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Preface

Dear reader,

This work is not only about the time-periodicity of flows and its reduced-order mod-
eling; it also marks the end of a much larger journey. This journey began on the
first of March 2020, which happened to align almost perfectly with the start of the
COVID-19 crisis. While the lockdowns had some clear advantages—such as reduc-
ing hospitalizations and giving me plenty of time to work on this thesis—they also
taught me something important. Meeting interesting and inspiring people, which
I was lucky to do much more often after the crisis, is essential for creativity and
motivation. I believe that every PhD journey is, in the end, a team effort.

This journey with my team brought many highlights along the way: fixing a
major bug in the code, obtaining the first time-periodic results, building a high-
accuracy reduced-order model, meeting many wonderful people, and publishing
that first paper. Each of these moments felt like a small victory and more than
made up for the more challenging times during this journey. I can only hope that
these kinds of events are time-periodic and will happen again and again.

I now realize that time-periodicity can be placed in a much broader context. The
occurrence of time-periodicity is not limited to flow problems—or even to physics.
It can be found in cultural trends (such as the revival of art, music, or fashion), stock
market cycles, and likely many other areas. While the work presented here may not
directly apply to these topics, it certainly inspires me to think about its potential ap-
plications in other contexts.

It feels like more than a coincidence that completing this dissertation aligns
perfectly with the release of a new album by one of my favorite bands, Linkin Park
[85]. The album is exactly time-periodic and symbolizes that every ending can mark
the beginning of something new, which is in the end very similar. But I won’t keep
you any longer—let’s dive into the dissertation!

Jacob Evert Lotz
Delft, Januari 2025
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1
Introduction

Time-periodic flows are omnipresent in both natural and engineered systems. This
class of flows is driven by periodic behavior such that flow features repeat at regular
intervals. The velocity and pressure fields oscillate in a predictable, cyclic manner,
and return to the same state after a fixed period of time, or closely resembles it. Fig-
ure 1.1 gives examples of time-periodic flows, such as flow past wind turbines, flow
in the heart and arteries, and the flow past a propeller. We are interested in how
these flows behave and interact with their environment.

The nature of time-periodic flow inherently leads to long transients. When
studying time-periodic flow problems, we first consider the initial state of the flow,
at for instance a stand still. From there, the flow develops naturally over time and
eventually reaches a time-periodic state. This occurs only after enough time has
passed for the influence of the initial flow conditions to become negligible. How-
ever, if dealing with turbulence — a chaotic fluid flow characterized by irregular,
seemingly random motion — this time-periodic state does not necessarily exist.

Figure 1.1: Examples of time-periodic flow problems. From left to right: flow past a wind turbine, flow
in the heart and arteries, and the flow past a ship propeller. Generated using Copilot - Designer.

https://www.bing.com/images/create
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To obtain a meaningful answer from physical experiments or numerical anal-
ysis, researchers and engineers phase-average their results over multiple periods
requiring even longer transients. These difficulties make time-periodic flow prob-
lems challenging to study through either physical experiments or simulations.

We focus on studying time-periodic flows using computational fluid dynamics
(CFD). CFD is vital for advancing our understanding and prediction of fluid behav-
ior, as it enables engineers to optimize designs (using e.g. derivatives found with
adjoint solutions) and enhance performance before physical testing or prototype
development. By numerically solving the governing equations of fluid mechanics,
such as the Navier-Stokes equations, CFD offers detailed simulations of fluid in-
teractions across diverse boundary conditions and geometries. This is particularly
valuable for analyzing systems where experimental measurements are challenging
or impractical.

Many engineering tasks require numerous model evaluations of CFD across a
wide range of inputs, like optimization and control [108]. To enable reactive design,
inwhich applicationsmaintain continuous interactionwith their environment at the
pace of the environment, we need these model evaluations to be fast and preferably
real-time [6, 16]. Unfortunately, CFD is associated with high computational costs
and extended computation time, not allowing real-time interaction with the pro-
gram. When dealing with the long transients associated with time-periodic flows,
the computational demands increase even further, rendering such simulations im-
practical for many engineering applications. These computational costs limit the
optimisation of designs, results in less efficient control of complex systems and have
to be reduced.

The relation between between computational costs and model error is depicted
in Figure 1.2. Detailed simulations that solve the Navier-Stokes equations directly
(DNS), without the approximation of any turbulence, require extremely fine spatial
and temporal resolution, leading to prohibitively high computational costs. This
type of simulation can be found in the bottom right corner. It is typically feasible
only for small-scale problems and requires some of the world’s most powerful su-
percomputers. Advancements in quantum computing may significantly reduce the
time and resources required for these calculations. By harnessing the principles of
quantum mechanics, it has the potential to enable a new class of algorithms. These
algorithms, at least in theory, can perform the most computationally intensive tasks
at exponentially faster speeds compared to traditional methods. However, the time-
line and feasibility of applying quantum computing to engineering problems remain
uncertain [7, 79, 107].
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We can reduce computational requirements by lowering the system’s fidelity
and modelling a part of the flow using turbulence models. These models are dis-
tilled from data but do not use this data directly. We find Large Eddy Simulation
(LES) in Figure 1.2, by introducing a model error, left of DNS. LES splits the flow into
two scales, the large and the small scales [126]. Only the large-scale turbulent flows
are computed while the smaller scales, subgrid-scale turbulence, are modelled. Its
computational costs are lower. Introducing other model assumptions with a larger
modelling error, we find the Reynolds Averaged Navier-Stokes equations (RANS)
with lower computational costs in Figure 1.2. The RANS equations involve decom-
posing the flow variables into mean and fluctuating components. The mean flow is
averaged over time and requires models to close the system of equations [116]. We
denote this class of models as high-fidelity models, despite some of these methods
having their fidelity reduced.

The success of these methods is highly problem-specific. When selecting an al-
gorithm, it is crucial to consider the nature of the problem and the required answer.
No algorithm can achieve optimal performance for every possible problem [144].
A closer examination of Figure 1.2 reveals a dashed line illustrating the cost-error
trade-off. Optimization inherently involves a trade-off between minimizing compu-
tational costs and model error. Reducing computational costs is only feasible by
accepting a model error that aligns with the simulation’s objectives.

DNS

LES

RANS

computational cost

m
od

el
er
ro
r

Figure 1.2: Schematic representation of the relation between computational costs and the associ-
ated model error for high-fidelity models employing the Reynolds Averaged Navier-Stokes equations
(RANS), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
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These methods share a common limitation: they are not specifically tailored for
time-periodic flows and often utilize unnecessarily costly transients. Consequently,
they may fail to achieve the optimal performance for time-periodic simulations. We
address this issue in the first goal of this thesis:

(i) Develop an efficient and accurate model for analysis of time-periodic
flows that effectively handles the costly transients inherent in these flows.

We introduce a high-fidelity model that avoids long transients by enforcing the
solution to be time-periodic. We employ a space-time domain in which space and
time are treated analogously and apply a periodic boundary condition in time. Space
and time are discretized using the same method, and the entire space-time domain
is solved at once. Consequently, this eliminates the need for time integration and
we only have to solve one period. The solution is exactly periodic and the problem is
converted from an initial value problem to a boundary value problem. This assump-
tion is accurate for low Reynolds numbers where the flow is not turbulent. We
cannot solve the randomness of turbulence in high Reynolds number flows. Instead,
here we find the time-periodic large-scale flow structures, which are of interest for
most engineering applications. The new high-fidelity model employs an LES-like
model and is introduced in Chapter 2

While this approach mitigates some computational challenges, it is still con-
strained by the trade-off between cost and error, requiring significant computational
resources. To enable faster simulations that users can interact with in real-time,
without compromising model accuracy, we must overcome this limitation. We aim
to address this challenge specifically for time-periodic flows.

In this thesis, we introduce a computationally economical approach to compute
periodic solutions. This involves adding an ingredient to the problem: the integra-
tion of data. By incorporating data into the simulation process, we aim to reduce the
computational time required to achieve accurate results, making simulations faster
and more efficient.

We expand the set of models under consideration to add the new ingredient,
data. We differentiate between models based on known physics and those without,
as well as between models with and without data. This distinction is illustrated
in Figure 1.3. High-fidelity models we considered earlier, such as DNS, LES, and
RANS, are in the bottom-right quadrant. They heavily rely on physics and depend
minimally on data. Conversely, in the upper quadrants, we find surrogate models.
These automated data-driven methods are becoming increasingly important in com-
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putational fluid mechanics due to their ability to reduce computational costs. Unlike
traditional high-fidelity simulations, surrogate models offer rapid evaluations while
maintaining reasonable accuracy.

We distinguish between two different groups of surrogate models: function-
fitting models and hybrid models [74]. In the group of function-fitting models, the
governing equations of the physical phenomenon are unknown and the goal is to
discover them from data. This group consists of purely data-driven models. The hy-
brid models are not only data-driven, they also have a foundation in known physics.
Governing equations or high-fidelity numerical models are available but expensive
for the task at hand, and the goal is to use these to learn a computationally effi-
cient surrogate model. From the second group, we discuss two subgroups: physics-
informed neural networks and projection-based reduced-order models.

The idea behind the function-fitting group of surrogate models is that with suf-
ficient data any underlying pattern can be uncovered by an observer [80]. With
advances in machine learning and data science, we have improved our understand-
ing of extracting these patterns from big data sets that surpass human cognitive
capabilities [68, 92]. The produced models are simple, yet still capture the essential
dynamics of the system. Also, the employment of neural networks gives the ability
to approximate solutions to partial differential equations at a much faster rate than

Hybrid
models

Function-fit
models

High-
fidelity
models

kn
ow

n
ph

ys
ic
s

no
kn

ow
n
ph

ys
ic
s

data

no data

PINNs

pROM

Figure 1.3: Overview ofmodel groups and classification of Physics-InformedNeural Networks (PINNs)
and Projection-Based Reduced-Order Models (pROM).
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traditional numerical methods [36]. The field of purely data-driven models is vast
and for an elaborate review, we refer to [18, 112]. While the training of these data-
driven models can be computationally expensive, their evaluation phase is typically
fast. Additionally, these models have the advantage of being non-intrusive to high-
fidelity models [147].

The quality of results from function-fit models can be limited, as they may fail
to accurately capture the underlying physics, particularly in the presence of noise
in the data [95]. Therefore, our focus shifts to the hybrid models. We explore two
promising physics-based surrogate models: projection-based reduced-order mod-
els and physics-informed neural networks. For a comprehensive review of other
physics-based surrogate models, we refer to [108].

A projection-based reduced-order model (pROM) is a method deeply rooted in
the underlying physics. These models are built upon a well-established full-order
model. Here, full-order models are high-fidelity models, such as we have described
earlier, of which computational costs can be reduced by utilizing pre-existing data
from the specific problem under study [15, 48, 111]. More specifically, a pROM ap-
proximates the full-order model by projecting it onto a much lower-dimensional
space. With this, the pROM inherits the most important features of the full-order
model, enabling faster simulations with minimal loss of accuracy. In Figure 1.3, we
find it in the bottom-right corner of the hybrid model group.

Physics-informed neural networks (PINNs) represent a special class of machine
learning models that embed physical laws directly into the training process [113].
In Figure 1.3, by integrating these embedded physical principles in a data-driven
model, we find it in the top-left corner of the hybrid model group in Figure 1.3.
PINNs ensure that the resulting solutions not only fit the data but also comply with
the known underlying physics. This makes PINNs particularly effective in scenar-
ios where data is scarce or noisy. The approach has demonstrated success in fluid
mechanics for easy parameter regimes by outperforming high-fidelity models [20].
However, despite rapid advancements in the field, it fails to correctly predict physics
in more challenging problems [32, 75].

Given the deep integration of physics within projection-based reduced-order
models and their ability to inherit the features of full-order models, we choose to
work with this type of surrogate model. Projection-based reduced-order models
have been successfully applied to flowproblems inmany studies [2, 21, 29, 87, 91, 115,
127, 134]. However, these studies primarily reduce the number of spatial variables
and do not address the long transients associated with time-periodic flows. Addi-
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tionally, in long time integrations, the solutions provided by reduced-order models
may diverge from those of their full-order counterparts [115]. These methods are
not specifically tailored for time-periodic flows. With this, we find the second goal
of this thesis:

(ii) Develop a cost-efficient and accurate reduced-order model for the
analysis of time-periodic flows.

We hypothesize that the time-periodic high-fidelity model introduced in the first
goal of this thesis is well-suited for model order reduction due to its boundary value
nature. Using this full-order model, we aim to develop a reduced-order model and
achieve real-time evaluation of time-periodic flows while keeping model error to a
minimum.

We use the time-periodic high-fidelity model as our full-order model to develop
a projection-based reduced-order model. This process starts with constructing a
time-periodic basis using Proper Orthogonal Decomposition (POD).The basis is gen-
erated using solutions of the full-order model for the specific problem under study
as data. The solution of the full-order model is then restricted by a time-periodic
basis. With this, and since we are using a space-time discretization, we get a reduc-
tion in the degrees of freedom in both space and time. Subsequently, a Galerkin
projection is performed to derive the POD-Galerkin reduced-order model, which
directly solves the time-periodic solution and greatly reduces the computational re-
quirements. This procedure is illustrated in Figure 1.4 and discussed in detail in
Chapter 3.

1. Full-order model 𝑛var = 𝒪(106)
directly solve the periodic solution

2. Approximate solution
with basis with info on periodic
states in space and time

3. Galerkin projection

4. Reduced-order model 𝑛var = 𝒪(102)
directly solve the periodic solution

Figure 1.4: Schematic overview of the time-periodic Galerkin-POD reduced-order model
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The time-periodic reduced-order model inherits the non-linearity of the full-
order model using the non-linear Navier-Stokes equations. The linear operator can
be pre-computed, but the non-linear operator requires a repeated evaluation in the
reduced-order model. The evaluation time of this reduced non-linear operator scales
with the size of the full-order model. This induces a major computational bottle-
neck in evaluating the reduced-order model and does not allow a real-time solution
of the model [45]. To investigate the possibilities for real-time flow computations,
we explore the application of non-linear reduction techniques in the time-periodic
reduced-order model, allowing for much greater speed-ups in Chapter 4.

We use the reduced-order model to study the flow characteristics around a type
Darrieus vertical-axis wind turbine at a Reynolds number of 1000. This device, fea-
turing vertically rotating turbine blades, is similar to a Voith Schneider Propeller
or a cross-flow water turbine operating under different conditions. Chapter 5 has
two primary objectives: first, to demonstrate the applicability of the reduced-order
model in industrial problems, and second, to analyze the flow past vertical-axis wind
turbines. We showcase how the model can identify the optimal operating point un-
der specific flow conditions. The flow is approximated as two-dimensional to cap-
ture the essential dynamics, focusing on the interaction between a single blade and
its wake, while excluding the complexities of multiple blade interactions.

In Chapter 6 we conclude and reflect on the goals we have set for this thesis.
Here we will also provide an outlook. We have aimed to make the chapters indi-
vidually readable. However, to avoid redundant information, we will refer to the
appropriate chapter for details.
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2
Space-time computations of exactly
time-periodic flows past hydrofoils

The computation of periodic flows is typically conducted over multiple periods. First, a
number of periods is used to develop periodic characteristics, and afterwards statistics
are collected from averages over multiple periods. As a consequence, it is uncertain
whether the numerical results are exactly time-periodic, and additionally, the time do-
main might be needlessly long. In this article, we circumvent these concerns by us-
ing a time-periodic function space. Consequently, the boundary conditions and solu-
tions are exactly periodic. We employ the isogeometric analysis framework to achieve
higher-order smoothness in both space and time. The discretization is performed us-
ing residual-based variational multiscale modelling and weak boundary conditions are
adopted to enhance the accuracy near the moving boundaries of the computational do-
main. We enforce the time-periodic boundary condition within the isogeometric dis-
cretization spaces, which converts the two-dimensional time-dependent problem into a
three-dimensional boundary value problem. Furthermore, we determine the boundary
velocities of moving hydrofoils directly from the computational mesh and use a con-
servation methodology for force extraction. Application of the computational setup to
heaving and pitching hydrofoils displays very accurate and exactly periodic results for
lift and drag.

This chapter is published as:
[88] J. E. Lotz, M. F. P. ten Eikelder, I. Akkerman, “Space–time computations of exactly time-periodic
flows past hydrofoils”, Computers & Fluids 277, 106286 (2024)

https://doi.org/10.1016/j.compfluid.2024.106286
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2.1 Introduction
Periodic flows are ubiquitous in a large number of industrial applications and natu-
ral features. Prototypical examples include the flow around submerged propellers,
wind turbines, or rotating flows in turbomachines and engines and the pulsatile
flow of blood. Various challenges arise in the design of practical numerical simula-
tions of these flows. On top of the well-known complications centered around the
inertia-driven character and the imposition of boundary conditions, the periodic
nature adds novel peculiar hurdles. The typical strategy of simulating a periodic
flow problem is to perform an unsteady computation in which the flow develops
periodic characteristics [67, 73, 96]. As such, the computations are usually not ex-
actly periodic, and the temporal range may be excessively long. Moreover, a user-
defined criterion of the characteristics of the flow is inevitable and the flow is never
strictly periodic. In this work we exploit the periodic nature of the problem and use
a space-time finite element method in the framework of residual-based variational
multiscale (VMS) methods, isogeometric analysis and weak boundary conditions.
Particular emphasis is on the application to heaving and pitching hydrofoils.

The concept of space-time finite elements may be traced back to the late six-
ties, with contributions by Fried [47] and Oden [104, 105] on the generation of
finite element models in the time domain. In time-dependent problems, the stan-
dard is to separate the discretization of the time (e.g. finite difference schemes)
and space (e.g. Galerkin methods). This is often referred to as the semi-discrete
method. The idea of space-time finite element methods is to adopt the variational
approach in the space-time setting such as in [98], where the space-time formu-
lation is used in conjunction with the Galerkin/Least-squares stabilization. This
allowed space-time computations for three-dimensional compressible and incom-
pressible flows [136, 137]. Contributions to accuracy and stability, along with the
use of Fourier-analysis, include the stabilized methods in the space-time frame-
work for the advection-diffusion equation and Navier-Stokes equation [62, 93, 125].
This space-time framework was originally formulated for stationary problems and
is extended to domains with moving boundaries by Tezduyar and collaborators
[138, 139]. Space-time computations of 2D time-periodic flows around fixed, os-
cillating, and bobbing hydrofoils were extensively covered in [67, 97, 99]. These
were the first space-time computations of their kind. A few years later, the VMS
framework [57, 60], encompassing many existing stabilized methods, was proposed.
The framework was originally introduced for stationary problems. In [63] it was
argued that the most theoretically coherent framework for the extension to time-
dependent problems is the space-time context. The most popular applications of the
VMS methodology for time-dependent problems are however in the semi-discrete
setting. A notable contribution in this regard is the work [12] that presented a varia-
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tionally consistent VMS methodology for turbulent flows called residual-based vari-
ational multiscale (RBVMS). This method is often used in combination with weak
boundary conditions [13]. Recently, the popular Nitsche’s method for the imposi-
tion of weak boundary conditions has been identified as a variational multiscale
formulation [129]. The RBVMS method opened the door for the development of
a novel class of small-scale models for large-eddy simulations, including dynamic
small-scales [28, 38, 42] and discontinuity capturing [39, 40]. The last important
development with implications for the space-time framework that we succinctly
discuss, is the introduction of isogeometric analysis [31, 58]. In contrast to classical
space-finite element methods, isogeometric analysis offers the possibility of arbi-
trary smooth finite element basis functions. This technique was initially adopted
for spatial discretizations, yet it offers rich opportunities in the space-time setting
[76, 100, 106, 121]. On top of the more widely known advantages of isogeometric
analysis, as pointed out as early as in 2012 [130, 131, 133], the adoption of it in the
space-time context is particularly beneficial for an accurate representation of mov-
ing boundaries and a higher continuity in the temporal direction. A good overview
of the history and the wide variety of applications of the space-time method can be
found in [141], including simulations with isogeometric analysis [132] and a RBVMS
discretization [131].

The existing space-time finite element methods form a versatile and fundamen-
tal class of methodologies for time-dependent problems in fluid mechanics. The
space-time method can be adopted for the computation of periodic flows, for exam-
ple in [67, 97, 99]. However, just as in the semi-discrete setting, such computations
require a transient until a near-periodic state is reached. The numerical results are
not strictly periodic. In this article, we circumvent these concerns by performing
computations with exact time-periodicity. We compute the periodic state via enforc-
ing the periodicity as a boundary condition in time, see also [53, 123]. This turns the
two-dimensional time-dependent model into a three-dimensional boundary value
problem. Our numerical results show the exact periodicity without losing the ex-
pected accuracy in the solutions. To this purpose we adopt a periodic space-time
model of arbitrary continuity via isogeometric analysis. Furthermore, we combine
this with the usage of the RBVMSmethodology and weak boundary conditions, pro-
viding a robust periodic space-timemethod. We show conservation properties of the
proposedmethod and present a conservative traction evaluation. Last, we introduce
mesh constraint boundary velocities. We use our computational setup for the simu-
lation of incompressible flow past a prescribed periodically moving hydrofoil.

The chapter is organized as follows. We describe the time-periodic continuous
space-time setup in Section 2.2, which fits within themore general space-time frame-
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work. Next, in Section 2.3we discuss the conservation properties and the continuous
force extraction method. In Section 2.4 we provide results of numerical experiments
considering the mesh-constraint boundary velocity, force extraction, and periodic
flow. The numerical experiments employ two spatial dimensions. We close with
concluding remarks in Section 2.5.

2.2 Periodic space-time formulation of the
incompressible flow equations

2.2.1 Governing equations
Consider a time-dependent spatial domain Ω = Ω(𝑡) ⊂ ℝ𝑑 with boundary Γ = Γint ∪
Γext composed of a time-dependent interior Γint = Γint(𝑡) and exterior part Γext. The
outward unit normal to the boundary Γ is defined as n. Let us now consider a
velocity field u and introduce the normal velocity 𝑢𝑛 = u ⋅n with positive part and
negative part 𝑢±𝑛 = 1

2 (𝑢𝑛 ± |𝑢𝑛 |). We partition the exterior boundary into an inflow
and outflow part according to the definitions:

Γ𝐷ext ∶= {x ∈ Γ|𝑢n(x) < 0} , (2.1a)
Γ𝑁ext ∶= {x ∈ Γ|𝑢n(x) ≥ 0} . (2.1b)

The domain is depicted in Figure 2.1.

Γint Γ𝑁ext

Γ𝐷ext

Ω

Figure 2.1: Sketch of the spatial domain with its boundaries, with inflow on the left.
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We now consider the problem that reads in strong form:

𝜕𝑡u+u ⋅ ∇u+∇𝑝 −∇ ⋅ (2𝜈∇𝑠u) = f in Ω, (2.2a)
∇ ⋅u = 0 in Ω, (2.2b)

u = gint in Γint, (2.2c)
u = gext in Γ𝐷ext, (2.2d)

−𝑝n+𝜈∇u ⋅n+𝑢−nu = 0 in Γ𝑁ext, (2.2e)
u(⋅, 0) = u0 in Ω. (2.2f)

Here the unknown fields are the velocity u = u(x, 𝑡) and the pressure 𝑝 = 𝑝(x, 𝑡)with
spatial coordinate x and the time coordinate 𝑡 ∈ ℐ = (0,𝑇 ) with final time 𝑇 > 0.
We employ the standard notation for the gradient (∇), the symmetric gradient (∇𝑠)
and the divergence (∇⋅). Furthermore, 𝜈 denotes the (constant) kinematic viscosity,
f = f(𝑡) is a (time-dependent) external force, and gint = gint(𝑡) and gext are prescribed
(time-dependent) velocities on the interior boundary and inflow partition of the ex-
terior boundary, respectively. We split the prescribed no-slip velocity into a normal
(g𝑛) and tangential component (g𝑡 ):

gint = g𝑛 +g𝑡 , (2.3a)
g𝑛 = (gint ⋅n)n, (2.3b)

g𝑡 ⋅n = 0. (2.3c)

Denoting the normal velocity of the domain boundary Γint by 𝑣𝑛 = g𝑛 ⋅n, the normal
component g𝑛 is prescribed by the relation g𝑛 = 𝑣𝑛n.

The equations (2.2) describe the incompressible Navier-Stokes equations, with
the balance of linear momentum and the continuity equation in (2.2a) and (2.2b),
the Dirichlet boundary conditions on the interior and the inflow boundary in (2.2c)
and (2.2d), the outflow boundary condition in (2.2e) and the initial condition in (2.2f).

2.2.2 Space-time formulation
We introduce the (continuous) space-time domain 𝑄 = Ω ×ℐ as an extrusion of
the spatial domain Ω = Ω(𝑡). The boundary of 𝑄 consists of an interior part 𝑃int =
𝑃int(𝑡) = Γint(𝑡) ×ℐ , and an exterior part made up of an inflow 𝑃𝐷ext = Γ𝐷ext ×ℐ and
an outflow 𝑃𝑁ext = Γ𝑁ext ×ℐ contribution. We visualize the setup in Figure 2.2.

We introduce the space-time coordinate x̂ = [x𝑇 𝑠𝑡]𝑇 = [𝑥1 ... 𝑥𝑑 𝑠𝑥𝑑+1] and the
extended velocity vector û = [u𝑇 𝑠]𝑇 , where 𝑠 is a velocity relating the time and
space dimensions. For simplicity, 𝑠 can be chosen as 1.
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Ω

𝑄
𝑃𝐷
ext 𝑃𝑁

ext

𝑃int ℐ

0

𝑇

Figure 2.2: Sketch of the space-time domain 𝑄 with its boundaries 𝑃 , with inflow on the left, as an
extrusion of the spatial domain Ω in gray.

In this work we focus on periodic flows and as such, we consider a periodically
changing domain Ω with period 𝒯 :

Ω|𝑡 = Ω|𝑡+𝒯 . (2.4)

Additionally, we require the prescribed external force f and boundary velocities to
be periodic:

f(x, 𝑡) = f(x, 𝑡 +𝒯 ), (2.5a)
g(x, 𝑡) = g(x, 𝑡 +𝒯 ). (2.5b)

The initial condition in (2.2f) is represented in the space-time setting by the time-
periodic condition:

u(⋅, 0) = u(⋅,𝒯 ) in Ω. (2.6)

We take the final time as 𝑇 = 𝒯 to cover one period.
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Using these definitions, problem (2.2) transforms in the space-time context into
the steady state problem:

û ⋅ ∇x̂u+∇𝑝 −𝜈∇2u = f in 𝑄, (2.7a)
∇ ⋅u = 0 in 𝑄, (2.7b)

u = gint in 𝑃int, (2.7c)
u = gext in 𝑃𝐷ext, (2.7d)

−𝑝n+𝜈∇u ⋅n+𝑢−nu = 0 in 𝑃𝑁ext, (2.7e)
u(⋅, 0) = u(⋅,𝑇 ) in Ω. (2.7f)

In (2.7a) we have combined the first two members of (2.2a) into a single term via
the identity:

𝜕𝑡u+u ⋅ ∇u = û ⋅ ∇x̂u, (2.8)

where ∇x̂ is the space-time gradient. The normal n in Equation (2.7e) is the classical
spatial normal and can be extracted from the space-time normal n̂ = [𝑛1 ... 𝑛𝑑 𝑛𝑑+1]𝑇
via,

n = 1

√𝑛21 + ... + 𝑛2𝑑
[
𝑛1
⋮
𝑛𝑑

]. (2.9)

The space-time outward normal n̂ has unit length in the norm ‖ ⋅ ‖𝐺𝑠 defined by

‖n̂‖2𝐺𝑠 = n̂ ⋅G𝑠n̂, (2.10)

where G𝑠 is the space-time metric

G𝑠 = ( I𝑑×𝑑 01×𝑑
0𝑑×1 𝑠2 ) . (2.11)

Furthermore, the normal velocity 𝑣𝑛 is related to the space-time velocity 𝑠 and the
space-time normal n̂ via:

𝑣𝑛 = −𝑠 𝑛𝑑+1
√𝑛21 + .. +𝑛2𝑑

. (2.12)

2.2.3 Weak formulation of the continuous space-time problem
Theweak formulation of the continuous space-time problem is stated using the trial
and test function spaces 𝒲𝑔 and 𝒲0 respectively. Members of the trial function
space𝒲𝑔 satisfy the non-homogeneous Dirichlet boundary conditions for the veloc-
ity on 𝑃𝐷ext whereas elements in the test function space𝒲0 satisfy the homogeneous
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Dirichlet boundary conditions on 𝑃𝐷ext. Additionally, members of both spaces sat-
isfy the periodic boundary condition u|Ω0 = u|Ω𝑇 where, Ω0 = 𝑄|𝑡=0 and Ω𝑇 = 𝑄|𝑡=𝑇 .
To enforce the Dirichlet boundary conditions on 𝑃int we introduce the subspaces
𝒱𝑔 ⊂ 𝒲𝑔 and 𝒱0 ⊂ 𝒲0, that additionally satisfy non-homogeneous and homoge-
neous boundary conditions on 𝑃int, respectively.

The variational formulation of Equation (2.7) now reads as:

find 𝑼 = {u, 𝑝} ∈ 𝒱𝑔 such that for all 𝑾 = {w, 𝑞} ∈ 𝒱0 ∶

𝐵GAL (𝑼 ,𝑾) = 𝐿(𝑾), (2.13a)

where

𝐵GAL (𝑼 ,𝑾) =(w, û ⋅ ∇x̂u)𝑄 −(∇ ⋅w, 𝑝)𝑄
+ (∇w, 𝜈∇u)𝑄 +(𝑞,∇ ⋅u)𝑄 − (w,𝑢−nu)𝑃𝑁

ext
, (2.13b)

𝐿(𝑾) =(w,f)𝑄 . (2.13c)

The 𝐿2 inner product over 𝐷 is defined as (⋅, ⋅)𝐷 .

2.2.4 Weak formulation of the discrete problem
To introduce the numerical discretization, we first subdivide our physical domain 𝑄
into elements 𝑄𝐾 . The domain of element interiors denotes:

𝑄̃ =⋃
𝐾
𝑄𝐾 . (2.14)

We apply residual-based variationalmultiscale turbulencemodeling [11, 12] inwhich
theweighting function space and trial solution space are decomposed into subspaces
that contain the coarse and fine scales:

𝒲𝑔 = 𝒲 ℎ𝑔 ⊕𝒲 ′, (2.15a)
𝒲0 = 𝒲 ℎ0 ⊕𝒲 ′, (2.15b)

where 𝒲 ℎ𝑔 and 𝒲 ℎ0 are coarse-scale spaces, and 𝒲 ′ ⊂ 𝒲𝑔 ∪𝒲0 are the fine scales.
The coarse-scale space is spanned by the finite-dimensional numerical discretization
whereas the fine-scales are their infinite-dimensional complement. Uniqueness of
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the multi-scale split (2.15) is ensured when the split is established via a projection
operator. (2.15) implies that the members of𝒲𝑔 and 𝒲0 split as:

{u, 𝑝} = {uℎ, 𝑝ℎ} + {u′, 𝑝′} , (2.16a)
{w, 𝑞} = {wℎ, 𝑞ℎ} + {w′, 𝑞′} , (2.16b)

where the components of the coarse-scale subspaces are denoted as 𝑼 ℎ = {uℎ, 𝑝ℎ} ∈
𝒲 ℎ𝑔 and 𝑾ℎ = {wℎ, 𝑞ℎ} ∈ 𝒲 ℎ0 , and the components of the small-scale subspace are
denoted as 𝑼 ′ = {u′, 𝑝′} ∈ 𝒲 ′ and 𝑾 ′ = {w′, 𝑞′} ∈ 𝒲 ′.

To arrive at the fully-discrete formulation we make the following modeling
choices. First, we apply a pseudo-transient continuation to march in pseudo-time
to the space-time steady state solution. Next, we select a standard 𝐻 10 -multiscale
projector that eliminates the fine-scale viscosity contribution. Next, we replace the
small-scale space 𝒲 ′ with the velocity-pressure product 𝒱 ′ ×𝒫 ′. The fine-scales
are modeled as:

u′ = −𝜏𝑀r𝑀 , (2.17a)
𝑝′ = −𝜏𝐶𝑟𝐶 , (2.17b)

with the strong residuals

r𝑀 = (ûℎ ⋅ ∇x̂)uℎ −∇𝑝 −𝜈∇2uℎ − f, (2.18a)
𝑟𝐶 = ∇ ⋅uℎ, (2.18b)

and stability parameters

𝜏𝑀 = (ûℎ ⋅ Ĝûℎ +𝐶 𝐼 𝜈2G ∶ G)−1/2 , (2.19a)
𝜏𝐶 = 𝜏−1𝑀 Tr(G)−1. (2.19b)

In both the momentum residual and its corresponding stability parameter the time
derivative is incorporated in the convection term, analogous to (2.8). As a conse-
quence, the convective and diffusive contributions depend on two different metric
tensors, the space-time metric tensor Ĝ and spatial metric tensor G, respectively.
These metric tensors are given by

Ĝ = (𝜕𝝃𝜕x̂)
𝑇
G𝑠

𝜕𝝃
𝜕x̂ , G = (𝜕𝝃𝜕x)

𝑇 𝜕𝝃
𝜕x . (2.20)

Lastly, we enforce the Dirichlet boundary conditions weakly [13]. To this purpose
we introduce the penalty parameter

𝜏𝑏 =
1
2𝐶

𝐼𝑏𝜈 (n ⋅Gn)
1
2 . (2.21)
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We now define the fully-discrete time-periodic formulation. The formulation
fits within the well-known space-time framework. In particular, as a consequence
of the continuous spaces, the jump term across the space-time slabs that is common
in the space-time method is absent. The method reads as:

find 𝑼 ℎ = {uℎ, 𝑝ℎ} ∈ 𝒲 ℎ𝑔 such that for all 𝑾 = {wℎ, 𝑞ℎ} ∈ 𝒲 ℎ0 :

𝐵(𝑼 ℎ,𝑾ℎ) = 𝐿(𝑾ℎ) , (2.22a)

where

𝐵(𝑼 ℎ,𝑾ℎ) = 𝐵GAL (𝑼 ℎ,𝑾ℎ)+𝐵PT (𝑼 ℎ,𝑾ℎ)
+𝐵STAB (𝑼 ℎ,𝑾ℎ)+𝐵WBC (𝑼 ℎ,𝑾ℎ) , (2.22b)

𝐵PT (𝑼 ℎ,𝑾ℎ) =(wℎ, 𝜕𝜃uℎ)𝑄 + 1
𝑎2 (𝑞

ℎ, 𝜕𝜃𝑝ℎ)𝑄 , (2.22c)

𝐵STAB (𝑼 ℎ,𝑾ℎ) =−(∇x̂wℎ,u′ ⊗ ûℎ)𝑄̃ −(∇wℎ,uℎ ⊗u′)𝑄̃
−(∇wℎ,u′ ⊗u′)𝑄̃ −(∇𝑞ℎ,u′)𝑄̃ −(∇ ⋅wℎ, 𝑝′)𝑄̃ , (2.22d)

𝐵WBC (𝑼 ℎ,𝑾ℎ) =(wℎ, 𝑝ℎn−𝜈∇uℎ ⋅n)𝑃int +(𝜈∇w
ℎ ⋅n−𝑞ℎn,uℎ −g)𝑃int

+(wℎ𝜏𝑏 ,uℎ −g)𝑃int .
(2.22e)

Equation (2.22c) represents the pseudo-transient continuation as a globalization
technique [30, 70]. The pseudo-transient continuation technique is a widely applied
methodology that obtains the steady state solution by adding a derivative to pseudo-
time 𝜃 . The first term is classical, whereas the utilization of the second term is non-
standard. This term introduces artificial compressibility [26, 27, 135], where 𝑎 is
an artificial speed of sound. This term overcomes some of the difficulties due to
the saddle-point nature of the underlying problem (i.e. the absence of a pressure
term in the continuity equation). Moreover, we note the introduction of this term
permits more powerful preconditioning options such as algebraic multigrid (AMG).
We remark that the numerical solution of the problem is fully incompressible and
thus does not depend on the artificial speed of sound 𝑎.

Equation (2.22d) describes terms associated with variational multiscale stabilisa-
tion [12]. In LES terminology the first two terms represent the cross-stress, while
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the third term represents the Reynolds stress. In the context of stabilized methods,
the first term is the Streamline-upwind Petrov-Galerkin (SUPG) term [17], and the
fourth and last terms are the Pressure-Stabilizing/Petrov-Galerkin (PSPG) [140] and
Least-Squares on Incompressibility Constraint (LSIC) terms respectively. Note that
the first and the second terms are not each other transposes. Namely, we incorpo-
rate the temporal derivative of the fine-scales in the SUPG term:

(w, 𝜕𝑡u′)𝑄̃ +(∇wℎ,u′ ⊗uℎ)𝑄̃ = (∇x̂wℎ,u′ ⊗ ûℎ)𝑄̃ . (2.23)

This relation is a direct consequence of the partial integration (in the temporal di-
rection) of the fine-scale time-derivative term:

(w, 𝜕𝑡u′)𝑄̃ = −(𝜕𝑡w,u′)𝑄̃ , (2.24)

where we note the absence of boundary contributions due to the periodic boundary
conditions.

Lastly, equation Equation (2.22e) enforces the weak boundary conditions on the
interior boundary (2.7c). The first term is the consistency term. This term originates
from integration by parts and as such guarantees variational consistency. The sec-
ond term is the so-called the dual consistency term, and the last term is the penalty
term that ensures the stability of the formulation. We recall that the Dirichlet bound-
ary conditions in (2.7d) on 𝑃𝐷ext are enforced strongly.

2.3 Conservation properties
In this section we establish the conservation properties of the discrete method. We
show conservation of mass, conservation of linear momentum and provide an ap-
proach to conservatively evaluate the traction. We consider a converged solution
where 𝜕𝜃uℎ = 𝜕𝜃𝑝ℎ = 0.

2.3.1 Conservation of mass
The global conservation of mass directly follows by selecting the weighting function
𝑾ℎ = {0, 1} in the discrete weak formulation (2.22):

∫𝑄
∇ ⋅uℎ d𝑥 = 0. (2.25)

We do not attain conservation of mass per time-slab since the weighting function
with pressure component that equals 1 on a single time-slab and 0 on the others is
not a member of𝒲 ℎ0 . Remark that it is possible to work with a particular selection
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of isogeometric velocity-pressure spaces that establishes pointwise satisfaction of
the incompressibility constraint [38, 41].

2.3.2 Conservation of linear momentum
In order to study the conservation of linear momentum one might wish to substi-
tute the weighting function 𝑾ℎ = {wℎ, 𝑞ℎ} = {e𝑖 , 0} with e𝑖 ∈ ℝ𝑑 the 𝑖-th Cartesian
unit vector into the discrete weak formulation (2.22). This choice is not permitted:
{e𝑖 , 0} ∉ 𝒲 ℎ0 . One possible remedy is to work with unconstrained function spaces
and weakly enforce the non-homogeneous boundary condition via a Lagrange mul-
tiplier construct [37, 38]. The Lagrange multiplier is also called auxiliary flux [59]
and is used to show global and local conservation. The method yields conservative
boundary fluxes which is a major advantage as compared to utilizing direct proce-
dures that provide non-conservative boundary fluxes.

We denote the vector-valued Lagrange multiplier/auxiliary flux as 𝜆. Recall that
the discrete weak formulation (2.22) is defined for the test function space 𝒲 ℎ0 in
which the velocity test functions vanish on 𝑃𝐷ext. In order to present the augmented
formulation, we require the introduction of other test function spaces. Denote the
set of all velocity basis functions 𝜂 and, furthermore, denote with 𝜂𝑔 the set of ve-
locity basis functions that do not vanish on 𝑃𝐷ext. With the notation 𝒲 ℎ0 = 𝒰ℎ0 ×𝒫 ℎ
of the velocity and pressure components of the test function space, we have 𝒰ℎ0 =
span {𝑁𝐴}𝐴∈𝜂−𝜂𝑔 , where 𝑁𝐴 = 𝑁𝐴(𝑥) are the velocity basis functions. Furthermore,
we introduce the unrestricted velocity space 𝒰ℎ = span {𝑁𝐴}𝐴∈𝜂 and unrestricted
velocity-pressure space 𝒲 ℎ = 𝒰ℎ ×𝒫 ℎ. The augmented problem now reads:

find 𝑼 ℎ ∈ 𝒲 ℎ𝑔 such that for all 𝑾̄ℎ = {w̄ℎ, 𝑞ℎ} ∈ 𝒲 ℎ:

(𝜆ℎ,w̄ℎ)𝑃𝐷
ext

= 𝐵(𝑼 ℎ, 𝑾̄ℎ)−𝐿(𝑾̄ℎ) . (2.26)

This problem splits as:

find 𝑼 ℎ ∈ 𝒲 ℎ𝑔 and 𝜆ℎ ∈ 𝒲 ℎ −𝒲 ℎ0 such that

0 = 𝐵(𝑼 ℎ,𝑾ℎ)−𝐿(𝑾ℎ) for all 𝑾ℎ ∈ 𝒲 ℎ0 (2.27a)

(𝜆ℎ,w̄ℎ)𝑃𝐷
ext

= 𝐵(𝑼 ℎ, 𝑾̄ℎ)−𝐿(𝑾̄ℎ) for all 𝑾̄ℎ ∈ 𝒲 ℎ −𝒲 ℎ0 . (2.27b)

The first subproblem coincides with our original weak formulation and thus com-
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pletely determines the numerical solution 𝑼 ℎ ∈ 𝒲 ℎ𝑔 . This solution may be directly
substituted into the second subproblem to evaluate the discrete auxiliary flux 𝜆ℎ ∈
𝒲 ℎ −𝒲 ℎ0 .

We are now in the position to evaluate the linear momentum conservation and
select 𝑾̄ℎ = {e𝑖 , 0} in (2.26):

∫𝑃𝐷
ext

𝜆ℎ𝑖 d𝑠 = ∫𝑃int
𝑝ℎ𝑛𝑖 −𝜈(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝑛𝑗 d𝑠 −∫𝑄

𝑓𝑖 d𝑥 d𝑠

−∫𝑃𝑁
ext

𝑢−n𝑢ℎ𝑖 d𝑠 +∫𝑃int
𝜏𝑏(𝑢ℎ𝑖 −𝑔𝑖) d𝑠. (2.28)

This shows that 𝜆ℎ𝑖 represents the total conserved boundary flux on 𝑃𝐷ext. Remark
that the last two members on the right-hand side result from the usage of weak
boundary conditions on 𝑃int and are thus absent when instead imposing these con-
ditions strongly.

2.3.3 Conservative traction evaluation
With the aim of evaluating the time-dependent traction on the interior boundary
Γint we select 𝑾̄ℎ = {e𝑖𝑁𝑎 , 0} in (2.26) with 𝑁𝑎 = 𝑁𝑎(𝑡) an arbitrary basis function in
the temporal direction. Note that this choice is permitted due to the tensor structure
of the NURBS computational mesh. Substitution provides:

∫𝑃𝐷
ext

𝜆ℎ𝑖 𝑁𝑎 d𝑠 +∫𝑄
𝑓𝑖𝑁𝑎 d𝑥 +∫𝑃𝑁

ext

𝑢−n𝑢ℎ𝑖 d𝑠 = ∫𝑃int
𝑝ℎ𝑛𝑖𝑁𝑎 −𝜈(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝑛𝑗𝑁𝑎 d𝑠

+∫𝑃int
𝜏𝑏(𝑢ℎ𝑖 −𝑔𝑖)𝑁𝑎 d𝑠. (2.29)

The right-hand side of (2.29) contains all the integrals on the interior bound-
ary 𝑃int. In order to evaluate the (vector-valued) traction force 𝜓 we introduce the
discrete problems for 𝑖 = 1, …, 𝑑 :

find 𝜓ℎ𝑖 ∈ span {𝑁𝑏}𝑏∈𝜉 such that

∫𝑃int
𝜓ℎ𝑖 𝑁𝑎 d𝑠 = ∫𝑃int

𝑝ℎ𝑛𝑖𝑁𝑎 −𝜈(𝑢𝑖,𝑗 +𝑢𝑗,𝑖)𝑛𝑗𝑁𝑎 d𝑠

+∫𝑃int
𝜏𝑏(𝑢ℎ𝑖 −𝑔𝑖)𝑁𝑎 d𝑠 (2.30)

where 𝜉 is the set of basis function numbers in the time direction. The traction forces
𝜓ℎ𝑖 thus result from inverting a mass matrix (per direction).
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2.4 Numerical experiments
In this section, we discuss the computational setup and subsequently provide results
of four numerical experiments using the formulation in Section 2.2.4. We evaluate
the forces in the space-time domain using the conservative traction evaluation of
Section 2.3.3. First, we compare the results of the mesh-constraint boundary ve-
locity of a sinusoidal heaving hydrofoil with the analytical solution and study its
dependency on the temporal discretization. Second, in order to examine the capa-
bility of the proposed methodology of predicting steady flow, we study the results
of fluid flow past a stationary hydrofoil. We perform a grid convergence study and
compare our results with the literature. Third, we focus on the hydrodynamics of
a moving body, which is much more complex than the case of a steady body. We
simulate the flow past a low-frequency heaving hydrofoil. Lastly, we investigate the
predictive capability of the methodology on capturing history effects in the wake.
We simulate the flow past a pitching hydrofoil at a moderate frequency. Experimen-
tal data considering (unsteady) forces on a hydrofoil in a low Reynolds-number flow
is not available in the literature. We support our predictions with numerical results
from the literature and steady state simulations using the steady variant of the flow
model (2.22). All results presented here correspond to simulations using two spatial
dimensions. The third direction refers to time.

2.4.1 Computational setup
We introduce the space-time domain 𝑄 as an extrusion of the spatial domain Ω en-
closing a symmetric four-digit NACA foil section [1]. The spatial domain is dis-
cretized as a C-shaped mesh using six NURBS patches employing second-order
NURBS. NURBS are utilized instead of B-splines tomore accurately represent the cir-
cular outer boundary of the domain. The spatial domain is illustrated in Figure 2.3.
The discretization is C1-continuous inside the patches and C0-continuous across
patches. The hydrofoil and its motion are incorporated into the space-time mesh
using curve interpolation.

Figure 2.4 provides an overview and a close-up of a temporal slice of the mesh.
The mesh is constructed with the aim of achieving high quality near the hydrofoil.
Based on simulations of the flow past a cylinder [14], we choose the distance be-
tween Γint and Γext to be 8 chord lengths in order to preclude influence from the
outflow boundary Γext. We have numerically verified that influence of Γext is vir-
tually absent. We select the chord 𝑐 and free stream velocity 𝑈 as 𝑐 = 𝑈 = 1. The
numerical experiments are conducted in DelFI, which is based on the MFEM library
[3].
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Γ𝐷ext

Γ𝐷ext

Γint

Γ𝑁ext
Ω

Figure 2.3: Schematic representation of the domain Ω, as a time slice of 𝑃 , surrounding the hydrofoil
with the no-slip boundary Γint, the inflow boundary Γ𝐷ext and the outflow boundary Γ𝑁ext. The arrows
indicate the direction of the flow. The six NURBS patches are indicated with a dotted line.

(a) (b)

Figure 2.4: The spatial mesh as a slice in time: a) The full C-shaped spatial mesh; b) A close-up of the
spatial mesh near the interpolated hydrofoil.

The time-marching in pseudo-time 𝜃 towards a steady solution typically con-
sists of 14 pseudo-time steps of 5 seconds using the backward Euler method as a
pseudo-time marching scheme. As a stopping criterion, we terminate the compu-
tation when the 𝐿2-norm of the residual of the momentum and mass equations is
smaller than 10−6 at the start of the first Newton iteration. Per time step we use 5
Newton iterations. We choose the artificial speed of sound 𝑎 as 4, which exceeds the
velocities encountered in the simulations. This provides a significant reduction in
simulation time. Furthermore, we select the inverse estimate coefficients as 𝐶 𝐼 = 36
and 𝐶 𝐼𝑏 = 8. We note that the latter is only suitable for polynomial degrees up to 2.
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Lastly, we discuss the computation of the boundary velocity on the interior
boundary gint. We recall the split:

gint = g𝑛 +g𝑡 , (2.31a)
g𝑛 = (gint ⋅n)n = 𝑣𝑛n, (2.31b)

g𝑡 ⋅n = 0, (2.31c)

where 𝑣𝑛 satisfies the relation Equation (2.12). The domain motion fully prescribes
g𝑛, while the tangential component g𝑡 is still undetermined. To numerically deter-
mine gint however, we use the motion encoded in the mesh and do not rely on the
relation Equation (2.12). The following procedure is permitted due to the extrusion
structure of the space-time mesh. We have the following relations:

𝑡 = 𝑡(𝜉𝑑+1), (2.32a)
X = X(𝜉1, ...𝜉𝑑 ), (2.32b)

where X is a Lagrangian coordinate labeling a particle, and where 𝜉 are the coor-
dinates in the reference domain. We compute the boundary velocity by taking the
derivative of the spatial coordinate x to the time direction 𝑡 = 𝑥𝑑+1 on a particle path:

gint =
𝜕x
𝜕𝑡

|||X
in 𝑃int. (2.33)

Realizing the dependence x = x(𝜉1, ...𝜉𝑑+1), we can use the chain rule to conclude:

gint = 𝑠 𝜕x
𝜕𝑥𝑑+1

|||X
= 𝑠

𝑑+1
∑
𝑖=1

𝜕x
𝜕𝜉𝑖

𝜕𝜉𝑖
𝜕𝑥𝑑+1

|||X
= 𝑠 𝜕x

𝜕𝜉𝑑+1
𝜕𝜉𝑑+1
𝜕𝑥𝑑+1

in 𝑃int. (2.34)

We note that the velocity gint computed via Equation (2.34) satisfies gint ⋅n = 𝑣𝑛,
where 𝑣𝑛 is given by Equation (2.12).

2.4.2 Mesh-constraint boundary velocity
We evaluate the mesh motion and the resulting mesh-constraint boundary velocity
gint. We apply a heave motion to the hydrofoil such that it only moves in the 𝑥2-
direction. The heave motion of the hydrofoil is sinusoidal with ℎ(𝑡) = ℎ𝑎 sin(2𝜋𝑡/𝑇 ),
with the amplitude ℎ𝑎 = 0.5𝑚 and the period 𝑇 = 8 𝑠. We use three different tempo-
ral resolutions consisting of 6, 12 and 24 elements in the temporal direction 𝑛el,𝑥3 .
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Figure 2.5a presents the resulting mesh motion with the corresponding analyt-
ical solution. The second-order NURBS are reconstructed using the control points
from the mesh. We observe that the finest mesh with 𝑛el,𝑥3 = 24 is virtually indis-
tinguishable from the analytical solution. Next, we visualize the resulting vertical
boundary velocity 𝑔𝑥2 and the corresponding analytical solution in Figure 2.5b. The
velocities are linear within the element due to the C1 mesh continuity. Again, the
results on the finest mesh with 𝑛el,𝑥3 = 24 are virtually indistinguishable from the
analytical solution.
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Figure 2.5: The motion ℎ in (a) and velocity 𝑔𝑥2 in (b) of the hydrofoil in 𝑥2-direction for 3 resolutions
𝑛el,𝑥3 in time direction and the analytical solution for a heave motion with 𝑇 = 8 𝑠.

2.4.3 Stationary hydrofoil
We simulate the flow past a stationary hydrofoil for angles of attack 𝛼 ranging from
1∘ to 5∘. The simulations are performed on a NACA0012 foil section with Reynolds
number ℝe = 𝑈𝑐/𝜈 = 1000 where 𝜈 is the kinematic viscosity. We study the resulting
drag coefficient 𝐶𝑑 and lift coefficient 𝐶𝑙 defined as:

𝐶𝑑 =
2𝐹𝑑
𝜌𝑐𝑈 2 , (2.35a)

𝐶𝑙 =
2𝐹𝑙
𝜌𝑐𝑈 2 , (2.35b)

where 𝐹𝑑 is the force component in the flow direction, 𝐹𝑙 the force component per-
pendicular to the flow direction, and 𝜌 denotes the density.
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We first consider the steady state setup. Figure 2.6 shows the results of the spa-
tial grid convergence study for 𝐶𝑑 and 𝐶𝑙 using 4 different meshes of varying res-
olution. In the coarsest mesh the domain is discretized using 30 elements over the
length of the hydrofoil, 15 elements between the hydrofoil and the inflow boundary,
and 45 elements between the hydrofoil and the outflow boundary. The finer meshes
are generated by refining the coarsest mesh across the entire domain, doubling the
number of elements in each direction in every NURBS patch. We use a Richard-
son extrapolation to examine the limit ℎ/ℎ0 →0 using the three finest meshes only,
as the coarsest mesh is not in the asymptotic range. We find 1.57 and 1.34 for the
order of convergence of the drag and lift, respectively. We choose the mesh with
two refinements for our computations as this gives a balance between results and
computational efforts. For this mesh the error is 0.13% and 0.08% for 𝐶𝑑 and 𝐶𝑙 re-
spectively considering the extrapolated result for ℎ/ℎ0 →0.

0 0.25 0.5 0.75 10.121
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𝐶 𝑑
[−
]

SS
Rich. ext.

(a)

0 0.25 0.5 0.75 10.158

0.159

0.16

0.161

ℎ/ℎ0 [−]

𝐶 𝑙
[−
]

SS
Rich. ext.

(b)

Figure 2.6: Results of steady state (SS) simulations for the drag coefficient 𝐶𝑑 in (a) and lift coefficient
𝐶𝑙 in (b) using four meshes and a Richardson extrapolation of the limit ℎ/ℎ0 −→ 0 based on the three
fines meshes. The order of convergence is 1.57 and 1.34 for drag and lift respectively.

Next, we focus on the lift coefficient. Figure 2.7 shows 𝐶𝑙 determined in sta-
tionary space-time and steady state simulations, supplemented with results from
the literature. The computations are performed for 5 different angles of attack. The
similarity of the results of the space-time and steady state simulations demonstrates
that the spatial convergence of steady state simulations is indeed sufficient for space-
time simulations. Moreover, the results are in good agreement with the results from
the literature.
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Figure 2.7: Lift coefficient 𝐶𝑙 at ℝe = 1000 of a stationary NACA0012 hydrofoil for several angles of
attack 𝛼 determined using the proposed method and a steady state (SS) solution supplemented with
results from the literature.

We compare with (i) a Boundary Element Method (BEM) with viscous correc-
tion XFoil [34], (ii) the Reynolds Averaged Navier Stokes (RANS) solver Ansys Flu-
ent [77], (iii) an Arbitrary-Lagrangian-Eulerian Characteristic Based Split Scheme
(ALE-CBS) solver [86], and (iv) other Ansys Fluent computations [71]. The last com-
putations are only available for the angles of attack of 2∘ and 4∘. The numerical re-
sults obtained with this solver deviate more from the results that we have obtained.
Lastly, we note that we have verified the force signal of the space-time simulations
to be constant in time. This demonstrates that our method correctly predicts steady
flow.

2.4.4 Heaving hydrofoil at a low reduced frequency
In this test case, we simulate a slowly heaving hydrofoil. The hydrofoil is oscillating
at a low reduced frequency 𝑘 = 𝜋𝑐/(𝑇𝑈 ). We note that the effect of the unsteady
wake on the flow past the hydrofoil is very low [142] and added mass effects are
negligible. As a consequence, the forces on the hydrofoil should match these from
quasi-static simulations. We obtain the quasi-static results using stationary steady
state simulations where we compensate the angle of attack 𝛼 for inflow due to the
heave motion. This provides the effective angle of attack:

𝛼eff = 𝛼 − arctan(2𝜋ℎ𝑎 cos(2𝜋𝑇
−1𝑡)

𝑇𝑈 ). (2.36)
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The simulations are performed with ℝe = 1000, 𝑘 = 0.01, ℎ𝑎 = 0.1 𝑚 and 𝛼 = 0∘.
We use the same spatial discretization as for the stationary cases. In the temporal
direction we use 𝑛el,𝑥3 = 24. We note that further refinement does not improve the
numerical results.

We visualize the convergence of the residuals in Figure 2.8a. We have verified
that using stricter convergence criteria does not improve the solution quality. In
Figure 2.8b we show 𝐶𝑙 and 𝐶𝑑 for the space-time and steady state simulations. We
observe that both 𝐶𝑙 and 𝐶𝑑 agree with the quasi-static results.
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Figure 2.8: The convergence and results of the case of a slowly sinusoidal heaving NACA0012 hydrofoil
with 𝑘 = 0.01 and ℝe = 1000: a) 𝐿2-norm of the residuals at the start of the first Newton iteration of
space-time momentum and mass conservation over pseudo-time 𝜃 ; b) Force coefficients 𝐶𝑓 = 𝐶𝑑 ,𝐶𝑙 in
space-time (ST) compared to semi-discrete quasi-static (SD-QS) results.

2.4.5 Hydrofoil with large angle pitch motion
In this last test case, we focus on the prediction of the history effects in the wake.
We simulate the flow past a sinusoidal pitching NACA0015 hydrofoil. The hydrofoil
pitches around the 1/3 chord with motion 𝛼(𝑡) = 𝛼𝑎 sin(2𝜋𝑡/𝑇 ), where the amplitude
is 𝛼𝑎 = 23∘, the Reynolds number is ℝe = 1100 and frequency is 𝑘 = 0.377.
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The same case is studied by [73] using Ansys Fluent. Their simulation setup uses
an impulsive start and at least 20 large time steps to move the wake downstream of
the hydrofoil. Their simulation is pursued with more than 2000 time steps per pe-
riod. Its result is considered periodic if the maximum variation in mean statistics
between the last cycles is 0.1%. In our setup we use the same spatial discretization
as in our previous space-time simulations. To accurately capture the flow charac-
teristics, we apply two extra refinements in the temporal direction. We note that
further refinement does not yield improved solution quality.

In Figure 2.9 we show a time signal of the lift coefficient 𝐶𝑙 . In general we
observe good agreement between our result and the result of [73]. We see small
differences in the regions 0.10 < 𝑡/𝑇 < 0.43 and 0.58 < 𝑡/𝑇 < 0.84. One important dif-
ference between our setup and the simulation in [73] is that our solution is exactly
periodic which is not the case in the reference computation.
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Figure 2.9: Lift coefficient𝐶𝑙 over time of a pitchingNACA0015 hydrofoil with 𝛼𝑎 = 23∘, l andℝe = 1100.

In Figures 2.10, 2.11 and 2.12 we show the velocity and pressure fields for 8
moments in time. Note the periodic solution behavior. This is most apparent in
the flow behind the hydrofoil when comparing the velocity field at 𝑡/𝑇 = 7/8 and
𝑡/𝑇 = 0. Furthermore, note that the flow is symmetric around the 𝑥-axis. To see this,
compare for instance the velocity field at 𝑡/𝑇 = 0 with 𝑡/𝑇 = 4/8 and 𝑡/𝑇 = 2/8 with
𝑡/𝑇 = 6/8. Both figures illustrate that the effect of the history in the wake is correctly
predicted.
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Figure 2.10: Velocity in 𝑥1-direction of a pitching hydrofoil with an angle of 23∘ and a period 𝑇 = 8.33
s for 8 moments in time. ℝe = 1100. Visualized using VisIt [24].
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Figure 2.11: Velocity in 𝑥2-direction of a pitching hydrofoil with an angle of 23∘ and a period 𝑇 = 8.33
s for 8 moments in time. ℝe = 1100. Visualized using VisIt [24].
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Figure 2.12: Pressure in the flow past a pitching hydrofoil with an angle of 23∘ and a period 𝑇 = 8.33
s for 8 moments in time. ℝe = 1100. Visualized using VisIt [24].
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2.5 Conclusions
In this work we present a time-periodic continuous space-time computational setup
to simulate flow past periodically moving objects. This ensures that the flow is ex-
actly periodic, and precludes working with needlessly long time domains. We en-
force the time-periodicity constraint as a boundary condition in time. This changes
the time-dependent two-dimensional problem into a three-dimensional boundary
value problem in both space and time. The method employs isogeometric analy-
sis to achieve higher-order smoothness in space and time. We discretize the for-
mulation using residual-based variational turbulence modeling in which turbulent
eddy viscosities are absent. Furthermore, we use weak boundary conditions to en-
hance the accuracy near the moving boundaries of the computational domain and
pseudo-transient continuation to overcome some of the difficulties related to the
saddle-point nature of the underlying problem. Here, we also employed artificial
compressibility, this provided a reduction in simulation time. We show the con-
servation properties of the formulation and use a conservative traction evaluation.
Numerical experiments on flow past stationary and moving hydrofoils demonstrate
very good accuracy, even on coarse meshes. The computed drag and lift coefficients
match with results from the literature and history effects in the wake are accurately
captured.

We outline two possible further research directions. First, the computational
setup should be extended to three spatial dimensions (i.e. the corresponding bound-
ary value problem is four-dimensional). Second, exploring the benefits of the compu-
tational setup in the reduced order modeling context could yield various advantages.
The transformation of the time-dependent problem into a boundary value problem
might allow for faster and more accurate evaluation of reduced order models for
periodic flows.
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3
Projection-based reduced-order

modelling of time-periodic problems

Simulating forced time-periodic flows in industrial applications presents significant
computational challenges, partly due to the need to overcome costly transients before
achieving time-periodicity. Reduced-order modelling emerges as a promising method
to speed-up computations. We extend upon the work in Chapter 2 [88], where a time-
periodic space-time model is introduced. We present a time-periodic reduced-order
model that directly finds the time-periodic solution without requiring extensive time
integration. The reduced-order model gives a reduction in variables in both space
and time. Our approach involves a POD-Galerkin reduced-order model based on a
time-periodic full-order model that employs isogeometric analysis, residual-based vari-
ational multiscale turbulence modelling and weak boundary conditions. The projection-
based reduced-ordermodel inherits these features. We evaluate the reduced-ordermodel
with numerical experiments onmoving hydrofoils. Themotion is known a priori and we
restrict ourselves to two spatial dimensions. In these experiments, we vary the Strouhal
and Reynolds numbers, and the motion profile respectively. Reduced-order model so-
lutions agree well with those of the full-order model. The errors over the entire time
period of thrust and lift forces are less than 0.2%. This includes complex scenarios such
as the transition from drag to thrust production with increasing Strouhal number. Our
time-periodic reduced-order model offers speed-ups ranging from 𝒪(102) - 𝒪(103) com-
pared to the full-order model, depending upon the basis size. This makes it an appealing
solution for prescribed time-periodic problems, with potential for additional speedup
through nonlinear reduction techniques such as hyper-reduction.

This chapter is published as:
[89] J. E. Lotz, G. D. P. Weymouth, I. Akkerman, “Projection-based reduced-order modelling of time-
periodic problems, with application to flow past flapping hydrofoils”, Computer Methods in Applied
Mechanics and Engineering 429, 117161 (2024)

https://doi.org/10.1016/j.cma.2024.117161
https://doi.org/10.1016/j.cma.2024.117161


3

36 3 Projection-based reduced-order modelling of time-periodic problems

3.1 Introduction

Finding a time-periodic solution of the flow past a prescribed periodically moving
object using the Navier-Stokes equation is often associated with significant compu-
tational cost. Usually, a solution is found by integrating an initial condition over a
sufficiently long time for a time-periodic solution to emerge. This transient phase
usually consists of several periods. This makes these computations expensive in in-
dustrial applications, such as wind farm and propeller optimization. To overcome
this problem, we explore the use of reduced-order models for speeding up this type
of computations. Here, model assumptions or data are used to approximate the solu-
tion of the original model, the full-order model. In this work we focus on projection-
based reduced-order models, where the full-order model is projected onto a reduced
basis. This reduced basis is constructed from simulation data using proper orthogo-
nal decomposition (POD). In this chapter, we introduce a reduced-order model that
directly solves the time-periodic solution, eliminating the need for time integration.
By leveraging the advantages of a space-time discretization, where space and time
are treated equally, we achieve a reduction in degrees of freedom in both space and
time.

In the literature, various techniques are developed to obtain periodic solutions
more efficiently. The shooting method is one of these methods [66, 117, 119]. It
involves converting the time-periodic boundary value problem into an initial value
problem. The objective is then to determine the correct initial condition that satisfies
the original, possibly expensive, boundary value problem. Another cost-effective
alternative is the spectral method [51, 54]. The flow variables are represented by
a Fourier series in time, facilitating the direct solution of periodic flows. This ap-
proach may face challenges in accurately capturing non-sinusoidal motion due to
the rapid increase in the required number of Fourier modes. In the present study, we
aim to develop an economical method for computing periodic solutions without as-
sumptions on the motion. We use a time-periodic full-order model [53, 88, 109, 123]
to create a POD-Galerkin reduced-order model. This full-order model is introduced
in Chapter 2.

The stability of a reduced-order model is not guaranteed and a considerable
amount of research is devoted to it. Instabilities of reduced-order models can be
classified into at least two, and possibly more [52, 127], classes: inf-sup instabili-
ties, related to solving a saddle point problem, and instabilities due to convection-
dominated flows. For the first class of instabilities, efforts have beenmade in velocity-
only reduced-order models [2, 87, 91]. However, many numerical methods for ob-



3.1 Introduction

3

37

taining the snapshots do not provide pointwise divergence-free flow fields [21, 87],
and neglecting the pressure term can lead to instabilities and large amplitude errors
in the Galerkin model [103]. An attractive alternative is to enforce a solenoidal ba-
sis, which requires a Piola transform for data associated with essential boundary
conditions [46]. For velocity-pressure reduced-order models, it is possible to en-
rich the velocity space with a supremizer, providing an additional set of degrees of
freedom to solve for [8, 65, 120, 128]. For instabilities of the second class, subgrid
closure models are a promising approach. This involves the modelling of the eddy
viscosity of the missing modes [64, 114] or dynamic subgrid scales [143]. A suc-
cessful alternative is the application of the variational multi-scale method [12] at
both full-order and reduced-order model levels [29, 115, 127, 134], which does not
require additional supremizers or a solenoidal basis, as it provides an inf-sup stable
model [19, 115, 127]. Alternatives to subgrid closure models can be found in e.g.
data-driven techniques [55, 65, 101] or the use of neural networks [5, 124, 145]. We
stabilize the reduced-order model with the variational multi-scale method, follow-
ing the work in [115].

We first consider the full-order model, which is a variational multi-scale method
[12] using isogeometric analysis [58] adapted for time-periodic space-time [88]. By
solving the time domain monolithically, we are able to impose the time-periodic
constraints a priori. We effectively transform the initial value problem into a bound-
ary value problem. The dimension of the domain is increased by one, but it allows
us to enforce the time-periodic constraint as a classic periodic boundary condition.
The motion of the periodically moving object is considered known and is accom-
modated by appropriately shaping the space-time mesh in advance. We construct
the reduced-order model by applying a Galerkin projection of the full-order model
on a time-periodic basis. The basis is computed by means of a proper orthogonal
decomposition of a snapshot matrix of which each entry is the entire periodic space-
time solutions of the full-order model for a chosen parameter set. The resulting
time-periodic reduced-order model, like the full-order model, directly computes the
entire space-time solution. We evaluate the quality of the computed solution fields
and forces by comparing them with the full-order model for three numerical exper-
iments. The experiments evaluate the reduced-order model for a variation of the
Strouhal number, Reynolds number or motion shape for a periodically moving hy-
drofoil in two dimensions. The first experiment is studied more elaborately. It exam-
ines the transition from drag to thrust production as the Strouhal number increases.
For this experiment, we also study the effect of the basis size on solution quality and
speed-up. In the last two experiments, we study the effect of the Reynolds number
or motion shape on lift and drag.



3

38 3 Projection-based reduced-order modelling of time-periodic problems

3.2 Full-order and reduced-order model for the
time-periodic incompressible flow

In this work, we transform the initial value problem into a boundary value prob-
lem. This is achieved by treating time analogously to space. Our notation reflects
this analogy by disguising the time as an additional spatial dimension. Therefore,
we directly obtain a time-periodic solution in both the full-order and reduced-order
model. This approach eliminates the need for separate time integration. We use the
space-time full-order model for periodic flow as described in Chapter 2 [88].

For the reduced-order model, we consider a standard POD-Galerkin model. We
are able to use this standard reduced order model as we effectively solve a boundary
value problem. The reduced-order model gives a reduction of the number of vari-
ables in both spatial and temporal dimensions.

To provide a self-contained and reproducible work, we reproduce the strong
formulation and discrete weak formulation of the model problem in the first two
sections. For further details of the model, we refer to the original work.

3.2.1 Strong formulation of time-periodic incompressible flow
Weconsider incompressible flowon a periodically deforming domainΩ(𝑡) =Ω(𝑡 +𝑇 ),
where 𝑇 is the period. We assume the unknown velocityu and pressure 𝑝 exhibit the
same periodicity, that is u(x, 𝑡) = u(x, 𝑡 + 𝑇 ) and 𝑝(x, 𝑡) = 𝑝(x, 𝑡 + 𝑇 ). The boundary
is composed of an exterior part Γext and a periodic time-dependent interior Γint(𝑡).
We introduce the normal velocity 𝑢𝑛 = u ⋅n with positive and negative parts 𝑢±𝑛 =
1
2 (𝑢𝑛 ± |𝑢𝑛 |). The exterior boundary is further separated in an inflow and outflow
part,

Γ𝐷ext ∶= {x ∈ Γext|𝑢n(x) < 0} , (3.1a)
Γ𝑁ext ∶= {x ∈ Γext|𝑢n(x) ≥ 0} , (3.1b)

where the superscripts refer to the Dirichlet and Neumann boundary conditions that
will be imposed on these parts. Figure 3.1 depicts a sketch of a spatial domain Ω,
similar to the one we will consider in Section 3.3.
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Γint Γ𝑁ext

Γ𝐷ext

Ω

Figure 3.1: Sketch of the spatial domain with its boundaries, with inflow on the left.

We extrude the spatial domain over the time domain ℐ = [0,𝑇 ] to obtain a
continuous space-time domain 𝑄 with space-time boundaries 𝑃ext and 𝑃int. Here,
𝑃ext = Γext ×ℐ while 𝑄 and 𝑃int are deformed version of Ω×ℐ and Γ×ℐ to accom-
modate the motion.

We denote the space-time coordinate, using the time direction 𝑑 + 1, as x̂𝑇 =
[x𝑇 𝑠𝑡] = [𝑥1 ... 𝑥𝑑 𝑠𝑥𝑑+1] and the extended velocity vector as û𝑇 = [u𝑇 𝑠]. Note that
𝑡 is scaled with a reference velocity 𝑠 to ensure dimensional consistency.

We substitute the traditional initial condition

u(⋅, 0) = u0(⋅) in Ω, (3.2)

with its time-periodic counterpart

u(⋅, 0) = u(⋅,𝑇 ) in Ω, (3.3)

which transforms an initial value problem into a boundary value problem. To make
this point more clear we chose to denote the material derivative as

𝜕𝑡u+u ⋅ ∇u = û ⋅ ∇x̂u, (3.4)

resulting in the Navier-Stokes equations for time-periodic incompressible flow,

û ⋅ ∇x̂u+∇𝑝 −𝜈∇2u = f in 𝑄, (3.5a)
∇ ⋅u = 0 in 𝑄, (3.5b)

u = gint in 𝑃int, (3.5c)
u = gext in 𝑃𝐷ext, (3.5d)

−𝑝n+𝜈∇u ⋅n+𝑢−nu = 0 in 𝑃𝑁ext, (3.5e)
u(⋅, 0) = u(⋅,𝑇 ) in Ω, (3.5f)
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where 𝜈 is the kinematic viscosity, f is an external force and gint and gext are pre-
scribed velocities on the interior and exterior boundary.

The first two equations state the balance of linear momentum (3.5a) and mass
(3.5b), respectively. Subsequently, the Dirichlet boundary conditions (3.5c) and
(3.5d) prescribe the velocity on the interior and the inflow boundary. While (3.5e)
governs the outflow boundary. Finally, (3.5f) enforces the time-periodic condition.

3.2.2 Discrete weak formulation of time-periodic incompressible
flow

Converting the strong form, as given in the previous section, into a discrete formu-
lation involves a couple of steps. First, we convert the strong form into a weak form,
by multiplying the two balance equations with appropriate test-functions, integrat-
ing over the domain and applying integration by parts on the pressure and diffusion
terms.

Subsequently, we discretize the formulation by decomposing the domain 𝑄 in
non-overlapping elements 𝑄𝑒 . For ease of notation, we also define the union of ele-
ment interiors as 𝑄̃ = ⋃𝑄𝑒 . We define simple polynomial (or rational) functions on
each element and construct approximate function spaces, denoted as 𝒲 ℎ, by com-
bining these appropriately.

Last, we stabilize the discrete formulation by accounting explicitly for the subgrid-
scale effects. For this, we apply residual-based variational multiscale turbulence
modelling as stabilization [11, 12]. We split u and 𝑝 into coarse-scale, denoted by ℎ,
and small-scale components, denoted with ′,

{u, 𝑝} = {uℎ, 𝑝ℎ} + {u′, 𝑝′} . (3.6)

The small-scale components will be accounted for by a model.

For improved robustness, we choose to enforce the Dirichlet conditions weakly
and added some residual-based discontinuity capturing. The resulting discrete vari-
ational formulation of (3.5) is similar to Chapter 2 [88]. After these choices, the
discrete problem is stated as follows:

Find 𝑼 ℎ = {uℎ, 𝑝ℎ} ∈ 𝒲 ℎ such that for all 𝑾 = {wℎ, 𝑞ℎ} ∈ 𝒲 ℎ:

𝐵(𝑼 ℎ,𝑾ℎ) = 0, (3.7a)



3.2 Full-order and reduced-order model for the time-periodic incompressible flow

3

41

where

𝐵(𝑼 ℎ,𝑾ℎ) =𝐵GAL (𝑼 ℎ,𝑾ℎ)+𝐵VMS (𝑼 ℎ,𝑾ℎ)+𝐵WBC (𝑼 ℎ,𝑾ℎ)
+𝐵DC (𝑼 ℎ,𝑾ℎ) , (3.7b)

𝐵GAL (𝑼 ℎ,𝑾ℎ) =(wℎ, ûℎ ⋅ ∇x̂uℎ)𝑄 −(∇ ⋅wℎ, 𝑝ℎ)𝑄
+(∇wℎ, 𝜈∇uℎ)𝑄 +(𝑞ℎ,∇ ⋅uℎ)𝑄 −(wℎ,𝑢−nℎuℎ)𝑃𝑁

ext
−(wℎ,f)𝑄 ,

(3.7c)

𝐵VMS (𝑼 ℎ,𝑾ℎ) =−(∇x̂wℎ,u′ ⊗ ûℎ)𝑄̃ −(∇wℎ,uℎ ⊗u′)𝑄̃
−(∇wℎ,u′ ⊗u′)𝑄̃ −(∇𝑞ℎ,u′)𝑄̃ −(∇ ⋅wℎ, 𝑝′)𝑄̃ , (3.7d)

𝐵WBC (𝑼 ℎ,𝑾ℎ) =(wℎ, 𝑝ℎn−𝜈∇uℎ ⋅n)𝑃int +(𝜈∇w
ℎ ⋅n−𝑞ℎn,uℎ −gint)𝑃int

+(wℎ𝜏𝑏 ,uℎ −gint)𝑃int ,
(3.7e)

𝐵DC (𝑼 ℎ,𝑾ℎ) =(∇wℎ, 𝜈𝑑𝑐∇uℎ)𝑄 . (3.7f)

Note: we have adopted the standard notation for the 𝐿2 innerproduct, that is (𝒇 ,𝒈)𝐷 =
∫𝐷

𝒇 ⋅ 𝒈 d𝐷.

In (3.7d) the small-scale velocities u′ and the small-scale pressure 𝑝′ are mod-
elled as

u′ = −𝜏𝑀r𝑀 , (3.8a)
𝑝′ = −𝜏𝐶𝑟𝐶 , (3.8b)

where 𝜏𝑀 and 𝜏𝐶 are stability parameters and r𝑀 and 𝑟𝐶 are the strong form residuals
defined as

r𝑀 = (ûℎ ⋅ ∇x̂)uℎ −∇𝑝 −𝜈∇2uℎ − f, (3.9a)
𝑟𝐶 = ∇ ⋅uℎ. (3.9b)

The small-scale contributions directly depend on the strong residuals, ensuring their
consistency. For the stabilization parameters we use

𝜏𝑀 = (ûℎ ⋅ Ĝûℎ +𝐶𝐼 𝜈2G ∶ G)−1/2 , (3.10a)

𝜏𝐶 = 𝜏−1𝑀 Tr (G)−1 , (3.10b)
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where 𝐶𝐼 is a user-provided input related to the inverse estimate, while Ĝ and G
are two metric tensors providing size and deformation information of the current
element. The space-time metric tensor Ĝ and the spatial metric tensorG are defined
as

Ĝ = (𝜕𝝃𝜕x̂)
𝑇
G𝑠

𝜕𝝃
𝜕x̂ , G = (𝜕𝝃𝜕x)

𝑇 𝜕𝝃
𝜕x , with G𝑠 = [I𝑑×𝑑 01×𝑑

0𝑑×1 𝑠2 ] . (3.11)

The terms in (3.7e) result from the weak enforcement of the Dirichlet boundary
condition. They consist of a consistency term, a dual consistency term and a penalty
term. For the penalty parameter, we use

𝜏𝑏 =
1
2𝐶𝑏𝜈 (n ⋅Gn)

1
2 , (3.12)

where 𝐶𝑏 is a user-provided input related to a trace inequality.

The discontinuity capturing provided in (3.7e) results in additional diffusion in
problem areas. The discontinuity capturing viscosity is inspired on [61],

𝜈dc = 2 𝐶dc
Tr (G)1/2

‖r𝑀 ‖2
‖∇uℎ‖𝐹

, (3.13)

where ‖ ⋅ ‖𝐹 denotes the Frobenius norm, and 𝐶dc is a user defined coefficient. This
type of discontinuity capturing viscosities is ubiquitous in the literature. Note that a
VMS-based justification for this form of discontinuity capturing is given in [39, 40].
Similar to the stabilization terms the additional viscosity scales with the size of the
residual, this makes it a consistent term. This ensures the accuracy of the final solu-
tion.

These semi-linear forms in (3.7) are implemented using the MFEM library [3].

3.2.3 System of nonlinear ordinary differential equations
The formulation provided in (3.7) results in a non-linear system of algebraic equa-
tions. To aid the exposition of the reduced-order model in Section 3.2.4, we will
explicitly provide this system here. We discretize the coarse scale variables with

𝑢ℎ1 (x̂) = 𝝓𝑢1 ⋅N(x̂), (3.14a)
𝑢ℎ2 (x̂) = 𝝓𝑢1 ⋅N(x̂), (3.14b)
𝑝ℎ(x̂) = 𝝓𝑝 ⋅N(x̂), (3.14c)
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where N(x̂) is the array of shape functions, and 𝝓𝑢1 , 𝝓𝑢2 and 𝝓𝑝 are the arrays with
unknown coefficients of the entire space-time domain. Note that 𝑁(x̂) does not
need to be split into spatial and temporal components, as space and time are treated
the same in the continuous space-time discretization.

The bilinear form in (3.7) becomes of the form

𝐵(𝑼 ℎ, {N, 0,0}) = b𝑢 +A𝑢1𝑢1𝝓𝑢1 +A𝑢1𝑢2𝝓𝑢2 +A𝑢1𝑝𝝓𝑝 +h𝑢1(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (3.15a)

𝐵(𝑼 ℎ, {0,N, 0}) = b𝑢2 +A𝑢2𝑢1𝝓𝑢1 +A𝑢2𝑢2𝝓𝑢2 +A𝑢2𝑝𝝓𝑝 +h𝑢2(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (3.15b)

𝐵(𝑼 ℎ, {0,0,N}) = b𝑝 +A𝑝𝑢1𝝓𝑢1 +A𝑝𝑢2𝝓𝑢2 +A𝑝𝑝𝝓𝑝 +h𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝), (3.15c)

where b𝑥 are the zeroth order terms, A𝑥𝑦 are the gradients defining the first order
terms and h𝑥 (𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝) are the remaining higher order terms. In matrix-vector
form this becomes

[
A𝑢1𝑢1 A𝑢1𝑢2 A𝑢1𝑝
A𝑢2𝑢1 A𝑢2𝑢2 A𝑢2𝑝
A𝑝𝑢1 A𝑝𝑢2 A𝑝𝑝

][
𝝓𝑢1𝝓𝑢2𝝓𝑝

]+[
h𝑢1(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑢2(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)

] = −[
b𝑢1
b𝑢2
b𝑝

]. (3.16)

For added robustness, we solve the nonlinear algebraic equations using a pseudo-
time globalization technique. The pseudo-time is denoted by 𝜃 . In the discrete weak
formulation in (3.7), both the momentum and continuity equation are augmented
with a pseudo-time rate term. For dimensional consistency, we scale the rate term
in the continuity equation appropriately. The parameter 𝑎 can be interpreted as an
artificial speed of sound, parametrizing pseudo-compressibility [26, 27, 135]. Note,
this is with respect to pseudo-time. The actual time derivative in (3.4) is unaffected
and consistency of the formulation is maintained. The discrete problem in becomes:

Given 𝑼 𝑛 = {u𝑛, 𝑝𝑛} ∈ 𝒲 ℎ find 𝑼 𝑛+1 = {u𝑛+1, 𝑝𝑛+1} ∈ 𝒲 ℎ such that for all 𝑾 =
{wℎ, 𝑞ℎ} ∈ 𝒲 ℎ:

𝐵(𝑼 (𝑼 𝑛,𝑼 𝑛+1),𝑾ℎ)+𝐵PT (𝜕𝜃𝑼(𝑼 𝑛,𝑼 𝑛+1),𝑾ℎ) = 0, (3.17a)

where

𝐵PT (𝜕𝜃𝑼 ℎ,𝑾ℎ) =(wℎ, 𝜕𝜃uℎ)𝑄 + 1
𝑎2 (𝑞

ℎ, 𝜕𝜃𝑝ℎ)𝑄 . (3.17b)
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Additional interpolation rules for 𝑼 (𝑼 𝑛,𝑼 𝑛+1) and 𝜕𝜃𝑼 (𝑼 𝑛,𝑼 𝑛+1) have to be
specified to close the system. In this case, we select the backward Euler method,
resulting in

𝑼 (𝑼 𝑛,𝑼 𝑛+1) = 𝑼 𝑛+1, (3.18a)

𝜕𝜃𝑼 (𝑼 𝑛,𝑼 𝑛+1) = 1
Δ𝜃 (𝑼

𝑛+1 −𝑼 𝑛), (3.18b)

where Δ𝜃 is a user-specified pseudo-time step size.

Using the mass matrix,

M = ∫𝑄
N⊗NdQ, (3.19)

and dropping the superscript gives the following non-linear system of algebraic
equations:

( 1
Δ𝜃[

M𝑢1 0 0
0 M𝑢2 0
0 0 1

𝑎2M𝑝
]+[

A𝑢1𝑢1 A𝑢1𝑢2 A𝑢1𝑝
A𝑢2𝑢1 A𝑢2𝑢2 A𝑢2𝑝
A𝑝𝑢1 A𝑝𝑢2 A𝑝𝑝

])[
𝝓𝑢
𝝓𝑣
𝝓𝑝

]

+[
h𝑢1(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑢2(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)

] = −[
b𝑢1
b𝑢2
b𝑝

]+ 1
Δ𝜃[

M𝑢1𝝓𝑛𝑢1
M𝑢2𝝓𝑛𝑢21
𝑎2M𝑝𝝓𝑛𝑝

]

(3.20)

Note that the time-dependent contributions are incorporated in the matrices A𝑥𝑦
and vectors h𝑥 , while the pseudo-time contributions are represented by the first and
last terms respectively. This problem is solved using a modified Newton iteration
method, while the parallel sparse matrix problems are solved using precondition
and GMRES provided by the Hypre library [44].

3.2.4 Reduced basis using Proper-Orthogonal Decomposition
The dimensionality 𝑛𝑓 of the system of the full-order model in (3.20) is inherently
large. This imposes a large computational effort. For scenarios involving solving
numerous closely related problems, such as parameter studies or design optimiza-
tion, there is an opportunity to mitigate this computational burden. We can reuse
previously obtained solutions, leading to a remarkable reduction in computational
effort with only a minor reduction in solution fidelity.
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We find the reduced-order model basis V using a discrete Proper Orthogonal
Decomposition (POD) [90]. The POD generates a low-dimensional basis by find-
ing meaningful behaviour in low-dimensional patterns of dynamic activity tailored
to particular dynamics and parameters. The discrete POD consists of a singular
value decomposition of a snapshot matrix X𝝓 containing 𝑚 full-order solutions in
its columns. The full-order solutions are determined using a particular set of input
parameters 𝜇, which is a sample from a larger parameter space Θ. Each entry of the
snapshot matrix contains one entire space-time solution of a full-order solution for
a parameter set 𝜇. The singular value decomposition is given as

X𝝓 = 𝜱𝜮𝜳𝑇 , (3.21)

where 𝜱 contains the POD modes in the left singular vectors, 𝜳 gives the right
singular vectors and 𝜮 gives the singular values in the diagonal. The expansion co-
efficients of the ROM basis have standard algebraic orthogonality such thatV𝑇V = 𝑰 .
The singular values are ordered from smallest to largest with 𝜎𝑖 < 𝜎𝑖+1 < 𝜎𝑚, indicat-
ing the relevance of the corresponding modes. We find the basis V by choosing it
as the first 𝑛𝑟 columns of 𝜱 based on a fraction of the missing energy in the basis

𝜖POD = ∑𝑛𝑟
𝑖 𝜎𝑖

∑𝑚
𝑖 𝜎𝑖

. (3.22)

3.2.5 Projection-based reduced-order model
We reduce each variable separately and reduce the dimension of the system by re-
stricting each variable to its own subspace. The reduced system approximates the
entire space-time solution of the original system in a subspace spanned by a solution
basis

𝝓𝑢1 ≈ 𝝓̃𝑢1 = V𝑢1 𝝓̂𝑢1 , (3.23a)
𝝓𝑢2 ≈ 𝝓̃𝑢2 = V𝑢2 𝝓̂𝑢2 , (3.23b)
𝝓𝑝 ≈ 𝝓̃𝑝 = V𝑝𝝓̂𝑝 . (3.23c)

Here, 𝝓𝑥 is the sought for full-order solution, while 𝝓̃𝑥 is its the high-dimensional
representation of the reduced-order model approximation (size(𝝓̃𝑥 ) = 𝑛𝑓 ). Contrary
𝝓̂𝑥 is the low dimensional representation and V𝑥 is the reduced basis as found in
the previous section (size(𝝓̂𝑥 ) = 𝑛𝑟 ). The matrix V𝑥 serves as a linear map between
the low-dimensional and high-dimensional representation of the reduced-order so-
lution The basis V𝑥 is composed of 𝑛𝑟 𝑥 space-time basis vectors 𝒗𝑥 as columns,
V𝑥 = {𝒗𝑥1, ..., 𝒗𝑥𝑛𝑟 𝑥 } with 𝑛𝑟 ≪ 𝑛𝑓 .
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As the reduced-order model will be a direct projection of the full-order model, it
implicitly uses the same stabilization as the full-order model. This is akin to work on
POD-Galerkin reduced-order models with the variational multi-scale frame-work
[19, 115, 127]. Upon substitution of (3.23) in (3.16), the number of unknowns reduces
while the number of equations remains the same, resulting in an over-determined
system. We apply a Galerkin projection to find the reduced system of equations.
This is equivalent to using the subspace restriction of the trial-space on the test
spaces as well.

In this case the full-order model (3.16) is reduced to

[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
A𝑢1𝑢1 A𝑢1𝑢2 A𝑢1𝑝
A𝑢2𝑢1 A𝑢2𝑢2 A𝑢2𝑝
A𝑝𝑢1 A𝑝𝑢2 A𝑝𝑝

][
V𝑢1𝝓𝑢1
V𝑢2𝝓𝑢2
V𝑝𝝓𝑝

]

+[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
h𝑢1(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
h𝑢2(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
h𝑝(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)

] = −[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
b𝑢1
b𝑢2
b𝑝

],

(3.24)

which can be alternatively written as

[
Â𝑢1𝑢1 Â𝑢1𝑢2 Â𝑢1𝑝
Â𝑢2𝑢1 Â𝑢2𝑢2 Â𝑢2𝑝
Â𝑝𝑢1 Â𝑝𝑢2 Â𝑝𝑝

][
𝝓̂𝑢1
𝝓̂𝑢2
𝝓̂𝑝

]+[
ĥ𝑢1(V𝑢1 𝝓̂𝑢1 ,V𝑢2 𝝓̂𝑢2 ,V𝑝𝝓̂𝑝)
ĥ𝑢2(V𝑢1 𝝓̂𝑢1 ,V𝑢2 𝝓̂𝑢2 ,V𝑝𝝓̂𝑝)
ĥ𝑝(V𝑢1 𝝓̂𝑢1 ,V𝑢2 𝝓̂𝑢2 ,V𝑝𝝓̂𝑝)

] = −[
b̂𝑢1
b̂𝑢2
b̂𝑝

], (3.25)

where

Â𝑥𝑦 = V𝑇𝑥A𝑥𝑦V𝑦 , (3.26a)

ĥ𝑥 (⋅) = V𝑇𝑥 h𝑥 (⋅) , (3.26b)
b̂𝑥 = V𝑇𝑥 b𝑥 . (3.26c)

Note that Â𝑥𝑦 can be precomputed if it is independent of parameter 𝜇. Additionally,
it is worth noting that we do not use pseudo-time as a globalization technique in the
reduced-order model. The non-linearity did not pose issues in solving the problem.
The reduced-order model is unable to represent arbitrary unphysical flow features
as it is constrained by the basis. We conjecture that this is the reason that a glob-
alization technique such as pseudo-time is not needed in the reduced-order mode.
Our experience showed that it was not necessary.

For obtaining the POD basis and implementing the reduced-order model we use
the libROM library [25].
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3.3 Numerical experiments
In this section, we apply the presented reduced-order model to simulate the flow
past a periodically moving two-dimensional hydrofoil. First, we discuss the general
setup of the problem, its discretization and numerical parameters. Following the
general setup, we provide an overview of the reduced-order model’s specifics and
explain the metrics used for evaluation. After these preliminaries, we conduct three
parameter studies, systematically varying parameters such as period, viscosity, and
motion profile. This will provide a clear demonstration of the potential offered by
the reduced-order model.

3.3.1 Problem setup
A typical isotime slice of the computational domain is given in Figure 3.2. The hy-
drofoil has a NACA 0012 profile with a chord denoted as 𝑐. To find a reasonable
balance between artificial boundary influences and computational effort, the size
of the domain is chosen to be 8 chords in the upwind and lateral directions and 8
chords in the downwind direction. The inflow from the left is a uniform flow, this
velocity is denoted as 𝑈 . The foil experiences a forced heave motion, with amplitude
ℎ𝑎 .

Γ𝐷ext

Γ𝐷ext

Γint(𝑡)

Γ𝑁ext
Ω

Figure 3.2: Schematic representation of the domain Ω, as an iso-time slice of 𝑃 , surrounding the hy-
drofoil with the no-slip boundary Γint, the inflow boundary Γ𝐷ext and the outflow boundary Γ𝑁ext. The
arrows indicate the direction of the flow. The five NURBS patches are indicated with a dotted line.
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In the first two experiments, the motion is sinusoidal and given by

ℎ(𝑡) = ℎ𝑎 sin(
2𝜋𝑡
𝑇 ) , (3.27)

where 𝑇 is the period. To correctly categorize the motion, we introduce the Strouhal
number

St = 2 ℎ𝑎
𝑈 𝑇 . (3.28)

Furthermore, we will use the chord Reynolds number

Re = 𝑈 𝑐
𝜈 , (3.29)

and force coefficients to non-dimensionalize the system,

𝐶𝑥 =
𝐹𝑥

1
2 𝜌𝑈 2𝑐

. (3.30)

Discretization
The full-order model formulation in (3.7) is evaluated using isogeometric analysis.
We discretize the domain using five second-order NURBS patches. This results in𝐶1-
continuity within each patch and 𝐶0-continuity over patch interfaces. The bound-
aries of the NURBS patches are indicated with the dotted lines in Figure 3.2. The
patches are extruded in the time direction, resulting in 3D NURBS patches. We sat-
isfy the time-periodic boundary condition with 𝐶0-continuous constraints.

The motion of the foil section is accommodated by appropriately shaping the
space-time mesh a priori. This is achieved by first applying knot insertion to fit the
shape of Γint to be the foil section on each time slab of 𝑃int. Then, knots are inserted
in the time direction to apply the prescribed motion on 𝑃int. The resulting mesh
contains the entire discretized space-time domain of the time-periodic problem. We
refer to [50] for knot insertion and fitting algorithms.

This discretization results in 900k degrees-of-freedom per variable, making a to-
tal system size of 2.7M degrees-of-freedom. We use 49 control points in the time
direction. See Appendix 3.A for details regarding the discretization choice and time
slices of the mesh. Further refinement of the discretization gives only a small im-
provement of the solution and does not compensate for the additional computational
costs.
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Theboundaries of the resulting discretized domain are shown in Figure 3.3. Here,
one of the time-periodic boundaries is cut off, revealing the shape of 𝑃int, which gov-
erns the motion of Γint(𝑡).

𝑥1
𝑥2

𝑥3 = 𝑡

Figure 3.3: The boundaries of the resulting discretized domain. The shape of 𝑃int, which governs the
motion of Γint(𝑡), is revealed as one of the time-periodic boundaries is cut off. See Appendix 3.A for
time slices of the mesh.
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Numerical parameters
Due to the non-dimensional nature of the problem, the choice for freestream and
chord is largely immaterial. For simplicity, we choose unity, that is 𝑈 = 1 and 𝑐 =
1. The time-dependent boundary velocities gint(𝑡) on the internal boundary are
governed by the space-time mesh and are not given as an input. The velocity gint
is computed with the derivative of the spatial coordinate x to the time direction
𝑡 = 𝑥𝑑+1/𝑠

gint =
𝜕x
𝜕𝑡

|||xp
in 𝑃int, (3.31)

where xp is a particle path on the solid of 𝑃int. See Chapter 2 [88] for more details.
Other relevant numerical parameters are given in Table 3.1.

Table 3.1: Numerical parameters and their corresponding values.

Parameter Value

𝑠 1
𝑎 4
𝐶𝐼 36
𝐶𝑏 8
𝐶𝑑𝑐 0.3
Δ𝜃 1.0

For the convergence criterion, we choose an absolute tolerance of 10−5 for the
twomomentum conservation andmass conservation residuals of both the full-order
and reduced-order model. For the full-order model, the residual is evaluated at the
beginning of each pseudo-time step [88]. Tighter convergence criteria only result
in negligible changes to the solution.

Reduced-order model
The reduced-order model as presented in (3.25) is constructed and evaluated in three
stages: an offline, merge and online stage. In the offline stage, we evaluate the full-
order model for 30 values of the input parameter 𝜇, chosen with equal distance in
the parameter space Θ. In the merge stage, the snapshot matrix of the time-periodic
space-time solution of the full-order model is assembled and the solution basisV𝑥 is
computed using a POD. In the online stage, the system in (3.25) is constructed and
solved.
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We compute the forces of the full-order model as introduced in Chapter 2 [88],
using a space-time force extraction method inspired by the variationally consistent
postprocessing method [78, 94]. For clarity, we repeat it here. The time-dependent
force is given by

F(𝑡) = ∫Γint
𝑝n−𝜈∇u ⋅n+𝜏𝑏(u−g)dΓ (3.32)

which requires a spatial integral at a fixed time level. For arbitrary space-time
meshes evaluation of this integral is not trivial. We remedy this by discretizing
the force in time,

Fℎ(𝑡) = F𝑎𝑁𝑎(𝑡), (3.33)

and project the signal as follows

∫ℐ
F𝑎 𝑁𝑎𝑁𝑏 d𝑡 = ∫𝑃int

(𝑝n−𝜈∇u ⋅n+𝜏𝑏(u−g)) 𝑁𝑏 d𝑡, (3.34)

which only involves integrals that are easily evaluated. Note that the last term on
the right-hand side is the contribution of the weak boundary condition.

Performance metrics
We evaluate the accuracy of the reduced-order model by evaluating the normalized
𝑙2-norm of the error for each variable. The error is the difference between the full-
order solution, 𝝓𝑥 , and the full representation of the reduced-order solution, 𝝓̃𝑥 ,
over the entire space-time domain

𝜖𝑥 = √(𝝓̃𝑥 −𝝓𝑥) ⋅ (𝝓̃𝑥 −𝝓𝑥)/ √𝝓𝑥 ⋅ 𝝓𝑥 , (3.35)

where 𝑥 is a place holder for the different variables 𝑢1,𝑢2 and 𝑝. The error is nor-
malized with the 𝑙2-norm of the full-order solution of the entire space-time domain.
The speed-up of the reduced-order model (ROM) over the full-order model (FOM) is
defined as

speed-up = wall-clock time FOM
wall-clock time ROM

. (3.36)

Thewall-clock time (elapsed real time) only includes the solve time of the non-linear
system and excludes the assembly of the matrix. This ensures that the time required
for assembling precomputable matrices is excluded from the wall-clock time.
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We evaluate the accuracy of the computed forces F using the average and root
mean square error for each component. For a generic force component F we com-
pute these as

𝜖avg =
1
𝑇 ∫ℐ

F̃ℎ −Fℎd𝑡 = 1
𝑛𝑓

𝑛𝑓
∑
𝑖=1

F̃ℎ(𝑡𝑖) −Fℎ(𝑡𝑖), (3.37)

𝜖2RMS =
1
𝑇 ∫ℐ

(F̃ℎ −Fℎ)2 d𝑡 = 1
𝑛𝑓

𝑛𝑓
∑
𝑖=1

(F̃ℎ(𝑡𝑖) −Fℎ(𝑡𝑖))
2 , (3.38)

where 𝑛𝑓 is a specified number of samples and 𝑡𝑖 = 𝑖
𝑛𝑓
𝑇 . To get a more meaningful

quantification of the error, the average and RMS errors are normalized with the
range of the data Δ𝐹 ,

𝜖navg =
𝜖avg
Δ𝐹 , (3.39)

𝜖nRMS =
𝜖RMS
Δ𝐹 , (3.40)

where the range of the data is obtained using

Δ𝐹 =max𝑖=1..𝑛𝑓 (Fℎ(𝑡𝑖))−min𝑖=1..𝑛𝑓 (Fℎ(𝑡𝑖)) . (3.41)

3.3.2 Parameter studies
In this section, we evaluate three studies considering a variation in Strouhal num-
ber, Reynolds number and motion profile. For each scenario, we first discuss the
general description of the problem and assess its reducibility, followed by a review
of the results and the error metrics described earlier.

Strouhal number study
In this experiment, we will vary the Strouhal number and evaluate the efficacy of
the reduced-order model to deal with this parameter change. The Strouhal number
𝑆𝑡 is a measure of the velocity of the motion relative to the free-stream velocity. For
flat objects with flapping motions, such as heaving foil sections, the range of 𝑆𝑡 = 0.1
to 𝑆𝑡 = 0.3 is of particular interest. Due to the interaction of the shed vortex with
the foil section, it will make the transition from drag to thrust producing when 𝑆𝑡
is increased in this range.
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We will be looking at four different Strouhal numbers spread over the range of
interest, that is

St ∈ [0.105,0.155,0.205,0.255], (3.42)

while we fix the motion amplitude ℎ𝑎/𝑐 = 0.5. For the Reynolds number we set
Re = 800.

To speed up the computations, we build a reduced-order model for a sinusoidal
heaving foil section with a variation in Strouhal number. In the offline stage, we
compute 30 equidistant snapshots in the range 0.08 ≤ St ≤ 0.28. The Strouhal num-
bers we are interested in, given in (3.42), are not in this set. To extract an efficient
basis for the reduced-order model out of the snapshots we compute the SVD of the
snapshot matrix. The two most dominant modes of the basis of 𝑢1, 𝑢2 and 𝑝 are
visualized in Appendix 3.B. The singular values 𝜎𝑖 of this decomposition are given
in Figure 3.4.

From the steep decline in 𝜎𝑖 it can be concluded that the problem is suitable for
reduction. Using the singular values, the missing energy fraction 𝜖POD for different
reduced bases can be computed. The required size of the reduced basis for a given
missing energy fraction 𝜖POD is indicated in Table 3.2.
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Figure 3.4: Strouhal number study: Decay of sin-
gular values 𝜎𝑖 associated with V.

𝜖POD size 𝑢1 size 𝑢2 size 𝑝
10−3 7 20 13
10−4 14 25 22
10−5 20 27 26
10−6 24 29 29
0 30 30 30

Table 3.2: Strouhal number study: Basis size 𝑛𝑟
per variable per missing energy fraction 𝜖POD
(3.22).
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For these five different reduced bases the speed-up and errors in solution and
force are given in Figure 3.5. The solution error is computed as 𝜖 = √𝜖2𝑢1 +𝜖2𝑢2 +𝜖2𝑝 ,
using (3.35). The force errors are given by (3.37) and (3.38) and are averaged over the
four Strouhal numbers. As expected the figure shows that the errors decrease if the
missing energy fraction 𝜖POD is decreased. The speed-up also decreases but is still
significant. Note that the errors of the forces converge to zero. Below 𝜖POD < 10−4
the speed-up does not further deteriorate, therefor we choose 𝜖POD = 0 for further
experiments as this gives a favourable compromise between speed-up and errors.
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Figure 3.5: Strouhal number study: Reduced-order mode speed-up and convergence of the error as
function of the missing energy fraction 𝜖POD as given in Table 3.2.

For higher Strouhal numbers the errors are smaller, as can be seen in Figure 3.5.
The contribution of the separate variables 𝑢1, 𝑢2, and 𝑝 to these errors are given
in Figure 3.6. This is likely a consequence of the sampling of the parameter space
used for generating the snapshots. Alternatively, instead of opting for a uniform
sampling of the Strouhal number, one could have chosen a uniform sampling of
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the period 𝑇 , or equivalently 1/St, which would have resulted in a higher density of
samples at low Strouhal numbers. Another implementation of this experiment, with
a uniform sampling of the period 𝑇 , indeed showed smaller errors at low Strouhal
numbers. Note that choices considering the sampling density can be avoided with
the employment of an adaptive sampling method, leading to more uniform errors
in the parameter space. The error for 𝑢1 is smaller than the errors for 𝑢2 and 𝑝. This
can be explained by the normalized nature of 𝜖𝑣 . The norm of 𝑢1 is dictated by the
free stream velocity 𝑈 .
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Figure 3.6: Strouhal number study: normalized 𝑙2-
norm of the error 𝜖𝑥 (3.35) of reduced-order w.r.t.
full-order model.

The computed forces of the reduced-order and full-order models are given in
Figure 3.7 and Figure 3.8. The corresponding normalized RMS (3.38) and average
(3.37) error are also provided. The agreement between the forces is very good. For
the forces in the 𝑥1-direction and the 𝑥2-direction the errors are < 0.2%. Note that
the full-order and reduced-order models use different force extraction methods.
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Figure 3.7: Strouhal number study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized
RMS error and absolute error of the average force for reduced-order w.r.t. full-order model.
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Figure 3.8: Strouhal number study: Vertical force coefficient 𝐶𝑥2 and corresponding normalized RMS
error and absolute error of the average force for reduced-order w.r.t. full-order model.

Two typical velocity fields computed by the reduced-order model and full-order
model, for St = 0.105 and St = 0.255, are depicted in Figure 3.9. The figure shows
the agreement between the two velocity fields. Note that the wake interaction is
qualitatively different. This qualitative difference is also reflected in the force signals
as depicted in Figure 3.7 and Figure 3.8, particularly the force in the 𝑥1 direction is
notably different.
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Figure 3.9: Strouhal number study: Magnitude of the velocity ‖u‖ computed by the reduced-order
model (ROM) and full-order model (FOM) for 𝑆𝑡 = 0.105 and 𝑆𝑡 = 0.255. Visualized using VisIt [24].
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Reynolds number study
The Reynolds number Re describes the ratio of inertial forces to viscous forces in
fluid flow. It helps to characterize the flow regime, indicating whether it is laminar,
transitional, or turbulent.

We study low Reynolds number flow with Re < 103, below the transition regime
to turbulent flow. An increase in Reynolds number can be linked to either an in-
crease in forward velocity or a decrease in viscosity. As the Reynolds number in-
creases, we anticipate a reduction in drag forces and an increase in lift forces.

We create a reduced-order model for a sinusoidal heaving foil section with a
variation in Reynolds number, 200 ≤ Re ≤ 800. We choose a constant Strouhal num-
ber of St = 0.125 and a constant motion amplitude ℎ𝑎/𝑐 = 0.5. Figure 3.10 shows a
steep decrease of the singular values 𝜎𝑖 , indicating that the problem is reducible. We
evaluate the reduced-order model, and the full-order model as ground truth, at

Re ∈ [275,425,575,725]. (3.43)

These Reynolds numbers do not coincide with the Reynolds numbers used to gener-
ate the snapshots.

Figure 3.11 gives the relative error (3.35) for the variable fields when comparing
the reduced-order model with the full-order model. The errors are the smallest for
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Figure 3.10: Decay of singular values 𝜎𝑖 associated
with V for the Reynolds number study.
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Figure 3.11: 𝑙2-norm of the error 𝜖𝑥 (3.35) of
reduced-order w.r.t. full-order model normalized
with the 𝑙2-norm of the solution field for the
Reynolds number study.
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the 𝑢1-solution field. The errors for the 𝑝-solution field are the largest. All errors
are ≤ 𝒪 (1%).

Figure 3.12 and Figure 3.13 show the agreement between the computed forces
of the full-order and reduced-order models. The normalized root mean square error
(3.38) and the normalized error of the average (3.37) are < 0.08% and < 0.05% for 𝐶𝑥1
and 𝐶𝑥2 respectively.
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Figure 3.12: Reynolds number study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized
RMS error and absolute error of the average force for reduced-order w.r.t. full-order model.
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Figure 3.13: Reynolds number study: Vertical force coefficient 𝐶𝑥2 and corresponding normalized RMS
error and absolute error of the average force for reduced-order w.r.t. full-order model.
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Motion profile study
Themotion profile significantly influences thrust production in a flapping wing. An
optimized motion profile can enhance aerodynamic efficiency by maximizing lift
and minimizing drag, ultimately leading to more effective thrust production. We
study a group of non-sinusoidal motion profiles described with

ℎ(𝑡) = ℎ𝑎 sin(𝜔𝑡 +𝜙(𝑡), ) (3.44a)
𝜙(𝑡) = 𝜙𝑎 cos(𝜔𝑡). (3.44b)

The time trace of this motion is given in Figure 3.14.

The time-dependent phase-shift modulation 𝜙(𝑡) is time-periodic, resulting in
a time-periodic heave. As 𝜙𝑎 increases, the original sinusoidal motion is distorted
in an unsymmetric way. At a positive heave, the motion slows down, while at a
negative heave, the motion speeds up. This results in an uneven dwell time in the
upper and lower parts of the stroke.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

𝑡/𝑇 [-]

ℎ(
𝑡)/

𝑐[
-]

𝜙𝑎 = 0.10
𝜙𝑎 = 0.35
𝜙𝑎 = 0.60
ℎ𝑎 sin(𝜔𝑡)

Figure 3.14: Motion profile study: Non-sinusoidal heave function as in (3.44).

We create a reduced-order model for a variation of the phase amplitude 0.1 ≤
𝜙𝑎 ≤ 0.6. The other parameters are chosen similarly to the previous test cases, that
is: the Reynolds number is Re = 800, the Strouhal number is St = 0.125 and a motion
amplitude of ℎ𝑎/𝑐 = 0.5.
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The singular values 𝜎𝑖 of the snapshot matrix are given in Figure 3.15. The steep
decrease in the singular values indicates that the problem is amenable to model-
order reduction. We assess the reduced-order model at

𝜙𝑎 ∈ [0.1625,0.2875,0.4125,0.5375]. (3.45)

These values do not match the amplitudes used for generating the snapshots. We
compare the reduced-order model against the full-order model, which is considered
as ground truth.
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Figure 3.15: Motion profile study: Decay of singu-
lar values 𝜎𝑖 associated with V.
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Figure 3.16: Motion profile study: 𝑙2-norm of the
error 𝜖𝑥 (3.35) of reduced-order w.r.t. full-order
model normalizedwith the 𝑙2-norm of the solution
field.

Figure 3.16 shows similar trends when comparing the relative error (3.35) of the
variable fields for the reduced-order model versus the full-order model as the pre-
vious cases. The errors are the smallest for 𝑢1 and the largest for 𝑝. All errors are
≤ 𝒪 (0.1%).
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Figures 3.17 and 3.18 show very good agreement between the force coefficients
computed by the full-order and reduced-order models. The normalized root mean
square error (3.38) and the normalized error of the average (3.37) are < 0.01% for 𝐶𝑥1
and < 0.005% for 𝐶𝑥2 .
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Figure 3.17: Motion profile study: Horizontal force coefficient 𝐶𝑥1 and corresponding normalized RMS
error and absolute error of the average force for reduced-order w.r.t. full-order model.
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Figure 3.18: Motion profile study: Horizontal force coefficient 𝐶𝑥2 and corresponding normalized RMS
error and absolute error of the average force for reduced-order w.r.t. full-order model.
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3.4 Conclusions
We have successfully implemented a time-periodic reduced-order model. We con-
firmed the favourable performance of the reduced-order model on the problem of
a moving hydrofoil, where we varied the Strouhal number, Reynolds number and
heave motion profile.

The computed solution fields of the reduced-order model and full-order model
show good agreement. The same is true for the postprocessed forces. While reduc-
ing the dimension of the problem from 𝒪(106) to 𝒪(102) the errors in the force are
less than 0.2% for drag and lift. This makes the reduced-order model suitable for
computations of a wide variety of time-periodic flows.

The reduced-order model behaved predictably as increasing the size of the re-
duced basis caused the errors to converge to zero. The reduced-order model offers
a speed-up of 𝒪(102) - 𝒪(103) over the full-order model, depending on the basis
size. Higher speed-ups are likely possible when appropriate non-linear reduction
techniques, such as hyper-reduction, would be adopted.

Looking forward, there are several interesting avenues for future work. First,
extending the model to three spatial dimensions would significantly enhance its ap-
plicability. Second, additional verification for higher Reynolds numbers makes the
model suitable for more industrial applications. Finally, applying the model to in-
dustrial contexts, such as optimizing the performance and layout of wind farms or
ship propellers, provides an opportunity to bridge the gap between the ideas in this
work and practical solutions.
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3.A Temporal and spatial discretization
The spatial convergence for a steady-state case of a foil section at an angle of attack
of 3∘ is given in Figure 3.19. The convergence orders of 𝐶𝑥1 and 𝐶𝑥2 are 1.3 and
1.4, respectively. A spatial discretization of ℎ/ℎ0 = 0.5 was chosen, as it exhibited
errors of 3.0% and 1.1% with the Richardson extrapolated results, offering a balance
between computational costs and discretization error.
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Figure 3.19: Numerical results and Richardson extrapolation of the steady-state force coefficients 𝐶𝑥𝑖 .
The order of convergence is 1.30 and 1.35 for directions 𝑥1 and 𝑥2 respectively.

In the spatial discretization with ℎ/ℎ0 = 0.5, the patches are refined to 68 control
points between the foil section and the inflow boundary, 62 control points over the
length of the foil section and 78 control points between the foil section and the out-
flow boundary. The spacing of the control points is similar as in Chapter 2 [88]. The
resulting spatial discretization is visualised in Figure 3.20.

The temporal domain is discretized with 49 control points. For a further refine-
ment, the added computational costs do not balance the reduction in error on a pure
heaving test case.
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Figure 3.20: Slices of the space-time mesh, showing the discretization of the spatial domain at 𝑡 = 0.
Visualized using VisIt [24].
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3.B Visualization of the basis
Figures 3.21, 3.22 and 3.23 visualizes four slices of the shapes of the two most dom-
inant modes of the time-periodic basis. The slices are taken at 𝑡 = 0, 𝑡 = 1

4𝑇 , 𝑡 =
2
4𝑇 ,

𝑡 = 3
4𝑇 for 𝑢1, 𝑢2 and 𝑝.
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Figure 3.21: Strouhal number study: slices of mode 1 (a) and mode 2 (b) of the basis for 𝑢1 at 𝑡 = 0,
𝑡 = 1/4 𝑇 , 𝑡 = 2/4 𝑇 , 𝑡 = 3/4 𝑇 . Visualized using VisIt [24].
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Figure 3.22: Strouhal number study: slices of mode 1 (a) and mode 2 (b) of the basis for 𝑢2 at 𝑡 = 0,
𝑡 = 1/4 𝑇 , 𝑡 = 2/4 𝑇 , 𝑡 = 3/4 𝑇 . Visualized using VisIt [24].
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Figure 3.23: Strouhal number study: slices of mode 1 (a) and mode 2 (b) of the basis for 𝑝 at 𝑡 = 0,
𝑡 = 1/4 𝑇 , 𝑡 = 2/4 𝑇 , 𝑡 = 3/4 𝑇 . Visualized using VisIt [24].
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4
Considerations on a hyper-reduced

model of time-periodic flows

A space-time discretization approach can exploit the time-periodic nature of flow prob-
lems. By converting the initial value problem into a boundary value problem with
a time-periodic boundary condition it enables simple projection-based reduced-order
model techniques. However, the non-linear nature of the Navier–Stokes equations
creates a computational bottleneck in the reduced-order model. We explore hyper-
reduction techniques to mitigate these challenges. We focus on empirical interpola-
tion methods, which have shown promise in reducing the complexity of non-linear
operators. While these methods are effective, their success is limited due to issues
such as the slow decay of the Kolmogorov n-width and stability concerns. We eval-
uate the hyper-reduced model in two numerical experiments: steady flow past a foil
section and time-periodic flow past a periodically heaving foil section. The model per-
formed well for the experiment with steady flow, with force and solution errors ranging
from 𝒪 (0.01%−10%), depending on the sampling method. The hyper-reduced model
achieves a speed-up of 𝒪(105) compared to the full-order model, and 𝒪(103) compared
to the reduced-order model. This enables real-time computations. However, the hyper-
reduced model could not provide a solution for the time-periodic flow experiment, pos-
sibly due to the aforementioned challenges.
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4.1 Introduction
Finding a time-periodic solution for flow past a periodically moving object using
the Navier–Stokes equation is computationally costly, requiring integrating an ini-
tial condition over multiple periods until convergence. We treat space and time
analogously in a space-time discretization. Then, we can take advantage of the
time-periodic nature of the problem by applying a time-periodic boundary condition
[53, 88, 109, 123]. The original initial value problem is converted into a boundary
value problem avoiding lengthy time integration and allowing efficient evaluation
of time-periodic problems. The conversion to a boundary value problem also opens
the door for simple projection-based model reduction techniques with a great re-
duction of the number of solution variables. Such reduced-order models allow for
speed-ups up to 𝒪 (103) of the original full-order model [89].

The Navier-Stokes equations are inherently non-linear due to its convective
term. Furthermore, if the full-order model incorporates stabilization, the additional
stabilization terms also contribute to this non-linearity. This non-linearity requires
a repeated evaluation of the non-linear operator in the reduced-order model, with
a complexity that scales with the size of the full-order model, inducing a major
computational bottleneck in the evaluation of the reduced-order model. In this
chapter, we explore the application of non-linear reduction techniques in the time-
periodic reduced-order model, allowing for much greater speed-ups than conven-
tional reduced-order models.

Non-linear reduction techniques help alleviate the computational bottlenecks
related to constructing the non-linear operator in reduced-order models. The goal
is to evaluate this operator with a complexity independent of the full-order model’s
size. For a comprehensive overview of non-linear projection-based reduction meth-
ods, we refer to [45]. Here, we provide a brief introduction to the available methods.

We start with the the Gappy-POD method. This method is initially developed
for handling sparse data in image reconstruction [43] and has been a pioneering
technique in the field. It has inspired various approaches in model order reduction,
including the empirical interpolation method (EIM) [9], the best point interpolation
method [102], and the missing point estimation approach [4]. Among these, the em-
pirical interpolation method, which approximates the non-linear operator using em-
pirically derived basis functions, led to the development of the widely-used discrete
empirical interpolation method (DEIM) [23] and the Gauss-Newton with approxi-
mated tensors method [22]. The discrete empirical interpolation method enables
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fast evaluation of the non-linear operator by projecting it onto a discrete basis and
evaluating it using only a small number of indices. The Gauss-Newton with approx-
imated tensors method works similarly but has a Petrov-Galerkin approach.

In these methods, the key to reducing the complexity of the non-linear opera-
tor lies in identifying a sampling operator that selects the specific indices that can
be used to approximate it best. The sampling points can be determined in various
ways. The original DEIM method uses a greedy algorithm to select indices of the
non-linear operator by sequentially identifying maxima in the basis. Alternatively,
Q-DEIM determines sampling points through the pivot locations in a QR factoriza-
tion with column pivoting [35]. This method is independent of the basis ordering,
unlike DEIM. Both DEIM and Q-DEIM aim to maximize the smallest singular values
of the projection operator. A more recent method, S-OPT, identifies sampling points
by maximizing the product of all singular values and enhancing the orthogonality
of the sampling operator’s columns [81].

In this work, we use the class of empirical interpolation hyper-reduction meth-
ods as they are applied successfully in reduced-order models for flow problems,
see for instance [19], and fit well in the existing framework of the reduced-order
model introduced in Chapter 3 [89]. However, we would like to briefly touch upon
two recent developments. A promising avenue is the empirical quadrature pro-
cedure, which uses sparse empirical quadrature rules for rapid approximation of
a non-linear operator [146]. Also, an important development is the introduction
of neural-network-based reduced-order models such as [72, 84, 118]. This class of
reduced-order models achieves a considerable speed-up with a low-dimensional so-
lution representation.

These hyper-reduction methods introduce an additional approximation to the
original problem, which in turn induces an error and presents certain challenges.
The linear approximation is often associated with a slow decay of the Kolmogorov n-
width, implying that the approximation error exhibits a gradual decay while increas-
ing the dimensionality of the subspace. As a result, not all problems are amenable
to hyper-reduction and achieving a satisfactory approximation may necessitate a
large subspace dimension [45]. Furthermore, the linear approximation may affect
the system stability, requiring hyper-reduced models to be finely tuned [19]. These
models may fail to converge or yield an accurate solution.

In this chapter, we begin by introducing the time-periodic problem and the
hyper-reduced system of equations. We use an isogeometric analysis discretiza-
tion for the full-order model and explain how hyper-reduction is applied to it. Fol-
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lowing this, we implement the hyper-reduced model and analyze two numerical
experiments. First, we verify the implementation of the hyper-reduced model with
a basic test case of steady two-dimensional flow past a foil section with a varia-
tion of the Reynolds number. We use this case to evaluate the performance of the
hyper-reduced model and show its potential. Second, we study the ability of the
hyper-reduced model to analyze time-periodic flow. This experiment considers two-
dimensional flow past a heaving foil section.

4.2 Hyper-reduction using empirical interpolation
methods

We first consider the Navier-Stokes equations for time-periodic flow

𝜕𝑡u+u ⋅ ∇u+∇𝑝 −𝜈∇2u = f in 𝑄, (4.1a)
∇ ⋅u = 0 in 𝑄, (4.1b)

u = gint in 𝑃int, (4.1c)
u = gext in 𝑃𝐷ext, (4.1d)

−𝑝n+𝜈∇u ⋅n+𝑢−nu = 0 in 𝑃𝑁ext, (4.1e)
u(⋅, 0) = u(⋅,𝑇 ) in Ω, (4.1f)

where 𝑄 denotes the space-time domain, 𝑃int the internal no-slip boundary, 𝑃𝐷ext
the inflow boundary and 𝑃𝑁ext the outflow boundary. The kinematic viscosity is rep-
resented by 𝜈 , f denotes an external force, and gint and gext are the prescribed ve-
locities on the interior and exterior boundaries, respectively. Note that using (4.1f),
instead of an initial condition, transforms the time-dependent problem into a bound-
ary value problem. The space-time domain is 𝑄 an extrusion of the spatial domain
Ω in time-direction. The spatial domainΩ, with boundary Γ, is depicted in Figure 4.1.

Γint Γ𝑁ext

Γ𝐷ext

Ω

Figure 4.1: The spatial domain with its boundaries and inflow on the left.
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The Navier-Stokes equations for steady flow can be derived by dropping the
time derivative in (4.1a) and the time periodicity boundary condition in (4.1f). The
following derivation leads to a similar result whether we consider the Navier-Stokes
equations for steady or periodic flow.

We discretize the boundary value problem in (4.1) using isogeometric analysis
as it enables a high-continuity solution. We find the system of equations of the
full-order model

[
A𝑢1𝑢1 A𝑢1𝑢2 A𝑢1𝑝
A𝑢2𝑢1 A𝑢2𝑢2 A𝑢2𝑝
A𝑝𝑢1 A𝑝𝑢2 A𝑝𝑝

][
𝝓𝑢1𝝓𝑢2𝝓𝑝

]+[
h𝑢1(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑢2(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)
h𝑝(𝝓𝑢1 ,𝝓𝑢2 ,𝝓𝑝)

] = −[
b𝑢1
b𝑢2
b𝑝

]. (4.2)

where A𝑥𝑦 represents the mass matrix, h𝑥 the non-linear contributions and b𝑥 the
right hand side. Also, each solution vector 𝝓𝑥 is attributed a size 𝑛𝑓 . The matrices
A𝑥𝑦 and vectors h𝑥 include the time-dependent contributions.

The system of equations in Equation (4.2) involves a large number of variables,
making it computationally expensive to solve. To reduce this cost, we seek a reduced
system of equations with a much smaller number of variables, that can approximate
the solution of the full-order model more efficiently. For this purpose, we apply a
Galerkin-POD reduced-order model, which significantly lowers the computational
burden while retaining the essential features of the original system.

We first approximate the full-order model solution with

𝝓𝑥 ≈ 𝝓̃𝑥 = V𝑥 𝝓̂𝑥 . (4.3)

to reduce the number of variables. Here, each reduced-ordermodel solution variable
vector 𝝓̂𝑥 is attributed a size 𝑛𝑟 . The size of 𝝓̂𝑥 is much smaller than that of 𝝓𝑥 , such
that 𝑛𝑟 ≪𝑛𝑓 . We use a basisV𝑥 for each variable separately. The basis is constructed
using a discrete Proper Orthogonal Decomposition (POD), as it is an optimal basis
decomposition. It consists of a singular value decomposition of a snapshot matrix
X𝝓 [90]

X𝝓 = 𝜱𝜮𝜳𝑇 . (4.4)

The matrix 𝜱 contains the POD modes (left singular vectors), 𝜳 gives the right sin-
gular vectors and 𝜮 gives the singular values in the diagonal. The snapshot matrix
X𝝓 contains 𝑚 full-order space-time solutions in its columns. We fill the snapshot
matrix using space-time solutions obtained using specific input parameters 𝜇, being
selected samples from the broader parameter space Θ.
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The singular values are arranged in ascending order, with 𝜎𝑖 < 𝜎𝑖+1 < 𝜎𝑚, re-
flecting the significance of the corresponding modes. We determine the basis V by
selecting the first 𝑛𝑟 columns of 𝜱, based on a fraction of the missing energy in the
basis

𝜖POD = ∑𝑛𝑟
𝑖 𝜎𝑖

∑𝑚
𝑖 𝜎𝑖

. (4.5)

This approach allows for the selection of a basis size that meets the desired informa-
tion requirements of the basis.

We perform aGalerkin projection on (4.2) and use (4.3) to get the reduced system
of equations

[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
A𝑢1𝑢1 A𝑢1𝑢2 A𝑢1𝑝
A𝑢2𝑢1 A𝑢2𝑢2 A𝑢2𝑝
A𝑝𝑢1 A𝑝𝑢2 A𝑝𝑝

][
V𝑢1𝝓𝑢1
V𝑢2𝝓𝑢2
V𝑝𝝓𝑝

]

+[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
h𝑢1(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
h𝑢2(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
h𝑝(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)

] = −[
V𝑢1
V𝑢2
V𝑝

]
𝑇

[
b𝑢1
b𝑢2
b𝑝

],

(4.6)

which can be rewritten with denser notation as

[
Â𝑢1𝑢1 Â𝑢1𝑢2 Â𝑢1𝑝
Â𝑢2𝑢1 Â𝑢2𝑢2 Â𝑢2𝑝
Â𝑝𝑢1 Â𝑝𝑢2 Â𝑝𝑝

][
𝝓̂𝑢1
𝝓̂𝑢2
𝝓̂𝑝

]+[
ĥ𝑢1(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
ĥ𝑢2(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)
ĥ𝑝(V𝑢1𝝓𝑢1 ,V𝑢2𝝓𝑢2 ,V𝑝𝝓𝑝)

] = −[
b̂𝑢1
b̂𝑢2
b̂𝑝

], (4.7)

using

Â𝑥𝑦 = V𝑇𝑥A𝑥𝑦V𝑇𝑦 , (4.8a)

ĥ𝑥 (⋅) = V𝑇𝑥 h𝑥 (⋅) , (4.8b)
b̂𝑥 = V𝑇𝑥 b𝑥 . (4.8c)

The place-holders 𝑥 and 𝑦 represent 𝑢1, 𝑢2 or 𝑝 respectively. A𝑥𝑦 are the blocks of
the stiffness matrix and h𝑥 are the blocks of the non-linear contribution respectively.
We refer to this model as the reduced model.

Evaluating the non-linear operators ĥ𝑥 (⋅) in (4.7) remains dependent of the size
of the full-order model 𝑛𝑓 . For each evaluation, the first step is to compute 𝝓𝑥 using
(4.3), to determine h𝑥 , both of which are operations that depend on size 𝑛𝑓 . Follow-
ing this, the result is projected onto the basis V𝑥 to obtain ĥ𝑥 (⋅). The non-linear
terms are hyper-reduced to address this bottleneck.



4.2 Hyper-reduction using empirical interpolation methods

4

75

We adopt the group of empirical interpolation methods as the hyper-reduction
technique. Here, the range of the non-linear operator is approximated by restricting
the output in the subspace spanned by 𝑛ℎ𝑟 columns in the basis U = {𝒖1, ...,𝒖𝑛ℎ𝑟 },

h𝑥 (V𝑥 𝝓̂𝑥) ≈ U𝑥c𝑥 , (4.9)

with c𝑥 being a coefficient vector. We find the non-linear basis U𝑥 by applying a
discrete proper orthogonal decomposition (4.4) on a snapshot matrix Xh with sam-
ples of h𝑥 (𝝓𝑥) for converged 𝝓𝑥 in (4.2) in its columns. The snapshot matrix Xh
contains samples for same the set of input parameters 𝜇 as for X𝝓 .

In (4.9) we introduce new variables c𝑥 , that need to be solved. To approximate c𝑥 ,
we use a sampling operator. Specifically, we introduce a coarse sampling operator
P𝑥 which is a matrix composed of 𝑛ℎ𝑟 selected columns from the identity matrix of
size 𝑛𝑓 ×𝑛𝑓 . This operator is used to sample both sides of (4.9),

P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥) ≈ P𝑇𝑥U𝑥c𝑥 . (4.10)

We can now easily approximate c𝑥 by multiplying both sides with (P𝑇𝑥U𝑥)
−1
. We

find
c𝑥 ≈ (P𝑇𝑥U𝑥)

−1
P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥) . (4.11)

The non-linear operator of the reduced-order model ĥ𝑥 (V𝑥 𝝓̂) can be approxi-
mated, independent of an evaluation of size 𝑛𝑓 , with

ĥ𝑥 (V𝑥 𝝓̂) = V𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥)
≈ V𝑇𝑥U𝑥c𝑥
≈ ĥhr,𝑥 = V𝑇𝑥U𝑥 (P𝑇𝑥U𝑥)

−1
P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥) .

(4.12)

The sampling operator P𝑥 strategically selects a set of indices leading to an accu-
rate approximation of the non-linear operator. The matrix V𝑇𝑥U𝑥 (P𝑇𝑥U𝑥)

−1
can be

pre-computed online and the sampled non-linear operator P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥 ) is only eval-
uated on 𝑛ℎ𝑟 interpolation indices.

The hyper-reduced system of equations reads as

[
Â𝑢1𝑢1 Â𝑢1𝑢2 Â𝑢1𝑝
Â𝑢2𝑢1 Â𝑢2𝑢2 Â𝑢2𝑝
Â𝑝𝑢1 Â𝑝𝑢2 Â𝑝𝑝

][
𝝓̂𝑢1
𝝓̂𝑢2
𝝓̂𝑝

]+[
ĥhr,𝑢1(𝝓̂𝑢1)
ĥhr,𝑢2(𝝓̂𝑢2)
ĥhr,𝑝(𝝓̂𝑝)

] = −[
b̂𝑢1
b̂𝑢2
b̂𝑝

]. (4.13)

We refer to this model as the hyper-reduced model.
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The key to simplifying the complexity of the non-linear operator is to identify
a sampling operator P𝑥 that effectively selects the specific indices most suitable for
accurate approximation. The sampling points in P𝑥 can be determined in various
ways and the success of the method depends entirely this choice. In this chapter we
use three choices for P𝑥 .

We employ the Discrete Empirical Interpolation Method (DEIM) [23], Q-DEIM
[35], and S-OPT [81] sampling techniques to determine the sampling operator P𝑥 .
DEIM utilizes a greedy algorithm to select indices by sequentially identifying max-
ima in the basis, while Q-DEIM determines P𝑥 through QR factorization with col-
umn pivoting, making it independent of the basis ordering. Both DEIM and Q-DEIM
aim to maximize the smallest singular values of the projection matrix. In contrast,
S-OPT finds P𝑥 by maximizing the product of all singular values and enhancing the
orthogonality of the sampling operator’s columns, offering a different approach to
selecting the optimal sampling points.

4.3 Finite element hyper-reduction with isogeometric
solutions

In the hyper-reduced system of equations, (4.13), ĥhr,𝑥 in (4.12) is evaluated in two
parts. The first part, V𝑇𝑥U𝑥 (P𝑇𝑥U𝑥)

−1
, can be pre-computed. However, the second

part, P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥), is evaluated in the online stage uppon every iteration.

We use the libROM library [25] as our reduction tool. This open-source library
is specifically designed for model order reduction, helping to lower the computa-
tional costs of large-scale simulations while offering a variety of implemented hyper-
reduction methods. To effectively evaluate P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥) in the online stage in li-
bROM, we construct a sample mesh containing only the degrees of freedom to eval-
uate the sampled degrees of freedom in P𝑥 . This sample mesh is used to construct
non-linear operators that only evaluate P𝑇𝑥 h𝑥 (V𝑥 𝝓̂𝑥). Unfortunately, implement-
ing such an approach in an isogeometric analysis discretization is not trivial. The
tensor structure of isogeometric analysis makes that a large number of variables are
interrelated, which complicates the process. We therefore use the existing imple-
mentation of sample meshes for discretisations using finite elements.

We use the finite element framework as an intermediate step in hyper-reduction
in isogeometric analysis. In this way we are able to exploit the high contuinity asso-
ciated with isogeometric analysis discretisations and the flexibility of finite element
discretisations. We first introduce the solution in the isogeometric analysis frame-
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work 𝝓I and the solution in the finite element framework 𝝓F. These solutions are
virtually the same as 𝝓F is 𝝓I projected onto the finite element space.

We project the isogeometric solution on the finite element space to get the finite
element solution using

𝝓F = K𝝓I. (4.14)

The operator K can be interpreted as

K = KI2FKKI (4.15)

where KKI is an operator that represents knot insertion, making the isogeometric
shape functions 𝐶0-continuous. KI2F is the operator projecting the IgA solution
onto the finite element solution.

The operator KKI re-inserts the internal knots such that the knot vectors asso-
ciated with the mesh consist entirely of repeated internal knots. It is important to
note that whileKKI allows for the possibility of reduced smoothness in the solution,
it does not inherently decrease the smoothness. Instead, it maps the solution into a
larger space, but only a small portion of that space is utilized. After applying KKI,
the solution still has its initial continuity.

The basis V𝑥 in the finite element contrext is constructed as follows. First, we
find the isogeometric analysis solution 𝝓I by evaluating the full-order model in the
offline stage for a choice of input parameter 𝜇. Then, we apply (4.14) to find 𝝓F and
construct the snapshot matrix X𝝓 with 𝝓F in its columns. We apply a POD to find
the basis V𝑥 for reach variable 𝑥 .

The basis assocatiated with the construction of the non-linear operator V𝑥 in
the finite element contrext is constructed similarly. With 𝝓F allready available, we
evaluate the non-linear contribution on the finite element space hF (𝝓F). We only
have to construct a snapshot matrix Xh with hF (𝝓F) in its columns. U𝑥 is found by
applying a POD on Xh.

With V𝑥 and U𝑥 in the finite-element context available, we simply have to con-
struct Â𝑥𝑦 and b̂𝑥 on the finite-element discretisation. We can evaluate the sam-
pling operator P𝑥 on a finite-element space and solve (4.13) efficiently in the finite-
element context.
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4.4 Numerical experiments
In this section, we apply the hyper-reduced model. First, we apply the model to
two-dimensional stationary flow as verification. We study one case in which the
viscosity is systematically varied. Hereafter, we assess three parameter studies con-
sidering variations in the parameters period, viscosity, and motion profile on the
hyper-reducability of the problem. The same cases have been studied in [89] (Chap-
ter 3) for the reduced-order model.

Similar to [89], the full-order model, we stabilize the reduced-order model and
hyper-reduced order model with residual-based variational multiscale turbulence
modelling [11, 12] and discontinuity capturing such as in [61]. The boundary condi-
tion on the internal boundary 𝑃int is enforced weakly [13]. Appendix 4.A gives the
numerical parameters required for the stabilisation, the boundary conditions and
the pseudo-transient relaxation. We discretize the spatial domain with five second-
order NURBS patches with 68 control points between the foil section and the inflow
boundary, 62 control points over the length of the foil section and 78 control points
between the foil section and the outflow boundary. The total number of variables
for the spatial discretisation is 𝒪 (9 ⋅ 104). The temporal discretization employs 49
control points for space-time simulations. The total number of variables for the
space-time discretisation is 𝒪 (2.7 ⋅ 106).

We construct a snapshotmatrix X𝝓 with 30 solutions of the full-order model 𝝓𝑥
for a linear spacing of 𝜇 in a selected range in its columns. Furthermore, we con-
struct a snapshotmatrix Xh with 30 entries of h𝑥 (𝝓𝑥) with the same choices of 𝜇.
We use these to construct V𝑥 and U𝑥 . Realize that the number of columns in the
snapshot matrix limits the number of reduced order model variables, 𝑛𝑟 , and num-
ber of columns in the sampling operator P, 𝑛ℎ𝑟 . This means that 𝑛𝑟 ≤ columns(X𝝓),
and 𝑛ℎ𝑟 ≤ columns(X𝝓). Note that the number of columns in the sampling operator
P is equal to 𝑛ℎ𝑟 .

4.4.1 Verification using the Navier-Stokes equations for steady flow
First, we verify the implementation of the hyper-reduced reduced-order model in
(4.13) using a numerical experiment consisting of steady flow past a foil section with
a variation of Reynolds number. The Reynolds number describes the ratio between
inertial and viscous forces in fluid flow. We use the Reynolds number with the chord
𝑐 as the length scale,

Re = 𝑈 𝑐
𝜈 , (4.16)



4.4 Numerical experiments

4

79

with free-stream velocity 𝑈 . We study low Reynolds number flow, with Re < 1000,
below the transition regime to turbulent flow. The constant angle of attack is 2∘ and
the chord length 𝑐 = 1.

In this section, we first determine a value for 𝑛𝑟 by reducing the missing in-
formation in the basis 𝜖POD in (4.5) using the reduced-order model (without hyper-
reduction). Next, we examine the behavior of the hyper-reduced model with this
𝑛𝑟 value, focusing on the effects of the basis size and the number of samples in P,
denoted by 𝑛ℎ𝑟 .

The bases V𝑥 andU𝑥 are constructed by sampling the solutions of the full-order
model in 200 ≤ Re ≤ 800. Figure 4.2 gives the singular values assiocated with the
construction of V𝑥 and U𝑥 . The figure shows a steep initial decline in singular val-
ues associated with the construction of V𝑥 and U𝑥 . From this, we can conclude that
the problem is probably reducible and hyper-reducible.
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Figure 4.2: Singular values associated with the construction of a) the basis V𝑥 for 𝑢, 𝑣 and 𝑝, and b)
the basis U𝑥 used for the reconstruction of the non-linear contribution to the residual ĥhr,𝑥 .

We compare the solution of the reduced-order model and the hyper-reduced
model and the corresponding forces to assess the correctness of the hyper-reduced
model. We evaluate the reduced-order and hyper-reduced model at the unsampled
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Re = 416.7. The 𝑙2-norm of the error of the (hyper-)reducedmodel with the full-order
model computes as

𝜖𝑥 = √(𝝓̃𝑥 −𝝓𝑥) ⋅ (𝝓̃𝑥 −𝝓𝑥)/ √𝝓𝑥 ⋅ 𝝓𝑥 . (4.17)

The normalized error of the forces computed by the reduced-order model and
hyper-reduced model (ROM) concerning the force of the full-order model (FOM) is
computed as

𝜖𝐹 = |||
𝐹𝑅𝑂𝑀 −𝐹𝐹𝑂𝑀

𝐹𝐹𝑂𝑀
|||. (4.18)

Here, 𝐹 is a force in 𝑥1 or 𝑥2-direction.

Figure 4.3 gives the solution and force errors for the reduced-order model with
respect to the full-order model. The errors decrease upon increasing the size of
the basis V𝑥 and stabilize at 𝜖POD = 1𝑒 − 6. The decrease is not constant and shows
some fluctuation. For the upcoming results, we fix the sizes of bases V𝑥 such that
the value for the missing information in the basis 𝜖POD = 1𝑒 − 6. Beyond this point,
adding more information does not improve the solution.
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Figure 4.3: The solution (4.17) and force errors (4.18) for the reduced-order model with respect to the
full-order model.
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Figure 4.4 gives the results of the hyper-reducedmodel using the DEIM, Q-DEIM
and S-OPT sampling methods while increasing the size of U𝑥 . We use a constant
𝜖POD = 1𝑒 − 6 for the size of V𝑥 . We plot the results of the (not hyper-reduced)
reduced-order model with horizontal lines for easy comparison.
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Figure 4.4: Relative error of the solution field (4.17) as function of basis size for the DEIM [23], Q-
DEIM [35] and S-Opt [81] sampling techniques. The horizontal lines represent the errors of the (not
hyperreduced) reduced-order model results as a reference.

As expected, the errors of the hyper-reduced model 𝒪 (0.01%−10%) are larger
than those of the reduce-order model 𝒪 (0.01%−0.1%). The S-OPT sampling method
performs the best with errors < 5%. The DEIM sampling method is the worst with
errors < 12%. Using the S-OPT method, the error of the hyper-reduced model in-
creases with a factor of 𝒪 (10) with respect to the reduced-order model.

The errors of the hyper-reduced model using the DEIM and Q-DEIM sampling
method fluctuate upon increasing the size ofU𝑥 , similar to the results of the reduced-
order model with increasing the size of V𝑥 . The results of the hyper-reduced model
using the S-OPT sampling method are stable when increasing the size of U𝑥 .
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Figure 4.5 visualizes the errors of the force 𝐹 of the hyper-reduced model in 𝑥1
and 𝑥2-direction with respect to the full order model. Also here, we plot the results
of the (not hyper-reduced) reduced-order model with horizontal lines for easy com-
parison. The force errors computed with the hyper-reduced model also fluctuate for
the DEIM and the Q-DEIM sampling methods and are smaller than 10%. The force
errors computed with S-OPT sampling fluctuate less and are smaller than 4%.
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Figure 4.5: Relative error of the force (4.18) as function of basis size for the DEIM [23], Q-DEIM [35] and
S-Opt [81] sampling techniques. The horizontal lines represent the errors of the (not hyper-reduced)
reduced-order model results as a reference.

We analyze the performance of the hyper-reduced order model by comparing
its wall-clock time with that of the reduced-order and the full-order model. The
reduced-order and full-order model require 32 processors to find a solution. The
hyper-reducedmodel finds a solution using only one processor. We define the speed-
up as

speed-up = #proc FOM ⋅wall-clock time FOM
#proc ROM ⋅wall-clock time ROM

. (4.19)
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Figure 4.6 gives the typical speed-up of the reduced-order model and the hyper-
reduced model using 𝜖POD = 1𝑒 − 6 for the size of V𝑥 and U𝑥 . These results are
typical and show the great potential of the hyper-reduction methods. The speed-up
of the reduced-order model is of 𝒪 (102). The speed-up of the hyper-reduced model
is 𝒪 (105). The typical wall-clock time of the hyper-reduced model is 𝒪 (10−2) sec-
onds, allowing for real-time computations.
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Figure 4.6: Typical speed-up (4.19) of reduced-
order model (ROM), hyper-reduced model (HRM)
with respect to the full-order model (FOM).

Thehyper-reducedmodel shows the expected behaviour for the studied test case.
The errors of the solution and the forces computed by the hyper-reduced model are
acceptable and greater than the errors of the reduced-order model.

4.4.2 Towards hyper-reduction for time-periodic problems
We have been unable to successfully evaluate the hyper-reduced model for three
time-periodic problems considering flow past flapping foil sections. We have tested
the hyper-reduced model on parameter studies considering variations in the param-
eters period, viscosity, and motion profile. In these experiments, the solution did
not converge for all possible choices of the size of U𝑥 and sampling methods.
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The same three numerical experiments with the hyper-reduced model are de-
scribed elaborately in [89]. We give a short description here. In the first two exper-
iments, the heave motion is sinusoidal and given by

ℎ(𝑡) = ℎ𝑎 sin(
2𝜋𝑡
𝑇 ) , (4.20)

where 𝑇 is the period and ℎ𝑎 heave-amplitude. In the third experiment, the motion
is non-sinusoidal.

The first experiment studies the interaction between the wake produced by a
heaving foil-section and the foil-section. The interaction is characterized by the
Strouhal number

St = 2 ℎ𝑎
𝑈 𝑇 . (4.21)

The Reynolds number (4.16) is constant at Re = 800, and the motion-amplitude is
fixed at ℎ𝑎/𝑐 = 0.5.

The second experiment studies the effect of the Reynolds number on thrust.
The Reynolds number describes the ratio of inertial forces to viscous forces in fluid
flow. We explore the range of 200 ≤ Re ≤ 800. The motion-amplitude is constant at
ℎ𝑎/𝑐 = 0.5. The Strouhal number is fixed at St = 0.125.

The last experiment studies the influence of the motion profile on thrust with a
family of motion shapes characterized by

ℎ(𝑡) = ℎ𝑎 sin(𝜔𝑡 +𝜙(𝑡), ) (4.22a)
𝜙(𝑡) = 𝜙𝑎 cos(𝜔𝑡). (4.22b)

where 𝜙𝑎 describes the phase-amplitude. We use the phase-amplitude range of
0.1 ≤ 𝜙𝑎 ≤ 0.6. The motion-amplitude is constant at ℎ𝑎/𝑐 = 0.5, and the Strouhal
number is fixed at St = 0.125. The Reynolds number is constant at Re = 800.
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Figures 4.7, 4.8 and 4.9 give the singular values associated with the construction
with the solution basis V𝑥 and the basis U𝑥 used for the reconstruction of the non-
linear contribution to the residual ĥ𝑥 for the three numerical experiments.
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Figure 4.7: Singular values associated with the construction of the solution basis V𝑥 and the basis U𝑥
used for the reconstruction of the non-linear contribution to the residual ĥ𝑥 for numerical experiments
with a variation in Strouhall number.

0 10 20 3010−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104

𝑖

sin
gu

la
rv

al
ue

basis V

𝑢
𝑣
𝑝

0 10 20 3010−6
10−5
10−4
10−3
10−2
10−1
100
101
102
103
104

𝑖

sin
gu

la
rv

al
ue

basis U

mom1
mom2
mass

Figure 4.8: Singular values associated with the construction of the solution basis V𝑥 and the basis U𝑥
used for the reconstruction of the non-linear contribution to the residual ĥ𝑥 for numerical experiments
with a variation in Reynolds number.
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Figure 4.9: Singular values associated with the construction of the solution basis V𝑥 and the basis U𝑥
used for the reconstruction of the non-linear contribution to the residual ĥ𝑥 for numerical experiments
with a variation in motion profile.

There are at least two reasons why the hyper-reduced model may fail to find a
solution. First, the assumption in (4.9) where we approximate h𝑥 (V𝑥 𝝓̂𝑥)might not
hold for the studied test case in the time-periodic frame work. Second, it might also
be possible that with the approximation in (4.11) the stability of the time-periodic
space-time system is altered such that it is unable to find a solution.

The figures indicate that the singular values associated with the construction of
the basisU𝑥 decay slower than the ones associated with the construction of the basis
V𝑥 for the three experiments. The ratio of 𝜎min/𝜎max is a factor of 𝒪(102) higher for
the singular values associated with the construction of V𝑥 than the singular values
associated with the construction of the basis U𝑥 for the three experiments. Based
on (4.5), this indicates that a larger basis U𝑥 is required to capture the same amount
of information as for a basis V𝑥 and that the assumption in (4.9) might not hold.

We have studied the effect of increasing the size of the basis U beyond 30. We
increased the size of U𝑥 up to 60, by sampling additional solutions for the Reynolds
number experiment in the offline stage. The solution did also not converge for this
larger basis. Constructing an even larger basis is not feasible due to the high com-
putational costs. This can be related to a slow decay of the Kolmogorov n-width.
In other words, a disproportiol amount of information is required to reduce the ap-
proximation error sufficiently in Equation (4.9).
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One may also wonder if the approximation of the coefficient vector c𝑥 in (4.11)
holds. With approximatingh𝑥 by sampling only a small percentage of its entries, the
stability of the non-linear system in (4.7) might be adjusted. This prevents finding
a solution to the system. Similar behavior has been seen by including [19], where
they required very precize tuning of 𝜖POD in (4.5).

4.5 Conclusions
We have implemented a hyper-reduced model using empirical interpolation method
hyper-reduction techniques. The hyper-reduced model is independent of the com-
plexity that scales with the size of the full-order model.

We have successfully evaluated the hyper-reducedmodel on steady two-dimensional
flow. The solution and force error of the hyper-reduced model with respect to the
full-order model is of 𝒪 (0.01%−10%) depending on the sampling method. These
errors are larger than the ones computed by the reduce-order model, which are
𝒪 (0.01%−0.1%). The S-OPT sampling method performed the best in the hyper-
reduced model. The corresponding speed-up of the hyper-reduced model compared
to the full-order model is 𝒪 (105), which is a speed-up of 𝒪 (103) to the reduced-
order model. The typical wall-clock time of the hyper-reduced model of 𝒪 (10−2)
seconds allows for real-time computations.

We were unable to evaluate the hyper-reduced model for time-periodic flow.
This difficulty may be attributed to the linear approximation of the non-linear op-
erator or the modified stability characteristics of the hyper-reduced model. To ad-
dress these challenges, future research could benefit from exploring areas such as
the application of the empirical quadrature procedure or the development of neural-
network-based reduced-order models, such as autoencoders. Additionally, the di-
rect application of hyper-reduction in isogeometric discretizations would offer sig-
nificant advantages.
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4.A Numerical parameters
4.1 gives the numerical parameters required for the stabilisation, the boundary con-
ditions and the pseudo-transient relaxation for reproduction of the results.

Table 4.1: Numerical parameters and their corresponding values.

Parameter Value

𝑠 1
𝑎 4
𝐶𝐼 36
𝐶𝑏 8
𝐶𝑑𝑐 0.3
Δ𝜃 1.0
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5
Study of flow past a vertical-axis

wind turbine

Vertical-axis wind turbines offer significant advantages for urban applications due to
their lower noise levels, but their performance is highly sensitive to various factors re-
quiring high-fidelity simulations to optimize its performance. This chapter investigates
the application of a time-periodic reduced-order model for analyzing the flow past a
single-bladed vertical-axis wind turbine at a Reynolds number of 1000. The reduced-
order model is validated against experimental data and used to study flow character-
istics as a function of tip-speed ratio. The results demonstrate that the reduced-model
can achieve accurate predictions with significantly less data during the offline stage
compared to previous work. Additionally, the model was used to determine the op-
timal operating point of the turbine, maximizing energy production per cycle under
the given conditions. It was observed that the turbine’s energy output was negative,
likely due to the low Reynolds number used in this study. The findings suggest that the
time-periodic reduced-order model is well-suited for industrial applications involving
vertical-axis wind turbines. Future work should focus on extending the model to in-
clude parameters such as angle of attack, tip-speed ratio, and non-dimensional radius
at higher Reynolds numbers for a more comprehensive analysis. Furthermore, incor-
porating fluid-structure interaction could help in understanding potential instabilities
like flutter, further enhancing the model’s applicability in practical scenarios.
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5.1 Introduction
Wind energy is key in achieving a climate-neutral global power strategy [10], and
vertical-axis wind turbines can contribute to this goal. Unlike horizontal-axis wind
turbines, vertical-axis wind turbines are especially advantageous for urban settings
due to their lower noise levels [122]. However, their efficiency and optimal per-
formance depend on various factors such as blade design, flow conditions, and op-
erational parameters. A vast amount of research focuses on understanding these
factors, as detailed in the comprehensive reviews by [33, 110]. Among these factors,
dynamic stall is a key phenomenon that significantly impacts the vertical axis wind
turbine performance [82, 83], making accurate flow predictions essential to study
power production. In this context, parametric reduced-order modelling emerges as
a valuable tool for optimizing vertical-axis wind turbine performance. This chapter
has two primary objectives: first, to demonstrate the applicability of the reduced-
ordermodel in industrial problems, and second, to analyze the flow past vertical-axis
wind turbines and show how the reduced-order model can be utilized to identify its
optimal operating point under specific flow conditions.

We investigate the flow characteristics past a Darrieus-type vertical axis wind
turbine, as depicted in Figure 5.1, using a reduced-order model. We approximate
the flow past the turbine as two-dimensional, providing a simplified model that cap-
tures the essential features of the flow dynamics. A schematic representation of the
turbine is depicted in Figure 5.1b. In this study, we focus exclusively on the flow
around a single blade, thereby excluding the complex interactions of wake effects
between multiple blades. This approach allows for a more controlled analysis of the
interaction between the wake produced by a single blade and the blade itself.

We study the flow past the vertical axis wind turbine using a time-periodic
POD-Galerkin reduced-order model described in [89], Chapter 3. The reduced-order
model employs a time-periodic full-order model [88], Chapter 2, and a time-periodic
basis to effectively approximate the pressure and the velocity field. The reduced
model is developed and evaluated through three key stages. The first stage, the
offline stage, involves running the full-order model for different parameter values
of interest, with the resulting solutions stored in a snapshot matrix. In the second
stage, the merge stage, a basis is generated by gathering the solutions into a solu-
tion matrix and applying proper orthogonal decomposition (POD) to identify the
time-periodic basis. In the final stage, the online stage, the reduced-order model is
constructed by approximating the solution using this basis and projecting the full-
order system of equations onto it. The reduced-order model is then evaluated during
the online stage.
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(a) ©Anders Sandberg (CC BY 2.0), cropped (b)

Figure 5.1: Vertical axis wind turbine in operation and its schematical representation with inflow due
to wind.

In section Section 5.2, we introduce the model problem and the governing pa-
rameters. The latter can be leveraged for non-dimensionalization of the problem
and applying model order reduction. This section also explains the modelling ap-
proach within a non-inertial frame of reference and provides a short introduction
to both the full-order and reduced-order models. Following this, in Section 5.3, we
validate the implementation of the non-inertial frame of reference using experimen-
tal results. We study a reduced-order model built for the tip-speed ratio, which is the
ratio of the turbine’s rotational speed to the inflow velocity at a Reynolds number
of 1000. Section 5.4 evaluates the reduced-order model’s suitability for industrial
applications to vertical-axis wind turbines. We examine the amount of data needed
to construct the reduced-order model, to reduce its costs in the offline stage. Next,
in Section 5.5 we study the accuracy of the reduced-order model and explore how
variations in the tip-speed ratio affect flow characteristics. Last, in Section 5.6, we
demonstrate how the reduced-order model can be used to optimize the performance
of vertical-axis wind turbines. Conclusions are drawn in Section 5.7.

https://www.flickr.com/photos/arenamontanus/3513051949/in/photolist-6mriXc-6g3mZs-rUW3NS-8A6gow-7A7Hze-7A7K6e-7A7JM4-7A7JsK-7AbuUG-7ABAqi-7A7HVp-2jMMkGd-da4PhN-FGbkzz-ELJGmy-FDTt1U-FGbjH4-Fh4Q7h-FGbj24-ELJH7b-FAjgA8-Fy15TW-ELW3hT-FDTtaS-5vSQEY-ELJGVu-FAjjBt-Fh4Sfq-FGbmWc-Fh4T7q-FDTrq9-FGbiV2-ELW5oB-Fy165C-FDTvQ1-ELW1vg-bLk6Mp-5Z2mvw-2orbDzt-8A3aN4-7zMBDD-bgUh72-2orwcNJ-2or7ahD-2kCTKpP-cFYwAh-2kCPtFJ-GQgRus-9n1WwY-4owM6t
https://creativecommons.org/licenses/by/2.0/
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5.2 The reduced-order model of vertical axis wind
turbine

In this section, we first present themodel problem and introduce the non-dimensionalization
process within a non-inertial frame of reference. Following this, we introduce both
the full-order and reduced-order models.

The flow past the turbine is characterized by three essential non-dimensional
parameters, which are used to non-dimensionalize the model problem. The first pa-
rameter is the non-dimensional radius 𝑅̃, defined as the ratio of the turbine’s radius
𝑅 to the blade chord length 𝑐,

𝑅̃ = 𝑅
𝑐 . (5.1)

The non-dimensional radius is typically 𝑅̃ ≥ 2.5 [83]. The second parameter is the
tip-speed ratio 𝜆, which represents the ratio of the blade velocity to the free-stream
velocity 𝑈∞,

𝜆 = 𝜔𝑅
𝑈∞

. (5.2)

where 𝜔 = 2 ∗ 𝜋𝑇 with period 𝑇 . Low tip-speed ratios (𝜆 ≤ 2.5) are characterized
by large amplitude variations in angles of attack, leading to dynamic stall and a
subsequent drop in the power coefficient. At high tip-speed ratios (𝜆 ≥ 4), the turbine
experiences lower angles of attack, resulting in reduced power and force coefficients
[83]. The maximum power coefficient typically occurs between these two extremes.
The third parameter is the Reynolds number Re, defined as

Re = 𝜔𝑅 𝑐
𝜈 , (5.3)

where 𝜈 is the kinematic viscosity of the fluid. The typical Reynolds number of the
flow past a vertical axis wind turbine is 𝒪 (105) [82, 83].

5.2.1 Model problem
Wemodel the flow past the vertical axis-wind turbine using the Navier-Stokes equa-
tions for incompressible flow. The model problem reads as

𝜕𝑡u+u ⋅ ∇u+∇𝑝 −𝜈∇2u = f in 𝑄, (5.4a)
∇ ⋅u = 0 in 𝑄, (5.4b)

u = gint in 𝑃int, (5.4c)
u = gext in 𝑃𝐷ext, (5.4d)

−𝑝n+𝜈∇u ⋅n+𝑢−nu = 0 in 𝑃𝑁ext, (5.4e)
u(⋅, 0) = u(⋅,𝑇 ) in Ω. (5.4f)
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Here, 𝑄 = Ω×ℐ denotes the space-time domain with boundary 𝑃 . The space-time
boundary is decomposed in the inflow boundary 𝑃𝐷ext, the outflow boundary 𝑃𝑁ext
and the internal no-slip boundary 𝑃int. The kinematic viscosity is represented by 𝜈 ,
f denotes a dimensionless external force which is described in more detail later. Di-
mensionless gint and gext are the prescribed velocities on the interior and exterior
boundaries. Note that using (5.4f), instead of an initial condition, transforms the
time-dependent problem into a boundary value problem.

Figure 5.2 visualizes the spatial domain in its inertial frame of reference Ωiner
and its boundaries Γ. The rotation of the vertical-axis wind turbine in Figure 5.1b is
represented by rotation of the internal boundary by moving Γint.

Γint(𝑡) Γ𝑁ext

Γ𝐷ext

Ωiner

𝑈∞

Figure 5.2: Schematical representation of the spatial domain in an inertial frame of reference with its
boundaries. The arrows on the left indicate the direction of the flow.

5.2.2 The non-inertial frame of reference

We model the flow around the blade of a vertical-axis wind turbine using a non-
inertial reference frame. This approach allows us to use a simple mesh, as it elim-
inates the need to account for the full motion of the turbine within the mesh by
moving Γint.

The non-inertial domain Ωnon-iner is illustrated in Figure 5.3. Here, the rota-
tion of the vertical-axis wind turbine, depicted in Figure 5.1b is modelled, through
a combination of the inflow into the domain, gext, and an external forcing term, f.
The motion of the internal boundary Γint(𝑡) can be used to model blade instabilities,
such as flutter. However, we choose it as time-independent, resulting in gint = 0.
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𝑅̃ = 𝑅/𝑐

𝑐

𝑙r
𝑥2

𝑥1
Ωnon-iner

𝜃̃𝒓 = 𝒓/𝑐

Figure 5.3: The domain Ω in a non-inertial frame of reference surrounding a blade of a vertical axis
wind turbine. The coordinates 𝑥 and 𝑦 are in units of chord 𝑐.

In Figure 5.3, 𝜃 represents the azimuthal angle, which is zero when the blade is
aligned with the external flow. The rod is attached to the turbine blade at a distance
𝑙r from the blade tip. The coordinate ̃𝒓 relates the centre of rotation to the domain.
Its dimensionless form, with respect to the chord 𝑐, reads as ̃𝒓 = 𝒓/𝑐.

We non-dimensionalize the boundary velocity with respect to the rotational ve-
locity of the turbine blade 𝜔𝑅. With this, governing parameters can be set freely
without affecting each other. Then, we decompose the inflow boundary velocity
into two components,

gext = grot +g∞ on Γ. (5.5)

Here, the velocities denoted by the subscript rot correspond to the inflow generated
by the turbine’s rotation, while those with the subscript ∞ represent the external
turbine inflow due to 𝑈∞. The inflow velocities are non-dimensionalized with re-
spect to the rotational velocity of the foil section, 𝜔𝑅.
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The non-dimensional inflow due to the rotation of the turbine is

grot =
𝜔𝒓
𝜔𝑅 = ̃𝒓

𝑅̃ in Γ. (5.6)

The non-dimensional inflow due to the external turbine inflow 𝑈∞ reads as

g∞ = 𝑈∞
𝜔𝑅 [cos𝜃sin𝜃 ] =

1
𝜆 [

cos𝜃
sin𝜃 ] in Γ. (5.7)

The forcing term is composed of two components: the centrifugal force, denoted
by the subscript ce, and the Coriolis force, denoted by the subscript co. The split is
expressed as

f = fce + fco in Ωnon-iner. (5.8)

The centrifugal force is non-dimensionalized with respect to the chord length
and the blade velocity. It reads as

fce = 𝜔2𝒓 𝑐
𝜔2𝑅2 = 𝒓 𝑐

𝑅2 = 𝒓/𝑐 1
(𝑅/𝑐)2 = ̃𝒓 1

𝑅̃2 . in Ωnon-iner. (5.9)

The Coriolis force is similarly non-dimensionalized, using a coefficient 𝑓 (𝑅̃,𝜔, 𝑐).
This coefficient is selected to ensure consistencywith the chosen non-dimensionalization
of other parameters. The resulting non-dimensional Coriolis force is denoted as

fco =
2
𝜆 𝑓 (𝑅̃,𝜔, 𝑐) [−sin𝜃cos𝜃 ] in Ωnon-iner. (5.10)

5.2.3 Evaluation of the full-order model
The full-order model is evaluated in the offline stage [88]. It employs space-time
isogeometric analysis [58], where space and time are treated equally, and the varia-
tional multi-scale method as turbulence model [12]. Figure 5.4 depicts the domain
and indicates the orientation of the NURBS patches. To reduce computational de-
mands of the offline stage, the size of the domain is reduced to three chords instead of
the recommended eight chords to exclude influences of the inflow boundary [14, 88].
This means that the inflow boundary might have a small effect on the results, but
we can use fewer control points to discretize the domain between the foil section
and the inflow boundary.
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In this discretization, the patches are refined to 34 control points between the
foil section and the inflow boundary, 62 control points along the foil section’s length,
and 78 control points between the foil section and the outflow boundary. Addition-
ally, time is discretized using 49 control points. Overall, this discretization utilizes
only 50% of the control points compared to the flapping foil simulations in Chapter 3.

Ωnon-iner

Figure 5.4: Schematic representation of NURBS patches in the domain Ωnon-iner, surrounding the hy-
drofoil. The five NURBS patches are indicated with a dotted line.

5.2.4 Model reduction
We create a POD-Galerkin reduced-order model for a single-bladed vertical-axis
wind turbine for a variation of the tip-speed ratio 𝜆 (5.2), following [89]. In the
offline stage, we sample space-time solutions for values of 𝜆 within the parameter
range 2 ≤ 𝜆 ≤ 6, which corresponds to the typical operating range [83]. Then, we
construct a POD-basis in the merge stage using these samples to create a reduced-
order model.

The reduced order-model approximates the entire space-time solution 𝝓 of the
full-order model using a solution basisV for each variable. The approximation reads
as

𝝓𝑢1 ≈ V𝑢1 𝝓̂𝑢1 , (5.11a)
𝝓𝑢2 ≈ V𝑢2 𝝓̂𝑢2 , (5.11b)
𝝓𝑝 ≈ V𝑝𝝓̂𝑝 . (5.11c)

where 𝝓̂ are the reduced variables.
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To investigate the amount of data required in the offline stage for constructing
the reduced-order model, we employ two sets of bases {V𝑢1 , V𝑢2 , V𝑝}. The two basis
sets are denoted with Basis A and Basis B. Basis A is constructed with 30 samples
in the offline stage. Basis B has a much lower sampling density and is constructed
with 10 samples in the offline stage. In both bases, the samples are distributed with
equal distances over the sampling range. Figure 5.5 depicts the distribution of the
sample points with black vertical lines. Bases B is constructed at one third of the
costs of Bases A.

A

B
𝜆 = 2 𝜆 = 6

Figure 5.5: Schematical representation of the distribution of samples of solutions in the offline stage
for 2 ≤ 𝜆 ≤ 6 as black vertical lines. Sample set A contains 30 samples, whereas sample set B contains
10 samples. The reduced-order model is evaluated at the non-sampled blue vertical thick lines.

We evaluate the reduced-order model at five points covering the parameter
space for both bases. In Figure 5.5 the model evaluation points are indicated with
green vertical lines. The evaluation points are chosen such that their distance to the
two adjacent sampling points is the longest and are denoted with 𝜆1, 𝜆2, 𝜆3, 𝜆4 and
𝜆5. The evaluation points for Basis A are

[𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5] = [2.07, 3.03, 4.00, 4.97, 5.93],

and for Basis B are

[𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5] = [2.22, 3.11, 4.00, 4.89, 5.78].

We evaluate the reduced-order model using the maximum available reduced-
variable size, equal to the number of samples taken in the offline stage.
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5.3 Validation using the full-order model
To ensure the correctness of the implementation of the rotating domain in a non-
inertial frame of reference, introduced in 5.2, we compare our numerical results to
experimental results. We compare the results computed by the full-order model, at
a Reynolds number of 103, to a study that explores the occurrence of dynamic stall
by Le Fouest & Mulleners [82].

The physical experiments were conducted in a recirculating water channel us-
ing high-speed particle image velocimetry (PIV) to measure the flow field around a
scaled H-type Darrieus wind turbine. The experiments focused on a single turbine
blade to isolate the flow development around the blade and eliminate interactions
with the wakes of other blades. For each trial, the turbine blade began at rest, ori-
ented towards the incoming flow, and was then accelerated to its rotational speed.
After five initial cycles, time-resolved PIV data were collected over 19 turbine rev-
olutions and the results were subsequently phase-averaged. The experiments are
conducted at a Reynolds number of 5 ⋅ 104.

We compare our numerical results with physical experiments conducted at a
non-dimensional radius of 𝑅̃ = 2.5 and a tip-speed ratio of 𝜆 = 3.0. The correspond-
ing results are shown in Figure 5.6. At the start of its orbit, the leading edge of the
blade is oriented into the flow. As the rotation begins, the effective angle of attack
increases, reaching its maximum at 𝑡/𝑇 = 0.25. At this point, the flow begins to sep-
arate, and as the blade continues to rotate, a vortex is shed. By 𝑡/𝑇 = 0.5, the trailing
edge is now facing into the flow, and the blade interacts with the shed vortex. As the
blade rotates further, it experiences a negative angle of attack, causing the vorticity
on the pressure side to increase and the flow to reattach.

In our simulations, flow separation occurs much earlier than in the experiments.
While the figures provide some indication of when this separation begins, it can
be challenging to pinpoint the exact moment. In the simulations, the flow remains
attached only until 𝑡/𝑇 = 0.88, whereas in the experiments, it appears attached at
𝑡/𝑇 = 0.00 and during the interval 0.69 < 𝑡/𝑇 < 1. This discrepancy is expected due to
the 50-fold higher Reynolds number in the experiments. In both cases, a separation
bubble first forms at the leading edge of the blade, which later connects with another
separation bubble that grows from the trailing edge.
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𝑡/𝑇 = 0.88

𝑡/𝑇 = 0.69

𝑡/𝑇 = 0.58

𝑡/𝑇 = 0.50
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(a) full-order model, Re = 103, vis. u. VisIt
[24]

10 5 0 -5 -10

𝑡/𝑇 = 0.88

𝑡/𝑇 = 0.69

𝑡/𝑇 = 0.58

𝑡/𝑇 = 0.50

𝑡/𝑇 = 0.30

𝑡/𝑇 = 0.26

𝑡/𝑇 = 0.15

𝑡/𝑇 = 0.00

(b) phys. experiment [82], Re = 5 ⋅ 105

Figure 5.6: Vorticity 𝜔𝑥3 of the flow past a vertical axis wind turbine a) computed by the full-order
model and b) from experimental kindly supplied by Le Fouest & Mulleners conducted in 2022 [82] at
𝑡/𝑇 = [0.00,0.15,0.26,0.30,0.50,0.58,0.69,0.88]. 𝜆 = 3.0, 𝑅̃ = 2.5.
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The measured and computed wake angles show close alignment for the first
three time-stamps, and the onset of vortex growth occurs at approximately the same
time in both cases. Despite the difference in Reynolds number between the simu-
lations (Re =103) and experiments (Re = 5 ⋅ 104), the overall agreement in the wake
shape is satisfactory. Based on these results, we can conclude that the implementa-
tion of the rotating domain is correct.

5.4 Data collected in the offline stage
We evaluate the performance of the reduced-order model using two different sam-
pling densities during the offline stage. This provides one basis built with a large
amount of data and another basis constructed with a smaller amount of data. Since
the computational costs in the offline stage are directly tied to the number of sam-
ples taken, reducing the number of samples is advantageous. The goal is to provide
practical insights into the model’s performance when supplied with a more practi-
cal basis, with less data from the offline stage. We evaluate the reduced-order and
full-order models at 𝜆1, 𝜆3 and 𝜆5 as these points represent the parameter space best.

To assess the accuracy of the reduced-order model for both bases, we compute
the normalized 𝑙2-norm of the error for the discretized solution variables. We de-
note the two velocity variables 𝑢1 and 𝑢2, and the pressure variable 𝑝, as 𝑥 . The
error is defined as the difference between the full-order solution, 𝝓𝑥 , and the fully
reconstructed reduced-order solution, 𝝓̃𝑥 , across the entire space-time domain,

𝜖𝑥 = √(𝝓̃𝑥 −𝝓𝑥) ⋅ (𝝓̃𝑥 −𝝓𝑥)/ √𝝓𝑥 ⋅ 𝝓𝑥 . (5.12)

Figure 5.7 presents the errors of the reduced-order model solution field com-
pared to the full-order model for both bases. The results show a strong agreement
between the reduced-order and full-order models for both Basis A and Basis B. The
errors for both solution fields remain below 1%, while the pressure errors are be-
low 3%. The average errors for each basis are indicated by black dashed lines. As
expected, the average errors associated with Basis B, which has a lower sampling
density, are slightly higher than those associated with Basis A, which has a higher
sampling density. However, the average difference in error between the two bases
is minimal.
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Figure 5.7: Errors of the solution fields of the reduced-order model with respect to the full-order model
for variables 𝑢1, 𝑢2 and 𝑝 for basis A and B. The dashed lines black indicate averages of the errors per
basis. 𝑅̃ = 2.5 and Re = 1000.

The pressure solution shows the largest errors. In particular, for Basis B, the
large error associated with 𝜆1 stands out. This tip-speed ratio is the most difficult
to predict among those considered, due to it having the largest separation and the
fact that it is represented by the smallest basis.

We evaluate the accuracy of the computed forces by determining the average
error and root mean square error for each component. For a generic force F, these
are computed as follows

𝜖avg =
1
𝑛𝑓

𝑛𝑓
∑
𝑖=1

F̃ℎ(𝑡𝑖) −Fℎ(𝑡𝑖), (5.13)

𝜖2RMS =
1
𝑛𝑓

𝑛𝑓
∑
𝑖=1

(F̃ℎ(𝑡𝑖) −Fℎ(𝑡𝑖))
2 . (5.14)

Here, F̃ represents the force computed by the reduced-order model in either the 𝑥1 or
𝑥2 direction, while F denotes its counterpart from the full-order model. The number
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of samples on which the force is evaluated is denoted by 𝑛𝑓 . We non-dimensionalize
the error with the range of the data, such that

𝜖navg =
𝜖avg
Δ𝐹 , (5.15)

𝜖nRMS =
𝜖RMS
Δ𝐹 . (5.16)

Figure 5.8 presents the average and root mean square errors of the forces com-
puted by the reduced-order model in comparison to the full-order model. The errors
for both Basis A and Basis B fall within the acceptable range, with 𝜖nRMS < 1.1% and
𝜖navg < 10% of the range of the data. For the forces in the 𝑥1 direction, the errors are
of similar magnitude for both bases. However, in the 𝑥2 direction, the accuracy of
the force predictions deteriorates more significantly, indicating that forces in this
direction are more challenging to predict accurately with a basis with less informa-
tion. These errors decrease as 𝜆 increases. This is because higher tip-speed ratios
have less flow separationwhich is better captured on the basis with less information.
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Figure 5.8: Normalized root mean square error and average error of the forces computed by the
reduced-order model with respect to the full-order model for basis A and B. The dashed black lines
indicate averages of the errors per basis. 𝑅̃ = 2.5 and Re = 1000.

The typical speed-up, defined as

speed-up = wall-clock time FOM
wall-clock time ROM

. (5.17)
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is 𝒪(70) for both bases, which is considerably lower than the speed-up of 800 re-
ported in previous work [89]. This discrepancy is primarily due to the full-order
model being faster in the current study, owing to the lower number of control points
used in the discretisation. The computational cost of evaluating the reduced-order
model remains comparable, with a typical wall-clock time of 𝒪(3) minutes on 32
cores.

The performance of both Basis A and Basis B is comparable. However, given the
lower computational costs in the offline stage associated with Basis B, we choose to
use Basis B for further computations.

5.5 Tip-speed ratio study
We study the forces, power, and flow fields computed by the reduced-order model
for the tip-speed ratios 𝜆1, 𝜆2, 𝜆3, 𝜆4 and 𝜆5 to assess the performance of the vertical
axis wind turbina at Re = 1000. We align the force vectors with the axis system in
Figure 5.3. The orientation of the force vectors is depicted in Figure 5.9.

𝐹2
𝐹1𝑥2

𝑥1
Figure 5.9: Orientation of the force vectors in the rotating domain in Figure 5.3.

Figure 5.10 depicts the force coefficients computed by the reduced-order and
full-order models. The force coefficients are defined as

𝐶𝑥 =
𝐹

1
2 𝜌 𝑈 2

b 𝑐
, (5.18)

with density 𝜌. We use the blade velocity 𝑈b = 𝜔 ⋅ 𝑅 as reference velocity instead
of 𝑈∞ to make the force coefficient independent of the tip-speed ratio 𝜆. The com-
puted forces from the reduced-order model show good agreement with those from
the full-order model. The only exception occurs at the lowest value of 𝜆, denoted as
𝜆1, where the reduced-order model slightly deviates in its prediction of the vertical
force coefficient.

The turbine blade generates thrust only for a brief period at the two lowest tip-
speed ratios, 𝜆1 and 𝜆2. Here, the interaction of the produced vortex with the blade
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gives a net thrust for a short moment. For higher tip-speed ratios, the blade is un-
able to overcome drag and thus does not produce thrust at all. This behavior may
be attributed to the low Reynolds number considered in the analysis. Since the flow
remains separated for almost the entire rotation of the blade, the drag is large.
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Figure 5.10: Force coefficients computed by the reduced-order model and full-order model. Computed
with basis B. 𝑅̃ = 2.5 and Re = 1000.

Figures 5.11 and 5.12 visualize the flow development during a full cycle of the
blade for tip-speed ratios 𝜆1 = 2.2 and 𝜆2 = 3.1. For both tip-speed ratios, the sepa-
ration bubble begins to grow at 𝑡/𝑇 = 0. The flow is separated for almost the entire
rotation of the blade. A vortex is shed at 𝑡/𝑇 = 3/8 for the blade with 𝜆1, while for
the blade with 𝜆2, it is shed slightly later at 𝑡/𝑇 = 4/8. Additionally, the separation
bubble for the blade with 𝜆2 is smaller and grows further downstream on the blade.
This trend continues as 𝜆 increases beyond 𝜆2. By comparing Figure 5.11 with Fig-
ure 5.10, we observe that the highest thrust is generated just before the separation
bubble is shed.
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Figure 5.11: Magnitude of the velocity ‖u‖ for 𝜆1 = 2.2 computed by the reduced-order model at 𝑡 = 0,
𝑡 = 1

4𝑇 , 𝑡 =
2
4𝑇 , 𝑡 =

3
4𝑇 using basis B. 𝑅̃ = 2.5 and Re = 1000. Visualized using VisIt [24].
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Figure 5.12: Magnitude of the velocity ‖u‖ for 𝜆2 = 3.1 computed by the reduced-order model at 𝑡 = 0,
𝑡 = 1
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3
4𝑇 using basis B. 𝑅̃ = 2.5 and Re = 1000. Visualized using VisIt [24].
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5.6 Optimisation of tip-speed-ratio for energy
production

We investigate the energy production of the single-bladed vertical axis wind turbine
over a full operational cycle. The objective is to demonstrate that the reduced-order
model can be effectively utilized to optimize the turbine’s performance for chosen
flow and operation conditions. We evaluate the reduced-order model at Re = 1000
and 𝑅̃ = 2.5.

We evaluate the energy produced by the turbine using the energy coefficient,
which is defined as

𝐶𝐸 = 1
𝑇 ∫

𝑇

0
𝐶𝑃 (𝑡) d𝑡. (5.19)

Here, the power coefficient 𝐶𝑃 (𝑡) is given by

𝐶𝑃 (𝑡) =
𝑃(𝑡)

1
2 𝜌 𝑈 3

b 𝑐
(5.20)

where the power 𝑃(𝑡) is computed as 𝑃(𝑡) = 𝐹(𝑡) ⋅𝑈b. It is important to note that due
to the forward motion of the blade, 𝑈b is negative in the coordinate system shown
in Figure 5.9. The energy coefficient is similar to the average of the produced power
over one cycle.

Figure 5.13 gives the energy coefficient calculated by the reduced-order model.
The model is evaluated at 81 linearly spaced points within 2 ≤ 𝜆 ≤ 6 resulting in a

0 1 2 3 4 5 6 7−0.2

−0.15

−0.1

−0.05

0

𝜆

𝐶 𝐸

Figure 5.13: Produced energy by the blade of the vertical axis wind turbine as a function of tip-speed
ratio 𝜆. 𝑅̃ = 2.5 and Re = 1000.
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resolution of Δ𝜆 = 0.05. This accuracy is considered small enough for our purposes.
The cost of the online stage is equivalent to 1.16 full-order model evaluations. As a
result, the total cost of creating and evaluating the reduced-order model for all the
data points is comparable to that of 11.16 full-order model evaluations.

The produced energy is negative across the entire range of tip-speed ratios stud-
ied under the chosen flow conditions, indicating that the turbine blade consumes
more energy than it generates. This outcome may be influenced by the specific flow
conditions, such as the selected Reynolds number and other operating conditions of
the turbine. The flow past the turbine blade is separated for almost the entire rota-
tion of the blade, giving a high drag. This can be seen in Section 5.3 and Section 5.5.
The reduced-order model identifies the optimal operating point at the lowest tip-
speed ratio within the studied range, 𝜆 = 2.0.

5.7 Conclusions
This chapter has investigated the application of a time-periodic reduced-ordermodel
to the flow past single-bladed vertical-axis wind turbines at a Reynolds number of
1000. We found that the reduced-order model can achieve high accuracy with less
data during the offline stage compared to earlier work. Using 10 samples of the full-
order model instead of 30, all errors were smaller than 10%. However, most of the
errors were smaller than 1%.

We examined the flow characteristics of the vertical-axis wind turbine as a func-
tion of the tip-speed ratio using the reduced-order model. At the two lowest tip-
speed ratios, 𝜆1 and 𝜆2, the turbine blade generates thrust only briefly, driven by
the interaction between the shed vortex and the blade. However, at higher tip-speed
ratios, the blade is unable to overcome drag, and does not produce thrust. This out-
come is likely due to the low Reynolds number used in the analysis, where the flow
remains separated for nearly the entire blade rotation, leading to increased drag.

We have also used the reduced-order model to determine the optimal operating
point of the vertical-axis wind turbine, where it generates the maximum energy per
cycle. The produced energy is negative, this results from the used Reynolds number.

The work in this chapter is an initial step toward industrial application of the
time-periodic reduced-order model. The current work can be extended by includ-
ing the parameters angle of attack, tip-speed ratio, and non-dimensional radius at a
higher Reynolds number into one model. This would allow a comprehensive analy-
sis of a vertical-axis wind turbine and identification of its optimal parameters. Ad-
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ditionally, this study did not address the interaction between the fluid and the struc-
ture of the blade, which could be beneficial for understanding potential instabilities
such as flutter. The motion of the blade can easily be incorporated into this model
by enforcing a motion to Equation (5.4c).
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6
Conclusions

In this dissertation we have studied techniques to analyze time-periodic flows. In
the introduction we have introduced two research goals. In this chapter we reflect
on these goals and outline future work.

6.1 Conclusions
We have defined the first goal as:

(i) Develop an efficient and accurate model for analysis of time-periodic
flows that effectively handles the costly transients inherent in these flows.

We have introduced a high-fidelity model (full-order model) specifically tailored
for time-periodic flow in Chapter 2. By employing a space-time isogeometric anal-
ysis discretisation, where space and time are treated analougously, we achieved
higher-order smoothness in space and time. The time-periodicity constraint was
enforced as a periodic boundary condition in time, transforming the original initial
value problem into a boundary value problem in both space and time.

The method ensures that the flow is exactly periodic, avoiding the need for ex-
cessively long time domains. For non-turbulent flows, time-periodic approximation
does not introduce a modelling error. However, for turbulent flows, a modeling er-
ror may be induced.

To model turbulence, we utilized residual-based variational turbulence model-
ing. Additionally, weak boundary conditions were employed to enhance accuracy
near the moving boundaries of the computational domain. We demonstrated the
conservation properties of the formulation and used a conservative traction evalua-
tion method. To address challenges related to the saddle-point nature of the under-
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lying problem, we adopted pseudo-transient continuation and employed artificial
compressibility, both of which contributed to reducing simulation time.

We successfully simulated flow past periodically moving objects. Numerical ex-
periments on stationary and moving hydrofoils demonstrated good accuracy, with
calculated drag and lift coefficients aligning with established results in the literature
and correctly capturing the history effects of the wake.

The second goal of this thesis is stated as follows:

(ii) Develop a cost-efficient and accurate reduced-order model for the anal-
ysis of time-periodic flows.

In Chapter 3, we implemented a time-periodic reduced-ordermodel. This projection-
based reduced-order model was constructed using a time-periodic basis computed
via proper orthogonal decomposition (POD) of a snapshot matrix containing high-
fidelity solutions for a parameter of interest.

The reduced-order model performed well in cases of moving hydrofoils, where
we varied the Strouhal number, Reynolds number, and heave motion profile. The
solution fields and post-processed forces of the reduced-order model showed strong
agreement with those of the full-order model, while the dimension of the solution
vector was reduced from 𝒪(106) to 𝒪(102).

The reduced-order model exhibited predictable behavior, with errors converg-
ing to zero as the size of the reduced basis increased. In a case where 30 full-order
model solutions were sampled to construct a POD basis, the errors in drag and lift
forces were both below 0.2% with respect to the full-order model.

In Chapter 5, we took a first step towards industrial application of the time-
periodic reduced-order model by applying it to the flow past single-bladed vertical-
axis wind turbines at a Reynolds number of 1000. Constructing the basis with fewer
samples, 10 instead of 30, still yielded accurate results. Most errors were below 1%,
with none exceeding 10% of the range of the force signal. This level of accuracy
demonstrates the model’s suitability for a wide range of time-periodic flow compu-
tations. We demonstrated how the model can identify the optimal operating point
of the vertical-axis wind turbine under specific flow conditions.
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Despite the success of the reduced-order model, its complexity still scales with
the size of the full-order model, preventing real-time evaluation. To address this
bottleneck, we implemented a hyper-reduced model using empirical interpolation
method hyper-reduction techniques.

In Chapter 4, we evaluated the hyper-reduced model on a case with steady two-
dimensional flow. The model achieved errors of 𝒪(0.01%−10%) with respect to the
full-order model. The speed-up of the hyper-reduced model compared to the full-
order model was 𝒪(105), with a speed-up of 𝒪(103) compared to the reduced-order
model.

We were unable to evaluate the hyper-reduced model for time-periodic flow suc-
cessfully.

6.2 Outlook
Looking ahead, there are several interesting directions for future research.

First, extending the model to three spatial dimensions would greatly enhance
its applicability. This extension would require solving a four-dimensional boundary
value problem, requiring four-dimensional meshes. To avoid the prohibitively ex-
pensive offline stages associated with such high-dimensional problems, mesh adap-
tivity could play an important role. Mesh adaptivity dynamically adjusts the mesh
resolution, refining it in areas that demand more detailed discretization. This ap-
proach reduces computational cost and improves accuracy by focusing resources
where they are most needed. In the context of isogeometric analysis, implement-
ing mesh adaptivity would involve techniques such as Immersogeometric analysis
[56, 69] or truncated splines [49, 50].

We were unable to fully evaluate the hyper-reduced model for time-periodic
flows. Future research could address this limitation by exploring methods like the
empirical quadrature procedure [146] or developing neural network-based reduced-
order models [72, 84, 118], including those that employ autoencoders.

Currently, the hyper-reduced model was implemented using hyper-reduction in
a finite element context, involving a projection of the problem onto a finite element
space. Applying hyper-reduction techniques directlywithin isogeometric discretiza-
tions could offer significant advantages.
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Whereas we have provided an initial step towards industrial application, addi-
tional verification for higher Reynolds numbers makes the more model suitable for
these. Additionally, extending the model to other industrial problems, such as opti-
mizing the performance and layout of wind farms or ship propellers, could bridge
the gap between the theoretical developments in this work and practical engineer-
ing solutions.

Finally, it may not be necessary to create the time-periodic reduced-order model
using data from a time-periodic full-order model. Instead, time-periodic data from
standard full-ordermodels could be projected onto the time-periodic full-ordermodel
to generate a time-periodic basis. Further research in this direction could broaden
the applicability of the time-periodic reduced-order model.
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Result reproduction

The results presented in this thesis can be reproduced using the delFI code, which
stands for Delft Finite-element and Isogeometric-analysis. DelFI is designed to en-
able the easy implementation of various differential equations that describe specific
physical phenomena. As a result of this thesis, DelFI now also supports projection-
based reduced-order modeling.

The code relies heavily on two libraries: MFEM and libROM. MFEM is an open-
source library for finite element methods and isogeometric analysis, while libROM
is an open-source software library specifically designed to facilitate model order re-
duction.

The results in this thesis can be reproducedwith the versions of delFI, MFEM and
libROM specified in the table below. The code can be installed by running deploy.sh
in the rom-dev branch of DelFI. The required software is stated in the beginning of
this file. The input files requird to reproduce the results in these thesis are stored at
https://doi.org/10.4121/47d91912-0773-4f96-bcb0-596acc46ac37.

The results can be plotted with Visit 3.4.1 as a minimum version. Postprocessing
scripts can be found at https://github.com/JacobLotz/ppdelfi.

Name Version Branch Git hash

DelFI rom-dev 0ea9e286ce75b74ced4e89a85c72d848c9d120d0
MFEM 4.6
libROM impl-cmake-install d61d063af1065f132a710c84cdce46b715b9c05f

Table: Required versions of the software for result reproduction.

https://doi.org/10.4121/47d91912-0773-4f96-bcb0-596acc46ac37
https://github.com/JacobLotz/ppdelfi
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• 3226: NURBS patch 2D rotation functions
• 3232: NURBS curve interpolation functions
• 3238: Fix bug in comparing two doubles in knot vector comparison
• 3404: NURBS auto knot2edge and free patch orientation
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Summary

This thesis explores fast simulation of time-periodic flows, characterized by behav-
ior that repeats at regular intervals. These flows are present in both natural and
engineered systems. Examples include flows past wind turbines, in the heart and ar-
teries, and around propellers. Due to their long time domains, time-periodic flows
pose challenges in both experimental and numerical studies. Many engineering
tasks, like optimization, require numerous model evaluations across a wide range
of inputs. We need a fast and accurate model to directly interact with the model
in the design process. To contribute to this goal, we first develop a high-fidelity
method specifically designed for time-periodic flows. Using this model, we then
create a time-periodic reduced-order model to enhance simulation efficiency.

In the high-fidelity model, we employ the isogeometric analysis framework to
achieve higher-order smoothness in both space and time. The discretization is per-
formed using residual-based variational multiscale modelling and weak boundary
conditions are adopted to enhance the accuracy near the moving boundaries of the
computational domain. We enforce the time-periodic boundary condition within
the isogeometric discretization spaces, which converts the two-dimensional time-
dependent problem into a three-dimensional boundary value problem. The motion
is known a priori and we restrict ourselves to two spatial dimensions. Application
of the computational setup to heaving and pitching hydrofoils displays very accu-
rate and exactly periodic results for lift and drag.

We use the high-fidelity model to develop a POD-Galerkin reduced-order model,
which retains inherits the features of the high-fidelity model while reducing the
number of variables in both space and time. We evaluate the reduced-order model
with numerical experiments on moving hydrofoils. Reduced-order model solutions
agree well with those of the high-fidelity model. The errors over the entire time
period of the computed forces are less than 0.2%. Our time-periodic reduced-order
model offers speed-ups ranging from 𝒪(102) - 𝒪(103) compared to the full-order
model.

The non-linear nature of the Navier-Stokes equations creates a computational
bottleneck in the reduced-order model. We explore hyper-reduction techniques to
mitigate these challenges. We focus on empirical interpolationmethods, which have
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shown promise in reducing the complexity of non-linear operators. The model per-
formedwell for the experiment with steady flow, with force and solution errors rang-
ing from 𝒪 (0.01%−10%), depending on the sampling method. The hyper-reduced
model achieves a speed-up of 𝒪(105) compared to the full-order model, and 𝒪(103)
compared to the reduced-order model. This enables real-time computations with
direct interation of the user. However, the hyper-reduced model could not provide
a solution for the time-periodic flow experiment.

To show the applicability of the reduced-order model to an industrial problem,
we apply the the model to a vertical axis wind turbine. Vertical-axis wind turbines
offer significant advantages for urban applications over conventional wind turbines
due to their lower noise levels. However, their performance is highly sensitive to
various factors requiring high-fidelity simulations to optimize its performance. The
model was used to determine the optimal operating point of the turbine, maximiz-
ing energy production per cycle under the given conditions. It was observed that
the turbine’s energy output was negative, likely due to the low Reynolds number
(ℜ = 1000) used in this study.

Future research can expand on this thesis in several ways. Extending the model
to three spatial dimensions would require solving four-dimensional boundary value
problems, potentially benefiting from mesh adaptivity techniques. Further explo-
ration of hyper-reduction methods, such as empirical quadrature procedures or neu-
ral network-based models, could enhance the model’s efficiency. Applying hyper-
reduction directly within isogeometric discretizations may also offer significant ad-
vantages. Additionally, further verification for higher Reynolds numbers and adap-
tation to other industrial applications, like wind farm and ship propeller optimiza-
tion, could bridge the current theoretical advances with practical use. Finally, using
time-periodic data from standard models to develop time-periodic reduced-order
models could expand their applicability.
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Samenvatting

Dit proefschrift onderzoekt snelle simulatie van tijds-periodieke stromen. Deze stro-
men worden gekenmerkt door gedrag dat zich op regelmatige intervallen herhaalt
en komen zowel voor in natuurlijke als in technische systemen. Voorbeelden zijn
stroming langs windturbines, in het hart en de slagaders, en rondom propellers.
Door hun lange tijdsdomeinen zijn tijds-periodieke stromen uitdagend in zowel ex-
perimentele als numerieke studies. Veel engineeringtaken, zoals optimalisatie, verei-
sen talrijke model evaluaties over een breed scala aan invoerwaarden. Met dit model
moeten we direct kunnen communiceren in het ontwerpproces. Hiervoor hebben
we een snel en accuraat model nodig. Om bij te dragen aan dit doel, ontwikkelen we
eerst een model met hoge precisie die specifiek is ontworpen voor tijds-periodieke
stromen. Met dit model creërenwe vervolgens een tijds-periodiek gereduceerd-orde
model om de efficiëntie van de simulatie te verbeteren.

In het precieze model passen we het isogeometrische analyse toe om zo een ho-
gere orde van gladheid in zowel ruimte als tijd te krijgen. De discretisatie wordt uit-
gevoerd met behulp van “residual-based variational multiscale modelling” en zwak
opgelegde randvoorwaarden omde nauwkeurigheid nabij de bewegende randen van
het rekendomein te verbeteren. We leggen de tijds-periodieke randvoorwaarde op in
de isogeometrische discretisatie-ruimten, waardoor het twee-dimensionale tijdsaf-
hankelijke probleem wordt omgezet in een drie-dimensionaal randwaardeprobleem.
De beweging is van tevoren bekend en we beperken ons tot twee ruimtelijke dimen-
sies. Toepassing van het model op bewegende vleugels levert zeer nauwkeurige en
exact periodieke resultaten op voor lift en weerstand.

We gebruiken het precieze model om een POD-Galerkin gereduceerd-orde mo-
del te ontwikkelen, dat de eigenschappen van het precieze model behoudt, terwijl
het aantal variabelen in zowel ruimte als tijd sterk wordt verminderd. We testen
het gereduceerd-orde model met numerieke experimenten op bewegende vleugel
secties. De oplossingen van het gereduceerd-orde model komen goed overeen met
die van het precieze model. De fouten over de gehele tijdsperiode van de berekende
krachten zijn minder dan 0.2%. Ons tijds-periodiek gereduceerd-orde model biedt
versnellingen in rekentijd variërend van 𝒪(102) tot 𝒪(103) vergeleken met het pre-
cieze model.
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De niet-lineaire aard van de Navier-Stokes-vergelijkingen creëert een computa-
tioneel knelpunt in het gereduceerd-orde model. We verkennen het gebruik van
hyper-reductietechnieken om deze knelpunten te omzeilen. We gebruiken “empiri-
cal interpolation methods”, die veelbelovend zijn in het verlagen van de complexi-
teit van niet-lineaire operatoren. Het model presteerde goed voor het niet tijds-
afhankelijke experiment met constante stroom. Hier variëreerde de kracht- en op-
lossingsfouten van 𝒪 (0.01%−10%). Het hyper-gereduceerde model bereikt een ver-
snellingen in rekentijd van 𝒪(105) vergeleken met het volledige model, en 𝒪(103)
vergelekenmet het gereduceerd-ordemodel. Dit maakt realtime berekeningen en di-
recte interactie van de ontwerper met het model mogelijk. Het hyper-gereduceerde
model kon echter geen oplossing vinden voor het tijds-periodieke stroomexperi-
ment.

Om de toepasbaarheid van het gereduceerd-orde model op een industrieel pro-
bleem aan te tonen, passen we het model toe op een windturbine met en verticale
turbine as. Windturbines met en verticale turbine as bieden aanzienlijke voordelen
voor stedelijke toepassingen ten opzichte van conventionele windturbines vanwege
hun lagere geluidsniveaus. Hun prestaties zijn echter zeer gevoelig voor verschil-
lende factoren, wat precieze simulaties vereist om de prestaties te optimaliseren. Het
model werd gebruikt om het optimale werkpunt van de turbine te bepalen, waarbij
de energieproductie per cyclus onder de gegeven omstandighedenwerd gemaximali-
seerd. Hierbij was de geproduceerde energie van de turbine negatief, waarschijnlijk
door het lage Reynolds-getal (ℜ = 1000) dat in deze studie werd gebruikt.

Toekomstig onderzoek kan op verschillende manieren verder bouwen op dit
proefschrift. Het uitbreiden van het model naar drie ruimtelijke dimensies zou ver-
eisen dat vier-dimensionale randwaardeproblemen worden opgelost, waarbij moge-
lijk profijt kan worden getrokken uit “mesh adaptivity” technieken. Verdere ver-
kenning van hyper-reductie methoden, zoals “empirical quadrature” procedures of
op neurale netwerken gebaseerde modellen, zou de efficiëntie van het model kun-
nen verbeteren. Toepassing van hyper-reductie direct in isogeometrische discre-
tisaties kan ook aanzienlijke voordelen bieden. Bovendien zou verdere verifica-
tie voor hogere Reynolds-getallen en toepassen op andere industriële toepassin-
gen, zoals optimalisatie van windparken en scheepspropellers, de huidige theoreti-
sche vooruitgang kunnen verbinden met praktische toepassingen. Ten slotte zou
het gebruik van tijds-periodieke gegevens van conventionele modellen om tijds-
periodieke gereduceerd-orde modellen te ontwikkelen, hun toepasbaarheid kunnen
uitbreiden.



129

Bibliography
[1] I. Abbott & A. Von Doenhoff (1959). Theory of wing sections, including a summary of airfoil data.

Dover Publications. ISBN 978048660586.

[2] I. Akhtar, A. H. Nayfeh & C. J. Ribbens (2009). “On the stability and extension of reduced-order
Galerkin models in incompressible flows: A numerical study of vortex shedding”. Theoretical
and Computational Fluid Dynamics, 23:213–237.

[3] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J. Camier, J. Cerveny, V. Dobrev, Y. Dudouit,
A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina &
S. Zampini (2021). “MFEM: A modular finite element methods library”. Computers and Mathe-
matics with Applications, 81:42–74.

[4] P. Astrid, S. Weiland, K. Willcox & T. Backx (2008). “Missing point estimation in models de-
scribed by proper orthogonal decomposition”. IEEE Transactions on Automatic Control, 53:2237–
2251.

[5] J. Baiges, R. Codina, I. Castañar & E. Castillo (2020). “A finite element reduced-order model
based on adaptive mesh refinement and artificial neural networks”. International Journal for
Numerical Methods in Engineering, 121:588–601.

[6] E. Bainomugisha, A. Carreton, T. van Cutsem, S. Mostinckx & W. de Meuter (2013). “A survey
on reactive programming”. ACM Computing Surveys, 45:1–34.

[7] G. Balducci, B. Chen, M. Möller, M. Gerritsma & R. de Breuker (2022). “Review and perspectives
in quantum computing for partial differential equations in structural mechanics”. Frontiers in
Mechanical Engineering, 8:1–26.

[8] F. Ballarin, A. Manzoni, A. Quarteroni & G. Rozza (2015). “Supremizer stabilization of POD-
Galerkin approximation of parametrized steady incompressible Navier-Stokes equations”. In-
ternational Journal for Numerical Methods in Engineering, 102:1136–1161.

[9] M. Barrault, Y. Maday, N. Nguyen & A. Patera (2004). “An ’empirical interpolation’ method:
application to efficient reduced-basis discretisation of partial differential equations.”. Comptes
Rendus Mathematique, 339:667–672.

[10] R. Barthelmie & S. Pryor (2014). “Potential contribution of wind energy to climate change
mitigation”. Nature Climate Change, 4:684–688.

[11] Y. Bazilevs & I. Akkerman (2010). “Large eddy simulation of turbulent Taylor–Couette flow
using isogeometric analysis and the residual-based variational multiscale method”. Journal of
Computational Physics, 229(9):3402–3414.

[12] Y. Bazilevs, V. Calo, J. Cottrell, T. Hughes, A. Reali & G. Scovazzi (2007). “Variational multi-
scale residual-based turbulence modeling for large eddy simulation of incompressible flows”.
Computer Methods in Applied Mechanics and Engineering, 197(1-4):173–201.

https://books.google.nl/books?id=DPZYUGNyuboC
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1109/TAC.2008.2006102
https://doi.org/10.1109/TAC.2008.2006102
https://doi.org/10.1002/nme.6235
https://doi.org/10.1002/nme.6235
http://doi.org/10.1145/2501654.2501666
http://doi.org/10.1145/2501654.2501666
http://doi.org/10.3389/fmech.2022.914241
http://doi.org/10.3389/fmech.2022.914241
https://doi.org/10.1002/nme.4772
https://doi.org/10.1002/nme.4772
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.1038/nclimate2269
https://doi.org/10.1038/nclimate2269
https://doi.org/10.1016/J.JCP.2010.01.008
https://doi.org/10.1016/J.JCP.2010.01.008
https://doi.org/10.1016/j.cma.2007.07.016
https://doi.org/10.1016/j.cma.2007.07.016


130 Bibliography

[13] Y. Bazilevs, C. Michler, V. Calo & T. Hughes (2007). “Weak Dirichlet boundary conditions
for wall-bounded turbulent flows”. Computer Methods in Applied Mechanics and Engineering,
196(49-52):4853–4862.

[14] M. Behr, D. Hastreiter, S. Mittal & T. Tezduyar (1995). “Incompressible flow past a circular
cylinder: dependence of the computed flow field on the location of the lateral boundaries”.
Computer Methods in Applied Mechanics and Engineering, 123(1-4):309–316.

[15] P. Benner, S. Gugercin & K. Willcox (2015). “A survey of projection-based model reduction
methods for parametric dynamical systems”. SIAM Review, 57:483–531.

[16] A. Benveniste & G. Berry (1991). “The synchronous approach to reactive and real-time systems”.
Proceedings of the IEEE, 79:1270–1282.

[17] A. Brooks & T. Hughes (1982). “Streamline upwind/Petrov-Galerkin formulations for convec-
tion dominated flows with particular emphasis on the incompressible Navier-Stokes equations”.
Computer Methods in Applied Mechanics and Engineering, 21(1):199–259.

[18] S. Brunton, J. Proctor & N. Kutz (2016). “Discovering governing equations from data by sparse
identification of nonlinear dynamical systems”. Proceedings of the National Academy of Sciences
of the United States of America, 113:3932–3937.

[19] S. Buoso, A. Manzoni, H. Alkadhi & V. Kurtcuoglu (2022). “Stabilized reduced-order models for
unsteady incompressible flows in three-dimensional parametrized domains”. Computers and
Fluids, 246:105 604.

[20] S. Cai, Z. Mao, Z. Wang, M. Yin & G. E. Karniadakis (2021). “Physics-informed neural networks
(PINNs) for fluid mechanics: a review”. Acta Mechanica Sinica, 37:1–62.

[21] A. Caiazzo, T. Iliescu, V. John & S. Schyschlowa (2014). “A numerical investigation of velocity-
pressure reduced order models for incompressible flows”. Journal of Computational Physics,
259:598–616.

[22] K. Carlberg, C. Farhat, J. Cortial & D. Amsallem (2013). “The GNAT method for nonlinear
model reduction: Effective implementation and application to computational fluid dynamics
and turbulent flows”. Journal of Computational Physics, 242:623–647.

[23] S. Chaturantabut & D. Sorensen (2010). “Nonlinear model reduction via discrete empirical in-
terpolation”. SIAM Journal on Scientific Computing, 32(5):2737–2764.

[24] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller,
C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp,
O. Rübel, M. Durant, J. M. Favre & P. Navrátil (2012). VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data. Chapman and Hall/CRC. ISBN 9780429105357.

[25] Y. Choi, W. Arrighi, D. Copeland, R. Anderson & G. Oxberry (2019). “libROM”. [Computer
Software] https://doi.org/10.11578/dc.20190408.3.

[26] A. Chorin (1968). “Numerical solution of the Navier-Stokes Equations”. Mathematics of Com-
putation, 22(104):745–762.

[27] A. Chorin (1997). “A numerical method for solving incompressible viscous flow problems”.
Journal of Computational Physics, 135(2):118–125.

https://doi.org/10.1016/j.cma.2007.06.026
https://doi.org/10.1016/j.cma.2007.06.026
https://doi.org/10.1016/0045-7825(94)00736-7
https://doi.org/10.1016/0045-7825(94)00736-7
http://doi.org/10.1137/130932715
http://doi.org/10.1137/130932715
http://doi.org/10.1109/5.97297
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1016/0045-7825(82)90071-8
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1016/j.compfluid.2022.105604
https://doi.org/10.1016/j.compfluid.2022.105604
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1007/s10409-021-01148-1
https://doi.org/10.1016/j.jcp.2013.12.004
https://doi.org/10.1016/j.jcp.2013.12.004
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1016/j.jcp.2013.02.028
https://doi.org/10.1137/090766498
https://doi.org/10.1137/090766498
https://doi.org/10.1201/b12985
https://doi.org/10.1201/b12985
https://doi.org/10.11578/dc.20190408.3
https://doi.org/10.11578/dc.20190408.3
https://doi.org/10.2307/2004575
https://doi.org/10.1006/jcph.1997.5716


Bibliography 131

[28] R. Codina (2002). “Stabilized finite element approximation of transient incompressible flows
using orthogonal subscales”. Computer Methods in Applied Mechanics and Engineering, 191(39-
40):4295–4321.

[29] R. Codina, R. Reyes & J. Baiges (2021). “A posteriori error estimates in a finite element VMS-
based reduced order model for the incompressible Navier-Stokes equations”. Mechanics Re-
search Communications, 112:103 599.

[30] T. Coffey, C. Kelley & D. Keyes (2003). “Pseudotransient continuation and differential-algebraic
equations”. SIAM Journal on Scientific Computing, 25(2):553–569.

[31] J. Cottrell, T. Hughes & Y. Bazilevs (2009). Isogeometric analysis: toward integration of CAD and
FEA. John Wiley & Sons. ISBN 9780470748732.

[32] S. Cuomo, V. Di Cola, F. Giampaolo, G. Rozza, M. Raissi & F. Piccialli (2022). “Scientific Ma-
chine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next”.
Journal of Scientific Computing, 92:1727–1738.

[33] D. Didane, M. Behery, M. Al-Ghriybah & B. Manshoor (2024). “Recent Progress in Design and
Performance Analysis of Vertical-Axis Wind Turbines—A Comprehensive Review”. Processes,
12:1–33.

[34] M. Drela (1989). “XFOIL: An analysis and design system for low reynolds number airfoils”. In
L. reynolds number aerodynamics, ed., Mueller, Thomas J., 1–12. Springer Berlin Heidelberg,
Berlin, Heidelberg. ISBN 9783540518846.

[35] Z. Drmac & S. Gugercin (2016). “A new selection operator for the discrete empirical inter-
polation method-improved a priori error bound and extensions”. SIAM Journal on Scientific
Computing, 38(2):A631–A648.

[36] Editorial Board (2021). “The rise of data-driven modelling”. Nature Reviews Physics, 3:383.

[37] M. ten Eikelder & I. Akkerman (2018). “Correct energy evolution of stabilized formulations: The
relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric
analysis. I: The convective–diffusive context”. Computer Methods in Applied Mechanics and
Engineering, 331:259–280.

[38] M. ten Eikelder & I. Akkerman (2018). “Correct energy evolution of stabilized formulations:
The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeo-
metric analysis. II: The incompressible Navier-Stokes equations”. Computer Methods in Applied
Mechanics and Engineering, 340:1135–1159.

[39] M. ten Eikelder & I. Akkerman (2019). “Variation entropy: a continuous local generalization
of the TVD property using entropy principles”. Computer Methods in Applied Mechanics and
Engineering, 355:261–283.

[40] M. ten Eikelder, Y. Bazilevs & I. Akkerman (2020). “A theoretical framework for discontinuity
capturing: Joining variational multiscale analysis and variation entropy theory”. Computer
Methods in Applied Mechanics and Engineering, 359:112 664.

[41] J. Evans & T. Hughes (2013). “Isogeometric divergence-conforming B-splines for the unsteady
Navier-Stokes equations”. Journal of Computational Physics, 241:141–167.

https://doi.org/10.1016/S0045-7825(02)00337-7
https://doi.org/10.1016/S0045-7825(02)00337-7
https://doi.org/10.1016/j.mechrescom.2020.103599
https://doi.org/10.1016/j.mechrescom.2020.103599
https://doi.org/10.1137/S106482750241044X
https://doi.org/10.1137/S106482750241044X
https://doi.org/10.1002/9780470749081
https://doi.org/10.1002/9780470749081
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.1007/s10915-022-01939-z
https://doi.org/10.3390/pr12061094
https://doi.org/10.3390/pr12061094
https://doi.org/10.1007/978-3-642-84010-4_1
https://doi.org/10.1137/15M1019271
https://doi.org/10.1137/15M1019271
https://doi.org/10.1038/s42254-021-00336-z
https://doi.org/10.1016/j.cma.2017.11.020
https://doi.org/10.1016/j.cma.2017.11.020
https://doi.org/10.1016/j.cma.2017.11.020
https://doi.org/10.1016/j.cma.2018.02.030
https://doi.org/10.1016/j.cma.2018.02.030
https://doi.org/10.1016/j.cma.2018.02.030
https://doi.org/10.1016/j.cma.2019.06.023
https://doi.org/10.1016/j.cma.2019.06.023
https://doi.org/10.1016/j.cma.2019.112664
https://doi.org/10.1016/j.cma.2019.112664
https://doi.org/10.1016/j.jcp.2013.01.006
https://doi.org/10.1016/j.jcp.2013.01.006


132 Bibliography

[42] J. Evans, D. Kamensky & Y. Bazilevs (2020). “Variational multiscale modeling with discretely
divergence-free subscales”. Computers & Mathematics with Applications, 80(11):2517–2537.

[43] R. Everson & L. Sirovich (1995). “Karhunen–Loève procedure for gappy data”. Journal of the
Optical Society of America, 12:1657.

[44] R. Falgout & U. Yang (2002). “hypre: A Library of High Performance Preconditioners”. In
P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan & J. J. Dongarra, eds., Computational Science — ICCS
2002, 632–641. Springer Berlin Heidelberg, Berlin, Heidelberg. ISBN 9783540477891.

[45] C. Farhat, S. Grimberg, A. Manzoni & A. Quarteroni (2021). Computational bottlenecks for
PROMs: precomputation and hyperreduction, 181–244. De Gruyter, Berlin, Boston. ISBN
9783110671490.

[46] E. Fonn, H. van Brummelen, T. Kvamsdal & A. Rasheed (2019). “Fast divergence-conforming
reduced basis methods for steady Navier–Stokes flow”. Computer Methods in Applied Mechanics
and Engineering, 346:486–512.

[47] I. Fried (1969). “Finite-element analysis of time-dependent phenomena”. AIAA Journal,
7(6):1170–1173.

[48] P. German, M. Tano, J. Ragusa & C. Fiorina (2020). “Comparison of Reduced-Basis techniques
for the model order reduction of parametric incompressible fluid flows”. Progress in Nuclear
Energy, 130:103 551.

[49] C. Giannelli, B. Jüttler, S. Kleiss, A. Mantzaflaris, B. Simeon & J. Špeh (2016). “THB-splines: An
effective mathematical technology for adaptive refinement in geometric design and isogeomet-
ric analysis”. Computer Methods in Applied Mechanics and Engineering, 299:337–365.

[50] C. Giannelli, B. Jüttler & H. Speleers (2012). “THB-splines: The truncated basis for hierarchical
splines”. Computer Aided Geometric Design, 29(7):485–498.

[51] A. Gopinath & A. Jameson (2005). “Time spectral method for periodic unsteady computations
over two- and three- dimensional bodies”. In 43rd AIAA Aerospace Sciences Meeting and Exhibit
- Meeting Papers, 10 683–10 696. American Institute of Aeronautics and Astronautics Inc. ISBN
9781624100642.

[52] S. Grimberg, C. Farhat & N. Youkilis (2020). “On the stability of projection-based model order
reduction for convection-dominated laminar and turbulent flows”. Journal of Computational
Physics, 419:109 681.

[53] V. Gupta & S. Bhatu (1991). “Solution of cyclic profiles in catalytic reactor operation with
periodic flow reversal”. Computers in Chemical Engineering, 15:229–237.

[54] K. Hall, J. Thomas & W. Clark (2002). “Computation of unsteady nonlinear flows in cascades
using a harmonic balance technique”. AIAA Journal, 40:879–886.

[55] S. Hijazi, G. Stabile, A. Mola & G. Rozza (2020). “Data-driven POD-Galerkin reduced order
model for turbulent flows”. Journal of Computational Physics, 416:109 513.

[56] M. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. Wu, J. Mineroff, A. Reali, Y. Bazilevs &
M. Sacks (2015). “Dynamic and fluid–structure interaction simulations of bioprosthetic heart
valves using parametric design with T-splines and Fung-type material models”. Computational
Mechanics, 55:1211–1225.

https://doi.org/10.1016/j.camwa.2020.03.011
https://doi.org/10.1016/j.camwa.2020.03.011
https://doi.org/10.1364/JOSAA.12.001657
https://doi.org/10.1007/3-540-47789-6_66
https://doi.org/10.1515/9783110671490-005
https://doi.org/10.1515/9783110671490-005
https://doi.org/10.1016/j.cma.2018.11.038
https://doi.org/10.1016/j.cma.2018.11.038
https://doi.org/10.2514/3.5299
https://doi.org/10.1016/j.pnucene.2020.103551
https://doi.org/10.1016/j.pnucene.2020.103551
https://doi.org/10.1016/j.cma.2015.11.002
https://doi.org/10.1016/j.cma.2015.11.002
https://doi.org/10.1016/j.cma.2015.11.002
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.1016/j.cagd.2012.03.025
https://doi.org/10.2514/6.2005-1220
https://doi.org/10.2514/6.2005-1220
https://doi.org/10.1016/j.jcp.2020.109681
https://doi.org/10.1016/j.jcp.2020.109681
https://doi.org/10.1016/0098-1354(91)85010-R
https://doi.org/10.1016/0098-1354(91)85010-R
https://doi.org/10.2514/2.1754
https://doi.org/10.2514/2.1754
https://doi.org/10.1016/j.jcp.2020.109513
https://doi.org/10.1016/j.jcp.2020.109513
https://doi.org/10.1007/s00466-015-1166-x
https://doi.org/10.1007/s00466-015-1166-x


Bibliography 133

[57] T. Hughes (1995). “Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formu-
lation, subgrid scale models, bubbles and the origins of stabilized methods”. Computer Methods
in Applied Mechanics and Engineering, 127(1-4):387–401.

[58] T. Hughes, J. Cottrell & Y. Bazilevs (2005). “Isogeometric analysis: CAD, finite elements, NURBS,
exact geometry andmesh refinement”. Computer Methods in Applied Mechanics and Engineering,
194(39-41):4135–4195.

[59] T. Hughes, G. Engel, L. Mazzei & M. Larson (2000). “The continuous Galerkin method is locally
conservative”. Journal of Computational Physics, 163(2):467–488.

[60] T. Hughes, G. Feijóo, L. Mazzei & J. Quincy (1998). “The variational multiscale method—a
paradigm for computational mechanics”. Computer Methods in Applied Mechanics and Engi-
neering, 166(1-2):3–24.

[61] T. Hughes, L. Franca &M. Balestra (1986). “A new finite element formulation for computational
fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin for-
mulation of the stokes problem accommodating equal-order interpolations”. Computer Methods
in Applied Mechanics and Engineering, 59(1):85–99.

[62] T. Hughes, L. Franca & G. Hulbert (1989). “A new finite element formulation for computa-
tional fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equa-
tions”. Computer Methods in Applied Mechanics and Engineering, 73(2):173–189.

[63] T. Hughes & J. Stewart (1996). “A space-time formulation for multiscale phenomena”. Journal
of Computational and Applied Mathematics, 74(1-2):217–229.

[64] T. Iliescu & Z. Wang (2014). “Variational multiscale proper orthogonal decomposition: Navier-
stokes equations”. Numerical Methods for Partial Differential Equations, 30:641–663.

[65] A. Ivagnes, G. Stabile, A. Mola, T. Iliescu & G. Rozza (2023). “Pressure data-driven variational
multiscale reduced order models”. Journal of Computational Physics, 476:111 904.

[66] L. Jiang, L. T. Biegler & V. G. Fox (2003). “Simulation and optimization of pressure-swing ad-
sorption systems for air separation”. AIChE Journal, 49:1140–1157.

[67] A. Johnson & T. Tezduyar (1994). “Mesh update strategies in parallel finite element computa-
tions of flow problems with moving boundaries and interfaces”. Computer methods in applied
mechanics and engineering, 119:73–94.

[68] M. Jordan&T.Mitchell (2015). “Machine learning: Trends, perspectives, and prospects”. Science,
349:255–260.

[69] D. Kamensky, M. Hsu, D. Schillinger, J. Evans, A. Aggarwal, Y. Bazilevs, M. Sacks & T. Hughes
(2015). “An immersogeometric variational framework for fluid-structure interaction: Applica-
tion to bioprosthetic heart valves”. Computer Methods in Applied Mechanics and Engineering,
284:1005–1053.

[70] C. Kelley & D. Keyes (1998). “Convergence analysis of pseudo-transient continuation”. SIAM
Journal on Numerical Analysis, 35(2):508–523.

[71] M. Khalid & I. Akhtar (2012). “Characteristics of flow past a symetric airfoil at low Reynolds
number: a nonlinear perspective”. In Proceedings of IMECE2012, 167–175.

https://doi.org/10.1016/0045-7825(95)00844-9
https://doi.org/10.1016/0045-7825(95)00844-9
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1006/jcph.2000.6577
https://doi.org/10.1006/jcph.2000.6577
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1016/S0045-7825(98)00079-6
https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1016/0045-7825(86)90025-3
https://doi.org/10.1016/0045-7825(89)90111-4
https://doi.org/10.1016/0045-7825(89)90111-4
https://doi.org/10.1016/0045-7825(89)90111-4
https://doi.org/10.1016/0377-0427(96)00025-8
https://doi.org/10.1002/num.21835
https://doi.org/10.1002/num.21835
https://doi.org/10.1016/j.jcp.2022.111904
https://doi.org/10.1016/j.jcp.2022.111904
https://doi.org/10.1002/aic.690490508
https://doi.org/10.1002/aic.690490508
https://doi.org/10.1016/0045-7825(94)00077-8
https://doi.org/10.1016/0045-7825(94)00077-8
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1016/j.cma.2014.10.040
https://doi.org/10.1016/j.cma.2014.10.040
https://doi.org/10.1137/S0036142996304796
https://doi.org/10.1115/IMECE2012-87389
https://doi.org/10.1115/IMECE2012-87389


134 Bibliography

[72] Y. Kim, Y. Choi, D. Widemann & T. Zohdi (2022). “A fast and accurate physics-informed neural
network reduced order model with shallow masked autoencoder”. Journal of Computational
Physics, 451:110 841.

[73] T. Kinsey & G. Dumas (2008). “Parametric study of an oscillating airfoil in a power-extraction
regime”. AIAA Journal, 46(6):1318–1330.

[74] B. Kramer, B. Peherstorfer & K.Willcox (2024). “Learning Nonlinear ReducedModels fromData
with Operator Inference”. Annual Review of Fluid Mechanics, 56(Volume 56, 2024):521–548.

[75] A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby & M. W. Mahoney (2021). “Characterizing
possible failure modes in physics-informed neural networks”. In 35th Conference on Neural
Information Processing Systems (NeurIPS 2021). ISBN 9781713845393.

[76] T. Kuraishi, K. Takizawa & T. Tezduyar (2019). “Space-time isogeometric flow analysis with
built-in Reynolds-equation limit”.Mathematical Models andMethods in Applied Sciences, 29:871–
904.

[77] D. Kurtulus (2015). “On the unsteady behavior of the flow aroundNACA 0012 airfoil with steady
external conditions at Re=1000”. International Journal of Micro Air Vehicles, 7(3):301–326.

[78] T. Kvamsdal & K. Okstad (1998). “Error estimator for variational consistent surface forces in
Navier-Stokes simulations”. In Proceedings for Computational Mechanics, New trends and appli-
cations, CIMNE, Barcelona, Spain, 1–11. ISBN 9788489925151.

[79] A. Laghari, H. Shah, R. Laghari, K. Kumar, A.Waqan&A. Jumani (2018). “A Review onQuantum
Computing Trends & Future Perspectives”. EAI Endorsed Transactions on Cloud Systems, 173979.

[80] P. Langley (1981). “Data‐Driven Discovery of Physical Laws”. Cognitive Science, 5:31–54.

[81] J. Lauzon, S. Cheung, Y. Shin, Y. Choi, D. Copeland & K. Huynh (2024). “S-OPT: A Points
Selection Algorithm for Hyper-Reduction in Reduced Order Models”. SIAM Journal on Scientific
Computing, 46:B474–B501.

[82] S. Le Fouest & K. Mulleners (2022). “The dynamic stall dilemma for vertical-axis wind turbines”.
Renewable Energy, 198:505–520.

[83] S. Le Fouest & K. Mulleners (2024). “Optimal blade pitch control for enhanced vertical-axis
wind turbine performance”. Nature Communications, 15:1–13.

[84] K. Lee & K. Carlberg (2020). “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders”. Journal of Computational Physics, 404:108 973.

[85] Linkin Park (2024). “From Zero”. Warner Records Inc. & Machine Shop Records Vinyl.

[86] Y. Liu, K. Li, J. Zhang, H. Wang & L. Liu (2012). “Numerical bifurcation analysis of static stall of
airfoil and dynamic stall under unsteady perturbation”. Communications in Nonlinear Science
and Numerical Simulation, 17(8):3427–3434.

[87] S. Lorenzi, A. Cammi, L. Luzzi & G. Rozza (2016). “POD-Galerkin method for finite volume
approximation of Navier–Stokes and RANS equations”. Computer Methods in Applied Mechanics
and Engineering, 311:151–179.

https://doi.org/10.1016/j.jcp.2021.110841
https://doi.org/10.1016/j.jcp.2021.110841
https://doi.org/10.2514/1.26253
https://doi.org/10.2514/1.26253
https://doi.org/10.1146/annurev-fluid-121021-025220
https://doi.org/10.1146/annurev-fluid-121021-025220
https://doi.org/10.48550/arXiv.2109.01050
https://doi.org/10.48550/arXiv.2109.01050
https://doi.org/10.1142/S0218202519410021
https://doi.org/10.1142/S0218202519410021
https://doi.org/10.1260/1756-8293.7.3.301
https://doi.org/10.1260/1756-8293.7.3.301
https://doi.org/10.4108/eai.17-5-2022.173979
https://doi.org/10.4108/eai.17-5-2022.173979
https://doi.org/10.1111/j.1551-6708.1981.tb00869.x
https://epubs.siam.org/doi/10.1137/22M1484018
https://epubs.siam.org/doi/10.1137/22M1484018
https://doi.org/10.1016/j.renene.2022.07.071
https://doi.org/10.1038/s41467-024-46988-0
https://doi.org/10.1038/s41467-024-46988-0
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
http://dx.doi.org/10.1016/j.cnsns.2011.12.007
http://dx.doi.org/10.1016/j.cnsns.2011.12.007
https://doi.org/10.1016/j.cma.2016.08.006
https://doi.org/10.1016/j.cma.2016.08.006


Bibliography 135

[88] J. Lotz, M. ten Eikelder & I. Akkerman (2024). “Space–time computations of exactly time-
periodic flows past hydrofoils”. Computers & Fluids, 277:106 286.

[89] J. Lotz, G. Weymouth & I. Akkerman (2024). “Projection-based reduced-order modelling of
time-periodic problems, with application to flow past flapping hydrofoils”. Computer Methods
in Applied Mechanics and Engineering, 429:117 161.

[90] J. Lumley (1967). “The structure of inhomogeneous turbulent flows”. Atmospheric Turbulence
and Radio Wave Propagation.

[91] A. Løvgren, Y. & E. Rønquist (2006). “A reduced basis element method for the steady stokes
problem”. Mathematical Modelling and Numerical Analysis, 40:529–552.

[92] V. Marx (2013). “The big challenges of big data”. Nature, 498:255–260.

[93] A. Masud & T. Hughes (1997). “A space-time Galerkin/least-squares finite element formulation
of the Navier-Stokes equations for moving domain problems”. Computer Methods in Applied
Mechanics and Engineering, 146(1-2):91–126.

[94] H. Melbø & T. Kvamsdal (2002). “Goal oriented error estimators for Stokes equations based on
variationally consistent postprocessing”. Computer methods in applied mechanics and engineer-
ing, 192:613–633.

[95] G. Mendonça, F. Afonso & F. Lau (2019). “Model order reduction in aerodynamics: Review and
applications”. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, 233:5816–5836.

[96] V. Michelassi, J. G. Wissink & W. Rodi (2003). “Direct numerical simulation, large eddy sim-
ulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow
in a low-pressure turbine cascade: A comparison”. Proceedings of the Institution of Mechanical
Engineers, Part A: Journal of Power and Energy, 217(4):403–412.

[97] S. Mittal & T. Tezduyar (1992). “A finite element study of incompressible flows past oscillating
cylinders and aerofoils”. International Journal for Numerical Methods in Fluids, 15:1073–1118.

[98] S. Mittal & T. Tezduyar (1992). “Notes on the stabilized space-time finite-element formulation
of unsteady incompressible flows”. Computer Physics Communications, 73(1-3):93–112.

[99] S. Mittal & T. Tezduyar (1994). “Massively parallel finite element computation incompressible
flows involving fluid-body interactions”. Computer Methods in Applied Mechanics and Engineer-
ing, 112:253–282.

[100] M. Montardini, M. Negri, G. Sangalli & M. Tani (2020). “Space–time least–squares isogeometric
method and efficient solver for parabolic problems”.Mathematics of Computation, 89(323):1193–
1227.

[101] C. Mou, B. Koc, O. San, L. G. Rebholz & T. Iliescu (2021). “Data-driven variational multiscale
reduced order models”. Computer Methods in Applied Mechanics and Engineering, 373:113 470.

[102] N. Nguyen & J. Peraire (2008). “An efficient reduced-order modeling approach for non-linear
parametrized partial differential equations”. International Journal for Numerical Methods in
Engineering, 76:27–55.

https://doi.org/10.1016/j.compfluid.2024.106286
https://doi.org/10.1016/j.compfluid.2024.106286
https://doi.org/10.1016/j.cma.2024.117161
https://doi.org/10.1016/j.cma.2024.117161
https://doi.org/10.1051/m2an:2006021
https://doi.org/10.1051/m2an:2006021
https://doi.org/https://doi.org/10.1038/498255a
https://doi.org/10.1016/S0045-7825(96)01222-4
https://doi.org/10.1016/S0045-7825(96)01222-4
https://doi.org/10.1016/S0045-7825(02)00575-3
https://doi.org/10.1016/S0045-7825(02)00575-3
https://doi.org/10.1177/0954410019853472
https://doi.org/10.1177/0954410019853472
https://doi.org/10.1243/095765003322315469
https://doi.org/10.1243/095765003322315469
https://doi.org/10.1243/095765003322315469
https://doi.org/10.1002/fld.1650150911
https://doi.org/10.1002/fld.1650150911
https://doi.org/10.1016/0010-4655(92)90031-S
https://doi.org/10.1016/0010-4655(92)90031-S
https://doi.org/10.1016/0045-7825(94)90029-9
https://doi.org/10.1016/0045-7825(94)90029-9
https://doi.org/10.1090/mcom/3471
https://doi.org/10.1090/mcom/3471
https://doi.org/10.1016/j.cma.2020.113470
https://doi.org/10.1016/j.cma.2020.113470
https://doi.org/10.1002/nme.2309
https://doi.org/10.1002/nme.2309


136 Bibliography

[103] B. Noack, P. Papas & P. Monkewitz (2005). “The need for a pressure-term representation in
empirical Galerkinmodels of incomrpressible shear flows”. Journal of Fluid Mechanics, 523:339–
365.

[104] J. Oden (1969). “A general theory of finite elements. I. Topological considerations”. International
Journal for Numerical Methods in Engineering, 1(2):205–221.

[105] J. Oden (1969). “A general theory of finite elements. II. Applications”. International Journal for
Numerical Methods in Engineering, 1(3):247–259.

[106] Y. Otoguro, K. Takizawa & T. Tezduyar (2017). “Space–time VMS computational flow analy-
sis with isogeometric discretization and a general-purpose NURBS mesh generation method”.
Computers and Fluids, 158:189–200.

[107] H. Paudel, M. Syamlal, S. Crawford, Y.-L. Lee, R. Shugayev, P. Lu, P. Ohodnicki, D. Mollot &
Y. Duan (2022). “Quantum Computing and Simulations for Energy Applications: Review and
Perspective”. ACS Engineering Au, 2:151–196.

[108] B. Peherstorfer, K. Willcox & M. Gunzburger (2018). “Survey of multifidelity methods in uncer-
tainty propagation, inference, and optimization”. SIAM Review, 60:550–591.

[109] F. Platte, D. Kuzmin, C. Fredebeul & S. Turek (2005). “Novel simulation approaches for cyclic
steady-state fixed-bed processes exhibiting sharp fronts and shocks”. In D. H. Mache, J. Sz-
abados & M. G. de Bruin, eds., Trends and Applications in Constructive Approximation, 207–223.
Birkhäuser Basel. ISBN 9783764373566.

[110] F. Porté-Agel, M. Bastankhah & S. Shamsoddin (2020). “Wind-Turbine and Wind-Farm Flows:
A Review”. Boundary-Layer Meteorology, 174:1–59.

[111] A. Quarteroni, A. Manzoni & F. Negri (2015). Reduced Basis Methods for Partial Differential
Equations: An Introduction. Springer International Publishing. ISBN 9783319154312.

[112] M. Raissi (2018). “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential
Equations”. Journal of Machine Learning Research, 19:1–24.

[113] M. Raissi, P. Perdikaris & G. Karniadakis (2019). “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial dif-
ferential equations”. Journal of Computational Physics, 378:686–707.

[114] T. Rebollo, E. Ávila, M. Marmol, F. Ballarin & G. Rozza (2017). “On a certified smagorinsky
reduced basis turbulence model”. SIAM Journal on Numerical Analysis, 55:3047–3067.

[115] R. Reyes & R. Codina (2020). “Projection-based reduced order models for flow problems: A
variational multiscale approach”. Computer Methods in Applied Mechanics and Engineering,
363:112 844.

[116] O. Reynolds (1895). “On the dynamical theory of incompressible viscous fluids and the determi-
nation of the criterion”. Philosophical Transactions of the Royal Society of London, 186:123–164.

[117] T. Richter (2021). “An averaging scheme for the efficient approximation of time-periodic flow
problems”. Computers and Fluids, 214.

https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1017/S0022112004002149
https://doi.org/10.1002/nme.1620010209
https://doi.org/10.1002/nme.1620010304
https://doi.org/10.1016/j.compfluid.2017.04.017
https://doi.org/10.1016/j.compfluid.2017.04.017
http://doi.org/10.1021/acsengineeringau.1c00033
http://doi.org/10.1021/acsengineeringau.1c00033
http://doi.org/10.1137/16M1082469
http://doi.org/10.1137/16M1082469
https://doi.org/10.1007/3-7643-7356-3_15
https://doi.org/10.1007/3-7643-7356-3_15
https://doi.org/10.1007/s10546-019-00473-0
https://doi.org/10.1007/s10546-019-00473-0
https://books.google.nl/books?id=e6FnCgAAQBAJ
https://books.google.nl/books?id=e6FnCgAAQBAJ
http://jmlr.org/papers/v19/18-046.html
http://jmlr.org/papers/v19/18-046.html
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1137/17M1118233
https://doi.org/10.1137/17M1118233
https://doi.org/10.1016/j.cma.2020.112844
https://doi.org/10.1016/j.cma.2020.112844
http://doi.org/10.1098/rsta.1895.0004
http://doi.org/10.1098/rsta.1895.0004
https://doi.org/10.1016/j.compfluid.2020.104769
https://doi.org/10.1016/j.compfluid.2020.104769


Bibliography 137

[118] F. Romor, G. Stabile & G. Rozza (2023). “Non-linear Manifold Reduced-Order Models with Con-
volutional Autoencoders and Reduced Over-Collocation Method”. Journal of Scientific Comput-
ing, 94:1–39.

[119] D. Roose, K. Lust, A. Champneys & A. Spence (1995). “A Newton-Picard shooting method for
Ccmputing periodic solutions of large-scale dynamical systems”. Chaos, Solitons & Fracrals,
5:1913–1925.

[120] G. Rozza, D. Phuong Huynh & A. Manzoni (2013). “Reduced basis approximation and a posteri-
ori error estimation for Stokes flows in parametrized geometries: Roles of the inf-sup stability
constants”. Numerische Mathematik, 125:115–152.

[121] C. Saadé, S. Lejeunes, D. Eyheramendy & R. Saad (2021). “Space-time isogeometric analysis for
linear and non-linear elastodynamics”. Computers and Structures, 254:106 594.

[122] S. Sachar, P. Doerffer, P. Flaszyński, J. Kotus, K. Doerffer & J. Grzelak (2023). “Correlation
Between the Generated Noise and Effectiveness for a Vertical Axis Savonius Type Rotor”. In
AIAA SciTech Forum and Exposition, 2023. American Institute of Aeronautics and Astronautics
Inc, AIAA. ISBN 9781624106996.

[123] A. Salinger & G. Eigenberger (1996). “The direct calculation of period states of the reversible
flow reactor - I. Methodology and propane combustion results”. Chemical Engineering Science,
51:4903–4913.

[124] O. San, S. Pawar & A. Rasheed (2022). “Variational multiscale reinforcement learning for discov-
ering reduced order closure models of nonlinear spatiotemporal transport systems”. Scientific
Reports, 12:1–12.

[125] F. Shakib & T. Hughes (1991). “A new finite element formulation for computational fluid dynam-
ics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms”. Computer Methods
in Applied Mechanics and Engineering, 87(1):35–58.

[126] J. Smagorinsky (1963). “General circulation experiments with the primitive equations, 1: The
basic experiment”. Monthly Weather Review, 91:99–164.

[127] G. Stabile, F. Ballarin, G. Zuccarino & G. Rozza (2019). “A reduced order variational multiscale
approach for turbulent flows”. Advances in Computational Mathematics, 45:2349–2368.

[128] G. Stabile & G. Rozza (2018). “Finite volume POD-Galerkin stabilised reduced order methods
for the parametrised incompressible Navier–Stokes equations”. Computers and Fluids, 173:273–
284.

[129] S. Stoter, M. ten Eikelder, F. de Prenter, I. Akkerman, E. van Brummelen, C. Verhoosel &
D. Schillinger (2021). “Nitsche’s method as a variational multiscale formulation and a result-
ing boundary layer fine-scale model”. Computer Methods in Applied Mechanics and Engineering,
382:113 878.

[130] K. Takizawa, B. Henicke, A. Puntel, T. Spielman & T. Tezduyar (2012). “Space-time compu-
tational techniques for the aerodynamics of flapping wings”. Journal of Applied Mechanics,
79:1–10.

[131] K. Takizawa & T. Tezduyar (2011). “Multiscale space-time fluid-structure interaction tech-
niques”. Computational Mechanics, 48(3):247–267.

https://doi.org/10.1007/s10915-023-02128-2
https://doi.org/10.1007/s10915-023-02128-2
https://doi.org/10.1016/0960-0779(95)90873-Q
https://doi.org/10.1016/0960-0779(95)90873-Q
https://doi.org/10.1007/s00211-013-0534-8
https://doi.org/10.1007/s00211-013-0534-8
https://doi.org/10.1007/s00211-013-0534-8
https://doi.org/10.1016/J.COMPSTRUC.2021.106594
https://doi.org/10.1016/J.COMPSTRUC.2021.106594
https://doi.org/10.2514/6.2023-0611
https://doi.org/10.2514/6.2023-0611
https://doi.org/10.1016/0009-2509(96)00328-4
https://doi.org/10.1016/0009-2509(96)00328-4
https://doi.org/10.1038/s41598-022-22598-y
https://doi.org/10.1038/s41598-022-22598-y
https://doi.org/10.1016/0045-7825(91)90145-V
https://doi.org/10.1016/0045-7825(91)90145-V
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1007/s10444-019-09712-x
https://doi.org/10.1007/s10444-019-09712-x
https://doi.org/10.1016/j.compfluid.2018.01.035
https://doi.org/10.1016/j.compfluid.2018.01.035
https://doi.org/10.1016/j.cma.2021.113878
https://doi.org/10.1016/j.cma.2021.113878
https://doi.org/10.1115/1.4005073
https://doi.org/10.1115/1.4005073
https://doi.org/10.1007/s00466-011-0571-z
https://doi.org/10.1007/s00466-011-0571-z


138 Bibliography

[132] K. Takizawa & T. Tezduyar (2012). “Space-time fluid-structure interaction methods”. Mathe-
matical Models and Methods in Applied Sciences, 22:1–49.

[133] K. Takizawa & T. Tezduyar (2014). “Space-time computation techniques with continuous rep-
resentation in time (ST-C)”. Computational Mechanics, 53(1):91–99.

[134] A. Tello, R. Codina & J. Baiges (2020). “Fluid structure interaction by means of variational
multiscale reduced order models”. International Journal for Numerical Methods in Engineering,
121:2601–2625.

[135] R. Témam (1969). “Sur l’approximation de la solution des équations de Navier-Stokes par la
méthode des pas fractionnaires (I)”. Archive for Rational Mechanics and Analysis, 32(2):135–153.

[136] T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson & S. Mittal (1993). “Parallel finite-element com-
putation of 3D flows”. Computer, 26:27–36.

[137] T. Tezduyar, S. Aliabadi, M. Behr & S. Mittal (1994). “Massively parallel finite element simula-
tion of compressible and incompressible flows”. Computer Methods in Applied Mechanics and
Engineering, 119:157–177.

[138] T. Tezduyar, M. Behr & J. Liou (1992). “A new strategy for finite element computations involving
moving boundaries and interfaces-The deforming-spatial-domain / space-time procedure: I.The
concept and the preliminary numerical tests”. Computer Methods in Applied Mechanics and
Engineering, 94:339–351.

[139] T. Tezduyar, M. Behr, S. Mittal & J. Liou (1992). “A new strategy for finite element computations
involving moving boundaries and interfaces-The deforming-spatial-domain / space-time proce-
dure: II, Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders”.
Computer Methods in Applied Mechanics and Engineering, 94:353–371.

[140] T. Tezduyar, S.Mittal, S. Ray&R. Shih (1992). “Incompressible flow computationswith stabilized
bilinear and linear equal-order-interpolation velocity-pressure elements”. Computer Methods in
Applied Mechanics and Engineering, 95:221–242.

[141] T. Tezduyar & K. Takizawa (2019). “Space–time computations in practical engineering applica-
tions: a summary of the 25-year history”. Computational Mechanics, 63(4):747–753.

[142] T. Theodorsen (1949). “General Theory of Aerodynamic Instability and the Mechanism of Flut-
ter”. Tech. rep., Langley Memorial Aeronautical Laboratory.

[143] Z. Wang, I. Akhtar, J. Borggaard & T. Iliescu (2012). “Proper orthogonal decomposition closure
models for turbulent flows: A numerical comparison”. Computer Methods in Applied Mechanics
and Engineering, 237-240:10–26.

[144] D. Wolpert & W. Macready (1997). “No Free Lunch Theorems for Optimization”. IEEE Transac-
tions on Evolutionary Computation, 1:67.

[145] X. Xie, C. Webster & T. Iliescu (2020). “Closure learning for nonlinear model reduction using
deep residual neural network”. Fluids, 5.

[146] M. Yano & A. Patera (2019). “An LP empirical quadrature procedure for reduced basis treatment
of parametrized nonlinear PDEs”. Computer Methods in Applied Mechanics and Engineering,
344:1104–1123.

https://doi.org/10.1142/S0218202512300013
https://doi.org/10.1007/s00466-013-0895-y
https://doi.org/10.1007/s00466-013-0895-y
https://doi.org/10.1002/nme.6321
https://doi.org/10.1002/nme.6321
https://doi.org/10.1007/BF00247678
https://doi.org/10.1007/BF00247678
https://doi.org/10.1109/2.237441
https://doi.org/10.1109/2.237441
https://doi.org/10.1016/0045-7825(94)00082-4
https://doi.org/10.1016/0045-7825(94)00082-4
https://doi.org/10.1016/0045-7825(92)90059-S
https://doi.org/10.1016/0045-7825(92)90059-S
https://doi.org/10.1016/0045-7825(92)90059-S
https://doi.org/10.1016/0045-7825(92)90060-W
https://doi.org/10.1016/0045-7825(92)90060-W
https://doi.org/10.1016/0045-7825(92)90060-W
https://doi.org/10.1016/0045-7825(92)90141-6
https://doi.org/10.1016/0045-7825(92)90141-6
https://doi.org/10.1007/s00466-018-1620-7
https://doi.org/10.1007/s00466-018-1620-7
https://doi.org/10.1016/j.cma.2012.04.015
https://doi.org/10.1016/j.cma.2012.04.015
http://doi.org/10.1109/4235.585893
https://doi.org/10.3390/fluids5010039
https://doi.org/10.3390/fluids5010039
https://doi.org/10.1016/j.cma.2018.02.028
https://doi.org/10.1016/j.cma.2018.02.028


Bibliography 139

[147] J. Yu, C. Yan & M. Guo (2019). “Non-intrusive reduced-order modeling for fluid problems: A
brief review”. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, 233:5896–5912.

https://doi.org/10.1177/0954410019890721
https://doi.org/10.1177/0954410019890721







