
Clustering Scratch projects by code complexity traits and project traits

Brent Meeusen1

Supervisor(s): Fenia Aivaloglou1, Sole Pera1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2024

Name of the student: Brent Meeusen
Final project course: CSE3000 Research Project
Thesis committee: Fenia Aivaloglou, Sole Pera, Jorge Martinez Castaneda

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Scratch is a popular, visual programming language
aimed at children, and is used by teachers and after
school code clubs to teach their students about pro-
gramming. Measuring whether they understand the
underlying concepts, however, is a difficult task. In
this research, we tried clustering Scratch projects
by complexity to help students improve their pro-
gramming skills. We did this by selecting an exist-
ing data set to extract features that indicate code
complexity. Before, researchers attempted clus-
tering on one metric that globalises the project’s
complexity. Different researchers set out to mea-
sure the growth of the students by clustering the
projects the students created. With that in mind, we
adopt a partition-based clustering algorithm to clus-
ter the projects, as this method indicates outliers.
We examine the quality of these clusters using the
silhouette coefficient. We set up five experiments
with different input vectors to make out the impact
each input has on the clusters. We did not find a
clear indication of the projects being clustered by
the selected features. This could mean that Scratch
projects are not suitable to measure a high-level un-
derstanding of programming concepts. Including
the project name in the input vector had a negligi-
ble effect on the outcome of the experiments.

1 Introduction
Scratch is a platform that introduces programming to a young
audience by drag-and-dropping blocks of code. Most users
are 8 to 18 years old1. To make the platform even more acces-
sible, it is possible to follow tutorials or use another project
as a starting point. The platform is immensely popular; every
month, its website is visited by tens of millions of people2.

As written by Falkner et al. in [3], several countries have a
computer science curriculum to use in schools. For example,
England already has a mandatory computer science course
for children between the ages of 5 and 16 in state-funded
schools. They also found that visual programming languages
like Scratch are often used in these curricula, regardless of the
age of the children attending school.

The formal classroom context is not the only one where
Scratch is popular. Aivaloglou and Hermans [1] found that
89% of after school code clubs that participated in their study
use Scratch to teach their students how to program. Code club
lessons do not have to follow national curricula and students
apply voluntarily for the program, in contrast to some school
programs.

One reason for Scratch’s popularity might be its design.
The goal was to create an environment that is “more tin-
kerable, more meaningful, and more social than other pro-
gramming environments” [15, p. 63]. Moreover, the makers
wanted to make their platform easier to get started with than

1Data from https://scratch.mit.edu/statistics/. Visited on 2023-
11-16.

2See footnote 1.

the other attempts made to get children and teens into pro-
gramming [15]. Another reason could be that the users do
not identify Scratch as a programming environment [9].

Even though the students who participated in the study pre-
sented in [9] did not feel like they were programming when
using Scratch, they did use the programming concepts defined
by the team more frequently after one year. For instance,
in the first year, just over 30% of the projects used a loop,
whereas one year later this had grown to almost 50%.

It seems to be difficult, however, to objectively measure
whether students actually grasp the concept they have applied
in their project. In [11], Meerbaum-Salant et al. tried mixing
the Bloom and SOLO taxonomy together. Seiter and Fore-
man introduced a new model to assess computational think-
ing in grades 1 to 6 [17]. Nevertheless, it remains unclear
whether starting in a block-based environment helps when
transitioning to text-based programming [18]. If we manage
to measure the student’s understanding of computer science
concepts, study materials for the different levels of compre-
hension could be developed. This could help students im-
prove their programming skills.

To see if students make progress when using Scratch, we
want to learn whether it is possible to cluster the projects
on several code and project traits. We expect to find dis-
tinct groups of “simple” projects (e.g., two characters hav-
ing a conversation) and “advanced” projects (e.g., playable
games). If such clusters exist, it may be possible to predict
what types of projects a user makes, and see if that changes
over time (e.g., the first project a student creates is in a simple
cluster, the project that same student creates a year later is in
an advanced cluster). This could mean that the given user has
learnt CS and/or Scratch concepts.

With this research, we hope to contribute to a better un-
derstanding of how children learn how to apply programming
concepts. To accomplish that, we will try to find an answer to
the research question:

“Could Scratch projects with a Dr. Scratch mastery
score of 16 or above be clustered by different code
complexity traits and project traits?”

The Dr. Scratch mastery score is further explained in sec-
tion 2.1. What code and project traits were selected and why
is described in section 3.3.

In this research, we will attempt to cluster Scratch projects
based on features that encapsulate the project’s code com-
plexity, as well as project features. The objective is to find
projects with similar complexity.

All silhouette coefficients we found are below 0.50, which
indicates that the quality of the clusters is not great. Usually,
there is one large cluster with most of the projects, and many
projects are considered outliers. Most of the other clusters are
tiny. Apart from the largest clusters, the cluster sizes range
from 10 to 235 projects.

The rest of the paper is organised as follows: in section 2,
we take a look at related work that has already been done.
In section 3, we elaborate on the methodology. Section 4
presents the results of the experiments, followed by the re-
sponsible research in section 5. In section 6, the discussion
and the limitations of the research are described. Finally, sec-

https://scratch.mit.edu/statistics/
https://scratch.mit.edu/statistics/


tion 7 lays out the conclusion and puts ideas forward for fu-
ture works.

2 Related work
Dr. Scratch is a web application3 that can be used to anal-
yse Scratch projects [12]. From the project, it gives an
integer score from 0 (inclusive) to 3 (inclusive) on seven
concepts: abstraction and problem decomposition, logical
thinking, synchronization, parallelism, algorithmic notions of
flow control, user interactivity and data representation. The
project’s Dr. Scratch mastery score is the sum of the scores
of the seven concepts, and thus ranges from 0 (inclusive) to
21 (inclusive). The criteria for each concept are presented in
[12, Tab. 1]. Additionally, it can detect some bad program-
ming habits, such as unreachable code or repetition of code.

We split the rest of this section in two parts. The first sec-
tion specifically elaborates on researches that cluster Scratch
projects, the second looks at clustering software repositories.

2.1 Clustering Scratch projects
There have been some researches that have tried to cluster
Scratch projects. For example, in [14], Moreno-Léon et al.
clustered projects by their Dr. Scratch mastery score. The
same researchers found in [13] that software metrics and mas-
tery score have a strong correlation. However, they noticed a
growing gap between the projects and the best fitting line as
the mastery score approaches 21 (the maximum score), pos-
sibly indicating that the maximum score is not suited well
enough to cluster the most complex projects. This does not
seem to affect [14] much, since most of the projects analysed
have a mastery score of 16 or less, as shown in [14, Fig. 2].

Moreno-Léon et al. analysed 250 projects from 5 differ-
ent categories: Art, Music, Animations, Stories and Games
[14]. The mean mastery score for these categories are 7, 8, 8,
10, and 15, respectively. After running a K-means algorithm
on their data set, they found three clusters where the cluster
centres have mastery scores of 7, 9, and 17. The first clus-
ter contains mostly art, music and animations. In the second
cluster, story projects appear the most often. Games are the
largest category in the last cluster.

In [19], Yang et al. clustered projects by first calculating
the IDF of the blocks used in the projects, to then run K-
means++ to cluster the projects. They selected 3852 users
with at least 50 original projects. They found four clusters,
all of which show an upwards learning curve over the 50
projects. The speed of the learning curve, however, was dif-
ferent for each cluster.

This work aims to find clusters of projects based on the
complexity of the projects. As discussed above, only clus-
tering by Dr. Scratch mastery score as done in [14] works
best for projects with a lower mastery score. We aim to clus-
ter projects with a mastery score of 16 and above by using
more detailed code traits to determine the project’s complex-
ity. Both [14] and [19] used a centroid-based clustering algo-
rithm. These algorithms are sensitive to outliers [5]. We will
use a density-based clustering algorithm, because it can filter
out outliers [5].

3http://drscratch.org/

2.2 Clustering software repositories
When broadening the view to software repositories instead
of only looking at Scratch repositories, new ideas and tech-
niques are discovered. For example, Jurczko and Madeyski
[7] tied clustering software projects by 19 object-oriented
metrics (e.g., Lack of Cohesion Of Methods, Number of Pub-
lic Methods, Cohesion Among Methods, Cyclomatic Com-
plexity). Even though Scratch does not support object-
oriented programming, reading about the different metrics
that were used gave us some ideas to incorporate in this re-
search.

Kawaguchi et al. introduced a tool called MUDABlue in
[8] that automatically categorises open source repositories.
They applied Latent Semantic Analysis (LSA) on identifiers
to determine what categories exist, to then cluster the repos-
itories into the found categories. McMillan et al. also used
LSA (in their paper, they refer to it as Latent Semantic Index-
ing, or LSI for short) in CLAN to look at API calls in Java
projects [10].

Both MUDABlue and CLAN only look at the source code
to cluster the projects. Rokon et al. introduced Repo2Vec,
a tool that looks at metadata, source code and repository di-
rectory structure [16]. According to the authors, other tools
only look at project’s metadata. Borges and Valente [2] also
looked at metadata; they clustered GitHub projects by num-
ber of stars. However, the data set that we use does not con-
tain much metadata; the bottom 75% of the projects have both
0 remixes and 0 favourites, with at most 4 views [6, Tab. II].
Therefore, we will not take the metadata of the projects into
account when clustering the Scratch projects.

3 Methodology
The goal of the research is to see if Scratch projects can be
clustered by code traits and project traits. To achieve this, we
need to 1) select a data set, 2) choose a clustering algorithm,
3) choose the features, 4) cluster the projects, and 5) analyse
the clusters. This last step is described in section 4.

3.1 Selecting a data set
Initially, the idea was to use the data set generated by Aival-
oglou and Zeevaarders [20] because it contains much infor-
mation about the projects and users. We ran into multiple
issues trying to initialise the database, however. Therefore,
we decided to search for an alternative. We then looked into
the data set generated by Hermans et al. [6]. Even though it
contained fewer projects (233,491 instead of 1,019,310 non-
empty projects) and less information about the projects, it was
well documented and we were able to set it up without trou-
ble.

As presented in [6, Tab. III], the data set contains infor-
mation on 250,163 projects, of which 233,491 are non-empty
and 231,050 are analysed by Dr. Scratch. The results of the
Dr. Scratch analysis can be found in the ”Grades” table. The
entire layout of the database can be found in [6, Tab. I].

To get an impression of the data, we generated a histogram
of the Dr. Scratch mastery scores for all projects, displayed
in figure 1a. As mentioned in section 2, Moreno-Léon et al.

http://drscratch.org/
http://drscratch.org/


found in [13] that the accuracy of the best fitting lines de-
creases significantly when the mastery score is 16 or above.
Therefore, we chose to exclude the projects with a mastery
score lower than 16. After this filter, the data set contains
17,868 projects. We generated a histogram of this new data
set as well, seen in figure 1b.

(a) All projects

(b) Only projects with a Dr. Scratch mastery score ≥ 16

Figure 1: Histograms of the Dr. Scratch mastery scores of the
projects.

3.2 Choosing a clustering algorithm
Instead of using a partitioning-based clustering method like
K-means, we will implement a density-based clustering
method. As reported by Han et al. in chapter 10 in [5], it
can find clusters of any shape instead of only spherical clus-
ters. They describe the DBSCAN, OPTICS and DENCLUE
algorithms. We chose to work with the DBSCAN algorithm.

Checking the cluster quality
To identify the quality of the clusters, we will apply the sil-
houette coefficient as described in [5]. We will consider the
clusters to be of good quality if the silhouette coefficient is
0.50 or above. Additionally, we will generate summaries of
the clusters and analyse them manually.

3.3 Choosing the features
As seen in section 2.1, the Dr. Scratch mastery score ap-
pears to give a solid indication for the complexity of the
project. However, as the mastery score approaches 21, the
deviation between the best fitting line and the project in ques-
tion increases. To also make clusters of these more complex
projects, we want to choose features that represent some of
the intricacies about the projects’ complexity. Furthermore,
since Scratch projects can be remixed, there might be clues in
the names of the repositories. Similar names might indicate
that the projects have been remixed, or have been created fol-
lowing the same course or tutorial.

Taking this into account, we selected the following fea-
tures:

• Project name;
• Cyclomatic complexity;
• Number of blocks used;
• Number of custom procedures used;
• Number of sprites used.
Except for the project name, all features are integer values.

We will vectorise the project names using a bag-of-words ap-
proach.

We extracted the values from the selected data set using
SQL queries. We then put all values per project together in
one file. We also computed the number of blocks per proce-
dure and the number of blocks per sprite to normalise those
features. This leaves us with three categories of inputs:

• Data retrieved from the database;
• Normalised data;
• The vectorised project name.
To get an impression of the data, we computed the mini-

mum and maximum values for the selected features and col-
lected the results in table 1. For each experiment, we will
generate a PCA. The PCAs can be seen in figure 2, and are
explored in section 4.2.

Feature Min value Max value
Cyclomatic Complexity 1 246

Number of blocks 0 29378
Number of custom procedures 0 372

Number of sprites 0 408

Table 1: The minimum and maximum values for the selected fea-
tures.

3.4 Clustering the projects
To cluster the projects, we first need to extract the data of the
selected features for all projects from the database. Then, we
will implement a DBSCAN algorithm to cluster the projects.
The project names will be vectorised by applying a bag-of-
words algorithm. The code can be found in the GitHub repos-
itory4.

4https://github.com/BrentMeeusen/
CSE3000-Clustering-Scratch-Projects

https://github.com/BrentMeeusen/CSE3000-Clustering-Scratch-Projects
https://github.com/BrentMeeusen/CSE3000-Clustering-Scratch-Projects
https://github.com/BrentMeeusen/CSE3000-Clustering-Scratch-Projects
https://github.com/BrentMeeusen/CSE3000-Clustering-Scratch-Projects


To get an impression of the optimal values for the hy-
perparameters, we will run the algorithm on the data points
only including the data retrieved from the database with
min samples[5, 60] with steps of 5, and eps[0.5, 5.0] with
steps of 0.5. Next, we will analyse the results of this exper-
iment and select the optimal values for the hyperparameters
which we will use in the following experiments. Finally, we
will run the same algorithm with the following 5 different in-
put vectors:

1. The data from the database;

2. The normalised data;

3. The data and the project names;

4. The data and the normalised data;

5. The data, the normalised data and the project names.

By doing multiple experiments with different input vectors,
we expect to see the impact of the different inputs.

4 Results
In this section, we take a look at the results of the experi-
ments. First, we elaborate on exploring the hyperparameters.
Then, we will analyse the outcomes of the next five experi-
ments.

As described in section 3.2, we consider the clusters to be
good when the silhouette coefficient is greater than or equal
to 0.50.

4.1 Exploring hyperparameters
After running the initial experiment, we found that a higher
epsilon and a lower min samples give the best silhouette
coefficients. We found that when the minimum number of
nearby samples required increases, there are fewer but larger
clusters, as well as more outliers. We saw the same effect
when the epsilon increases.

The highest silhouette coefficient was 0.2300... with an
epsilon of 9.0 and 10 as the minimum number of sam-
ples. The silhouette coefficient is often much lower when
using a min samples of 5 compared to a min samples
of 15. Therefore, we chose to run the next experiments
using epsilon [8.0, 8.5, 9.0, 9.5, 10.0] and min samples
[10, 15, 20].

4.2 The next experiments
After exploring the hyperparameters, we set up five experi-
ments, all running with an epsilon of [8.0, 8.5, 9.0, 9.5, 10.0]
and a minimum number of samples of [10, 15, 20]. The dif-
ference between the experiments is the input vector.

For all experiments, we found that the number of outliers
is the highest and the number of projects in the largest clus-
ter is the lowest when looking at the lowest eps and highest
min samples (in this case 8.0 and 10, respectively) com-
pared to other configurations of the hyperparameters within
the experiments. Including the project names does not seem
to influence the clustering process significantly. For instance,
the lowest and highest silhouette coefficient for experiments
1 and 4 differ by 0.0049 and 0.0231, and for experiments 3
and 5 the difference is 0.0057 and 0.0146.

In all experiments, we found that the lowest number of out-
liers always corresponds with the highest number of projects
in the largest cluster, and vice versa.

Experiment 1: data only
In this experiment, the clustering algorithm only looked at
the data that was directly gathered from the database. The
normalised data and the project names are excluded.

We found the lowest silhouette coefficient of 0.0141 at
eps = 8.5 and min samples = 10, and the highest silhou-
ette coefficient of 0.2300 at eps = 9.0 and min samples =
10. There are roughly 60, 40 and 30 clusters for 10, 15 and
20 min samples. As the highest silhouette coefficient is ob-
served to be lower than 0.50, we consider that the clusters
may not to be of great quality.

The largest cluster’s Dr. Scratch mastery score ranges from
16 to 21. The lowest cyclomatic complexity is 1, the high-
est is 35. The minimum number of blocks used is 16, the
maximum is 873. The minimum number of custom proce-
dures used is 0, the maximum is 18. The minimum number
of sprites used is 1, the maximum is 49.

This experiment has the second highest silhouette coeffi-
cient. When we take a look at figure 2a, we do not see any
obvious clusters other than the largest cluster in the middle
left of the graph. Smaller clusters could exist just outside the
largest cluster. This is supported by looking at the summary;
we see 12,716 projects in the largest cluster and 3,194 out-
liers. The other 52 clusters have anywhere between 10 and
208 projects.

Experiment 2: normalised data only
In this experiment, the clustering algorithm only looked at the
normalised data. The data gathered from the database and the
project names are excluded.

We found the lowest silhouette coefficient of 0.1874 at
eps = 10.0 and min samples = 15, and the highest silhou-
ette coefficient of 0.4078 at eps = 9.5 and min samples =
20. There are roughly 50, 35 and 20 clusters for 10, 15 and
20 min samples. As the highest silhouette coefficient is ob-
served to be lower than 0.50, we consider that the clusters
may not to be of great quality.

The largest cluster’s Dr. Scratch mastery score ranges from
16 to 21. The lowest cyclomatic complexity is 1, the highest
is 246. The minimum number of blocks used is 0, the maxi-
mum is 29,378. The minimum number of custom procedures
used is 0, the maximum is 372. The minimum number of
sprites used is 0, the maximum is 408.

Although this experiment has the highest silhouette coef-
ficient, we consider the outcomes to be meaningless. This
is for multiple reasons. First, because the clustering is done
with only two features. Second, when we compare the ex-
treme values of the largest cluster and compare that to table
1, we see that the largest cluster contains the projects with all
the highest and lowest values. It is highly implausible that if
all outliers are in the same cluster, the overall cluster quality
is fine. And third, when we take a look at figure 2b, we do
not see any obvious clusters other than the largest cluster in
the bottom left corner. Some smaller clusters could form in
the top left corner and in the bottom right corner. This is sup-
ported by looking at the summary; there are 14,957 projects



(a) Experiment 1: data only (b) Experiment 2: normalised data only
(c) Experiment 3: data and normalised
data

(d) Experiment 4: data and project names
(e) Experiment 5: data, normalised data
and project names

Figure 2: PCAs of the five experiments.

in the largest cluster and 1,862 outliers. The other 21 clusters
only have 20 to 125 projects.

Experiment 3: data and normalised data
In this experiment, the clustering algorithm looked at the data
that was directly gathered from the database, and the nor-
malised data. The project names are excluded.

We found the lowest silhouette coefficient of -0.5690 at
eps = 10.0 and min samples = 15, and the highest silhou-
ette coefficient of -0.4731 at eps = 8.0 and min samples =
15. There are roughly 100, 70 and 60 clusters for 10, 15 and
20 min samples. As the highest silhouette coefficient is ob-
served to be lower than 0.50, we consider that the clusters
may not to be of great quality.

The largest cluster’s Dr. Scratch mastery score ranges from
16 to 21. The lowest cyclomatic complexity is 1, the highest
is 22. The minimum number of blocks used is 28, the max-
imum is 506. None of the projects in this cluster use any
custom procedures. The minimum number of sprites used is
2, the maximum is 34.

This experiment has the lowest silhouette coefficient.
When we take a look at figure 2c, we can see the largest
cluster in the bottom left corner. The outward lines could be
clustered together, too. The summary, however, shows differ-
ent results; there are 6,665 projects in the largest cluster and
8,342 outliers. The other 63 clusters have anywhere between
10 and 221 projects.

Experiment 4: data and project names
In this experiment, the clustering algorithm looked at the data
that was directly gathered from the database, and the project

names. The normalised data is excluded.
We found the lowest silhouette coefficient of 0.0092 at

eps = 8.5 and min samples = 10, and the highest silhou-
ette coefficient of 0.2069 at eps = 9.5 and min samples =
10. There are roughly 60, 45 and 35 clusters for 10, 15 and
20 min samples. As the highest silhouette coefficient is ob-
served to be lower than 0.50, we consider that the clusters
may not to be of great quality.

The largest cluster’s Dr. Scratch mastery score ranges from
16 to 21. The lowest cyclomatic complexity is 1, the high-
est is 35. The minimum number of blocks used is 16, the
maximum is 966. The minimum number of custom proce-
dures used is 0, the maximum is 18. The minimum number
of sprites used is 1, the maximum is 50.

This experiment has the third highest silhouette coefficient.
When we take a look at figure 2d and compare it with figure
2a, we cannot find any visual differences, which suggests re-
semblances between the outcomes of the two experiments.
The summaries of the two experiments are also similar. For
example, the number of projects in the largest cluster and the
number of outliers only differ by a few hundred projects. We
see 12,928 projects in the largest cluster and 3,168 outliers.
The other 51 clusters have anywhere between 10 and 208
projects. We compared the outcomes of the two experiments
in table 2.

Experiment 5: data, normalised data and project names
In this experiment, the clustering algorithm only looked at the
data that was directly gathered from the database. The data is
not normalised and the project names are excluded.



Feature Experiment 1 Experiment 4 Experiment 3 Experiment 5
Projects in largest cluster 12,716 12,928 6,665 6,671

Number of outliers 3,194 3,168 8,342 8,651
Number of clusters excluding largest cluster 52 51 63 44

Smallest cluster size 10 10 10 18
Largest cluster size, excluding largest cluster 208 208 221 235

Highest silhouette coefficient 0.2300 0.2069 -0.4731 -0.4585
Lowest cyclomatic complexity 1 1 1 1
Highest cyclomatic complexity 35 35 22 22

Lowest number of blocks 16 16 28 28
Highest number of blocks 873 966 506 501

Lowest number of custom procedures 0 0 0 0
Highest number of custom procedures 18 18 0 0

Lowest number of sprites 1 1 2 2
Highest number of sprites 49 50 34 31

Table 2: A comparison of the results of experiments 1 and 4, and 3 and 5.

We found the lowest silhouette coefficient of -0.5747 at
eps = 8.0 and min samples = 20, and the highest silhou-
ette coefficient of -0.4585 at eps = 9.0 and min samples =
20. There are roughly 100, 70 and 55 clusters for 10, 15 and
20 min samples. As the highest silhouette coefficient is ob-
served to be lower than 0.50, we consider that the clusters
may not to be of great quality.

The largest cluster’s Dr. Scratch mastery score ranges from
16 to 21. The lowest cyclomatic complexity is 1, the highest
is 22. The minimum number of blocks used is 28, the max-
imum is 501. None of the projects in this cluster use any
custom procedures. The minimum number of sprites used is
2, the maximum is 31.

This experiment has the second lowest silhouette coeffi-
cient. When we take a look at figure 2e and compare it
with figure 2c, we cannot find any visual differences, which
suggests resemblances between the outcomes of the two ex-
periments. The summaries of the two experiments are also
similar. For example, the number of projects in the largest
cluster and the number of outliers only differ by a few hun-
dred projects. We see 6,671 projects in the largest cluster
and 8,651 outliers. The other 44 clusters have anywhere be-
tween 18 and 235 projects. One notable difference between
experiment 3 and this experiment, however, is the number of
clusters. Experiment 3 generated 64 clusters in total, whereas
experiment 5 only generated 45. We compared the outcomes
of the two experiments in table 2.

5 Responsible Research
The Netherlands Code of Conduct for Research Integrity
[4] is based on 5 principles: honesty, scrupulousness, trans-
parency, independence, and responsibility. In this section, we
will take a look at how we implemented these principles dur-
ing the research, and where we could have done better.

We wrote openly and transparently about the limitations
of our research. Also, we did not fabricate or alter the data
we worked with. By looking through some of the rows, we
found some confidential information in some project titles.
To protect these individuals, we decided not to include the
data found and used in the GitHub repository.

Throughout the research, we used scientific sources and
methods. For example, we read about different clustering al-
gorithms in [5], and we used common practices, like the bag-
of-words approach to vectorise strings.

Finally, we used GitHub to publish the code so that every-
one is able to look at the code. We used well known libraries
to save time, effort, and possible errors. These libraries could
contain bugs, so this solution is not perfect. We did acci-
dentally retrieve some personal data. The data we found was
already publicly available on the Scratch website and in the
data set that we used. We did not spread the data even further
by publishing it again.

6 Discussion

The clusters Moreno-Léon et al. found in [14], show differ-
ent types of projects. Looking at the mean Dr. Scratch mas-
tery scores of their clusters, the projects with a high mastery
score are likely to be games. In our research, we did not find
clear clusters. However, we only looked at the projects with a
mastery score of 16 and above, whereas Moreno-Léon et al.
included all projects. Indeed, the mean mastery score of the
three clusters they found are 7, 9, and 17. Moreno-Léon et
al. also found that the deviation from the best fitting line in-
creases when the project’s mastery score is 16 or above [13].
Thus, one of the possible reasons we did not find such clus-
ters could be because the projects we tried to cluster are not
similar enough.

A possible reason why the silhouette coefficients are low is
that there are too little dimensions, or the ranges of the dimen-
sions are too wide or too narrow. The experiments without the
name in the input vector had at most 6 dimensions.

As seen in section 4, including the vectorised project
names do not have a considerable impact on the cluster qual-
ity. We think this is because the four selected features have
wide ranges as can be seen in table 1, whereas the project
names add many dimensions with only 0 or 1 as possible val-
ues.



6.1 Limitations
The data set we used is from 2016, so the data we worked
with is quite old. Using a more recent data set could give
different, more up-to-date results. Moreover, we selected fea-
tures we thought would reflect the complexity of a project.
However, the outcomes do not show this. Choosing differ-
ent features or normalising more features could change the
outcomes significantly.

Another limitation is that the current PCAs only show the
result of the PCAs, but it does not show what data point be-
longs to what cluster. We could have used different colours to
differentiate between (a number of) clusters, like the largest
cluster and the outliers.

7 Conclusions
In this research, we explored part of the Scratch repository
to see if we could find clusters based on some code and com-
plexity traits. We investigated the largest clusters and its prop-
erties, and compared similar experiments with each other.

The highest silhouette coefficient we found when including
more than just normalised data is 0.2300 in experiment 1. As
0.2300 is less than 0.50, we consider the clusters not to be
of sufficient quality. Looking at the data in a bit more detail
supports this finding, as does looking at the corresponding
PCA graph, figure 2a. Hence, we conclude that we did not
find a way to cluster Scratch projects by the selected code and
project traits. We found that including the vectorised project
names using a bag-of-words approach has a negligible effect
on the outcome of the experiment.

A possible explanation for the low cluster quality could
be that the Scratch environment is not suitable enough to
measure a keen understanding of programming concepts. To
check this hypothesis, a future work could attempt to cluster
projects in other programming languages or environments.

References
[1] E. Aivaloglou and F. Hermans. How is programming

taught in code clubs? exploring the experiences and
gender perceptions of code club teachers. 19th Koli
Calling International Conference on Computing Edu-
cation Research (Koli Calling ’19), 2019.

[2] H. Borges and M. Valente. What’s in a github star? un-
derstanding repository starring practices in a social cod-
ing platform. Journal of Systems and Software, 9 2018.

[3] K. Falkner, S. Sentance, R. Vivian, S. Barksdale,
L. Busuttil, E. Cole, C. Liebe, F. Maiorana, M. McGill,
and K. Quille. An international comparison of k-12
computer science education intended and enacted cur-
ricula. 19th Koli Calling International Conference
on Computing Education Research (Koli Calling ’19),
2019.

[4] KNAW; NFU; NWO; TO2 federatie; Vereniging
Hogescholen; VSNU. Netherlands code of conduct for
research integrity. DANS, 2018.

[5] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts
and Techniques. Morgan Kaufmann, 2000.

[6] F. Hermans, E. Aivaloglou, J. Moreno-Léon, and
G. Robles. A dataset of scratch programs: Scraped,
shaped and scored. 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR),
2017.

[7] M. Jureczko and L. Madeyski. Towards identifying soft-
ware project clusters with regard to defect prediction.
PROMISE ’10: Proceedings of the 6th International
Conference on Predictive Models in Software Engineer-
ing, 9 2019.

[8] S. Kawaguchi, P. Garg, M. Matushita, and K. Inoue.
Mudablue: An automatic categorization system for
open source repositories. 11th Asia-Pacific Software En-
gineering Conference, 1 2005.

[9] J. Maloney, K. Peppler, Y. Kafai, M. Resnick, and
N. Rusk. Programming by choice: Urban youth learning
programming with scratch. SIGCSE, 40, 3 2008.

[10] C. McMillan, M. Grechanik, and D. Poshyvanyk. De-
tecting similar software applications. 2012 34th Inter-
national Conference on Software Engineering (ICSE), 6
2012.

[11] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari.
Learning computer science concepts with scratch. Com-
puter Science Education, 23, 2013.

[12] J. Moreno-Léon, G. Robles, and M. Román-González.
Dr. scratch: Automatic analysis of scratch projects to
assess and foster computational thinking. RED. Revista
de Educación a Distancia, 2015.

[13] J. Moreno-Léon, G. Robles, and M. Román-González.
Comparing computational thinking development as-
sessment scores with software complexity metrics.
2016 IEEE Global Engineering Education Conference
(EDUCON), 2016.

[14] J. Moreno-Léon, G. Robles, and M. Román-González.
Towards data-driven learning paths to develop compu-
tational thinking with scratch. IEEE Transactions on
Emerging Topics in Computing, 8, 2017.

[15] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, and Y. Kafai.
Scratch: Programming for all. Communications of the
ACM, 11 2009.

[16] M. Rokon, P. Yan, R. Islam, and M. Faloutsos.
Repo2vec: A comprehensive embedding approach for
determining repository similarity. 2021 IEEE Interna-
tional Conference on Software Maintenance and Evolu-
tion (ICSME), 9 2021.

[17] L. Seiter and B. Foreman. Modeling the learning pro-
gressions of computational thinking of primary grade
students. ICER ’13: Proceedings of the ninth annual in-
ternational ACM conference on International comput-
ing education research, 2013.

[18] D. Weintrop. Block-based programming in computer
science education. Communications of the ACM, 62, 8
2019.



[19] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney,
B. Gelman, C. Beckley, and A. Johri. Uncovering trajec-
tories of informal learning in large online communities
of creators. L@S ’15: Proceedings of the Second (2015)
ACM Conference on Learning @ Scale, 3 2015.

[20] A. Zeevaarders and E. Aivaloglou. Exploring the pro-
gramming concepts practiced by scratch users: an anal-
ysis of project repositories. 2021 IEEE Global Engi-
neering Education Conference (EDUCON), 2021.


	Introduction
	Related work
	Clustering Scratch projects
	Clustering software repositories

	Methodology
	Selecting a data set
	Choosing a clustering algorithm
	Checking the cluster quality

	Choosing the features
	Clustering the projects

	Results
	Exploring hyperparameters
	The next experiments
	Experiment 1: data only
	Experiment 2: normalised data only
	Experiment 3: data and normalised data
	Experiment 4: data and project names
	Experiment 5: data, normalised data and project names


	Responsible Research
	Discussion
	Limitations

	Conclusions

