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Abstract: The Industry 4.0 concept of a Digital Twin will bring many advantages for wind energy
conversion systems, e.g., in condition monitoring, predictive maintenance and the optimisation
of control or design parameters. A virtual replica is at the heart of a digital twin. To construct
a virtual replica, appropriate modelling techniques must be selected for the turbine components.
These models must be chosen with the intended use case of the digital twin in mind, finding a
proper balance between the model fidelity and computational load. This review article presents an
overview of the recent literature on modelling techniques for turbine aerodynamics, structure and
drivetrain mechanics, the permanent magnet synchronous generator, the power electronic converter
and the pitch and yaw systems. For each component, a balanced overview is given of models with
varying model fidelity and computational load, ranging from simplified lumped parameter models
to advanced numerical Finite Element Method (FEM)-based models. The results of the literature
review are presented graphically to aid the reader in the model selection process. Based on this
review, a high-level structure of a digital twin is proposed together with a virtual replica with a
minimum computational load. The concept of a multi-level hierarchical virtual replica is presented.

Keywords: digital twins; wind energy; wind turbines; Industry 4.0; direct-drive; permanent magnet
synchronous generator

1. Introduction

The share of wind energy in the global energy mix has seen exponential growth in
recent years. The worldwide installed wind power capacity reached 743 GW by the end
of 2020, growing 93 GW in the last year alone [1]. Offshore wind installations account
for a total of 35.3 GW, expanding with 6.1 GW in 2020. This annual growth in offshore
wind energy is expected to exceed 20 GW in 2025 and 30 GW in 2030 [2]. Although the
COVID-19 pandemic temporarily slowed down installations in 2020, it is unlikely that
there will be a long term effect on the wind energy sector.

The most recent Levelized Cost of Energy (LCOE) analysis by Lazard reported the
current LCOE of onshore wind energy to be in the range of 26–54 $/MWh [3]. This has
decreased significantly in the past years due to increasing turbine size and economical
scale benefits, which fosters further increases in its deployment. The LCOE of wind
energy is considerably lower than the cost of conventional energy sources, such as nuclear
(129–198 $/MWh), coal (65–159 $/MWh) and gas combined cycle (44–73 $/MWh).
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For comparison, the LCOE of photovoltaic energy shows a considerable spread be-
tween large utility scale installations (29–42 $/MWh) and small residential rooftop instal-
lations (150–227 $/MWh). The LCOE of hydropower reaches an average of 44 $/MWh
but also varies depending on the location and site specifics [4].

Technologically, wind energy has gone through a significant evolution since its early
developments in the 1970s and 1980s. Figure 1 gives an overview of the three most common
power conversion systems. The first wind turbine designs, shown in Figure 1a, used a
squirrel cage induction generator and a gearbox, allowing only limited variations in rotor
speed as a result of the induction machine’s slip. These turbines are denoted ‘fixed speed
turbines’ as the rotor speed variations are negligible [5].

Since the rotor speed is not varied with wind speed, these turbines suffer from a
poor aerodynamic performance. As the power electronic converters became more cost
effective, Doubly-Fed Induction Generators (DFIG) became the standard [6], as shown in
Figure 1b. The stator winding of the DFIG is connected directly to the grid, while the rotor
winding is connected to a back-to-back AC/DC/AC converter [7]. This design allows a
wider variation in the rotor speed, meaning that the turbine’s power coefficient can be
maximized with Maximum Power Point Tracking (MPPT) control in a considerably wide
operating range.

Although many wind turbines currently in operation are still using a DFIG, it is
becoming legacy technology. The modern wind turbine design, shown in Figure 1c, uses
a Permanent Magnet Synchronous Generator (PMSG) with a high pole pair number and
direct drive, thus omitting the gearbox [8,9]. The power electronic converter is rated for
the full power of the turbine. The PMSG has a higher efficiency compared to a DFIG,
and allows the rotor speed to be regulated in a wide range. Hence, the MPPT can maximize
the power coefficient over the whole operating area up to the rated operating point.

Aside from these significant evolutions in the power conversion system, the rotor
design has also evolved, e.g., from two to three blades and from fixed to variable pitch.
Wind turbines are still becoming larger today, exceeding the 10 MW rated power mark [10].
Currently, the largest turbines on the market are the 14 MW Siemens Gamesa 14-222 DD,
the 14 MW GE Renewable Energy’s Haliade X and the 10 MW Vestas V164.

Both the Siemens Gamesa 14-222 DD and the GE Haliade X use a direct drive PMSG.
In contrast, the Vestas V164 uses a rather unconventional design with a classical gearbox
in combination with a PMSG. Vestas states the high cost of rare-earth metals for the
permanent magnets and improved reliability of gearboxes as the main reasons for this
design. In February 2021, Vestas announced a new 15 MW V236 offshore turbine to be
available by 2022, thus, pushing the size of wind turbines even further with a rotor diameter
of 236 m. The V236-15.0 MW was selected for the He Dreiht offshore wind farm (900 MW)
in the German North Sea in 2025.

In parallel with these persistent evolutions in the wind energy industry, a second
major transformation is unfolding, i.e., Industry 4.0 [11]. The exponential increase in
computational power and the availability of reliable communication technologies with
high bandwidth and low latency are giving rise to a massive digitalisation. Machines are
becoming smart as they are connected to the Industrial Internet of Things (IIoT) [12] and,
thus, gaining access to high computing power in the cloud.

This opens up the possibility of running CPU-intensive algorithms and techniques,
e.g., Artificial Intelligence (AI) routines [13,14], big data collection and analysis [15,16], con-
dition monitoring [17], predictive maintenance [18], control analysis and optimization [19],
etc. With these techniques, Industry 4.0 enhances the robustness, reliability, performance
and flexibility of machines and production processes.
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Figure 1. (a) Fixed speed wind turbine with a Squirrel Cage Induction Generator (SCIG), (b) variable
speed wind turbine with a Doubly Fed Induction Generator (DFIG) and (c) variable speed direct-drive
wind turbine with a Permanent Magnet Synchronous Generator (PMSG).

One major upcoming technology is the Digital Twin (DT), defined as a virtual replica
that acts and behaves as its physical counterpart, computed simultaneously with the
physical system and with an automated transfer of data or information between the
physical system and the model [20,21]. Although often used as a buzz-word or considered
hype, a well implemented digital twin can unmistakably bring added value in many
industrial applications [22–24].

A digital twin can be used to evaluate the current condition of the system, to predict
its future behaviour and to optimize its control and operation. As stated in [25], the digital
twin concept is expected to be the innovation backbone of the future, providing a virtual
representation of products and systems in the real world.

Aside from the manufacturing industry, Industry 4.0 concepts, such as digital twins,
can have several advantages in wind energy conversion systems as well. Currently,
the available literature on digital twins related to wind energy is limited. The aim of
this review article is to present a possible implementation and structure of a digital twin,
specifically for wind turbines of the modern direct-drive PMSG type. Digital twins of wind
turbines can be approached in a broad sense, e.g., including their environmental, societal
or legal aspects [26].

However, in this study, the focus lies on the creation of a digital twin of the physical
wind turbine and its energy conversion process. An extensive overview of relevant and
recent literature is given of research results that make up the essential building blocks
of such a digital twin with a particular focus on potential modelling techniques, model
fidelity, and computational load. This article is structured as follows: Section 2 defines the
concept of a digital model, digital shadow, digital twin and virtual replica in the context of
a wind energy conversion system.

In Section 3, a review is presented regarding the recent literature on modelling tech-
niques of the essential wind turbine components with a focus on model fidelity and
computational load. Section 4 proposes a high-level digital twin architecture and a method-
ology to construct its internal virtual replica based on the aforementioned review of
modelling techniques.

2. Definition of a Digital Twin

Many different definitions of a digital twin can be found in the literature. In [21,22,27],
a distinction was made between a digital model, a digital shadow and a digital twin.
A digital model is defined as a virtual representation of a physical system able to accurately
represent a predefined set of behaviours of its physical counterpart. There is no automated
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exchange of information between the physical system and its digital model, i.e., any
information is transferred manually.

Note that a digital model does not necessarily have to model all possible behaviours of
the physical system, nor are there any restrictions on the required computational effort or
real-time computation. In other words, the required fidelity of the model entirely depends
on the use case [20]. Model fidelity is defined as the degree to which the behaviour of the
actual system is realistically reproduced.

For example, if only the static geometry of a wind turbine blade is required, a static 3D
CAD file can, in principal, suffice as a digital model. Aside from geometry, other possible
required behaviours are electrical or mechanical dynamics, structural flexibility and loads,
energy losses, thermodynamics, fluid mechanics, control behaviour, wear, ageing, etc.
Digital models are omnipresent in all engineering disciplines and are used in the design
phase of a machine for, e.g., virtual controller tuning, virtual commissioning or structural
load analysis.

According to [21,22,27], a digital model is upgraded into a digital shadow by adding a
unidirectional automated data or information flow from the physical to the virtual system,
while a digital twin requires the data flow to be bidirectional. However, this requirement is
deemed too restrictive in [20], where the distinction between a digital shadow and twin is
not made, and both are denoted as a digital twin.

By sending properly selected sensor data from the physical to the virtual system,
it can behave synchronously and identically to the physical system. Although this does
not strictly require real-time computation, the virtual state of the digital twin preferably
coincides with the state of the physical system on a regular predefined time interval to
be of use in practice. This time interval depends on the computational effort required to
model the desired behaviours. There are no requirements for the sampling frequency of
the exchanged data.

However, the realism of a digital twin benefits from data streams sampled at a suf-
ficiently high frequency. This is especially true if the models used in the virtual replica
are of the black box data driven type. These models are often based on machine learning
algorithms with neural networks, thus, requiring rich data for training.

Where the data stream from the physical system to the virtual replica primarily
consists of sensor data, the data from the virtual to the physical system are fundamentally
different. For instance, if the digital twin is used to optimize the control parameters, their
values can be sent to the physical system as a parameter update. If the digital twin is
used for condition monitoring, a shut down signal can be sent to the physical system
upon the detection of an anomaly that causes a safety concern [28], or a warning can
be sent to the turbine operator to signal an upcoming component failure as a predictive
maintenance measure.

For example, Ref. [29] presents a data-driven approach to realize a digital twin for
anomaly detection using weakly supervised learning. It is important to note that the digital
twin itself does not possess the intelligence to take decisions that affect the physical system.
Rather, the digital twin is used to inform a supervising entity that, e.g., a parameter requires
an update to maintain optimality in the control, a component needs repair or replacement
or a structural overload is detected. This supervising entity can either be a human operator
or an automated algorithm making decisions.

Despite the clear merits of the digital twin concept, its practical realization can be
challenging. It involves a clear definition of desired behaviours, a model with the required
fidelity exhibiting these behaviours and a correct coupling of data streams between the
physical and virtual system. This coupling requires a good understanding of sample rates,
data quality, signal conditioning, latency, sensor accuracy and computational loads.

In the literature, several digital twin reference architectures have been presented to
provide structure to this complex process of practically realizing a digital twin [30,31].
These architectures provide a schematic view on the interactions between the physical
system, the virtual system, the data streams, computational components and the end-
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users of the digital twin, e.g., human operators, control engineers and designers. Clearly,
the practical realization of a digital twin involves much more than a model and a data
connection. Nevertheless, the selected modelling techniques determine the quality of the
virtual replica, which is the essential core element of the digital twin.

3. Modelling Techniques for Direct-Drive Wind Turbine Components

The virtual replica is the heart of the digital twin. It can be constructed in a modular
manner by interlinking models of different components, considering the compatibility
with each others inputs and outputs regarding the data type and sampling rate [32].
This section gives an overview of these components, specifically for a modern direct-
drive PMSG-based wind turbine, and of the recent literature describing different relevant
modelling techniques.

Two important properties of these models are discussed qualitatively, i.e., their fidelity
and their computational load. The fidelity of the model signifies its realism, accuracy and
detail. For example, a finite element model of a turbine blade or electrical machine has a
high fidelity. However, a model with a high fidelity often comes with a high computational
load as well. The literature overview given in this section aims to assist the reader with
selecting the proper subcomponent models based on a compromise between fidelity and
computational load, depending on the predefined set of required behaviours and time
scales determined by the specific use case of the digital twin.

As it is not feasible to give an overview of all possible wind turbine component models
in existence, the literature study presented hereafter is non-exhaustive. Rather, the study
has the intention to provide a balanced and up-to-date overview of the state-of-the-art
modelling techniques in recent scientific literature to assist the reader in the construction of
a digital twin.

Figure 2 gives a schematic overview of the modern PMSG-based wind turbine with
its essential components. The turbine blades are connected to the hub in the nacelle. Pitch
systems are integrated in the hub to adjust the blade’s pitch angles. The main shaft connects
the hub to the PMSG. The electrical output of the PMSG is connected to the converter
to feed power into the grid. A transformer (not depicted here) is usually present at the
grid side to convert the voltage to medium or high voltage levels for the distribution
or transmission grid, respectively. Finally, a yaw system between the nacelle and the
tower regulates the turbine’s angle with respect to the wind direction. In what follows,
the depicted components will be discussed in more detail.

3.1. Turbine Aerodynamics

The turbine converts the kinetic energy in the wind into mechanical torque on the
shaft. Therefore, the wind speed and turbine torque can, respectively, be considered as the
main input and output of the turbine’s digital model. In reality, the wind speed is a time-
varying 3D vector field. However, in the most simple wind turbine models, a single-valued
‘effective wind speed’ v is used, which is the result of the spatial averaging of wind speeds
across the rotor’s swept area [33]. For a given effective wind speed v, the mechanical
output power Pt of the turbine can be approximated by [34]:

Pt =
1
2

ρπR2v3Cp(λ, θ) cos3 γ (1)

where ρ is the air density, πR2 is the swept area, R is the blade length, Cp(λ, θ) is the
dimensionless power coefficient and γ is the yaw angle. The turbine torque Tt can be
defined based on the turbine power:

Pt = Tt Ω (2)
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where Ω is the rotor speed. The Cp is a function of the blade pitch angle θ and the
dimensionless Tip-Speed Ratio (TSR) λ, defined as the ratio of the tip speed versus the
wind speed:

λ =
R Ω

v
(3)

The power coefficient Cp(λ, θ) can be characterized numerically as a function of the
blade pitch angle θ and TSR λ by performing wind tunnel tests on a scale model [35]
or by performing Computational Fluid Dynamics (CFD) simulations [36]. Figure 3 shows a
contour plot of the power coefficient as a function of the TSR and pitch angle, obtained
from the 1.5 MW WP turbine model in FAST [37]. These data show that this particular
turbine model reaches a maximum Cp of 0.481 for a TSR of 7.3 and a pitch angle of 2.5◦.
This operating point is the Maximum Power Point (MPP). A maximum power coefficient
of 0.40–0.50 and an optimal TSR of 6–8 are typical values for large three-bladed horizontal
axis wind turbines [38].

PMSG

Converter

Grid

Yaw

Pitch

ShaftHub

Pitch

Figure 2. Overview and components of a modern PMSG-based wind turbine.
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Figure 3. Simulated power coefficient Cp(λ, θ) as a function of the TSR and pitch angle for the 1.5MW
WP turbine model in FAST [37]: Contour plot (left) and separated Cp(λ) characteristics (right).

The combination of a numerically characterized power coefficient Cp(λ, θ) and the
Equations (1)–(3) can form a digital model of the turbine aerodynamics. Figure 4 schemati-
cally shows this digital model. Aside from the primary input v and output Tt, the rotor
speed Ω and blade pitch angle θ are also required as additional inputs. As will be explained
later, the rotor speed Ω, the blade pitch angle θ and the yaw angle γ are feedback signals
coming from the mechanical dynamics, pitch and yaw system models respectively.

Figure 4. Digital model of the turbine aerodynamics.

The numerical processing of this digital model only comprises a two-dimensional
table interpolation and three numerical computations. Hence, its computational burden
is low, which makes it a good candidate for real-time simulation at a high sample rate
in a digital twin. However, several aspects concerning the turbine aerodynamics are not
included in the digital model of Figure 4, thus, limiting its fidelity. In what follows, these
aspects are discussed with references to recent developments in the literature that can be
used to expand the simplified turbine model of Figure 4 to increase its fidelity.

A first aspect is that the air density ρ varies with temperature, pressure and humid-
ity [39,40]. Therefore, it exhibits a seasonal variation that impacts the energy production of
a wind turbine [41,42]. Weather forecasting, possibly combined with meteorological data
sensed at the turbine or farm level, can be utilized to upgrade the air density value in the
digital model from a constant to a more accurate and realistic value, depending on the
weather conditions.

A second aspect is that the numerical data that determine the power coefficient
Cp(λ, θ) as a function of the TSR and pitch angle are not static in reality. In practice,
the blade cross section slowly changes over time due to the combined effects of erosion,
e.g., by sand or rain and by composite degradation due to the influence of temperature
and moisture ingression [43]. Hence, the aerodynamic properties, such as the lift and drag
coefficients, change, leading to a reduction in the power coefficient over time. In [44], wind
farm Supervisory Control and Data Acquisition (SCADA) data were used to analyse these
ageing effects on the power coefficient.

Blade erosion is also becoming a more well-understood phenomena resulting in
several computational models to analyse its effects on the blade performance [45,46].
The use of available data and/or models can assist in integrating the effect of ageing in the
Cp(λ, θ). However, it is not only ageing that affects the power coefficient. A common issue
in cold weather conditions is ice formation.
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In recent years, several technologies have been developed for anti-icing and de-icing,
i.e., electro-thermal heating with carbon heating mats inside the blades, electro-impulse
de-icing (EIDI) [47] and passive anti-icing paints and coatings. Similarly to detecting
and modelling blade ageing, the combination of SCADA data and data driven machine
learning algorithms allows detecting the presence of ice [48]. In [49], a technique was
presented for ice detection that relies on processing RGB camera images with convolutional
neural networks.

In [50], an extensive literature review is given on ice detection and mitigation tech-
niques. Although many techniques exist to detect icing, it is difficult to model the exact
impact of ice formation on the power coefficient in a digital model of turbine aerodynamics,
as this effect depends strongly on the ice shape, which is different every time [51]. Never-
theless, as the presence of ice can be detected, at least it is known that the power coefficient
data in the digital model is inaccurate as long as the de-icing procedure is not completed.

A third aspect is that the resulting turbine torque in the digital model of Figure 4 is
assumed constant. In reality, wind shear and tower shadow cause torque variations and
dips [52]. Wind shear causes the wind speed to vary with height, resulting in a sinusoidal
torque variation as the blade rotates. Tower shadow is caused by the tower disturbing
the wind flow at the bottom of the rotor, resulting in a torque dip whenever the blade
passes the tower. Analytical models were presented in [53–56], which allow determining a
correction factor on the torque as a function of the rotor angle, based on the dimensional
parameters and wind speed. Hence, both effects can be included in the digital model by
introducing this correction factor at the torque output.

A fourth aspect is that the blade aerodynamics are lumped into a single parameter,
i.e., the power coefficient. Therefore, the digital model of Figure 4 does not allow represent-
ing advanced aerodynamic effects or the forces and aero-elastic effects due to the flexibility
of long blades, which would be relevant information in a digital twin. Possible solutions
are to upgrade the simplified turbine model into either a Blade Element Momentum (BEM)
model or a CFD model.

The original BEM theory, developed by Glauert in 1935 [57], involves dividing the
blades into discrete elements, each with their own blade profile with corresponding em-
pirical lift and drag characteristics allowing calculation of the lift and drag forces on each
segment. By integrating these forces, the resulting turbine torque Tt can be determined
as well as the material stresses caused by structural loading as shown in [37,58].

The BEM approach gives a good approximation of wind turbine behaviour but has its
shortcomings in its basic form [59]. Therefore, several analytical models were developed
and integrated within a BEM model to account for, e.g., tip losses [60,61], dynamic stall
induced by boundary layer separation [62,63], blade flexibility [64,65] and disturbed wind
flow caused by the nacelle or tower [66].

Several software tools are available to simulate wind turbine aerodynamics using BEM,
e.g., FAST, QBlade and HAWC2, including these additional analytical models. Another
advantage of BEM is that it can handle a non-uniform 3D wind flow. The use of a single-
valued effective wind speed v is indeed a simplification that neglects the inherent 3D
spatial variations. Moreover, if structural motion of the turbine is considered, the blades
do not experience the free flow wind field but rather the wind speed relative to this
structural motion.

BEM also allows the inclusion of this phenomenon. However, the capability of BEM
to handle full wind fields is of limited value for implementation in a digital twin since this
wind field cannot be easily measured in practice. In general, the integration of BEM in the
virtual replica increases its fidelity as it includes the aforementioned aerodynamic effects,
and allows to determine structural loads along the blade. However, it also comes with a
higher computational load, thus, increasing the minimum step time of the digital twin.

Nevertheless, OpenFAST was used as a basis for a digital twin of the wind turbine’s
aerodynamics in [67] by determining a reduced-order linearised model. In [68], FAST
simulations were combined with SCADA data to enhance the modelled aerodynamics.
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The use of CFD further increased the model fidelity compared to BEM [69] but with a
significant impact on the computational load. The complete wind flow over the swept area
is unknown to the digital twin, which limits the added value of a high fidelity model, such
as CFD.

However, accelerometers placed along the blades can provide useful data on the force
distribution [70]. These data can be fed to a high fidelity numerical model, e.g., a Finite
Element Method (FEM) structural model as used for modal analysis of the blades in [71,72].
Aside from the aforementioned Cp(λ, θ), BEM, CFD and FEM modelling techniques, surro-
gate or response surface models could be used to model the aerodynamic turbine behaviour
as well.

In [73], an optimal wind turbine rotor design was achieved by surrogate modelling,
and compared to a classical BEM model, showing good correspondence at a lower compu-
tational cost. In [74], surrogate modelling was used to perform structural load and fatigue
assessment of wind turbines. The aerodynamic behaviour of a turbine blade was modelled
by both a response surface technique and an artificial neural network in [75].

A final aspect is the influence of the turbine rotor on the wind flow behind the turbine,
i.e., the wake. Although this does not affect the condition of the turbine itself, the wake
propagates in a wind farm and impacts downstream turbines. Hence, the inclusion of a
wake model in the virtual replica is beneficial to realize a digital twin on the wind farm
level to account for these interactions. A commonly used wake model was presented by
Jensen in 1983 [76].

The Jensen model has limited fidelity as it only provides a rough view on the wake,
e.g., it does not include wake dynamics, unsteady flow, turbulence, etc. However, it has
proven its value, e.g., in optimizing wind farm layout [77]. The Jensen model depends
solely on the wind speed v and rotor speed Ω. Hence, it can be integrated in the digital
model of Figure 4 with a minimal impact on the computational load.

The most advanced wake models use numerical Large Eddy Simulation (LES) meth-
ods [78–80]. LES wake models are used in NREL’s ‘Simulator fOr Wind Farm Applications’
(SOWFA), which is based on the OpenFOAM CFD code and FAST’s BEM-based turbine
model. LES wake models have a high fidelity, but the computational cost can be con-
siderable, depending the model type, e.g., actuator disk, actuator line or fully resolved
CFD [81].

A compromise between the model fidelity and computational cost can be found in
NREL’s ‘FLOw Redirection and Induction in Steady State’ (FLORIS) and FAST.FARM tools.
These tools include wake models in a BEM turbine model that are more advanced than the
Jensen wake model, e.g., the Gaussian [82] or Curl [83] wake models but at a computational
cost far below that of LES.

In summary, the schematic shown in Figure 4 provides a basis for a digital model
of turbine aerodynamics. This model is denoted as the ‘simplified turbine model’ in the
remainder of this article. The limitations of this simplified model are discussed, and
possible solutions with references to recent literature are presented, allowing the inclusion
of aerodynamic behaviours that are desired for the digital twin.

3.2. Structure and Drivetrain Mechanics

Aside from the turbine rotor, the structural components are the tower, the foundation
and the nacelle, which includes the drivetrain. In its most simple form, the tower and
foundation can both be modelled as rigid, in which case they have no impact on the power
conversion. In that case, a static 3D CAD drawing can model the structural geometry.
However, both the tower and support structure can behave flexibly in practice, especially
in offshore installations where wind loads are high and the soil behaviour is complex.

To account for this flexibility, multi-body models can be used, as shown in [84].
The computational load and fidelity of these multi-body models strongly depends on the
selected number of discrete elements. In [85], a structural model was presented for wind
turbines with a monopile foundation and a tapered tower, considering the flexibility of the
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foundation. In [86], a multi-body model was used to analyse the impact of soil–structure
interactions in the foundation with the fatigue loads on the monopile tower.

A multi-body modelling approach for both the tower and foundation was employed
in [87] to investigate the dynamic structural behaviour of a wind turbine, including soil–
structure interactions and the impact of waves on the foundation. In contrast to offshore
wind turbines with a foundation on the seabed, floating wind turbines pose a significant
challenge in modelling their structural dynamics.

In [88], the non-linear dynamics of such a floating offshore wind turbine were studied
by means of multi-body mechanics and statistical analysis. Next to multi-body models,
numerical FEM-based models can also be used to analyse structural elements leading to
higher fidelity but at the cost of computational load. In [89], a FEM model was used to
analyse dynamic loading on offshore steel monopile towers impacted by the wind, waves
and sea currents.

In [90], a FEM model was coupled with sensor data to achieve a real-time structural
health monitoring system to monitor von Mises stresses in an offshore turbine tower. This
effectively results in a digital twin using a FEM model, with condition monitoring focused
on structural loading as a use case.

The mechanics of the drivetrain strongly depend on the type of power conversion
system, cfr. Figure 1. The presence of a gearbox in the classical DFIG design forms the main
complexity in modelling its mechanical drivetrain [91,92]. Since there is no gearbox in a
direct-drive PMSG-based wind turbine, the drivetrain is significantly simplified. It mainly
consists of the main shaft connecting the turbine rotor with the PMSG rotor and two
bearings, i.e., a locating and a non-locating bearing.

The locating bearing, e.g., a tapered or spherical roller bearing, handles both radial
and axial loads. The non-locating bearing only deals with radial loads, thus, allowing
for axial thermal expansion of the shaft. The mechanical dynamics of a direct-drive wind
turbine drivetrain can be described by a first order equation of motion of a rigid body:

Tt − Tg = J
dΩ
dt

+ FΩ (4)

where Tt and Tg are respectively the turbine and generator torques, J is the rotational mass
moment of inertia and F is the viscous damping factor. The turbine torque is the output of
the digital model of the turbine aerodynamics, and serves as the input here. The generator
torque is determined by the PMSG with its accompanying control strategy.

Similarly to the initial digital model of the turbine aerodynamics, the equation of
motion (4) contains a few simplifications, which limit its fidelity. A first simplification
is the constant friction factor F. In practice, friction is often dynamic and non-linear,
i.e., dependent on the speed Ω and/or the acceleration ∂Ω/∂t. In the case of a direct-drive
turbine, the friction can be entirely attributed to the two bearings, leading to a friction factor
far below that of a DFIG design, where the friction factor is dominated by the gearbox.

For the sake of simulating the mechanical drivetrain dynamics, the friction factor
F can be simplified as a constant value, as its effect on the model fidelity is limited for
a direct-drive turbine. Nevertheless, several analytical models exist in the literature to
model friction in all kinds of wind turbine bearings [93,94], which can be integrated in the
digital model.

Moreover, several techniques are described in the literature for monitoring the condi-
tion of wind turbine bearings based on electrical signals [95,96], acoustic emissions [97]
and vibration measurements [98]. For fluid bearings, eddy current sensors can be used to
monitor the oil film thickness [99]. As condition monitoring is an important application for
a digital twin, these techniques can be embedded in the digital model and coupled to the
proper measured signals to monitor the state of the bearings.

The second simplification in (4) is that it represents a lumped single mass system,
neglecting the flexibility of the shaft. Shaft flexibility should be taken into account to
predict and model drivetrain vibrations, originating from the turbine rotor, the PMSG or
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the bearings [100]. In order to perform a vibration and modal analysis of the drivetrain,
a more advanced higher-order multi-body model is required as shown in [101,102].

Such a higher-order drivetrain model can be integrated in the digital twin if sufficient
accelerometers are present in the turbine to provide the right data. A higher-order multi-
body shaft model can be seen as of comparable fidelity and computational load as a BEM
model of the turbine aerodynamics. The fidelity can be increased further with a distributed
parameter model or a FEM model of the turbine shaft as presented in [103].

Naturally, this comes with a considerable increase in the computational load. Data-
driven techniques can be employed as well. For instance, ‘Nonlinear Auto Regressive with
eXogenous’ (N-ARX) and discrete time state space models of a wind turbine drivetrain
were determined on simulated data in [104].

In summary, the tower and foundation can be represented by either a rigid, multi-
body or FEM model, in respective order of increasing fidelity and computational load.
The mechanical dynamics of the drivetrain can be modelled by the equation of motion (4).
Possible extensions were discussed with references to the literature to integrate models for
the bearing’s friction and condition, the flexibility of the shaft and modal analysis.

3.3. Permanent Magnet Synchronous Generator

The PMSG converts the mechanical power on its shaft into electrical power by induc-
ing a back-emf in the stator windings with the rotating magnetic field from the permanent
magnets. Figure 5 depicts the equivalent scheme of a PMSG in the rotating reference frame
with a quadrature (q) and direct (d) axis. It includes two electrical degrees of freedom,
each with first order dynamics, i.e., the transfer functions of voltage to current are of the
first order.

The q and d voltages and currents at the stator winding are depicted, respectively, as
vq, vd, iq and id. Both the q and d axes schemes contain a stator resistance Rs, respective
inductances Lq and Ld and armature reaction voltages. The q axis additionally contains
the back-emf voltage induced in the stator winding by the permanent magnet flux ΨPM.
Both the armature reaction and permanent magnet back-emf are proportional to the rotor
speed Ω and pole pair number Np.

Figure 5. Equivalent scheme of the PMSG in the (q,d) rotating reference frame.

The torque Tg of the PMSG can be related to the stator currents by:

Tg = Np
3
2
[
ΨPMiq + (Lq − Ld)idiq

]
(5)

The first term represents the main torque component realized by the interaction
between the permanent magnet flux and quadrature current. The second term is the reluc-
tance torque component resulting from the interaction between the direct and quadrature
axis currents. As the rectifier stage of the power electronic converter is usually equipped
with Field Oriented Control (FOC), the direct axis current is regulated to zero, and the
torque becomes directly proportional to iq.

The equivalent model of Figure 5 is commonly used to study the electrical dynamics
of the PMSG and to validate control techniques [105–108]. Given its limited computa-
tional complexity, this equivalent scheme is suitable to serve as a digital model of the
PMSG. Regarding its fidelity, it includes the armature reaction effect, reluctance effect and
copper losses.
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However, several other effects are not included, such as magnetic saturation, iron
losses, skin and proximity effects, slotting/cogging or thermal aspects. A FEM model
can include these effects, e.g., the cogging torque is simulated and minimized by magnet
skewing in [109], airflow and thermal performance are analysed in [110], and magnetic
saturation is analysed by an FEM model in [111]. However, FEM drastically increases
the computational load of the model. Luckily, efficient models can also be deduced from
FEM-generated data by magnetic equivalent circuits (MEC) [112–114].

Similarly, lumped parameter thermal network models of electrical machines can
be used for virtually sensing internal temperatures [115]. Several analytical models are
available to extend the rotating reference frame model and increase its fidelity, without the
computational burden of FEM. Iron losses can be included in the equivalent scheme of
Figure 5 by means of an additional speed-dependent iron loss resistance [116–118], thus,
modelling both the hysteresis and eddy current losses.

Magnetic saturation can be included by means of current-dependent inductances
and permanent magnet flux [113]. Cogging torque, i.e., torque ripple caused by slotting
effects wanting to align the rotor magnets with stator slots, can be included by adding an
empirical position-dependent torque term to (5), as shown in [119,120]. In [121], a model
was presented taking the skin effect into account. Recently, some articles were published
on digital twins of electrical machines.

In [122], a digital twin of an asynchronous machine was presented based on empirical
machine data, the Robot Operating System (ROS) and the Unity 3D game engine for
visualization. In [123], a literature review was presented on digital twins of electrical
machines with a focus on their control and predictive maintenance.

In [124], a digital twin of a PMSG together with its power electronic converter was ob-
tained relying on stator current data and a circuit model. In summary, different approaches
can be used to create the virtual replica of the PMSG, relying either on a full FEM, derived
equivalent magnetic circuits or an extended rotating reference frame model. Preliminary
research on digital twins for electrical machines recently became available in the literature.

3.4. Power Electronic Converter

Modern PMSG-based wind turbines use a power electronic converter rated for the
full power of the turbine. Figure 6 (top) shows the typical topology of the back-to-back
AC/DC/AC converter commonly used for large wind turbines. Due to the variable rotor
speed, the generator’s output voltage has a varying frequency and amplitude. The active
AC/DC rectifier converts this variable AC to the common DC-link.

A brake chopper is often present on the DC link to dissipate power in a dump load R
for overvoltage protection [125]. The DC/AC inverter injects active power into the grid,
usually with a unity power factor. A transformer can be present at the converter’s output
to boost the voltage up to the level of the distribution or transmission grid. The rectifier
controls the PMSG’s torque by means of the FOC.

The setpoint of this torque control is determined by a higher level control loop.
For wind speeds below the rating, this control loop maximizes the turbine’s power coeffi-
cient by means of Maximum Power Point Tracking (MPPT). For wind speeds above the
rating, the torque is limited to its rated value.
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Figure 6. Back-to-back converter topology with a brake chopper (top) and an averaged model (bottom).

In wind turbine converters with a power rating of several MW, the most commonly
used switch types are the Integrated Gate-Commutated Thyristor (IGCT) and the Insulated-
Gate Bipolar Transistor (IGBT) [126]. Their switching frequency ranges from a few 100 Hz
for IGCTs to several kHz for IGBTs. Equivalent simulation models of switches and convert-
ers, e.g., SPICE models, are available in the literature to model their behaviour up to the
switching level transients.

In [127], a model was presented of the switching on/off dynamics of an IGBT. The tem-
perature dependence of this switching on/off behaviour was modelled for high power
IGBTs in [128,129]. Models were presented for determining the conduction and switching
losses in [130] for the IGBT and in [131] for the IGCT. Wide-bandgap devices using sili-
con carbide (SiC) or gallium nitride (GaN) are emerging and reaching higher switching
frequencies with lower switching losses.

In [132], a generalized equivalent model was proposed to simulate wide-bandgap
components in transient conditions, including their losses. Although their rated current
does not yet suffice for use in multi-MW wind turbines, they are likely to play a role in
future wind turbine converters.

Although several models of switching behaviour exist, it is a considerable challenge
to compute these in a digital twin if real-time simulation at the short time-scale of the
switching period is desired. If the detailed transient switching behaviour is not of interest to
the digital twin, the computational load can be reduced considerably by using an averaged
model [133,134], as shown in Figure 6 (bottom).

The switches are modelled by a voltage source providing the switches voltage aver-
aged over the PWM period, i.e., either δxVdc or (1 − δx)Vdc. The brake chopper is modelled
as a current sink of which the current Ich is determined by the chopper’s duty ratio δch as
δchVdc/R. This averaged model can be extended with approximated models of, e.g., switch-
ing and conduction losses, to improve its fidelity at limited computational cost without
simulating the actual switching transient [135,136].

Recently, techniques have been proposed in the literature to achieve real-time digital
twin simulation of power electronic converters directly on the embedded controller. In [137],
a real-time digital twin was realized for online diagnostic analysis within the computational
limitations of the converter’s FPGA by means of a stochastic approach using polynomial
chaos expansion. Real-time simulation of IGBT switching transients was achieved on an
FPGA in [138] with an equivalent model.
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A digital twin with real-time simulation capabilities for health and reliability mon-
itoring of power electronic converters was realized in [139,140] respectively. In [140],
a data-driven deep learning procedure was used to develop a Long Short-Term Memory
(LSTM) surrogate model. In [141], an online condition monitoring technique was presented
for wind turbine converters based on a physics-based model of the thermal time constants
of the cooling system.

In summary, averaged models can be used to create a virtual replica of the power
electronic converter if the detailed switching transients are not of interest. For higher
fidelity, more advanced models are available to include these. Recent research has shown
how to implement such high fidelity models with limited computational effort specifically
for digital twin purposes.

3.5. Pitch and Yaw Systems

The pitching system is used to reduce the turbine’s power coefficient in wind speeds
above the rated value by changing the angle of attack on the blades, see Figure 3. For high
wind speeds, the torque, speed and power must be limited to their respective rated values
to avoid overloading the drivetrain components. The individual pitch systems usually
consist of a power electronic drive, a motor, a planetary gearbox and a drive gear placed
on a large toothed ring gear at the root of each blade.

The yaw system has a similar topology using one or multiple pinion motors with a
toothed ring gear at the base of the nacelle. The yawing system regulates the yaw angle γ
to align the turbine rotor with the wind direction to maximize power, to place the rotor
out of the wind in storm conditions or to resolve cable twist in the tower. Pitch and yaw
systems can also be hydraulically actuated instead of using an electric drive [142,143].

In its most simple form, the pitch and yaw mechanism’s dynamics are approximated
by a rate limiter, limiting the maximum rate of change in pitch or yaw angle in (rad/s),
combined with a saturation to set minimum/maximum angles [144–146]. However, much
more advanced models are available to reach a higher model fidelity by including the
internal behaviour of the system’s components.

Both the pitch and yaw systems can be modelled by a classical drivetrain model,
including the drive, motor, gearbox and mechanical load. For the power electronic drive
and motor, the modelling techniques discussed above are applicable. For the gearing
systems, models are available in the literature that are applicable to both the pitch and
yaw [147–149].

The mechanical dynamics can be described by a first order equation of motion includ-
ing inertia and friction similar to the turbine’s drivetrain (4). However, the difficulty lies in
modelling the mechanical load torque coming from the blade or nacelle on, respectively,
the pitch and yaw systems. This load torque is determined by the aerodynamics, which
behave differently depending on the operating point.

A classical example is the highly non-linear pitch sensitivity, i.e., the partial derivative
of the turbine power to pitch angle ∂P/∂θ, which changes significantly with the actual
pitch angle θ [37]. Moreover, flexible blade behaviour impacts the load torques as well.
The simplified model of the turbine is not able to determine these complex load torques on
the pitch and yaw systems. However, BEM- or CFD-based models do have this capability,
as they determine the forces along the blade and can include the aerodynamics at the
nacelle as well.

Detailed models of pitch and yaw systems can be found in the literature, including
the behaviour of their internal components. In [150], a dynamic model was presented
of an electric blade pitch system, including the drive, motor, gear and mechanical load.
In [151,152], models were described for hydraulic blade pitch systems. A new pitching sys-
tem combining the strengths of hydraulic and electromechanical actuation was presented
in [153], including an extensive dynamic model.

Similar modelling approaches can be found for yaw systems. In [154], the dynamics
of the yawing system were modelled by a flexible yaw model as a mass-spring-damper



Processes 2021, 9, 2224 15 of 26

system by DNV’s Bladed software to realize Model Predictive Control (MPC). In [155],
a dynamic model of a yawing system with multiple pinion drives was presented, including
an analytical approximation of the aerodynamic yaw load on the nacelle.

An essential aspect of digital twins is the coupling of the virtual replica with actual
data. In [156], a condition monitoring and fault detection technique was presented for wind
turbine pitch systems relying on SCADA data. In [157], a fault detection and diagnosis
technique was presented for hydraulically actuated pitch systems using Kalman filters and
an AI routine fed with local sensor data.

The integration of the aforementioned analytical pitch and yaw system models on the
one hand with these condition monitoring and fault detection techniques on the other hand
can lead to a powerful digital twin to provide valuable insight in the pitch or yaw system’s
internal condition. For instance, the realization of a digital twin of a hydraulic pitch system
is under investigation in the EU DOCC-OFF project with condition monitoring as the main
purpose [158].

4. Virtual Replica and Digital Twin of a Direct Drive Wind Turbine

The previous section presented a review of recent literature on modelling techniques
for the turbine aerodynamics, shaft and bearing mechanics, the PMSG, the converter and
the pitch and yaw systems. For every component, the discussed modelling techniques
range from simplified lumped parameter models with a minimal computational load to
high fidelity numerical models based on finite element methods. From these models,
a selection can be made to construct a virtual replica.

This selection depends on the eventual use case and required behaviours of the
digital twin in which the virtual replica is embedded. In this section, first the high-level
structure of a digital twin of a direct-drive wind turbine is presented. Then, the literature
study presented in Section 3 is summarized graphically to aid the reader in the model
selection process for the construction of the virtual replica. Finally, an example of a virtual
replica with the minimum computational load is presented based on this literature study.
The model selection process itself is use-case specific and, thus, out of scope for this review
article. Nevertheless, techniques are available to aid in this selection process, e.g., ‘dynamic
substructuring’ [159].

4.1. Digital Twin Architecture

Figure 7 schematically depicts the proposed digital twin architecture of a wind energy
conversion system. The physical system (left) is connected to its virtual replica (right) by a
bidirectional stream of information. At the bottom, sensor signals from the SCADA system
are communicated from the physical to the virtual system. These signals feed data to the
subcomponent models in the virtual replica so that the physical system’s behaviour is
accurately represented.

The virtual replica provides insights to the supervising entity at the top, which can be
a human operator, control engineer or designer or an automated algorithm. The contents
of these insights can be, e.g., the structural load levels of mechanical components, control
tracking errors, the overall condition of components (temperatures, stresses, operational
parameters, . . . ), and prediction of Remaining Useful Lifetime (RUL).

These insights allow the supervising entity to take a decision that impacts the physical
system, e.g., to update a parameter, to repair or replace a component, or even initiate
an emergency brake. Several techniques exist to extract these meaningful insights from
measured or simulated data. In [160], a literature review was presented of fault diagnosis
and prognosis techniques for wind turbine systems. These techniques can be applied on the
virtual replica presented here to achieve a digital twin with condition monitoring and fault
diagnosis as a use case, e.g., as shown in the aforementioned references [90,141,156,157].

Aside from accurate models, the realism of the virtual replica depends on the avail-
ability of qualitative data. Luckily, a modern wind turbine is well equipped with sensors,
all coupled to the SCADA system. Meteorological data are captured by sensors on top of
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the nacelle. A cup-type anemometer and wind vane, respectively, measure wind speed and
direction. An additional ultrasonic sensor is usually present as well to provide a secondary
measurement of both the wind speed and direction.

These sensors do not measure the full 3D wind field, nor do they measure the single-
valued effective wind speed v in front of the blades. However, they provide a satisfactory
approximation of the effective wind speed, as shown in [161]. In contrast to the afore-
mentioned sensors, a Light Detection and Ranging (LIDAR) system can measure the free
flow wind speed directly. A LIDAR system can provide a preview of the upcoming wind,
which is useful for preview-based control techniques, e.g., for load mitigation [162] or yaw
control [163].

Aside from wind speed and direction, temperature and air pressure can also be
measured on the nacelle, e.g., to estimate the air density ρ. Furthermore, the turbine
blades can be equipped with accelerometers, strain gauges and Micro-ElectroMechanical
(MEM) sensors to measure structural loading and to determine flexible blade behaviour.
Temperature sensors can also be present in the blades to predict ice formation. The turbine’s
main shaft is equipped with strain gauges, accelerometers and vibration sensors.

As mentioned before, the bearings are monitored by vibration sensors, microphones
or eddy current sensors to measure the thickness of the pressurized oil film. The PMSG is
equipped with a position sensor on the shaft, e.g., an encoder or resolver, and Pt-100 or
Pt-1000 resistive temperature sensors to monitor the stator winding temperature. The stator
currents can be monitored by current transformers or Rogowski coils. Finally, the power
electronic converter is equipped with current, voltage and temperature sensors.
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Figure 7. Digital twin schematic of a wind turbine, including the physical system (left), its virtual
replica (right) and the supervising entity (top). Human and algorithm icons by shivaniga_jipara and
mithun on freeicons.io (accessed 10 November 2021).
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4.2. Graphical Overview of the Literature Study for Model Selection

Section 3 presented a literature review on modelling techniques for the construction of
the virtual replica of a wind turbine. The intended use case of the digital twin dictates the
required behaviours of the virtual replica and, thus, the required model fidelity. To facilitate
the model selection, the literature review presented in Section 3 is presented graphically in
Table 1. Each column summarizes the literature review of one subcomponent.

The bottom row contains low fidelity modelling techniques with limited computa-
tional load, e.g., simplified, lumped parameter and averaged models. The top row contains
high fidelity models that are often numerical finite element based, e.g., CFD, FEM and LES
models. These models have a high computational load. The middle row contains models of
medium fidelity and intermediate computational load, e.g., BEM, multi-body, data-driven
and surrogate models. Where applicable, the possible extensions of these models are listed
with corresponding references to the literature.

4.3. Virtual Replica

The overview in Table 1 can aid in selecting appropriate models for a turbine’s com-
ponents to construct a virtual replica. Naturally, this model selection must also consider
the required computational time scale determined by the digital twin’s use case. Figure 8
schematically shows what such a virtual replica could look like when the modelling tech-
nique with minimal computational load is selected for each subcomponent without model
extensions. This results in a virtual replica with a minimal computation time at the cost of
a sub-optimal model fidelity.

For the turbine aerodynamics, the simplified turbine model based on the effective
wind speed v, as shown in Figure 4, is selected. It receives the pitch and yaw angles θ and
γ from the pitch and yaw systems modelled as rate limiters. The drivetrain mechanics
are represented by the first order equation of motion (4). The PMSG is modelled by the
lumped parameter (q,d) rotating reference frame model of Figure 5 in combination with
the torque Equation (5).

The power electronic converter is modelled by the ideal averaged converter model
of Figure 6 (bottom). All blue quantities can be extracted from sensor data of the physical
system, while the others are calculated from the models. Although the models selected for
the virtual replica in Figure 8 lead to a minimal computation time, they may not lead to the
model fidelity desired for the intended digital twin use case. Clearly, this can be resolved
by selecting higher fidelity models or by implementing the model extensions of Table 1.

It is also feasible to construct a virtual replica with a multi-level model hierarchy
in which each level has a different time step. This can leverage the strengths of high
fidelity models on the one hand, while retaining limited computational effort on the other
hand. As a concrete example, a CFD model could run in a top level with a large time step
to accurately determine the turbine aerodynamics with high fidelity, feeding data to an
intermediate level with medium time step containing a BEM model.

This BEM model could then determine the parameters of the simplified turbine model,
e.g., the power coefficient Cp(λ, θ), present in a bottom level with minimal time step and
rapid computational execution. A similar approach can be followed for the other turbine
components, e.g., a FEM PMSG model could run in a top level, feeding parameters to an
equivalent lumped parameter circuit model in an intermediate level. This circuit model
can then feed parameter updates to an equivalent rotating reference model with a short
time step in the bottom level.

Table 1 graphically shows such a multi-level hierarchy where the table rows corre-
spond to the bottom, intermediate and top levels. Such a multi-level hierarchical virtual
replica poses challenges with regards to code execution times, data exchange and time de-
pendencies. Nevertheless, it allows combining the merits of different modelling techniques
eventually leading to a more realistic virtual replica.
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Table 1. Overview of the literature on modelling techniques for wind turbine components.

Turbine Aerodynamics Structure and Drivetrain Mechanics PMSG Power Electronics Pitch and Yaw Systems
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Computational Fluid Dynamics [69]

FEM structural blade model [70–72]

Large Eddy Simulation (LES) [78–80]

FEM model of turbine shaft [103]

FEM model of the tower and
support structure [89,90]

Electromagnetic FEM
[109–111]

Dynamic switching
models [127–129]

Conduction and switching loss
models [130,131]

Transient wide-bandgap
component models [132]

Full pitch drivetrain
models [150–153]

Full yaw drivetrain
models [154,155]

Blade-Element Momentum [57]

Extensions
- Tip losses [60,61]
- Dynamic stall [62,63]
- Blade flexibility [64,65]
- Tower and nacelle flow disturbance [66]
- Gaussian [82] or Curl [83] wake model

Surrogate models [73–75]

Multi-body drivetrain model [101,102]

Multi-body tower and foundation
model [84–87]

Nonlinear dynamics of
floating turbines [88]

Magnetic Equivalent
Circuit [112–114]

Lumped parameter
thermal model [115]

Stator current data-
driven model [124]

Polynomial chaos expansion
models [137]

Deep learning LSTM [140]

Thermal time constants [141]

Data-driven pitch
models [156,157]

Simplified turbine model, cfr. Figure 4

Extensions
- Variable meteo-parameters [39–42]
- Blade erosion and ageing [43–46]
- Ice detection [48–51]
- Tower shadow and wind shear [53–56]
- Jensen’s wake model [76]

First order drivetrain dynamics (4)

Extensions
- Non-linear bearing friction [93,94]
- Bearing monitoring [95–98]
- Fluid bearing monitoring [99]

Rotating reference frame
model [105–108] (Figure 5)

Extensions
- Iron losses [116–118]
- Magnetic saturation [113]
- Cogging torque [119,120]
- Skin effects [121]

Averaged converter model
[133,134], cfr. Figure 6

Extensions
Switching and conduction
losses [135,136]

Rate limiter and
saturation [144–146]
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Regarding the time execution, different real-time requirements can be assigned to
each level dependent on the digital twin use case, e.g., the bottom level can require strict
real-time execution, while the timing of the top level could be less stringent. Regarding
implementation, the bottom level could run on a local CPU in the turbine’s control unit,
while the top level could run in the cloud where high computation power is available but
at the cost of communication latency.

Structure & drivetrain mechanics

Lumped parameter first order model

Turbine aerodynamics
Simplified turbine model based on effective wind speed

Pitch system

Rate limiter

Yaw system

Rate limiter

Permanent Magnet Synchronous Generator

Lumped parameter equivalent (q,d) scheme

PMSG stator

voltages & currents

Back to back converter

Ideal averaged converter model

Figure 8. Virtual replica with a minimal computational load.
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5. Conclusions

The presented literature review exposed a large variety of modelling techniques
for wind turbine components with a varying model fidelity and computational loads.
In the past years, computational power has increased to a level where the realization of a
digital twin, founded upon these models, is feasible. In this sense, a structure of a virtual
replica, the concept of a multi-level hierarchical virtual replica and a high level digital twin
architecture are presented.

The graphical overview of the literature study in Table 1 provides the means to select
the appropriate modelling techniques for the intended digital twin use case. It is important
to note that new modelling techniques for wind turbine components will continue to
arise in the near future. Hence, the contents of Table 1 are a momentary snapshot of
the modelling techniques available today. New techniques are likely to be increasingly
data-driven and relying on AI and machine learning [25] due to the rapid increase in
computational power.

An important use case for digital twins today is condition monitoring, for which an
overview of fault diagnosis and prognosis techniques was presented in [160]. By using the
concept of virtual sensing, parameters or physical quantities that are otherwise unknown
can be determined. For instance, virtual sensing was used to determine the torque in a
wind turbine drivetrain in [164].

The virtual replica of Figure 8 can be employed in such a virtual sensing strategy.
Nevertheless, several challenges remain in addition to the selection of models. For instance,
the fidelity, reliability and robustness of the virtual replica must be considerably high before
allowing any automatic action by the supervising entity. In that sense, the first practical
implementations of a digital twin will likely rely on a human in the loop for decision
making.

Another challenge is how to present the turbine’s condition in a sufficiently compre-
hensible manner to the human so that anomalies can be rapidly assessed and appropriate
action can be taken. As mentioned before, the creation of a virtual replica based on coupled
subcomponent models also requires a good definition and compatibility of data streams
regarding, e.g., the sample rates, latency, and accuracy.

Moreover, certain computations can be performed on a local processing unit in the
turbine, while others require cloud computing at the cost of data transfer latency and
bandwidth limitations. In summary, there are several challenges in the practical realization
of a digital twin for wind energy conversion systems. One of these challenges is the
selection of modelling techniques for the virtual replica. This review article provides an
overview of recent techniques to make such a selection based on the intended use case of
the digital twin.
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