xt

)
, in order to enforce negative definiteness on the resultant matrix in the vector version of the quadratic form.

So, if the expression for the augmented state x̃N (t ), from eq. (6.93), is replaced in eq. (6.102).

V̇N
(
xt

)= 2


xt (0)∫ 0

−τL0(s)xt (s)ds
...∫ 0

−τLN (s)xt (s)ds


>

PN


ẋt (0)∫ 0

−τL0(s)ẋt (s)ds
...∫ 0

−τLN (s)ẋt (s)ds

+x>
t (0)(S+τR)xt (0)−x>

t (−τ)Sxt (−τ)−
∫ 0

−τ
x>

t (s)Rxt (s)ds

(6.103)
It is desired that this expression is in written in quadratic form or is compared to a expression (which is greater than V̇N

(
xt

)
)

that is in quadratic form. In order to do so, it becomes clear that the derivative expressions need to be replaced. Moreover, a
state that includes the elements of x̃N (t ) as well as xt (−τ). For that, the vector x̃N (t ) is augmented with xt (−τ) is needed.
This new state vector is denoted by θN (t ) and is shown in eq. (6.104).

θN (t ) =



xt (0)
xt (−τ)

1
τ

∫ 0
−τL0(s)xt (s)ds

...
1
τ

∫ 0
−τLN (s)xt (s)ds

 , N ≥ 0 (6.104)

With regards to replacing the derivative terms in eq. (6.103), first, ẋt (0) is considered:

ẋt (0) = A0xt (0)+ A1xt (−τ) (6.105)

As for the terms
∫ 0
−τLk (s)ẋt (s)ds, integration by parts leads to:∫ 0

−τ
Lk (s)ẋt (s)ds = Lk (s)ẋt (s)

∣∣∣∣0

−τ
−

∫ 0

−τ
L̇k (s)xt (s)ds (6.106)

However, from the properties of Legendre polynomials is that:

d

du
Lk (u) =

k−1∑
i=0

(2i +1)

τ

(
1− (−1)k+i

)
Li (u) if k ≥ 1 (6.107)

Thus, ∫ 0

−τ
Lk (s)ẋt (s)ds = xt (0)− (−1)k xt (−τ)−

k−1∑
i=0

γi
N k

∫ 0

−τ
Li (u)x(u)du = ΓN (k)θN (t ) (6.108)

Applying this to the terms of ˙̃xN (t ) results in the relation eq. (6.109) between ˙̃xN (t ) and θN (t ):

˙̃xN (t ) = HN (τ)θN (t ) (6.109)

where

HN =
[

F>
N Γ>N (0) Γ>N (1) · · · Γ>N (N )

]>
(6.110)

As for the relation between x̃N (t ) and θN (t ), it is described by:

x̃N (t ) =GN (τ)θN (t ) (6.111)

where

GN (τ) =
[

In 0n 0n,n(N+1)

0n(N+1),n 0n(N+1),n τIn(N+1)

]
(6.112)
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At this stage, the first three terms of eq. (6.103) can be combined altogether:

θ>N (t )ΦN 0(τ)θN (t ) (6.113)

where

ΦN 0(τ) = He
(
G>

N (τ)PN HN

)
+diag

{
S +hR,−S,0(N+1)n

}
(6.114)

and the operator He is used for obtaining a symmetric version of a matrix. For example, the effect of applying the operator
on a matrix A can be seen in eq. (6.115).

He(A) = A0 + A> (6.115)

Based on the Bessel-Legendre inequality, and the definition of θN (t ), eq. (6.116) holds.

−
∫ 0

−τ
x>

t (s)Rxt (s)ds ≤−1

τ
θ>N (t )diag

(
0,0,RN

)
θN (t ) (6.116)

Lastly, based on the distributive property of matrix multiplication, eq. (6.117) is obtained.

V̇N
(
xt

)≤ θ>N (t )

(
ΦN 0(τ)− 1

τ
diag

(
0,0,RN

))
θN (t ) (6.117)

Therefore, the negative definiteness of V̇N
(
xt

)
is ensured when eq. (6.118) is satisfied.

Φ−
N (τ) =ΦN 0(τ)− 1

τ
diag

(
0,0,RN

)< 0 (6.118)

This concludes the review of the derivation, and those stability results are summarized in the following theorem.

Theorem 6.7 ([110]): For a given integer N ≥ 1 and a constant a delay τ, assume that there exist a matrix PN ∈ S(N+1)n and
two matrices S,R ∈S+

n such that the following LMIs are satisfied

Φ+
N (τ) := PN + 1

τ
diag(0,S,3S, . . . , (2N +1)S) > 0

and

Φ−
N (τ) =ΦN 0(τ)− 1

τ
diag

(
0,0,RN

)< 0

Moreover, a similar stability result (derived in [112]) is shown in Theorem 6.8.

Theorem 6.8 ([112]): For a given N and a constant delay τ, assume that there exist a matrix PN ∈ S(N+1)n and two matrices
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S,R ∈S+
n such that

ΘN (τ) =



PN Â 0, if N = 0

PN + 1
τ


0

S
. . .

(2N −1)S

Â 0, if N > 0

ΦN (τ) =ΦN 0(τ)−


ΓN (0)

...
ΓN (N )


>


R

3R
. . .

(2N +1)R




ΓN (0)
...

ΓN (N )

≺ 0

ΦN 0(τ) = He
(
G>

N (τ)PN HN

)
+ S̃N + (τ)2F>

N RFN

S̃N = diag
{
S,−S,0N n

}
SN = diag{S,3S, . . . , (2N +1)S}

FN =
[

A0 A1 0n,nN

]
GN (τ) =

[
In 0n 0n,nN

0nN ,n 0nN ,n τInN

]

HN =
[

F>
N Γ

>
N (0)Γ>N (1) . . .Γ>N (N −1)

]>

(6.119)

whereΓN (k) for all k = 0, . . . , N are defined as follows:

ΓN (k) =
 [I − I ], if N = 0

I (−1)k+1I γ0
N k I . . .γN−1

N k I
]

, if N > 0

γi
N k =

 −(2i +1)
(
1− (−1)k+i

)
, if i ≤ k

0, if i > k

(6.120)

The stability intervals of the retarded TDS with a single delay (eq. (6.10)) are the values of time-delay for which eq. (6.119) is sat-
isfied.

6.7 Concluding Remarks
There are many stability results that have been proposed in the literature for the stability analysis of TDSs in the time domain.
However, since it is desired to have time-domain stability results that would corroborate the results obtained from the fre-
quency domain analysis (which are exact results), the set of candidate stability results is narrowed down to the results that
are based off the discretized Lyapunov functional method. The reason for this is that, for increasing N, the solutions of these
matrix inequalities tend to the exact results.

Interesting stability results were developed in [110], and a review of the steps to derive these results has been presented
in the earlier section. As they rely on the discretization of the Lyapunov functional and an effective integral inequality, the
stability result that emerged is able to obtain the analytical results efficiently. As a consequence, it is this stability result that
will be used for the stability analysis of retarded TDSs with a single delays in the time-domain. Note, that with regards to
stability results for neutral-type TDS, as for the case of retarded TDS, there have been several (though noticeably fewer) results
that have been derived in the literature that are based on the discretized Lyapunov functional method. To mention a few, the
reader is referred to the work of Han et al. [124–126], the results of Fridman [105], as well as those of Li et al. [127].

However, due to the efficiency of the stability results based on the Bessel Legendre inequality as well as the discretization
based on taking the Legendre polynomials as a basis, it was fitting to try to derive similar results for the case of the neutral-type
TDS. The derivation of these results as well as their application to examples from the literature can be seen in chapter 10.

The discussions in this chapter have been focused on the steps of the derivation of stability results in the time domain.
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However, so far, it has not been mentioned how to obtain the stable time-delay intervals from the presented matrix inequali-
ties. The following final remarks are reserved for that. First, the means to obtain a solution for Linear Matrix Inequality (LMI)s
is discussed. This is followed by a quick discussion on obtaining solutions for more complicated matrix inequalities such as
Bilinear Matrix Inequality (BMI)s.

Many of the stability results that are obtained in the time domain are in the form of LMIs. This is usually advantageous
because LMIs are known to be convex problems, and many efficient algorithms have been developed in order to solve them
efficiently. Widely-known algorithms that are used to solve LMIs are the ellipsoid algorithm and the interior point method.
However, a discussion on those algorithms is beyond the scope of this research, and the interested reader is referred to the
survey of van Antwerp and Braatz for an overview of the workings of those methods [128].

Not only are there many existent efficient algorithms to solve LMIs, there are several numerical software tools that have
implemented these algorithms and can be used to solve the LMIs. This includes MATLAB®’s LMI Control Toolbox, LMITOOL, and
YALMIP [128, 129]. The latter is the most recent of the three and has been often resorted to in the TDS community. Additionally,
YALMIP has the ability to solve for several kinds of optimization problems, including heuristics for global optimization, the
need for which, in solving matrix inequalities such as the ones defined in eq. (6.119) and eq. (6.120), will become clear shortly
[129]. Therefore, it is this tool that will be used for the implementations in this research.

As may have been noticed from the previously presented results, not all are in the form of LMIs. Rather, they are in the form
of the more general BMIs which are a category of nonlinear matrix inequalities. That is the case for eq. (6.119) and eq. (6.120).
Solving for these matrix inequalities is in essence more difficult than solving for LMIs. This is because nonlinear matrix in-
equalities are nonconvex problems, and their computational complexity is N P -hard [128, 130]. While this does not neces-
sarily mean that there may not be practical solutions to these problems, it implies that it is usually very unlikely that there is an
algorithm that can solve the inequality in polynomial-time [128]. In other words, the N P -hardness means that, depending
on the size of the problem, there are no guarantees on the boundedness of the time needed to obtain a suitable solution.

In general, as solving a BMI is a nonconvex problem, global optimization is needed as a part of the solution pipeline. The
global optimization can be performed through heuristic techniques such as branch and bound algorithms. In fact, many branch
and bound algorithms have been developed for solving BMI problems [128]. Thus, effectively, the branch and bound algo-
rithm is responsible for selecting different time-delays. Thereafter, a convex solver solves for the resultant LMI at those se-
lected time-delays to check whether the stability conditions are satisfied. Together those solvers provide a candidate solution
scheme. However, as mentioned earlier, stable time-delay intervals will have already been obtained from the application of
a frequency-domain method. This means that the feasibility of the matrix inequalities can be checked for those time-delay
intervals, as a form of verification of those results.



7
Pendulum Control System

In this chapter, the stability techniques that have been selected from the earlier chapters will be applied to a control system
comprising of a damped pendulum and an INDI controller. First, the techniques from the frequency domain will be discussed.
Of those, the implemented techniques to determine the critical pairs include the direct method and the frequency sweeping
approach (both graphically and programmatically). As for the analysis of the asymptotic behaviour, this is done both graph-
ically and analytically, through the use of series. As for the time-domain technique, the matrix inequalities presented in sec-
tion 6.6, based off a discretized Lyapunov functional method are implemented. Finally, a number of a simulation runs are
performed to verify the obtained results.

The structure of the chapter is as follows. The expressions for the controllers are determined first. Before delving into
the INDI control of the pendulum control system, the NDI control law of the system is derived. This is done in section 7.1.
Thereafter, the INDI control of the damped pendulum is discussed in section 7.2. With the completion of the discussion on
the suitable controller expressions, the discussion on the stability analyses ensues in section 7.3, where the mentioned chosen
stability methods are applied to the INDI-controlled damped pendulum.

7.1 Nonlinear Dynamic Inversion (NDI) Control
The forced pendulum with friction is modeled by eq. (7.1),

θ̈+ b

I
θ̇+ mg l

I
sinθ = u (7.1)

where θ denotes the angular deflection of the pendulum (reference chosen to be the bottom position), u is the input to
the system, I is the moment of inertia of the pendulum, b is the damping coefficient of the pendulum, l is the length of the
pendulum, and m is the mass of the pendulum. This second order equation, eq. (7.1), can be transformed into a system of two
first-order equations. By setting x1 = θ and x2 = θ̇, eq. (7.2) is obtained.

ẋ1 = x2

ẋ2 = u − b

I
x2 − mg l

I
sin(x1)

(7.2)

Linearizing this system of equations about (x1,0, x2,0) leads to the following system of equations:

ẋ1 = x2

ẋ2 = u − b

I
x2 − mg l

I
sin(x1)− mg l

I
· cos(x1,0)(x1 −x1,0)

(7.3)

It can be seen from eq. (7.3) that x2,0 gets canceled in the linearization process and that only the remnant x1,0 is relevant
for the linearized dynamics.

Based on the discussion in chapter 2, in order to perform IO linearization, a suitable choice of the output variable needs
to be made. An important concern related to making this choice are the internal dynamics. Specifically, the choice of output
should ensure that the control system either does not have any internal dynamics or if it does, that the internal dynamics are

113
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Figure 7.1: NDI Implementation Results

stable. To elaborate on the importance of ensuring the latter, the presence of internal dynamics means that full controllability
is not guaranteed, in exception of the cases where it is known that the internal dynamics are stable.

First, the consequences of taking the output to be x2 are examined. From this choice, it can be seen that there are internal
dynamics since a single differentiation of the output equation leads to the appearance of the control input, meaning that the
relative degree of the system is equal to 1 which is less than the order of the system, which is 2.

If the output is, instead, taken to be y = x1, then the output needs to be differentiated twice in order for the control input
to appear, as shown below.

ÿ = ẍ1 = ẋ2 = u − b

I
x2 − mg l

I
sin(x1) (7.4)

Knowing that the system is second order, this means that the relative degree of the system is zero and the closed-loop
system does not have any internal dynamics, which further means that the system is fully controllable. As a result, the output
is selected to be x1.

In order to linearize the dynamics, the virtual control input is defined according to eq. (7.5).

ν= u − b

I
x2 − mg l

I
sin(x1) (7.5)

Moreover, for a tracking task, the virtual control is designed based on eq. (7.6).

ν= ÿr e f +Kp (yr e f − y)+Kd ( ˙yr e f − ẏ) (7.6)

Combining eq. (7.5) and eq. (7.6) leads to the control law shown in eq. (7.7)

u = ÿr e f +Kp (yr e f − y)+Kd ( ˙yr e f − ẏ)+ b

I
x2 + mg l

I
sin(x1) (7.7)

In order to test its effectiveness, this controller has been implemented with the gains Kp = 25 and Kd = 7, and the simula-
tion results of the application of this controller on a damped pendulum, for a sinusoidal reference signal, are shown in fig. 7.1.
It is clear from the figure that the error converges to zero at around 6 seconds.

7.2 Incremental Nonlinear Dynamic Inversion (INDI) Control
As discussed before, in INDI, linearization is performed about the current state and control input. In the case of the system
shown in eq. (7.1), linearizing eq. (7.4) followed by applying the time-scale separation principle leads to:
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Table 7.1: Parameters used in the implementation of the INDI control of the pendulum control system.

m (kg) b (kg/s) l (m) I (kgm2) x1,0 (rad) x2,0 (rad/s) u0 (rad/s2) Kp Kd
Actuator
model

Sensor
model 1

Sensor
model 2

0.3 0.1 1 1 0.1 0 1 25 7 1
s+20 1 1

ÿ = ÿ0 +β(x0)∆u +δ(z,∆t ) (7.8)

where δ(z,∆t ) denotes the higher order terms. These terms can usually be neglected which reduces eq. (7.8) to:

ÿ = ÿ0 +∆u (7.9)

As in the case of NDI, the virtual control is chosen equal to ÿ . Thus,

∆u = ν− ÿ0 (7.10)

Since a tracking problem is considered, the outer-loop linear control is again set to be as in eq. (7.6), which leads to the
following incremental control law.

∆u = ÿr e f +Kp (yr e f − y)+Kd (ẏr e f − ẏ)− ÿ0 (7.11)

This means that the control law is

u =∆u +u0 = ÿr e f +Kp (yr e f − y)+Kd (ẏr e f − ẏ)− ÿ0 +u0 (7.12)

The block diagram of the control system that applies this INDI control is shown in fig. 7.2 (and an equivalent block diagram
is shown in fig. 7.3). Based on this structure and the manipulation of transfer functions, it is possible to obtain the closed-loop
formulation for the system dynamics in the frequency domain, for which later a time-domain realization is set up. Each of
these will be needed for the application of the stability analysis methods.

7.3 Stability Regions in the Delay Space of the Pendulum Control System
In the following, the stability analysis of the INDI-controlled damped pendulum, whose parameters are shown in table 7.1, will
be discussed. First, the analyses in the frequency domain will be discussed. This is followed by a discussion on the analysis in
the time-domain. A number of simulation tests validate the results.

7.3.1 Frequency-domain Techniques
Two frequency domain techniques will be used to analyze the stability of the control system at hand. The first approach, which
is called the direct method, is used to determine the critical pairs. Thereafter, the root tendency is analyzed analytically. As for
the second approach, the frequency sweeping approach, the analysis is done entirely graphically.

7.3.1.1 Direct Method

It can be seen that the characteristic equation can be grouped into two different parts:

P (λ)+Q(λ) ·e−τ·λ = 0 (7.13)

If the equation is rearranged, this leads to

e−τ·λ = −P (λ)

Q(λ)
(7.14)

Since the interest is in the intersection with the y-axis in the pole-zero map, thenλ can be replaced by jω, and ‖e−τ· jω‖ is
1. This leads to the magnitude equation

‖P ( jω)‖−‖Q( jω)‖ = 0 (7.15)

Thus, solving for the magnitude equation leads to the critical angular frequency values, each denoted by ωC ,i . For the
case of the pendulum control system considered, this leads to two critical imaginary roots which are 1.3207 rad/s and 2.0534
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Figure 7.2: Block diagram of INDI control of damped pendulum.
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rad/s. Actually, it should be noted is that there will also be crossings at -1.3207 rad/s and -2.0534 rad/s as well, due to symmetry
property of the spectrum as discussed in section 5.3.1.1. However, for a simpler discussion, only the positive frequencies will be
discussed, and this simplification will be compensated for in the final part in the determination of the stability sequence [9].

Now, to solve for the critical time-delays, the argument of e−τ· jω is used.

arg(e−τ· jωC ,i ) =−τ ·ωC ,i (7.16)

But based on eq. (7.14), arg(e−τ· jωC ,i ) is also equal to

arg(e−τ· jωC ,i ) = arg

(
−P ( jωC ,i )

Q( jωC ,i )

)
+2πk (7.17)

Thus,

τ= 1

−ωC ,i
·
arg

(
−P ( jωC ,i )

Q( jωC ,i )

)
+2πk

 (7.18)

This leads to the expressions for the

τωC ,1=1.3207 rad/s =−2.216270+4.757412 ·k (7.19)

τωC ,2=2.0534 rad/s = 0.305067+3.059841 ·k (7.20)

It becomes clear that due to the variable k, that for every critical frequencyωC ,i , there correspond infinitely many critical
time-delays.

The last part is to determine the stability intervals. This consists of three main steps, the first of which is determine the
number of unstable roots when the time-delay is zero. The step that follows is to determine the Crossing Direction of Imaginary
Root (CDIR) associated with the critical roots. Finally, the critical time-delays are sorted in increasing order, and the book-
keeping of the number of unstable roots is performed for the intervals between the critical time-delays. This is done based on
the CDIR determined.

Thus, first, the stability of the control system without any time-delays is studied. For the case of the pendulum control
system, based on the input values mentioned above, the 3 roots obtained at τ = 0 are: -19.71, - 0.1963 - 2.013i, and - 0.1963 +
2.013i. These three roots are all stable, therefore the starting count is zero.

The CDIR can be obtained based on eq. (5.96) and eq. (5.97) which for convenience is repeated in eq. (7.21). As mentioned
in section 5.3.2.2, this is only applicable when the CIRs are simple [131, 132].

C D I R = sign

[
dλ

dτ

]
λ=ωC ,i

= sign

[
− fτ

fλ

]
λ=ωC ,i

(7.21)

Moreover, as discussed in chapter 4, according to the invariance property, for all critical time-delay pertaining to a certain
crossing-frequency the crossing direction will be the same [9]. For the case of the pendulum control system, based on eq. (7.21),
the CDIR corresponding to 1.3207 rad/s is -1. That is, whenever there is a crossing at 1.3207 rad/s, if the time-delay is increased
further this particular pole will move to the left-half plane. As for the critical angular frequency 2.0534, the CDIR is +1.

Once the CDIRs are established, it remains to perform thorough book-keeping. The critical time-delays are sorted in in-
creasing order as shown in the first column of table 7.2. The starting score is equal to the number of unstable roots when there
are no delays in the systems, which was determined to be zero. For the result of the scores, every time a critical time-delay with
a CDIR of +1 is encountered, the score is increased by 2 (this corresponds to a +1 for the positive frequency crossing and another
+1 for the conjugate CIR). Conversely, when a critical time-delay with a CDIR of -1 is encountered, the score is decreased by 2.
This leads to the scores shown in the second column of table 7.2.

This leads to a constant score between the different critical time-delays. For the pendulum, the result looks like the re-
sult shown in table 7.2. From this table, it can be seen that the score will be zero for the intervals [0,0.305069] and [2.541144,
3.364915] seconds. Therefore, those are the stability intervals.

7.3.1.2 Analytic Curve Frequency Sweeping Approach

Unfortunately, not all characteristic equations that will be encountered will be of the form shown in eq. (7.13) and may be more
complicated, thereby making the direct method inapplicable. Therefore, the more general Frequency Sweeping Approach is
resorted to. As discussed in chapter 5, frequency sweeping can be used to graphically determine the critical angular frequencies,
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Table 7.2: Stability Sequence for Pendulum Control System

Critical Time-delay Intervals (s) Number of Unstable Roots

[0 , 0.305069] 0
[0.305069 , 2.541144] 2
[2.541144 , 3.364915] 0
[3.364915 , 6.424762] 2
[6.424762 , 7.298558] 4
[7.298558 , 9.484609] 2

[9.484609 , 12.055972] 4
[12.055972 , 12.544459] 2
[12.544459 , 15.604303] 4
[15.604303 , 16.813387] 6
[16.813387 , 18.664149] 4
[18.664149 , 21.570801] 6
[21.570801 , 21.723996] 4
[21.723996 , 24.783843] 6
[24.783843 , 26.328215] 8
[26.328215 , 27.843690] 6

as well as to graphically determine the roots tendencies. For the case of the pendulum control system at hand, applying the
frequency sweeping approach serves as a form of verification of the analytical computations.

As explained before, the first step of the approach is to introduce the variable z that replaces the e−τ·λ. Moreover, since the
concern is with the intersections with the imaginary axis, to replaceλ by jω. This leads to the following bivariate equation for
the pendulum:

a0 · jω+a1 · z +a2 · jω · z +a3 · ( jω)2 +a4 · ( jω)3 +a5 = 0 (7.22)

The sweeping frequency curves are constructed by "sweeping" the frequency, and at each frequency, substituting in eq. (7.22)
computing the values of z, and plotting the magnitude of that. In the case of the pendulum, there is only one frequency sweep-
ing curve with two intersections with y=1. The curve is shown in fig. 7.4. It is clear that the two intersection points confirm that
the critical angular velocities are 1.3207 and 2.0534 rad/s.

As for the asymptotic behaviour, this can be determined by examining the frequency sweeping curves, for which it can be
seen that the CDIR is -1 forω= 1.3207 rad/s and CDIR is +1 forω= 2.0534 rad/s. These are deduced based on the slope of the
curve at their intersection with the horizontal line at 1.

The asymptotic behaviour can also be determined based upon a pertubation-based approach or in other words, construct-
ing the Puiseux series at a certain critical pair. The procedure to do is an implementation of the pseudocode shown in algo-
rithm 1.

For the critical pair (1.3207j,- 2.2162699379655851415058544499415 + 4.7574119376092397956928874557409 · k), the fol-
lowing series is obtained:

∆λ= (−0.246395−0.284083 · j ) ·∆τ+o(∆τ) (7.23)

Since∆τ in eq. (7.23) does not have a fractional power, the series is in fact a special form of the Puiseux series and is in fact
a Taylor series. This is expected because the critical roots are simple. Moreover, based on this Taylor series, it can be seen that
a small positive increase in τ, i.e.∆τ=+ε leads to a decrease in the real part ofλwhich means that the CDIR is -1.

As for the critical pair (2.0534j,0.30506699097870544260886292142673 + 3.0598413425209888724110958597726 · k), the
following series is obtained:

∆λ= (0.665318−0.123293 · j ) ·∆τ+o(∆τ) (7.24)

Here, again, since the CIR is a simple root, the series in eq. (7.24) is a Taylor series. Moreover, based on this obtained series,
it can be seen that for∆τ=+ε, that the real part of∆λwill be positive, which means that the CDIR is +1.
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Figure 7.4: Frequency sweeping curve for the pendulum control system

This can also be verified by examining the frequency sweeping curves. From the curve in fig. 7.4, it can be confirmed that
the CDIR is -1 forωC ,1 = 1.3207 rad/s and the CDIR is +1 forωC ,2 = 2.0534 rad/s. This is deduced based on the slope of the curve
at their intersection with the horizontal lineΓ= 1, whereby a positive slope corresponds to a CDIR equal to +1, and a negative
slope corresponds to a CDIR equal to -1.

Since the obtained critical imaginary roots and the critical time-delays are the same, the stability sequence will also be the
same, and the same stable time-delay regions are obtained: [0,0.305069] and [2.541144, 3.364915] seconds.

7.3.2 Lyapunov-based Approach
Now, the time-domain approach will be used to further verify the results obtained from the frequency domain analyses. Specif-
ically, the LMIs described in eq. (6.119) and eq. (6.120) will be used. They are used to study the stability of systems of the form:{

ẋ(t ) = A0x(t )+ A1x(t −τ), ∀t ≥ 0
x(t ) =φ(t ), ∀t ∈ [−τ,0]

(7.25)

Thus, the matrices A0 and A1 have to be determined for the pendulum control system. As it is easier to determine the

Figure 7.5: Plot of the number of unstable roots versus time for the considered pendulum control system.
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overall system representation for an LTI system in the frequency domain, the characteristic equation of the pendulum con-
trol system (that had been already determined for the above analyses) is made use of to obtain an equivalent description in
the time domain, which entails applying the inverse Laplace transform to the control system’s characteristic equation. The
obtained differential equation is of the form shown in eq. (7.26), with a1 . . . a2 and b0,b1 being the appropriate coefficients.

___
x +a0 · x +a1 · ẋ +a2 · ẍ +b0 · x(t −τ)+b1 · ẋ(t −τ) = 0 (7.26)

It is clear from the structure of eq. (7.26) that the pendulum is a retarded type TDS. The highest order of derivative of y
without time-delay is 3; whereas the order of derivative including a time-delay is 1. Since the former is strictly greater than the
latter, the system is a retarded system.

In order to obtain a state space representation from the differential equation eq. (7.26), a state vector denoted by z̃ =[
x, ẋ, ẍ

]>
is proposed. Re-writing eq. (7.26) in terms of z̃ leads to eq. (7.27).

˙̃z = A0 z̃ + A1 z̃(t −τ)

A0 =

 0 1 0

0 0 1

−a0 −a1 −a2


A1 =

 0 0 0

0 0 0

−b0 −b1 0


(7.27)

Since eq. (7.27) has the form that is suitable for the stability results in eq. (6.119) and eq. (6.120), it is possible to proceed
to the step of solving for the matrix inequalities for the determined A0 and A1 matrices of the pendulum control system. Al-
though, an efficient way to solve those matrix inequalities (which happen to be bilinear matrix inequalities) has not been
found, it is still possible to check the feasibility of the solution of the matrix inequalities for different values of time-delay.

Checking for the first interval [0,0.305069]s The correctness of the first stability interval, [0,0.305069]s, can be verified by
checking the feasibility of the solution of the matrix inequalities in eq. (6.119) and eq. (6.120) for the entirety of this interval.
Moreover, once the limit of the first interval is reached, the set of matrix inequalities no longer has a feasible solution, not until
the second stability interval. This is clear from fig. 7.6, where the residuals of V and V̇ constraints both reach zero at what is
visibly around 0.305 s.

For finer results on the upper bound of this stability interval, starting with τ = 0.3s and taking increments of 0.0001s, the
matrix inequalities are feasible up to 0.3050s. N ≥ 1 is sufficient to obtain this result. If the steps are taken to be 0.000001,
N≥ 3 is sufficient to obtain 0.305068 as the largest number that makes the matrix inequalities feasible (for the first stability
interval). The value of N that is sufficient to obtain a certain precision is also dependent on the constraints set for the matrix
inequalities.

Figure 7.6: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional derivative condition.
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Checking for the second interval [2.541144,3.364915]s A similar procedure is applied to check the second stability interval.
To do so, checking the feasibility of the matrix inequalities is broken down into two tests. Both tests start by checking the
feasibility of some interior point for the interval, say 3s. One test would apply delay decrements to this initial starting delay, and
the other would apply delay increments. The results of those tests in terms of constraint residuals, for the Lyapunov functional
constraint and the Lyapunov functional derivative constraint, are shown in fig. 7.7 and fig. 7.8, respectively. It is seen from fig. 7.7
that the solution of the set of matrix inequalities does not have a feasible solution for values that are smaller than around 2.54s
(and which are larger than 0.305069s) because the V̇ constraint residual had already reached zero at this limit. In fig. 7.8, it is
seen how the plots of the constraint residuals terminate at around 3.365s.

To attain the bound 2.541144s with a precision of 6 decimal points (2.541144s as 2.541143s is already in the infeasible re-
gion), if one starts with a value larger than 2.541144s and takes decrements with step size 0.000001s, the value of 2.541144s is
attained with N≥ 8.

Figure 7.7: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional derivative condition.

The bound 3.364915s can be checked in the same manner that was used for the upper bound of the first stability interval,
through delay increments. To attain a value of 3.364915s, N≥ 8 is needed.

Figure 7.8: Plot showing the evolution of the constraint residuals for the Lyapunov functional condition and the Lyapunov functional derivative condition.

7.3.3 Verification with the Simulink Model
Based on simulation (which includes the nonlinear pendulum plant) and based on the same initial conditions, gains and all
the parameters that were used in the previous analysis (as well as running at a rate of 10,000Hz), the system appears to be
stable for the intervals [0,0.3] and [2.5,3.4]. Stability is lost for a time-delay of 0.31 seconds, which is in accordance with the
results obtained from the frequency sweeping approach.

The response to a 0 reference (stabilization) leads to the outputs shown in fig. 7.9a, fig. 7.9b, fig. 7.9c, fig. 7.9d, fig. 7.9e,
fig. 7.9f, fig. 7.9g, and fig. 7.9h. The results concur with the stability intervals obtained.
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(a) Response corresponding to a delay of 0.10s for the first 20s. (b) Response corresponding to a delay of 0.32s for the first 20s.

(c) Response corresponding to a delay of 2s for the first 20s. (d) Response corresponding to a delay of 2.55s for the first 20s.

(e) Response corresponding to a delay of 3s for the first 20s. (f) Response corresponding to a delay of 3.365s for the first 40s.

(g) Response corresponding to a delay of 4s for the first 20s. (h) Response corresponding to a delay of 6s for the first 20s.

Figure 7.9: Plots of the response of the pendulum control system, shown for the first 20 s, for different time-delays.



III
Robust Stability Analysis

For real-world applications, it is practically impossible to describe a system precisely. Uncertainties in the linear system
representation occur due to many reasons. These include approximate or incorrect knowledge about certain parameters in
the system. Another source of uncertainty is the linearization of system dynamics; some parameters may be time-varying
because of nonlinearities in the actual system dynamics or because of different operating conditions. Furthermore, the limited
measurement accuracy of sensors introduces uncertainties in the signals in the system. In some situations, despite having
accurate insight about the plant model, it may be preferred to deal with a deliberately simplified version of the model and to
represent the parts that were neglected with uncertainties [133].

Considering the inevitable presence of uncertainties in practice, it is important to make the analysis robust to such un-
certainties. Doing so involves a two-part procedure. The first part is to characterize the uncertainty, and the second part is to
analyze for robust stability given the established uncertainty representation.

It should be noted that, in the case of TDSs, uncertainties may arise in two main ways: either as uncertainties in the co-
efficients or as uncertainties in the time-delay parameters themselves. While it has been expressed in the literature that the
analysis of the latter is a harder problem, for the case of the problem analyzed in this thesis, the research aim is to determine
the time-delays for which the stability of the control system is ensured while considering uncertainties in the knowledge about
the modelled parts of the system, rather than assessing the stability for time-delay intervals that are known a priori. Therefore,
in this thesis, the concern is with uncertainties in the coefficient matrices (in the case of the time domain) or the coefficient
vectors of the quasipolynomials (in the case of the frequency domain).

Chapter 8 is related to the first part, whereby how to characterize the uncertainty will be dealt with. It will be seen that
of the issues tied to uncertainty characterization are conservatism and mathematical tractability. In chapter 9, a number of
theorems and principles that can be used for robust stability analysis of TDS are presented, and how these methods relate to
the uncertainty structures and other paradigms of uncertainty characterization is discussed.
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8
Uncertainty Characterization

In this chapter,the concern is with parametric uncertainty, rather than dynamic uncertainty. There are two main paradigms
encountered with parametric uncertainty. In one of the paradigms, the uncertainty characterization is based on each uncer-
tainty parameter varying within a known interval. Depending on the way of the occurrence of the uncertainties parameters
in the equation that is studied, this leads to a number of uncertainty structures. The second paradigm offers the possibility
of grouping the uncertain parameters and assuming a norm-bounded variation on certain element in the equation of the sys-
tem. In the rest of this chapter, the concepts pertaining to those two paradigms are discussed. The discussion presented in this
chapter mainly follows the discussions in [10, 75, 133].

8.1 Uncertainty Bounding Set and the Family of Systems
In the literature on robust stability analysis, uncertainty bounding sets, typically denoted by the letter Q , that are either in
the form of boxes or spheres are usually encountered [10]. However, Barmish also expresses that it is not very critical which of
the two options is chosen. For this thesis, uncertainty bounding sets that are in the form of hypercubes are assumed, which is
described by eq. (8.1).

Q =
{

q ∈ R` : q−
i ≤ qi ≤ q+

i for i = 1,2, . . . ,`
}

(8.1)

The uncertainty bounding set serves only as a description of the uncertain variables. Thus, it is only when this set is com-
bined together with the uncertain function, that the concept of the family of systems is obtained.

8.2 A Hierarchy of Uncertainty Structures
When considering a function with coefficients that have independent uncertainty, then depending on how these parameters
appear in the function, the function may adhere to one of many uncertainty structures. Examples of parametric uncertainty
structures include independent uncertainty structure, affine uncertainty structure, multilinear uncertainty structure, and poly-
nomic uncertainty structure. More specifically, these types form a hierarchy whereby the independent uncertainty structure is
a subset of affine uncertainty structure, which is a subset of multilinear uncertainty structure, and which, in turn, is a subset of
polynomic uncertainty structure, i.e. independent ⊂ affine ⊂ multilinear ⊂ polynomic [10].

This is important to note because robust stability analysis methods that are applicable to systems with uncertainty struc-
tures that are lower in the hierarchy usually are no longer directly applicable to the systems with uncertainty structures that
are higher in the hierarchy. For example, vertex results, which are applicable to the cases where independent uncertainty is
encountered, no longer hold for systems with an affine uncertainty structure.

8.2.1 Independent Uncertainty Structure
As mentioned in the introduction of this section, the independent uncertainty structure is the lowest in the hierarchy. In words,
a system has an independent uncertainty structure if each uncertain variable in the uncertainty set appears only in one of the
coefficients of the system equation [10]. In the frequency domain, interval quasipolynomials take the form shown in eq. (8.2).

I (s) =
sn +

n−1∑
k=0

(
m∑

l=0
αkl sk

)
e−βl s |αkl ∈

[
αkl , ᾱkl

] ∈R
 k = 0, . . . ,n −1; l = 0, . . . ,m (8.2)
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8.2.2 Affine Linear Uncertainty Structure
An affine linear uncertainty structure which is also known as a polytopic uncertainty structure occurs when the uncertain vari-
ables appear affine in the coefficients. This structure leads to a family that is polytopic. A polytope is the convex hull of a set
of points, where a convex hull of some set C is the smallest convex set that contains the elements of the set C. Furthermore,
a set is convex if any line connecting any two points in the set is contained within that set. Every point p in a polytope P can
be generated as the convex combination of the vertices of P. A convex combination is by definition the linear combination of
points where the sum of their coefficients is equal to 1. Thus, an uncertain quasipolynomial with an affine linear uncertainty
structure has the form shown in eq. (8.3),

F (s) =
{

T∑
l=1

µl fl (s)|µl ≥ 0,
T∑

l=1
µl = 1

}
(8.3)

where fl are the vertex quasipolynomials of this family.
In the time domain, the familiy with affine linear uncertainty structure is described in eq. (8.4),

Ω=
{

nv∑
k=1

αkω
(k)|αk ≥ 0,k = 1,2, . . . ,nv ;

nv∑
k=1

αk = 1

}
(8.4)

as the convex combination ofωk , whereωk is a pair of vertex matrices as shown in eq. (8.5).

ω(k) =
(

A(k)
0 , A(k)

1

)
, k = 1,2, . . . ,nv (8.5)

The number of vertices can be easily calculated. Given that there are np uncertain parameters, due to the upper and lower
bounds on each parameter, the number of vertices can be determined based on nv = 2np .

8.2.3 Multilinear Uncertainty Structure
As for the case of multilinear uncertainty structure, it arises when every coefficient in the uncertain function is multilinear,
which means that if only one element of the vector q is kept free and the rest of the uncertain variables are fixed, that coefficient
would be affine in that free uncertain variable [10].

In the time domain, the multilinear uncertainty structure manifests as interval/independent matrices. This is a conse-
quence of the transformation that occurs when converting from a state-space representation to that of a characteristic function
representation or vice versa. Furthermore, the family is mathematically described according to eq. (8.6), where the operator
co denotes the operation of obtaining the convex hull.

Ω⊂ co
{
ω(i ), i = 1,2, . . . ,nv

}
(8.6)

As presented in [75], in the time domain, and as will be discussed again in the next chapter, the case of sub-polytopic or
multilinear uncertainty is comparatively easy to handle. That is, it can be said that the studied system is stable when the matrix
inequalities are satisfied for all the vertices. However, in cases when the vertices are too many which happens in the case of
"combinatorial explosion" of the extreme values of the uncertain parameters, describing the uncertainty using this paradigm
is no longer favourable. Rather, in these cases, it is preferred to describe uncertainties in a norm-bounded form, which is dis-
cussed in section 8.3.

8.2.4 Polynomic Uncertainty Structure
A polynomic uncertainty structure occurs when every coefficient in the uncertain function is polynomial in the elements of the
uncertain variables. This makes this uncertainty structure the most inclusive of the above mentioned structured. Of course,
it should be noted that there are more general uncertainty structures, but these are not relevant within the context of the
stability of LTI control systems.

8.3 Norm-bounded Uncertainty
As mentioned in the introduction of the chapter, the second of the two paradigms of parametric uncertainty that are discussed
in this chapter is norm-bounded uncertainty. In the case of norm-bounded uncertainty, the general representation is to have
the nominal value of the system matrices and add an uncertainty to it. For example, in the case of a retarded TDS of the form
in eq. (4.10), if the matrices A0 and A1 are considered to be uncertain, then their norm-bounded uncertainty representation is
given by:

A0 = A0n +∆A0

A1 = A1n +∆A1
(8.7)
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where the uncertain parts∆A0 and∆A1 are described with:(
∆A0 ∆A1

)
= EF

(
G0 G1

)
(8.8)

A more general way to describe the norm-bounded uncertainty is using the Linear Fractional Transformation. It is more
general because it allows to assume that the uncertainties are indepenedent. This more general representation is shown in
eq. (8.9). (

∆A0 ∆A1
)= E(I −F D)−1F

(
G0 G1

)
(8.9)

Of course, since there is a matrix inversion involved in eq. (8.9), it should be ensured that this inversion is well-posed.
There are several Lemmas that are helpful for dealing with norm-bounded uncertainty, and they are discussed in section

6.2.3 of [75]. Moreover, an even more general category of norm-bounded uncertainty is discussed in section 6.2.4 of [75] which
is block-diagonal uncertainty.
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9
Tools for Robust Stability Analysis

The goal of this chapter is to present a number of concepts, principles, and theorems that have been found in the literature,
which form a set of tools that are relevant for the robust stability analysis of uncertain TDSs. Several of those have been en-
countered in the case of the robust stability analysis of uncertain polynomials, and it will be explained here how they may be
applied to the case of uncertain quasipolynomials.

The structure of the chapter is as follows. First, a number of preliminaries are presented in section 9.1. Thereafter, the
approaches for robust stability of systems with uncertainty structures from different parts of the hierarchy are discussed in
section 9.2.

9.1 Preliminaries
Because of their relevance to the methods that will be discussed in section 9.2, some preliminary concepts and principles will
be explained in this section. Those are the concept of uncertain quasipolynomials, the concept of the value set, and the zero-
exclusion principle.

9.1.1 Uncertain Quasipolynomial
Consider the quasipolynomial defined in eq. (9.1).

f (λ) =
n∑

j=0

m∑
i=0

a j iλ
n− j e−τiλ =

m∑
i=0

pi (λ)e−τiλ where 0 = τ0 < τ1 < . . . < τm (9.1)

There are two vectors defined in association with the equation of the quasipolynomial in eq. (9.1): the coefficient vector
shown in eq. (9.2) and the exponent coefficient vector seen in eq. (9.3) [75].

a = (
a00, . . . , a0n , a10, . . . , a1n , . . . , amn

)
(9.2)

r = (
r1,r2, . . . ,rm

)
(9.3)

In the case of uncertainties, where the uncertain parameters belong to some uncertainty bounding set QF , the result is a
family of uncertain quasipolynomials, denoted by F :

F = {
f (s,a,r)|(a,r) ∈Q

}
(9.4)

However, as previously mentioned, uncertainties in the time-delays will not be considered. Only the cases where there are
uncertainties in the coefficient vector a will be of concern in this thesis. Thus, the elements of the coefficient vector may be in
terms of a number of uncertain elements, where such uncertain elements, in alignment with the notation in section 8.1, shall
be denoted by qi .

9.1.2 Value Set
The value set is an important tool for the robust stability analysis of uncertain functions. However, before explaining why it is
such an important concept, a definition of the value set, in the context of uncertain quasipolynomials, is presented in Definition
9.1. Informally stated, the value set is the range of an uncertain function at a particular imaginary frequency.

129
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Definition 9.1 (Value Set [75]): The value set of a family of quasipolynomials F is defined according to:

VF
(
λ0

)= {
f
(
λ0

) | f ∈ F
}

(9.5)

whereλ0 is a complex number and specifically a pure imaginary complex number at which the value set is evaluated.

One particular reason why the value set is considered to be important is that it is needed to check for the zero-exclusion
principle which is one of the more general principles that are applicable across the different uncertainty structures in the hier-
archy, and which will be explained in the following subsection. Moreover, since the zero-exclusion principle has been instru-
mental to the derivation of several other theorems, the value set, by extension, can be needed to check the conditions of other
theorems as well, as is the case, for example, for the Finite Inclusions Theorem. Another important, and often convenient,
property of the value set is that it is always two-dimensional, irrespective of the nature of the uncertain function or of the type
of uncertainty structure involved.

9.1.3 Zero-exclusion Principle
The zero-exclusion principle is an important principle in robust stability analysis because it provides a necessary and sufficient
condition for the stability of uncertain polynomials and quasipolynomials. In the context of TDSs, i.e. in the context of uncer-
tain quasipolynomials, the zero-exclusion principle is formulated as:

Theorem 9.1 (Zero-Exclusion Principle [75]): Let the family of uncertain quasipolynomials, F, satisfy the following assump-
tions:

1. Every member of the uncertain quasipolynomial F has a non-zero principal term.

2. The exponent coefficient vector of every member of the uncertain quasipolynomial has only positive components, that is
ri > 0, i = 1,2, . . . ,m for every f (λ) ∈ F .

3. There exist R > 0 and ε> 0 such that for every f (λ) in the uncertain quasipolynomial the corresponding quasipolynomial
ψ0(s) has no zeros of magnitude greater than R (if any) with real part greater than−ε.

4. The uncertainty boundedness set of the uncertain quasipolynomial F, which is denoted by QF , is compact and path-wise
connected.

Then, all members of F are Hurwitz stable if and only if

1. at least one member of F is Hurwitz stable

2. for every point s = jω on the imaginary axis, the value set, VF ( jω) computed at this point does not contain the origin of
the complex plane.

From the above, a number of concepts are mentioned that deserve attention. In the first point, it is mentioned that the
uncertain quasipolynomial is required to have a non-zero principal term. In order to explain what a principal term is, consider
again the description of the quasipolynomial appearing in eq. (9.1). Equation (9.1) is said to have a principal term if eq. (9.6)
holds [75].

deg
(
p0

)= n ≥ deg
(
pi

)
, i = 1,2, . . . ,m (9.6)

The importance of the principal term is that its existence is a necessary condition for the stability of a quasipolynomial,
which makes it a needed pre-requisite in the zero-exclusion principle. Indeed, in relation to the types of TDSs, retarded and
neutral TDSs satisfy eq. (9.6) and have principal terms [84]. Moreover, as mentioned earlier in chapter 4, in physical applica-
tions, only delays of either retarded or neutral type will be encountered. Therefore, it may be safely assumed that this assump-
tion holds for the cases studied in this thesis.

With regards to the third assumption, it is expressed by Gu et al. that this assumption is satisfied if a stricter version of the
first assumption is satisfied [75]. Specifically, this condition is given by eq. (9.7):

deg
(
p0

)= n > deg
(
pi

)
, i = 1,2, . . . ,m (9.7)

Thus, for example, eq. (9.8) has a principal term (since deg(λ3+6λ2+2) > deg
(
4λ+5

)
) and so does eq. (9.9) since deg(λ2+

6λ2 +5) = deg
(
7λ2 +5

)
; whereas, eq. (9.10) does not have a principal term because deg(λ2 +5λ+4) < deg

(
λ3 +8λ+9

)
.
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f (λ) = (λ3 +6λ2 +2)+e−λ·τ · (4λ+5
)

(9.8)

f (λ) = (λ2 +6λ2 +5)+e−λ·τ ·
(
7λ2 +5

)
(9.9)

f (λ) = (λ2 +5λ+4)+e−λ·τ ·
(
λ3 +8λ+9

)
(9.10)

As for the fourth assumption, it entails the path-wise connectedness of the uncertainty boundedness set QF . Formally
stated, path-wise connectedness is defined as:

Definition 9.2 (Path-wise Connectedness [10]): A set X ⊆ Rk is said to be path-wise connected if the following condition
holds: Given any two points x0, x1 ∈ X there is a continuous functionΦ : [0,1] → X such thatΦ(0) = x0 andΦ(1) = x1.

In words, this property means that for any two points in a set X , there is a continuous function defined over the interval
[0,1] and whose range is the considered set X , and for which those two points are the range of the function at the extremes of
the domain, i.e. at 0 and at 1.

From the two main conditions for stability, it can be seen that the second condition can be considered the essence of the
principle; it requires that the value sets of the system do not contain the origin which is also where the principle gets its name
from.

As a final remark on the zero-exclusion principle, it should be mentioned that it is, in general, hard to verify this principle
due to the fact that all the value sets associated with all possible values of ω must be checked that they do not contain the
origin. As a result, alternatives to this principle are often resorted to such as the theorems that will be discussed in the following
sections. This transition to other theorems is motivated by the concept of reduced test sets, which is explained next.

9.1.4 Test Set
In many of the theorems and tests that analyze for robust stability, it is required to check a certain condition for a typically
large set of elements. As a result, reduced test sets have been sought. The result of such attempts has been the emergence of
concepts and theorems such as the concept of convex directions, Kharitonov’s theorem, and the edge theorem. Since reduced
test sets are important for both uncertain polynomials and uncertain quasipolynomials (in the case of TDSs), the examples
mentioned of the concept of convex directions, Kharitonov’s theorem, and the edge theorem had been first encountered in
the case of uncertain polynomials. Their variants have been later developed for the case of uncertain quasipolynomials.

9.2 Stability Results Based on the Hierarchy of Uncertainty Structure
In this section, the robust stability analysis based on the hierarchy of uncertainty structures will be discussed. A discussion
on independent uncertainty structure is omitted as it is the lowest in the hierarchy. It will only be mentioned that Mori and
Kokame have extended Kharitonov’s theorem for the case of TDSs with an independent uncertainty structure [134].

9.2.1 Affine Uncertainty and the Edge Theorem
The edge theorem was originally developed for the stability of uncertain polynomials that have an affine uncertainty structure.
This theorem was later extended to the case of retarded uncertain quasipolynomials by Fu et al. [135]. These results were
further extended to the case of neutral TDS by the same researchers [136].

The theorem states that when the system can be described as a polytopic family of quasipolynomials, the stability of that
family can be deduced from the stability of the edges of its polytope. Specifically, the family is stable if and only if all the edges
of the family are stable.

Given the affine uncertainty structure, the quasipolynomial describing an edge can be determined from the linear combi-
nation of two vertex quasipolynomials pertaining to a particular edge, denoted by f0(s) and f1(s). This is shown in eq. (9.11).

fµ(λ) = (1−µ) f0(λ)+µ f1(λ), whereµ ∈ [0,1] (9.11)

Remark 9.1: The explanation for why the vertex quasipolynomials are the generators for the polytope is presented in the following.
Consider eq. (9.1) again. Since an affine uncertainty structure is considered, this means that each of the polynomials pi in eq. (9.1)
can be described as shown in eq. (9.12), where ci are known coefficients that are not affected by uncertainty and qk are generators
of the uncertainty bounding set Q .
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pi (λ) =
n∑

j=0
ci qiλ

i =
n∑

j=0
ci

(∑
k
µk qk

)
λi (9.12)

This means that eq. (9.1) can be written as follows:

f (λ) =
m∑

i=0
pi (λ)e−τiλ =

m∑
i=0

n∑
j=0

ci

(∑
k
µk qk

)
λi e−τiλ (9.13)

Some re-arrangements of eq. (9.13) lead to eq. (9.14).

f (λ) =
m∑

i=0
pi (λ)e−τiλ =∑

k
µk

 m∑
i=0

n∑
j=0

ci qkλi e−τiλ

 (9.14)

The term in the parentheses is the evaluation of the uncertain quasipolynomial at qk , which is a vertex of the uncertainty bounding
set. Moreover, the structure shown in eq. (9.14) is that of obtaining a convex combination. This means that every quasipolynomial
can be described as the convex combination of quasipolynomials that are evaluated at the vertices of the uncertainty bounding set,
Q

In the literature, Tuzcu et al. have used the edge theorem to extend the stability analysis approach based on the direct
method (explained in section 5.3.1.1) to the case of TDSs with polytopic uncertainty [137]. Along this line of research, it was
interesting to attempt to extend the analytic curve frequency sweeping approach with the edge theorem. As the analytic curve
frequency sweeping approach is more general than the direct method, this extension will lead to a robust stability analysis
technique in the frequency domain that is applicable to a wider group of TDSs, consisting of TDSs with commensurate delays.
To the knowledge of the author, this had not been previously presented in the literature. This extension has been made, and
its results have been presented in the attached article.

There exist graphical methods for checking the stability of a TDS with affine uncertainty. One such test has been proposed
by Fu et al., which allows to verify the results that are obtained based on a robust stability analysis method applied to a system
with polytopic uncertainty. The theorem reads as follows:

Theorem 9.2 ([135]): Consider a polytope of n-th order (real or complex) quasipolynomials P. E1, E2, . . .Et are used to denote the
edges of P and pk0(λ) and pk1(λ) to denote the vertix quasipolynomials of Ek . Then, P is stable if and only if the following two
conditions apply for every Ek , 1 ≤ k ≤ t :

• the frequency response plot of pk0( jω)/( jω+1)n does not enclose the origin.

• the plot of pk1( jω)
pk0( jω) does not cross (−∞,0] (the non-positive part of the real axis).

where n is is the order of the principal term.

An example of the plots obtained as part of these graphical tests are shown in fig. 9.1. These plots pertain to an example
presented in the paper of Tuzcu et al. which studies the robust stability of eq. (9.15) [137],

f (λ, q1, q2) =λ3+(7+q1)·λ2+(22+q2)·λ+(25+q1+2·q2)+
(
(3−q1 +q2) ·λ2 + (7+q1 −q2) ·λ+ (5−q2)

)
·e−τ·λ (9.15)

where each of q1 and q2 belong to [−1,1]. They have been generated for τ= 0.5s, as was done in the paper itself. Indeed,
these plots are in alignment with the robustly stable time-delay regions obtained in the paper, which have been determined
to be [0,0.5832]s, [0.9738,1.8561]s, and [2.7331,3.1289]s. This can be seen from the fact that the curves appearing on the left
side of fig. 9.1 do not encircle the origin, and the ones on the right side do not cross the negative real axis, which does indeed
support that the system eq. (9.15) is robustly stable for τ= 0.5s.

9.2.1.1 Convex Directions

Many of the concepts that had been developed and used in the stability analysis of uncertain polynomials have been revisited
and extended to the case of uncertain quasipolynomials, and the concept of convex directions is no exception to this. It has
been initially combined with the edge theorem to reduce the test set for the stability analysis of polytopic polynomials. It was
later extended by Kharitonov and Zhabko to the case of uncertain quasipolynomials [113].
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(a) The first test plot for the first edge of the polytope of quasipolynomials of eq. (9.15). (b) The second test plot for the first edge of the polytope of quasipolynomials of eq. (9.15).

(c) The first test plot for the second edge of the polytope of quasipolynomials of eq. (9.15). (d) The second test plot for the second edge of the polytope of quasipolynomials of
eq. (9.15).

(e) The first test plot for the third edge of the polytope of quasipolynomials of eq. (9.15). (f) The second test plot for the third edge of the polytope of quasipolynomials of eq. (9.15).

(g) The first test plot for the fourth edge of the polytope of quasipolynomials of eq. (9.15). (h) The second test plot for the fourth edge of the polytope of quasipolynomials of
eq. (9.15).

Figure 9.1: Plots showing the results of the tests for frequenciesω ∈ [0,100] rad/s (Note that the red diamond indicates the point corresponding toω= 0 rad/s).



134 9. Tools for Robust Stability Analysis

Since the edge theorem is relied upon in the stability analysis of polytopic quasipolynomials, the test set is reduced to an-
alyzing the stability of the edges of the polytope. A convex direction for such family of quasipolynomials is a quasipolynomial,
usually denoted by g (s), such that the stability of f0(s) and f0(s)+ g (s) ensures the stability of fµ(s) for all µ ∈ [0,1]. That is
why, it can be seen that finding a convex direction greatly reduces the test set of the family of polytopic quasipolynomials.

Theorem 9.3 (Necessary and Sufficient Conditions for a Convex Direction [75, 113]): A quasipolynomial g(s) is a convex
direction for the set of Hurwitz stable quasipolynomials of the form f (λ) = ∑m

i=0 pi (λ)e−τiλ if and only if for allω > 0 where
g ( jω) 6= 0 the following inequality holds:

∂arg(g ( jω))

∂ω
≤−τm

2
+

∣∣∣∣∣sin
(
2arg(g ( jω))+τmω

)
2ω

∣∣∣∣∣ (9.16)

9.2.1.2 Finite Inclusions Theorem

The Finite Inclusions Theorem emerged as the byproduct of the Finite Nyquist Theorem as well as the Zero-Exclusion Principle.
It was originally developed for the case of uncertain polynomials, and it has been extended to the case of uncertain quasipoly-
nomials with independent and affine uncertainty structures, by Santos et al. [138–140]. In words, the theorem states that if it
is possible to fit the value sets of the uncertain quasipolynomial inside sectors vertexed at the origin, then the system is stable.

9.2.2 Multilinear Uncertainty and the Mapping Theorem
While there have been discussions on the robust stability of interval and polytopic quasipolynomials, to the knowledge of the
author, the discussion on the robust stability of multilinear and polynomic quasipolynomials has been mainly lacking. That
is why, the literature on the robust stability of multilinear and polynomic polynomials is referred to as a starting point for the
analysis of uncertain quasipolynomials with such uncertainty structures.

It is known that in the case of multilinear uncertainty structure that the vertex and edge results cannot be used for studying
the robust stability of uncertain functions with multilinear uncertainty. For example, it may be the case that the system is
stable for the parameters on the edges of the uncertainty bounding set. However, there may still be a point in the interior of
the uncertainty bounding set such that the system is unstable.

This problem can be dealt with using the mapping theorem, which state states that for a set of uncertain parameters qi

(the set of which is denoted by Q) and a multilinear function f, such that f (Q) = { f (q) : q ∈Q}, the convex hull of f (Q) is equal
to the convex hull of the set { f (qi )} [10]. This is graphically explained with fig. 9.2 [10]. Formally, this is expressed as follows:

Theorem 9.4 (The Mapping Theorem [10]): SupposeQ ⊂ R` is a box with extreme points
{

q i
}

and f : Q → Rk is multilinear.
Let

f (Q) = { f (q) : q ∈Q} (9.17)

denote the range of f. Then it follows that

conv f (Q) = conv

{
f
(
q i

)}
(9.18)

Such overbounding of the value set with a convex polytope means that the edge theorem can now be applied to the over-
bounded value set. Consider, for example, the multilinear polynomial given by eq. (9.19),(

5+2q1 −q2 +3q1q2
)+ (

7−6q1 −5q2 +10q1q2
)
λ where q1, q2 ∈ [0,1] (9.19)

The value set for this function for some imaginary value, sayλ0 = 1 j , is constructed. The result is shown as the blue scatter
plot in fig. 9.3. Moreover, the convex hull of the evaluation at the extreme points of the bounding uncertainty set is shown in
red. It is clear that the convex hull of the blue region in fig. 9.3 is indeed the red plot.

This is an example involving an uncertain polynomial. However, the mapping theorem was defined for generic functions,
as can be seen in Theorem 9.4. Therefore, it is applicable to uncertain quasipolynomials as well. This will be demonstrated
with an example that is similar to the one in eq. (9.19).(

5+2q1 −q2 +3q1q2
)+ (

7−6q1 −5q2 +10q1q2
)
λ ·e−0.1·λ where q1, q2 ∈ [0,1] (9.20)

The value set of this quasipolynomial forλ= 1 j can be seen as the scatter plot shown in fig. 9.4. Moreover, the red contour
is formed by the convex hull of the vertex quasipolynomials of this family of uncertain quasipolynomials. It is clear that indeed
this convex hull is also the convex hull of the value set.
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Figure 9.2: An illustration of the implication of the mapping theorem [10]

Figure 9.3: Value set of the function eq. (9.19) atλ= 1 j

It should be noted that this solution comes at the cost of conservativeness. This means that the stability of the overbounded
region is only sufficient for the stability of the actual range of the uncertain quasipolynomial. Hence, if the overbounded sys-
tem is unstable, then a conclusion cannot be made about the stability of the system.

9.2.3 Polynomic Uncertainty
As in the case of dealing with a multilinear uncertainty structure, here too, the problem needs to be transformed into that
of analyzing the stability of an uncertain system with an affine uncertainty structure, so that it is possible to apply the edge
theorem.

It has already been established that a system with multilinear uncertainty can be overbounded with a system of an affine
uncertainty structure. Thus, for the case of a system with polynomic uncertainty, only the means to transform a system with a
polynomic uncertainty structure to that of a system with a multilinear uncertainty structure needs to be found. The solution to
this problem, in the case of uncertain polynomials, is the following theorem which was proposed by Sideris and Sanchez Pena
[141].

Theorem 9.5 ([141] as seen in [10]): Consider the family of polynomials P = {p(·, q) : q ∈Q} with p(s, q) having polynomic
uncertainty structure and uncertainty bounding set Q which is a polytope. Then there exists a second family of polynomials P̃ =
{p̃(·, q̃) : q̃ ∈ Q̃} such that p̃(s, q̃) has multilinear uncertainty structure Q̃ is a polytope and

P̃ =P (9.21)

Although this theorem has been developed for families of polynomials, this theorem may also be used to obtain an over-
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Figure 9.4: Value set of the function eq. (9.20) atλ= 1 j

bounding set of the polynomic family of quasipolynomials. The reason for this is that a quasipolynomial is the sum of the
product of polynomial and exponential terms. Thus, if the polynomic polynomials are transformed into equivalent polynomi-
als with a multilinear structure, then a quasipolynomial with multilinear uncertainty is obtained.

In order to demonstrate how this can be done, consider the example uncertain quasipolynomial shown in eq. (9.22), which
has a polynomic uncertainty structure due to the term q2

2 .(
5+2q1 −q2

2 +3q1q2

)
+ (

7−6q1 −5q2 +10q1q2
)
λ ·e−0.1·λ where q1, q2 ∈ [0,1] (9.22)

The value set of eq. (9.22) is shown in fig. 9.5. Clearly, the convex hull of the vertex quasipolynomials (the red contour) does
not contain all of the value set (the blue scatter plot). In other words, unlike in the cases of affine and multilinear uncertainty
structures, the vertex quasipolynomials are not the generator quasipolynomials, where the generator quasipolynomials are
quasipolynomials that can be used to construct the convex hull of the family of quasipolynomials.

In order to be able to apply the edge theorem, the generators of the convex hull of the value set need to be determined,
and this is facilitated with Theorem 9.5. Based on the theorem, the following transformation is obtained:

q2
2 → q̃2 · q̃3 (9.23)

This means that the quasipolynomial eq. (9.22) is equivalent to the uncertain quasipolynomial shown in eq. (9.24).(
5+2q1 − q̃2q̃3 +3q1q̃2

)+ (
7−6q1 −5q̃2 +10q1q̃2

)
λ ·e−0.1·λ where q1, q̃2 = q̃3 ∈ [0,1] (9.24)

Based on this reformulation, the new obtained bounding contour contains the entire value set. This can be seen in fig. 9.6.

Remark 9.2 (Refinement for Tighter Bound on the Value Set): Note that, in the construction of the convex hull, the relation
q̃2 = q̃3 is not accounted for. In order to heed this dependence, a concept from interval analysis which is refinement can be used.
Refinement entails that breaking down the uncertainty bounding set into parts and performing the analysis on these parts will
lead to less conservative results than performing the stability analysis for the original uncertainty bounding set.
For example, consider eq. (9.24) again. Its bounding set isQ : q1, q̃2 = q̃3 ∈ [0,1]. If this bounding set is split up into two bounding
setsQa : q1 ∈ [0,0.5], q̃2 = q̃3 ∈ [0,1] andQb : q1 ∈ [0.5,1], q̃2 = q̃3 ∈ [0,1], then the obtained value sets forλ= 1 j rad/s are
shown in fig. 9.7a and fig. 9.7b. From these figures, it is seen that the union of the regions enclosed by the red contours in fig. 9.7a and
fig. 9.7b is smaller than the region enclosed by the red contour in fig. 9.6. This means that the intersection of the obtained stability
results from performing the analyses for Qa and Qb is expected to be less conservative than the result obtained from performing
the stability analysis for Q .

Remark 9.3 (Gridding Approach): Another approach which can be applied is to grid the uncertainty set and perform the stability
analysis at each grid point in the stability set. This approach will be used to verify the results of the robust stability analysis. Albeit
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Figure 9.5: Value set of eq. (9.22) forλ= 1 j rad/s.

Figure 9.6: Value set of eq. (9.24) at forλ= 1 j rad/s.

(a) Value set of eq. (9.24) at forλ= 1 j rad/s for q1 ∈ [0.5,1] and q̃2 , q̃3 ∈ [0.5,1]. (b) Value set of eq. (9.24) at forλ= 1 j rad/s for q1 ∈ [0.5,1] and q̃2 , q̃3 ∈ [0,0.5].

computationally intensive, it is important to make in order to verify the correctness of the implemented robust stability analysis
methods.
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10
Proposed Stability Results for Neutral Time-delay

Systems

In this chapter, an extension of the previously presented stability results summarized in Theorem 6.7, whose derivation was
reviewed in section 6.6, to the case of neutral TDSs is proposed. As a first step, consider a neutral TDS of the form shown in
eq. (10.1).

ẋ(t )−C ẋ (t −τ) = A0x(t )+ A1x (t −τ)
x(t ) =φ(t ), t ∈ [−τ,0

] (10.1)

It should be noted that analyzing the stability of neutral TDSs requires taking into account two particular aspects. First, for
the case of neutral TDSs, there is an additional necessary condition for stability which is that the strong stability of the delay-
difference operator needs to be ensured. This can be checked using the Schur-Cohn stability criterion on the matrix C. This
means that the delay-difference operator of the neutral TDS is strongly stable if the eigenvalues of the matrix C lie within a
unit circle. This is expressed in eq. (10.2).

‖λi (C )‖ < 1 (10.2)

The second aspect that needs to be taken into account is that the complete Lyapunov-Krasovskii functional for the case of
neutral TDSs is slightly different than that of a retarded TDS. Several complete Lyapunov functionals for neutral TDSs have
been derived. For example, in [124] and [125], the functional shown in eq. (10.3) is used.

V (xt ) =[
x(t )−C x (t −τ)

]> ·P · [x(t )−C x (t −τ)
]+2 · [x(t )−C x (t −τ)

]> ∫ 0

−τ
Q(θ)xt (θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x>

t

(
θ1

)
T

(
θ1,θ2

)
xt

(
θ2

)
dθ1dθ2 +

∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

(10.3)

However, according to Xu-guang et al. [118], the functional is not general enough. Instead, they propose to use the func-
tional shown in eq. (10.4) which includes an additional term shown at the end of the equation, which is

∫ 0
−τ ẋ>

t (θ)R(θ)ẋt (θ)dθ.

V (xt ) =[
x(t )−C x (t −τ)

]> ·P · [x(t )−C x (t −τ)
]+2 · [x(t )−C x (t −τ)

]> ∫ 0

−τ
Q(θ)xt (θ)dθ

+
∫ 0

−τ

∫ 0

−τ
x>

t

(
θ1

)
T

(
θ1,θ2

)
xt

(
θ2

)
dθ1dθ2 +

∫ 0

−τ
x>

t (θ)S(θ)xt (θ)dθ

+
∫ 0

−τ
ẋ>

t (θ)X (θ)ẋt (θ)dθ

(10.4)

The same discretizations for the matrices Q, T, and S, which were used in the case of retarded TDSs and as was done in [110],
will be taken here as well.

141
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Q(θ) =
N∑

i=0
Qi Li (θ)

T (θ,λ) =
N∑

i=0

N∑
j=0

Li (θ)L j (λ)Ti j

S(θ) = S + (τ+θ)R

(10.5)

Similar to the case of matrix S, a piece-wise linear discretization is applied to matrix X (θ), as shown in eq. (10.6):

X (θ) = X + (τ+θ)Y (10.6)

In the following, the expansion and the manipulation of the terms in eq. (10.4) to obtain their quadratic forms will be
presented. An augmented state is proposed, denoted by ξN , and its definition is shown in eq. (10.7). It will become clear why
such an augmentation is needed.

ξN (t ) =



xt (0)
xt (−τ)

1
τ

∫ 0
−τL0(s)xt (s)ds

...
1
τ

∫ 0
−τLN (s)xt (s)ds



>

, N ≥ 0 (10.7)

The derivation of the quadratic form for term 1 from eq. (10.4), in terms of the augmented state ξN , is shown in eq. (10.8).

[x(t )−C x(t −τ)]>P [x(t )−C x(t −τ)]

=
[

x>(t )−x>(t −τ)C>
]

P [x(t )−C x(t −τ)]

=x>(t )P x(t )−x>(t )PC x(t −τ)−x>(t −τ)C>P x(t )+x>(t −τ)C>PC x(t −τ)

=ξ>N


P 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

ξN +ξ>N


0 −PC 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

ξN +ξ>N


0 0 · · · 0

−C>P 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

ξN +ξN


0 0 0 0 0
0 C>PC 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 · · · 0

ξN

=ξ>N


P −PC 0 · · · 0

−C>P C>PC 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

ξN

(10.8)

As for term 2 of eq. (10.4), obtaining its quadratic form is shown in eq. (10.9).
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2 · [x(t )−C x (t −τ)
]> ∫ 0

−τ
Q(θ)xt (θ)dθ

= 2 · x>(t )
∫ 0

−τ
Q(θ)xt (θ)dθ−2x> (t −τ)C>

∫ 0

−τ
Q(θ)xt (θ)dθ

= 2 · x>(t )
∫ 0

−τ

(
N∑

i=0
Qi Li (θ)

)
xt (θ)dθ−2x> (t −τ)C>

∫ 0

−τ

(
N∑

i=0
Qi Li (θ)

)
xt (θ)dθ

= 2ξ>N


0 0 τ ·Q0 τ ·Q1 . . . τ ·QN

0 0 0 0 . . . 0
...

...
...

...
...

0 0 0 0 · · · 0

ξN −2ξ>N


0 0 0 0 . . . 0
0 0 τ ·C>Q0 τ ·C>Q1 . . . τ ·C>QN

0 0 0 0 . . . 0
...

...
...

... 0
0 0 0 0 . . . 0

ξN

= ξ>N


0 0 2τ ·Q0 2τ ·Q1 . . . 2τ ·QN

0 0 −2τ ·C>Q0 −2τ ·C>Q1 . . . −2τ ·C>QN
...

...
...

...
...

0 0 0 0 · · · 0

ξN

(10.9)

Making this contribution symmetric, the expression in eq. (10.10) is obtained.

ξ>N



0 0 τ ·Q0 τ ·Q1 . . . τ ·QN

0 0 −τ ·C>Q0 −τ ·C>Q1 . . . −τ ·C>QN

τ ·Q>
0 −τ ·Q>

0 C 0 0 . . . 0
τ ·Q>

1 −τ ·Q>
1 C 0 0 · · · 0

...
...

...
...

...
τ ·Q>

N −τ ·Q>
N C 0 0 · · · 0


ξN (10.10)

As for term 3 in eq. (10.4), the contribution is the same as was in the case of the retarded TDS, and it is shown in eq. (10.11).

ξ>N G>
N


0 0 . . . 0
0 T00 . . . T0N
...

...
...

0 TN 0 . . . TN N

GNξN (10.11)

where

GN (τ) =
[

I 0n 0n,n(N+1)

0n(N+1),n 0n(N+1),n τIn(N+1)

]
(10.12)

At this point, it is possible to group the contributions of the first three terms of eq. (10.4). Thus, the expression for may be
rewritten as shown in eq. (10.13).

VN2 = ξ>N PN2ξN +
∫ 0

−τ
x>(θ)(S + (τ+θ)R)x(θ)dθ+

∫ 0

−τ
ẋ>(θ)(X + (τ+θ)Y )ẋ(θ)dθ (10.13)

where
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PN2 =


P −PC 0 · · · 0

−C>P C>PC 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

+



0 0 τ ·Q0 τ ·Q1 . . . τ ·QN

0 0 −τ ·C>Q0 −τ ·C>Q1 . . . −τ ·C>QN

τ ·Q>
0 −τ ·Q>

0 C 0 0 . . . 0
τ ·Q>

1 −τ ·Q>
1 C 0 0 · · · 0

...
...

...
...

...
τ ·Q>

N −τ ·Q>
N C 0 0 · · · 0



+G>
N


0 0 . . . 0
0 T00 . . . T0N
...

...
...

0 TN 0 . . . TN N

GN

(10.14)

For term 4 of eq. (10.4), the Bessel-Legendre inequality is applied (see Lemma 6.5). Moreover, some modifications to ac-
count for the fact that the expression needs to be in terms of ξN (t ), rather than x̃N (t ), are made.

∫ 0

−τ
x>(s)Sx(s)ds ≥ 1

τ
x̃>

N (t )diag(0,S,3S, . . . , (2N +1)S)x̃>
N (t )

= 1

τ
ξ>N (t )G>

N diag(0,S,3S, . . . , (2N +1)S)GNξN

(10.15)

which is also equivalent to

∫ 0

−τ
x>(s)Sx(s)ds ≥ 1

τ
ξ>N (t )diag(0,0,S,3S, . . . , (2N +1)S)ξN (10.16)

As for term 5 in eq. (10.4), based on eq. (10.6)

∫ 0

−τ
ẋ>

t (θ)X (θ)ẋt (θ)dθ =
∫ 0

−τ
ẋ>

t (θ)[X + (τ+θ)Y ]ẋt (θ)dθ =
∫ 0

−τ
ẋ>

t (θ)X ẋt (θ)dθ+
∫ 0

−τ
ẋ>

t (θ)[(τ+θ)Y ]ẋt (θ)dθ (10.17)

With regards to the first term in eq. (10.17)

∫ 0

−τ
ẋ>

t (θ)X ẋt (θ)d s Ê 1

τ


∫ 0
−τL0(s)ẋ(s)d s

...∫ 0
0 LN (s)ẋ(s)d s


>

diag(X ,3X , . . . , (2N +1)X )


∫ 0
−τL0(s)ẋ(s)d s

...∫ 0
0 LN (s)ẋ(s)d s


= 1

τ
˙̃x>

N diag
(
0, X ,3X , . . . , (2N +1)X

)
˙̃xN

= 1

τ
ξ>N H>

N diag
(
0, X ,3X , . . . , (2N +1)X

)
HNξN

(10.18)

The contributions from the terms can be combined, and the result is eq. (10.19).

VN2

(
xt

)≥ ξ>NΦ+
N2

(τ)ξN +
∫ 0

−τ
x>

t (θ)[(τ+θ)R]xt (θ)dθ+
∫ 0

−τ
ẋ>

t (θ)[(τ+θ)Y ]ẋt (θ)dθ (10.19)

where
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Φ+
N2

(τ) =


P −PC 0 · · · 0

−C>P C>PC 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

+



0 0 τ ·Q0 τ ·Q1 . . . τ ·QN

0 0 −τ ·C>Q0 −τ ·C>Q1 . . . −τ ·C>QN

τ ·Q>
0 −τ ·Q>

0 C 0 0 . . . 0
τ ·Q>

1 −τ ·Q>
1 C 0 0 · · · 0

...
...

...
...

...
τ ·Q>

N −τ ·Q>
N C 0 0 · · · 0



+G>
N


0 0 . . . 0
0 T00 . . . T0N
...

...
...

0 TN 0 . . . TN N

GN + 1

τ
G>

N diag(0,S,3S, . . . , (2N +1)S)GN

+ 1

τ
H>

N diag
(
0, X ,3X , . . . , (2N +1)X

)
HN

(10.20)
The positive definiteness of the expression for the lower bound in eq. (10.19) needs to be ensured. Towards this goal, the

following result is proposed:

Proposition 10.1 (Lyapunov Functional Condition): The positive definiteness of the Lyapunov Functional Condition V is en-
sured when the following expressions hold: 

Φ+
N2

(τ) > 0

R > 0

Y > 0

(10.21)

whereΦ+
N2

(τ) is defined in eq. (10.20).

Taking the derivative of eq. (10.13), eq. (10.22) is obtained.

V̇N2

(
xt

)= 2ξ>N PN2 ξ̇N +x>
t (0)(S +τR)xt (0)−x>

t (−τ)Sxt (−τ)−
∫ 0

−τ
x>

t (s)Rxt (s)ds

+ ẋ>
t (0)(X +τY )ẋt (0)− ẋ>

t (−τ)X ẋt (−τ)−
∫ 0

−τ
ẋ>

t (s)Y ẋt (s)ds

(10.22)

The expression for ξ̇N (t ) is based on taking the derivative of eq. (10.7) with respect to time. This leads to eq. (10.23).

ξ̇N (t ) =



ẋt (0)
ẋt (−τ)

1
τ

∫ 0
−τL0(s)ẋt (s)d s

...
1
τ

∫ 0
−τLN (s)ẋt (s)d s

 , N ≥ 0 (10.23)

By applying integration by parts and making use of the properties of the Legendre polynomials, then
∫ 0
−τLk (s)ẋt (s)d s

evaluates to the expression shown in eq. (10.24).∫ 0

−τ
Lk (s)ẋt (s)d s = Lk (s)xt (s)

∣∣∣∣0

−τ
−

∫ 0

−τ
Lk (s)xt (s)d s

= Lk (0)xt (0)−Lk (−τ)xt (−τ)−
∫ 0

−τ
L·

k (s) · xt (s)d s

= xt (0)+ (−1)k+1xt (−τ)−
k−1∑
i=0

(2i +1)

τ

(
1− (−1)k+i

)∫ 0

−τ
Li (s)xt (s)d s

= ΓN (k)ξN (t )

(10.24)

Moreover, ẋt (0) can be expressed according to eq. (10.25).

ẋt (0) = A0xt (0)+ A1xt (−τ)+C · ẋt (−τ) (10.25)
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Incorporating those results into the expression for ξ̇N (t ) from eq. (10.23), the following is obtained.

ξ̇N (t ) =


A0xt (0)+ A1xt (−τ)+C · ẋt (−τ)

ẋt (−τ)
1
τΓN (0)ξN (t )

...
1
τΓN (N )ξN (t )

 , N ≥ 0 (10.26)

From eq. (10.26), it can be seen that another augmentation of the state vector is due. In particular, ẋt (−τ) has to be added
to the vector ξN (t ) to form a new vector which shall be denoted asψN (t ).

ψN (t ) =



xt (0)
xt (−τ)
ẋt (−τ)

1
τ

∫ 0
−τL0(s)xt (s)ds

...
1
τ

∫ 0
−τLN (s)xt (s)ds


, N ≥ 0 (10.27)

In order to rewrite the expression for V̇N2

(
xt

)
in terms ofψN (t ), the transformation betweenψN (t ) and ξN (t ) has to be

established. This transformation, denoted by JN , is shown in eq. (10.28).

ξN (t ) = JNψN (t )

JN =
[

I2n,2n 02n,n 02n,n(N+1)

0n(N+1),2n 0n(N+1),n In(N+1),n(N+1)

]
(10.28)

Note, that the transformation, in contrast to GN , does not depend on τ. Rewriting the expression for ξ̇N (t ) in terms of
ψN (t ) leads to eq. (10.29).

ξ̇N (t ) =


A0xt (0)+ A1xt (−τ)+C · ẋt (−τ)

ẋt (−τ)
1
τΓN (0)JNψN (t )

...
1
τΓN (N )JNψN (t )

 , N ≥ 0

=



[
A0 A1 C 0n,n(N+1)

]
ψN (t )[

0n,2n In,n 0n,n·(N+1)

]
ψN (t )

1
τΓN (0)JNψN (t )

...
1
τΓN (N )JNψN (t )


, N ≥ 0

=


A0 A1 C 0n,n(N+1)

0n,2n In,n 0n,n·(N+1)
1
τΓN (0)JN

...
1
τΓN (N )JN

ψN (t ) , N ≥ 0

(10.29)

Thus, the first term in the expression for V̇N2

(
xt

)
, shown in eq. (10.22), becomes:
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2ξ>N PN2 ξ̇N = 2(JNψN (t ))>PN2


A0 A1 C 0n,n(N+1)

0n,2n In,n 0n,n·(N+1)
1
τΓN (0)JN

...
1
τΓN (N )JN

ψN (t )

= 2ψ>
N (t )J>N PN2


A0 A1 C 0n,n(N+1)

0n,2n In,n 0n,n·(N+1)
1
τΓN (0)JN

...
1
τΓN (N )JN

ψN (t )

= 2ψ>
N (t )

1

2
He

J>N PN2


A0 A1 C 0n,n(N+1)

0n,2n In,n 0n,n·(N+1)
1
τΓN (0)JN

...
1
τΓN (N )JN



ψN (t )

=ψ>
N (t )He

J>N PN2


A0 A1 C 0n,n(N+1)

0n,2n In,n 0n,n·(N+1)
1
τΓN (0)JN

...
1
τΓN (N )JN




︸ ︷︷ ︸

Contribution 1

ψN (t )

(10.30)

Re-writing the second term of eq. (10.22), in terms of the new vectorψN (t ), eq. (10.31) is obtained.

x>
t (0)(S +τR)xt (0) =ψ>

N (t )


S +τR 0 · · · 0

0 0 · · · 0
...

...
...

0 0 · · · 0


︸ ︷︷ ︸

Contribution 2

ψN (t ) (10.31)

As for the third term of V̇N2

(
xt

)
(eq. (10.22)):

−x>
t (−τ)Sxt (−τ) =−ψ>

N (t )


0 0 0 . . . 0
0 S 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0

ψN (t ) =ψ>
N (t )


0 0 0 . . . 0
0 −S 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


︸ ︷︷ ︸

Contribution 3

ψN (t ) (10.32)

With regards to the integral terms −∫ 0
−τ x>

t (s)Rxt (s)ds and −∫ 0
−τ ẋ>

t (s)Y ẋt (s)ds, they are overapproximated with the
Bessel-Legendre inequality (Lemma 6.5).

−
∫ 0

−τ
x>

t (s)Rxt (s)ds ≤−1

τ
x̃>

N (t )diag
(
0,RN

)
x̃N (t )

=ψ>
N (t )

(
−1

τ
ξ>N (t )G>

N (t )diag
(
0,RN

)
GN (t )ξN (t )

)
︸ ︷︷ ︸

Contribution 4

ψN (t )
(10.33)

As for the term −∫ 0
−τ ẋ>

t (s)Y ẋt (s)ds, the following inequality holds.
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−
∫ 0

−τ
ẋ>

t (s)Y ẋt (s)ds ≤ψ>
N

(
−1

τ
J>N H>

N diag
(
0,YN

)
HN JN

)
︸ ︷︷ ︸

Contribution 7

ψN (10.34)

Note, that the contribution from the above equation has been denoted by Contribution 7 because it pertains to the last
term, which is the seventh term in eq. (10.22).

As for the fifth term of V̇N2

(
xt

)
(eq. (10.22)), the result in eq. (10.35) is obtained.

ẋ>
t (0)(X +τY )ẋt (0) = [

A0xt (0)+ A1xt (−τ)
]> (X +τY )

[
A0xt (0)+ A1xt (−τ)

]
=

[
x>

t (0)A>
0 +x>

t (−τ)A>
1

]
(X +τY )

[
A0xt (0)+ A1xt (−τ)

]
= x>

t (0)A>
0 (X +τY )A0xt (0)+x>

t (0)A>
0 (X +τY )A1xt (−τ)

+x>
t (−τ)A>

1 (X +τY )A0xt (0)+x>
t (−τ)A>

1 (X +τY )A1xt (−τ)

=ψ>
N


A>

0 (X +τY )A0 A>
0 (X +τY )A1 0 · · · 0

A>
1 (X +τY )A0 A>

1 (X +τY )A1 0 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 . . . 0


︸ ︷︷ ︸

Contribution 5

ψN

(10.35)

As for the sixth term of V̇N2

(
xt

)
(eq. (10.22)), the contribution in eq. (10.36) is obtained.

−ẋ>
t (−τ)X ẋt (−τ) =−[

A0xt (−τ)+ A1xt (−2τ)
]> X

[
A0xt (−τ)+ A1xt (−2τ)

]
=−

[
x>

t (−τ)A>
0 +x>

t (−2τ)A>
1

]
X

[
A0xt (−τ)+ A1xt (−2τ)

]
=−x>

t (−τ)A>
0 X A0xt (−τ)−x>

t (−τ)A>
0 X A1xt (−2τ)

−x>
t (−2τ)A>

1 X A0xt (−τ)−x>
t (−2τ)A>

1 X A1xt (−2τ)

=ψ>
N


0 0 0 0 · · · 0
0 −A>

0 X A0 −A>
0 X A1 0 . . . 0

0 −A>
1 X A0 −A>

1 X A1 0 · · · 0
...

...
...

...
...

0 0 0 0 . . . 0


︸ ︷︷ ︸

Contribution 6

ψN

(10.36)

Assimilating these contributions, the following proposition that ensures the negative definiteness condition of the deriva-
tive of the Lyapunov functional is obtained:

Proposition 10.2 (Negative Definiteness Condition): If eq. (10.37) holds, then the negative definiteness of the Lyapunov func-
tional is ensured.

V̇N2 (t ) ≤ψ>
N

(
Contribution 1+Contribution 2+Contribution 3+Contribution 4+

Contribution 5+Contribution 6+Contribution 7
)
ψN < 0

(10.37)

Those two propositions are then combined into a stability result for the neutral TDS which was defined in eq. (10.1).

Proposition 10.3 (New Stability Results for Neutral TDSs): For a given N and a constant delay τ, if matrices P , S, X ∈ Sn ,
and R , Y ∈ S+

n and T00 . . .TN N such that Ti j = T j i and Q0 . . .QN ∈ Rn are determined such that eq. (10.21) and eq. (10.37)
hold, then the system eq. (10.1) is asymptotically stable for this particular time-delay value.

The correctness and effectiveness of the proposed stability results is verified through applying the obtained stability re-
sults to an example from the literature. Specifically, consider the following example shown in eq. (10.38), which was taken from
the paper of Han et al. [124].



149

Table 10.1: Comparison of results from previous stability results in the literature for the stability of eq. (10.38) for different values of c.

c 0 0.1 0.3 0.5 0.75 0.9

[142] 4.47 3.49 2.06 1.14 0.54 0.13
[143] 4.35 4.33 4.10 3.62 2.73 0.99
[144] 4.47 4.35 4.13 3.67 2.87 1.41
[145] 4.47 4.42 4.17 3.69 2.87 1.41
[146] (N=2)
[146](N=3)
[146] (N=4)
[146] (N=5)

5.72
5.97
6.06
6.10

5.61
5.84
5.93
5.97

5.18
5.39
5.46
5.49

4.46
4.61
4.67
4.69

3.34
3.44
3.47
3.50

1.52
1.54
1.54
1.55

[124] 6.17 6.03 5.54 4.73 3.5 1.57
Proposition 3
(N = 2) 6.17 6.03 5.54 4.73 3.5 1.57

A0 =
[

−2 0
0 −0.9

]
A1

[
−1 0
−1 −1

]
C =

[
c 0
0 c

]
|c| < 1 (10.38)

Applying the stability results of Proposition 3 with an N that is as small as 2 leads to the results obtained by Han et al.
A comparison of those results with previously published results are shown in table 10.1. Moreover, the evolution of the con-
straint residuals from the implementation of the proposition and its application to this example are shown in fig. 10.1, fig. 10.2,
fig. 10.3, fig. 10.4, fig. 10.5, and fig. 10.6 for values c equal to 0, 0.1, 0.3, 0.5, 0.75, and 0.9, respectively.

Figure 10.1: Plots of the evolution of the constaint residuals for case c = 0.
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Figure 10.2: Plots of the evolution of the constaint residuals for case c = 0.1.

Figure 10.3: Plots of the evolution of the constaint residuals for case c = 0.3.

Figure 10.4: Plots of the evolution of the constaint residuals for case c = 0.5.
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Figure 10.5: Plots of the evolution of the constaint residuals for case c = 0.75.

Figure 10.6: Plots of the evolution of the constaint residuals for case c = 0.9.
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11
Conclusions and Recommended Future Research

In this chapter, the progress made with this thesis work is reflected upon. Specifically, the progress made in addressing the
research (sub)questions is reported in section 11.1. Based off this reflection, a number of recommendations are made for future
research in section 11.2.

11.1 Synopsis
The work that was presented in this thesis targeted the research aim which is to establish the means to determine the stable
time-delay regions of an incremental control system, while considering actuator dynamics and uncertainties.

The report comprises of a large portion dedicated to a literature review which began in chapter 2. This chapter consisted of
a review of the incremental control technique which is INDI, as well as its "prequel" NDI. In doing so, the steps of constructing
an INDI controller were established, and Q1.1 (What are the steps involved in constructing an INDI controller?) was addressed.

The goal of the chapter that followed, chapter 3, was to present a commonly-used model of a digital computer, and there-
after, to show different ways with which to model sampled-data systems. The models that were found were either entirely in
continuous time or entirely in discrete time. Since it is intended to employ the time-delay framework, the model was required
to be in continuous time. The discussion based on the work of Noijen et al. showed that the fidelity of two particular models
that were modeled fully in continuous were higher than those of others. Based on those models, two generic block diagrams
for an incremental control system were established. Therefore, the content of the chapter can be seen as an acceptable answer
to Q1.2 (What are the possibilities for modeling a sampled-data system as a fully continuous control system?).

With the knowledge about INDI and about modeling sampled-data systems, it became evident how to construct the closed-
loop formulation for the control system. Thus, chapter 2 and chapter 3 had successfully addressed the first main research ques-
tion, Q1 (What are the ways to represent the nonlinear system and the incremental controller, which is implemented on a digital
computer, in order to obtain the closed-loop formulation in the form of a linear TDS?).

In chapter 4, an introduction to TDSs was provided. Specifically, the chapter discussed ways to represent TDSs, a taxonomy
for the classification of TDSs, and some important properties of TDSs. Thus, this chapter addressed the first sub-question
of the second main research question, Q2.1 (What are TDSs?). The following chapter, chapter 5, focused on answering the
sub-question that followed, Q2.2 (What techniques can be used for the stability analysis of linear TDSs in the frequency domain?),
by giving an overview of different frequency domain techniques that can be used to analyze the stability of linear LTI TDS.
Moreover, the chapter nominated the analytic curve frequency sweeping approach as the method of choice for the stability
analysis in the frequency domain. In alignment with the sequence of sub-questions, the chapter after that, chapter 6, provided
a review of stability results in the time domain which are based on the extension of Lyapunov’s second method to TDSs. This
chapter thereby gave an answer to Q2.3 (What techniques can be used for the stability analysis of linear TDSs in the time domain?),
which is the final part of the second main research question,Q2 (What methods are suitable to analyze the stability of linear
TDSs?). Moreover, as in the case of chapter 5, a stability result was selected to be applied later on in the analyses, and the
motivation for its selection was presented in the concluding remarks of the chapter. The chosen stability results are applicable
to retarded TDSs and are based on the discretized Lyapunov functional method.

In chapter 7, the selected stability analysis methods were applied to a pendulum control system. The implementations of
the selected stability results obtained from the answers of Q2.2 and Q2.3, provided answers that concurred. This was a nice
verification test of the correct implementation of the stability results. Another form of verification of the implemented ap-
proaches was that the analytical results correctly predicted the stability (or lack thereof) of the Simulink® model for different
time-delays. As for checking whether the control system has been modeled appropriately, this, unfortunately, could not be ad-

155



156 11. Conclusions and Recommended Future Research

dressed. It is predicted that appropriate validation would be possible with real-world experiments or high fidelity simulations,
which is beyond the scope of this research work.

Chapter 8 discussed two main possibilities to characterize uncertainties and, in doing so, addressed sub-question Q3.1
(What are suitable ways to characterize the uncertainties in the TDS system?). From this chapter, the hierarchy of uncertainty
structures was the main framework that was employed for uncertainty characterization in the examples presented in the arti-
cle.

The chapter that followed, chapter 9, presented a number of concepts, theorems, and principles that are relevant for the
robust stability of TDSs. The review was not exhaustive, as time-limitations did not allow to investigate techniques such as
µ−analysis and multivariable approaches, for example. However, the chapter has indicated the zero-exclusion principle, the
finite exclusion principle, the edge theorem as tools that have been previously used to analyze the robust stability of TDSs,
which provided an answer to Q3.2 (Which existing robust stability analysis techniques for TDSs are applicable for the linear TDS ob-
tained?). With regards to the last sub-question, Q3.3 (Can a new technique for the robust stability analysis of TDSs be developed?),
a new technique that is based on the combination of the analytic curve frequency sweeping approach and the edge theorem,
which has been referred to in the article as the "robust analytic curve frequency sweeping approach", has been proposed and
applied. This amalgamation was inspired by the work of Tuzcu et al. who proposed to combine the direct method with the
edge theorem as a novel robust stability approach [137]. Moreover, besides the novelty of this combination, the discussion in
section 9.2 outlined how this new approach can be made applicable to systems with an uncertainty structure that is not neces-
sarily polytopic. In particular, the multilinear theorem allows the robust analytic frequency sweeping approach to be applied
to TDSs with a multilinear uncertainty structure because it indicates how to obtain a convex overbound of the mutlinear family
of quasipolynomials. Moreover, Theorem 9.5 allows to further expand the reach of this new approach to polynomic families
of quasipolynomials. Similar to the multilinear theorem, Theorem 9.5 presents the means to obtain the generator quasipoly-
nomials of the convex hull enclosing the polynomic family of quasipolynomials. Thus, the main steps that are involved in the
augmentation of the analytic curve frequency sweeping approach to make it a robust technique are to first obtain the convex
hull of the quasipolynomial family that is being analysed, which may require the use of either the multilinear theorem and/or
Theorem 9.5, depending on the uncertainty structure. Thereafter, based on the edge theorem, the robustly stable time-delay
intervals of the obtained convex hull are determined by obtaining the time-delay intervals that the ensure the stability of all
of its edges. These outlined steps address Q3.3.2 (What are the steps that can be taken in order to augment the delay-dependent
stability analysis techniques implemented with those newly considered techniques, in order to make the resultant method applica-
ble to the robust stability analysis of time-delay systems?). Furthermore, it should be noted that many of the tools mentioned
in chapter 9 have been previously encountered in the stability of uncertain polynomials, the literature for which was mainly
based on the book of Barmish [10]. The multilinear theorem and the theorem of Sideris and Sanchez Pena (Theorem 9.5) were
encountered there. Thus, the group of techniques for the robust stability analysis of uncertain polynomials have inspired parts
of the discussion on the approach to the robust stability analysis of uncertain quasipolynomials. Therefore, these techniques
are the answer to the research subquestion, (Q3.3.1 - What are techniques, that have been used for the robust stability analysis of
systems without time-delays, which can be used to inspire a new robust stability analysis technique for the linear time-delay systems
considered?).

In relation to this sub-question (Q3.3.1), there was another source of inspiration for the possibility of a new robust stability
analysis technique for TDSs, which was the subject of interval analysis. The reason for this interest is that interval analysis has
been previously applied to analyze the robust stability of systems without time-delays. For example, Sinar has applied it in the
robust stability analysis of re-entry vehicles, and she has shown a number of advantages of interval analysis in comparison to
more traditional techniques, such asµ-analysis [147]. In relation to TDSs, some previous work has been uncovered that applies
interval analysis to the robust stability analysis of TDSs. Specifically, di Loreto et al. have investigated the use of interval analy-
sis for studying the delay-independent stability of TDSs. In particular, the Set Inversion Via Interval Analysis (SIVIA) algorithm
was used in order to determine the presence of the characteristic roots of the TDS in a certain region in the right-half plane.
When analyzing for robust stability, this procedure was performed for all the quasipolynomials in the quasipolynomial family.
Ultimately, the system is said to be robustly stable if the family of quasipolynomials are Hurwitz stable [148]. Apart from the
mentioned academic work, to the knowledge of the author, no further research has been done on making use of interval anal-
ysis to address the robust stability problem of TDSs. However, it seemed that, for the task of delay-dependent stability, that
the use of interval analysis would a cumbersome approach.

Nonetheless, as mentioned in Remark 9.2, it seems promising to make use of the concept of refinement, a concept from the
field of interval analysis, to reduces the conservatism of the robust analytic curve, for the cases of multilinear and polynomic
uncertainty structures.

The final milestone of this thesis work was the application of the mentioned techniques to an aerospace plant. Namely,
the analyses were applied to the short period dynamics of the Cessna Citation aircraft, and the results were presented in the
attached article. Moreover, the outcomes from both the pendulum control system and the control system for the short pe-
riod dynamics demonstrated the effectiveness of the methods in determining the robustly stable time-delay intervals of the



11.2. Recommendations for Future Research 157

incremental control systems.

11.2 Recommendations for Future Research
Branching off the reflections made in the synopsis, a number of directions will be proposed for future research work. These
recommendations can be grouped into categories: further analyses, and the development of new stability results.

In the category of further analyses, a number of suggestions are made. First, it is recommended to apply the methods
proposed in this thesis to the stability analysis of IBS-controlled systems. IBS is a sibling and competing incremental control
technique to INDI, and part of unraveling the theoretical gaps regarding incremental control is to compare those two methods.
It is particularly interesting to show how the time-delay stability regions for these control techniques compare. Equally as
important is to make a similar analysis to NDI-controlled systems. This would address the question of which of the two control
techniques, NDI or INDI, is more robust to time-delays.

Another set of analyses based on the consideration of the ZOH are recommended in order to determine how changing
the sampling period affects the resultant stability regions. This may be done by performing the stability analysis for differ-
ent sampling periods through fixing the sampling period or through a more sophisticated analysis that accommodates for
multiple time-delays. Furthermore, the results presented in the article show that even large sampling periods admit stable
time-delay intervals, which is a slightly suspicious result. Therefore, it is recommended to re-assess the model used for the
sampled-data system and to attempt to check how representative it is of the control system, in addition to checking whether
it may be that the analytic curve frequency sweeping approach cannot be applied in this case, even when the sampling period
is fixed. Rather, perhaps an approach that accommodates for multiple delays needs to be applied, instead. This realization
makes leeway to the next recommendation.

In reality, incommensurate delays are often encountered. That is why, the stability results need to be extended to the case
of multiple incommensurate delays. In the frequency domain, such an extension of the analytic curve frequency sweeping
approach has already been proposed in the literature. It is called the "Iterative Frequency Sweeping Approach", and it has been
presented in section 5.3.4. As for the time domain, the stability results for both the retarded and neutral cases need to be
extended for the case of multiple delays. Moreover, it is recommended to revisit the results that were derived in chapter 10
and verify them further. Thereafter, once they are properly verified, they can be applied to the short period dynamics example
that is presented in the paper. It should be checked whether the results corroborate those that were obtained from the analysis
in the frequency domain.

It is also recommended to develop robust stability results in the time domain that are based on norm-bounded uncertainty.
The reason for making this recommendation is that the analyses based on norm-bounded uncertainty can be more tractable
(although more conservative) than the robust analyses that were presented in this thesis.

Furthermore, as mentioned in Remark 9.2, it is worth attempting to combine the "robust analytic curve frequency sweeping
approach" with the concept of refinement to reduce the conservativeness in case of the analysis of systems with multilinear or
polynomic uncertainty structures.

The focal point of this thesis has been on LTI systems. While the toolkit for the LTI analysis can be further developed, the
branch of the robust stability analysis of time-varying or nonlinear TDS remains untouched. Therefore, it might be interesting
to investigate the topic of the robust stability of the TDS under dynamic uncertainty as that might allow to consider the system
as an Linear Parameter Varying (LPV) system.

As mentioned before, for some control applications, a more representative way to model the time-delays in the system
is as distributed delays. That is why, another recommendation is to develop the time-domain stability results for the case of
distributed delays. As mentioned earlier, in section 4.3.1, the results of the analyses are not equivalent, and this discrepancy
manifests itself in the phenomenon of quenching.

Finally, in relation to tackling the theoretical gap that relates to sampling-time, the analysis of the sampled-data system
may be based on consideration of the system as a hybrid system, as it truly is. However, this means that the TDS framework is
shifted from, and approaches for the stability analysis of hybrid systems need to be studied and utilized instead.
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