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Abstract

Spiking neural networks (SNNs), which are regarded as the third generation of neural

networks, have attracted significant attention due to their promising applications in

various scenarios. Based on SNNs, neuromorphic coprocessors, designed to emulate

the structure and functionality of biological brains, hold the potential to revolutionize

computing. However, these coprocessors encounter challenges related to adaptability

and flexibility in various application environments once they are manufactured. To

tackle this challenge, our project introduces a neuromorphic System-on-Chip (SoC),

which seamlessly integrates a RISC-V CPU with an SNN coprocessor, utilizing sparse

time-to-first-spike encoding (TTFS). The primary goal of this SoC is to facilitate the

complete reconfigurability of the SNN coprocessor with the RISC-V CPU. By leveraging

this neuromorphic SoC and successfully simulating the novel loop learning work

model to achieve an accuracy of 92.2% on the MNIST dataset, we demonstrate its

capability to adapt the SNN coprocessor for various application scenarios, such as text

recognition and face detection.
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1
Introduction

Since the beginning of the 20th century, Artificial Neural Networks (ANNs) have been

developing rapidly [16], evolving from the simple multi-layer perceptrons (MLPs)

[19] to the current state-of-the-art large-scale language models (LLMs). Traditional

ANNs have achieved remarkable success and have become an inseparable part of most

people’s lives [54] [36] [35].

Nevertheless, power consumption stands out as a paramount concern. This contravenes

the primary objective of ANNs since the original purpose of ANNs was to emulate

the cognitive processes of the human brain, which serves as an exceptionally energy-

efficient computing system. The human brain, capable of performing 10
18

mathematical

operations per second, achieves this computational prowess while consuming only 20

watts, as documented in [38]. This level of energy efficiency remains far from matched

[41] and the gap seems unreachable without a possible paradigm shift.

To fill the gap in energy efficiency, spiking neural networks (SNNs) [37] were put

forward and have gained a lot of popularity in the last few years, showing great potential

to surpass the energy efficiency of conventional ANNs. Figure 1.1 shows the major

differences between SNNs and the conventional ANNs. The design philosophy of SNNs

is more closely aligned with the human brain [33]. For example, data transmission in

SNNs is spike-based, which is in binary format, compared to the conventional real-

world outputs in ANNs. It needs fewer computing resources, theoretically enabling

it to achieve better energy efficiency compared to traditional neural networks and

thus moving closer to simulating the human brain. Therefore, SNNs introduce new

possibilities for applying neural networks to low-power computing scenarios like edge

computing.

However, despite the highly promising academic research on SNN processors, the

design of embedded neuromorphic systems remains challenging. Typical SNN

processors [32] [34] do not have on-chip learning capabilities, and thus their internal

parameters cannot be modified by other deployments. However, SNN processors that

do have learning capabilities are often far less likely to perform as well as off-chip-

trained once due to limited on-chip resources [4] [12]. Therefore, flexibility limitations

prevent neuromorphic devices from being widely used in edge computing application

1
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Figure 1.1: Three generations of artificial neural networks: Multilayer perceptron (MLP), ANNs and

SNNs. Adapted from[52]

scenarios. To solve this problem, a host central processor unit (CPU) can be used to

configure the SNN processor flexibly, so that the SNN processor can be applied to a

variety of application scenarios.

In this project, we propose a neuromorphic system-on-chip (SoC) platform that

combines a RISC-V-based microcontroller unit (MCU) and an SNN processor. This

SoC realizes the balance between the flexibility and efficiency of neuromorphic devices,

and it’s able to perform "Loop Learning", which is shown in Figure 1.2. In Loop

Learning, the RISC-V CPU and SNN processor are in charge of backpropagation and

inference respectively: the RISC-V CPU will implement the learning algorithm to

update the weights based on the inference result from the SNN processor, and the

SNN processor will do the inference based on the updated weights given by RISC-V

CPU, the whole data flow generates a loop. Therefore, this SoC gives new possibilities

for neuromorphic devices to be applied in low-power computing, where we will

investigate sparse spike-based encoding schemes such as time-to-first-spike (TTFS)

encoding.

1.1. Contributions
The main contributions of this work can be summarized as follows:

• We simplify the learning algorithm and the neuron model of TTFS-based SNNs

from [15]. Compared to the original work, these simplifications reduce the total

computation significantly, while losing only 2% accuracy on the MNIST dataset.

• Based on the SNN processor tinyODIN [12], we have developed a new SNN

coprocessor, TTFS-tinyODIN, which is capable of supporting inference based on
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Figure 1.2: Dataflow in the Loop Learning model, where the SNN processor runs the inference and the

RISC-V CPU runs the backpropagation to update the weights based on the inference result and then

writes back the updated weights to the SNN processor. Inspired from [15]

TTFS encoding. The crossbar structure of TTFS-tinyODIN includes 256 neurons,

allowing it to map arbitrary SNN architectures.

• TTFS-tinyODIN performs inference for TTFS-encoded MNIST inputs, which is

consistent with the software in the post-implementation simulation results.

• TTFS-tinyODIN is integrated into X-Heep, an open-source MCU platform [45],

to create a comprehensive open-source neuromorphic SoC. This SoC enables the

configuration of TTFS-tinyODIN via the RISC-V CPU.

• The RISC-V CPU implemented on X-Heep employs a loop learning model in

conjunction with TTFS-tinyODIN, resulting in training outcomes identical to

those of relevant software. This type of learning loop allows the system to learn

across various application scenarios.

1.2. Outline
The rest of the thesis is divided into three chapters.

• Chapter 2 gives the background of this project, which discusses the development

of ANNs and SNNs, and the different encoding schemes of SNNs. This chapter

also introduces the MCU platform used in this project, X-Heep, in detail. In

addition, this chapter also discusses the trade-off between efficiency and flexibility.

• Chapter 3 details the core parts of this project: the software model training and

SoC architecture design. The details of the design in each part are presented in

this chapter and the results of the design in each part are also shown.

• Chapter 4 describes the summary of the project and the overall design results. It

also identifies areas for future work and room for optimization.



2
Background

This chapter aims to provide an overall understanding of the project’s details and

design approach by introducing relevant background knowledge. It includes the

following topics: artificial neural networks (ANNs), spiking neural networks (SNNs),

the four main encoding schemes of SNNs, quantization, the RISC-V instruction set

architecture (ISA) and an open-source MCU platform: X-Heep [45].

2.1. Neural Networks
In this section, we provide an objective overview of both the basic network architecture

and neuron model of ANNs. Additionally, we detail the step-by-step learning process

of ANNs with reference to backpropagation. To compare ANNs with SNNs, we then

explain the basic spiking neuron model in SNNs and highlight the differences between

the spiking neuron model and the conventional neuron model.

2.1.1. Artificial Neural Networks (ANNs)
In the field of computer science and artificial intelligence, artificial neural networks

(ANNs) are computational models based on the neural system of the human brain.

ANNs have since evolved into a prominent class of mathematical models. As early

as the 1940s, Warren McCulloch and Walter Pitts proposed a mathematical model to

simulate the behaviour of biological neurons [39], which is regarded as one of the first

neural network theories.

Due to insufficient training methods and computational power, ANNs were not

widely used during their early development [42]. However, the introduction of the

backpropagation algorithm in the 1980s [28] renewed interest in ANNs, but hardware

and dataset limitations still impeded their progress.

However, as computer technology continues to advance, the limitations of hardware

resources are gradually being tackled, and neural networks once again garnered

widespread interest [1]. Particularly around 2010, with the rise of deep learning,

neural networks were extended to deeper structures and formed deep neural networks

(DNNs) [31] [20] [51] [48]. Till now, DNNs have achieved significant success in multiple

4
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Figure 2.1: One fully connected network with one 4-neuron input layer, two hidden layers, 5-neuron

and 7-neurons respectively, and one 3-neuron output layer. The W[x,y] indicates the shape of the

weight matrix between two layers, x means the number of neurons in the former layer and y means the

number of neurons in the latter layer. Adapted from[26]

application scenarios such as image recognition, natural language processing, and

speech recognition [40] [9].

Currently, the fundamental architecture of artificial neural networks is depicted in

Figure 2.1 [26]. The structure is composed of a single input layer, various hidden

layers, and one output layer. Each layer contains multiple neurons, which are critical

components of neural networks. As depicted in Panel A of Figure 2.2, these artificial

neurons receive input signals, perform a weighted summation of these inputs, and

employ an activation function to produce an output or activation value. This activation

value is then transmitted to other neurons in subsequent layers, creating a network of

interconnected neurons. For example, in image classification, a neuron in the input

layer usually represents one pixel of the input image.

2.1.2. Learning in Neural Networks
To allow the neural network to learn and thus accomplish the target task, backpropaga-

tion coupled with gradient descent [43] is typically used. In detail, the whole learning

process in artificial neural networks consists of the following steps:

1. Forward propagation: Initially, input data is propagated through the layers of

the network, progressively computing the output of each layer, until the model’s

output is available at the output layer. This procedure is usually called inference.

As per equation 2.1, 𝐼𝑛𝑝𝑢𝑡 𝑙 ,𝑊 𝑙 , 𝑏 𝑙 , 𝑌 𝑙
indicates the input vector, weight matrix,

bias and output of layer l. 𝑌 𝑙
is also the input of layer l+1, 𝐼𝑛𝑝𝑢𝑡 𝑙+1

. 𝜙 is the
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Figure 2.2: Panel A: A typical neuron model in conventional ANNs: the

∑
means this neuron accepts

the cumulative sum of inputs (𝑥𝑖) and weights (𝑤𝑖), the sum together with a bias b is sent to the

activation function 𝜙 and the neuron release the output Y. Panel B: A typical neuron model in SNNs:

the

∑
means this neuron accepts the input spikes (𝑆𝑖) and increase the membrane potential by the

corresponding weights (𝑤𝑖), u means the membrane potential of this neuron and 𝑈𝑡ℎ is the threshold

voltage, this neuron will release a spike when u is above the 𝑈𝑡ℎ then reset. Adapted from u [21]

Figure 2.3: The typical learning process in ANNs. Blue labels show the sequence. Step 1: the network

carries out forward propagation or inference as per the calculation in the neuron model in Figure 2.2.

Step 2: computing the Loss function, the example in the figure is mean squared error (MSE) loss. Step 3:

compute the gradients of each weight with the chain rule (Figure 2.4) in backpropagation. Step 4:

update the weights according to the gradients from the last step. This figure is modified from [30].
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activation function.

𝑌 𝑙 = 𝜙(𝐼𝑛𝑝𝑢𝑡 𝑙 ×𝑊 𝑙 + 𝑏 𝑙) where l is the layer index (2.1)

2. Loss Computation: The network’s output is compared with the ground truth (e.g.

classification labels), and a pre-defined loss function is employed to quantify the

discrepancy between the predicted results and the ground truth. Commonly used

loss functions include the mean squared error (MSE) loss or the cross-entropy

loss. Equation 2.2 shows the loss function of MSE loss, the 𝑌𝑖 is the output of

neuron i in the output layer, and 𝐿𝑎𝑏𝑒𝑙𝑖 is the ground truth of this inference.

𝐿𝑜𝑠𝑠 =
∑
𝑖

(𝑌𝑖 − 𝐿𝑎𝑏𝑒𝑙𝑖)2 where i is the output neuron index (2.2)

3. Backward Propagation: Compute the gradients of the loss function concerning

each network weight based on the chain rule, which is shown in Figure 2.4.

The chain rule enables the efficient calculation of gradients by breaking down

the computation into products of gradients of individual components. The

computing of backward propagation is shown in equation 2.3 and Figure 2.4.

𝜕𝐿𝑜𝑠𝑠

𝜕𝑤 𝑙
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑌 𝑙
∗ 𝜕𝑌 𝑙

𝜕𝑤 𝑙

𝜕𝐿𝑜𝑠𝑠

𝜕𝑥 𝑙
=

𝜕𝐿𝑜𝑠𝑠

𝜕𝑌 𝑙
∗ 𝜕𝑌

𝑙

𝜕𝑥 𝑙
where l is the layer index

(2.3)

4. Weight Update: After obtaining the gradients of network parameters, gradient

descent is used to update the weights. The gradient descent algorithm is applied

to update parameters in the opposite direction of the gradients (i.e. direction of

the steepest descent), iteratively reducing the loss function, where the step size is

defined by a hyperparameter called learning rate. The basic equation of this step

is called stochastic gradient descent (SGD) [42] which is shown in equation 2.4.

𝑤 𝑙
𝑘+1

= 𝑤 𝑙
𝑘
+ 𝛼 ∗ 𝜕𝐿𝑜𝑠𝑠

𝜕𝑤 𝑙
𝑘

(2.4)

where

• k is the iteration number,

• l is the layer index,

• 𝛼 is the learning rate.

2.1.3. Spiking Neural Networks (SNNs)
Undeniably, ANNs have achieved remarkable success in various application scenarios.

However, the operational logic of ANNs indeed deviates from their original intention

of mimicking the workings of the human brain. One prominent difference lies in the

mode of information transmission among neurons. In traditional ANNs, information is

transmitted with real-valued amplitudes. In contrast, in the human brain, information
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Figure 2.4: The chain rule in backpropagation. The cost of output neuron 𝑌𝑖 is illustrated. where 𝑥𝑖 is

the input and 𝑌𝑖 is the output.
𝜕𝐿𝑜𝑠𝑠
𝑌𝑖

is the partial derivative of the loss function with respect to the

output.
𝜕𝐿𝑜𝑠𝑠
𝑤1

is the gradient of the loss function used to update 𝑤1, while
𝜕𝐿𝑜𝑠𝑠
𝑥𝑖

is the gradient of the

loss function with regard to the input 𝑥𝑖 , which will be passed to the former layer.

transmission between neurons occurs through spikes, with relatively fixed amplitudes

[13]. Building on this premise, numerous papers have proposed spiking neuron models

that aim to reproduce this behaviour.

As of now, researchers have come up with several mathematical models to simulate the

behaviour of neurons, but all proposed mathematical models of neurons have faced

a trade-off between neuroscientific realism and computational complexity, given the

inherent complexity of biophysical mechanisms in actual neural cells. The Hodgkin-

Huxley (HH) model [22], while capable of faithfully emulating various behaviours

of real neurons, presents significant challenges in hardware implementation due

to its complexity. [47] provides an FPGA realization of a simplified HH model, as

implementing the original HH model is intractable. Consequently, a more widely

adopted alternative in contemporary research is the leaky integrate-and-fire (LIF)

model [33]. A classic neural unit of the LIF model is depicted in Panel B of Figure 2.2

[21].

Compared to the neurons in conventional neural networks, the computing inside the

LIF neurons is simpler, and basically uses only additions and comparisons. Each

neuron has two intrinsic properties called membrane potential and threshold voltage.

Once the neuron receives a binary spike from a neuron of the former layer, the

membrane potential will increase by the weight between these two neurons, and this is

called integration. If there is no spike coming in, the membrane potential will decrease

gradually, and this is called leakage. This neuron will release a binary spike once the

membrane is above the threshold, and then the membrane potential will be reset. One
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basic equation of membrane potential is shown in equation 2.5.{
𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 = −𝑉𝑙𝑒𝑎𝑘(𝑡) +

∑
𝑖 𝑤𝑖

∑
𝑡𝑖
𝜃(𝑡 − 𝑡𝑖) if 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 ≤ 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 = 𝑉𝑟𝑒𝑠𝑒𝑡 if 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 > 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

(2.5)

In the Equation 2.5, all symbols are explained as follows:

• 𝜃 is the Heaviside step function,

• 𝑉𝑙𝑒𝑎𝑘(𝑡) is the leakage function,

• 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 is the membrane potential,

• 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the threshold voltage,

• 𝑉𝑟𝑒𝑠𝑒𝑡 is the reset voltage after spiking,

• 𝑖 is the index of the input neurons,

• 𝑡𝑖 is the spike times of the input neurons,

• 𝑤𝑖 synaptic weight with the 𝑛𝑒𝑢𝑟𝑜𝑛𝑖 .

The LIF model strikes a balance between accuracy and computational efficiency, making

it a popular choice in simulating large-scale neural networks and implementing them

in hardware.

The primary distinction between LIF-based SNNs and conventional ANNs lies in the

fact that, in traditional ANNs, a neuron’s input comprises the sum of the products

of its inputs and weights before passing through an activation function. In the LIF

neuron model, the neuron accepts all input spikes, increases the membrane potential

according to the corresponding weights, and releases a spike when the membrane

potential exceeds a certain threshold voltage (Figure 2.2).

Thanks to the specification of the LIF model, computing becomes much easier compared

to that in conventional neuron models. Therefore, the sparse spike-based data

transmission and computational workload make SNN processors a good candidate for

power-efficient processing compared to traditional ANN processors.

2.1.4. Spike Encoding Schemes
From the previous text, it is clear that the encoding of SNNs varies from that of

traditional ANNs. SNNs have spike-based, discrete inputs and outputs lacking

amplitude, whereas traditional ANNs have continuous, frame-based inputs with

amplitude. To convert continuous frame data into discrete spike data and enable

simpler comparison between the performance of SNN processors and ANN processors,

it is necessary to encode traditional machine learning datasets, and activations into

spikes. Several encoding methods have been proposed in academic literature, such as

rate encoding [2], TTFS encoding [14], phase encoding [29], burst encoding [6], and

rank-order coding (ROC), as shown in Figure 2.5.

Rate encoding is a prevalent and frequently applied method of encoding. It transforms

each input pixel into a frequency of spikes across a timeline based on its amplitude.

The timeline is comprised of multiple basic time units, in each of which the pixel may
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generate a spike based on its amplitude. The spiking probability is higher for pixels

with larger amplitudes. The likelihood of generating spikes typically conforms to

a Poisson distribution, similar to that in the brain [2]. During the timeline, higher-

amplitude pixels generate a greater number of spikes, as depicted in Figure 2.4, panel

A [18].

TTFS encoding [14] indicates that pixels with higher amplitudes generate spikes

earlier, indicating their greater importance. Among all input pixels, the one with

the highest amplitude spikes earliest while the one with the lowest amplitude spikes

latest. Various functions, such as exponential or linear functions, are utilized for

mapping the amplitude to spike time. The application of an exponential function for

amplitude-to-time mapping is illustrated in Figure 2.4, panel B [18].

Phase encoding is a straightforward encoding technique. During a specific time period,

spikes indicate binary 1s, while the lack of spikes represents 0s. Once this period

is over, all spikes and absences are combined to form a binary number. A binary

decoding process is then performed on all spikes within another specific period to

achieve the final outcome. Figure 2.4, panel C [18], demonstrates a case with eight

phases within a period, representing a range from 0 to 255.

Burst encoding is a method of representing amplitude values through the release of a

burst of spikes within a small time window. The number of spikes in the time window

increases with higher amplitude values. Figure 2.4, panel D illustrates this concept [6,

18].

According to [18], TTFS encoding achieves the best computational performance and

has the lowest hardware overhead among various encoding methods. This can be

attributed to only one spike operation and the utilization of precise timing, which

aligns well with the objectives of this project. As a result, this project adopts TTFS

encoding.
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Figure 2.5: An illustration of four spike encoding schemes, the amplitude of pixel 2 is the highest while

the amplitude of pixel 4 is the lowest. (A) Rate coding: pixel 2 produces the highest number of spikes

over time, while pixel 4 produces the least. (B) Time-to-first spike coding: pixel 2 produces the earliest

spikes, while pixel 4 produces the latest spikes. (C) Phase coding: in one period which contains 8 time

units, pixels 1 to pixel 4 are encoded as 11001011, 11111100, 11111001, and 01011101 respectively. (D)

Burst coding, the spike generated by pixel 2 is the densest while the spikes from pixel 4 are the sparest.

Modified from [18]

2.1.5. Quantization
Quantization is a widely used technique in neural networks [24] [8]. Typically, when

processing neural networks, we work with floating point numbers that range from

0 to 1 and have a data type of float32. Quantization is defined more broadly as the

process of converting a high-precision floating-point number into a lower-precision

fixed-point number, such as uint8, commonly known as quantization [25], which is

illustrated in Figure 2.6.
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Figure 2.6: The example of quantizing a float32 value which is between 0-1 to a uint8 value which is

between 0-255. The float32 0 will be the uint32 0 and the float32 1 will be the uint32 255, the float32 0.24

will be quantized to uint8 21 and the float32 0.82 will be quantized to uint8 209.

Appropriate quantization can significantly decrease the workload of neural network

computation by reducing memory and bandwidth demand without sacrificing accuracy.

The equations for general quantization are Equation 2.6 and Equation 2.7:

𝑓 = 𝑆(𝑞 − 𝑍) 𝑞 = 𝑟𝑜𝑢𝑛𝑑( 𝑓
𝑆
+ 𝑍) (2.6)

where

𝑆 =
𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛
𝑍 = 𝑟𝑜𝑢𝑛𝑑(𝑞𝑚𝑎𝑥 −

𝑓𝑚𝑎𝑥

𝑆
) (2.7)

• f is the floating-point number, 𝑓𝑚𝑎𝑥 and 𝑓𝑚 𝑖𝑛 denote the maximum and minimum

of f respectively,

• q is the integer number after quantization, 𝑞𝑚𝑎𝑥 and 𝑞𝑚𝑖𝑛 denote the maximum

and minimum of q respectively.

• S is the scale between f and q,

• Z is the zero point which denotes the integer that corresponds to the quantization

of a 0 in a floating-point number.

There are two categories of quantization - post-training quantization (PTQ) and

quantization-aware training (QAT) - based on the timing of quantization. PTQ involves

using full-precision values during neural network training, followed by quantizing

computation-related parameters, including weights, inputs, and outputs after training.

PTQ is a commonly used quantization method as it is easily implementable. QAT

involves quantizing specific parameters during training, which therefore requires

retraining the network. This approach is typically employed when post-training

quantization results in significant accuracy loss.

2.2. Modern Systems-on-a-Chip (SoC)
Typically, an entire system comprising a central processing unit (CPU) and one or more

co-processors, along with several other modules, is referred to as a System-on-Chip

(SoC). The CPU is the most important unit in a SoC system. The RISC-V-based CPU

has been garnering increasing interest owing to its various advantages such as being

open-source and modular in design [17].
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Figure 2.7: The instructions comparison between RISC and CISC in running R1=[addr(A)+4*R2]+1. In

RISC, this command is divided into 4 basic instructions while in CISC there is only one complicated

instruction. Adapted from [11]

However, a complete neuromorphic SoC entails more than merely a CPU and a

neuromorphic coprocessor; other modules are also indispensable. Thus, we select as

our platform, the X-Heep microcontroller unit (MCU), which is RISC-V based [45].

This section will outline the specifics of both RISC-V and X-Heep in order to provide a

comprehensive understanding of the final neuromorphic SoC.

2.2.1. RISC-V
Instruction set architectures (ISAs) define a computer architecture by specifying the

instruction set and the operations performed by those instructions. ISAs are categorized

into two main types: the complex instruction set architecture (CISC) [10], represented

by the x86 architecture, and the reduced instruction set architecture (RISC) [49],

represented by ARM [23], MIPS [27] and so on.

CISC architectures are characterized by having specialized instructions tailored to

different functionalities. As a result, CPUs belonging to this type of instruction set

perform well in handling special tasks and have high computational power. However,

CISC designs tend to suffer from significant power consumption and heat generation

issues due to those complex instructions. Characteristics of the above make them more

suitable for high-performance computing environments such as servers.

In contrast, RISC aims to keep it simple. In RISC, the commonly used instructions

are designed to be straightforward and highly efficient, while less frequently used

instructions are constructed through combinations of simpler instructions. One

example is shown in Figure 2.7: for the same result, the RISC needs five fixed-length

common instructions while the CISC needs only two variable-length instructions.

As a consequence, RISC performs worse in implementing specialized functionalities

compared to CISC, but makes the cases sense efficient. Despite potentially lower

performance in comparison to x86-based computers, RISC architectures possess an

advantage in terms of lower power consumption, making them well-suited for mobile
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Table 2.1: A list of basic instructions and extensions for RISC-V [53]

Base Description

RV32E Base 32-bit ISA with 16 registers

RV32I Base 32-bit ISA

RV64I Base 64-bit ISA

RV128I Base 64-bit ISA

Extension Description

A Atomic instructions

B Bit manipulation

C Compressed instructions

D Double-precision floating-point

F Single-precision floating-point

G Shorthand for IMAFD extensions

H Hypervisor extension

J Dynamically translated languages

L Decimal floating-point

M Integer multiplication and division

N User-level interrupts

P Packed-SIMD instructions

Q Quad-precision floating-point

S Supervisor mode

T Transactional memory

V Vector operations

devices and other power-constrained applications.

RISC-V is an open-source ISA belonging to RISC. In RISC-V, the instruction set is

designed to be concise, standardized, and extensible, aiming to provide an efficient,

flexible ISA. In addition to being open-source, another key feature of RISC-V is

modularity. All RISC-V processors support a specific set of functionalities that remain

fixed. This inherent modularity facilitates development. Furthermore, based on this

foundation, designers have the flexibility to incorporate additional functionalities by

adding modules that support specific features. This provides designers with a vast

design space, allowing them to tailor different designs according to their requirements.

By adding only the necessary modules on top of the basic RISC-V processor, designers

can fulfill their specific needs while avoiding redundant modules that may lead to

power consumption wastage, thus ensuring both functional completeness and efficient

design.

The foundational extension is the integer instruction set (RV32I or RV64I), comprising

basic integer arithmetic and data transfer instructions. Additionally, a range of optional

standard extensions exist, such as floating-point extension (RV32F and RV64F), vector

extension (RV32V and RV64V), and encryption extension (RV32E and RV64E), among

others. The supported RISC-V extensions are listed in Table 2.1.
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2.2.2. X-Heep
Neural network processors often cannot work independently by themselves, so they

need a host CPU to control them. In this project, we chose a RISC-V-core-based

MCU as the host to control the neural network processor. Nowadays, there are many

open-source RISC-V-based MCUs, such as the Rocket chip [3] from Berkeley University

and PULPissimo [46] from ETH Zurich. These kinds of mature platforms involve tons

of files and a complex environment setup, which makes it hard to develop custom

designs on the existing platform. Considering the design difficulty and flexibility of

these platforms, we finally chose a flexible and simple platform instead: X-Heep [45],

from EPFL. The X-Heep architecture and padframe are provided in Figure 2.8 and

Figure 2.9.

X-Heep is a RISC-V-based MCU that is designed to be configurable and also supports

the integration of various neural network processors. The most important feature of

X-Heep is that it is highly customizable, which is because the memory size, peripheral

modules and other files in X-Heep are generated by Python scripts.

Figure 2.8 shows the default infrastructure of X-Heep, which consists of the following

main modules:

• CPU: X-Heep supports the selection of multiple CPUs to meet different application

scenarios, among which the available CPUs are IBEX, CV32E40X, and CV32E40P,

which are all open-source RISC-V CPUs.

• Bus: X-Heep’s on-chip bus protocol is the open bus interface (OBI) protocol [44],

a simple protocol that supports one-to-many or many-to-many communication.

• Memory: X-Heep divides the memory into several banks, each with a fixed size

of 64KB. The number of instantiated banks is decided according to the size of the

memory needed.

• Debug module: X-Heep uses the JTAG protocol for debugging.

• Peripheral module: X-Heep supports a variety of communication protocols to

communicate with the outside world, including I2C, SPI, UART, and GPIO, and

supports the use of direct memory access (DMA) to control the data transfer

between the internal and external memories.

• System control module: This part includes modules such as a programmable

platform level interrupt controller (PLIC), a power controller, a timer and other

control-signal-related modules.

Figure 2.9 shows the pins exposed to the external from X-Heep, where the top two bits

of the GPIO and the I2C are multiplexed. The registers in the Pad Control module

determine who uses the pin during operation. This padframe multiplexing allows

customizable and flexible accommodation for pad-limited designs.

X-Heep is a tiny MCU, which only includes the necessary basic modules. At the

same time, X-Heep is highly customizable. The design of the existing modules can be

modified easily according to the designers’ own needs, thus allowing for efficient SoCs

tailored to their application.
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Figure 2.8: The architecture diagram of X-Heep. Adapted from [45]

Figure 2.9: The padframe diagram of X-Heep. Adapted from [45]
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Figure 2.10: One basic request and response transaction between manager and subordinate in the OBI

protocol. Modified from [44]

X-Heep Internal Communication
To enable communication between the CPU and other modules in X-Heep, a bus

is required to connect the CPU to other devices. The Open Hardware group has

developed the OBI bus [44] to connect these CPUs to other modules. The OBI protocol,

which is used for point-to-point bus interface on the CV32E40* CPU and related

infrastructure components, utilizes a 32-bit bus interface. This protocol is based on

request-grant transactions. All modules connected to the OBI bus are assigned to

either the manager or the subordinate, where the manager initiates the request and

the subordinate returns the response. A typical basic transaction between the manager

and subordinate is illustrated in Figure 2.10. The request part of one transaction goes

as follows:

• The manager indicates the validity of the request transaction by setting the request

(req) signal high, together with other transaction-related signals: write-enable

(we), byte-enable (en), address (addr), write data (wdata), etc.

• The subordinate indicates that it can accept the request from the manager by

setting the grant (gnt) signal high.

• The request of the transaction starts on the clock rising edge when both req and

gnt are high

The response part of one transaction goes as follows:

• The subordinate indicates the validity of the response transaction by setting the

response-valid (rvalid) high after the gnt is set high.

• The manager indicates that it can accept the response from the subordinate by

setting the ready signal high

• The response of the transaction (rdata) starts on the clock rising edge when both

rvalid and ready are high.
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Figure 2.11: The memory map of X-Heep platform. Inspired from [44]

Based on the OBI bus, X-Heep uses Memory-Mapped I/O (MMIO) for communication

between the CPU and peripherals. This means that all the components within X-Heep

are mapped to specific addresses, allowing the CPU to access all registers and memory

space. The memory map for X-Heep is displayed in Figure 2.11, which shows how

different subsystems are mapped to distinct addresses. Therefore, the CPU can access

the corresponding address to configure all control registers and subsequently configure

the identified subsystems as needed. Furthermore, X-Heap offers ample address space

to facilitate design customization.



3
Heterogeneous Neuromorphic SoC

In this chapter, we present the design details of the neuromorphic SoC, encompassing

hardware and software designs. Employing the concept of software-hardware co-

design, we initially trained an SNN model based on the work of [15], and then simplified

the scheme for hardware implementation to enable low-cost computation on hardware.

Following this, we developed an SNN coprocessor grounded on the pre-trained SNN

model. Finally, the SNN co-processor was integrated into X-Heep, thus creating the

proposed neuromorphic SoC. This enabled us to demonstrate a proof of concept for

hardware-in-the-loop learning.

To gain a deeper understanding of the software design, we will first present the initial

work of [15] as preliminary information. Subsequently, we will detail our proposed

contributions to the software design, the hardware design, and the final SoC design.

3.1. Preliminaries
In this section, we will discuss the prerequisite knowledge required for software design.

The prerequisite knowledge comprises three parts, namely: encoding of the input

dataset using the TTFS encoding, the SNN neuron model, and the training algorithm

for SNNs based on the TTFS encoding [15].

3.1.1. Time-to-First-Spike Encoding on MNIST Dataset
To utilize an SNN model with the standard MNIST dataset of handwritten digits, TTFS

encoding is applied during preprocessing. This is because the input of SNNs is based

on spikes, which is different from the data format of the standard MNIST dataset. The

encoding procedure modifies the format of a standard MNIST sample to spikes, as

shown in Figure 3.1. Each sample consists of 28x28 pixels, with grayscale intensity

represented by each pixel assigned a byte value (0-255). A byte value of 255 represents

black, while a byte value of 0 represents white. After encoding with TTFS, each pixel’s

value is mapped to the time of one spike, with larger values indicating earlier spikes.

19
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Figure 3.1: A sample "3" in the MNIST dataset and its matrix representation is encoded using the TTFS

method. The encoding results in darker pixels spiking earlier, with the color of the spike indicating the

grayscale of the corresponding pixel. Modified from [5].

𝑇𝑠𝑝𝑖𝑘𝑒 = (−
𝑉𝑝𝑖𝑥𝑒𝑙

255

+ 1.0) ∗ 0.9 + 0.1 (3.1)

The TTFS encoding function is presented in Equation 3.1. Following TTFS encoding,

𝑇𝑠𝑝𝑖𝑘𝑒 denotes the spike time of the neuron for the corresponding pixel with a value of

𝑉𝑝𝑖𝑥𝑒𝑙 . The encoding equation can be explained as follows: the dataset is divided by

255 to normalize it within the 0-1 range, and then the outcomes are flipped and scaled

to the range of 0.1-1, as demonstrated in Figure 3.2. The range of 0.1 to 1 is selected

for ease of computation and following quantization, it corresponds to an arbitrary

time unit. This is because we utilize Pytorch for software training, and in Pytorch,

the inputs undergo regularization to the 0-1 range. Moreover, we purposefully avoid

setting the spike time to 0 after the pixel’s encoding, as our intention is for the spike to

be generated subsequent to the start of the inference process, rather than coinciding

with the start of the inference process. This facilitates the subsequent quantization

operation.

3.1.2. Spiking Neuron Model
In the background section, the equations of the basic LIF model (Equation 2.5) were

presented. However, in the basic LIF model, spikes generated early do not have a

dissimilar effect compared to those generated later, despite temporal differences. For

this reason, the authors in [15] applied the LIF model with current-based (Cuba)

synapses. The dynamics of this Cuba-LIF model are outlined in Equation 3.2 [15].
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Figure 3.2: Linear mapping between the pixel value and the spike time of the TTFS-encoding of

equation 3.1

In contrast to the basic model, the left-hand side of the Equation 3.2 no longer portrays

the membrane potential; rather, it displays the derivative of the membrane potential.

The Cuba-LIF model’s right-hand side incorporates a leakage term as well as a novel

element, the synaptic current, which denotes the temporal aggregation of all spikes

originating from the preceding layer upon the neuron’s membrane potential.

According to Equation 3.2, it is evident that in the Cuba-LIF model, alterations in

membrane potential depend on the relation between the magnitude of the leakage

function and the synaptic current. Specifically, when the synaptic current surpasses

the leakage function for a given Cuba-LIF neuron, the membrane potential increases;

otherwise, it decreases. Changes in synaptic currents are dependent on presynaptic

spikes. When the membrane potential is above the threshold voltage, the neuron

generates a spike and then resets the membrane potential to 𝑉𝑟𝑒𝑠𝑒𝑡 , which is the same

as the basic LIF model. Figure 3.3 illustrates a comparison of these two types of neuron

models.

¤𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) =
𝑔𝑙[𝐸𝑙 −𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡)]

𝐶𝑚︸                     ︷︷                     ︸
𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑉𝑙𝑒𝑎𝑘(𝑡)

+ 1

𝐶𝑚

∑
𝑖

𝑤𝑖

∑
𝑡𝑖

𝜃(𝑡 − 𝑡𝑖)𝑒𝑥𝑝(−
𝑡 − 𝑡𝑖

𝜏𝑠
)︸                                  ︷︷                                  ︸

𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

(3.2)

In Equation 3.2, 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 denotes the membrane potential of the neuron, 𝑔𝑙 , 𝐸𝑙 , 𝐶𝑚

and 𝜏𝑠 are all constants. All symbols are defined as follows:

• 𝑔𝑙 is the leak conductance,

• 𝐸𝑙 is the leak potential,

• 𝐶𝑚 is the membrane capacitance,

• 𝜏𝑠 is the synaptic time constant and we regard 𝐶𝑚/𝑔𝑙 as membrane time constant

𝜏𝑚 ,

• 𝑤𝑖 indicates the synaptic weight from input neuron i,

• 𝜃 function is the Heaviside step function,
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Figure 3.3: The dynamics of 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 and synaptic currents differ between the basic LIF model and the

Cuba-LIF model. Panel A depicts the basic LIF model, where the membrane potential depends on the

input spikes. The membrane potential increases when the pre-synaptic neurons spike, and leaks

through time. Panel B displays the Cuba-LIF model, in which each neuron has its own synaptic current

that increases after a pre-synaptic neuron spikes. The membrane potential changes depend on the

relationship between synaptic current and leakage rate.

• 𝑖 denotes the index of presynaptic neurons,

• 𝑡𝑖 denotes the presynaptic spike times of presynaptic neuron i.

The correlation between 𝜏𝑚 and 𝜏𝑠 (from 𝜏𝑚 « 𝜏𝑠 to 𝜏𝑚 » 𝜏𝑠) influences the behaviour

of the neurons. In [15], the authors present the computation for various scenarios and

show that the case where 𝜏𝑚=𝜏𝑠 is simpler than the others (we refer the reader to [15]

for details). For ease of implementation on hardware, we prioritized this scenario for

our project and make the assumption that 𝜏𝑚 and 𝜏𝑠 are equivalent.

3.1.3. TTFS-based Training
In this TTFS encoding, the neuron with the earliest spike has the highest value, which

means that the first spiking neuron in the output layer indicates the result inferred by

the network. Therefore, the SNN is trained to prioritize the target neuron to spike first

among the output layer neurons.

To realize this, [15] took the cross-entropy function as the loss function. The loss

function, L, is shown in Equation 3.3.

𝐿[𝑡(𝑁), 𝑛∗] = 𝑑𝑖𝑠𝑡(𝑡(𝑁)
𝑛∗ , 𝑡

(𝑁)
𝑛≠𝑛∗) = 𝑙𝑜𝑔[

∑
𝑛

𝑒𝑥𝑝(−
𝑡
(𝑁)
𝑛≠𝑛∗ − 𝑡

(𝑁)
𝑛∗ )

𝜉𝜏𝑠
)] (3.3)

All symbols in Equation 3.3 are defined as:

• N is the number of neurons in the output layer.

• 𝑡(𝑁)
is the spike times of the neurons in the output layer.
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Figure 3.4: The spike times of neurons in the output layer compared before and after training. Prior to

training, the spike times of all neurons in the output layer show little variability and were

indistinguishable. However, after training, the neuron related to the correct label produces the earliest

spike, resulting in a significant temporal difference between its spike and those of the other neurons.

• 𝑛∗ is the index of the correct label neuron in the output layer.

• 𝜉 is a constant used to scale the result.

The cross-entropy loss function is chosen to maximize the time difference between

the spike of the output neuron associated with the correct label and all other output

spikes, while facilitating the generation of spikes by the correct target neuron as early

as possible. The impact of this training is illustrated in Figure 3.4.

For the computation of the loss function, it is imperative to ascertain the spike times of

each neuron in the output layer. These spike times can be directly derived through

mathematical calculations, as outlined below. In Equation 3.2, the differential equation

of 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) is given. We can determine the spike time, denoted T, by solving this

differential equation and then equating it to the threshold voltage 𝑉𝑡ℎ , whose result is

shown in Equation 3.4 (we refer the reader to [15] for the full derivation):

𝑇 = 𝜏𝑠

{
𝑏

𝑎1

−𝑊

[
−𝐶𝑚𝑉𝑡ℎ

𝜏𝑠𝑎1

𝑒𝑥𝑝( 𝑏
𝑎1

)
]}

(3.4)

where

𝑎1 =
∑
𝑖∈𝐶

𝑤𝑖𝑒𝑥𝑝(
𝑡𝑖

𝜏𝑠
) 𝑏 =

∑
𝑖∈𝐶

𝑤𝑖
𝑡𝑖

𝜏𝑠
𝑒𝑥𝑝( 𝑡𝑖

𝜏𝑠
) (3.5)

and W is the Lambert function, defined as:

𝑧𝑊 ′(𝑧) = 𝑊(𝑧)
𝑊(𝑧) + 1

(3.6)

The spike time T is being obtained and now we need to update the weights using the

backpropagation algorithm. First, we must compute the derivative of the output spike

time with respect to weights (
𝜕𝑇
𝜕𝑤 ) to update them. Additionally, we must compute the
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derivative of output spike time with respect to input spike time (
𝜕𝑇

𝜕𝑡𝑖𝑛𝑝𝑢𝑡
) to apply the

chain rule, as discussed in Section 2.1.2. According to Equation 3.4, both derivatives

can be computed as:

𝜕𝑇

𝜕𝑤𝑖
(𝑤, 𝑡, 𝑇) = − 1

𝑎1

1

𝑊(𝑧) + 1

𝑒𝑥𝑝( 𝑡𝑖
𝜏𝑠
)(𝑇 − 𝑡𝑖) (3.7)

𝜕𝑇

𝜕𝑡𝑖
(𝑤, 𝑡, 𝑇) = − 1

𝑎1

1

𝑊(𝑧) + 1

𝑒𝑥𝑝( 𝑡𝑖
𝜏𝑠
)𝑤𝑖

𝜏𝑠
(𝑇 − 𝑡𝑖 − 𝜏𝑠) (3.8)

where

𝑧 = 𝑎1𝑒𝑥𝑝
𝑏

𝑎1

(3.9)

Here only the results are listed for the sake of clarity. We again refer the reader to [15].

for the full derivations.

3.1.4. Simplification of the Training Algorithm
The computation of these two derivatives is challenging and difficult to implement

in hardware due to the Lambert function and the exponential operation. To simplify

Equations 3.7 and 3.8, [15] proposes to approximate computationally expensive parts

with a constant 𝜆 as per Equations 3.10 and 3.11:

𝜕𝑇

𝜕𝑤𝑖
≈ −𝜆(𝑇 − 𝑡𝑖) (3.10)

𝜕𝑇

𝜕𝑡𝑖
≈ −𝜆𝑤𝑖

𝜏𝑠
(𝑇 − 𝑡𝑖 − 𝜏𝑠) (3.11)

where

𝜆 = − 1

𝑎1

𝑒𝑥𝑝 𝑡𝑖
𝜏𝑠

𝑊(𝑧) + 1

≈ 0.0192 (3.12)

It is worth noting that these approximation derivations now rely solely on spike times

and weights added and multiplied together. When we attempted to implement this

simplified approach during the training of the [15] network on the MNIST dataset, we

observed a decrease in accuracy of approximately 5%. from 97.2% with the original

training algorithm to around 92.1 with the simplified training algorithm.

3.2. Software Design
The prerequisites for TTFS-encoded SNNs have been introduced in the previous

section, encompassing key aspects such as TTFS encoding applied to the MNIST

dataset, the Cuba-LIF model, and the associated training algorithm. An important

challenge in hardware implementation arises due to the computational complexity
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Figure 3.5: The accuracy under each step of software design

of those equations mentioned above, notably the Lambert function and exponential

functions.

To address these issues, this section presents three contributions regarding software-

hardware codesign. We began by simplifying the backpropagation algorithm, followed

by simplifying the Cuba-LIF model. Using the SNN resulting from these two sim-

plifications, we quantized the SNN to obtain an SNN model, that is suitable for loop

learning on hardware. Finally, we simulate the software workflow of loop learning

to demonstrate the hardware feasibility of loop learning. The work in this section is

organized as shown in Figure 3.5.

3.2.1. Baseline
To demonstrate the effect of our work objectively, we present a baseline of the SNN

model first.

The MNIST dataset’s original sample size is 28×28, leading [15] to employ a 784-350-10

SNN architecture, consisting of 784 neurons in the input layer, 350 neurons in the

hidden layer, and 10 neurons in the output layer.

Due to hardware resource limitations discussed in Section 3.3, the total number of

neurons in our SNN cannot exceed 256. This is insufficient to accommodate the full

MNIST dataset, which features 28×28 pixels, in the input layer. To overcome this, we

selectively chose the center pixels of each sample (outlined in red in Figure 3.6) to

match the input layer size. After testing various network architectures, we ultimately

selected the 144-100-10 model due to its low accuracy drop. For this architecture, we

specifically utilized 12×12 pixel central area. The SNN model’s architecture and the

mapping of the MNIST dataset to the input layer are depicted in Figure 3.6. Although

we lost 81% pixels by cropping the sample, the accuracy only decreased from 97.2% to

96.5% compared to the original network architecture, which is acceptable. Therefore,

in the next sections, we regard the baseline accuracy as 96.5%.
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Figure 3.6: The 144-100-10 SNN architecture with cropped MNIST dataset mapped to the input layer.

The red-framed pixel points corresponded to the SNN network’s input layer in a tiled pattern. For

example, the first row’s 12 pixels correspond to the first 12 neurons of the input layer, and the second

row’s 12 pixels correspond to the 13𝑡ℎ-24𝑡ℎ neurons of the input layer, and so on.

3.2.2. Simplified Backpropagation Algorithm
In Section 3.1, we outlined the backpropagation calculation for TTFS-Encoding. In the

loop learning setup on hardware, the RISC-V CPU will perform the backpropagation

task. However, this computation places a significant burden on the CPU due to the

exponential functions and the Lambert function. While [15] presents a simplification

method, as detailed in Section 3.1.4, it is important to note that this simplification

results in a significant drop in accuracy, which is mentioned in Section 3.1.4. To address

this, we present six approaches (from Method 1 to Method 6) for simplifying the

algorithms and comparing their outcomes with the baseline.

Method 1
The method proposed in [15] that simplifies the backpropagation algorithm is discussed

in Section 3.1.4. In this method, the original algorithm’s term− 1

𝑎1

𝑒𝑥𝑝
𝑡𝑖
𝜏𝑠

𝑊(𝑧)+1
is replaced with

a constant value of 𝜆=0.0192 (Equation (3.10) and Equation (3.11)). We implemented

this simplification to our SNN with the 144-100-10 architecture while updating the

weights of both layers in the network during backpropagation. However, this simplified

method resulted in a 5.4% drop in accuracy compared to the baseline after training,

achieving only 91.1%.

Although Method 1 produced a significant decrease in accuracy, the strategy of
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substituting the intricate function with straightforward expressions shows potential

because it reduces the algorithm to fundamental additions and multiplications. This

simplification is easily applicable to the RISC-V CPU.

Method 2
Since the objective of simplification is to substitute a complex function in the original

equations with a more straightforward expression, we propose in Method 2 to simplify

Lambert’s function via Taylor expansion to avoid solving its differential equation.

𝑊(𝑧) ≈ 𝑧 − 𝑧2

(3.13)

This simplification proposed in Equation 3.13 achieves 95.9% accuracy, only 0.6% less

than the baseline accuracy, without using the Lambert function. However, calculating

𝑧 in Equations 3.5 and 3.9 requires multiple exponential calculations.

Method 3
To eliminate the computation of exponential operations entirely, we expanded on

Method 1. As shown in Equation 3.14 (reminder of Equation 3.12, where z is a function

of 𝑤𝑖 and 𝑡𝑖), 𝜆 can be considered a function of the input spike times and weights

without the need to replace the Lambert function with a Taylor expansion. To better

illustrate the relationships, we created a 3D scatterplot depicting the variability of 𝜆 in

relation to input spike times and weights used in backpropagation. The scatterplot

reveals differing amplitudes of 𝜆 between the two layers. The range of 𝜆 in the first

layer appears to be larger compared to the second layer.

𝜆 = − 1

𝑎1

𝑒𝑥𝑝 𝑡𝑖
𝜏𝑠

𝑊(𝑧) + 1

(3.14)

Therefore, unlike Method 1, which employs a single fixed 𝜆 for both layers, we imple-

mented Method 3 using two 𝜆s in two layers, layer 1 and layer 2, for backpropagation.

The two 𝜆s were obtained by averaging all points separately, where 𝜆𝐿𝑎𝑦𝑒𝑟1 = −0.26

is set when updating the weights of the first layer and 𝜆𝐿𝑎𝑦𝑒𝑟2 = −0.048 is set when

updating the weights of the second layer, as shown in Table 3.1. With Method 3, the

model can achieve an accuracy of 92.6%.

Table 3.1: The different 𝜆s for two layers

Layer 𝜆
First Layer -0.26

Second Layer -0.048

Method 4
Starting with the assignment of different values of 𝜆 for two layers, Figure 3.8 shows

the scatterplot of 𝜆 against the weight. This scatterplot revealed that 𝜆 approached 0

when weight was nonzero. When weight equalled 0, 𝜆 fluctuated between 0 to -8 and

0 to -0.12 in layer 1 and layer 2 respectively.
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Figure 3.7: Scatterplot of 𝜆 distribution under the original algorithm with respect to the input spike

times and weights in the two layers Panel A is the 𝜆 obtained when updating the first layer weights and

panel B is the 𝜆 obtained when updating the second layer weights.

Figure 3.8: Scatterplot of 𝜆 under the original algorithm with respect to the weights in the two layers.

Panel A is the 𝜆 from the first layer and panel B is the 𝜆 from the second layer.
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Therefore, in order to fit this distribution, for cases where weights were nonzero,

the 𝜆 value was selected as the average of all of the 𝜆 values. Similarly, when the

weight equals 0, we use the same procedure to select a different 𝜆 value. This process

represents Method 4, where we choose four 𝜆 values in four cases and tune them to

determine the optimal performance. Upon testing various combinations of 𝜆s, we

achieved a 95.2% accuracy rate using the respective 𝜆 values depicted in Table 3.2.

Table 3.2: The different 𝜆s under four cases

Layer 𝜆 for zero weights 𝜆 for nonzero weights
First Layer -0.0482 -0.26

Second Layer -0.016 -0.048

Method 5 and 6
Expanding on this observation, it becomes evident that the range of 𝜆 values exhibits

significant variation when the weight is equal to zero. To further illustrate this, we

drew a scatterplot illustrating the relationship between 𝜆 and the input spike timing in

cases where the weights are zero, as displayed in Figure 3.9.

To capture this correlation, we fitted both a linear model (Method 5) and a quadratic

polynomial model (Method 6), as presented in Tables 3.3 and 3.4, respectively. Method

5 attained 94.6% accuracy and Method 6 attained 95.0% accuracy. It is important to

note that 𝑝𝑜𝑙𝑦 𝑓 𝑖𝑡, a built-in function in Matlab, is used to fit lambda based on input

spike. A brief scan of the coefficients of each function resulting from this process

was conducted. It should be noted, however, that this method does not yield the

most optimal fit. We would have expected these methods to achieve a higher level

of accuracy than Method 4 since both methods locate lambda closer to its true value.

However, the results demonstrate that both methods actually generate worse results

instead. It is our belief that this is due to the fact that the best-fitting function as

previously mentioned was not found. Due to time constraints, we did not extensively

attempt to find the most suitable fit. In addition, we opted not to use higher-order

polynomials to avoid unnecessarily complex computations that would detract from

the original aim of the simplification.

Table 3.3: The different 𝜆 under four cases with linear approximation

Layer 𝜆 for zero weights 𝜆 for nonzero weights
First Layer -0.0482 −0.64𝑡𝑖 − 0.15

Second Layer -0.016 −0.04𝑡𝑖 − 0.03

Table 3.4: The different 𝜆 under four cases with quadratic polynomial approximation

Layer 𝜆 for zero weights 𝜆 for nonzero weights
First Layer -0.0482 −0.36𝑡2

𝑖
− 0.06𝑡𝑖 − 0.22

Second Layer -0.016 −0.01𝑡2

𝑖
− 0.02𝑡𝑖 − 0.03
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Figure 3.9: Scatterplot of 𝜆 under the original algorithm with respect to the time of input spikes when

weights equal 0 in the two layers. Panel A is the 𝜆 from the first layer and panel B is the 𝜆 from the

second layer.

Comparison of different Methods
To facilitate comparison between the different methods, we compiled the results of in

Table 3.5.

Table 3.5: Accuracies of the SNN under different simplification choices

Accuracy Method Simplification Methods
96.5% Original Without any simplification

91.1% Method 1 One fixed 𝜆 in all cases [15]

95.9% Method 2 Talyor expansion of Lambert Function

92.6% Method 3 Two 𝜆s respectively for two layers, independently of the weights

95.2% Method 4 Four 𝜆s for two layers and when weight=0 and weight≠0 respectively

94.6% Method 5 Two 𝜆s respectively for two layers when weight≠0 and linear approximation of 𝜆 when weight=0

95.0% Method 6 Two 𝜆s respectively for two layers when weight≠0 and quadratic polynomial approximation of 𝜆 when weight=0

Furthermore, in order to find the balance between the computational burden and the

accuracy. We show in Figure 3.10 the tradeoff between accuracy and the number of

MAC and exponential operations. This translates to a better tradeoff the closer we are

to the top left point in both diagrams. Accordingly, our final choice is Method 4, which

does not require computing exponential functions and has the fewest MAC operations

with the second-highest accuracy among the six methods with 95.2%, which is close to

the baseline of 96.5% at a much reduced computational cost.

3.2.3. Simplified Cuba-LIF Model
In this part, we simplify the original Cuba-LIF model in two steps. First, we impose

a constraint that restricts all neurons to firing at most once. Second, we eliminate

the leakage feature to streamline the computational process. Subsequently, we apply

this simplified Cuba-LIF model to the SNN that was trained in Section 3.2.2. These

simplifications are aimed at reducing model complexity and computational overhead

while maintaining accuracy.
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Figure 3.10: Scatterplot of the accuracies of different simplification methods with respect to the amount

of exponential operations (panel A) and MAC operation (panel B), related to Table 3.5
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One-Spike Limitation
In the original Cuba-LIF model, after a neuron generates a spike it can begin to accu-

mulate membrane potential again if there is a non-zero synaptic current. Consequently,

it is possible for a single neuron to produce multiple spikes within a single inference,

which is not necessary when the TTFS code is used.

Nonetheless, during the inference phase, our aim is to minimize the occurrence of

spikes, as fewer spikes translate to reduced computational load. Consequently, we

imposed a constraint that limits all neurons in the network to emitting at most one

spike during a single inference by disabling them as soon as they spike. Figure 3.11

provides a visual comparison of the membrane potential dynamics with and without

this limitation.

Figure 3.11: The comparison of the membrane potential with (panel A) and without (panel B) the

one-spike limitation. Without the limitation, one neuron might spike several times in one inference,

with the limitation, one neuron can only spike once in one inference.

The mathematical equation is simplified by the removal of the second sum in Equation

3.2. The updated equation with a one-spike limit is displayed in 3.15. The revised

equation eliminates the second sum over 𝑡𝑖 times in the synaptic current term as there

is only a single 𝑡𝑖 value per neuron.

¤𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) =
𝑔𝑙[𝐸𝑙 −𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡)]

𝐶𝑚︸                     ︷︷                     ︸
𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑉𝑙𝑒𝑎𝑘(𝑡)

+ 1

𝐶𝑚

∑
𝑖

𝑤𝑖𝜃(𝑡 − 𝑡𝑖)𝑒𝑥𝑝(−
𝑡 − 𝑡𝑖

𝜏𝑠
)︸                             ︷︷                             ︸

𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

(3.15)

No-Leakage Simplification
In Equation 3.15, two leakage terms are present. The first one,

𝑔𝑙[𝐸𝑙−𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 (𝑡)]
𝐶𝑚

, is

utilized for computing the leakage of the membrane potential. The second one,

𝑒𝑥𝑝(− 𝑡−𝑡𝑖
𝜏𝑠

) is utilized for computing the leakage of the synaptic current. These leakages

take place continuously within the timeline, requiring significant computing resources

to record the process of each computational time step. Here, we eliminate the leakage

by setting 𝑔𝑙 to 0 and then 𝜏𝑠 to infinity. As a result, the leakage function becomes 0 and
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the 𝑒𝑥𝑝(− 𝑡−𝑡𝑖
𝜏𝑠

) equals 1, indicating that the synaptic current and membrane potential

do not decay over time. The visual comparison is shown in Figure 3.12.

Figure 3.12: The comparison of the membrane potential and synaptic current with and without leakage.

Panel A is with the leakage and panel B is without leakage. With the leakage, the synaptic current

decays with time if there is no new spike coming and the membrane potential decays if the synaptic

current is lower than the leakage speed, but without the leakage, the synaptic and membrane potential

will not decay.

With this restriction, the equation for the membrane potential is now expressed in

Equation 3.16. The leakage function is set to 0, and the exponential calculation

within the synaptic current item has been eliminated. This simplified formula is more

computationally efficient compared to the original Equation 3.2.

¤𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) =
1

𝐶𝑚

∑
𝑖

𝑤𝑖𝜃(𝑡 − 𝑡𝑖)︸            ︷︷            ︸
𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑟𝑒𝑛𝑡

(3.16)

Mathematical expressions for the simplified Cuba-LIF model
Using Equation 3.16, we can derive an equation for the membrane potential as expressed

in Equation 3.17. Here, 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡0) represents the initial membrane potential value,

equivalent to the value of 𝑉𝑟𝑒𝑠𝑒𝑡 .

𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡) = 𝑉𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒(𝑡0)︸          ︷︷          ︸
𝑉𝑟𝑒𝑠𝑒𝑡

+ 1

𝐶𝑚

∑
𝑖

𝑤𝑖(𝑡 − 𝑡𝑖)𝜃(𝑡 − 𝑡𝑖) (3.17)

This expression signifies that the membrane potential equals the cumulative sum

of all presynaptic spikes integrated over time. This simplified formula is intuitively

comprehensible, and in Section 3.3, we will provide a detailed elaboration on how to

simulate this model and its computational process through hardware design.
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Results
In this section, we introduce two simplification techniques for streamlining the basic

Cuba-LIF model: the one-spike limitation and the removal of leakage. These lead to a

simplified membrane potential calculation represented by Equation 3.17.

We applied this simplified Cuba-LIF model to replace the original Cuba-LIF model in

the SNN obtained in Section 3.2.2. The SNN model achieved an accuracy of 94.4%,

with an accuracy drop of 0.8% compared to that with the original Cuba-LIF model.

The accuracy results are presented in Table 3.6. It is worth noting that the network

has not been retrained following the substitution of the original Cuba-LIF model with

the simplified version. Retraining will be undertaken after the completion of the

quantization operation.

To summarize the progress thus far, we integrated the simplified Cuba-LIF model with

the backpropagation algorithm, as outlined in Figure 3.5.

Table 3.6: The accuracies of the SNN with the original Cuba-LIF model and with the simplified

Cuba-LIF model

SNN Configuration Original Cuba-LIF model and

simplified backpropagation algorithm

Simplified Cuba-LIF model and

simplified backpropagation algorithm

Accuracy 95.2% 94.4%

3.2.4. Quantization of the SNN
In the software design phase, the SNN model is trained using PyTorch, which utilizes

64-bit double-precision floating-point numbers to represent all numerical values.

However, in order to mitigate computational and memory demands in the subsequent

hardware design phase, we implemented PTQ on the SNN model obtained in Section

3.2.3.

With PTQ, we quantized the spike times and the weights within the SNN. This

quantization process leads to the corresponding quantization of the membrane potential

and synaptic current.

Quantization of Spike Times
In Section 3.1, after applying TTFS encoding, neurons in the input layer generate spikes

within the time interval of t=0.1 to t=1. These initial spikes subsequently stimulate

neurons in the subsequent layers, resulting in a cascade of spikes. Therefore, it is

necessary to first define the time range in order to quantize the spike times accurately.

To this end, we conducted 10,000 inferences on the test dataset using the SNN model

outlined in Section 3.2.3 and visualized the spike times of neurons in the output layer

in a graph presented in Figure 3.13. The graph demonstrates that more than 85% of

neurons in the output layer spike prior to t=2.5. This observation implies that the SNN

has effectively produced the inference result by t=2.5. Consequently, we established

a simulation time window ranging from t=0 to t=2.5, during which spiking neurons

beyond t=2.5 are considered to spike at t=2.5.

We quantized the spike time by mapping the floating-point value 0 to integer value 0

and the floating-point value 2.5 to the maximum integer value, in the same way as the
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Figure 3.13: Spike times of neurons in the output layer and their corresponding counts.

example in Figure 2.6. This implies that S=2
𝑁

-1 and Z=0 in Equation 2.7, where N is

the resolution in bits. We compared the accuracies achieved by quantizing spike times

to various resolutions of bits, and the outcomes are displayed in Figure 3.14.

Our experimentation has revealed that when 8 bits are utilized to quantize spike

times based on the SNN model obtained in Section 3.2.3, the accuracy of the model

reaches 94.4%. However, when fewer than 8 bits are employed, a considerable loss of

performance is observed. Conversely, increasing the bit precision beyond 8 bits does

not yield any improvement in accuracy. Based on these findings, we decided to adopt

an 8-bit representation for quantizing spike times.

Quantization of Weights
For the same reason that Pytorch defaults to a 64-bit double-precision floating-point

value for weights, we also quantized the weights to a lower bit resolution. It is worth

highlighting that this quantization process already takes into account the previous

quantization of spike times in the network.

To quantize the weights, it is necessary to first define the weight range. The decision

on the truncated range is based on the fact that the larger the range, the more bits are

required for quantization at the same precision. Consequently, we aim to minimize

the range while ensuring precision. We recorded the weights of the SNN model in

Section 3.2.3. Subsequently, the weight distribution is plotted according to Figure 3.15,

with the weights on the x-axis and the corresponding occurrence on the y-axis.
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Figure 3.14: Accuracies at different input quantization resolutions, after 8bits, the accuracy doesn’t have

clear increases.

Figure 3.15: The distribution of weights in the SNN obtained in Section 3.2.3. (A) Weights of the first

layer. (B) Weights of the second layer.

From Figure 3.15, it is apparent that the weights in this SNN are primarily concentrated

around 0, roughly in the -3 to 3 range.

The weight truncation range, [-𝑤𝑐𝑙𝑖𝑝 , +𝑤𝑐𝑙𝑖𝑝], was determined through a comparison

of accuracy using various truncation ranges. Here the symmetric truncation was

chosen to prevent the introduction of zero offset, thus facilitating hardware design.

Evaluating the accuracy for different weight quantization resolutions necessitates

analyzing various ranges of weight truncation. Consequently, we compared the

accuracies of varying quantization and truncation ranges. The results are shown in

Figure 3.16, which shows that when 𝑤𝑐𝑙𝑖𝑝 is set to 2 and 4 bits are used for quantization,

the accuracy can reach 93.5%. However, using more bits for quantization only results
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Figure 3.16: Accuracy of the SNN model under different truncation ranges and weight quantization

resolutions.

in a minor increase in accuracy, while requiring at least 20% more memory resources

on the hardware. Thus, to balance resource consumption and accuracy, we chose 𝑤𝑐𝑙𝑖𝑝

as 2 and 4 bits to quantize the weights.

Other Quantization Configurations
After quantizing the weights and spike times, the model attained 93.5% accuracy. We

therefore included quantizing the synaptic current and membrane potential.

We accomplished synaptic current quantization by using an 8-bit resolution, which

produced satisfactory outcomes without compromising accuracy. We did not examine

other resolutions as this is not the dominant factor in our design: SNN’s 15,400 weights

(4-bit weights) but only 154 synaptic currents (8-bit synaptic currents).

The same principle also applies to the quantization of membrane potential, which is

quantized with a 12-bit resolution without compromising accuracy.

Result of Quantization
In the quantization phase, we apply an 8-bit quantization for spike time, 4-bit for

weights, 8-bit for synaptic current, and 12-bit for membrane potential for the SNN

model obtained in Section 3.2.3. As a result, the accuracy decreases from 94.4% to

93.5%, compared to the SNN model prior to quantization (see Figure 3.5), with the

required memory resources reduced by around 16 times. The accuracy so far is as

outlined in Figure 3.5.

3.2.5. Loop Learning in Software
After simplifying the Cuba-LIF model and PTQ, we developed a software-based

emulation of the loop learning work model to forecast its outcomes on hardware.
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During hardware implementation of loop learning, the SNN coprocessor carries out

the inference stage to quantize all inference values for resource conservation. The

RISC-V CPU carries out backpropagation, maintaining 32-bit precision for accuracy.

The software-based emulation of the loop learning work model is shown in Figure 3.17.

All the steps in red will be carried by the SNN coprocessor and the steps in blue will be

carried by the RISC-V core. In contrast to the original process outlined in Section 3.1.3,

the simplified backpropagation algorithm adjusts the weights based on the simplified

Cuba-LIF model and quantized spike times and weights. As a result, the network can

learn to adapt to these features during training.

With loop learning, the SNN model achieves an accuracy of 94.5%. The accuracy

variation during training is shown in Figure 3.18. It was observed that the accuracy

decreases with excessive training time. This is due to the simplification of the

backpropagation algorithm, leading to errors in the calculated gradient that diverge

from the true gradient, ultimately impeding the training from converging. The Early

Stopping technique was used to address this issue. It involves stopping training when

accuracy begins to decline, as shown in the figure. As a result, we achieved a training

accuracy rate of 94.5% on Loop Learning, demonstrating the method’s theoretical

feasibility for hardware implementation.

3.2.6. Results of Software Design
To summarize, in the software design module, we simplified the SNN network by the

following three steps to reduce the computational amount on the subsequent hardware

while maintaining accuracy:

• Simplifying the equations for calculating
𝜕𝑇
𝜕𝑤𝑖

and
𝜕𝑇
𝜕𝑡𝑖

in backpropagation by using

four 𝜆s to replace the complex term in Equation 3.2 in four cases.

• Simplifying the neuron model by limiting each neuron to produce at most one

spike and removing the neuron’s leakage.

• Quantizing the spike time, weight, synaptic current, and membrane potential of

the SNN using 8, 4, 8, and 12 bits, respectively.

The final SNN model achieves an accuracy of 93.5% after simplification and quantiza-

tion, which is a 3% drop from the original model’s accuracy of 96.5%. Nevertheless,

there is an order-of-magnitude decrease in computing and hardware resources needed

on hardware.

To predict the performance of loop learning in hardware, the feasibility of loop learning

on hardware is verified by running a software-based simulation setup shown in

Figure 3.17, resulting accuracy is 94.5% thanks to early stopping (Figure 3.18). The

accuracy summary of each step of the software design is presented in Figure 3.5.

3.3. Hardware Design
In this chapter, we developed a neuromorphic SoC that implements the loop learning

setup. First, we present the overall architecture of this neuromorphic SoC and then

delve into the components. Specifically, we designed a coprocessor for the SNN called
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Figure 3.17: Workflow of the simulation of loop learning in software. All the modules in red will be

carried out by the RISC-V core in software, and all the modules in blue will be carried out by the SNN

coprocessor.
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Figure 3.18: Accuracy with respect to the epoch in Loop Learning

TTFS-tinyODIN. We subsequently integrated TTFS-tinyODIN into X-Heep, an MCU

that uses a RISC-V CPU to enable the configuration and control of TTFS-tinyODIN via

the RISC-V CPU. Subsequently, we created the software driver for TTFS-tinyODIN,

which facilitates CPU configuration. Finally, we confirmed the successful operation of

the loop learning setup between the CPU and TTFS-tinyODIN.

3.3.1. Neuromorphic SoC Architecture
The architecture diagram of the proposed neuromorphic SoC is shown in Figure 3.19.

The SoC is realized by combining X-Heep [15] with the TTFS-tinyODIN and a self-boot

module through the OBI bus.

The RISC-V CPU serves as the central component of this SoC, accessing all other

modules via the OBI BUS. The TTFS-tinyODIN block implements the inference process

for the SNN trained in the software design portion, receiving input and configurations

from the RISC-V CPU. The self-boot module is an OBI bus manager that includes a

memory block storing the binary code of the runtime system. Upon each SoC boot, the

binary code is written to a specific address in the memory subsystem, and the self-boot

module prompts the CPU to read the same address, thereby initializing the SoC.

3.3.2. SNN Processor: TTFS-tinyODIN
In this section, we introduce the SNN coprocessor, TTFS-tinyODIN. TTFS-tinyODIN is

a highly versatile processor capable of mapping a variety of fully connected neural

networks. We will utilize TTFS-tinyODIN to map the SNN model acquired in Section

3.2 and to carry out the inference process in this project.

Architecture
The TTFS-tinyODIN architecture utilizes a crossbar setup to establish connections

between all neurons in an all-to-all pattern, as depicted in Figure 3.20. The crossbar

design was purposefully selected, influenced by [12], due to its inherent ability to

facilitate direct connections between any two neurons, allowing for great flexibility in
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Figure 3.19: Architecture of the final neuromorphic SoC, based on X-Heep, all the internal submodules

in the peripheral subsystem, Always on (AO)-peripheral subsystem and those ports to the external are

omitted in.
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mapping any SNN to this coprocessor.

Figure 3.20: The architecture of the SNN implementation in TTFS-tinyODIN

The crossbar structure described in [12] includes 256 neurons and a corresponding set

of 65,536 synaptic weights (256x256). We chose to maintain this configuration as adding

more neurons would result in quadratic growth of synaptic weights, ultimately leading

to increased hardware resource consumption. Conversely, reducing the number of

neurons would make the coprocessor inadequate for precisely mapping the SNN

model, as our SNN model contains 254 neurons.

Within Figure 3.20, each row represents 256 output synaptic weights originating

from 𝑁𝑒𝑢𝑟𝑜𝑛𝑥 , while each column signifies 256 input synaptic weights directed

towards 𝑁𝑒𝑢𝑟𝑜𝑛𝑦 . The input synaptic weights to 𝑁𝑒𝑢𝑟𝑜𝑛𝑦 will accumulate in the

𝑆𝑦𝑛𝑎𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑥, leading to changes in the membrane potential of 𝑁𝑒𝑢𝑟𝑜𝑛𝑦 .

In accordance with this architecture, when the synaptic weight 𝑤𝑥,𝑦 is equal to zero,

it signifies the absence of a synaptic connection between the neurons 𝑁𝑒𝑢𝑟𝑜𝑛𝑥 and

𝑁𝑒𝑢𝑟𝑜𝑛𝑦 . Conversely, when the synaptic weight is a non-zero value, it indicates the

presence of a synaptic connection linking these two neurons.

As depicted in Figure 3.20, the mapping of the SNN model discussed in Section 3.2,
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from its software representation to the hardware implementation, is represented. We

executed the following mapping scheme:

1. The input layer of our SNN was mapped to 𝑁𝑒𝑢𝑟𝑜𝑛0 through 𝑁𝑒𝑢𝑟𝑜𝑛143 of the

TTFS-tinyODIN architecture.

2. The hidden layer of our SNN was mapped to 𝑁𝑒𝑢𝑟𝑜𝑛144 through 𝑁𝑒𝑢𝑟𝑜𝑛243 of

the TTFS-tinyODIN architecture.

3. The output layer of our SNN was mapped to 𝑁𝑒𝑢𝑟𝑜𝑛246 through 𝑁𝑒𝑢𝑟𝑜𝑛255 of

the TTFS-tinyODIN architecture.

Note that 𝑁𝑒𝑢𝑟𝑜𝑛244 and 𝑁𝑒𝑢𝑟𝑜𝑛245 were excluded from this mapping process and

remained unused in the current configuration.

Within our network, 15,400 weights are utilized out of a total capacity of 65,536 in

the crossbar structure. The remaining 50,136 weights are inactive and set to zero.

Although a significant amount of weight resources is left unused, this allocation is a

deliberate and necessary aspect of the coprocessor’s design. It guarantees that the

coprocessor has the flexibility necessary to map arbitrary neural network models.

Module Diagram
The top-level module diagram of TTFS-tinyODIN is represented in Figure 3.21. The

interfaces to X-Heep, which will be introduced in the next section, are omitted for

clarity. It is also noteworthy that TTFS-tinyODIN is designed for integration into the

X-Heep platform and is intended to facilitate communication with a 32-bit RISC-V

core. In alignment with this integration, all SRAMs and registers that are intended to

be accessed by the RISC-V CPU have a width of 32 bits. This design choice ensures

compatibility and enables communication between TTFS-tinyODIN and the 32-bit

RISC-V core. The specific data arrangement within the SRAM is explained in detail

below.

To optimize the utilization of hardware resources, a time multiplexing approach[50]

is employed within each module. This means that all neurons operate sequentially,

based on shared update logic, a concept that will be elaborated upon in subsequent

paragraphs.

Next, we will introduce the internal structure and workflow of the four modules

of TTFS-tinyODIN, namely the spike core, synaptic core, neuron core, and control

module.

• Spike core: The spike core module, which is enclosed within the yellow dashed

box in Figure 3.21, consists of several key components, as shown in Figure 3.22.

This module includes a 256B spike core SRAM, a spike checker module and a

32-stage 8-bit-width spiked neuron first-in-first-out (FIFO) queue.

– Spike core SRAM: The spike core SRAM is responsible for storing spike

time information of 256 neurons. The data is stored in a specific format,

utilizing 64 32-bit words. Within each 32-bit segment, the 8-bit spike times of

four neurons are encoded. For instance, the 32-bit value located at address

0 holds the spike times of 𝑛𝑒𝑢𝑟𝑜𝑛0 to 𝑛𝑒𝑢𝑟𝑜𝑛3, while the 32-bit value at

address 1 contains the spike times of 𝑛𝑒𝑢𝑟𝑜𝑛4 to 𝑛𝑒𝑢𝑟𝑜𝑛7, etc.
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Figure 3.21: Architecture of TTFS-tinyODIN. The yellow box indicates the spike core module. The blue

box indicates the synaptic core module. The green box indicates the neuron core module. The red box

indicates the control module.

– Spike checker: The spike time sequencer is responsible for traversing

the spike core SRAM sequentially and converting the 32-bit spike time

information into four 8-bit spike times. The comparator compares the

spike times with the current time (referred to as "tick"). When a match is

found, indicating that a neuron spikes at the current time, the index of the

spiking neuron will be pushed into the spiked neuron FIFO. This process

is based on time multiplexing, in every clock only one 8-bit spike time is

compared. Therefore, 256 clock cycles are needed to check the spike times

of 256 neurons.

– Spiked Neuron FIFO: The FIFO stores the indexes of the neurons spiking at

the current time

• Synaptic core: This module is denoted by the blue dash box of Figure 3.21. The

detail of this module is shown in Figure 3.23. This module contains a 32KB

synaptic core SRAM and a synaptic current charger.

– Synaptic Core SRAM: This 32KB synaptic core SRAM stores all the 64 4-bit

weights on the crossbar. This SRAM represents the crossbar structure

mapping. Thus, the SRAM size is 8192*32 bits. In this SRAM, each 32-bit

row contains eight 4-bit weights. The 32-bit value in row 0 represents the

eight weights leading from 𝑛𝑒𝑢𝑟𝑜𝑛0 to 𝑛𝑒𝑢𝑟𝑜𝑛0−7, and rows, ranging from

address 0 to 31 represent the 256 weights from 𝑛𝑒𝑢𝑟𝑜𝑛0 to all 256 neurons,

etc.

– Synaptic current charger: Based on the index in the spiked neuron FIFO,
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Figure 3.22: Internal components and dataflow of the spike core module

the synaptic current charger controller accesses the synaptic core SRAM

and sequentially reads the 256 post-synaptic weights of that neuron. These

weights are subsequently used to update the synaptic currents of the 256

neurons via time multiplexing. In every clock cycle, the synaptic current

charger Controller reads 8 4-bit weights from the synaptic core SRAM and

adds them to the corresponding 8 synaptic currents. Updating the synaptic

currents of 256 neurons therefore requires 64 clock cycles. The updated

synaptic current will then be stored in the synaptic current registers, which

store the synaptic currents of 256 neurons.

• Neuron core: This module is the part in the green dash box of Figure 3.21. The

detail of this module is shown in Figure 3.24. The part contains a 1KB dual-port

neuron core SRAM and the LIF neuron state update module.

– Neuron core SRAM: The neuron SRAM stores the states of 256 neurons,

where each neuron state has 32 bits (Figure 3.25), with 12 bits for the

threshold voltage, 13 bits for the membrane potential, and 1 bit for the

enable. We also reserved 6 bits in order to ensure that the length is 32 bits.

Furthermore, this is a dual-port SRAM, enabling concurrent read and write

operations to neuron states, which is explained in the next paragraph.

– Neuron state updating module: This module updates the state of 256 neurons

and implements Equation 3.17. The neuron state updating controller reads

each neuron’s state sequentially and retrieves the corresponding synaptic

currents from the synaptic core module. This information is subsequently

transmitted to the Cuba-LIF model, comprising an adder and a comparator.

The adder updates the membrane potential, while the comparator compares

the membrane potential to the threshold voltage. The Cuba-LIF model
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Figure 3.23: Internal components and dataflow of synaptic core module

updates the membrane potential by accumulating the synaptic current

to the previous membrane potential and then writing the updated value

to the neuron core SRAM. If the neuron’s membrane potential surpasses

its threshold voltage, the Cuba-LIF model produces a spike and writes

the corresponding spike time to the same spike core SRAM. To decrease

inference latency, we utilize the dual-port SRAM which allows for read

and write operations to occur simultaneously, ensuring that the updated

neuron state is written at the same clock cycle as the next neuron state is

read. This updating process is shown in Figure 3.26. This process uses time

multiplexing to update only one neuron per clock cycle. 257 clock cycles are

required to update the state of 256 neurons.

• Control module: This module is the part in the red dash box of Figure 3.21.

The control module consists of a controller and a tick generator. The controller

enables and disables the three cores throughout different inference phases, and a

finite state machine (FSM) executes the control process, which will be elaborated

on in detail in the dataflow paragraph below. In addition, a 32-bit control register

that the CPU can access facilitates the control process. The control register is

shown in Figure 3.27. It consists the number of neurons in the input layer of the

SNN network, the total neuron count in the network, and the start and end flag

bits for inference. The timing of inference in this co-processor is controlled by

the tick generator, which will be introduced in the next section.

Dataflow
In this section, we will present the detailed dataflow in an inference of TTFS-tinyODIN.

We simulated the membrane potential of the simplified Cuba-LIF model over time and

reproduced the calculation of Equation 3.17 in hardware design. Based on this, we

replicated the inference process on software in X-Heep through hardware acceleration
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Figure 3.24: Internal components and dataflow of neuron core module

0111223243031

membrane potentialthreshold Voltagereserveden

Figure 3.25: The 32-bit neuron state per neuron in the neuron core SRAM: 12 bits for threshold voltage,

13 bits for membrane potential, 1 bit for enable, and 6 bits for parameters.

Figure 3.26: Updating the membrane potential of 256 neurons. The neuron SRAM is a dual-port SRAM

that reads the membrane potential of the 𝑘𝑡ℎ neurons at the 𝑖𝑡ℎ clock cycle and writes back the

membrane potential of the neuron after updating; it simultaneously reads the membrane potential of

the (𝑘 + 1)𝑡ℎ neuron at the (𝑖 + 1)𝑡ℎ clock cycle.

0121516232431
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Figure 3.27: The register map of the control register. 8 bits for the number of neurons in the first layer, 8

bits for the number of neurons of the whole SNN, 14 bits for the parameter, 1 bit for the start which

indicates the start of one inference and 1 bit for the done which indicates the finish of one inference.
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Figure 3.28: The state transfer diagram of the FSM in inference in TTFS-tinyODIN.

in the TTFS-tinyODIN coprocessor

In the software component, we confine the simulation time range between t=0 and t=2.5,

subsequently quantizing it into 8 bits. Therefore, in the hardware implementation, we

establish a resolution of 2.5/256, which we refer to as a "tick." This implies that within

the hardware framework, we employ 256 ticks to emulate the processes occurring

in the software from t=0 to t=2.5. Consequently, the entire inference process within

this coprocessor operates based on these ticks, starting at tick=0 and concluding at

tick=255.

The controller drives the inference process with one FSM, which is described in the

following states and Figure 3.28:

1. Initial: The process begins by writing the weights into the synaptic core SRAM.

This establishes the architecture of the network. Next, the threshold voltage and

initial membrane potential values for all neurons are written to the neuron core

SRAM. Finally, the TTFS-encoded pattern is written to the spike core SRAM to

serve as the input for this coprocessor. The initialization process is simulated to

be executed in the testbench through writing by the RISC-V core.

2. Check: After the 𝑠𝑡𝑎𝑟𝑡 bit in the control register is set to high. The inference starts

with tick=0, the spike checker reads the spike time of 256 neurons stored in the

spike core SRAM, compares the spike time with the current tick, and stores the

neuron indices that match the tick into the spiked neuron FIFO. After checking
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all 256 spike times of 256 neurons, the 𝐶ℎ𝑒𝑐𝑘 phase ends and the 𝐶ℎ𝑎𝑟𝑔𝑒 phase

begins.

3. Charge: Based on the neuron index read from the FIFO, the corresponding 256

weights in the synaptic core SRAM are accessed and added to the latest value

of the 256 synaptic currents, thereby updating them. In this step, the synaptic

current charger reads the values in the spiked neuron FIFO in sequence. The

synaptic current charger repeats this process of reading until the FIFO is empty.

4. Update: At this phase, the LIF neural state update module updates the membrane

potential of 256 neurons based on their synaptic currents. The updated current

membrane potentials are calculated by retrieving the latest value of the membrane

potentials from the neuron core SRAM and adding the corresponding synaptic

currents, which implements Equation 3.17. After updating the membrane

potentials of all 256 neurons, a tick is completed and the process is repeated with

the next tick and continues to the 𝐶ℎ𝑒𝑐𝑘 phase. Notably, the Cuba-LIF model

generates a spike and writes the tick+1 to the spike core SRAM when the updated

membrane potential of a neuron exceeds its threshold voltage. For example, if

𝑁𝑒𝑢𝑟𝑜𝑛10 generates a spike at tick=5, the Cuba-LIF model will write tick=6 to

address 10 (the address of 𝑁𝑒𝑢𝑟𝑜𝑛10) in the spike core SRAM. This allows the

𝐶ℎ𝑒𝑐𝑘 stage to capture all spikes generated during the current tick on the next

tick. If tick=255 is detected, the inference is completed, marking the end of the

state and returning to the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 state.

Verification
To verify the computational process of TTFS-tinyODIN, a post-implementation simula-

tion was conducted on the Vivado platform to observe the waveforms of one inference.

The simulation frequency was set at 100MHz.

In this testbench, the TTFS-tinyODIN coprocessor is configured by initializing the

weights, membrane potentials, and threshold voltages according to the SNN model

employed during software training. To achieve this, we reset the membrane potentials

of all 256 neurons to 0 and set the threshold voltage for each neuron to a uniform value

of 340 by writing to the neuron core SRAM. We initialize the spike times of the neurons

in the hidden and output layers to 255 by writing to the spike core SRAM

Subsequently, we input a 12×12 sample input image into the SNN co-processor,

following TTFS encoding and quantization, by writing the first 144 spike times to the

spike core SRAM. This aligns with the input in the software, and then we start the

inference process. It is important to note that during the testing process, the inputs

were already encoded and quantized, which will be executed by the RISC-V CPU in

the final SoC. Once the tick count reaches 255, the inference process concludes. The

resulting neuron spike times originating from the output layer for a ‘7‘ handwritten

digit are then showcased in Figure 3.29, illustrating that output neuron 7 spikes first,

thereby proving correct inference.



3.3. Hardware Design 50

Figure 3.29: Simulation results with respect to an input sample of a "7" digit. In the output layer, the 1𝑠𝑡

to 10𝑡ℎ neurons indicate the inference result as 0-9 respectively. Output neuron 7 is the first to generate

a spike at tick = 57, which indicates that this inference result is 7, proving that the inference is correct.

This inference finishes at tick = 255.

Note that for faster inference, it is possible to halt the inference process once any neuron

in the output layer spikes, without waiting for tick=255.

Additionally, we conducted random tests on 100 samples using the same testing

methodology, and the inference results matched those produced by the software

consistently. Based on these consistent outcomes, we conclude that the coprocessor

is capable of effectively achieving the same results as the software for the inference

process.

It is important to acknowledge that, due to time constraints within the project, we

were unable to validate these test results on field-programmable gate arrays (FPGAs).

Consequently, all test results presented here are based on simulation on a limited

number of samples.

3.3.3. Cooperation between X-Heep and TTFS-tinyODIN
To develop a comprehensive neuromorphic SoC, we integrated TTFS-tinyODIN into

X-Heep with the OBI bus interface. We also designed and implemented the necessary

software driver to facilitate seamless communication between the RISC-V CPU and

TTFS-tinyODIN. Following this integration, we successfully established the loop

learning setup within the SoC, enabling the combined operation of these components

for efficient and adaptive neuromorphic processing.
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TTFS-tinyODIN Integration
To configure TTFS-tinyODIN within the X-Heep platform, we memory-mapped it to a

specific address within X-Heep’s memory space, specifically at address 0x50000000.

In addition, we established an interface to facilitate communication between TTFS-

tinyODIN and the OBI bus.

This interface includes the multiplexing of the OBI’s 32-bit address bus to enable access

to the three SRAMs and control registers within TTFS-tinyODIN, as illustrated in

Figure 3.30. Selection is accomplished by utilizing the 22𝑛𝑑 and 21𝑠𝑡 bits of the address,

allowing for controlled access to TTFS-tinyODIN’s components.

It is crucial to emphasize that X-Heep employs a word-based addressing scheme,

wherein addresses increment by units of 0x04 bytes. In contrast, TTFS-tinyODIN

employs a byte-based addressing system, with addresses incrementing by 0x01 bytes.

To bridge this addressing difference, we integrated a shift register into the system.

This shift register effectively aligns addresses between the two systems, ensuring

compatibility and accurate addressing between X-Heep and TTFS-tinyODIN.

Figure 3.30: The TTFS-tinyODIN address locations in the X-Heep correspond to the interface that it

exposes to the OBI bus. The three SRAMs and control registers are presented to the OBI bus holistically

as a subordinate unit via a 4-1MUX. The chip selects signals for the req’s address line using bits [21:20].

Configuration of TTFS-tinyODIN
The RISC-V CPU can configure TTFS-tinyODIN by accessing its SRAMs and control

registers:

• Spike core SRAM: The CPU is able to write and read the spike time of 256 neurons

through this spike core SRAM. Before inference, the RISC-V CPU defines the

inputs of the SNN by initializing the spike times of neurons in the input layer to

the spike core SRAM. After inference, the RISC-V CPU reads the spike times of

neurons in the output layer from the spike core SRAM and chooses the neuron

that spiked first as the inference result.

• Neuron core SRAM: The CPU is able to write and read the neuron states of 256

neurons through this neuron core SRAM. Before inference, the CPU enables all

neurons mapped to the SNN by setting their 𝑒𝑛 bit to 1, resetting their membrane
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potential, and setting their threshold voltage by writing their 32-bit neuron state

in the SRAM. This step initializes all the neuron states before inference.

• Synaptic core SRAM: The CPU is able to write and read the 64k weights between

256 neurons through the synaptic core SRAM. Before inference, by writing the

values of all weights, the CPU can determine how the neurons are interconnected,

enabling TTFS-tinyODIN to map various neural networks with different archi-

tectures. After the inference process, the CPU can retrieve these weights from

the synaptic core SRAM. Then, the CPU updates them based on the simplified

backpropagation algorithm detailed in Section 3.2.2. Subsequently, the CPU

writes these updated weight values back to the SRAM.

• Control Register: The CPU is able to control the beginning and end of inference

through this control register. By setting the 𝑠𝑡𝑎𝑟𝑡 bit of the control register to

a high state, the CPU signals TTFS-tinyODIN to initiate the inference process.

Subsequently, the CPU can monitor the 𝑑𝑜𝑛𝑒 bit within the control register to

determine precisely when the inference has been successfully completed.

Loop learning implementation within the SoC
In this section, we demonstrate the utilization of TTFS-tinyODIN in conjunction

with the RISC-V CPU to implement a loop learning setup. The workflow involves

TTFS-tinyODIN performing the inference process, while the RISC-V CPU executes

the backpropagation algorithm to update the weights. The following sections offer a

comprehensive breakdown of the loop learning process, and Figure 3.31 illustrates the

corresponding schematic diagram.

• Initialization: The TTFS-tinyODIN is first initialized by the RISC-V CPU by

writing the initial weights and neuron states to the synaptic core SRAM and

neuron core SRAM respectively.

• Configuration: The RISC-V CPU is configured to receive external input data, for

example, from the GPIO ports of X-Heep. These inputs are pre-processed using

TTFS encoding, quantized, and subsequently written to the spike core SRAM of

TTFS-tinyODIN.

• Input: The CPU initiates inference in TTFS-tinyODIN by raising the control

register’s 𝑠𝑡𝑎𝑟𝑡 bit and then continuously monitors the control register’s 𝑑𝑜𝑛𝑒 bit

to detect its high state which implies the completion of the inference.

• Backpropagation: The RISC-V processor obtains spike times of neurons in

both the hidden and output layers by reading data from the spike core SRAM.

Concurrently, it accesses the weights stored in the synaptic core SRAM. The

RISC-V CPU subsequently executes the back-propagation algorithm, utilizing

the retrieved spike times and weights to iteratively update the synaptic weights.

• Write back: The updated weights are written by the RISC-V CPU back to the

synaptic core SRAM of TTFS-tinyODIN before returning to the 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

step.
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Figure 3.31: Workflow of the loop learning model.
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3.3.4. Results and Fallback Plan
The designs discussed earlier were initially based on the assumption that the RISC-V

CPUs on X-Heep could handle floating-point arithmetic seamlessly. However, at

the end of the design process, we found that X-Heep was unable to properly handle

floating-point results, which posed challenges to the project. Simulations on the SoC

revealed that floating-point computation was currently neither well supported on

X-Heep nor well documented. Therefore, we needed to find an alternative approach to

avoid floating-point computation.

To avoid restarting the software design from scratch, we had to work within the existing

design and transition to using fixed-point arithmetic for computation. To achieve this,

we converted floating-point numbers to fixed-point numbers by scaling the original

number by a factor of 10 and then discarding the fractional part. A factor-10 scaling

was found to minimize the accuracy loss.

In the original algorithm, both the loss function (cross-entropy) and the weight update

(Adam optimization algorithm) are heavily based on precise floating-point operations,

including square roots. To address this and use fixed-point arithmetic, we replaced the

cross-entropy loss function with the MSE loss function. and the Adam optimization

algorithm by the SGD algorithm, which is computationally simple.

We successfully simulated the backpropagation algorithm using fixed-point arithmetic.

However, when attempting to update the weights of the first layer in the SNN during

our simulation, we encountered memory limitations on X-Heep, preventing us from

computing the gradient of all the weights concurrently. Given that this project aims

to provide proof-of-concept for a loop learning model connecting a RISC-V CPU and

an SNN coprocessor, we chose to update only the weights of the second layer, while

the first layer used a pre-trained model. This decision was based on the fact that the

second layer has only 100*10 weights, while the first layer has 144*100 weights. By

focusing on updating the second layer weights, we were able to bypass the memory

limitation.

As a result of this training setup, the achieved accuracy stands at 92.2%, which was

validated with our software model. As the hardware implementation is restricted

to a post-implementation simulation setup (Section 3.3.2), validating a full hardware

loop learning setup over several epochs would lead to intractable simulation time.

Therefore, we have checked that the weight update process implemented in hardware

is in one-to-one correspondence with our software model, which we report in more

detail in Appendix A. We thus predict that the accuracy of 92.2% should be successfully

obtained with a dedicated hardware implementation running, for example, on an

FPGA, which we discuss in Section 4.2.
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Conclusion and Future Work

In this chapter, we summarize the results of this project and suggest some key points

for future work.

4.1. Conclusion
In this project, we successfully co-designed the software model training and hardware

implementation to create a neuromorphic SoC that combines a RISC-V CPU with an

SNN coprocessor. This SoC demonstrates a proof of concept for loop learning on

dedicated hardware.

In the software design phase, we began with an SNN neuron model and the backprop-

agation algorithm for TTFS encoding from a previous work [15]. We established a

baseline SNN with an architecture of 144-100-10, achieving an accuracy of 96.5% on

the TTFS-encoded MNIST dataset. To adapt this model to hardware, we simplified

the backpropagation algorithm by introducing four 𝜆 values for four distinct cases.

We also simplified the Cuba-LIF model by implementing a one-spike limitation and

removing the leakage. These simplifications resulted in a limited 2.1% drop in accuracy

compared to the baseline.

Next, we quantized the SNN model, using an 8-bit resolution for spike times and a 4-bit

resolution for weights, the synaptic current and membrane potential are quantized

accordingly. This quantization led to a further 0.9% decrease in accuracy, resulting

in a final accuracy of 93.5%. Finally, we conducted software simulations of the loop

learning process with early stopping, achieving an accuracy of 94.5%.

In the hardware design phase, we created an SNN coprocessor called TTFS-tinyODIN

to execute the inference process of the SNN. TTFS-tinyODIN is highly configurable and

can accommodate various SNN architectures. Simulations confirmed that it produced

the same results as the software model.

We then integrated TTFS-tinyODIN into a RISC-V-based MCU, X-Heep, to realize a

neuromorphic SoC. Within this SoC, the RISC-V CPU can configure TTFS-tinyODIN

by accessing different modules inside TTFS-tinyODIN through the OBI bus. Finally,

we demonstrated the feasibility of loop learning on hardware with communication

55
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between the RISC-V CPU and TTFS-tinyODIN. Despite X-Heep limitations that forced

resolving to a fixed-point backpropagation, the expected accuracy reaches 92.2%.

4.2. Future Work
There are several works that can be realized in the future:

• Different dataset: In this project, we only encoded the MNIST dataset with TTFS.

To prove the generality of our work, more complex image datasets like CIFAR-10

[7] can be encoded with TTFS and applied to this SNN.

• Backpropagation algorithm: In the software design part, we simplified the Cuba-

LIF model but didn’t modify the backpropagation algorithm accordingly. Since

the backpropagation algorithm is based on the neuron model equations, once

the equation of the Cuba-LIF model changes, the backpropagation algorithm

should change accordingly, to minimize the accuracy loss.

• Quantization config: When we tried loop learning in software design, we already

defined the quantization configuration of spike times and weights. However,

those quantization configurations are obtained from the model trained under

full precision computing, so the best quantization configuration in loop learning

might differ since the resolution is different.

• Sparsity handling: In TTFS-tinyODIN, a lot of weights are 0, which is called

sparsity. These weights do not contribute to the results, but TTFS-tinyODIN

still takes them into account. Leveraging this sparsity and skipping those 0s

can further reduce the computing load, the inference latency and the power

consumption.

• FPGA Implementation: This proof of loop learning is achieved based on the

simulation with ModelSIM: the whole SoC should be implemented in the FPGA

for verification.
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A
Result of Loop Learning in the SoC

This screenshot shows the workflow for updating the ten weights within TTFS-

tinyODIN while performing Loop Learning on a RISC-V CPU.

Figure A.1: The printf result of loop learning in the SoC
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