
 
 

Delft University of Technology

Development of an adaptive CTM–RPIM method for modeling large deformation problems
in geotechnical engineering

Li, Jianguo; Wang, Bin; Jiang, Quan; He, Benguo; Zhang, Xue; Vardon, Philip J.

DOI
10.1007/s11440-021-01416-1
Publication date
2021
Document Version
Final published version
Published in
Acta Geotechnica

Citation (APA)
Li, J., Wang, B., Jiang, Q., He, B., Zhang, X., & Vardon, P. J. (2021). Development of an adaptive
CTM–RPIM method for modeling large deformation problems in geotechnical engineering. Acta
Geotechnica, 17(6), 2059-2077. https://doi.org/10.1007/s11440-021-01416-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11440-021-01416-1
https://doi.org/10.1007/s11440-021-01416-1


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



RESEARCH PAPER

Development of an adaptive CTM–RPIM method for modeling large
deformation problems in geotechnical engineering

Jianguo Li1,2 • Bin Wang1,2 • Quan Jiang1,2 • Benguo He3 • Xue Zhang4 • Philip J. Vardon5

Received: 3 July 2021 / Accepted: 9 November 2021
� The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In this paper, a meshfree method called adaptive CTM–RPIM is developed to model geotechnical problems with large

deformation. The developed adaptive CTM–RPIM is a combination of the Cartesian transformation method (CTM), the

radial point interpolation method (RPIM) and the alpha shape method. To reduce the requirement for meshes, the CTM is

adopted to transform domain integrals into line integrals, and the RPIM is applied to construct interpolation functions. The

alpha shape method, which is capable of capturing severe boundary evolution due to large deformations, is then introduced

into the CTM–RPIM to form the adaptive CTM–RPIM. The accuracy of CTM–RPIM is first verified by considering a

cantilever beam under small deformation, where the influence of key parameters on the simulation results is explored.

Afterward, the ability of the adaptive CTM–RPIM to handle large deformation problems is demonstrated by simulating

cantilever beams with large deformations for which analytical solutions are available. Finally, the ability of the proposed

method to model the geotechnical large deformations is illustrated from both quasi-static and dynamic aspects, where a

slope failure problem and a footing bearing capacity problem are modeled to evaluate the stability of geotechnical

structures; and a 2-D soil collapse experiment using small aluminum bars is simulated to show the method capability in

describing the soil flows. These benchmark examples demonstrate that the adaptive CTM–RPIM is a numerical method

with broad application prospects for modeling large deformation problems in geotechnical engineering.

Keywords Alpha shape method � Cartesian transformation method � Geotechnical engineering � Large deformation �
Radial point interpolation method

1 Introduction

The occurrence of many natural disasters, such as land-

slides, earthquakes, and debris flows, is often accompanied

by large and severe deformations [8, 11, 18]. Many

numerical methods have been developed to solve these

problems, but some of them encounter problems such as

mesh entanglement and inconsistency between the integral

domain and problem domain.

When dealing with large deformation problems, some

mesh-based methods such as the finite element method

(FEM) [2, 7] and the finite difference method (FDM)

[21, 26] require a time-consuming operation, i.e., remesh-

ing, to avoid mesh distortions. To overcome the mesh

reliability problem, various meshfree methods have been

developed. However, a background mesh is used in some

classical meshfree methods to facilitate the integration of

the stiffness matrix and force vector. Using the material
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point method (MPM) [3, 14] and the element-free Galerkin

method (EFGM) [12, 24, 28] as examples, the use of a

background mesh results in an inconsistency between the

integral domain and the problem domain. This inconsis-

tency may cause errors when the model is rough. In addi-

tion, a problem in MPM may arise and increase the

computational cost; that is, at each step, the user must

judge which background cell the integral point is located

in. Some other meshfree methods that do not use a back-

ground mesh may also encounter minor disadvantages,

such as the meshfree local Petrov–Galerkin method

(MLPG) [1]. In the MLPG, the weak form of the governing

equation is established by the local Petrov–Galerkin

method, which may lead to asymmetry in the stiffness

matrix and increase the computational time. In summary, a

meshfree method without a background mesh that uses the

Galerkin method to construct its weak form and includes

both a coincident problem domain and an integral domain

can be developed to avoid these disadvantages.

The Cartesian transformation method (CTM) [4, 31],

which originates from the boundary element method

(BEM) [10], is an integral method that can transform

domain integration into a boundary integration and a 1-D

integration. This strategy does not require a mesh or

background mesh when computing the integration of the

stiffness matrix and force vector, and the integral domain

coincides with the problem domain. The radial point

interpolation method (RPIM) [9, 15, 17] is of high preci-

sion for scattered data interpolation, and it can eliminate

the mesh restriction when constructing the shape functions.

Moreover, the RPIM has a simple theoretical basis that is

easy to implement programmatically and extend to 3-D

space. It is conceivable that the combination of the CTM

and RPIM in the governing equation based on the Galerkin

method would result in a meshfree method with a sym-

metrical stiffness matrix, and a coincident problem domain

and integral domain. Another problem in dealing with

geotechnical large deformation problems is tracking the

boundary of the problem domain when severe deformations

occur. An external algorithm, the alpha shape method [32]

is incorporated, and this addition allows the accurate

tracking of the boundary during the dynamic large defor-

mation process. The reliability of the alpha shape method

has already been proven in the particle finite element

method (PFEM) [22] and smooth particle finite element

method (SPFEM) [13, 20, 34], in which the alpha shape

method is used to identify the boundary with a Delaunay

triangularization. The adaptive procedure can be con-

structed by tracking the boundary as the deformation

grows. Notably, boundary identification may be avoided

via the use of CTM integration in regular regions inside the

object and nodal integrations outside this region, as seen in

the EFGM [27], and this can be further investigated in the

future.

Therefore, with the motivation of developing a meshfree

method without a background mesh, which uses the

Galerkin method to construct its weak form and includes a

coincident problem domain and integral domain, an adap-

tive CTM–RPIM is formulated. This strategy combines the

CTM, RPIM and alpha shape method. The proposed

method, on one hand, inherits the advantages of the RPIM

method and its ability to model large deformations; on the

other hand, by utilizing the CTM integration algorithm, the

numerical stability can be improved in a relatively con-

venient way, i.e., transferring the domain integration into

the line integrals.

The entire paper is primarily organized into three parts.

Firstly, a brief introduction to the adaptive CTM–RPIM is

provided, and the formulation of the CTM and RPIM as

well as the alpha shape method is then presented. The key

parameters of the CTM and RPIM are studied in terms of

their computational accuracies, and the optimal parameters

are determined and suggested. Secondly, two large defor-

mation examples involving cantilever beams are executed

to verify the advantages of this method for large defor-

mation problems. Finally, three geotechnical examples,

including slope stability, foundation bearing capacity and

soil flow, are shown, and the reliability of the method is

thoroughly demonstrated.

2 Formulation and implementation
procedure of the adaptive CTM–RPIM

A detailed introduction to the development of the adaptive

CTM–RPIM is presented in this section. The governing

equation and implementation procedure for the adaptive

CTM–RPIM are provided. After that, the computational

steps for programming are presented, and they include both

the quasi-static version and dynamic version. Finally, the

formulations of the CTM, the construction of the RPIM

shape functions and the procedure of the alpha shape

method are illustrated in detail.

2.1 Implementation procedure of the adaptive
CTM–RPIM

2.1.1 The governing equation

The mechanical behavior of soil usually obeys the gov-

erning equation of continuum mechanics, which can be

derived from the momentum conservation equation.

rrþ b ¼ q€u ð1Þ
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where r is the partial differential operator, r is the stress

vector, b is the boundary condition, q is the density of the

material, and €u is the acceleration.

To solve this partial differential equation (PDE), the

Galerkin method can be used in its weak form by intro-

ducing a test function du into Eq. (1).Z
X
du : rdX�

Z
X
du � f bdX�

Z
C
du � fCdC

¼
Z
X
du � q€udX ð2Þ

where f b is the body force, and fC is the surface force. The

above equation is a conservation equation of virtual energy.

The first term on the left-hand side is caused by an internal

force, the second and third terms are caused by an external

force, and the term on the right-hand side is caused by

inertia force.

To solve Eq. (2), the discrete form can be constructed

similarly as in the standard FEM, and the adaptive proce-

dure is established to address large deformation problems.

These procedures will be provided in the next three

sections.

2.1.2 Adaptive procedure for large deformations

The strategy used to combine the alpha shape method,

CTM and RPIM to construct an adaptive procedure that

can be automatically executed during large deformations is

explained in this section. In this procedure, the CTM–

RPIM is used to establish the discrete form of the

momentum conservation equation, and the alpha shape

method is used to track the boundary when the configura-

tion is updated. A simple schematic diagram is depicted in

Fig. 1.

As shown in Fig. 1, the adaptive CTM–RPIM for large

deformation analysis can be divided into four basic steps:

(1) Search the boundary of the field node cloud to

determine the scope of the problem domain and

integral domain.

(2) Generate integral lines and integral points and form

the stiffness matrix, mass matrix and force vector.

(3) Apply boundary conditions to establish the dis-

cretized governing equation to be solved.

(4) Solve the governing equation formed in step (3) and

then delete the previous boundary. The problem

domain returns to the state represented by the field

nodes.

The above four steps are repeated until the error of

displacement, force, or energy between two adjacent steps

is tolerable.

Note that the remesh operation is not required by the

proposed adaptive CTM–RPIM. Only boundary identifi-

cation is carried out using the alpha shape method, so there

are no problems caused by mesh distortion. Moreover, the

integral domain is consistent with the problem domain,

which is helpful for accuracy. Additionally, in contrast to

the EFGM and the traditional RPIM, there is no need to

check whether the integral points are in the problem

domain. Furthermore, compared with MPM, there is no

need to determine which background cell an integral point

is in.

2.1.3 Computational steps for quasi-static problems

For quasi-static problems, the acceleration can be ignored

so that the right-hand term of Eq. (2) is eliminated. The

governing equation can be rewritten as,Z
X
du : rdX ¼

Z
X
du � f bdXþ

Z
C
du � fCdC ð3Þ

This form is commonly found in the standard FEM,

which can become discrete by assuming that there is a

relationship between the variables of the concerned point

and the variables on the field nodes that use shape func-

tions. Following a similar process to the standard FEM, the

discretized global equilibrium equation can be derived as,

KU ¼ Fext ð4Þ

where K is the global stiffness matrix, and Fext is the global

external force vector. Using CTM integration, a detailed

expression of each term can be obtained.

K ¼
Xm
i¼1

BT
i DiBiw

x
i w

y
i J

x
i J

x
i ð5Þ

Fext ¼
Xm
i¼1

Nif
b
i w

x
i w

y
i J

x
i J

x
i þ

Xmb
j¼1

Njf
C
j wjJj ð6Þ

where m is the number of integral points; Bi is the matrix of

the partial derivative of the shape functions at the ith

integral point; Ni is the RPIM shape function matrix at the

ith integral point; and wx
i , w

y
i , J

x
i , and Jxi are the weight and

Jacobi determinant in the x and y directions of the ith

integral point. The second term in Fext has a similar

meaning, except that it is in the form of a boundary inte-

gration, which can be solved using the Gaussian integral

method.

Moreover, the expression of the internal force, which is

another expression of KU in Eq. (4), can also be derived

from the left-hand term of Eq. (3).

Fint ¼
Xm
i¼1

Biriw
x
i w

y
i J

x
i J

x
i ð7Þ
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To solve Eq. (4), Newton–Raphson iteration is often

used. The quasi-static version of adaptive CTM–RPIM is

provided here for a material nonlinearity example with

small deformation or a weightless material with large

deformation. The adaptive procedure is as follows:

(1) Discretize the problem domain using a series of

field nodes.

(2) Loop over the incremental step (nth incremental

step).

(3) Search the boundary of the problem domain based

on the field node cloud using the alpha shape

method.

(4) Generate the integral lines and integral points and

form the total external force vector Fn
ext for the

present incremental step.

(5) Loop over the Newton–Raphson iteration (lth

iteration step).

(6) Form the global stiffness matrix Kn
l and the global

internal force vector Fn
intðlÞ.

(7) Solve the governing equation Kn
lU

n
l ¼ Fn

ext � Fn
intðlÞ.

(8) Check convergence.

If the problem has converged, go to step 10.

(9) End looping of the Newton–Raphson iteration.

(10) Check the incremental step limit.

If the incremental step is greater than the limit,

update the configuration and go to step (12).

If the incremental step is less than the limit,

update the configuration and go to step (2).

(11) End looping of the incremental step.

(12) Post-processing.

2.1.4 Computational steps for dynamic problems

For dynamic problems, if weight is accounted for, the

acceleration cannot be ignored. The left and right hands of

Eq. (2) can be swapped to make the equation more suit-

able for constructing the time integral format.Z
X
du � q€udX ¼

Z
X
du : rdX�

Z
X
du � f bdX

�
Z
C
du � fCdC ð8Þ

Similar to the standard FEM, discrete momentum con-

servation can be derived from Eq. (8).

M €U ¼ Fext � Fint ð9Þ

Fig. 1 The adaptive CTM–RPIM implementation procedure
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where M is the mass matrix, and €U is the acceleration

vector. The lumped matrix is used here to improve the

computational efficiency.

Sometimes, damping force can be introduced into

Eq. (9) for the convergence rate and stability of the pro-

gram, i.e.,

M €U ¼ Fext � Fint þ Fdamp ð10Þ

where Fdamp is the damping force vector. If local damping

is used, this vector can be expressed as follows:

Fdamp ¼ �f Fext � Fintj jsignð _UÞ ð11Þ

where f is the damping factor, and _U is the velocity vector,

which can be determined using the central difference

method.

For dynamic problems with both geometric nonlinearity

and material nonlinearity, the detailed procedures with

explicit time integrals are provided as follows:

(1) Discretize the problem domain using a series of

field nodes.

(2) Start time step n.

(3) Track the boundary using the alpha shape method.

(4) Generate the integral lines and integral points.

A. compute the total force vector at time tn:

Fn ¼ Fn
ext � Fn

int þ Fn
damp.

B. compute the mass matrix at time tn: Mn.

(5) Calculate the acceleration vector at time tn:
€U
n ¼ ðMnÞ�1Fn.

(6) Calculate the velocity vector at time tnþ1=2:

_Unþ1=2 ¼ _Un�1=2 þ Dtn €U
n
, where

Dtn ¼ tnþ1=2 � tn�1=2.

(7) Calculate the displacement vector at time tnþ1:

Unþ1 ¼ Un þ Dtnþ1=2 _Unþ1=2, where Dtnþ1=2 ¼
tnþ1 � tn.

(8) Calculate the internal force vector at time tnþ1:

Fnþ1
int .

(9) Update the configuration using the displacement

vector Unþ1.

(10) Check convergence or the check limit.

If the problem has converged or reached the time step

limit, end the calculation; otherwise, go to step (2) and start

the n ? 1 time step.

2.2 Formulation of CTM

The CTM is a special integration method originally applied

in BEM [10]. Here, it is introduced into the meshfree

method to form the stiffness matrix, mass matrix and force

vector. Consider an integration Iin of a function finðx; yÞ
over a domain Xin

Iin ¼
Z
Xin

finðx; yÞdxdy ð12Þ

As shown in Fig. 2, the domain is so complex that the

integration cannot be directly executed. To solve Eq. (12),

a rectangular auxiliary domain Xall that fully contains the

domain over which the integration must take place is

constructed. The function in the rectangular auxiliary

domain, fallðx; yÞ, can then be expressed as

fallðx; yÞ ¼
finðx; yÞ ðin XinÞ
0 ðout of XinÞ

�
ð13Þ

The integration Iin is rewritten as

Iin ¼
Z
Xall

fallðx; yÞdxdy ð14Þ

Assuming that the function hallðx; yÞ is the integration of

fallðn; yÞ

hallðx; yÞ ¼
Z x

c

fallðn; yÞdn ð15Þ

where n is a variable independent of x and y, and c is an

arbitrary constant. By adopting Green’s theorem, Eq. (14)

can be expressed as

Iin ¼
Z
Call

hallðx; yÞdy

¼
Z
Call

Z x

c

fallðn; yÞdn
� �

dy

¼
Z
CABþBCþCDþDA

Z x

c

fallðn; yÞdn
� �

dy

ð16Þ

For a rectangular auxiliary domain Xall, dy is zero on

boundaries DA and BC. By setting c to ux,
R x
c fallðn; yÞdn is

Fig. 2 Domain integration of the function finðx; yÞ
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zero on boundary AB, implying that the integration in

Eq. (16) only needs to be calculated on boundary CD.

Iin ¼
Z
CCD

Z x

ux

fallðn; yÞdn
� �

dy

¼
Z
CCD

Z vx

ux

fallðn; yÞdn
� �

dy

¼
Z vy

uy

Z vx

ux

fallðx; yÞdx
� �

dy

ð17Þ

The above integration can be divided as follows:

Iin ¼
Z vy

uy

gðyÞdy ð18Þ

gðyÞ ¼
Z vx

ux

fallðx; yÞdx ð19Þ

To calculate these two integrations, a series of integral

lines are introduced, as shown in Fig. 3. Then, the inte-

gration Iin can be evaluated based on some numerical

integration methods, such as Gauss integration, and the

value of the ith integral line is gðyiÞ.
By dividing the ith integral line into n - 1 segments,

gðyiÞ can be calculated as

gðyiÞ ¼
Z xn

x1

fallðx; yiÞdx

¼
Xn
j¼2

Z xj

xj�1

fallðx; yiÞdx
 ! ð20Þ

Recalling the relationship between fall and fin, gðyiÞ can

also be expressed in terms of fin. If fin is used, the inte-

gration
R x5

x4
finðx; yiÞdx vanishes in Fig. 3 and gðyiÞ is writ-

ten as

gðyiÞ ¼
Xn
j¼2

Z xj

xj�1

finðx; yiÞdx
 !

ðj 6¼ 5Þ ð21Þ

Similar to the evaluation of Iin, gðyiÞ can be calculated

numerically. Using the Gauss integration scheme, we

obtain

Iin ¼
Xmy

i¼1

gðyiÞ � wy
i � J

y
i ð22Þ

where my represents the total number of integral lines; wy
i

and Jyi are the weight and Jacobi determinant along the y-

direction, respectively, and

gðyiÞ ¼
Xmx

jx¼1

finðxjx ; yiÞ � wx
jx
� Jxjx ð23Þ

where mx is the total number of integral points on each

integral line, and wx
jx

and Jxjx are the weight and Jacobi

determinant along the x-direction, respectively.

Substituting Eq. (23) into (22) leads to the final form of

Iin

Iin ¼
Xm
k¼1

finðxk; ykÞ � wx
k � w

y
k � Jxk � J

y
k ð24Þ

which is the sum of the product of the function at the

integral points and the corresponding weight and Jacobi

determinant in two directions. k is the global number of

integral points, and m is the total number of integral points.

As such, the CTM transforms domain integration into line

integration. Consequently, only the intersections of integral

lines and boundaries are needed during the simulation,

which leads to a purely meshfree method with a coincident

problem domain and integral domain. Equation (24) is the

exact numerical integration method used in Sect. 2.1 to

calculate the stiffness matrix, mass matrix and force vector.

2.3 RPIM-based shape functions

Generally, in meshfree methods, the problem domain is

represented by a series of field nodes. Because of the

adoption of the CTM, there is no background mesh, and

thus, the shape functions should be constructed based on

the field nodes. In this paper, the RPIM is used for this

purpose, which is introduced below.

For an arbitrary integral point, a support domain can be

formed, as shown in Fig. 4. The shape of the support

domain can be circular or rectangular. Supposing that the

Fig. 3 CTM integral scheme

Fig. 4 Support domain in the RPIM
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support domain covers n field nodes, the field variable

Fðx; yÞ] at the concerned point can be approximated by

Fðx; yÞ ¼ RTðrðx; yÞÞ PTðx; yÞ
� � A

B

� �
ð25Þ

where RTðrðx; yÞÞ ¼ r1ðx; yÞ r2ðx; yÞ . . . rnðx; yÞ½ � is

the vector consisting of the radial basis function (RBF)

with riðx; yÞ being the distance between the point at ðx; yÞ
and the field node at ðxi; yiÞ in two-dimensional cases,

PTðx; yÞ ¼ 1 x y xy x2 y2 :::
� �

is the vector of polynomial basis functions, and A and B

are row vectors of constants to be determined. Equa-

tion (25) must be satisfied at all field nodes. For example,

the field variable at jth field node ðxj; yjÞ is

Fðxj; yjÞ ¼ RTðrðxj; yjÞÞ PTðxj; yjÞ
� � A

B

� �
ð26Þ

By assembling the above equation for all field nodes, the

following matrix form is obtained

F0 ¼ RT
0Aþ PT

0B ð27Þ

The detailed forms of R0, P0 and vector F0 are

expressed as follows

F0 ¼ Fðx1; y1Þ Fðx2; y2Þ . . . Fðxn; ynÞ½ �T ð28Þ

RT
0 ¼

r1ðx1; y1Þ r2ðx1; y1Þ � � � r1ðx1; y1Þ
r1ðx2; y2Þ r2ðx2; y2Þ � � � rnðx2; y2Þ

..

. ..
. . .

. ..
.

r1ðxn; ynÞ r2ðxn; ynÞ � � � rnðxn; ynÞ

2
6664

3
7775 ð29Þ

P0 ¼

1 1 � � � 1

x1 x2 � � � xn

y1 y2
. .
.

yn

..

. ..
. ..

. ..
.

2
66664

3
77775 ð30Þ

Note that if there are n field nodes in the support domain

and an m-term polynomial basis is used, there are m ? n

unknowns in vectors A and B. To ensure that the solution to

Eq. (27) is unique, the following constraint is assumed

P0A ¼ 0 ð31Þ

With this constraint, Eq. (27) can be enriched as

F0

0

� �
¼ RT

0 PT
0

P0 0

� �
A
B

� �
ð32Þ

By solving A and B from Eq. (32) and substituting them

into Eq. (25), we obtain the expression of Fðx; yÞ, which is

Fðx; yÞ ¼ RTðrðx; yÞÞ PTðx; yÞ
� � RT

0 PT
0

P0 0

� ��1
F0

0

� �

ð33Þ

The first n terms of

RTðrðx; yÞÞ PTðx; yÞ
� � RT

0 PT
0

P0 0

� ��1

are the RPIM shape functions for the field nodes in the

support domain, which can be used to construct interpo-

lation functions for the integral point.

There are different types of RBFs, such as multiquadrics

(MQ), Gaussian (EXP), thin-plate splines (TPS) and loga-

rithmic RBFs. For simplicity, the TPS RBF

Rðx; yÞ ¼ rðx; yÞg ð34Þ

is used in this paper, where g is the shape parameter.

2.4 Alpha shape method for tracking
the boundary

As indicated in Sects. 2.2 and 2.3, a series of field nodes

whose boundary is known at the undeformed configuration

is generated first if the CTM–RPIM is used. However,

when the object undergoes large deformation, the boundary

will evolve accordingly. Therefore, an efficient boundary

identification method is essential. In this paper, the alpha

shape method is adopted for boundary identification.

The basic idea of the alpha shape method is to check

whether there is an empty circle of radius a passing through

any two field nodes. If such a circle exists, the segment

connecting the two field nodes is a boundary segment. The

method can be implemented as follows (see Fig. 5):

(1) Calculate the length of line segment P1P2, which

consists of any two field nodes P1 and P2.

(2) Compare the length of P1P2 with the preset circle

diameter 2a.

(3) If P1P2 is less than 2a, draw two circles �O1 and

�O2 with radius a passing through P1 and P2.

Fig. 5 Schematic diagram of the alpha shape method
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(4) If either circle is empty or with other nodes on the

circle, line P1P2 is treated as a boundary segment.

(5) By repeating steps (1)–(4) for all combinations of

field nodes, the boundary of the scattered field node

cloud can be obtained.

It should be noted that the value of a has a big influence

on the tracking accuracy of the boundary, and some

experiences can be referenced. In general, for regions of

convex polygons, a can be larger, and for regions of con-

cave polygons or with holes, a should be smaller. The

boundaries of two sets of field nodes with complex

boundaries were identified using the alpha shape method

and are shown in Fig. 6. It can be seen that the boundary

identified by the alpha shape method reflects the shape of

the problem domain well. Predictably, by using the alpha

shape method, the boundary can be recognized automati-

cally in the simulation even with severe changes in

geometry. This ability enables the adaption of the method

for analyzing large deformation problems.

3 Numerical examples

In this section, the influence of key parameters on the

simulation results of the adaptive CTM–RPIM is first

investigated by simulating a cantilever beam subjected to

small deformations. Thereafter, the precision of the adap-

tive CTM–RPIM for large deformation analysis is verified

by modeling cantilever beams with large deformations.

Moreover, the proposed method’s ability to evaluate the

stability of geotechnical structures is tested using a slope

and a foundation as benchmark examples. Finally, a 2-D

soil collapse experiment is simulated using this method,

which further demonstrates its ability to solve large

deformation geotechnical problems.

3.1 Discussion of the selection of key
parameters

The first example considered is a cantilever beam with a

downward load of parabolic distribution on the right end,

as shown in Fig. 7. Both the analytical solution and the

FEM result are presented as a comparison to verify the

accuracy of the CTM–RPIM model. After that, four most

important influential factors, regarding to the model

Fig. 6 Results of boundary identification: a problem domain without holes; b problem domain with holes
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accuracy, are investigated; these factors are the width

between two adjacent integral lines ry, the length of the

subsegment for integration rx, the radius of the support

domain rc and the shape parameter of the RPIM g. To

measure the distances rx, ry and rc, the mean node spacing

dc is defined as

dc ¼
ffiffiffi
A

p
ffiffiffi
n

p
� 1

ð35Þ

where A is the area of the problem domain, and n is the

total number of field nodes.

The analytical solution [29, 30] to the vertical dis-

placement is given as,

Dy ¼
P

6EI
3ly2ðL� xÞ þ ð4 þ 5lÞW

2x

4
þ ð3L� xÞx2

� �

ð36Þ

where P is the force on the right end, E is Young’s

modulus, l is Poisson’s ratio, W is the width of the beam, L

is the length of the beam, and x and y are the coordinates.

The values of these parameters for the simulation are

shown in Table 1.

The total number of nodes used in the FEM and CTM–

RPIM simulations is the same (Fig. 8). The four-node

element is used in the FEM (Fig. 8a), while in the CTM–

RPIM simulation, we choose g ¼ 5:0 and rc ¼ 2:0dc, and

two integration points are used for each integral subseg-

ment. The results are shown in Fig. 9, and it can be seen

that the accuracy of the CTM–RPIM is generally much

higher than that of the FEM at all field node density levels

because the RPIM shape functions are high order and have

a larger support domain. Even when a cloud of field nodes

with a loose density is used, the relative error is still low.

The maximum relative error of the CTM–RPIM is only

approximately 0.3%. Additionally, the integral points used

in the CTM–RPIM are less than those of the FEM. The

ratio between the numbers of integration points used in the

CTM–RPIM and the FEM is a
2ða�1Þ, where a is the number

of nodes in the y-direction. It should be noted that the

accuracy of this method is affected by many parameters,

and the convergence is not monotonic under some

parameter combinations, which may be caused by the high

order of RPIM interpolation. In most cases of parameter

combinations, the result of this method is exponentially

convergent, and the accuracy is higher than that of FEM,

but the accuracy may be lower than that of FEM if the

parameter combination is not appropriate. Therefore, the

value selection of these most influential parameters is key

important, and the recommended parameter value ranges

are given in the following part. As long as the parameter

value is within this range, the accuracy can be guaranteed.

The influence of the number of integral points on the

CTM–RPIM simulation is studied in this section. Two sets

of field nodes, namely 17 9 5 and 33 9 9, are used in the

simulation with rx ¼ ry ¼ r. A sufficiently large radius for

the support domain is selected, which is rc ¼ 4:0dc. The

shape parameter is set to 5.0. Only one integral point is

used for each integral subsegment, which means that the

number of integral points used depends on the length r. To

Fig. 7 The cantilever beam with a parabolic load on the right end

Table 1 The beam parameters

P E l W L

- 1000 Pa 3 9 107 Pa 0.3 12 m 48 m

Fig. 8 FEM and CTM–RPIM models (33 9 9 nodes): a FEM model;

b CTM–RPIM model
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study the influence of the integral points, the ratio dc=r

varies from 1.0 to 5.0 with an interval of 0.5. The simu-

lation results are shown in Fig. 10. As expected, the

accuracy is improved with the increase of dc=r, and the

convergence rate is roughly exponential. When dc=r is

greater than or equal to 3.0, satisfactory accuracy is

obtained.

The size of the support domain is another factor that

influences the CTM–RPIM simulation. A larger support

domain implies that more field nodes contribute to the

construction of shape functions, which leads to higher

accuracy. However, the computational cost also rises

because of the increase in the number of involved field

nodes. Therefore, it is essential to investigate the size of the

support domain in relation to the simulation accuracy and

computational cost. As a circular support domain is
adopted in this work, the non-dimensional radius of the

support domain rc=dc is the indicator of its size, which, in

Fig. 9 Results of vertical displacement at the right end of the

cantilever beam: a vertical displacement at the right end of the beam;

b relative error of the calculated vertical displacement versus the

number of used nodes

Fig. 10 The influence of rx and ry: a results of 17 9 5 nodes; b results

of 33 9 9 nodes

Fig. 11 Influence of support domain radius rc

Acta Geotechnica

123



this study, varied from 1.5 to 6.0 with an interval of 0.5.

The layout of the field nodes is 17 9 5, the shape param-

eter g is set to 5.0, the distances rx and ry are set to 1
3
dc, and

one integral point is used for each subsegment. As shown

in Fig. 11, when the radius rc � 3:5dc, the relative error is

less than 1.5% and is nearly stable regardless of the

increase in rc=dc. Therefore, the recommended range for

the radius of a support domain is between 3:5dc and 4:0dc.

Finally, the effect of the shape parameter g from the TPS

RBF on the simulation is explored. To this end, shape

parameters from 1.5 to 10.5 with an interval of 1.0 are

adopted in the simulation, and the other parameters are

rx ¼ ry ¼ 1
3
dc and rc ¼ 4:0dc. A cloud of field nodes with a

layout of 17 9 5 is used to discretize the problem domain,

and one integral point is assigned to each segment. Fig-

ure 12 shows that a value of g in the range of [3.5, 9.5]

leads to higher accuracy, and the relative error is low and

stable when g is between 4.5 and 7.5.

3.2 Large deformation analysis of a cantilever
beam

In this section, the ability of the adaptive CTM–RPIM to

address large deformation problems is demonstrated. To

this end, two linear-elastic cantilever beams undergo large

deformations because of the imposed force (Fig. 13) and

moment (Fig. 16). The alpha shape method is used to

identify the boundary of the problem domain, which makes

the CTM–RPIM adaptive regardless of the change in

geometry.

The first case is a cantilever beam subjected to a

downward concentrated load P, as shown in Fig. 13. The

length and width of the beam are L = 10 m and W ¼ 1 m,

respectively. The elastic constants are Young’s modulus E

= 1.2 GPa and Poisson’s ratio l ¼ 0:0. A total of 306 field

nodes are used in the simulation. The analytical solution to

this problem is available in [35].

To demonstrate the accuracy of the adaptive CTM–

RPIM, a series of cases with different concentrated forces

at the right-top corner are simulated with results compared

to the nonlinear analytical solutions. The applied forces P

are at different levels, namely 100 kN, 500 kN, 1000 kN,

1500 kN, 2000 kN, 2500 kN and 3000 kN. The curves of

the tip deflection ratio h ¼ x
L, where x is the deflection at

the right end, versus the non-dimensional load parameter

k ¼ PL2

EI , where I is the inertia moment of the beam section,

are shown in Fig. 14. The configurations of the deformed

cantilever beam at concentrated force levels P = 2000 kN

and P = 3000 kN are presented in Fig. 15. Clearly, the

simulation results from the adaptive CTM–RPIM agree

well with the analytical solution from [35], which

demonstrates the correctness of the adaptive CTM–RPIM

for analyzing large deformation problems.

A cantilever beam subjected to a bending moment at the

right end is also studied in this section. The problem setup

is shown in Fig. 16. According to the nonlinear analytical

solution given by Pai and Palazotto [23], when an appro-

priate bending moment is applied at the right end, the

cantilever beam will bend into a perfect circular ring. The

bending moment M that causes the beam to achieve this

state can be determined by

Fig. 12 Influence of shape parameter g

Fig. 13 Cantilever beam with concentrated force on the right end

Fig. 14 Results at different levels of force P
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M ¼ 2pEI
L

ð37Þ

In the simulation, the moment is transformed into two

uniform loads applied to the upper and lower halves of the

beam end section according to [33]. A total of 405 field

nodes are used to discretize the problem domain, and 1000

incremental analysis steps are adopted. The deformation

process of the cantilever beam obtained from the adaptive

CTM–RPIM is shown in Fig. 17. A near-perfect circular

ring is obtained when the moment calculated from Eq. (37)

is enforced at the end of the beam, which verifies the

proposed method for large deformation analysis.

3.3 Quasi-static analysis of the geotechnical
large deformations

To evaluate the capability of the adaptive CTM–RPIM in

analyzing quasi-static geotechnical large deformations, two

classical benchmark examples are studied in this sec-

tion. The first example evaluates the stability of a slope,

and the second calculates a foundation’s bearing capacity.

These two examples fully demonstrate the reliability of this

method for quasi-static analysis in geotechnical large

deformations.

Fig. 15 Final configuration of the beam at two different force levels:

a P = 2000 kN; b P = 3000 kN

Fig. 16 Cantilever beam with bending moment on the right end

Fig. 17 Deformation process of the beam: a 250 steps; b 500 steps;

c 750 steps; and d 1000 steps
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3.3.1 Slope stability analysis

In this section, a homogeneous soil slope is studied using

the strength reduction method, and the obtained safety

factor is used to verify its reliability. The geometry of the

slope is provided in Fig. 18, and the material properties are

Young’s modulus E = 100 MPa, Poisson’s ratio l ¼ 0:3,

cohesion c = 10 kPa, friction angle U ¼ 20�, dilatancy

angle W ¼ 0:001� and the unit weight c ¼ 20 kN/m3. The

bottom of the slope is fully fixed, while the lateral

boundaries are fixed horizontally. The elastic-perfectly

plastic constitutive model with the Mohr–Coulomb yield

criterion is adopted. A total of 1881 field nodes are used in

the CTM–RPIM simulation.

The formulation of the strength reduction method [19]

can be expressed as

c0 ¼ c

SRF
ð38Þ

U0 ¼ arctan
tanðUÞ
SRF

� �
ð39Þ

where c0 and U0 are the material parameters after strength

reduction, and SRF is the reduction factor.

The reduction factor SRF, ranging from 0.8 to 1.6, is

used with the simulation results after a sufficiently large

step (2800 steps), as illustrated in Fig. 19a, b. Figure 19a

shows that the deformation is negligible when SRF� 1:3.

In contrast, the displacement increases continuously, and

convergence cannot be achieved for SRF� 1:4. In other

words, when SRF� 1:3, the slope is stable, and when

SRF� 1:4, the slope is unstable. The same conclusion can

also be obtained from the curve plotting the displacement

against the SRF (see Fig. 19b). Therefore, it is clear that

the slope’s safety factor FS is within (1.3, 1.4), which

agrees with analytical solution 1.38 provided by Bishop

and Morgenstern [5].

Furthermore, to gain insight into why the slope loses

stability, the counterparts of the plastic strain invariant of

cases SRF ¼ 1:3 and SRF ¼ 1:4 are provided in Fig. 20.

When the SRF is 1.3, the plastic strain is very small, and

areas of plasticity are isolated from each other and have not

penetrated the whole slope. However, when the SRF is 1.4,

the plastic area is connected and forms a clear shear band,

and the soil slides down along the shear band to eventually

form a landslide.

Finally, a large deformation case SRF = 1.6 after 10,000

steps is provided in Fig. 21, where it can be seen that the

ability of the proposed method to deal with geotechnical

large deformations is; when large deformation occurs, the

shear band is still clearly visible without numerical

instability.

3.3.2 Bearing capacity analysis

A flexible strip footing on weightless soil in semi-infinite

space is studied in this section, of which the bearing

capacity is analyzed to test its precision, as shown in

Fig. 18 Homogeneous slope

Fig. 19 Maximum displacement of the slope: a maximum displace-

ment for every step; b final maximum displacement after 2800 steps
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Fig. 22a. The analytical solution to this classical problem

was found by Prandtl in 1920 [25]

qfailure ¼ ð2 þ pÞcu ð40Þ

where cu is the soil’s undrained shear strength.

The simplified model is provided in Fig. 23. The scale is

12 m 9 5 m, the loaded width is 2 m, and the boundary

conditions are rollers at both side directions and fixed at the

bottom. The elastic-perfect plastic constitutive and Mohr–

Coulomb yield criterion is used in this example, and the

material properties are as follows: Young’s modulus E =

100 MPa, Poisson’s ratio l ¼ 0:3, undrained cohesion cu =

100 kPa, the friction angle U and dilatancy angle W are

both set to 0:001�, and the density q is set to 0.0 kg/m3. A

model with 1029 field nodes is generated to solve this

problem, and the result is provided in Fig. 24.

At different load levels from 200 to 520 kN, conver-

gence should occur with few iteration steps and small

deformation if the strip footing is stable. As shown in

Fig. 24, when the load is less than or equal to 500 kPa,

convergence can be achieved quickly within 100 iteration

steps, and the maximum deformation at all load levels is

approximately 6 cm. However, when the load reaches

Fig. 20 The plastic strain invariant of the slope after 2800 steps: a SRF = 1.3; b SRF = 1.4

Fig. 21 Result of SRF = 1.6 after 10,000 steps
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Fig. 22 Flexible strip footing on weightless soil: a description of the problem; b Prandtl’s schematization [25]

Fig. 23 Symmetry-based simplification for numerical simulation
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520 kPa, convergence cannot be attained within 500 iter-

ations, and the displacement at 500 steps shown in Fig. 24

is approximately 11 cm, which is nearly two times that at

500 kPa. These results indicate that the failure load of the

flexible strip footing is between 500 and 520 kPa, including

Prandtl’s solution of 514 kPa. That is, the adaptive CTM–

RPIM is reliable when evaluating the bearing capacity of

the flexible strip footing. If a more accurate result is

required, a more refined numerical model can be used.

The deformed configuration at 540 kPa is provided in

Fig. 25, where the deformation reaches over 0.6 m, and the

failure mechanism proposed by Prandtl, shown in Fig. 22b,

can be easily seen from the deformation trend displayed by

the arrows with direction in Fig. 25. Again, it is verified

that the adaptive CTM–RPIM has great advantages in

stability evaluation and deformation trend prediction.

3.4 Dynamic analysis of the geotechnical large
deformations

To further test the ability of this method to solve

geotechnical large deformation problems, the soil collapse

process was simulated. A 2-D experiment was carried out

by Ha H. Bui et al. [6], where the soil particles were

modeled by many small aluminum bars, as shown in

Fig. 26. Constrained by a movable baffle, these bars were

initially stacked into a rectangular column. At the begin-

ning of the test, the baffle was quickly removed, and the

soil column collapsed rapidly under its own weight. After a

long run-out distance, it accumulated into an approximate

triangular area. The soil parameters are as follows:

Young’s modulus E = 0.84 MPa, Poisson’s ratio l ¼ 0:3,

cohesion c = 0 MPa, friction angle U ¼ 19:8�, dilatancy

angle W ¼ 0:001� and density q = 2650 kg/m3.

The numerical model was discretized into 1071 field

nodes, and elastic-perfect plastic constitutive and Mohr–

Coulomb yield criteria were used. The boundary conditions

are fixed at the bottom boundary and rolling at the left

Fig. 24 Plot of the maximum displacement versus the bearing stress

Fig. 25 Displacement at the load level of 540 kPa

Fig. 26 2-D experiment of soil collapse [6]
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Fig. 27 Collapse process of the soil column: a initial configuration; b configuration at 0.1 s; c configuration at 0.2 s; d configuration at 0.3 s; and

e final configuration
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boundary, following the settings provided in [6, 16].

Because the collapse of the soil column occurs very

quickly and the deformation is extremely large, the inertia

force is not negligible and the dynamic scheme is adopted

here. The time step is chosen as Dt ¼ 5:0 ls, which is

small enough to ensure the stability and accuracy of the

calculation.

The collapse process of the soil column is provided in

Fig. 27, and the field nodes are rendered in different colors

depending on the displacement to observe the deformation

inside the soil column. After the baffle is removed, the soil

column immediately begins to collapse, and the soil on the

upper right begins to slide, while the soil on the lower-left

remains static. As time progresses, the static region grad-

ually decreases. At the end of the collapse process, the soil

particles stop moving, the upper surface of the accumula-

tion is at an angle slightly less than the friction angle, and a

small region in the lower-left corner remains static. The

interface between the static region and sliding region is

what we call the sliding surface.

Finally, the final upper surface and the sliding surface

are compared with the experimental observations, which

are presented in Fig. 28. It can be clearly seen that the

numerical result agrees with the experimental result, which

further demonstrates the ability of the adaptive CTM–

RPIM to simulate geotechnical large deformation

problems.

4 Conclusions

An adaptive CTM–RPIM for solving geotechnical large

deformation problems is introduced in this paper. Using the

CTM and RPIM, the domain integration can be trans-

formed into line integration, and the interpolation can

eliminate the restraints from the background mesh.

Meanwhile, to handle large deformation problems more

conveniently, the alpha shape method is introduced to track

the boundary automatically, and the results are shown to be

accurate and convenient. To facilitate programming, both

quasi-static and dynamic versions of the computational

processes are provided. Moreover, the influence of key

parameters on precision is systematically explored, and the

recommended values of these parameters are provided in

this paper. Two geotechnical examples, slope and footing,

are analyzed to demonstrate the accuracy and reliability of

the method. Finally, by simulating a 2-D soil collapse

experiment with a large run-out distance, the proposed

method’s ability to deal with large deformations is further

proven. In summary, the adaptive CTM–RPIM is a

promising method and has great potential in the application

of large deformation geotechnical problems.
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