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Abstract
In the last decade, interest in deep-sea mining (DSM) has surged. The expansion of the global
economy, advancement of technologies and the transition to more renewable energy solutions
have caused an increased demand for metals like lithium and cobalt and rare earth elements.
With land resources diminishing, there is a growing interest in the vast deposits that the deep
sea holds in enriched mineral deposits. To evaluate the effect of DSM operations on sea life, it
is important to study the dynamics of resettling sediment plumes and their effect on the ocean
environment. A convenient method to do that is by studying the settling of suspended sedi-
ment material in small-scale lab setups. When discharging a suspension drop into a water tank,
settling velocities can be several times higher than normal (Stokes) settling velocities, leading
to an error in the estimation of particle properties. To make these experiments more useful
and effective, it is thus important to study for what conditions settling velocities of suspension
drops are sufficiently close to the Stokes velocity.

We first studied monodisperse suspension drops, using a Stokesian Dynamics technique. Here,
we theoretically predicted for which particle size, number of particles and volume fraction the
suspension drop would reach the desired velocity. The unforeseen trend was that drops with
higher volume fraction may be more desired because they decelerate more rapidly, due to the
greater loss of particles and earlier break-up. There was qualitative agreement with the sim-
ulations. Moreover, because the velocity increases with the number of particles present in the
drop, it is important to take into account the size of the drop. We also proposed a simple model
for including the slower moving particles that trail the particle cloud and showed how the mean
velocity of all particles in time gives a good estimate of the experimentally measured velocity.
Based on the simulations, we predicted for which particle size acrit a drop with given size and
volume fraction decelerates to two times the Stokes velocity, within a certain distance. We
also showed how the measured velocity distribution can indicate whether the measured settling
velocity is close to the Stokes velocity or not.

We studied polydisperse clouds with a log-normal size distribution and varying standard de-
viations. The evolution of polydisperse clouds is very similar to that of monodisperse clouds.
The biggest difference is that the leakage rate of particles increases with increasing polydis-
persity. The initial phase of particle leakage is also much more pronounced for polydisperse
drops. Due to this, the velocity of the cloud drops faster, and the cloud breaks up earlier than
its monodisperse equivalent. It was also found that smaller particles have a greater probability
of leaving the cloud, this effect becoming significantly more pronounced at higher standard
deviations. Due to this, small particles have on average longer time to decelerate and there is
a size-dependent error for polydisperse drops. At extremely low volume fractions, polydisper-
sity acts as an inhibitor to cloud formation and particles are seen to segregate based on size.
Finally, we found no significant differences in behavior of polydisperse clouds with continuous
size distributions compared to those with discrete size distributions.

Based on all the simulation data, we presented a set of formulas that can be used to esti-
mate the (mean) particle size limit as a function of drop properties. A preliminary analysis
showed how these expressions can be used to generate curves with which the volume fraction
can be selected based on the size of the drop and the mean particle size. Thus, we have pre-
sented a verifiable approach to the optimization of the suspension drop settling experiment,
that can be validated and used to study properties of settling suspended materials.
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1 Background
In nature and everyday life, suspensions are abundant. Suspensions are encountered not only
in nature (e.g. blood) but are also inherent to many industrial processes. Typical examples of
suspensions encountered in industry are paint, ink, some food items, many cosmetic products
and some pharmaceuticals (medicine is often ingested using water as the carrier). Moreover,
industrial feeds in the process industry often contain impurities. Hence, the properties of a flow-
ing suspension are of crucial interest to many fields and applications. Note that the definition
of a suspension can also include aerosols (liquid or solid dispersed in a gas) and granular media
(solid dispersed in a fluid which itself does not play a major role). In what follows, suspension
shall only be used to refer to solid particles - of arbitrary shape, so this includes fibers among
other encountered shapes - dispersed in a liquid. The particles contained in suspensions vary
in size on the order of nanometers (these form colloidal suspensions) to micrometers and larger
(non-colloidal). In the former type, the net gravitational force (gravity minus buoyancy) is on
average balanced by forces caused by the impeding bombardment of solvent molecules with
the suspended particles (so called Brownian forces). The result is that the particles remain
in suspension. In non-colloidal suspensions, gravity dominates Brownian effects and thus sedi-
mentation occurs, because the random movements are lesser in amplitude for larger particles.

The dynamics of suspensions have been a topic of investigation for more than a century. There
is a great deal of theoretical and experimental work that give an understanding of some fun-
damental suspension phenomena. In particular the theory of flows where particle inertia is
negligible compared to viscous forces (also called Stokes flow), is well developed. For example,
there exist analytical solutions for the flow generated by a rigid spherical particle in an other-
wise stationary fluid (also called disturbance flow). With this flow field, the fluid traction can
be computed an integrated over the surface of the particle, giving the infamous formula for the
Stokes drag. Because of the vanishing inertia of the particle, the net gravitational force has
to be counteracted by the drag force, giving the fall speed of the sphere (the Stokes velocity).
Building upon this solution, it is possible to approximate the solution for two falling spheres,
leading to the interesting finding that two spheres fall at a greater speed than an isolated sphere.
This trend does not persist, as it is yet another fundamental result that increasing the amount
of suspended particles will lead to a reduction in fall speed compared to the Stokes velocity.
This and more will be uncovered in greater detail in the next section.

It is interesting to note that merely the consideration of the hydrodynamic interactions be-
tween particles suspended in a viscous liquid can give rise to some very interesting and perhaps
unexpected phenomena. One of those phenomena is that extremely small perturbations to ini-
tial conditions can result in major differences in the interaction behaviour (also called Chaotic
dynamics). Hence the idea grows that by including the necessary but basic physics (gravity,
hydrodynamic forces and in limited cases Brownian forces and lubrication forces), it is possible
to study the behaviour of suspensions. And this is what has been done in many proceedings
(see [1] for a comprehensive review). However, a lot of suspension phenomena are still not well
understood or even fully uncovered. For example, most research has focused on monodisperse
suspensions (all particles having equal size), even though the majority of suspensions have some
degree of polydispersity (a distribution of particle sizes).
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One such topic that has not yet received much attention is the behaviour of particle clouds
suspended in a liquid. These clouds settle multiple times faster than the speed of an isolated
particle due to hydrodynamic interactions between the particles. These clusters are encoun-
tered in many settings and may form due to several reasons. Moreover, this phenomenon is
relevant to many applications. For example, in deep-sea mining (DSM) polymetallic nodules
are harvested and the waste sediment is discharged back into the ocean (Fig. 1). The settling
of this particle plume and influence of ocean currents is important for optimising this process
as well as ecological considerations [2, 3, 4, 5, 6, 7, 8]. Understanding particle cloud behaviour
is also essential for understanding certain geophysical flows [9, 10] and flows in porous media
[11]. Finally, particle clouds are also relevant to certain health applications, like understanding
the deposition of cigarette smokes in the lungs [12] and inventing novel mechanisms for drug
delivery [13].

One of the reasons that many suspension related phenomena are only now being researched
(apart from the sheer amount of them), is the rapid advancement of computing power and
algorithms for numerical analysis and simulation of physical systems. Experimental equipment
for fluid mechanics has also rapidly evolved (e.g. PIV, LIF). It remains that suspensions are
quite difficult to analyze experimentally. The speed of the settling front (in sedimentation)
can be determined experimentally, as well as the viscosity of the suspension using rheometry.
However, it is nearly impossible to observe and measure the particle interactions that lead to
this collective behaviour. Luckily, there exist several simulation methods that can be used in
this domain of study, varying in their accuracy and speed (Section 2.5). This opens the door
to the study of these collective phenomena and their understanding and is also a very valuable
tool for researchers and engineers that wish to do quantitative studies.

In the next section, an overview will be presented of the most significant results in the area of
suspension dynamics and numerical techniques for simulation of suspensions. This will set the
stage for the topic of the current study. Then, recent important findings regarding this subject
will be summarized. And finally, an outline of the research topics and questions will be given.

Figure 1: During deep-sea mining operations, polymetallic nodule rich sediment is mined from
the ocean bed and thereafter discharged back into the ocean. Reproduced from [2].
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2 Literature review

2.1 Stokes flow basics

To discuss the dynamics of a sedimenting suspension, we need consider both the fluid as well
as the particle dynamics. The fluid dynamics are described by the well known Navier-Stokes
(NS) equations. In the case of small enough particles, the characteristic length scale of the
flow becomes small so that the velocity scale is also small. The Reynolds number, which
characterizes the relative importance of inertial effects to viscous effects, is then very close to
zero allowing us to neglect the convective acceleration terms in the Navier-Stokes equations.
The Stokes number, which signifies the ratio between a characteristic fluid time scale and
that for a particle, is also approximately zero for many settling suspensions due to the size of
the particles. If both these conditions are met, the nonlinear Navier-Stokes equations can be
simplified to the linear Stokes equations:

∇ · u = 0,

−∇p+ µ∇2u = 0.
(1)

At many instances in studying creeping flow we make use of this linearity. It also follows
from these equations that both the pressure and the vorticity are harmonic, meaning that
information in the flow is (in theory) propagated at infinite speeds. One method often employed
in studying fluid flow, is the linear decomposition of the velocity field. Assuming ∆x sufficiently
small, the velocity field u∞ can be written as:

u∞(x) = u∞ (x0) +∇u∞ (x0) · (x− x0) + h.o.t.
≈ U∞ +Ω∞ · x+ E∞ · x.

(2)

Note that the velocity field u∞ is referring to the ambient velocity field existing in the flow
without the disturbance caused by the particle. That the second order tensor ∇u, containing
all first order spacial derivatives of the velocity, can be decomposed into a symmetric and anti-
symmetric portion. These are respectively the rate of strain tensor Eij and the rate of rotation
tensor Ωij. Keeping only the linear first order term, we can thus approximate the velocity field
as the sum of a uniform translation, a straining part and a rotating part. Due to the linearity
of Stokes flow, we can study the flow for a translating, rotating and straining particle or flow
around a particle individually and add the flow fields to obtain the overall flow (the superpo-
sition principle) when all three elements are present. However, in the case of sedimentation we
are largely interested in the solution for a single translating sphere.

First, because of linearity, both the velocity and the pressure should be linear in the driv-
ing force U∞. The solution can be readily constructed by using the series [14] of spherical solid
harmonics (the pressure is harmonic and goes to zero at infinity). To obtain the pressure (a
scalar), U∞ is dotted with the first order tensor harmonic (up to a multiplicative constant). The
velocity (a vector also linear in U∞) can be obtained by multiplying U∞ with the zeroth- and
second order tensor harmonics, next to a particular solution driven by the pressure gradient.
Subsequently applying the boundary condition u = −U∞ at the surface of the sphere and the
continuity equation, the flow field and pressure field can be obtained as:
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u(x) = −3a

4
U∞

(
I

r
+

xx

r3

)
− 3a3

4
U∞

(
I

3r3
+

xx

r5

)
,

p−p∞ = −3µaU∞

2

x

r3
.

(3)

Figure 2: Disturbance flow streamlines for a translating sphere (top) and complete streamlines
for a sphere fixed in a uniform stream (bottom). Reproduced from [1].
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The streamlines for this type of flow are shown in Figure 2. The first image shows the
(disturbance) flow generated by a translating sphere: the particle is displacing fluid for its
downward motion and in its wake fluid is drawn in. The second image shows what the flow
would look like if the sphere was fixed, and the fluid translates uniformly. Equation (3) tells
us that the dominant fluid disturbance decays as r−1. There is also a more rapidly decaying
portion, as r−3. This latter disturbance is associated with the finite size of the particle, whereas
the former does not scale with the size, as will be explored later. Note that a disturbance in
the fluid velocity that scales with r−1 decays rather slowly. As we will see, this is the main
mechanism by which co-settling particles interact and will regularly be referred to as long-range
hydrodynamic interactions.

Now that we have obtained the velocity field, the hydrodynamic force (drag) on the single
settling particle can be obtained by summing the contributions of fluid surface traction:

Fh =

∫
Sp

σ · n dS. (4)

Where, for a Newtonian fluid, the Cauchy stress tensor equals σij = −pδij + 2µEij. Using
equation (3), it is found that the traction vector is 3µ

2a
U∞ everywhere on the surface of the

sphere. The integral in (4) is dramatically simplified as the product of the constant traction
vector multiplied with the surface area of the sphere, which gives the Stokes drag :

Fh = 6πµaU∞. (5)

This is a fundamental result for sedimentation and tells us that the drag on a single particle
scales linearly with the size of the particle a. If a particle settles in a fluid under the influence
of gravity, it starts experiencing a hydrodynamic drag from the fluid. As the particle velocity
increases, the drag increases according to equation (5) until the (net) gravity and drag are
in equilibrium whereupon the particle reaches its terminal settling velocity. When the Stokes
number is low, the stationary regime sets in almost instantaneously. Upon equating the Stokes
drag and the net gravity force on the sphere Fg = 4

3
πa3(ρp−ρf )g, we obtain the Stokes velocity:

US =
2

9

a2

µ
(ρp − ρf )g. (6)

2.2 Green’s function and resistance functions

Now, we will build to yet another fundamental building block for studying the theory of sedi-
mentation: the Stokeslet. Consider the velocity field in (3). As the particle is assumed to be in
force equilibrium, it is useful to express the velocity field in terms of the driving external force
Fe. This could be gravity, an external electric field and so on. This external force will be equal
to the drag force. Using Fe = −Fh = 6πµaU, we rewrite the velocity field as:

u(x) =

(
I

r
+

xx

r3

)
· Fe

8πµ
+

(
I

3r3
− xx

r5

)
· a

2Fe

8πµ
. (7)
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If we keep the external force constant and let the particle radius a go to zero, the last term
in this equation goes to zero. Hence, this fluid velocity disturbance is associated with the size
of the particle. Conversely, there is a disturbance that only depends on the external force is
independent of the particle radius (hence ’point force’):

uPF =

(
I

r
+

xx

r3

)
· Fe

8πµ
= G · Fe

8πµ
. (8)

Here, G is also coined the Oseen-Burgers tensor and it is the Green’s function for the Stokes
equations [1]. Something extremely useful regarding this, is that we can use the Green’s function
(which tells us the velocity disturbance due to one point force) to compute the velocity field
due to a distribution of point forces located on the outer surface of an arbitrary particle. After
all, what causes the disturbance in the fluid is the traction at the particle surface. This may
be written as:

u(x) =
N∑
i=1

G(x− xi)

8πµ
· Fi. (9)

Where Fi is the point force applied at position xi. The logical extension is then to generalize
this sum to an integral of point forces distributed over the surface. The resulting formula is:

u(x) =

∫
Sp

G(x− y)

8πµ
· (σ · n)(y) dA(y). (10)

The final central concept is that of resistance functions. Often, interest lies in the motion of
particles and its evolution. Notice in equation (4) that the drag force is linear in the stress
tensor σ. The stress tensor (for a Newtonian fluid) is itself linear in the fluid velocity field u.
Finally, the velocity field in a particulate flow in the Stokes regime will be linear in the forcing
U. Therefore, the hydrodynamic drag Fh is also linear in U. This leads us to write:

Fh = −RFU ·U. (11)

The second order tensor RFU relates the particle velocity to the force. It can be shown that
this tensor is proportional to µL, an unsurprising scaling. Often these relations are non-
dimensionalized, to remove the effect of particle size. Moreover, this tensor is anisotropic for
an arbitrary shaped particle but can show isotropy in several or all directions if the particle has
one or more planes of symmetry. Using the formula for the Stokes drag (5), we can write for a
spherical particle:

RFU = µa

6π . .
. 6π .
. . 6π

 .

Moreover, it can be shown that the resistance tensor is always symmetric, and all its eigenval-
ues (in diagonalized form) are positive, dimensionless (it was already determined that R scales
with variables µ and L) numbers determined by the particle shape. Finally, often the desire
is to compute the particle motion from the forces, which is essentially the inverse problem of
(11). In that case, we use M = R−1.

13



2.3 Advanced solutions

We have explored the solution to the Stokes equation for translation. The velocity and pressure
fields for a sphere fixed in a rotating flow and straining flow can be derived in a likewise manner.
They are given in Chapter 2 of the work by Guazzelli & Morris [1]. Moreover, similarly to the
linear relation we could write between the forcing U and the hydrodynamic force Fh, a rotating
flow (described by the rate of rotation ωi) will induce a hydrodynamic torque Th and their
relation can be described by a second order tensor RTω. The torque is a very known concept
in mechanics, being related to the change in angular momentum. A straining flow described
by the rate of strain tensor E∞ induces what is called a stresslet (also a second order tensor
Sij) and their relation is captured in RSE. The stresslet reflects the added stress due to the
rigid particle’s resistance to straining motion. It is not needed for describing the motion of the
particles (like the force and torque), but is important for determining the bulk stress. Finally,
there can also exist cross-couplings, for example, between the force and the rate of strain, or
the torque and the velocity. Putting everything together, we get Fh

Th

Sh

 = −

 RFU RFω RFE

RTU RTω RTE

RSU RSω RSE

 ·

 U−U∞

ω − ω∞

−E∞

 . (12)

Note that this can also be written in the mobility formulation, to calculate the (angular) ve-
locities and rate of strain from the hydrodynamic force, torque and stresslet. This is more
common, especially in cases when particle inertia is negligible as in this case the hydrodynamic
force/torque is equal to the external force. Note that U∞, ω∞ and E∞ are the ambient fluid
velocity, rate of rotation and rate of strain, respectively. U and ω are the particle (angular)
velocities.

If the ambient flow can not be fully represented with a linearly varying flow field, an addi-
tional term appears in the equation relating the velocities of particle and fluid to the force and
torque. The equations including these terms are called Faxén laws (see Chapter 3 in [15]):

F = 6πµa

[(
1 +

a2

6
∇2

)
U∞ −U

]
T = 8πµa3 [ω∞ − ω]

S =
20

3
πµa3

(
1 +

a2

10
∇2

)
E∞.

(13)

Here, the fluid variables are evaluated at the center of the particle. Finally, one more concept
that will be useful is the multipole expansion. Originally a concept from electrostatics, the idea
is to expand the term Gij(x− y) in equation (10), giving

ui(x) = −
F h
j

8πµ
Gij(x) +

Mjk

8πµ

∂Gij

∂xk

(x) + · · · , (14)

where the integrals in the original equation can now be written as the force F h and moments
Mjk (containing the torque and stresslet) because the y-dependence in G was removed. These
two terms are respectively the force monopole and dipole and other multipoles (quadrupole,
octupole) follow from the higher order terms. We see again the importance of the Green’s
function, as it is this function and its derivatives that shape the solution.
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2.4 Multiparticle dynamics

2.4.1 Pair of particles

Up until now we have only considered the single particle settling behaviour. When two particles
settle together, we may expect them to behave as individually settling particles if the separation
is extremely large. If this is not the case, the particles will interact hydrodynamically. The
flow generated by the settling of one particle will influence the second particle’s motion and
vice versa. One way to systematically study these effects, is with the method of reflections (see
Chapter 6 in [15]). We first assume that both particles move at the velocity following from
Stokes’ law. The fluid velocity disturbance induced by the settling of particle 1 is equal to the
Stokeslet. This flow will cause an additional velocity of particle 2, which is approximately equal
to the dominant term in equation (3), with x = r. The procedure is identical for the addition to
the velocity of particle 1 causes by the motion of particle 2. We can superimpose this interaction
effect onto the single particle settling velocities. The result for this first reflection is:(

U1

U2

)
=

( I
6πµa1

1
8πµ

(
I
r
+ rr

r3

)
1

8πµ

(
I
r
+ rr

r3

)
I

6πµa2

)
·
(

Fe
1

Fe
2

)
. (15)

These interactions keep getting reflected, and using computers it is possible to calculate through
many of these reflections to achieve an accurate result. Note that the tensor relating external
forces to particle velocities in equation (15) is the mobility tensor M. Moreover, because the
particles interact through the intermediate fluid we see that the force acting on particle 1 af-
fects particle 2. One very interesting result is that the resulting particle velocities are greater
than the single particle settling velocities. In other words, two particles settle faster than one.
The flow generated by each particle drags the other particle along in the direction of the flow.
Also, because of the additional term containing the dyad rr, there are now components of the
velocity in the directions not aligned with gravity (i.e. there is sideways motion). Finally, for
two particles of equal size and exposed to an equal external force, all velocity components will
be equal. Thus, the particles maintain equal spacing.

When the particle spacing is on the order of the particle radius, many reflections are needed
to achieve an accurate result. In this case, results from lubrication theory (Chapter 9 of [15])
can be used to speed up the calculations. When two particles move towards other at close
proximity, the interstitial fluid needs to be pumped out. This requires large pressures, which is
accompanied by large forces (conversely, movement in the opposite direction creates suction).
In fact, the lubrication force diverges as the particles move closer together. This leads to a
remarkable damping of the relative motion. Keeping up with the resistance formulation, we
can include lubrication interactions as(

Fl
1

Fl
2

)
= −Rl ·

(
U1

U2

)
. (16)

It is a recurring theme in the current discussion that a distinction is made between long range
interactions and short range interactions. The former can be best described in the mobility
formulation, using the method of reflections, and the latter is best handled using lubrication
theory. This concept is exploited by some simulation techniques, like Stokesian Dynamics [16].
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A particle pair of unequal size shows contrasting behaviour. Because the settling velocity
of a particle scales with its size, the particles will move relative to each other. This relative
moment renders this case much more dynamic, as the particle interactions will be dominated
alternatively by long range and short range interactions. The motion of a triplet also provides
some insight. The middle particle will always settle faster, due to it experiencing the flow
generated by both particles. It is also found that velocities will be twice as large when the
particles are aligned in the direction of the flow (vertical for sedimentation) compared to when
the particles are aligned in the direction perpendicular thereto (horizontally). This is because
the disturbance flow (see Fig.2) for the settling sphere is twice as large in the vertical direction,
compared to the horizontal direction. The time evolution of a triplet (as well as the dissimilar
doublet) can be computed using numerical techniques, showing features of chaotic dynamics.

2.4.2 Hindered settling

We move from the study of single particles to a collection of settling particles. While the
trend up until now was that particles settle faster collectively, this is not actually the case for
a suspension. This is due to the fact that the settling particles create a back-flow of fluid,
drastically increasing the drag, in proportion to the amount of particles present. This is called
hindered settling. As a result, the particle settling velocity is actually lower than the Stokes
velocity. The function that describes the ratio between the Stokes velocity and the (averaged)
particle settling velocity is called the hindered settling function:

⟨u⟩p = USf(ϕ). (17)

The ratio between the particle averaged velocity and the theoretical Stokes velocity depends on
the solid fraction ϕ. The precise functional correlation is a topic of long debate. The formula

f(ϕ) =
(1− ϕ)2

(1 + ϕ1/3) exp(5ϕ/3(1− ϕ))
(18)

gives the best fit to all experimental data [17]. The correlation with the most widespread use
is that derived from experiments by Richardson and Zaki [18]:

f(ϕ) = (1− ϕ)5. (19)

For very small ϕ, equation (19) has a linear form with slope 5 and equation (18) has the form
of a power law with exponent 1/3. It is interesting to note that the form of these equations
relates to the details of the assumed microstructure of the suspension [19]. First, using the
method of reflections, the correction to the Stokes velocity due to particle interaction is found
to be O(a/r), where r is the distance between the particles and a the size of the particle. If
the particle arrangement is random, the probability of there being a second particle within a
distance O(r) to interact with is O(ϕ). This leads to the linear correction to the Stokes ve-
locity. If there is a periodic arrangement, the correction would be proportional to the average
separation O(aϕ−1/3), leading to the power law correction. And indeed, it has been shown that
suspensions that are dominated by Brownian motion (where it is more likely that particles are
arranged randomly) settle according to the linear hindered settling function, at least in the
dilute regime [20]. Little is known about the microstructure in suspensions that leads to the
observed deviation from this behavior, as the microstructure depends on the hydrodynamics
which itself depends on the microstructure, leading to complex interactions.
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(a) Monodisperse suspension (b) Tridisperse suspension

Figure 3: Schematic showing the different regions formed in a suspension with varying degrees
of polydispersity. Reproduced and modified from [19].

In a settling monodisperse suspension, three regions are formed (Fig. 3a). The bottom region
is filled with sediment, the middle region consists of a dispersion at the original concentration,
and a top region with clear fluid is formed. At the interface of the regions occupied by clear
fluid and bulk suspension, a sharp shock is observed. Using a simple advection equation to
express the conservation of particles and combining that with the hindered settling function,
a self-sharpening mechanism is uncovered [21]. Moreover, it can be shown that the velocity of
this front is equal to the hindered settling speed of the particles. This has led to the method
by which settling velocities are measured in experiments (by measuring the front velocity).

2.4.3 Polydispersity

When the suspension contains species of different sizes, both qualitative and quantitative dif-
ferences can be observed. After some time, several regions form in the settling suspension. Just
like in the previous case, a sediment layer and a layer with clear fluid at the top can be seen.
In between, the number of distinct regions that form is equal to the number of particle species.
The layer above the sediment contains all species, and each layer above it is missing the fastest
settling species in the region below it (Fig. 3b). Similarly to the monodisperse case, shocks
can be observed between these regions. However, if the particle size distribution is continuous
(i.e. all particle sizes are present within a certain range), there are no shocks but rather a
continuous concentration gradient along the height of the vessel for each species [19]. As for
the determination of the hindered settling function for the polydisperse case, there remains
work to be done. Several attempts have been made, of which many are modifications to the
monodisperse correlations. The approach that gives the best agreement is by using the local
solid fraction in equation (19) as well as to calculate the Stokes velocity (6) of a species i by
replacing the fluid density with the density of the suspension, excluding species i [19].
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2.4.4 Particle clouds

A very interesting phenomenon in sedimentation is the settling of particle clouds or clusters.
A particle cloud is a cluster of particles surrounded by clear fluid around its exterior, and also
dragging fluid within its interior, the amount of which is dependent on the solid volume frac-
tion. Perhaps surprisingly, the cloud can maintain its shape as well as the separation with the
clear fluid outside it for a considerable time. Moreover, the cloud falls with a velocity greater
than the Stokes velocity for individual particles. This is because of hydrodynamic interac-
tions between the particles, similar to what was discussed for particle pairs. The fundamental
difference is that the back flow of fluid is not hindering the motion of particles anywhere as
much, seeing that the particles move as a cluster and only experience drag from the outside fluid.

The physics of a falling particle cloud can be compared to that of a fluid drop with a vis-
cosity λµ settling in a fluid with viscosity λ with velocity U . This system has been solved by
Hadamard [22] and Rybcynski [23] and is also referred to as the HR solution. The drag on the
drop is:

F = −4πµaU

(
1 + 3λ/2

1 + λ

)
. (20)

Using this result for a spherical cloud of N particles with radius R (particles having radius a
and density ρp), we find

Ucloud =
N 4

3
πa3 (ρp − ρ)g

2πµ2+3λ
λ+1

R
= N

6a

2
(
2+3λ
λ+1

)
R
US (21)

by balancing the net weight (gravity minus buoyancy) with the drag and substituting the Stokes
velocity (6). Both in the particle cloud settling in clear fluid and the drop of heavy fluid settling
in lighter fluid, a toroidal circulation is observed (Fig. 4b). Due to the particles interacting
hydrodynamically (the amount of interactions depending on the number of particles), particles
may exit the closed region of circulation and subsequently be carried away from the cloud
with the outside fluid (Fig. 4). This leads to the appearance of a distinctive tail of particles.
For stable clouds (typically those with less particles), this leakage of particles persists until
it disintegrates. Clouds containing a large number of particles become unstable. First, these
clouds evolve into a torus owing to the leakage of particles along the centerline of the cloud.
The torus then breaks up into several droplets, and this process continues as a cascade. This
intricate sequence of events can be reproduced in simulations by modeling particles as point
forces according to equation (8), showing how (long-range) hydrodynamic interactions between
individual particles on the microscale can produce collective behaviour and complex phenomena
on larger scales. After discussing simulation techniques for suspensions, we will discuss particle
clouds more in detail as well as recent advances on the topic.
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(a) (b) (c)

Figure 4: (a) Fluid streamlines in a reference frame moving downwards at the speed of the
cloud. There is a spherical region inside the cloud where fluid streamlines do not leave the
particle cloud. Reproduced from [24]. (b) Particle pathlines in a cloud showing the typical
toroidal circulation. Reproduced from [25]. (c) One instance of a particle pathline showing the
trajectory of a particle that leaks from the cloud. Reproduced from [25]. x̃ and z̃ are relative
to the cloud center of mass.

2.5 Numerical techniques

2.5.1 Techniques for particle-laden flows

The dynamics of particle flows are governed by the Navier-Stokes equations for the fluid phase,
and the Newton-Euler equations for the (rigid) particle phase. When we combine computa-
tional fluid dynamics methods (CFD) to solve the fluid phase with discrete element methods
(DEM) to solve the particle phase, this is called CFD-DEM. The force balance for the particles
include a particle-particle contact force, the hydrodynamic force (exerted by the surrounding
fluid) and body forces. For the fluid, the incompressible volume averaged NS equations are
used. A coupling routine is used to exchange the required information between the CFD and
DEM solvers. There can be many variations in specific implementations for the fluid and par-
ticle phase models. A more fundamental difference however, is that between the resolved and
unresolved method. When particles are smaller than the cell size, the flow around a particle
is unresolved. When particles are large compared to the cell size, regridding of the mesh used
for the CFD is necessary to resolve the flow but computationally very costly. Fictitious do-
main methods circumvent this problem by creating a mesh for the fluid volume as well as the
particle volume. An extra body force is added so that the fictitious fluid inside the particle
volume behaves as a rigid body, at the speed specified by the DEM solver. In reality it is
more complicated and there exist several implementations, a popular one being the Immersed
Boundary Bethod (IBM). For a popular implementation of CFD-DEM that is open source, see
[26]. Finally, the Latticed Boltzman Method (LBM) is based on kinetic theory and can be used
to resolve the flow surrounding particles without use of fictitious fluid regions [27].

When the Stokes number (the ratio between the particle response time and a typical time
scale for the fluid) is low, the effect particles have on the flow can be captured by simpler meth-
ods. These methods include the dusty gas approach, Eulerian approach and the Lagrangian
point-particle approach [28], differing mainly in the range of Stokes numbers they are valid in.
A method that has been developed explicitly for the purpose of these types of flows, is Stokesian
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Dynamics (SD). This method is akin to molecular dynamics, but for the simulation of particles
in a viscous liquid. The focus in this method is not on detailed simulations of the flow, but
on the motion of particles, due to both hydrodynamic and nonhydronamic interactions. The
method has been shown to be accurate in both the qualitative and quantitative sense [16]. One
of its advantages is its relatively fast computation times, compared to other methods used for
similar purposes. It can be applied among other things for studying sedimentation, diffusion,
flocculation, flow in porous media and polymer rheology. Essentially, by simulating the micro
hydrodynamics we gain access to the behaviour of the particles as well as the macroscopic fluid
properties that can be derived from that. We will now briefly discuss the details of this method.

2.5.2 Stokesian Dynamics

Stokesian Dynamics makes use of the pair hydrodynamic interactions discussed before to sim-
ulate the many-body problem. This includes both close range (lubrication) interactions, as
well as long range interactions. The latter are best represented in the mobility formulation
(15) whereas the lubrication interactions are best dealt with in the resistance formulation (16).
The particles obey Newton’s second law of motion; which for this case is called the Langevin
equation:

m
dU

dt
= Fh + Fe + Fb. (22)

Here, Fh is the hydrodynamic force, Fe may include both external forces (like gravity) and
interparticle forces and Fb is the (random) Brownian force that may be neglected if particles
are sufficiently large. Moreover, if flow is in the Stokes regime, the inertial term may also be
neglected leading to Fh + Fe = 0. The main effort is then in calculating the hydrodynamic
force, which is equal to

Fh = −RFU · (U−U∞) +RFE : E∞, (23)

where we have used the resistance tensors to describe the linear coupling between kinematic
variables and the hydrodynamic force.. For Stokes flow conditions, the particle velocities can
be computed from this equation with

U = U∞ + (RFU)
−1 · (Fe +RFE : E∞) , (24)

after which the particle positions are updated using ∆x = U∆t (these equations are usually
non-dimensionalized first). As mentioned earlier, the resistance functions RFU and RFE are part
of the grand resistance matrix R (12). For two spheres, the grand mobility matrix (M = R−1)
is known. The grand mobility matrix is formed using the Faxén laws (13) and the multipole
expansion (14). The procedure is explained in more detail by Abade and Cunha [25]. We call
this M∞ and for large r, this is a good approximation. However, for small particle separations
lubrication effects will be dominant. We can add these to our formulation, by making use of the
fact that these interactions are close range, i.e. we need only add them for particle neighbours
that are sufficiently close. Thus we can use the precise resistance interactions for two spheres
R2S, which will include lubrication as well as the long range type interactions. We subtract
the latter terms by inverting a two sphere mobility matrix which is truncated to only include
far-field terms (15), so as not to count these terms twice. The final equation for R becomes:

R = (M∞)−1 + R2S − R∞
2S. (25)

That concludes our discussion on SD for now; the details around the implementation used
in this research will be shared in later sections. This was definitely not an exhaustive list of
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simulation methods for particulate flows. The reader is referred to Maxey [29] who provides
a more comprehensive review. Brady [16] explains the Stokesian Dynamics method in more
detail, validates it against experimental data of suspensions and provides some applications of
the method.

2.6 Research on particle clusters

2.6.1 Monodisperse clouds

We will now proceed with our discussion on clouds of particles. It is worth noting that clouds of
fibers show similar behaviour to clouds of particles and are relevant to several applications. For
research on sedimenting clouds of fibers, see [30, 31, 32, 33]. An early and significant piece of
research on particle clouds is that by Nitsche and Batchelor [24]. In this study, they performed
simulations of particle clouds (referred to as ’blobs’) in the dilute regime (ϕ < 4%) with a
maximum number of 320 particles. Both fluid and particle inertia were neglected. Particles
were assumed to interact hydro dynamically only by the effect of the generated disturbance
flows (Stokeslets). First, the blob was observed to remain a cohesive entity (without manual
imposition of a boundary). Also, particle leakage and the subsequent appearance of a ’tail’was
observed. In addition to setting light on the mechanism leading to this, a formula based on a
scaling analysis was proposed for the rate of particle leakage as −dNb

dt
= K Vb

d
. The argument is

that if particle leakage is associated with random velocity fluctuations, it should scale with the
velocity of the blob Vb and with the inverse of the mean particle spacing d = (4π/3Nb)

1/3R.
Based on the H-R solution (21) and the analogy with falling drops of liquid, the velocity of the
blob can be approximated as Vb ≈ uo(

6
5
Nb

a
R
+ 1), which gives an explicit formula for the rate

of particle leakage −dNb/dt ≈ const. u0R
2a/d4, showing that it is proportional to the surface

area of the blob. Note that a and R are the particle and cloud radius, respectively, and u0 is
the single particle Stokes velocity.

Another benchmark study is that by Metzger et al. [34]. Both simulations as well as ex-
periments were performed. The simulations used a point particle approach, similar to that of
Nitsche and Batchelor, the difference being that the latter authors also included an artificial
close-range repulsive force to prevent particle overlap. Instead, Metzger et al. just eliminated
simulation runs where interparticle distances (and with that sedimentation velocities) became
unrealistic. Experiments were performed with glass beads in silicon oil for solid fractions up
to 20 % and particle numbers up to a few thousand (the uncertainty rising from the method
of approximation). The typical formation into a torus and subsequent break-up was produced
in the experiments as well as in the simulations (Fig. 5). Statistics (mostly of the numerical
simulations) are given for the probability of cloud destabilization, as a function of the initial
number of particles N0. For N0 > 1000, break-up always occurs. For a lesser amount of par-
ticles, destabilization probability increases with N0. However, the time until destabilization t∗b
(dimensionless time) is also positively correlated with N0. Data of the cloud radius R∗ and
velocity V∗ during torus formation show large variation but qualitative agreement between ex-
periments and simulations, except for higher solid fractions (where the point-force assumption
loses its validity). The data suggests that R∗(t∗) − 1 ∼ N

−2/3
0 t∗, i.e. cloud radius increases

linearly in time. The data also shows that the decrease in cloud velocity is due to leakage of
particles (decrease in cloud density leads to decreased fall velocity) as well as the effect of the
emerging shape (a torus experiences more drag than a sphere). There is also good agreement
between experimental and numerical results for the amount of particle leakage. It is shown
that particle leakage decreases with increasing N0. Moreover, Metzger et al. also adds strength
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Figure 5: Images of a falling particle cloud, reproduced from [34]. Left: simulation using point-
particles. Right: experiment using glass beads in silicon oil.

to the hypothesis of Nitsche and Batchelor on the cause of particle leakage, by showing that
samples with greater particle leakage deviate more from the streamlines of the closed toroidal
circulation. The flow and pressure fields are visualized at key time instances (Fig. 6). After
the torus forms, it expands leading to decreased pressure at the leading front whereupon the
incident fluid streamlines can enter the cloud, causing break-up and creating new circulation
regions. Finally, a physical argument is given for the onset of destabilization. At a certain torus
aspect ratio, the vertical velocity at the centre generated by the particles inside (approximated
as randomly distributed point particles) is less than the fall velocity, at which point streamlines
from the outside fluid penetrate the torus.
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Figure 6: Flow and pressure fields in a reference frame moving downwards at the speed of the
cloud. High pressure is indicated in dark. Reproduced from [34].

It can be shown that when the ratio of the distance to the particle radius r/a = O(Re−1),
inertial effects cannot be neglected. Thus, when r/a ≪ Re−1, inertial effects can be neglected
but farther from the sphere they become comparable to viscous effects. In this case, the Stokes
approximation is not valid anymore. Oseen [35] constructed a solution (the ’Oseenlet’) that is
valid in these finite Re conditions (Fig. 7). As can be seen, the fore-aft symmetry we know from
the Stokeslet is broken (as well as the associated irreversibility). Close to the particle, the flow
field closely resembles the Stokeslet, but resembles the flow field of a potential point source far-
ther away. A wake is also formed, where fluid inflow compensates the outflow from the source.
This leads to interesting behaviour of a pair of spheres, where they approach eachother due to
decreased drag on the trailing sphere, then touch, then tumble (Drafting-Kissing-Tumbling or
DKT). Subramiam and Koch [36] investigated the behaviour of particle clouds at these finite Re
conditions. They found that these clouds expand outwards due to the radial outflow associated
with the source term in the Oseenlet. For large concentrations, the clouds first flatten due to
wake interactions (drafting) and then expand outwards in the horizontal direction.
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Figure 7: Schematic showing the source-sink character of Oseen flow and its relation to the
Stokes solution for flow around a spherical particle. Reproduced from [36].

More research has been done on particle clouds in different types of flows, which we can
not all discuss here. The behaviour of particle clouds in a shear flow was investigated exper-
imentally by Metzger and Butler [37] and that in vortical flows by Marchetti et al. [38] and
Kriaa et al. [39]. Mylyk et al. investigated experimentally the break-up of particle clouds close
to a vertical wall [40]. Machu et al. performed a very elaborate (experimental and numerical)
study on the interaction between two suspension droplets [41] and on the settling of suspension
drops with a spherical and bell-shape. Pignatel et al. [42] continued the investigation into
particle clouds at a finite Reynolds number, as well as Chen et al. [43]. Ayeni et al. [44] also
investigated particle clouds at finite Re but with a CFD-DEM approach.

A related but not equivalent problem is that of turbulent particle plumes. These are very
prevalent in all types of natural and industrial processes. When the Reynolds number is signif-
icantly higher compared to what was discussed prior, a particle cloud undergoes a significant
acceleration due to buoyancy (the acceleration stage), after which internal circulatory regions
of particles and fluid are established (the thermal stage). Then, the particles separate from the
vortex ring and proceed to settle at their individual settling velocities (the dispersive stage)
and the fluid vortex ring is left behind (this is all well explained in the canonized work of
Morton et al. [45]). It is these particle clouds that are often encountered in practical settings.
For example, in the example of sediment reintroduction during nodule harvesting (Fig. 1) it is
specifically this type of particle cloud behavior that is relevant. For studies on particle plumes
related to deep-sea mining, see [2, 46]. For studies on the effects of polydispersity in particle
plume settling, see [47, 48, 49]. Finally, Penlou et al. [10] recently showed how particle clouds
can form in turbulent gas-particle suspensions, leading to enhanced settling instead of hindered
settling.
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2.6.2 Polydisperse clouds

Abade and Cunha [25] were the first to investigate the effect of polydispersity on cloud sedimen-
tation. They employed a Stokesian Dynamics simulation with an artifical lubrication force. The
first part of the paper is very similar to the analysis of Nitsche and Batchelor. The mechanism
for particle leakage is visualized and based on a novel scaling argument, a formula is derived
for the rate expression (which agrees well with the simulation). Furthermore, it is shown that
a greater degree of polydispersity (higher standard deviation of the particle size distribution)
leads to a higher rate of particle leakage. It is argued that the polydispersity constitute a
secondary source of velocity variations (which is associated with leakage). This is because the
Stokeslet explicitly depends on the particle size through the applied force (7). It was also found
that the effects of polydispersity become pronounced only at higher values of ϕ. Finally, the
evolution of three clouds with varying degrees of discrete polydispersity (Fig. 8) suggests that
(discrete) polydispersity leads to less ordered collective behaviour of the cloud compared to the
monodisperse case. Collective motion may even be not present at all as the polydisperse cloud
can disintegrate in the early stages.

Figure 8: Snapshots of three different settling particle clouds, reproduced from [25]. Left:
monodisperse cloud. Middle: Bidisperse cloud with a2/a1 = 1.25. Right: tridisperse cloud
with a2/a1 = 1.25 and a3/a2 = 1.5.

Bülow et al. [50] studied numerically the behaviour of a bidisperse and polydisperse settling
particle cloud. They employed a Stokesian dynamics like method. Lubrication interactions were
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not included to decrease computational time by orders of magnitude. For bidisperse clouds,
both an unmixed and mixed initial configuration was tested. In the unmixed configuration
(with large particles in the upper hemisphere of the cloud), it was observed that the large par-
ticles dive through the small particles due to gravity and take some small particles with it. For
higher size ratios λ = asmall/alarge, significantly more small particles remain in the cloud. In
contrast, for smaller λ more large particles are trapped by the trailing small particles and thus
leave the cloud. For the mixed case, the particles of both sizes were randomly distributed in the
sphere. The size ratio was 0.5 and the initial volume fraction was set to 0.05 (with 1000 total
particles), and the percentage of small particles varied from 0 to 95%. A significant difference
with the unmixed configuration, is that small particles are better preserved in the cloud (for the
mixed case). Moreover, instead of the usual break-up into two clouds, an immediate break-up
into three clouds was sometimes seen. Finally, it was shown that a fully polydisperse cloud
(N=5000) also undergoes the same characteristic evolution (Fig. ??). Unfortunately, they did
not do a comprehensive analysis on the effects of particle number and solid fraction on the sta-
bility of the cloud and the evolution of the particle size distribution. Similar to what Nitsche
and Batchelor [24] had done, Metzger et al. proposed a formula for the settling speed of a
particle cloud based on the H-R solution, but for the polydisperse case. The formula represents
the results of the simulations well, even up to ϕ = 20%.

Faletra et al. [51] did a more detailed study on settling bidisperse particle clouds (referred
to as suspension droplets). The method used was very similar to that of Nitsche and Batchelor
[24], but used the Oseenlet flow field instead of the Stokeslet. For the bidisperse case (two
different densities), particle leakage was observed and the lighter particles had a much higher
probability of entering the tail (Fig. 9). After waiting for large enough times, all light particles
have entered the tail and the droplet consists exclusively of heavy particles (a novel segrega-
tion mechanism). Surprisingly, this was also confirmed in the qualitative sense in experiments,
even though the experiments required the use of a much higher solid fraction. An increase in
the amount of initial particles N0 led to delayed separation and increased deposition of heavy
particles into the tail. This latter result is in contrast to the findings by Metzger et al. [34],
who found that in the monodisperse case the amount of leakage decreased with increasing N0.
Faletra et al. argue that due to bidispersity, the heavy particles experience a disturbance due
to the relative motion with the lighter particles which causes the increased leakage (which in-
creases with N0 because smaller particles stay in the drop longer). Finally, a comparison is
made with simulations using Stokeslet disturbances. The drops simulated with oseenlets fall
slower, which can be explained by the increase in drop size (which leads to a decrease in drop
ϕ). The expansion of the drops is associated with the potential point-source in the Oseenlet
flow around a particle, causing light repulsion of particles. The segregation mechanism was
very similar for the two methods.

Ho et al. [52] studied also polydisperse settling particle clouds, with a Stokeslet-based
method. Instead of adding an artificial repulsive force for close particles, the velocity contri-
bution of a particle to its neighbour was neglected if particles were overlapping (as particles
were represented as points), similar to previous authors. First, it was shown that polydisperse
(’Gaussian’) clouds exhibit essentially the same (phenomenological) time evolution as their
monodisperse counterparts. Smaller particles were more likely to leave the cloud, corroborat-
ing findings of previous studies. Similar to what was argued before, polydisperse clouds are
believed to destabilize earlier due to the increased leakage. To test this hypothesis, destabi-
lization times tdes and lengths Ldes were evaluated for monodisperse and Gaussian clouds with
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Figure 9: Time evolution of a bidisperse particle cloud consisting initially of 300 particles with
a density ratio of 2. The heavy particles are shown in red and the light particles in blue.
Reproduced from [51].

approximately the same solid fraction. It is shown that indeed , for Gaussian clouds, tdes and
Ldes are significantly smaller. The monodisperse runs also show more variation among the var-
ious realizations simulated for the same number of particles and ϕ. It is suggested that because
of the increased leakage rate in Gaussian clouds, the simulation result is less dependent on the
initial microstructure. It was also found that clouds with greater N0 are more stable, which
was also concluded by Metzger et al [34]. The effect of ϕ on tdes and Ldes was not significant.
The finding by Abade and Cunha [25] that increasing the standard deviation of the (Gaussian)
particle size distribution leads to less stable clouds was also replicated, but now also in the
quantitative sense. Ho et al. also used their simulation to replicate the experiments by Mylyk
et al. [40] where a suspension drop with three different sizes of particles settled in glycerol.
The general evolution of the experimental and numerical clouds is very similar and perhaps
surprisingly, the data for tdes and Ldes generally showed a match.

2.6.3 The suspension drop experiment

In the context of deep-sea mining, some researchers [7] have posited that in order to minimize
the ecological impact of DSM operations, it could be interesting to let the sediment particles
aggregate with the help of organic material that is present in low concentrations in the upper
layer of the ocean bed. These aggregates (so called ’flocs’) will have greater settling velocities
(because of their larger size) and will therefore not be carried by the turbidity current over
larger distances (thereby minimizing its impact). However, it is known that these flocs have a
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size-dependent density, which impact its settling behavior [53]. In turn, the specific parameters
during flocculation (e.g. sediment and flocculant concentration, salinity) determine the size
and density of flocs that are formed. For perspective, the range of floc sizes and densities en-
countered in experiments is between 0-1000 microns and 1010-1300 kg m−3, respectively. This
is while the sediment particles have sizes in the range of 5-20 microns and densities upwards
of 2500 kg m−3. Both size and density impact the settling behavior, therefore it is crucial
to understand the size-density relation of these aggregates. Analyzing the size of flocs using
a particle size analyser (PSA) is suboptimal, because the density and therefore the refractive
index is size-dependent. The flocs are also not spherical. An error in the estimated size will
result in an even larger error in the estimated density, if the Stokes equation is used (where the
size is squared). Measuring the density of a polydisperse sample of flocs is difficult for obvious
reasons. Hence, Waqas et al. [7, 8] took a different approach, obtaining video footage of flocs
settling in water from which the size can be easily determined using image processing software.
The effective density (ρf − ρw) can then be determined using equation 6, assuming that each
floc is moving at its Stokes velocity. In this experiment, a suspension drop is pipetted from a
sample of pre-mixed suspension and released into a water tank where it settles under its own
weight as a particle cloud. A schematic is shown in Fig. 12. The particle motion is captured
with a camera (a sample image is shown in Fig. 10) and by means of image processing the
particle sizes and corresponding velocities are computed.

Figure 10: A snapshot obtained from a setup as in Fig. 12 at the Deltares research institute in
Delft, The Netherlands.

In one study by Waqas et al., they investigated the difference between settling velocities
measured for individual particles and (averaged) velocities measured for suspension drops us-
ing equal density and (approximately) monodisperse spherical particles. They found that the
settling velocities measured in both scenarios can easily differ by an order of magnitude, which
is (correctly) attributed to the effects of enhanced collective settling. In another study, the
same type of comparison is made for settling flocs. The measured settling velocities for in-
dividual and collective settling flocs and the resulting effective densities are shown in Figure
11. It can be seen that velocities during collective settling again exceed those measured during
individual settling (Fig. 11). This leads to large errors when calculating the effective density,
illustrated by the huge difference in the obtained size-density curves. This is because a small
particle which is settling at the cloud speed, which can be 50 times its actual Stokes velocity,
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Figure 11: Settling velocities and resulting effective densities for different floc size ranges.

leads to a density that is also 50 times as high as the actual density. For individually settling
particles, the settling velocities are more nonuniform and the effective density calculated from
the velocity lies in a realistic range, indicating particles were moving at their respective Stokes
velocity. But, to obtain such measurements of an individually moving particle (floc), repeated
subsampling is necessary. This significantly slows down research efforts as it would take very
long to obtain statistics for a range of floc sizes in different flocculation conditions. Hence,
Waqas et al. concluded that in order to obtain accurate figures for individual particles’ settling
velocities, an extremely low number of particles should be used in the suspension drop exper-
iment (SDE). They also mentioned that this would not be needed for monodisperse drops as
the measured velocities are more uniform, on which we would comment that the velocities can
still be much larger than individual settling velocities regardless of uniformity.

For these reason, it would be highly beneficial to study for what conditions the measured
settling velocity in the SDE corresponds (within a reasonable margin) to the single particle
Stokes settling velocity. In order to effectively study this problem, some simplifications are
in order. First, while the relatively simple setup used (Fig. 12) probably does not guarantee
spherical particle clouds without entraintment of outer fluid, the idealized case will be assumed
in this study. Moreover, the assumption of rigid inertia-less spheres moving in an inertia-less
quiescent fluid enables us to use Stokesian Dynamics as the numerical method. Now, we have
seen that the initial velocity of a monodisperse suspension drop can be calculated with

V0

Vs, ref
=

6

5
N0

a

R
+ 1, (26)

which can be rewritten as
V0

Vs, ref
=

6

5
N

2
3
0 ϕ

1/3 + 1. (27)

First, it can be seen easily that the settling velocity is always above the Stokes velocity. To
simplify, we will therefore set an arbitrary but necessary limit of 2 times the Stokes velocity,
as the desired settling velocity of the particle cloud. As such, there will still be an error, but
it is limited and does not have bounds extending to other orders of magnitude like what was
reported by Waqas et al. [8]. Using equation 27, we can calculate for which starting conditions
the cloud will settle with a velocity of 2Vs, e.g. this is the case for N0=1000 and ϕ = 0.00006
% or for N0=100 and ϕ = 0.006 %. In other words, the initial velocity is only close to the
Stokes velocity for (absurdly) dilute clouds and/or for very small particle numbers. However,
we have seen that during the settling of a particle cloud, it decelerates due to the steady loss of
particles. Moreover, at a certain point in the evolution of a cloud, it can break up into multiple
clouds (if the conditions are suitable) or fully desintegrate, leading to a further decrease in the
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speed of particles. Because the velocity in the setup of Fig. 12 is measured at the lowest part
of the vertical column, the suspension drop will have decelerated from its initial velocity, the
extent of which needs to be determined. As discussed before, most suspensions are polydisperse.
The particular application discussed in the section above involves the highly polydisperse flocs.
From the SDE, we want to get the size and density of flocs, for which we would need to measure
the particle at its Stokes settling velocity. For simplifying purposes, we will also study when
the average velocity of the particles in polydisperse drops equal two times the Stokes velocity of
the reference particle used for non-dimensionalisation, which is the particle with approximately
the mean size. We will then need to look at to which extent this indicates that each respective
size has reached a similar velocity relative to its Stokes velocity.

Figure 12: A schematic of an experimental setup that is used to measure the settling velocity
of a suspension drop.

In conclusion, we see that the amount of research on polydispersity in settling particle clouds
is limited. That is, even though most applied problems involve polydisperse samples. A lot
of the present research on polydispersity involves bidisperse particle clouds [50, 51]. To our
knowledge, the only research [40, 52] on fully polydisperse clouds looks mainly at the cloud’s
stability (break-up time and length). As for fully polydisperse clouds, there is also no research
into whether these clouds behave differently when the cloud’s particle size distribution is either
continuous or discrete in nature. Moreover, as previously explained there is a need for applying
the current knowledge of (both monodisperse and polydisperse) particle clouds to study the
specific conditions for which the velocity of collectively settling particles in a setup similar to
Fig. 12 is close to the Stokes velocity.
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2.7 Research outline

The main objective of this thesis is to help experimental researchers in finding the conditions -
i.e. the number of particles, volume fraction, mean size and polydispersity - for which measuring
average particle settling velocities from settling suspension drops gives a measure sufficiently
close to the single particle Stokes velocity and to see how this differs for mono- and polydisperse
drops.

• For what conditions do average velocities measured from settling monodis-
perse suspension drops reach two times the single particle Stokes velocity?

Stokesian Dynamics simulations are performed for monodisperse particle clouds settling
under gravity for different N0 and ϕ. The settling speed, leakage rate and expansion rate
are studied and compared to theoretical predictions.

• For what conditions do average velocities measured from settling polydisperse
suspension drops reach two times the Stokes velocity according to the mean
(reference) size?

Stokesian Dynamics simulations are performed for polydisperse particle clouds settling
under gravity for different N0, ϕ and σ. The settling speed, (size-specific) leakage rate
and expansion rate are studied for different polydispersity degrees.

• What qualitative and quantitative differences exist in the settling behaviour
of polydisperse particle clouds with a discrete particle size distribution com-
pared to clouds with a continuous particle size distribution?

Stokesian Dynamics simulations are performed for polydisperse particle clouds settling
under gravity with discrete particle size distributions and a continuous particle size dis-
tributions. The destabilization time and length, settling speed and (size-specific) leakage
rate are compared for the two types of distributions.
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3 Method

3.1 Description of the numerical simulations

The numerical method that will be used in this study has been introduced earlier, see 2.5.
Here, we expand on its specific implementation in this project. We consider sedimentation
of a particle cloud consisting of non-Brownian, inertialess particles. The particles have equal
density, but may vary in size in the polydisperse simulations. Moreover, the conditions of
Stokes flow are assumed. We simulate the cloud of particles in an unbounded fluid, i.e. the
influence of any boundary (e.g. container walls) is not included. Initially,the particles idealized
as perfect spheres are randomly placed inside a sphere (without overlapping), such that the
volume fraction is equal to the desired value. The particle positions are updated using the
numerical scheme (Stokesian Dynamics), with only the force-velocity coupling. The torque and
stresslet contributions are thus neglected, which is reasonable for the case of sedimentation.
Also, lubrication forces are neglected, as this speeds up the simulations by several orders of
magnitude [50]. Also, only dilute systems (ϕ < 5%) will be considered. Moreover, it has
already been shown that both qualitative and quantitative aspects of the particle cloud can
be reproduced using even simpler schemes [34]. The velocities of the spheres are calculated
according to:

U = M FU · Fe (28)

which is equivalent to Eq. 24 if U∞ = 0 and the stresslet contribution is neglected. Remember
that this equation was specifically derived for the case of inertialess particles. The mobility ma-
trix M FU is computed using the method by (Ref Brady 1987) and includes self-interactions as
well as two-sphere mobility interactions. The external force Fe is the sum of gravity and buoy-
ancy. Finally, the particle positions are updated using a two-step Adams-Bashforth method,
with non-dimensional timestep ∆t∗ = 0.01.

Note that all the relevant equations are non-dimendionalized. In the literature, the most com-
mon practice in the context of particle clouds is to use the initial cloud radius R0 and velocity
V0 and their ratio τc = R0/V0 to non-dimensionalize distance, velocity and time, respectively
[24, 34, 40]. Sometimes, the use of the single particle Stokes velocity US is encountered instead
of V0 [51, 52] or the use of a particle radius aref instead of R0. In this study, we use the mean
particle radius aref = ⟨a⟩ and Stokes velocity of this reference particle US = 2

9
⟨a⟩2
µ
(ρp − ρf )g to

non-dimensionalize distance, velocity and time. In this way, the radius of particle i is given
either by 1 (monodisperse case) or by the aspect ratio λi =

ai
⟨a⟩ , and the time by t∗ = t/ts.

The Stokes drag 6πµ⟨a⟩US is used to non-dimensionalize the force. The reason for the choice
of scaling was mainly the fact that there existed in house code that used this, and to stay
consistent with this made cooperation on the project easier. Moreover, a benefit of this scaling
is that the cloud velocity can be immediately related to the single particle Stokes velocity, and
the cloud position to the individual particle size. However, at several points in this study we
will also convert the data so that it is expressed in t∗c = t/τc, as this makes it easier to compare
particle clouds. Note that for most particle clouds considered here, the ratio of the time scales
R0

V0
/ ⟨a⟩
US

is close to one and it has little influence on the size of the time steps. Only when consid-
ering extremely dilute particle clouds (large R0 and small V0) the ratio becomes large and using
the current scaling severely slows down the simulation. For these cases, the timesteps were
adjusted accordingly. Finally, the calculated particle position and velocity vector components
are written to a file every 10 time steps for later analysis.
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3.1.1 Generation of particle clouds

As previously mentioned, particles are randomly positioned inside a sphere, of radius R0 =
3

√
Σai
ϕ

, and any overlapping particles are removed until the desired amount of non-overlapping
particles has been achieved. In monodisperse clouds, all particles have non-dimensional size
1. Particles in polydisperse clouds have non-dimensional size ranging from 0.1 to 2.0, with an
interval of 0.1. The degree of polydispersity is expressed with the parameter σ = σa/⟨a⟩, where
σa is the standard deviation of all particle radii about the mean ⟨a⟩. The sizes are sampled from
a log-normal distribution with mean 1 and a standard deviation ranging from 0.1 to 0.5 for the
different simulations. When the standard deviation is between 0.1 and 0.3, a limit of 4 is set on
the maximum size ratio of two particles to filter any particle outliers that have unrealistically
small or large size. Practically, this means that only particles with an aspect ratio between
0.4 and 1.6 are present in the particle cloud. For higher standard deviation, this restriction
was lifted, otherwise it was not possible to get clouds with higher standard deviations that are
log-normally distributed. In this case, the sizes were between 0.1 and 2.0. As for the clouds
with only discrete particle sizes, instead of sampling N sizes from a distribution, we need the
frequencies of sizes 0.1 ... 2.0 according to the log-normal distribution. These frequencies are
calculated using

fi = (Φ(ai+1)− Φ(ai)) ·N, (29)

where Φ(x) is the cumulative distribution function of the log-normal distribution and Φ(ai) is
the cumulative probability corresponding to size ai. These frequencies are then rounded, giving
the discrete particle size distribution. Finally, for the higher standard deviations (0.3-0.5), the
actual standard deviation of the particles will be lower than the distribution from which the
sizes are sampled, due to the bounds on particle size. The mean will also be lower, as mostly
larger sizes will be eliminated (because of the log-normal distribution). The generated size
distributions as well as the actual values of the particle number N0, the mean size a and the
polydispersity parameter σ are shown in Appendix A.

3.1.2 Overlapping particles during simulation

The initial state of non-overlapping particles obviously does not guarantee that particles will
not overlap during the simulation. To deal with this, several approaches are used. Two of
these were already mentioned in the review of literature, namely the inclusion of an ’artificial’
repulsive force and the filtering of simulation runs where particles get so close that their sedi-
mentation velocity exceeds that of the cloud. In the current study, we do not include an artificial
lubrication force. Rather, for any overlapping pair of particles i and j, when considering the
contribution to the velocity of particle i due to the force on particle j (which depends on their
interparticle distance), the distance is taken as approximately the sum of the particle radii.
This prevents the unrealistic velocity increase due to the singularity at r = 0. This approach
is similar to that of Ho et al. [52], except that they totally neglect the velocity contribution
of overlapping particles. Note that overlap of particles will not be prevented, and as such this
simulation method does not account for excluded-volume effects. Still, the use of this method
is justified as point-particle simulations have been effectively used to study the behaviour of
particle clouds and we only consider small volume fractions. Moreover, the use of artificial
repulsive forces has been shown to arbitrarily influence the dynamics of the simulation [54]. It
has not been investigated if the approach used in this study has a similar effect or not.
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3.1.3 Post-processing methods

As mentioned before, the data available from the simulations are the components of the position
and velocity vectors of all particles, corresponding to times t∗i = 0.1 · i. From this data, we wish
to compute the position and velocity of the particle cloud, the amount of particles still present in
the cloud, and the (approximate) horizontal and vertical radii of the cloud. To this end, we used
the same conventions as Metzger et al. [34] for defining which particles belong to the cloud and
how to compute its horizontal and vertical radii. As has been mentioned before, the evolution
of a suspension (drop) is very much dependant on the initial configuration. It is therefore
customary to run multiple simulations for each particle cloud, each having a different (random)
initial configuration of particles, and from this ensemble of data the macroscopic quantities of
the cloud can be obtained by averaging. In the current study, there was unfortunately not
plentiful time to perform multiple simulations per cloud.

3.2 Validation of the numerical method

For validation purposes, we considered the standard sedimenting pair and the case of a sedi-
menting particle cloud. The goal of this section is to show the validity of the numerical scheme
and its effectiveness in reproducing well studied phenomena.

3.2.1 The two particle test case

The interaction between a pair of hydro-dynamically interacting particles has been thoroughly
studied. The accepted benchmark solution for two identical spheres settling in an unbounded
fluid at small Re is that given by Goldman et al. [55]. In Fig. 13, this solution is compared to
the velocities resulting from our method, at different separations and both for the horizontal and
vertical pair (relative to gravity). It can be seen that the mobility scheme is more accurate than
the point force model, which is expected as the mobility scheme includes higher-order terms.
The mobility scheme is fairly identical to the solution at r/a ≳ 4, and deviates from it as the
interparticle distance is further decreased. The error generated by the mobility scheme reaches
a maximum of approximately 5 % at the closest separation, as was reported in similar accounts
[50]. Also note that the error for vertically oriented particles is greater, as the lubrication force
arising from squeeze flow is greater than that arising from shear flow.

3.2.2 The initial cloud velocity

Next, we consider a particle cloud. In order to validate the numerical scheme for both the
monodisperse as well as the polydisperse case, we considered a monodisperse as well as a
bidisperse particle cloud of varying composition (see Fig. 14. The size ratio of the two particle
species is set to 0.25, and their relative number is varied, but the total number of particles
and the volume fraction is kept constant. The data compared against are obtained from the
analytical formula derived by Bülow et al. [50], which was validated against results from their
simulations, in the study that was described in Section 2. The results show good agreement,
which increases for a larger proportion of the small species, which is expected as the existing
mass becomes more finely distributed.

34



Figure 13: Various estimates of the settling velocity of a pair of identical spheres as a function
of the non-dimensional interparticle distance.

Figure 14: The initial non-dimensional velocity of a bidisperse cloud as a function of the ratio
of particle numbers. The red circles are the values from simulations and the blue crosses are
the computed values from the formula of Bülow et al. 38

4 The monodisperse particle cloud
In order to make a good prediction on which suspension drops will decelerate enough to reach at
least twice the single particle settling velocity 2Us, we need to know the initial cloud velocity,
as well as the deceleration profile as a function of time and how these depend on the cloud
variables, i.e. the number of particles N0 and the volume fraction ϕ. These last two variables
can be interchanged with N0 and R0 (the initial cloud radius) or R0 and ϕ.
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4.1 Evolution of a monodisperse cloud

4.1.1 Cloud expansion, deceleration and particle leakage

The analysis that will be presented here is very much inspired by the work of Metzger et al.
[34], that was already discussed at an earlier stage. In this work, they found approximate cor-
relations for the evolution of the cloud relative radius R∗=R/R0 and relative particle number
N∗=N/N0 as a function of non-dimensional time t∗c and the initial number of particles N0. They
found that the decrease in the relative velocity of the cloud V∗=V/V0 can be explained entirely
by the decrease in the particle number and increase of the horizontal radius of the cloud, as
the data from all simulations collapses onto a single straight line when plotting V∗ against
N∗/R∗ (the greatest contributor to deceleration being the decrease in particle number). Note
that Metzger et al. ran point particle simulations, where the volume fraction is a meaningless
quantity. In our simulations, we do not non-dimensionalize by the initial cloud velocity but by
the single particle Stokes velocity, and thus a cloud with the same number of particles but a
higher (lower) volume fraction will have a higher (lower) velocity. The dynamics will also be
different from the point-particle case. For a higher volume fraction, there is a greater probabil-
ity that two particles’ surfaces will cross paths and if they do, there will neither be a repulsion
nor an nonphysical increase in velocity caused by the singularity in the mobility interactions.
But considering that Metzger et al. carefully filtered out cases where the latter occurs, it was
anticipated that the results from our simulations closely align with theirs.

Figure ?? how the plots of R*, N* and V* for different values of the initial number of particles
N0. The dashed lines are plotted using the approximate correlations derived from [34]:

N∗ = 1− 0.52N
−2/3
0 t∗0.636c (30a)

R∗ = 1 + 0.0811N−0.65
0 t∗c . (30b)

Overall, there is agreement between the data. More importantly, we found the same result for
particle leakage, that it grows proportional to t∗2/3c (see Fig. 26). Metzger et al. mentioned that
the correlation for N∗ is only valid for large N0. It can be seen here too, that the agreement is
poor at low N0. Note that the precise mechanisms involved in the expansion of the particle cloud
are unclear [34]. However, the difference in rate of expansion for different N0 only accounts
for small differences (a torus experiences more drag than a sphere) in the velocity V*. Hence,
we are not too concerned with minor differences in the rate of expansion. The dashed lines in
the plot for V∗ originate from the same expressions for N∗ and R∗, combined with the linear
relation

V ∗ = 0.108 + 0.908 N∗/R∗. (31)

found in the study of Metzger et al. and corroborated in our simulations.

Using the resulting formula for the velocity, the relative velocity V* is now a function of the
non-dimensional time time t∗c . Using this expression, we have a theoretical basis for estimating
which particle clouds (defined by N0 and ϕ) decelerate to at least twice the single particle Stokes
velocity, within a pre-chosen distance (1 meter). Note that the correlation for N* will cross
zero and become negative (with V* still decreasing), which is of course nonphysical. More-
over, we now that the velocity of particles will not be smaller than Us (unless λi<1 which
occurs only in polydisperse clouds). These are the bounds within which the formula holds any
significance, also noting that because of considerations mentioned previously the velocity of
a spherical cloud of particles will only approach the Stokes velocity in the case of extremely
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(a) (b)

(c)

Figure 15: The (a) relative velocity, (b) particle number and (c) radius of a settling monodis-
perse cloud for different particle numbers compared against the prediction (dashed lines) from
the simulations of Metzger et al. [34].

diluted particle clouds with only a dozen to a couple dozen particles. Moreover, we are not
interested necessarily in quantitative results here as these can be obtained by simulation, but
more in a qualitative trend so that we can make predictions about the effect of N0 and ϕ that
can be validated in the simulations.

We want to solve V/Vs = 2, where the left-hand side can be written as

V

Vs

= V ∗(t∗c)
V0

Vs

=

(
0.108 + 0.908

N∗

R∗

)(
6

5
N

2/3
0 ϕ1/3 + 1

)
. (32)

This equation was solved numerically for 100 ≤ N0 ≤ 1000 and 0.001% ≤ ϕ ≤ 5%. This
gives an approximation of the time, t∗c,crit, at which V=2Vs. The approximate distance the
particle cloud has travelled between 0 ≤ t ≤ t∗c,crit is computed using integration. Of course,
this distance is non-dimensional and the actual distance will depend on the reference size used,
which in our case corresponds to the mean size. The formula for this distance is

d =

∫ t∗c,crit

0

V ∗(t∗c)
V0

Vs

dt∗c (τc⟨a⟩) =
∫ t∗c,crit

0

V ∗(t∗c) dt
∗
c (R0⟨a⟩), (33)
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where τc is merely a factor to account for the different non-dimensionalizations and ⟨a⟩ is the
mean size of the particles. Based on this, an upper limit in the mean particle size⟨a⟩crit is
calculated, for which it can be theorized that those particle clouds will have decelerated to 2Vs

at the cut-off distance of 1 meter. Table 1 shows values of ⟨a⟩crit for different values of N0 and
ϕ. Note that rounding to two significant figures does not imply this degree of accuracy but
rather allows for interpolation. Note that there is a trend of increasing size with increasing
volume fraction, for 0.1% ≤ ϕ ≤ 5%. This may seem counter-intuitive, as an increased volume
fraction leads to a higher initial velocity. The reason for this is that when the volume fraction is
increased, the average inter-particle distance is decreased, causing a larger leakage rate because
of the increased probability for random velocity fluctuations. In turn, particle leakage is the
primary cause for deceleration of the particle cloud. This is illustrated in figure 16 by comparing
the velocity for the same N0 but different volume fraction, but now against t∗=t/ts. Remember
that the volume fraction did not explicitly appear in the equation for V ∗(t∗c), because time
is non-dimensionalized by the cloud time constant τc. For example, compare the same cloud
velocities in figure 16, but now against t∗c . For smaller volume fractions, depending on the
particle number, the maximum size may also increase because the initial velocity is sufficiently
close to 2Vs. Note that because the distance from the simulation is non-dimensional, if a tank
with a smaller height was used for the suspension drop experiment, the upper limit on the
mean size can be calculated simply by multiplying the given ⟨a⟩crit with the height of the tank
in meters. E.g. if the tank was 25 centimeters high and we read ⟨a⟩crit = 40 µm from the table,
then in fact ⟨a⟩crit = 10 µm.

N0 0.001 % 0.01 % 0.1 % 1 % 5 %
100 V0 = 1.6Vs 1000 419 (31 mL) 500 (5.2 mL) 700 (2.9 mL)
250 1000 78 (5 mL) 81 (0.56 mL) 120 (0.18 mL) 190 (0.14 mL)
500 28 (4.6 mL) 20 (0.17 mL) 27 (0.04 mL) 45 (0.019 mL) 70 (0.014 mL)
750 10 (0.31 mL) 10 (0.03 mL) 15 (0.011 mL) 25 (0.0049 mL) 39 (0.0037 mL)
1000 6 (0.09 mL) 6 (0.009 mL) 10 (0.004 mL) 16 (0.0017 mL) 25 (0.0013 mL)

Table 1: The predictions of the critical value (upper bound) acrit of the particle size for which
the monodisperse cloud decelerates to double the single particle Stokes velocity within 1 meter
of settling distance. Bold values indicate that V=2Vs is only reached once N∗<0.

The volume of a spherical drop of certain volume fraction containing N0 particles of size
⟨a⟩crit is also given in the table, though its calculation is straightforward. Note that this is
the maximum drop volume, because for smaller particle sizes a < ⟨a⟩crit but equal N0 and
ϕ the volume must decrease. From the values of ⟨a⟩crit and the maximum drop volumes, we
can conclude that the success of the suspension drop experiment is very sensitive to the mean
particle size in the drop, the volume fraction and especially the number of particles N0. For
example, if the mean size in the drop is 100 µm, the initial number of particles has to be equal
to or less than 250. As for the drop volumes, the two experimental studies on the settling of
suspension drops [34, 40] visualize drops with a size as low as 0.005 mL and as high as 0.2 mL,
thus spanning approximately three orders of magnitude. Most of the drops derived from table
1 have the same orders of magnitude. At N0=100, the maximum volumes are on the orders of
O(1) and O(10) milliliters, meaning that the actual size limit is probably lower as it would be
difficult to generate a suspension drop this large. The converse can be true for some very small
drops containing small particles. Finally, bold text indicates that the formula predicts that
the cloud velocity will only reach 2Vs once N < 0. This is of course unphysical, but while the
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formula assumes that the only mechanisms of deceleration are particle leakage in and expansion
of the particle cloud, in reality the cloud will break up or desintegrate at some point and the
particles’ velocities will continue to decrease due to weaker hydrodynamic interactions. Note
that for 500 < N ≤ 1000, there is a large probability that the particle cloud will break up into
two clouds. Ho et al. [52] found that this occurs at a time tdes when the average velocity in
the interval 0 ≤ t ≤ tdes is equal to approximately 0.82 times the initial velocity of the cloud.
Hence, for most clouds with N between 500 and 1000, and volume fractions greater than 0.01 %,
break-up will occur before the particle cloud decelerates to 2Vs. This is obviously not included
in the model, but will be discussed later.

(a) (b)

Figure 16: A comparison of the relative velocity of two particle clouds, with same N0 but
different ϕ, showing that the curves overlap when scaling time with τc instead of ts.

4.2 Comparing the predictions with simulations

Here we will compare the theoretical prediction against simulations. The simulation runs
include N0=100, 250, 500, 750, 1000 and ϕ = 0.001, 0.01, 0.1, 1, 5 %. The results are shown in
Fig. 17. For N0=500 and 1000, we show cases with low volume fractions because otherwise cloud
break-up will have occured long before V=2Vs. Even in the case of N0=1000 and ϕ=0.001%,
break-up occurs at t∗c=550 when V=2.3Vs. Overall, there is qualitative agreement in the shape
of the curve, but the velocity decrease is consistently overestimated. This is especially the
case for low N0. Nonetheless, equation 32 still captures the effects of N0 and ϕ on particle
leakage, which is the main mechanism for the velocity decrease. Note that the data in Fig. 17
is plotted against t∗c . If plotted against t∗, it would become more apparent that leakage is much
slower for lower volume fractions, e.g. for the two lower plots in figure 17 t∗ is equal to 22560
and 73840 at the latest time considered, respectively. The trend observed from table 1 is also
confirmed. At low volume fractions - if the initial velocity V0 is not already sufficiently low -
the velocity decrease is so slow that a higher acrit can be achieved by increasing the volume
fraction. This is a good finding for the experiments, as sufficiently high volume fractions allow
for better visualization of the particles. If we were to determine new values of the time at
which V=2Vs using the cloud velocity from simulations, the resulting values t∗c,crit would be
higher resulting in lower values of acrit than those in Table 1. However, note that it would be
arbitrary to take the point at which the curve in Fig. 17 crosses 2 to determine values for acrit.
While this would ensure that the measured velocity is smaller than 2, the ’cloud’ by this point
usually consists of a very small amount of particles, especially at higher volume fractions. The
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remaining particles’ velocities (which are lower) will also be measured. As a result, the mean
velocity of all measured particles will equal to 2Vs at an earlier time. This will be investigated
in the next section.

(a) N0=100, ϕ=5% (b) N0=250, ϕ=1%

(c) N0=500, ϕ=0.01% (d) N0=1000, ϕ=0.001%

Figure 17: A comparison of the cloud velocity from simulation as well as the modelled velocity
(dashed lines).

4.3 Taking into account the velocity deviation due to tail particles

Once particles leak from the cloud (at the velocity of the cloud), they start rapidly decelerating.
As an example, the velocity of an arbitrary particle was plotted in Fig. 18. At the moment
of leaving the cloud (marked in the figure), it is moving approximately at the velocity of the
cloud, after which the velocity drops to 2Vs within 200 ts (and keeps dropping after). Some
particles can reach their Stokes velocity, but other particles will remain settling at slightly higher
velocities due to hydrodynamic interactions with neighbouring particles, with the amount of
neighbouring particles depending on N0 and ϕ. In the suspension drop settling experiment as
explained here, the velocity of these particles referred to as ’tail particles’ will also be measured
by the camera, since it is at a fixed position. Therefore, the average velocity of all particles will
be lower than the velocity of the cloud, due to these slower moving particles. We will apply
a simplified analysis to quantify the effect of these particles on the measured velocity. Here,
we call the average velocity of all measured particles Vavg. If at the position of measurement
the cloud contains Ncloud particles and sediments at speed Vcloud, there will be N0−Ncloud tail
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Figure 18: The velocity of a particle after leakage from the particle cloud (N0=1000, ϕ=0.25%)
at t∗=0.

particles trailing the cloud that will be measured at a lower speed, approximated by an average
speed Vtail,avg. The average speed of all the measured particles will be:

Vavg =
NcloudVcloud +NtailVtail,avg

N0

= (34)

=
N(t∗c)V (t∗c) + (N0 −N(t∗c))Vtail,avg

N0

= (35)

=
N(t∗c)

N0

V (t∗c) +
N0 −N(t∗c)

N0

Vtail,avg = (36)

= V0 V
∗(t∗c)N

∗(t∗c)− Vtail,avg N
∗(t∗c) + Vtail,avg. (37)

Where we can use the correlations found for N* and V* and the equation for V0 (Eq. 27). The
choice for ⟨V ⟩tail is not straight forward as it is difficult to quantify what will be the average
velocity of tail particles. It goes without saying that ⟨V ⟩tail,min = 1. For simulations of clouds
with N < 1000 particles and ϕ < 0.05, we see that it takes on values between 1 and 3. If it is
greater than 2, it clearly will not effect when the average velocity of all particles becomes equal
to 2. Therefore, let us consider values between 1 and 2. Using equation 34 we can calculate
(in a similar way as before) that changing the value of ⟨V ⟩tail from 2 to 1 causes a 30-40%
difference in the predicted value of ⟨a⟩crit, which does not depend much on the choice of N0 or
ϕ.

4.4 The mean velocity

Figures 19 shows the mean velocity of all particles against time. Now, the cloud is the only
uniformly moving entity (the remaining ’tail’ particles being scattered), so the mean of all tail
particles at one time t∗ does not represent the mean ⟨V ⟩tail which is measured at one position.
Yet, figure 20 shows there is actually little difference in the velocity of tail particles, except for
particles that have just exited the particle cloud. Hence, it is expected that the mean velocity
of all particles at one time instance t∗ can be used as an estimate of the average velocity of
all particles passing the position d∗, where d∗ is the position of the cloud at time t∗. This was
validated by comparing the mean velocity of all particles with the mean velocity computed in
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a similar manner as in equation 34, but now instead of using the correlations to define Ncloud,
Vcloud and Ntail, we use the data from the simulations. Curves with different values for ⟨V ⟩tail
are shown. The lower value was derived by taking the mean velocity of tail particles at a time
instance where the velocity of most tail particles exhibited little variation (similar to Fig. 20).
The higher value is simply incremented by 1, to illustrate what the difference would be. The
particle cloud velocity is also shown. It can be seen that there is good agreement between the
mean velocity in time and the model of measured average velocity per position. It can also
be seen that the exact value for Vtail does not make a large difference, except at low velocities
and for determining the large time limit of the mean velocity. Hence, we expect that the mean
velocity from the simulation gives a good indication of the average velocity of all particles
measured at a certain position. In any case, this estimate will be conservative because the
particles not at the cloud position at any time will decelerate even further until they reach that
position. We use the mean velocity to define new values for ⟨a⟩crit. These values are given in

(a) N0=100 (b) N0=250

(c) N0=500 (d) N0=1000

Figure 19: A comparison of the velocity of the cloud, with the mean velocity of all particles.
The mean velocity is significantly lower, due to the slower moving tail particles. The dashed
lines represent a modelled average velocity of all particles that pass the position of the cloud at
t∗c . There is good agreement, indicating that the mean velocity at a certain position is a good
measure of the average velocity that would be measured at that position. It can also be seen
that the chosen value for the (average) velocity of tail particles, when chosen between 1-3 Vs,
does not impact the average velocity much except for the asymptote value of the mean velocity
of all particles.
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Figure 20: The crosses are the velocities of tail particles at time t∗=1600. The horizontal
coordinate t∗ is the time at which the respective particle leaked from the cloud. It can be seen
that there is little variation in the velocity of tail particles, except for particles that exited the
cloud recently.

Table 2. We can see qualitative agreement with Table 1. The expectation of increasing acrit
with increasing volume fraction is also confirmed. However, when going from a volume fraction
of 1% to 5%, the increase is less or there may even be a decrease. There is probably a point
of diminishing returns, where even though the cloud breaks up faster, the remaining particles
settle closer together due to the higher initial volume fraction. As a result, the particles settle a
similar distance until the average velocity is equal to 2Vs. Furthermore, note that the difference
between the velocity and mean velocity will be less for less dense clouds, where the velocity of
particles in the cloud is already quite low.

N0 0.001 % 0.01 % 0.1 % 1 % 5 %
100 V0 = 1.6Vs 230 210 260 310
250 210 36 50 80 130
500 17 14 23 70 68
750 6 8 21 39 46
1000 5 9 18 30 29

Table 2: The predictions of the critical value (upper bound) acrit of the particle size for which
the monodisperse cloud decelerates to double the single particle Stokes velocity within 1 meter
of settling distance, estimated using the mean velocity of all particles. If the mean velocity
becomes equal to 2Vs, the position of the particle that has travelled the farthest is used for
calculation (as a conservative estimate, the other particles will still decelerate until reaching
this position).

4.5 Cloud break-up

For clouds that break up into multiple clouds and not by steady desintegration, the moment
where the mean velocity of all particles reaches 2Vs is also dependent on the time of break-up.
There is an increased fall in velocity after break up of the cloud (Fig. 21), hence is break-up
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occurs earlier the resulting acrit will also be lower. However, considering that break-up times in
the vicinity of a wall are up to 50 % lower than in the theoretical unbounded fluid [40], it might
be justified to neglect the variation in break-up times when computing acrit. Moreover, for the
particle numbers considered the variation of break-up time is contained within a bandwidth
of approximately 200 (units of non-dimensional time t∗c) . The maximum error in the settled
distance (used to compute acrit) then equal to 0.64V0 (the average velocity before break-up
according to [52]) multiplied by 200. For a typical case of V0=15 and d∗

crit=10000 (which would
correspond with acrit=10 µm), this gives an error of 15 %, which is very limited. For lower
values of acrit (i.e. the particles settle a large distance until Vavg=2Vs, the error is even smaller.
Figure 21 shows the mean velocity of particles, pre and post break-up. It can be seen that
there is a steady decrease in the velocity of all particles. If we define acrit based on when the
mean velocity of all particles becomes smaller than 2Vs, we get the values shown in Table 2.
Note that in this context, the break-up of the cloud is beneficial as it promotes deceleration of
the particles.

Figure 21: The mean velocity for N0=1000 and ϕ=0.01. The circle indicates the time of break-
up. It can be seen that the velocity of particles falls rapidly during and after break-up. This is
due to weakening of the effects of enhanced collective settling, as the cloud breaks up into two
particle clouds.

4.6 The velocity distribution

Because the velocity of all particles passing by the camera is measured in the experiment,
the velocity distribution is known. From the simulations, it was found (see Fig. 21) that
the standard deviation of the non-dimensional particle velocities (plotted in time) follows a
predictable trend. It peaks initially, due to leakage of particles that rapidly decelerate, then
stays constant for a short time interval, due to simultaneous deceleration of cloud as well as
tail particles, and once the cloud velocity drops sufficiently due to sustained leakage of particles
or break-up into two clouds, the standard deviation starts dropping and the curve becomes
increasingly flatter as particle velocities tend to become more uniformly distributed. Moreover,
at the point at which the mean velocity becomes equal to 2Vs (marked with a circle), the
standard deviation is always close to 0.5 (Fig. 24). This is expected, given that the the
minimum velocity of monodisperse particles is equal to 1Vs and if the mean is equal to 2Vs,
it follows that the standard deviation (assuming a Gaussian distribution for simplicity) has
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to be approximately 0.5Vs. For polydisperse clouds, there will be particles (smaller than the
mean) with velocities lower than 1Vs - which is also the reason we can not simply take the
smallest measured velocity of a single particle and assume that is the representative Stokes
velocity of the sample - so the standard deviation will most likely be somewhere in the interval
0.5Vs < S < 1Vs when the average velocity is 2Vs. In reality, the velocities are not always
normally distributed around the mean, see figure 22 where the velocity distribution is shown for
multiple cases at equally spaced instances with regards to the velocity trajectory, from V=V0

to V = 2Vs. Appendix C contains the same plots for multiple simulated clouds, covering a
sufficient range of initial cloud velocities. Note that the velocity distribution at t∗ is in any
case approximately normally distributed around V0. Then particles leak from the cloud and
decelerate to a velocity closer to the Stokes velocity. This can clearly be seen in the first two
images.

(a)

(b)

(c)

Figure 22: The velocity distribution plotted at several times for (a) N0=100, ϕ = 1 % (V0=6.91),
(b) N0=250, ϕ = 1 % (V0=11.32), (c) N0=500, ϕ = 1 % (V0=17.98).The distribution is initially
skewed to the right, where most of the particles are in the cloud and moving at enhanced speeds.
Because of particle leakage, the amount of particles with velocities close to Vs increases. The
final distribution depends on the initial velocity (i.e. on N0 and ϕ).
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As for the distribution at the final time, it seems to be mainly dependent on V0. If the initial
velocity is low, e.g. 2Vs<V0<4Vs, the final distribution is qualitatively not very distinct from
the distribution at times before it (values of V0 are given in the figure). There are relatively
few tail particles, noticeable from the relatively small frequencies for small velocities. There is
somewhat of a gap between the tail particles’ velocities and those of the cloud. Then, for higher
initial velocities (4Vs<V0<12Vs), the final distribution has a U-shape, where there are is now
a significant number of tail particles that have low velocities. Again, there are few particles in
between, creating the U shape. Lastly, for higher velocities, V0>12Vs, the final distribution is
clearly more evenly distributed around the mean 2Vs. In some cases, it is left-skewed (right-
skewedness being less common) but there are no significant gaps in the distribution. Based on
this discussion, it is evident how the velocity distribution can be used - in combination with V0

(which can be estimated using the approximated N0 and known ϕ using equation 27) - as a post-
hoc measure to evaluate whether the measured settling velocity in the experiment was likely
enhanced (V»Vs) or close to the Stokes velocity. Also, in the case of higher initial velocities,
a very clear sign of enhanced settling velocities is a distribution with a clear gap separating
the tail particles settling with a speed close to the Stokes velocity from the cloud particles
settling at enhanced speeds. Needless to say, it is important that the camera does not measure
the initial velocity of particles. Of course, the shape of the distribution will also influence the

(a) N0=250 (b) N0=500

Figure 23: The non-dimensional standard deviation of particle velocities. The circle indicates
the moment where the mean velocity becomes equal to 2Vs. There is a similar trend of S∗ for
all clouds. In figure b), the moment of cloud break-up is also indicated at t∗=625.

standard deviation. The discussion above explains why in Fig. 24, S∗ at the critical point
is equal to 0.5 for N = 500, but for N = 250 the value of S∗ at the critical point is 0.7 (the
U-shape having a higher standard deviation). Note that the standard deviation plotted is S∗

= S/Vs,ref , where S is the standard deviation of dimensional velocity. This is a quantity not
available in experiments, as Vs is unknown. A quantity that can be measured is S/Vmean, i.e.
the standard deviation divided by the mean velocity (both dimensional). In the simulations,
this quantity is equivalent to S∗/V∗

mean, as both are divided by the same reference velocity. A
plot of this quantity (Fig. 24) reveals that it follows a similar evolution. Following a similar
argument, we can say that S∗/V∗

mean must be equal to a value between 0.5-1 (depending σ)
divided by V∗

mean=2, hence it must fall somewhere between 0.25-0.50. Looking at the marked
points, it can be seen that this is indeed the case. However, because of division by the mean
velocity, the range of this value is considerably reduced and the same values are encountered
where the settling is highly enhanced.
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(a) N0=250 (b) N0=500

Figure 24: The standard deviation divided by the mean velocity. This would be equal to the
dimensional standard deviation divided by the dimensional mean velocity in the experiments.
There is a similar trend as with the non-dimensional standard deviation, but due to normal-
ization by the mean velocity the range is much lower.

5 The effect of polydispersity on the settling of the particle
cloud

In the current section, we will investigate the effect of polydispersity on the evolution and break-
up of a particle cloud. To start, we will only look at polydisperse cloud with a continuous size
distribution, after which we will investigate the differences with clouds with a discrete size
distribution. Appendix B shows images of settling particle clouds with polydispersity up to
σ=0.3 at time of breakup tbreakup and half the time of break-up. The polydisperse clouds (with
both continuous and discrete PSD) behave very similarly to the monodisperse cloud. There is
little qualitative difference, though the break-up event appears more chaotic. Indeed, it was
already known from previous studies that the evolution of polydisperse clouds is very similar
to that of monodisperse clouds.

5.1 Evolution of a polydisperse cloud

5.1.1 The initial velocity

In the literature, we find two formulas that can be used to calculate the initial velocity of a
polydisperse cloud. Bülow et al. derives, based on the H-R formula, the formula (written in
non-dimensional form)

V0

Vs,ref
=

6

5

∑
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ai
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)2

(38)

and does not include a slip term, whereas Ho et al. proposed
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Here, the usual slip term (1 in non-dimensional form or Vs in dimensional form) for a monodis-
perse cloud has been replaced by a term which averages the Stokes velocities of the different sizes
particles. Now, these equations require full knowledge of the sizes present in the distribution.
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Suppose this is not known, but it is known that the sizes follow a certain type of distribution
(e.g. a Gaussian or log-normal distribution) and the standard deviation is also known. Then
using the expected value according to the distribution, it is possible to approximate the initial
velocity using one of the equations above where the terms involving the sizes, i.e. α2

i and α3
i ,

are estimated with the expected value. In mathematical terms,
∑

i α
2
i = N0 · E[α2] and simi-

larly for the third power. Note that the initial cloud radius is calculated using R0 = 1
ϕ

∑
i α

3
i .

Table 3 shows the initial velocities V0 for the polydisperse clouds that were simulated and the
values computed using equations 38 and 39 and the known sizes, or an approximation using the
expected value. First, the agreement is best using the slip term (Eq. 39). The approximation
of the equation gives surprisingly good results, both for the continuous and the discrete size
distributions. Note that to compute E[αn], we used the mean and standard deviation after
filtering sizes according to the maximum size ratio. The use of the formula for monodisperse
clouds (Eq. 27) as an approximation for the polydisperse cloud would result in an error of up
to 10 % for the particle numbers considered.

5.1.2 Cloud expansion, deceleration and particle leakage

Figure 25 show plots of R*, N* and V* for different N0 and polydispersity parameter σ, including
the monodisperse case σ = 0. It is clear that deceleration of the cloud increases with increasing
polydispersity. A comparison of all σ from 0 to 0.5 is given in Appendix E (for both continuous
and discrete PSD), where this is even more clear. The more rapid fall in velocity is due to
increased leakage of particles from the polydisperse cloud.. Moreover, during t∗c ≲ 10 there is
a much stronger phase of initial leakage for polydisperse drops where the cloud can lose up
to 20 % of its particles. This may occur because with increasing polydispersity, the difference
in individual particles’ Stokes velocities becomes larger. Thus, before the toroidal circulation
inside the drop (which keeps particles in circulation regardless of difference in size) has been
established, this difference in velocities is a driving force for separation. Another argument
for this is that after this initial phase, the rate of leakage for different polydispersities is quite
similar, up to polydispersities of 40-50 %. Also, figure 38 and Appendix D show that it is
mostly small particles that leave the cloud in this initial period, so clearly size plays a role in
this effect. The graph of velocity also becomes less oscillatory as σ increases, perhaps indicating
the internal circulation inside the drop has a different period, but this needs more investigation.
The rate of expansion of the polydisperse cloud increases with the degree of polydispersity, but
remains fairly similar. When plotting the relative particle number N∗ in log-log, we see that
there is still approximately a power law relation between N* and t∗c , with a similar exponent (see
Fig. 26). To determine accurately if there is a functional relation and what its dependence is
on σ, we would need to run a lot of simulations, for different N0 and σ. Instead, we can assume
for simplicity that the correlations are the same as for the monodisperse case and account for
the increased leakage rate by changing the coefficient in the equation for N∗ (eqn. 30). This
adjusted coefficient ranges from 0.65-1.3 (compared to 0.52 for the monodisperse case) when
considering values of σ between 0.1-0.4, but is not constant for different particle numbers N0.
Nonetheless,using the extremes, we applied the same analysis as in the monodisperse case. As
the rate of expansion is similar, and does not contribute in great terms to the deceleration, the
same formula was used. Based on this, it can be predicted that acrit is 1.25-2.5 times as large
in the polydisperse case, depending on N0 and the degree of polydispersity σ.
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Initial
volume

fraction ϕ

Initial
number of
particles

N0

Polydispersity
parameter

σ

Initial
velocity
V0/Vs

Prediction
of V0/Vs

using 38

Prediction
of V0/Vs

using 39

Approximation
using E[αn]
without slip

term

Approximation
using E[αn]
with slip

term

Monodisperse
formula

0.01 500 0.2 18.43 17.55 18.59 17.55 18.59 17.29
0.3 18.45 18.01 19.06 18.10 19.14

1000 0.2 28.16 27.01 28.05 27.06 28.10 26.85
0.3 28.84 27.71 28.76 27.89 28.95

discrete 1000 0.2 29.65 28.53 29.56 28.55 29.59
0.3 30.07 28.83 29.84 28.88 29.89

0.05 500 0.2 30.14 29.44 30.47 29.46 30.48 28.85
0.3 30.46 29.96 30.99 30.08 31.10

1000 0.2 48.93 48.14 49.18 48.11 49.15 45.21
0.3 50.60 50.41 51.47 50.56 51.62

Table 3: The initial velocity for various polydisperse clouds compared against formulas from the literature, and an approximation to these
formulas presented in this study.
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Figure 25: The relative particle number, horizontal radius and velocity of polydisperse clouds
compared to the monodisperse cloud (N0=250). There is a clear increase in leakage rate with
the degree of polydispersity, leading to a faster decrease in velocity.

Figure 26: The relative particle number for monodisperse and particle clouds, plotted in log-log.
There is only little deviation of the originally observed 2/3 slope for monodisperse clouds.
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5.2 The mean velocity

In the previous section, we showed that the mean velocity can provide a good estimate of the
average velocity of all particles, both in- and outside the cloud, at a certain position. Figure
27 shows that tail particles originating from a polydisperse cloud also reach some steady state,
but now the velocities are contained within a band, because the different size particles are
tending to their respective Stokes velocity, which is in the range of the square of the sizes,
e.g. 0 to 4 for sizes between 0 and 2 but smaller for less polydisperse drops. Similar to the
monodisperse case, the only particles in the tail with significantly higher velocities are ones
that just exited the cloud a short time before measurement. Hence, it is expected that the
mean velocity is again a good indicator of the measured average velocity. We will find values
of acrit for polydisperse clouds using the mean velocity. Simulations were performed for clouds
comprising of 100-1000 particles and volume fractions of 0.01 and 0.05. Figure 28 shows the
cloud velocity, as well as the mean velocity. Again, the mean velocity is lower, because of the
slower moving tail particles. For σ = 0.4, we see that there is a larger difference between the
cloud velocity and the mean velocity. This can be attributed to the larger leakage rate for
higher σ, but also to the fact that the leaking particles’ average size is smaller (Fig. 39). These
particles will slow down until they reach a speed close to their Stokes velocity, which will be
very small relative to the speed of the cloud. Values of ⟨a⟩crit based on the mean velocity are
shown in Tables 4 - 5 for different standard deviation. The prediction that values would are up
to 2.5 times as high as in the monodisperse case is confirmed. Hence, suspension drops that are
polydisperse reach 2Vs faster and because of that, we can allow for higher (mean) particle sizes
in the experiment and/or higher particle number N0. Finally, similar to monodisperse drops,
it seems to be the case that at high volume fractions (ϕ > 0.05) in combination with higher
particle number (N0>500), the increase of acrit with the volume fraction comes to a halt or may
even reverse.

Figure 27: The crosses are the velocities of tail particles at time t∗=400. The horizontal
coordinate t∗ is the time at which the respective particle leaked from the cloud. The tail
particles’ velocities are contained within a band because of polydispersity. The simulation was
of a polydisperse cloud with N0=1000, ϕ=1% and σ=0.2.
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(a) N0=250, σ=0.2 (b) N0=250, σ=0.4

(c) N0=500, σ=0.2 (d) N0=500, σ=0.4

Figure 28: The mean velocity of all particles compared to the velocity of the cloud, for two
different N0 and σ. There is a larger difference between the curves for σ=0.4, which can be
explained by considering that there is more leakage of small particles, which have lower Stokes
velocities. See figure 38.

N0 1% 5%
100 420 500
250 170 180
500 74 90
750 49 53
1000 45 40

Table 4: ⟨a⟩crit for σ = 0.2

N0 1% 5%
100 640 440
250 210 240
500 130 100
750 68 64
1000 58 45

Table 5: ⟨a⟩crit for σ = 0.4

5.3 The size-velocity relationship

In the polydisperse case, what is desired is that each particle settles at or close to the ve-
locity corresponding to its Stokes velocity. This is not simply guaranteed by waiting until
Vavg=2Vs,ref . Therefore, we need to look at the velocity of all particles with respect to their
size. Figure 29 shows the evolution of the cloud and tail particles’ velocities for all sizes present.
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Clearly, cloud particles move at a uniform velocity regardless of size. The velocity of tail par-
ticles is initially somewhat undifferentiated with respect to size. This may also explain why in
the study of Waqas, the ’tail’ particles (particles that pass by the camera some time after the
first particles) have lower velocities but the velocity does not show a dependence on size [7].
Then, tail particles increasingly decelerate towards the Stokes velocity line (given by y = x2)
and the velocity-size relation becomes increasingly evident. The amount of tail particles also
increases due to particle leakage and for the same reason, the cloud velocity decreases.

(a)

(b)

(c)

Figure 29: The velocity plotted against size at several times for (a) N0 = 250, (b) 500 and (c)
1000, ϕ = 0.05 and σ = 0.4. Blue indicates cloud particles and red indicates tail particles. The
red line is the Stokes velocity. Size is relative to the mean. The plots on the right are at the
time where Vavg=2Vs,ref . The other two plots are at times where the average velocity is equal
to 2

3
(V0 − 2) + 2 and 1

3
(V0 − 2) + 2, respectively.

Note that at the final time, the cloud had fully desintegrated, therefore all points are plotted
in red. Also note that with the convention used here for the critical size (based on the mean
velocity), slower moving particles will undergo additional deceleration before the moment of
measurement, so we expect the final curve to tend more to the Stokes line. Nonetheless, based
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Figure 30: The difference between the actual particle velocity and the particle Stokes velocity
at the time where the average velocity of particles is equal to 2 times the reference Stokes
velocity. For several N0 and ϕ = 0.05.

.

on these results we can calculate the maximum error that will be made in determining the
Stokes velocity as a function of the size, with the current convention for acrit (mean particle
size). See Figure 30, that shows the error for different sizes, i.e. the distance between the
points and the Stokes line in Figure 29. It is evident that the error is less for sizes that are
small relative to the mean. This is expected, as small particles have a greater tendency for
leaking from the cloud and so have a longer time to decelerate. The spread is large, but if there
are enough particles per size fraction the expected error is between 50 and 75 %, if the size is
small relative to the mean. For larger sizes, the spread is larger. The expected error is upwards
of 100 %. It seems that the error may actually be highest for the mean size. We expect this
has to do with the size distribution and the fact that the mean size is also the (approximate)
mode of the distribution, but this needs to be studied more.

5.4 Low volume fractions

Polydisperse clouds at low volume fractions deviate from the standard particle cloud behavior.
The average velocity starts around the predicted V0, whereafter particles start separating ac-
cording to their size. As a result, the cloud instantly loses its shape. There is also no toroidal
circulation. Note that the equivalent monodisperse cloud (same N0 and ϕ) will undergo the
standard particle cloud evolution. The polydispersity presents a disturbance large enough to
cause deviation from the usual behavior. Figure 31 shows an image of a very dilute particle
cloud at t∗c=5. This type of behaviour occured for all clouds with ϕ of 0.001 and 0.01 %. For ϕ
= 0.1 %, it occured for low particle numbers N0<250, and clouds with higher N0 showed typical
cloud behavior. Thus, the transition to this different settling behavior seems to be dependent
on both the particle number and the volume fraction. As a result of the particles quickly sep-
arating according to their size, the particles will settle with a velocity determined by their size
and interactions with neighbouring particles and not with the ’cloud’ velocity. Due to this, the
average velocity will drop much faster. The resulting values of acrit are therefore also higher
than what is presented both in Tables 1 and 2. Moreover, acrit increases with decreasing volume
fraction in this regime. This is because the initial velocity is lower and since the velocity drop
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Figure 31: An image of a particle cloud with N0=250, ϕ = 0.001 % and σ=0.2 at t∗c=5. Particles
are enlarged by factor 10 for visualization.

is not anymore determined by leakage of particles from the cloud but by size-based separation,
the average velocity reaches 2Vs faster. These results are shown in Table 7 for σ 0.2 and 0.4.
We now see a significant departure from the monodisperse data, not only in magnitude but
also in dependence on ϕ, due to the aforementioned phenomenon. It is very important to note
that the higher acrit values at these very low volume fractions are only relevant for very large
drops. For example, a drop with N0=500, ϕ=0.01 % and with 100µm particles, has volume 21
mL (3.4 cm diameter). Finally, we also see that with increasing polydispersity and a sufficient
amount of particles, the separation occurs faster. Such a result is expected. Figure 32 shows the
velocity against the particle size. Here, we can see there is a clear size dependence of velocity
from the start.

Figure 32: The velocity plotted against size at several times for N0 = 500 ϕ = 0.00001 and σ =
0.4. The red line is the Stokes velocity. Size is relative to the mean. The plot on the right are
at the time where Vavg=2Vs,ref . The other two plots are at times where the average velocity is
equal to 2

3
(V0 − 2) + 2 and 1

3
(V0 − 2) + 2, respectively.
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N0 0.001% 0.01% 0.1%
100 - 1100 600
250 680 230 180
500 130 100 80
750 70 65 50
1000 50 41 38

Table 6: ⟨a⟩crit for σ = 0.2

N0 0.001% 0.01% 0.1%
100 - 1100 580
250 900 370 280
500 210 140 130
750 120 86 76
1000 77 75 60

Table 7: ⟨a⟩crit for σ = 0.4

5.5 Velocity distribution

For monodisperse clouds, we discussed the use of the velocity distribution of particles. We
noted that in the polydisperse case, we expected the non-dimensional standard deviation S∗

to be higher at the time where V=2Vs, as well as increasing with σ. Figures 33 and 34 show
that this is indeed the case. As for the shape of the distribution, what needs to be considered
is that the individual particles’ Stokes velocities are not 1Vs but in a range determined by the
size range. The velocity distribution will also reflect this. Nonetheless, looking at the velocity
distributions at multiple times for different polydisperse drops (see Appendix C), we can draw
similar conclusions, e.g. for high V0 the final distribution is expected to look uniform and a
clear sign of enhanced velocities is a gap separating slow tail particles from fast cloud particles.

(a)

(b)

Figure 33: The velocity distribution plotted at several times for (a) N0=250, ϕ = 5%, σ=0.4
(V0=18.69), (b) N0=500, ϕ=5%, σ=0.4 (V0=30.11). Due to the presence of more sizes, the
spread in the velocity is larger.

For drops with discrete size distributions, we do not expect much differences with regards to
the expected distribution. Particles do not decelerate to precisely their Stokes velocity because
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of hydrodynamic interactions with neighbouring particles (this also leads to the distribution
in the monodisperse case). Therefore, the final velocity distribution is not expected to reflect
exactly the size distribution (in being discrete or continuous). The particle clouds with discrete
PSD that were simulated are shown in Fig. C.19-C.20. Note that the cloud with σ=0.2 contains
11 distinct sizes and the cloud with σ=0.4 contains 18 different sizes. We know that in the
limit of discrete size distributions, the behaviour of a bidisperse cloud is significantly different
from monodisperse as well as fully polydisperse clouds. Therefore, it might well be the case
that a cloud with less and discrete sizes - tridisperse, tetradisperse and so on - will not follow
the same pattern and the velocity distributions would look different. When plotting S∗/V∗

mean,
we see that the interval in which the value of S∗/V∗

mean would result in a false positive is much
smaller than the monodisperse case. This is probably due to the larger leakage rate, causing
the standard deviation to climb quickly and the mean velocity to decrease quickly. However,
there is no obvious a priori choice of a target value for this quantity and how that value would
depend on the properties of the suspension drop. At this point, we can only speculate that it
is in the range of [0.25, 0.5] for polydisperse drops and increases with the polydispersity.

(a) σ=0.2 (b) σ=0.4

Figure 34: The non-dimensional standard deviation of velocity plotted for two different degrees
of polydispersity and N0=250. In line with our expectation, the standard deviation at the
critical point is higher when the drop is more polydisperse.

(a) σ=0.2 (b) σ=0.4

Figure 35: The dimensional standard deviation of particle velocities
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5.6 Stability of the polydisperse cloud

It is known that polydisperse clouds break up earlier than monodisperse ones (assuming N0

is sufficiently high). If we compare the times t∗c,des at which destabilization occurs (Fig. 36)
with the results presented by Ho et al. [52], we obtain similar results, where the times where
determined visually by comparing the cloud to images at break-up time in their study. As for
the relation between the breakup time t∗c,des and length L∗

c,des (the distance travelled until break-
up), the points seem to deviate more from the line of Ho et al. as σ increases (Fig. 37), though
this may simple be due to an error in the determination of the break-up times. For the cases
where σ is equal to 0.4 or 0.5, the particle cloud most of the time did not break-up into distinct
clouds but slowly desintegrated. Images of this are shown in Appendix B (Fig. B.1-B.2). Note
that in these clouds, the largest size ratio present in the cloud is 2/0.2 = 10 , which means that
the ratio of their Stokes velocities is equal to 100. It might be that this difference in size causes
separation before formation of new circulatory flow regimes that can support multiple drops.
This does not mean that break-up into two clouds never occurs, see e.g. B.10. Ho et al. found
that the variance in t∗c,des and L∗

c,des decreases with increasing polydispersity, which means the
values we found of acrit are less dependent on the precise time of break-up. Note that while
the volume fraction does not influence the value of t∗c,des due to non-dimensionalization by the
cloud radius and velocity [52], the actual time of break-up tdes is strongly dependent on the
volume fraction as more dense suspension drops lose particles and destabilize more quickly. Ho
et al. proposed the relation tdes = Cϕ−1 where the constant C depends on all other parameters
(cloud radius and fluid and particle properties).

Figure 36: Destabilization time of monodisperse and polydisperse clouds. Triangle for monodis-
perse, square for polydisperse with continuous size distribution and diamond for discrete size
distribution. The values of t∗c,des are 394 and 581 for σ=0.05, 432 and 585 for σ=0.1, 288 and
450 for σ = 0.2 and 341 and 388 for σ = 0.3.
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Figure 37: The destabilization lengths and times. Here, the length is non-dimensionalized by
the initial cloud diameter. The values deviate slightly from the relation found by Ho et al.
[52], which can probably be explained by a slight error in the destabilization times as they were
determined visually.

5.7 Particle segregation

Faletra et al. [51] studied the segregation between different size particles in bidisperse particle
clouds. The main finding was that small (or light) particles separate from large (or heavy)
particles during sedimentation of a particle cloud, and the degree of separation is dependent on
the particle number, decreasing when N0 is increased. Bülow et al. [50] also studies separation in
bidisperse clouds, concluding that as the size ratio is increased, separation of the two particle
fractions increases. We found for polydisperse clouds that the rate of leakage of a particle
depends on its size relative to the mean, with smaller particles leaving the cloud at a faster rate.
To visualize this, the particles were divided into size classes. Figure 38 shows the percentage
of particles remaining in the cloud per size class. It is evident that segregation of particles
according to size becomes more prevalent as σ increases, where there seems to be a sudden
jump in the rate of segregation as the polydispersity parameter is increased from 0.2 to 0.3.
Appendix D contains plots of relative particle number per size class for clouds of different
N0 and σ. The results are consistent, showing that for a polydispersity degree of 10-20 %,
the segregation of different size particles is not pronounced. For higher σ, there is significantly
more segregation of smaller particles into the tail, the effect becoming stronger as polydispersity
degree increases. In contrast to what was seen in bidisperse clouds [50, 51], there seems to be no
effect of N0 on these segregation effects in fully polydisperse clouds (see Fig. D.1-D.2). Figure
39 shows the distribution of particle sizes in the cloud and in the tail, comparing that to the
initial distribution. It can be seen that as time grows, the distribution in the cloud becomes
more skewed towards larger sizes and that in the tail is skewed towards smaller sizes.
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(a) σ=0.2 (b) σ=0.4

Figure 38: The percentage of particles in the cloud belonging to different size classes (size is
relative to the mean). There is a preferential leakage of small particles. This effect becomes
much more pronounced for larger standard deviations, and is similar for σ = 0.3 and σ=0.4.

(a) σ = 0.2 (b) σ = 0.4

Figure 39: The size distribution of two polydisperse particle clouds (N0=1000) a moment before
break-up. The initial distribution of sizes inside the cloud is shown as a probability density
function (PDF), but rescaled so that it is visible (the black curve). Sizes of particles belonging
to the cloud are shown in blue and sizes of tail particles in red. Not only is there more overall
particle leakage for a greater σ, the size distribution in the tail is significantly more skewed to
smaller sizes.

5.8 Comparison of continuous and discrete particle size distributions

We performed all different types of analysis mentioned in this study for particle clouds with
discretized size distributions, for N0=1000, ϕ = 1 %, and polydispersity parameter σ from 0.1
to 0.5. Overall, there were not any noteworthy differences. Judging from Fig. 36, one would
get the impression that particle clouds with discrete particle size distributions break up at a
later time. However, looking at Fig. E.6, we see that the rates of leakage are very similar for
the two types of clouds. Considering that the loss of particles and the subsequent evolution
into a torus are the factors leading to break-up, it would be premature to ascribe the difference
in break-up time to the (continuous or discrete) size distribution. It could be that the fact that
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the discrete clouds contain groups of identical sizes has a stabilizing effect on the cloud, but
this needs further investigation. As for preferential leakage or segregation of different particle
sizes, the results from the simulation indicate no significant difference with the continuous case
(see Fig. D.8-D.12). This is an important finding, as most numerical research on particle
clouds involved the use of discrete particle size distributions, hereby extending the validity of
those findings to particle clouds with continuous size distributions. Figures 40 - 41 show the
size-dependent velocity (in time) and (mean) error. Results are similar as for the continuous
case. For the discrete case, it is easier to obtain statistics. We see that the average error is
relatively low for small sizes and increases with size, with a maximum at 1.4 times the size of
the mean, and decreasing error as particle size increases. We expect that this has to do with
the distribution, as there is a small amount of very large particles and so a smaller chance that
it has neighbouring particles.

Figure 40: The velocity plotted against size at several times for N0 = 1000 ϕ = 0.01 and σ = 0.4
for the cloud with discrete PSD. Blue indicates cloud particles and red indicates tail particles.
The red line is the Stokes velocity. Size is relative to the mean. The plots on the right are at
the time where Vavg=2Vs,ref . The other two plots are at times where the average velocity is
equal to 2

3
(V0 − 2) + 2 and 1

3
(V0 − 2) + 2, respectively.

Figure 41: The difference between the actual particle velocity and the particle Stokes velocity
at the time where the average velocity of particles is equal to 2 times the reference Stokes
velocity. For N0=1000 and ϕ = 0.01 and discrete PSD. The boxes indicate the mean error.

.
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6 Conclusion and recommendations

6.1 Summary and conclusions

The current thesis investigated the validity of measuring the Stokes velocity of particles by
means of measuring the speed of particles in a suspension drop that is made to settle in a tank,
as well as the effects of polydispersity on this. To this end, simulations were performed for
suspension drops with varying number of particles, volume fraction and degrees of polydisper-
sity. The velocity of the drop, depending on the number of particles and the volume fraction,
decreases during settling due to leakage of particles from the cloud. In turn, the rate of leakage
depends on the velocity of the drop as well as the distance between particles. Though increas-
ing the volume fraction will increase the initial velocity of the cloud, it will lose particles more
quickly and therefore decelerate faster than the more dilute drop. This theoretical prediction
was confirmed in the simulations. Because the initial velocity of the cloud is highly dependant
on the number of particles, it is important to make a rough estimation beforehand, for which
we presented two approaches from the literature.

When particles leak from the cloud, they decelerate from the cloud velocity to a velocity
that is close to their respective Stokes velocity. As these particles settle at a far lower speed
than the cloud, it is important to consider the effect this has on the average velocity measured
in the experiment. We presented a simple model that can take this deviation into account,
which predicts that it leads to a 30-40 % increase in the upper limit of (mean) particle size
⟨a⟩crit for which the experiment leads to a measurement of 2 times the Stokes velocity. We also
showed how the mean velocity of all particles (in the simulation) can give a good estimation
of the mean velocity measured in experiments. Using the mean velocity, more conservative re-
sults were found but there is qualitative agreement with the theoretical prediction. Finally, we
showed how the distribution of velocity of particles can aid in determining whether the settling
is enhanced (V » Vs) or closer to the Stokes velocity, and that the standard deviation of non
dimensional velocities follow a predictable trend during settling of the cloud. The latter was
compared to a quantity than can be measured in simulations (dimensional standard deviation
divided by the mean of velocity) which follows a similar trend, but its range is considerably
decreased.

A polydisperse cloud usually settles (depending on the size distribution) at a higher veloc-
ity, due to the quadratic dependence of velocity on the size. We compared the initial speed of
polydisperse clouds from simulations to two formulas derived from the literature, and showed
that the speed can be accurately estimated using the expected value of the size distribution.
Moreover, a polydisperse cloud loses particles faster and hence its speed also drops faster. Based
on the increased leakage rate and using the same theoretical model as for the monodisperse
clouds, we first made a theoretical prediction that ⟨a⟩crit could be up to 2.5 times as large for
polydisperse clouds, depending on the degree of polydispersity. The values found using the
mean velocity from the simulations agree with this prediction. Again, the shape of the velocity
distribution was also shown to be a useful success indicator for polydisperse drops. For polydis-
perse clouds, the proposed quantity S/Vmean seems to be a more reliable indicator of whether
the velocity is sufficiently close to the Stokes velocity, but comparison with experimental data
is necessary.

The polydisperse cloud also breaks up significantly earlier, which is due to the increased leak-
age rate. For the most part, the results found for break up times and lengths fall in line with
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previous findings from the literature. We also found that when the polydispersity exceeds 30
%, the cloud will have a tendency not to break up into two clouds but to lose particles until it
desintegrates and the collective settling behaviour disappears, similar to monodisperse clouds
with low particle numbers. This is very interesting, as monodisperse clouds with the same
number of particles always break up. Another finding from the literature was corroborated,
namely that there is preferential leakage of smaller particles. This is consistent for all degrees
of polydispersity, but there is a significant jump at 30 % where particles with small size relative
to the mean will almost completely vanish from the cloud after some time. This also leads to a
more rapid fall in the mean velocity (of all particles), because the small particles will decelerate
from the velocity of the cloud to their Stokes velocity, which is comparatively very low. In
contrast to the literature (which studies bidisperse clouds), the effects of particle segregation
were not dependent on the number of particles in the drop. These findings indicate that a
polydisperse suspension drop is preferable, as it will lead (all else being equal) to a velocity
measurement closer to the Stokes velocity, in the case we are interested in the Stokes velocity
belonging to the mean size of the sample. If we want to measure the Stokes velocity for each size
in the sample (like in the floc experiments), the approach in this study (see below for details)
will introduce a variable error, the velocity for smaller sizes being most accurate because of
early leakage. Finally, no significant results were found with regards to the difference between
polydisperse particle clouds with continuous vs. discrete size distributions.

For volume fractions between 0.01 and 1 %, the values for the maximum allowable size acrit for
the monodisperse cloud approximately follow a power law (w.r.t. volume fraction and particle
number) and are well represented by the following equations with acrit in micrometers and htank

in meters:
acrit = htank exp(7.059ϕ

−0.05)N−0.4753ϕ−0.1247

0 , (40)

with separate equations for ϕ = 0.001 % and ϕ = 5 %:

acrit = htanke
20.59N−2.8023

0 (φ = 0.001%) (41)
acrit = htanke

9.9410N−0.9170
0 (φ = 5%) (42)

The same is true for the values of maximum mean size ⟨a⟩crit of polydisperse clouds, the data
for σ=0.2 being well represented by

⟨a⟩crit = htank exp(8.612ϕ
−0.0471)N−0.746ϕ−0.0682

0 (43)

for volume fractions between 0.01 and 1 %, and

⟨a⟩crit = htanke
16.94N−1.908

0 (φ = 0.001%) (44)
⟨a⟩crit = htanke

11.27N−1.098
0 (φ = 5%) (45)

for lower and higher volume fractions. Finally, for σ = 0.4, the data is closely approximated
using

⟨a⟩crit = htank exp(5.97ϕ
−0.0862)N−0.422ϕ−0.1218

0 (46)

for volume fractions between 0.001 and 0.1 %. For higher volume fractions:

⟨a⟩crit = htanke
11.22N−1.0424

0 (φ = 1%) (47)
⟨a⟩crit = htanke

10.86N−1.0094
0 (φ = 5%) (48)

The workflow we suggest for the suspension drop settling experiments is:
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• Measure or estimate the mean particle size and degree of polydispersity. Here, a conser-
vative estimate would be to choose a higher mean size as this will be used as the critical
size acrit to estimate the maximum N0. For the polydispersity degree σ, the converse is
true.

• The values ⟨a⟩ and σ, together with a value of the volume fraction, determine the maxi-
mum particle number. In turn, N0, σ and ϕ determine the volume of the suspension drop.
Based on the experimental setup and available equipment (e.g. the drop generator from
Mylyk et al. [40] can generate microliter suspension drops), a certain drop size may be
preferred (i.e. a different combination of N0 and ϕ), which can be achieved by adjusting
ϕ and recalculating N0 and the drop volume.

• We have written a basic MATLAB script that achieves this by calculating the volume
fraction of a drop, given a certain value of ⟨a⟩, σ and drop volume. Linear interpolation
is used w.r.t. values of σ and power-law interpolation for interpolating with respect to
ϕ. Based on a preliminary analysis, we found that for a fixed drop size, the volume
fraction calculated for a certain ⟨a⟩ follows a parabolic curve. These curves allow for
simply selecting the volume fraction of the drop, based on the known mean size. This
preliminary analysis is presented in more detail in Appendix F.

• The experiment can now be performed by preparing the suspension with the given volume
fraction and extracting a drop with the specified volume and releasing that into the
settling tank.

• During post-processing, we have access to the velocity distribution of particles. The final
values of N0 and ϕ can be used to calculate the (approximate) initial velocity of the
drop relative to the Stokes velocity V0/Vs with equation 27. The measured distribution
together with V0 can be used to assess whether the measured settling velocity is enhanced
or close to the Stokes velocity. This analysis was already presented in the relevant sections
in this study and Appendix C gives specific distributions to compare with.

In summary, the most important achievements of this study are:

• Present a theoretical basis for the measuring of particle Stokes velocities by measuring
the average settling speed of a suspension drop, including the effects of drop properties
like drop size, volume fraction and polydispersity. The end result is approximate formulas
that can be used by experimentalists as well as an example workflow that can be tested.
A preliminary analysis on the final data indicate that it is sufficient to choose the volume
fraction directly based on the size of the drop and the mean size of the particles.

• Perform a comprehensive investigation into the velocity drop and particle leakage observed
in particle clouds, as well as the velocity of leaked particles and the evolution of the
velocity distribution of all particles. The analysis includes the effect of the number of
particles, volume fraction and polydispersity degree.

• Produce novel findings in the context of polydisperse particle clouds, such as the use of
prior knowledge about the size distribution to calculate the initial velocity, the similarity
between particle clouds with a continuous or discrete size distribution and the preferential
leakage of smaller particles from a fully polydisperse cloud and its dependence on the
polydispersity degree and independence on the particle number.
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6.2 Recommendations for further research

• Experimentally validate the findings of this study
Considering the fact that the simulations are somewhat of a simplifaction from the exper-
imental setting in the lab, it would be very interesting to test the findings of this study
experimentally. Specifically, this would involve measuring the velocity of particles at a
certain position along a tank where a suspension drop is made to settle. The sizes of
the particles in the drop have to be approximately known, so that the Stokes velocity
is known. Also, similar to what was done by Metzger et al. and others [34, 40, 51],
the suspension drop needs to be generated carefully to prevent entrainment of outside
fluid. These experiments could be done for monodisperse, as well as polydisperse drops.
In addition, it would be interesting to see if the velocity distribution can also be used
in the experiments in a similar way as was presented in this study. If it is found that
the results match with the present study, a follow-up study could investigate whether
the same conclusions hold for the case where suspension drops are pipetted and there is
less regard for ensuring a spherical particle cloud. For example, it could turn out that
higher volume fractions in this case are actually counterproductive. Then, not only can
conclusions be made with regards to the validity of this study, but also on which of the
two types of experiments should actually be the preferred choice for measuring the Stokes
settling velocity of particles.

• Numerical study specific to DSM suspension drop experiment
The application we discussed in the introduction had some distinct features compared to
this study. First, we used equal density particles while the flocs in the relevant experiments
have a size dependent density. It might be interesting to perform the simulations using
a size dependent density similar to plot B and C in Figure 11. Moreover, as can be seen
from the size range, the samples can be highly polydisperse. The corresponding value of
σ (though the distribution is left-skewed) would be higher than what was studied here. It
would also be useful to simulate this considering the effect polydispersity has on particle
leakage (Fig. E.3). Finally, the method we used for including polydispersity implies that
the error will be higher for larger particle sizes (Fig. 30). Considering this, it may be
more interesting to base the size limit acrit on a velocity that must be reached by larger
particles, considering that the error for smaller particles will already be relatively low.

• Numerical study into the destabilization of polydisperse clouds
In this study, we presented the finding that polydisperse clouds with discrete size distri-
butions break-up at a larger time and distance. However, the amount of clouds simulated
was limited and only for one particle number. Therefore, a more thorough numerical study
should compare continuous with discrete clouds for more particle numbers. Also, it would
be interesting to obtain more statistics for the probability of break-up into two clouds
vs. break-up by steady desintegration (or break-up into more than two clouds) for highly
polydisperse clouds. As the literature confirms that monodisperse particle clouds always
break up into two clouds if they contain more than a thousand particles, a significant
departure from this behaviour for polydisperse clouds is definitely worth investigating
more.

• Study different discrete polydispersities
Sometimes, the size distribution is neither continuous nor discrete along a continuous
interval. A sample may contain several types of matter that each have their respective
size distributions. This may be modelled by a bi-, tri- or tetradisperse suspension. We
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know how approximately how particles in bidisperse clouds will segregate depending on
the size ratio and fraction particle numbers, but what has not been studied is what the
influence will be on the drop velocity and what happens when the drop has more sizes in
which case there is also not one size ratio.

• Clouds with higher particle numbers
The current study was limited to suspension drops with between 100 and 1000 particles.
Power-law relations were found, hence it may be the case that the results can be extrap-
olated for higher particle numbers. This would also suggest that the difference between
N0=2000 and N0=1000 is similar to the difference between the latter and N0=500. Also,
if this is indeed the case, we can theoretically predict that maximum drop volumes will
keep decreasing for increasing N0. E.g. if the particle number doubles, the critical size
will likely be halved, leading to a drop volume that is 1/23·2 = 1/4 as large. Continuing
this line of reasoning, there will be a point where the maximum volume is unrealistically
small. If we set this limit at 0.5 L and assume the growth factor to be 2 and use volume
fraction 0.01, this volume would be reached at a particle number of approximately 2300.
Note that this is in the monodisperse case, for the polydisperse case the prediction would
be higher. It would be interesting to test this prediction as it would extend the findings
and their practical usability.

• Dilute limit polydisperse particle clouds
We saw that at very low volume fractions, the typical formation of an internally circulating
spherical particle cloud is disturbed by the presence of polydispersity. This occurs starting
at volume fractions of 0.1 %, but is also dependent on the particle number N0. Similar to
settling suspensions, these particle clouds do not maintain their structure but the particles
separate according to their sizes. This causes a very fast transition from enhanced settling
to lower settling velocities. The dynamics concerning this are complex, and it is not
exactly known which conditions are necessary to cause this deviation. Thus, this would
be an interesting avenue for further study. This would also give more insight into what
causes the cloud formation and the associated collective settling behavior. We expect
that at lower polydispersities, e.g. σ < 0.1, cloud formation may be possible but this
needs to be investigated along with the effects of ϕ and N0. Finally, it would also be
interesting to see whether a cloud with discretized particle size distribution has a similar
transition from collective settling to individual settling, or if the groups of similar sizes
have a stabilizing effect, and if the transition is similar, whether the resulting separation
leads to a continuous distribution of sizes (similar to Fig. 31) or if there is a difference
between the continuous and discrete case similar to what is seen in hindered settling.
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Appendices
A Particle size distributions
This section contains the particle size distributions that were used in the simulation of the
particle clouds for the comparison between particle clouds with continuous and those with
discrete size distributions.

Figure A.1: The continuous particle size distribution generated using N0=1000 and σ=0.1.
After removal of sizes outside the interval [0.4 1.6], N0=990, a=1.00 and σ=0.0992.

Figure A.2: The continuous particle size distribution generated using N0=1000 and σ=0.2.
After removal of sizes outside the interval [0.4 1.6], N0=937, a=0.9994 and σ=0.1966.
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Figure A.3: The continuous particle size distribution generated using N0=1000 and σ=0.3.
After removal of sizes outside the interval [0.4 1.6], N0=903, a=0.9937 and σ=0.2616.

Figure A.4: The continuous particle size distribution generated using N0=1000 and σ=0.4.
After removal of sizes greater than 2, N0=949, a=0.9387 and σ=0.3211.
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Figure A.5: The discrete particle size distribution generated using N0=1000 and σ=0.1. The
final properties of the distribution are a=1.0003 and σ=0.1005.

Figure A.6: The discrete particle size distribution generated using N0=1000 and σ=0.2. The
final properties of the distribution are a=0.9968 and σ=0.1953.
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Figure A.7: The discrete particle size distribution generated using N0=1000 and σ=0.3. The
final properties of the distribution are a=0.9695 and σ=0.2612.

Figure A.8: The discrete particle size distribution generated using N0=1000 and σ=0.4. The
final properties of the distribution are a=1.0152 and σ=0.3409.
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B Images from the settling of particle clouds

(a) t∗=795, scale factor 5 (b) t∗=800, scale factor 3

Figure B.1: A snapshot of the two particle clouds with N0=1000 and σ=0.4. The image on the
left shows the cloud with the continuous PSD and the right image shows the cloud with the
discrete PSD. The particles are enlarged by a certain factor for visibility.
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(a) t∗=554, scale factor 5 (b) t∗=416, scale factor 5

Figure B.2: A snapshot of the two particle clouds with N0=1000 and σ=0.5. The image
on the left shows the cloud with the continuous PSD and the right image shows the cloud
with the discrete PSD. It can be seen clearly that the particle cloud does not break up into
two distinct cloud, but rather breaks up by gravitational separation of particles due to their
velocity difference.

76



(a) (b)

Figure B.3: Two snapshots of the particle cloud with N0=1000, ϕ=1% and σ=0, one at half
the break-up time and at time of break-up.
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(a) (b)

Figure B.4: Two snapshots of the particle cloud with continuous PSD and with N0=1000, ϕ=1%
and σ=0.1, one at half the break-up time and at time of break-up.
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(a) (b)

Figure B.5: Two snapshots of the particle cloud with discrete PSD and with N0=1000, ϕ=1%
and σ=0.1, one at half the break-up time and at time of break-up.
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(a) (b)

Figure B.6: Two snapshots of the particle cloud with continuous PSD and with N0=1000, ϕ=1%
and σ=0.2, one at half the break-up time and at time of break-up.
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(a) (b)

Figure B.7: Two snapshots of the particle cloud with discrete PSD and with N0=1000, ϕ=1%
and σ=0.2, one at half the break-up time and at time of break-up.
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(a) (b)

Figure B.8: Two snapshots of the particle cloud with continuous PSD and with N0=1000, ϕ=1%
and σ=0.3, one at half the break-up time and at time of break-up.
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(a) (b)

Figure B.9: Two snapshots of the particle cloud with discrete PSD and with N0=1000, ϕ=1%
and σ=0.3, one at half the break-up time and at time of break-up.
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Figure B.10: A snapshot of the particle cloud with N0=750 and σ=0.4 (ϕ=5%) at the time of
break-up into two clouds.
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C Velocity distributions at selected times
This section contains plots for a range of simulated clouds. They are ordered in terms of initial
cloud velocity, to show that the expected final distribution depends mainly on V0.

C.1 Monodisperse clouds

Figure C.1: The velocity distribution at several times for N0=100 and ϕ=0.01% (V0=2.22).

Figure C.2: The velocity distribution at several times for N0=100 and ϕ=0.1% (V0=3.60).

Figure C.3: The velocity distribution at several times for N0=500 and ϕ=0.01% (V0=4.50).

C.2 Polydisperse clouds
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Figure C.4: The velocity distribution at several times for N0=250 and ϕ=0.1% (V0=5.85).

Figure C.5: The velocity distribution at several times for N0=1000 and ϕ=0.01% (V0=6.56).

Figure C.6: The velocity distribution at several times for N0=500 and ϕ=0.1% (V0=8.72).

Figure C.7: The velocity distribution at several times for N0=1000 and ϕ=0.1% (V0=13.06).
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Figure C.8: The velocity distribution at several times for N0=750 and ϕ=1% (V0=22.56).

Figure C.9: The velocity distribution at several times for N0=1000 and ϕ=1% (V0=27.39).

Figure C.10: The velocity distribution at several times for N0=750 and ϕ=5% (V0=38.55).

Figure C.11: The velocity distribution at several times for N0=100, ϕ=1% and σ=0.2
(V0=7.36).
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Figure C.12: The velocity distribution at several times for N0=100, ϕ=1% and σ=0.4
(V0=7.59).

Figure C.13: The velocity distribution at several times for N0=250, ϕ=5% and σ=0.2
(V0=19.93).

Figure C.14: The velocity distribution at several times for N0=750, ϕ=1% and σ=0.2
(V0=23.76).

Figure C.15: The velocity distribution at several times for N0=750, ϕ=1% and σ=0.4
(V0=24.38).
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Figure C.16: The velocity distribution at several times for N0=500, ϕ=5% and σ=0.2
(V0=30.14).

Figure C.17: The velocity distribution at several times for N0=1000, ϕ=1% and σ=0.2
(V0=28.16).

Figure C.18: The velocity distribution at several times for N0=1000, ϕ=1% and σ=0.4
(V0=28.43).
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Figure C.19: The velocity distribution for N0=1000, ϕ=1% and σ=0.2 (discrete particle size
distribution).

Figure C.20: The velocity distribution for N0=1000, ϕ=1% and σ=0.3 (discrete particle size
distribution).
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D Size distributions in the cloud and tail
This section contains plots showing both static size distributions in the cloud and tail as well
as the percentage of particles in the cloud belonging to a specific size range followed in time.
This is shown for various σ, to show how these effects of particle segregation depend on the
polydispersity.

(a) σ = 0.2 (b) σ = 0.4

Figure D.1: The size distribution of two polydisperse particle clouds (N0=250) at the time
where the percentage of particles in the cloud has decreased to 35 %. The initial distribution
of sizes inside the cloud is shown as a probability density function (PDF), but rescaled so that
it is visible (the black curve). Sizes of particles belonging to the cloud are shown in blue and
sizes of tail particles in red.

(a) σ = 0.2 (b) σ = 0.4

Figure D.2: The size distribution of two polydisperse particle clouds (N0=500) at the time
where the percentage of particles in the cloud has decreased to 35 %. The initial distribution
of sizes inside the cloud is shown as a probability density function (PDF), but rescaled so that
it is visible (the black curve). Sizes of particles belonging to the cloud are shown in blue and
sizes of tail particles in red.
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Figure D.3: The percentage of particles in the cloud (N0=1000, ϕ=1%, σ=0.1) belonging to
different size classes (size is relative to the mean).

Figure D.4: The percentage of particles in the cloud (N0=1000, ϕ=1%, σ=0.2) belonging to
different size classes (size is relative to the mean).
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Figure D.5: The percentage of particles in the cloud (N0=1000, ϕ=1%, σ=0.3) belonging to
different size classes (size is relative to the mean).

Figure D.6: The percentage of particles in the cloud (N0=1000, ϕ=1%, σ=0.4) belonging to
different size classes (size is relative to the mean).
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Figure D.7: The percentage of particles in the cloud (N0=1000, ϕ=1%, σ=0.5) belonging to
different size classes (size is relative to the mean).

(a) σ=0.1 continuous PSD (b) σ=0.1 discrete PSD

Figure D.8: The size distribution of two polydisperse particle clouds (left = continuous PSD,
right = discrete PSD) at a time just before break-up of the cloud. The initial distribution of
sizes inside the cloud is shown as a probability density function (PDF), but rescaled so that
it is visible (the black curve). Sizes of particles belonging to the cloud are shown in blue and
sizes of tail particles in red. For both clouds, N0=1000 and ϕ = 1 %.
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(a) σ=0.2 continuous PSD (b) σ=0.2 discrete PSD

Figure D.9: The size distribution of two polydisperse particle clouds (left = continuous PSD,
right = discrete PSD) at a time just before break-up of the cloud. The initial distribution of
sizes inside the cloud is shown as a probability density function (PDF), but rescaled so that
it is visible (the black curve). Sizes of particles belonging to the cloud are shown in blue and
sizes of tail particles in red. For both clouds, N0=1000 and ϕ = 1 %.

(a) σ=0.3 continuous PSD (b) σ=0.3 discrete PSD

Figure D.10: The size distribution of two polydisperse particle clouds (left = continuous PSD,
right = discrete PSD) at a time just before break-up of the cloud. The initial distribution of
sizes inside the cloud is shown as a probability density function (PDF), but rescaled so that
it is visible (the black curve). Sizes of particles belonging to the cloud are shown in blue and
sizes of tail particles in red. For both clouds, N0=1000 and ϕ = 1 %.
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(a) σ=0.4 continuous PSD (b) σ=0.4 discrete PSD

Figure D.11: The size distribution of two polydisperse particle clouds (left = continuous PSD,
right = discrete PSD) at the time where the percentage of particles in the cloud has decreased
to 35 %. The initial distribution of sizes inside the cloud is shown as a probability density
function (PDF), but rescaled so that it is visible (the black curve). Sizes of particles belonging
to the cloud are shown in blue and sizes of tail particles in red. For both clouds, N0=1000 and
ϕ = 1 %.

(a) σ=0.5 continuous PSD (b) σ=0.5 discrete PSD

Figure D.12: The size distribution of two polydisperse particle clouds (left = continuous PSD,
right = discrete PSD) at the time where the percentage of particles in the cloud has decreased
to 35 %. The initial distribution of sizes inside the cloud is shown as a probability density
function (PDF), but rescaled so that it is visible (the black curve). Sizes of particles belonging
to the cloud are shown in blue and sizes of tail particles in red. For both clouds, N0=1000 and
ϕ = 1 %.
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E Plots of cloud velocity and leakage
This section contains plots of the relative cloud velocity and particle number for polydisperse
clouds with a continuous and discrete size distribution and for several σ, showing clearly the
increased leakage rate and subsequent deceleration with σ and the similarity between particle
clouds with continuous and discrete particle size distributions.

Figure E.1: The cloud velocity for clouds with varying polydispersity degrees with a continuous
size distribution.

Figure E.2: The cloud velocity for clouds with varying polydispersity degrees with a discrete
size distribution.
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Figure E.3: The cloud relative particle number for clouds with varying polydispersity degrees
with a continuous size distribution.

Figure E.4: The cloud relative particle number for clouds with varying polydispersity degrees
with a discrete size distribution.
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Figure E.6: The relative velocity and particle number of polydisperse particle clouds with
continuous and discrete size distributions. The figures are in order of polydispersity degree for
σ = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. Circles indicate the moment of break-up.
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F Preliminary results
This study was focused on finding the conditions for which average velocities measured from
settling suspension drops reach velocities sufficiently close to the Stokes velocity. Now, we will
provide a preliminary analysis to see what can be derived from the obtained data. Equations
40 - 47 give the size limit as a function of N0 and ϕ. The relation can also be thought of as
giving the maximum number of particles initially in the drop, as a function of the mean size
and volume fraction. In practice, it is more convenient to have a direct relation between mean
particle size and volume fraction. We can achieve this by fixing the size of the drop and, using
an iterative method, find the (maximum) number of particles and volume fraction of the drop
that satisfy the equations. We found that this procedure will always result in a curve (volume
fraction against particle size) that can be very well described by a quadratic equation. For
example, figure F.1 shows this curve for a suspension drop with volume 0.1 mL as well as the
initial number of particles in the drop N0. Note that if N0 lies outside the interval that was
studied here (100 to 1000), this is because of extrapolation of the data. If we disregard these
cases, we would come to the conclusion that for a drop of volume 0.1 mL, the maximum mean
particle size is 300µm.

(a) (b)

Figure F.1: Curve of (a) volume fraction and (b) number of particles against the size of the
particles in the drop (monodisperse case) for a drop of volume 0.1 mL.

The tank height, or rather the height at which the particles’ velocities are measured relative
to the discharge point, is very important as it determines the available distance particles can
travel (and decelerate). Figure F.2 shows the curves for two different tank heights. A tank
height of 25 cm instead of 100 cm will result in a quarter the size limit (or maximum N0).
This leads to a less dense drop in case of fixed volume. For the small tank, it is clear that the
drop will only contain a significant amount of particles for small particle sizes. For particle size
greater than 50 µm, N0 falls outside the scope of this study, indicating the importance of tank
height. Note that the curve for the one meter high tank cuts off at a certain size only because
of reaching the maximum volume fraction.
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(a) (b)

Figure F.2: Curve of (a) volume fraction and (b) number of particles against the size of the
particles in the drop (monodisperse case) for a drop of volume 0.1 mL, for two different tank
heights.

We repeated the same analysis for polydisperse drops. To this end, we used the data
corresponding to σ ≈ 0.3. The results are shown in figures F.3 - F.4, for two different drop
sizes. The most important difference is that the polydisperse drops (are allowed to) contain
more particles, which is favorable for the experiments as there will be less margin for error.
Due to the higher N0, the prepared suspension will need to be slightly more dense for the same
particle size. For the larger drop, the maximum volume fraction is reached at larger particle
size, in both cases. Here, it can be seen that with an increased drop size and a polydisperse
drop, the range of N0 for particle sizes until 500 m is now contained within the studied interval
(100-1000). Note that for small sizes, N0 for the polydisperse drop will exceed 1000 because
of extrapolation, but as this value is the maximum number of particles this does not limit the
particle size.

(a) (b)

Figure F.3: Curve of (a) volume fraction and (b) number of particles against the size of the
particles in the drop (monodisperse case) for a monodisperse and polydisperse drop of volume
0.1 mL.
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(a) (b)

Figure F.4: Curve of (a) volume fraction and (b) number of particles against the size of the
particles in the drop (monodisperse case) for a monodisperse and polydisperse drop of volume
1 mL.

Finally, we noted that using the mean size for calculating the volume gives an error in the
case of highly polydisperse suspensions, because the radii are cubed to obtain the volume, i.e.
⟨a⟩ ̸= 1

N

∑
i a

3
i . Figure F.5 shows the difference in the resulting curves. For larger sizes, the

difference in required volume fraction is significant.

Figure F.5: The volume fraction of the suspension drop against the size of the particles in
the drop for a polydisperse drop, using either the mean size of particles for calculation of the
volume or the actual expected volume according to the size distribution.
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