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Generating Sparse Self-Supporting Wireframe Models for 3D
Printing Using Mesh Simplification

Xiuping Liua, Liping Lina, Jun Wub, Weiming Wanga,b,∗, Baocai Yina, Charlie C.L. Wangb

aSchool of Mathematical Sciences, Dalian University of Technology, China
bDepartment of Design Engineering, Delft University of Technology, The Netherlands

Abstract

Wireframe models are becoming a popular option in 3D printing. Generating sparse wireframe
models using classic mesh simplification methods leads to models that require a lot of support
structures in the layer-upon-layer additive process. In this paper we present a mesh simplification
method that takes into account the overhang angle. Specifically, we propose a metric for self-
supportability. By combining this novel metric together with the classic error metrics for mesh
simplification, our method generates sparse wireframe models that need much less supports.
Moreover, the operations of vertex position optimization and edge flipping are used to further
increase self-supportability of the wireframe models. We demonstrate the effectiveness of the
proposed method on a number of 3D models.

Keywords: Self-supporting, Wireframe models, 3D printing, Mesh simplification

1. Introduction

Wireframe models consisting of struts are becoming a popular option in 3D printing. As an
abstract representation of 3D models, a sparse wireframe model can be fabricated much faster
than printing surface or solid models. This feature is especially favoured among designers. The
design process typically takes multiple iterations, and a fast fabrication of intermediate versions5

enables quick design iteration. Wireframe structures also frequently appear in the fields of art,
fashion, and architecture.

A few recent works in human-computer interaction and graphics have focused on the fab-
rication of sparse wireframe structures. For instance, Mueller et al. [1] proposed WirePrint to
directly extrude the edges in 3D space. Tao et al. [2] presented a system for prototyping freeform10

surfaces composed of woven lines. Wu et al. [3] presented an algorithm for printing arbitrary
meshes using a 5DOF wireframe printer. Huang et al. [4] investigated fabrication process plan-
ning in robot-assisted wireframe printing.

A problem concerning the input to the 3D printers – the design of sparse wireframe models
that are more suitable for 3D printing – is less studied. In graphics faithful 3D models often have15

tens of thousands of edges in the surface mesh. Several established, general-purpose mesh sim-
plification techniques (e.g., vertex clustering [5] or incremental decimation [6]) can be applied
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to create sparse mesh structures. However, mesh simplification considering manufacturability of
the simplified mesh is yet to be explored.

In this paper we present an algorithm for integrating manufacturability into mesh simplifica-20

tion. In particular we concern the self-supporting property in 3D printing [7]. When the angle
formed by the strut and the printing direction is larger than a machine specific self-supporting
angle (e.g., 45 degrees in some printers), additional structures are needed to support the strut
from its beneath. Figure 1 illustrates a simple 2D wireframe model where self-supporting and
non-self-supporting struts are indicated by different colours. Adding support structures prolongs25

the printing process and wastes material. To account for the amount of support structures, we
propose a metric to measure the self-supportability. The metric is then applied to steer the mesh
simplification process towards a large ratio of self-supportability. Integrated with the classic
quadric error metrics (QEM) [6], our method results in sparse wireframe models that require
much less supports during the additive manufacturing process.30

Figure 1: Illustration of a 2D wireframe model that is composed of self-supporting struts (blue) and struts that need
supports (red), depending on the angle between the strut and the upright printing direction.

The contributions of this paper are summarized as follows:

• A self-supportability metric and its integration in mesh simplification to reduce supports
in generating sparse wireframe models.

• A set of operations (i.e., vertex position and edge flipping) are optimized to further reduce
supports.35

Our method improves the self-supportability ratio, which is later defined in Eq.(1) as the ratio of
self-supporting edges over total edges. An example is given in Fig. 2. The classic mesh simplifi-
cation leads to a wireframe with 47.16% self-supporting edges, while our method improves the
ratio to 69.79%.

2. Related Work40

In this section we briefly review wireframe models in 3D printing and mesh simplification
algorithms that are most closely related to our method.

3D Printing Wireframe Models Sparse wireframe models can reach a smaller volume com-
pared to surface or solid representations of the same digital shape. The fabrication of such
structures thus provides a fast preview of intermediate designs in the iterative digital content45

creation [1, 2]. A few recent works have focused on upgrading 3D printers dedicated to the fabri-
cation of wireframe structures (e.g., [3, 4]). In this paper we mainly target on desktop 3D printers
using Fused Deposition Modelling (FDM) – one of the most widely used additive technologies.
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Figure 2: A dense triangle mesh with 71.8K edges (a) is simplified to 1.5K edges by the quadric error metrics [6] (b) and
by the proposed method (d). The support structures added for 3D printing are indicated by red struts. The corresponding
printed wireframe models are shown in (c) and (e). Our method requires much less supports. The self-supportability
ratio is 69.79% by our method, and 47.16% when only using the quadric error metrics.

Wireframe structures have also been used as lightweight infill for 3D printed parts [8]. To
improve the printability of mechanically optimized wireframe infill structures, Wang et al. [9]50

take into account the angle between struts and the printing direction. The self-supportability of
optimized structures has initially been addressed in topology optimization (e.g., [7]). However,
the generation of sparse wireframe models concerning both the visual appearance and the self-
supportability remains as an interesting yet unsolved problem.

Mesh Simplification Digital models in graphics are often composed of tens of thousands of55

triangles. Directly mapping triangle edges to a wireframe model for 3D printing leads to complex
structures which counteract the purpose of fast fabrication. To reduce the number of edges, we
resort to mesh simplification which is a well-researched topic in graphics.

Mesh simplification methods have been maturing over the decades. Popular algorithms in-
clude vertex decimation [10, 11], vertex clustering [5, 12], subdivision meshes [13, 14], and60

iterative edge contraction [6, 15]. Please refer to review articles [16, 17] for detailed compar-
isons. Edge contraction is simple and effective, and thus it is chosen as the starting point for
generating sparse self-supporting wireframe models. In particular, we adopt the quadric error
metrics (QEM) proposed by Garland and Heckbert [6] for edge contraction, and enhance it with
a novel metric for self-supportability.65

3. Algorithm

Given a dense triangle mesh representing a 3D shape, we aim to compute a sparse triangle
mesh which preserves the given 3D shape, while maximizing the ratio of self-supporting edges
over all edges. Our method consists of the operations of edge contraction (Section 3.1) with an
optimization of vertex position (Section 3.2) and edge flipping (Section 3.3). The resulting edges70

are mapped to solid cylindrical struts representing wireframe models to be fabricated.
Let us first define a few basic terms. The self-supportability of a wireframe model (M) is
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defined as

S S (M) =
∑

ei∈PE(M) Len(ei)∑
ei∈E(M) Len(ei)

, (1)

where Len(.) is a function to calculate the length of an edge, E(M) is the set including all edges
in M, and PE(M) is the subset of edges that are self-supporting. An edge (e) is classified as
self-supporting if the angle (A(e)) formed between the printing direction and the edge falls into
a specific range,

A(e) = ∠(d(e),d) ∈ [0, t] ∪ [π − t, π], (2)

where d(e) is the normalized direction of the edge and d is the printing direction. Without loss
of generality, we assume the printing direction coincides with the upright orientation of models.
The angle t is the maximally allowed angle of overhang, which depends on both the material and
the manufacturing process. In our experiments, we set t to π/4.75

3.1. Edge Contraction

The proposed mesh simplification algorithm is based on the iterative contraction of edges
(i.e., pairs of vertices). Edge contraction is denoted by (v1, v2) → v̄, where v1 and v2 are two
endpoints of an edge (e), and v̄ is a new vertex that will replace v1 and v2. The vertices incident
to v1 and v2 are then connected to the new vertex v̄ (as illustrated in Fig. 3). To decide which80

edges shall be contracted first, an error metric is to be defined.

Figure 3: The edge formed by v1 and v2 is contracted and replaced by a new vertex v̄. The two shaded triangles are
removed during edge contraction.

In mesh simplification we consider three factors, and each of them corresponds to a metric.
The manufacturability is represented by a self-supportability metric (SSM). Visual error is mea-
sured by a normal-based metric (NBM). The shape approximation error is encoded by the classic
quadric error metrics (QEM) [6]. The integrated metric for an edge, e, is thus written as

EM(e) = λNBM(e) + β S S MT (e) + QEM(e), (3)

where the weighting factors λ and β can be set by users to balance between these three factors.
Edges are first sorted in the ascending order of error EM(e). We then iteratively contract

edges and update the metrics locally until a user-specified terminal condition is achieved – i.e.,
regarding the remaining edges.85

Self-Supportability Metric (SSM). SSM measures the change in self-supporting property caused
by edge contraction, (v1, v2) → v̄. Denote the self-supporting length ratio of the new vertex by
Rss(v̄), and the self-supporting length ratio of the edge by Rss(e). The metric is

S S M(e) = Rss(v̄) − Rss(e). (4)
4



Rss(v) defines, for a vertex v, the self-supporting length ratio of its incident edges as

Rss(v) =
∑

ei∈Pe(v) Len(ei)∑
ei∈Ne(v) Len(ei)

. (5)

Here, Ne(v) is the set of edges incident to vertex v and Pe(v) is the subset of Ne(v) that consists
of edges that are printable (i.e., self-supporting).

For an edge e, its self-supporting length ratio is defined from its two vertices (v1 and v2) as

Rss(e) = Rss(v1 ∪ v2) =
∑

ei∈Pe(v1)∪Pe(v2) Len(ei)∑
ei∈Ne(v1)∪Ne(v2) Len(ei)

, (6)

A larger value of S S M(e) means that contracting e to v̄ will significantly increase the self-
supportability, and thus shall be favoured. To make a consistent priority list with error metrics
QEM and NBM to be introduced later, we transform it by an exponential function as

S S MT (e) = e−S S M(e). (7)

With this transformation, the operation of edge contraction starts with the lowest error values.

Normal-Based Metric (NBM). The field of normal vectors is fundamental in the way the 3D
shape is perceived. Normal vectors govern lighting effects such as diffusion, specularity, as well
as curvature lines and silhouettes, and discontinuity of normal indicates geometric features. To
account for this in mesh approximation, Cohen-Steiner et al [18] proposed a L2,1 shape metric
based on normal to cluster faces with similar normal vectors. Following this idea, we use the
normal discrepancy before and after contraction to measure the visual error caused by edge
contraction – that is

NBM(e) =
∑

f∈N f (v̄) ||n f − n′ f ||

#(N f (v̄))
, (8)

where N f (v̄) is the set of triangle faces associated to the new vertex v̄, #(.) is the cardinal of a set,
and n f and n′ f are normal vectors of the corresponding faces before and after edge contraction90

respectively.
The normal-based metric Eq.(8) measures the change in normal caused by the edge contrac-

tion of e. The edge with the smallest NBM(e) value has the highest priority to be collapsed.

Quadric Error Metrics (QEM). We use the quadric error metrics proposed by Garland and
Hechbert [6] to measure the geometric error caused by edge contraction. For completeness we
briefly introduce the QEM. The error of the vertex v is defined as the sum of squared distances
to its associated planes (triangles) as

4(v) = vQvT =
∑

p∈planes(v)

(pTv)2, (9)

where planes(v) is the set of planes of the triangles that meet at vertex v, and p = [a b c d]T

represents the plane defined by the equation ax + by + cz + d = 0 with a2 + b2 + c2 = 1. Notice
that Eq.(9) can be rewritten as a quadric form:

4(v) = vT (
∑

p∈planes(v)

Kp)v, (10)
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where Kp is the matrix:

Kp =


a2 ab ac ad
ab b2 bc bd
ac bc c2 cd
ad bd cd d2

 . (11)

Kp is assembled for representing the entire set of planes by a single matrix Q. Then, the geomet-
ric error caused by edge contraction is defined as:

QEM(e) = v̄T (Q1 +Q2)v̄, (12)

where Q1 and Q2 are quadric matrices of v1 and v2 respectively. The edge with the smallest
QEM(e) has the highest priority to be simplified.95

3.2. Vertex Position Optimization
An important component in edge contraction is to find the position of the newly created

vertex v̄. Simple options for the new vertex include the endpoints or the middle point of the
edge. The position can also be optimized to reduce geometric errors by solving a linear function.
In this work, we optimize the position for an increased self-supportability.100

Our optimization aims to find, between the two endpoints v1 and v2 of edge e, a vertex v̄
which has the largest S S M(e). Let us express the position by v̄ = v1 + x(v2 − v1), x ∈ [0, 1].
Considering that the term Rss(e) in S S M(e) is constant, the optimization problem is formulated
as

max
x

Rss(v1 + x(v2 − v1)), (13)

s.t. x ∈ [0, 1]. (14)

The optimization is solved by using the interior point method.

3.3. Edge Flipping
After mesh simplification using edge contraction, edges are evaluated for flipping to further

improve the self-supportability. Edge flipping is found beneficial in the following two cases.
First, in Fig. 4 (top left) the red edge is impending and needs extra support structures during105

printing. However, if it is flipped to the other direction, it becomes self-supporting (the blue edge
in Fig.4 (top right)). A second case is as illustrated in Fig. 4 (bottom). Even if the flipping does
not directly lead to a self-supporting edge, it reduces the angle between the edge and the upright
printing direction and therefore can be beneficial for the following flipping operations during the
recursive flipping process.110

We note that edge flipping may create an intersection with other edges or increase the ge-
ometric error. For the situation illustrated in Fig. 5 (top) where all edges are almost coplanar,
flipping the red edge into the blue one creates an intersection with the other edges. In another
example shown in Fig. 5 (bottom), the red edge indicates a sharp feature in the original mesh.
Flipping it into the blue one on the right leads to a large geometric error. Therefore, geometric115

error and local shape are considered as well when evaluating the edges for flipping.
To this end, the conditions for flipping the edge e are summarized as follows.

• The dihedral angle between the two faces sharing e is larger than a threshold γ (γ = 160
degree is used in our experiments).
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Figure 4: Top: The red edge on the left is impending. Flipping it creates a self-supporting edge on the right. Bottom:
Flipping does not create a self-supporting edge, it reduces the angle between the edge and the upright printing direction.

Figure 5: While flipping the red edges on the left to the blue edges improves the printability, it creates edge intersection,
or a large geometric error.

• Projecting the two adjacent faces onto a plane, the obtained polygon is convex.120

• Flipping increases the absolute value of the inner product between the normalized edge
direction and the printing direction, which means an increase in self-supportability.

4. Results

We have implemented the proposed method using C++, while calling Matlab functions to
solve the optimization of vertex position (Eq. 13). It has been tested on a desktop PC with125

Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz and 32GB memory.
7



4.1. Parameter Analysis
We study the influence of the threshold angle γ and the target number of edges, and analyze

different simplification options and metrics. For all our tests the weighting factors in the metric
Eq. 3 are λ = 0.7 and β = 0.2.130

Threshold angle. The threshold angle γ in edge flipping has a significant influence on the
self-supportability of the model, S S (M). An example is given in Fig. 6 on the Rabbit model.
The simplified model has 1.5K edges. From left to right, the γ value is 80o, 100o, 120o, 140o, and
160o, respectively. The corresponding S S (M) values are: 87.74%, 84.22%, 81.03%, 76.04%,
and 69.79%. It can be observed that a smaller γ value (e.g., 80o) leads to a larger S S (M) value.135

Yet, the corresponding meshes may become distorted. In contrast, a large γ value better preserves
the shape at the cost of a lower S S (M) value. While this parameter can be tuned by the user, it
is set as γ = 160o in our following tests.

Figure 6: Edge flipping is applied on a Rabbit model. The flipping threshold angle γ increases from left to right. The
self-supportability ratios S S (M) from left to right are: 87.74%, 84.22%, 81.03%, 76.04%, and 69.79% respectively.

Number of simplified edges. Fig. 7 shows simplified Jar models with different numbers of
edges. The original model has 66.7K edges, and it is simplified to, from left to right, 200, 500,140

1000, 1500, and 2000 edges respectively. The S S (M) values vary slightly, in the range between
61.79% and 63.86%. To measure the geometric error of the simplified model, we compute the
Hausdorff distance between the simplified mesh and the original mesh. The error decreases as
the number of edges increases: 13.20, 9.33, 7.82, 7.18, and 6.92 respectively. In this paper, most
models are simplified to 1500 edges.145

Simplification options. Our algorithm consists of three parts which can be combined: Error
metric (EM), vertex position optimization (VPO), and edge flipping (EF). Figure 8 shows sim-
plified meshes from the Armadillo model. The original model (a) has 95.9K edges, and it is
simplified to 1.5K edges in (b-e). From (b) to (e), it shows the simplified meshes generated by
using four different strategies: (b) QEM [6]; (c) EM ; (d) EM + VPO; (e) EM + VPO + EF.150

The struts are rendered in two different colours, with yellow indicating self-supporting struts and
purple for non-self-supporting struts. The S S (M) values are 39.22%, 45.91%, 50.27%, 59.87%,
and 65.72% respectively. This comparison confirms that the combination of EM, VPO and EF
achieves the highest self-supportability.

8



Figure 7: A Jar model is simplified to, from left to right, 200, 500, 1000, 1500, and 2000 edges, respectively. The S S (M)
value for each model is reported.

Figure 8: (a) is the input mesh. (b) is obtained by QEM [6]. (c)-(e) are generated by our algorithm with different
strategies: (c) with the proposed error metric (EM), (d) with EM and vertex position optimization (VPO), and (e) with
EM, VPO and edge flipping. The self-supportability values S S (M) are: (a) 39.22%, (b) 42.34%, (c) 43.98%, (d) 51.18%,
and (e) 60.40% respectively.

Integrated metric. Our integrated metric (EM) builds upon the quadric error metrics (QEM)155

and additionally considers a normal-based error metric (NBM), and a self-supportability metric
(SSM). Figure 9 shows the results from different combinations of these sub-metrics. Edge flip-
ping and vertex optimization are not activated in this comparison. We compare the simplified
models regarding the self-supportability ratio and the geometric error, which is defined by the
Hausdorff distance between the input and simplified meshes. Figure 9 (c) has the smallest geo-160

metric error, demonstrating the effectiveness of the normal-based error metric for measuring the
geometric error. With the self-supportability metric integrated, Fig. 9 (d) achieves the highest
self-supportability ratio. The integration of NBM and SSM (as shown in Fig. 9 (e)) achieves a
good self-supportability ratio close to Fig. 9 (d), and meanwhile a small geometric error close to
Fig. 9 (c) and outperforms Fig. 9 (b) regarding both indicators.165
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Figure 9: The input Bear model is simplified with different combinations of sub-metrics. The combination (e) achieves
a good trade-off between geometric error and self-supportability: It has a good self-supportability ratio close to (d) and
meanwhile a small geometric error close to (c).

Figure 10: A set of input models (top) is simplified by edge contraction using QEM (middle) and by the proposed method
(bottom). Self-supporting struts are rendered by the yellow edges, while non-self-supporting ones by the purple edges.

4.2. Comparison

We report results in comparison to QEM [6], since the proposed method extends this classic
method. Fig. 10 shows, from top to bottom, the input mesh, the mesh simplified by QEM, and the
mesh simplified by the proposed algorithm. The yellow frames represent self-supporting struts,
while the purple frames are non-self-supporting struts. It can be clearly seen that the proposed170

algorithm results in a smaller number of non-self-supporting struts. An open surface mesh is
tested in Fig. 11, which also confirms the effectiveness of our method.

Figure 12 shows the cumulative distribution of edges for the absolute value of the inner
10



Figure 11: From left to right: The input face model, the models simplified by QEM [6] and by the proposed algorithm.
Both simplified models have the same number of edges: 400. The SS(M) values are: 43.95% for QEM and 67.64% for
our method.

product between the normalized edge direction and printing direction. The blue and red curves
correspond to models simplified by QEM and our algorithm respectively. A peak in the red curve175

appears at 0.707 which corresponds to the overhang threshold π/4 set in our tests. On the left
of the peak, the red curves are below the blue curves, suggesting a smaller number of non-self-
supporting edges in the models simplified by our algorithm. On the right of the peak, the red
curves are above the blue curves, i.e., a larger number of self-supporting edges are obtained by
our algorithm.180

We further evaluate the proposed normal-based metric in edge contraction. The normal-based
metric considers the change in the normal vectors of faces. This can preserve thin features in the
models. In Fig. 13, a Camel model with 59.9K edges is simplified to a model with 1.5K edges by
both QEM and our method. It can be seen that some thin features (the tail and horns) disappear
in QEM simplified mesh, while they are well preserved by our method. In this test, the S S (M)185

values are: 57.86% for QEM and 70.18% for our method.
Table 1 details the computational statistics on the tested models. The heights of the tested

models are scaled to 80 mm. The second column compares the number of edges before and after
mesh simplification. The number of initial edges is between 47K and 115K, and it is simplified
to 1.5K. Following that, the group composed of five columns reports the S S (M) value: from190

left to right, the original mesh, QEM, and three variants of our method (i.e., EM, EM+VPO, and
EM+VPO+EF). The statistics show that our method achieves an improvement of about 20% in
the ratio compared to QEM. The eighth and ninth columns compare QEM and our method on
the geometric error and the total length of edges respectively. The geometric error is represented
by the Hausdorff distance between the simplified mesh and the original mesh. The data suggests195

that our method has a slightly larger error, and has a total length comparable than QEM. The last
column reports the computation time. Our method is fast, and most models can be simplified
within one minute.

4.3. Discussion

Our method achieves a large self-supportability ratio. The threshold angle γ in edge flipping200

can be reduced to get an even larger ratio by creating more inclined edges. However, it comes at
the cost of mesh distortion. See the inset on the right side for an example. The setting of γ = 0

11



Figure 12: The cumulative distribution of edges for the absolute of the inner product between the normalized edge
direction and the printing direction. The blue and red curves correspond to models simplified by QEM and our algorithm
respectively.

Figure 13: From left to right: The input Camel model (with 59.9K edges), the models simplified by QEM [6] and by
our method. Both simplified models have the same number of edges (i.e., 1.5K). Our method is able to preserve thin
geometric features, highlighted by the circles. The yellow struts are self-supporting, while the purple struts are non-self-
supporting.

achieves a S S (M) value of 95%, but leading to many sliver triangle faces. From a practical per-
spective, the trade-off between visual quality and printing speed can be assessed by the designer,
as the mesh simplification usually takes less than a minute.205
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Table 1: Computational statistics of our approach. ”Ori” and ”Sim” represent the original mesh and the simplified mesh,
respectively. ”Self-supportability Ratio” is calculated as the length of self-supporting edges over the total length of the
mesh. ”Geo Error” is the Hausdorff Distance between the simplified meshes and the original meshes. ”Len” represents
the total edge length of the model simplified with QEM [6] and our method.

Model #Edge(Ori.)/ Self-supportability Ratio (%) Geo. Error (mm) Len. (×103 mm) Timing
#Edge(Sim.) Ori. QEM EM EM+VPO EM+VPO+EF QEM/Ours QEM/Ours (sec.)

Y model 47.9K/1.5K 39.51 58.76 67.12 71.99 82.35 6.68/8.87 7.08/7.40 32.7
Armodino 95.9K/1.5K 39.22 45.91 50.27 59.87 65.72 5.21/6.41 6.70/7.23 50.2

Bunny 114.5K/1.5K 39.80 45.47 52.09 58.89 67.73 4.34/5.35 6.22/6.46 71.9
Camel 59.9K/1.5K 53.30 57.86 59.99 66.70 70.18 5.89/8.71 7.25/7.68 36.5

Cat 95.9K/1.5K 38.20 41.46 47.43 56.53 63.34 7.35/6.44 7.30/7.83 57.8
Cup 45.1K/1.5K 32.79 40.86 41.06 51.84 65.14 10.45/12.30 17.02/18.85 28.1

Giraffe 110.8K/1.5K 38.81 67.63 71.19 77.84 80.04 3.88/5.26 5.05/5.36 68.9
Horse 59.9K/1.5K 42.91 51.05 55.56 63.66 70.16 6.50/9.08 8.25/8.81 36.4

Human 60.5K/1.5K 43.97 66.36 71.02 76.74 80.82 4.15/5.43 5.20/5.59 36.5
Pongo 71.8K/1.5K 52.20 61.11 65.07 73.07 79.05 4.46/5.20 6.53/7.26 45.2

Woman 63.5K/1.5K 45.32 51.45 59.03 65.31 71.53 3.97/5.31 5.21/5.71 38.6
Sheep 46.9K/1.5K 37.54 52.87 57.88 62.72 70.22 5.53/5.47 6.84/7.35 29.3
Rabbit 71.8K/1.5K 41.96 47.16 52.10 59.75 69.79 5.52/6.16 6.37/6.99 45.5

Jar 66.7K/1.5K 36.13 49.36 50.43 57.18 63.65 5.47/7.17 6.26/6.70 13.2

We use a simple strategy to generate supports for the non-self-supporting
struts. For the lower node of non-self-supporting strut, we search for a sup-
porting node in its neighbourhood, such that the edge connecting the two
nodes is self-supporting. If no supporting node can be identified, a vertical
edge will be created to support the impending node. The effectiveness of210

the mesh simplification and supports generation is confirmed by 3D printing
using the FDM technology. Fig. 2 shows two prints of the Rabbit model. Fur-
thermore, Fig. 14 shows prints of another four wireframe models simplified
by our algorithm.

Figure 14: In the first row, the additional supports are added for the wireframe models generated by our method. The
corresponding printed objects are shown in the second row.
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5. Conclusion215

We have presented an edge contraction-based mesh simplification algorithm which considers
geometric errors, changes of normal vectors, and self-supportability of edges. The position of the
contracted edge is optimized for a higher self-supportability by our method. Furthermore, edge
flipping is also applied to increase the self-supportability. On a number of tested 3D models,
the proposed algorithm can achieve an improvement of 14% to 25% on the self-supportability,220

compared to the classic method based on the quadric error metrics [6].
In this paper we reduce the number of frames by mesh simplification. Re-meshing (e.g., [19])

or mesh approximation (e.g., [18]) is an alternative strategy which potentially improves mesh
quality. It is unclear yet whether a self-supportability metric can be efficiently integrated into
these approaches. We leave this as future work. Another direction we would like to pursue is225

to extend from the self-supportability ratio to more comprehensive measures of the fabrication
cost, e.g., the volume of support structures and the printing speed.
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[19] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, M. Desbrun, Anisotropic polygonal remeshing, ACM Trans.
Graph. 22 (3) (2003) 485–493. doi:10.1145/882262.882296.

15

http://dx.doi.org/10.1007/978-3-642-78114-8_29
http://dx.doi.org/10.1145/344779.344831
http://dx.doi.org/10.1145/237748.237750
http://dx.doi.org/10.1145/166117.166119
http://dx.doi.org/10.1145/166117.166119
http://dx.doi.org/10.1145/166117.166119
http://dx.doi.org/10.1016/S0097-8493(97)00082-4
http://dx.doi.org/10.1109/38.920624
http://dx.doi.org/10.1145/1015706.1015817
http://dx.doi.org/10.1145/882262.882296

	Introduction
	Related Work
	Algorithm
	Edge Contraction
	Vertex Position Optimization
	Edge Flipping

	Results
	Parameter Analysis
	Comparison
	Discussion

	Conclusion

