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Periodic fluid-solid layered media exhibit distinctive features that can be utilized in various engineer-
ing disciplines, such as selective transmission of guided waves, omnidirectional band-gaps and Fano
resonances, depending on the spatial configuration and the material properties of the fluid and solid
layers involved. This work utilizes the Thin-Layer Method (TLM) in the study of layered fluid-solid
media, by extending the original normal modes-based method to acousto-elastic problems. By means
of this development, the band-gap structure of these periodic systems can be analysed and their effect
when incorporated in fluid or solid full-/half-spaces can be investigated seamlessly for different peri-
odic arrangements. Conclusively, this study presents a framework to analyse these systems, serving
as a basis for non-local continuum theories, as well as unveiling desirable dispersion characteristics
for the design of metamaterials.
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1. Introduction

Wave propagation through periodic and quasi-periodic systems has been gaining traction recently in
various engineering disciplines, owing to the unique dynamic properties and wave phenomena exhibited
by these structures [1]. An interesting example of such a system corresponds to waveguides composed of
alternating fluid and solid layers, addressed in topics ranging from geophysics [2] and poroelasticity [3] to
ultrasonic waves in biomedical applications [4]. Periodic fluid-solid layered media possess features such
as selective transmission of guided waves, interface wave modes, and pass/stop bands of large variability,
depending on the stacking arrangement considered.

In this paper, the Thin-Layer Method (TLM) is utilised to study the layered fluid-solid media, by
extending the original normal modes-based approach to acousto-elastic problems. Furthermore, the in-
clusion of multiple fluid and solid layers - arranged periodically - is addressed, to facilitate the study
of dispersive properties of such waveguides. The preceding developments facilitate the analysis of the
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modal structure of such periodic waveguides and the effect of their inclusion in fluid or solid full-/half-
spaces. Conclusively, a case study is performed to demonstrate the applicability of the method to the
problem of alternating fluid-solid media and the effect of porosity on the dispersion curves is considered.

2. The Thin-Layer Method in alternating fluid-solid layered media

In the following, the Thin-Layer Method (TLM) is presented for the study of alternating fluid-solid
layered media. The TLM is a superbly efficient computational method to analyse wave motion in 2-
D and 3-D layered media [5]. Its fundamental concept lies in the partial discretization of the problem
only along the direction of layering. Specifically, a finite element (FE) discretization is used along one
spatial coordinate combined with exact analytical solutions for the remaining directions. Therefore,
the TLM corresponds to the discrete version of the normal modes approach, which is widely used in
acoustic, elastic and acousto-elastic problems [6, 7]. By virtue of its discrete nature, this approach leads
to a quadratic eigenvalue problem, circumventing the need for complex search techniques. In the few
decades of its application, the TLM has been employed to study fluid [8], poro-elastic [9] and anisotropic
media [10], and has been coupled to other numerical frameworks in the context of pile driving[11, 12]
and seismic scenarios with topographic features [13].

To deal with the problem of a fluid-solid layered medium, the first step is to derive the TLM ex-
pressions for single fluid and solid layers. The physical domain (fluid or solid) is discretized into thin
horizontal layers of infinite lateral extent, whereas the response is approximated along the vertical (layer-
ing) direction with Lagrange polynomials. The remaining dependencies in the radial and circumferential
directions (3-D medium in cylindrical coordinates) are based on the exact solutions for cylindrical wave
propagation in a homogeneous medium [14]. It is remarked that for a solid layer, the displacement field
is the approximated response quantity. In the case of a fluid layer, various choices can be made regarding
the response quantity to be computed; in the ensuing developments, the velocity potential is chosen as
the approximated response quantity for the ideal fluid.

Without further delay, the normal modes of a layered fluid medium can be found by the following
generalized linear eigenvalue problem:(

k2Af +Gf − ω2Mf

)
ϕf = 0 (1)

where the matrices Af , Gf and Mf can be derived analytically from the principle of virtual work for
an ideal fluid layer, ϕf is the vector of velocity potential at the different elevations and k is the radial
wavenumber of cylindrical wave modes.

Similarly, the normal modes of a layered solid medium can be obtained by the following quadratic
eigenvalue problem: (

k2As + kBs +Gs − ω2Ms

)
ϕs = 0 (2)

where the matrices As, Bs, Gs and Ms can be derived analytically from the principle of virtual work for
a linear elastic solid layer [14], ϕs is the vector of modal displacements at the different elevations and
k is the radial wavenumber of cylindrical wave modes. It is remarked that Eq. (7) encompasses both the
SV-P and the SH eigenvalue problems.

Given the FE-based formulation of the TLM, an acousto-elastic medium can be readily described by
overlapping the corresponding TLM matrices in a classical FE fashion. However, the coupling between
fluid and solid layers is not yet addressed and it is imposed by incorporating the appropriate interface
conditions in the system of equations. In particular, the following interface conditions hold:
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τ (i)zr = 0 (3)

τ
(i)
zθ = 0 (4)

where τ
(i)
zr and τ

(i)
zθ are the shear stresses on the i-th (fluid-solid) interface along the radial and circum-

ferential directions. These stress components vanish as the ideal fluid cannot support shear stresses.
Furthermore, we have continuity of vertical displacements and normal stresses:

u
(i)
z,f = u(i)

z,s (5)

−σ(i)
z,s = p

(i)
f (6)

where u
(i)
z,f and u

(i)
z,s are the vertical displacements of the fluid and the solid along i-th (fluid-solid)

interface, respectively, σ(i)
z,s is the normal stress of the solid and p

(i)
f is the fluid acoustic pressure.

Figure 1: A unit cell of a periodically layered fluid-solid medium.

Upon stacking the TLM matrices of all fluid and solid layers of the medium, following the layering
along the vertical direction z, we can formulate the coupled eigenvalue problem of the alternating fluid-
solid layered system as follows: (

k2A* + kB* +G* − ω2M*)ϕ = 0 (7)

where the matrices A*, B*, G* and M* describe the coupled layered fluid-solid medium. To fix ideas
without increasing the complexity of presentation, we consider a single unit cell composed of a fluid
layer overlying a solid layer (see Fig. 1). The fluid layer is characterized by mass density ρf and sound
velocity cf , whereas the linear elastic solid layer is characterized by mass density ρs, S-wave velocity cS
and P-wave velocity cP. In that case, the above matrices for the considered unit cell read:

A* =

 Af 0 0
0 −ρ−1

f Ar 0
0 0 −ρ−1

f Az

 , B* =

 0 0 0
0 0 −ρ−1

f Brz

0 −ρ−1
f Bzr 0

 (8)

G* =

 Gf 0 Gfz

0 −ρ−1
f Gr 0

−ρ−1
f Gzf 0 −ρ−1

f Gz

 , M* =

 Mf 0 0
0 −ρ−1

f Mr 0
0 0 −ρ−1

f Mz

 (9)
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where all the sub-matrices introduced above stem from the TLM formulation of the individual fluid and
solid layers. The fluid-solid coupling is enabled through the sub-matrices Gfz and Gzf , which are derived
by the numerical implementation of Eqs. (3), (4), (5) and (6). It is remarked that in the presence of more
fluid-solid interfaces, the matrices Gfz and Gzf will couple each fluid (or solid) layer with the adjacent
solid (or fluid) layers (implying slight modification of terms). Finally, the factor −ρ−1

f is introduced to
certain sub-matrices to render the matrices A*, B*, G* and M* symmetric.

3. Numerical results

In this section, we study the specific case of a finite set of fluid-solid cells (see Fig. 2). As regards
the material properties, the fluid medium is water with mass density ρf = 1000 kg/m3 and sound velocity
cf = 1500 m/s, whereas the solid layers are composed of steel with ρf = 7850 kg/m3 and S-wave velocity
cS = 3192 m/s and cP = 5972 m/s.

Figure 2: An alternating fluid-solid layered medium with finite number of cells.

In Fig. 3, we present the dispersion curves for the two different 2-cell waveguides, differing in the
fluid-to-solid thickness ratio of the alternating layers (i.e. porosity). In particular, the radial wavenumber
of the propagating wave modes are plotted against the frequency. As can be seen, the high porosity case
(hf = 10hs = 1 m) leads to the formation of partial band-gaps in the lower wavenumber range throughout
the frequencies, whereas for the low porosity case such behaviour is not present. Furthermore, the com-
bination of an alternating fluid-solid system with an end solid layer of dissimilar material properties can
transform such partial band-gaps to omnidirectional band-gaps, given that appropriate thickness ratio,
number of cells and material properties are considered [15]. Finally, one of the interesting phenomena
that arise in systems similar to the one at hand, is the formation of the so-called Kraklis wave [16]. This
special wave mode is a slow dispersive guided wave that propagates in fluid layers bounded by elastic
layers and can be distinguished in the high porosity . It results from the interference of the two Scholte
waves associated with the solid-fluid interfaces bounding the fluid layer [16].
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Figure 3: Dispersion curves for a 2-cell fluid-solid waveguide with (a) hf = hs = 1 m and (b) hf =
10hs = 1 m.

4. Conclusions

This paper presents an extension of the Thin-Layer Method that encompasses alternating fluid-solid
media. In particular, the main equations that describe the wave motion in fluid and solid layers have
been introduced, as a basis for the coupled problem of a waveguide comprised of alternating fluid-solid
layers. Furthermore, the fluid-solid interface conditions have been translated into the relevant coupling
sub-matrices, leading to a final quadratic eigenvalue problem for the alternating fluid-solid medium. Sub-
sequently, the TLM is employed to study the case of an alternating fluid-solid medium with finite number
of cells, showcasing the method’s efficacy and demonstrating the effect of porosity on the modal struc-
ture. Conclusively, the developed framework can be readily employed to study the dispersion properties
of periodically (or quasi-periodically) alternating fluid-solid media in a computationally efficient manner,
allowing the exploration of a multitude of layering configurations towards desired dispersion features.
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