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RESEARCH ARTICLE

Room energy demand and thermal comfort predictions in early
stages of design based on the Machine Learning methods
Nima Forouzandeh a, Zahra Sadat Zomorodian a, Zohreh Shaghaghianb and
Mohamad Tahsildoosta

aDepartment of Construction, Shahid Beheshti University(SBU), Tehran, Iran; bDepartment of Architecture, Texas A&M,
College Station, TX, USA

ABSTRACT
Recent studies have focused on data-driven methods for building energy
efficiency, by using simulated or empirical data, for energy-based design
assessment rather than the common physics-based techniques, which are
mostly time-consuming. In this paper, the feasibility of using seven
different Machine Learning models, including three single models and four
ensemble ones, is studied to predict annual energy demand and thermal
comfort of the model. For this purpose, 3024 synthetic samples of a single
zone model with seven input features are simulated through the
EnergyPlus engine for training in addition to 360 unseen samples as
testing data for accuracy reporting. Heating and cooling demands, in
addition to five annual thermal comfort indices, are calculated for each
data point and used as target indices. Results show Extremely Randomized
Trees and Random Forest models had the highest R2 of 0.99 and 0.85 for
cooling and heating demands respectively. Also, the R2 of these models for
predicting annual comfort was between 0.71 and 0.95. Results are then
used to develop a prediction framework of thermal comfort and energy
demand performance in the early stages of building design, where most of
the information about building characteristics is not yet known.
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Introduction

Much effort has been focused on reducing energy consumption in buildings via retrofitting existing build-
ings or energy-efficient design methods in the pre-construction phase. There are two main approaches for
building thermal calculations, white-box and black-box. White-box models use physics-based principles for
such calculations. Different tools and simulation platforms are in this category, amongst which EnergyPlus,
DOE-2, and TRNSYS are some of the most commonly used engines in building industry (Beckman et al.
1994; Crawley et al. 2001).

Black-box approaches use curve-fitting techniques to extract relationships between design variables and
building performance indices. Such data-driven methods, including ML techniques, can be implemented for
long-term energy and performance predictions (Amasyali and El-Gohary 2018). In the literature, ML
methods have been implemented for the prediction of different building energy conservation indices
such as energy demand in existing buildings (Amasyali and El-Gohary 2018), setpoint management (Brandi
et al. 2020), HVAC system optimization or fault diagnosis (Han et al. 2020), and peak load prediction (Die-
trich et al. 2020).

ML can also be used to evaluate the performance of building design alternatives with small sets of
assumptions quickly compared to the standard building energy modeling tools to make informed decisions,
hence, becoming more practical for non-professional users (Ciulla and D’Amico 2019).
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These methods are often reliable and relatively fast with a good approximation if models are trained
efficiently. However, implementing ML approach can be tough in the design stage as the relation between
inputs and target variables is not explicit and preparing the training data is a challenge (Wang and Sriniva-
san 2017).

Aim and scope

Considering the drawbacks of white-box approach, and gaps in the existing studies implementing the black-
box approach, this study aims to use data-driven ML techniques to predict long-term energy demand and
thermal comfort for integrated design in the early stages. The outcome of this study provides an estimation
tool for evaluating design alternatives at zone level, which could be utilized by architects without specific
knowledge about the energy performance of buildings, and designers/building owners with minimum effort.

Towards these goals, the current study aims to find the most suitable ML models for energy demand and
annual thermal comfort target indices by a comparative analysis between different ML approaches. There-
fore, besides the common methods in literature (ANN, MR, SVM) the RF, Boosting, and ERT are utilized.
Moreover, results are compared to the common physics-based (EnergyPlus) models, in terms of accuracy
and calculation speeds. Results are used to develop an algorithmic framework for performance prediction
in early design phases.

The content of this paper is organized as follows. The first section contains the review of existing litera-
ture. Next, the study’s methodology is presented. The construction and optimization of ML models are
explained afterwards. The results and accuracy of the models, and proposed framework, are then described
and discussed in the next part. Lastly, conclusions and suggestions for future research are elucidated.

List of abbreviations.

AB Adaboost
ANN Artificial Neural Networks
APE Average Percentage Error
BPD Building Performance Database
BR Bagging Regressor
DhC Degree-hours Criterion
DOE Department of Energy
DT Decision tree
EnerPro Energy Profiling Tool
ERT Extremely Randomized Trees
HVAC Heating, Ventilation and Air Conditioning
KNN K-Nearest Neighbors
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MeAE Median Absolute Error
MI Mutual Information
ML Machine Learning
MR Multi-Variate Regression
MRE Mean Relative Error
MRPE Mean Relative Percentage Error
NMAE Normalized MAE
NRMSE Normalized RMSE
PMV Predicted Mean Vote
POR Percentage Outside the Range
R Linear Correlation Coefficient
R2 Coefficient of Determination
RF Random Forest
RMSD Root Mean Square Deviation
RMSE Root Mean-Square Error
RSS Residual Sum of Squares
SEE Standard Error Of Estimate
SI Synthesis Index
SSE Total Square Error
TSS Total Sum of Squares
SVM Support Vector Machine
WWR Window-to-Wall Ratio
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Literature review

There exists a considerable body of literature on AI application in energy consumption prediction of build-
ings. Seyedzadeh and Rahimian have systematically presented a set of key topics pertaining the application
of AI techniques for optimization of energy-related performance of non-domestic, large-scale buildings, and
how such solutions can address modern problems (Seyedzadeh and Rahimian 2021). In another related
attempt, Magoulès and Zhao explain data mining and Machine Learning techniques for solving prediction,
analysis, or fault detection and diagnosis of building energy consumption (2016).

To find similar studies based on research objectives, a combination of related phrases including ‘machine
learning’, ‘artificial intelligence’, ‘building’, ‘energy’, ‘thermal’, and ‘comfort’ were used to conduct a search
in GoogleScholar and ScienceDirect. A total number of 67 papers were collected. Studies prior to 2010 were
excluded from the review. Also, studies on systems level and urban level were excluded. All the studies with
empirical or pre-simulated training datasets with heating, cooling, and comfort labels were included in this
literature review. Studies implementing both single and ensemble MLmethods are reviewed. The final list of
26 relevant papers is presented in Table 1.

In addition, ML model features, including the target variables and indices, analysis level (zone, building,
etc.), as well as the architecture of the model in terms of their utilized ML algorithm, input features, type of
dataset (real, simulated), and finally, their accuracy are presented.

Themajority of the reviewed studies are concernedwith heating and cooling energy demandpredictions as
target variables, while the feasibility of temperature and thermal comfort predictions are not studied except
for the work done by Gelder et al. that predicts over-heating throughout the year (Van Gelder et al. 2014).

According to these studies, input features to predict target variables mainly include six groups of infor-
mation:(1) Location/weather conditions, (2) Geometry/massing (i.e. perception of the general shape and
form and size of a building)/ orientation, (3) Envelope properties (walls and windows U-values, WWR,
shadings and blinds, airtightness, windows free apertures and vents, and glazing types), (4) HVAC system
information (mainly setpoints), (5) Schedules, occupancy, and (6) Building type. The second and the third
feature groups have been used more often.

The type of ML algorithms used for predictions can be divided into two main groups, single models and
ensemble models. The former group predicts the target values based on the results of one ML model, while
the latter method conducts a prediction based on the average accuracy of multiple models. ANN, MR, and
SVM are the most commonly used single models in the literature (Walter and Sohn 2016), while implement-
ing RF, Boosting, Bagging, and ERT are more common according to the literature review (Table 1).

Two types of datasets are used to train and test ML models, pre-simulated and empirical. For the gen-
eration of pre-simulated datasets, most studies used numerical energy simulation programs, e.g. EnergyPlus,
TRACE 700, DOE-2, Ecotect, IES-VE, and TRNSYS, providing more flexibility upon the ranges of par-
ameters and sample alternatives (Ngo 2019). Other groups of studies utilize real data mostly measured
and collected by governmental authorities, supporting a more realistic estimation of building performance
(Kontokosta and Tull 2017; Robinson et al. 2017).

Also, according to Table 1, R2, RMSE, and MAE are the most commonly used accuracy/error metrics in
literature with an accuracy of 0.4–1.00 for heating and cooling demand (Walter and Sohn 2016). It should be
noted that the accuracy of results depends on validation method, training and testing datesets, and model
architectures.

Overall, the literature lacks a comprehensive knowledge on feasibility of using ML algorithms in early
stages of building design to predict building thermal comfort performance (Carlucci and Pagliano 2012;
Geyer and Singaravel 2018; Sundaravelpandian Singaravel and Geyer 2016).

Methodology

This section summarizes the dataset, data-driven statistical concepts, and the ML techniques used to predict
model performance. Schematic outline of building energy demand and thermal comfort prediction method
is presented in Figure 1.

Description of train and test datasets

For this study, two separate datasets with sizes of 3024 and 360 and different sets of assumptions are gen-
erated parametrically as training and test data respectively in grasshopper. This ratio of testing and training

INTELLIGENT BUILDINGS INTERNATIONAL 3



Table 1. Related research.

Ref. Indices Resolution level

ML algorithms

Data
type

Validation
strategy

Accuracy
metrics

Accuracy /
best model
accuracy

Single Ensemble

OtherANNs SVM KNN

DT
(CART/
CHAID) GLR

multi-
variate

Regression LR Voting Boosting Bagging Stacking RF ERT
Ngo (2019) C, H A B ✓ ✓ ✓ ✓ ✓ ✓ ✓ S CV MAE, RMSE,

MAPE, R,
SI

0.78-0.99(R)

Chou and Bui (2014) C, H A B ✓ ✓ ✓ ✓ S CV RMSE, MAE,
MAPE, R,
SI

2.98-4.96
(MAPE)

Tsanas and Xifara (2012) C, H A Z, B ✓ ✓ S CV MAE, MSE,
MRE

0.11-2.21(MAE)

Geyer and Singaravel
(2018)
Sundaravelpandian
Singaravel and Geyer
(2016)

C, H A B ✓ S Uns. R2 0.69-0.99(R2)

Kontokosta and Tull (2017) C, H A U ✓ ✓ R Uns. MAE, log
accuracy
ratio(LAR)

0.17(MAE)

Li and Yao (2020) C, H A B ✓ S Uns. MAE, RMSE,
NMAE,
NRMSE

0.61, 0.66(MAE)

Kumar, Pal, and Singh
(2018)

C, H A B ✓ R – MAE 0.027,0.032
(MAE)

Walter and Sohn (2016) E A B ✓ R – R2 0.4(R2)
Cheng and Cao (2014) C, H A B ✓ S CV RMSE,

MAPE,
MAE, R2

0.99-1.00

Turhan et al. (2014) H A B ✓ S – MSE, R2,
MAPE

0.97(R2)

Van Gelder et al. (2014) TE, H A B ✓ ✓ ✓ S Uns. MSE, R2,
MAE

0.91-1.00(R2)

Wei et al. (2015) G, El A U ✓ ✓ ✓ R CV RMSE, R2 Gas:710,
Electricity:280
(RMSE)

Sundaravelpandian
Singaravel et al. (2017)

C, H A Z ✓ ✓ ✓ ✓ S CV R2 0.97-0.99(R2)

Pan and Zhang (2020) E A B ✓ R CV R2 0.897(R2)
Sundaravelpandian
Singaravel, Suykens, and
Geyer (2019)

A B ✓ S CV R2, MAPE -14%- 10%
(MAPE)
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Sundaravelpandian
Singaravel, Suykens, and
Geyer (2018)

C, H M B ✓ S Uns. R2 0.96-0.99(R2)

Catalina, Virgone, and
Blanco (2008)

H M B S Uns. SEE, R2 2%(SSE)

Naji et al. (2016) C, H A B ✓ S Uns. R2 0.99(R2)
Robinson et al. (2017) E A B ✓ ✓ ✓ ✓ ✓ ✓ ✓ R CV MAE, MeAE,

R2
0.82(R2)

Romani, Draoui, and Allard
(2015)

C, H A B ✓ S Uns. MAE, RMSD,
R2

Heating> 0.96,
Cooling>0.91
(R2)

Mottahedi et al. (2015) C, H A B S Uns. R2, F-test,
RMSE

0.95-1.00

Hygh et al. (2012) C, H A B ✓ S Uns. RMSE, R2,
APE

R2>0.96

Ekici and Teoman Aksoy
(2009)

E A B ✓ S – MSE, SSE 1.5-5.2%(SSE)

Bektas Ekici and Teoman
Aksoy (2011)

C, H A B ✓ S Uns. R2 Heating:0.96,
Cooling:0.83
(R2)

Amiri, Mottahedi, and
Asadi (2015)

C, H A B ✓ S Uns. RSS, R2,
RMSE

0.95-0.98(R2)

B: Building; Z: Zone; U: Urban and district scale; C: Cooling load; H: Heating load; E: total energy use; TE: temperatures exceeding 25 C; G: Gas; El: Electricity; A: Annual; M: Monthly Methods for data
generation; R: Real data; S: Simulated data.
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data is determined based on the literature review Table 1. Corresponding energy demand of each sample is
calculated through Honeybee which uses EnergyPlus engine (Crawley et al. 2000) using Tehran annual
weather file. The case study is a single office zone located in Tehran climate (Bsk, based on Köppen classifi-
cation) with one exterior wall; other surfaces are considered adiabatic. This space is supposed to be repre-
sentative of a common room in an office building with adjacency of similar spaces, thus only one surface is

Figure 1. Outline for development of predictive models.
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assumed not adiabatic. Key simulation assumptions are presented in Table 2. These assumptions are based
on Iran’s national building energy code (Iran National Building Code 2019).

Six independent variables including room length, width, rotation angle, WWR, window shading, window
U-value, and wall U-value, are used as features of data samples with different values, assuming their impor-
tance in building energy consumption based on sensitivity analysis studies (Table 3). The second and the
third column shows the number of steps and values for testing dataset with 3024 data points. The fourth
and the fifth columns show the information for unseen testing data with 360 data points. values for each
parameter are chosen based on common materials and options and relevant studies in Table 1. These ranges
for parameters can be extended for more cases in future research.

Description of target indices

Cooling and heating energy demands were calculated for each of the training and test cases as target variables
besides five long-term annual thermal comfort indices selected from the literature (Carlucci and Pagliano
2012). Thermal comfort indices can be categorized into two main sections based on their calculation method
introduced by ISO 7730-2005 and EN 16798-1 (BS EN 16798-1, 2019). Although EN standard is for European
countries it is used because of the similar climatic context in Tehran (Standard, I. S. O. 2005).

POR
According to Equation (1), this index is determined by the summation of the annual binary states of comfort
for each occupancy hour. This method can be applied to both Fanger’s model by calculating the PMV index
(Equation (2)) and the Adaptive model by calculating the operative temperature for each occupancy hour
(Equation (3)). A total number of five thermal comfort indices in this group are calculated for each simu-
lation case explained in Table 3.

POR =
∑Oh

i=1 (wfi · hi)∑Oh
i=1 hi

[ [0; 1] (1)

where POR is Percentage outside the range, wf is Weighting Factor, Oh is the number of operational hours,
and h is the time step (i.e. one hour).

PORFanger, PMV = f (wfi):
wfi = 1 � (PMV , PMVlower limit) _ (PMV . PMVupper limit)

wfi = 0 � (PMVlower limit ≤ PMV ≤ PMVlower limit)

{
(2)

where PORFanger, PMV is Percentage outside the range using the Fanger model and PMV values, wf is
Weighting Factor, Oh is the number of operational hours.

PORAdaptive = f (wfi):
wfi = 1 � (uop, in , uop, lower limit) _ (uop, in . uop, upper limit)

wfi = 0 � (uop, lower limit ≤ uop, in ≤ uop, upper limit)

{
(3)

Table 2. Fixed simulation key assumptions and a summary of average Tehran climatic conditions in working hours (8–17).

Cooling setpoint(°C) 25.00
Heating setpoint(°C) 20
Cooling setback(°C) 20
Heating setback(°C) 0
Lighting target value(lux) 300
Equipment load(w/m2) 14
Electric lighting power density(w/m2) 10.5
Occupants density (p/m2) 0.11
Occupancy 8:00-17:00
Ventilation rate(m3/s.m2) 3.05E-04
Infiltration load(w/m2) 3.00E-04

Spring Summer Fall Winter

Average DBT(°C) 20.8 29.8 16.38 7.31
Average RH(%) 30.2 25.7 42.5 47.5
Average Wind Speed(m/s) 3.8 3 2.3 3.1

INTELLIGENT BUILDINGS INTERNATIONAL 7



where PORAdaptive is Percentage outside the range using the Adaptive thermal comfort model, wf is Weight-
ing Factor, Oh is the number of operational hours, uop, in is indoor operative temperature.

DhC
The absolute difference from upper and lower limits of the comfort temperature range is calculated for over-
heat and under-heat occupancy hours respectively (Equation (4)) and is multiplied by the number of hours.
This method can be applied to both the Fanger’s and Adaptive models as well. In this study, the Class II of
EN comfort range is used based on the adaptive model as this class is proposed for office spaces. Equations
(4) and (5) show the calculation steps for these indices. Also, the descriptions for the two thermal comfort
models are presented in Table 4.

wfi
EN 16798− 1

Adaptive
; |uop,i − uop,limit| (4)

where Wfi is the weighting factor according to EN standard and uop, in is indoor operative temperature.

DhC =
∑oh
i=1

(wfi · hi) [ [0; +1] (5)

where DhC is Degree-hour criterion, Oh is the number of operational hours, and h is the time step (i.e. one
hour).

ML models used in this study

Although DT and KNN have shown good accuracies in similar studies they are not being widely used
like ANNs (Singaravel 2020). However, in this study, both the common and less implemented
methods are used in a single framework to compare their results on the prediction performance
and accuracy of these algorithms on our test dataset. These models include both single models
(ANN, KNN, DT) and ensemble ones (RF, BR, AB, ERT) which are developed with the decision
tree models.

Table 3. Independent Variables utilized as parameters and their corresponding values and ranges to generate the training datasets.

Variables
Number of steps

(training) Values/ ranges(training)
Number of steps

(testing) Values/ranges(testing)
Length(m) 3 4.0, 7.0, 10.0 3 3.5, 6.0, 7.0
Width(m) 3.0, 6.0, 8.0 4.5, 5.0, 9.0
Rotation Angle 8 0◦-315◦ with 45◦ steps 5 22.5, 137.5, 275, 200, 300
WWR(%) 7 20–80 with 10 steps 2 25, 65
Window shading 2 With/without shading (louvers-

15cm depth)
2 With/without shading (louvers-

12cm depth)
Window U-value
(W/m2K)

3 1, 7, 2.6, 3.4 2 2, 3

Wall U-value(W/
m2K)

3 0.5, 0.7, 1.2 2 1.1, 1.67

Table 4. Descriptions of the thermal comfort indices.

Thermal Comfort
Index Description
PORFanger,80% Percentage of occupancy hours with PMV value outside the 80% acceptability range
PORAdaptive

(ASHRAE),80%

Percentage of occupancy hours with the operative temperature outside the 80% acceptability range,
according to ASHRAE 55 standard.

PORAdaptive
(ASHRAE),90%

Percentage of occupancy hours with the operative temperature outside the 90% acceptability range,
according to ASHRAE 55 standard.

PORAdaptive(EN),Class II Percentage of occupancy hours with the operative temperature outside the Class II of EN 16798-1 standard
range.

DhCoverheat Degree-hours Criterion for overheat times, in the occupancy hours throughout a year, according to class II EN
16798-1 comfort range

8 N. FOROUZANDEH ET AL.



Development and optimization of the ML models

Base models with typical hyperparameters are developed as a benchmark. To optimize the models, feature
selection and hyperparameter tuning are conducted. Finally, the study framework is developed and the cor-
responding results are reported.

. Feature Selection: Feature selection is commonly used in ML methods to remove features with irrelevant
or low correlation and has a positive impact on models’ readability, accuracy, and training time. Models
in this study don’t suffer from high numbers of input features, however feature selection is conducted to
identify significant features and increase models’ accuracy.

MI index (Barraza et al. 2019) is used in this study to calculate the importance of each feature. |Ui| is the
size of the sample in Ui , and |Vj| is the size of samples in Vj (scikit-learn API Reference 2020).

MI(U, V) =
∑|U|

i=1

∑|V|
j=1

|Ui>Vj|
N

log
N|Ui>Vj|
|Ui||Vj| (6)

where |Ui| is the number of the samples in cluster Ui and |Vj| is the number of the samples in cluster Vj .

MI values for each of the features are presented in Figure 2.
In Figure 2, MI scores, which reveal the importance of each feature(columns) in the calculation of each

target variable(rows) are presented. MI values for each input feature with each output label are presented in
Figure 2. Feature elimination is done in 3 steps:

(1) elimination of one feature with the least MI,
(2) elimination of two features with the least MI,
(3) elimination of three features with the least MI.

The average R2 values are presented in Figure 3. The horizontal axis on the right side of the plot shows
the R2 values, and the horizontal axis on the left side shows the training time. The color gradient reveals the
feature selection steps in sequence. According to these results, the accuracies of the models haven’t
improved through eliminating features, except for the DT models which performed better through the

Figure 2. Values of MI for each feature-output target variable.
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one-step feature elimination. However, reducing features shows a positive yet not significant impact on the
training time with a trade-off in models’ accuracies. Based on the results, the walls’ U-value feature is elimi-
nated from the DT model and no feature reduction is conducted for other prediction models. The same
happened with the AB model with elimination of two features.

. Hyperparameter tuning: This step aims to increase the prediction accuracy. Table 5 shows the values and
ranges of hyperparameters utilized for the tuning process. The grid search method is used to determine
the best model and their corresponding optimum parameter values to avoid overfitting or underfitting
phenomena. This method examines all the combinations of the parameters to find the optimum values
(scikit-learn API Reference 2020).

Figure 3. Validation with training data.

Table 5. Base and optimum values for hyperparameters corresponding to each model.

Model Hyperparameters Base value Optimization range Optimum values(Grid-Search tuning method)
ANN hidden_layer_sizes=(100,) 100 1–300 183

activation=’relu’ relu ‘identity’, ‘logistic’, ‘tanh’, ‘relu’ ‘relu’
solver=’adam’ adam ‘lbfgs’, ‘sgd’, ‘adam’ ‘adam’

KNN n_neighbors 11 1–30 5
weights ‘uniform’ ‘uniform’, ‘distance’ ‘distance’

DT max_depth 7 1–30 15
RF n_estimators 50 1–100 98

max_depth 7 1–30 14
ERT n_estimators 50 1–100 56

max_depth 7 1–30 28
AB n_estimators 50 1–100 8

learning_rate 0.1 0.0-2.0 1.26
BR n_estimators 50 1–100 94

10 N. FOROUZANDEH ET AL.



. Training time of the optimized models: Prediction time differs in each model depending on their archi-
tecture. Training times are between 10 and 490 milliseconds, except for the ANNs model, which is
trained in 6 s. Prediction time for none of the models exceeds 5 milliseconds. Compared to EnergyPlus,
which took 10 s for each alternative on average, this is a meaningful reduction.

Model validation and error calculation

Validation of the models is investigated using three main methods according to the literature.

. The first method is to use a random percentage of the training data to test the accuracy of the prediction
models on the training set (Figure 4); results using this method commonly have higher variability in
different runs due to the randomness of the validation set (S. Singaravel 2020).

. Another method, called cross-validation, is to repeat the previous method for all partitions of training
data so that all the training set data points would be considered as the validation set in various runs.
The final accuracy result would be the average results of all the steps (Figure 5) (Chou and Bui 2014).

. Neither of the above-mentioned approaches is able to measure the generalizability of models. To validate
the model, unseen test data with different feature values is required. In this method, an unseen dataset is
used to calculate the reliability of the prediction model (Singaravel 2020).

Error and accuracy calculation
Three error calculation indices, including R2, MAE, and MSE are used to identify the similarity of the pre-
dicted energy demand and comfort results with their actual values from EnergyPlus simulation. MAE has
often been used in DT and RF studies. However, MSE has been generally used in domains relying on mini-
mizing the least-squares. Low values of MAE and MSE indicate more accuracy while higher R2 values, close
to 1.0, demonstrate higher accuracy and show more similarity between the predicted and actual results.

The accuracy of themetrics, besides the training time of themodel, is considered as performance indicator.

Results

Prediction results of the base models

Accuracy of base models in predicting the desired output indices of unseen data based on R2, MSE, and
MAE are presented in Figures 6-8, as well as the minimum and maximum values in the prediction of

Figure 4. Validation using the training data.
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each output variable. According to the results, the average value of R2 for heating and cooling demand is
0.62 and 0.83 respectively, and the accuracy of the models ranges between 0.25 and 0.84 for heating demand
and 0.74–0.95 for cooling demand. For comfort, the average coefficients of determination are in the range of
0.59–0.91.

Prediction results of the optimized model

In this section, performance improvements of each model are presented after optimization steps, including
feature selection and hyperparameter tuning.

Detailed and final values of the hyperparameters for the optimized models are presented in Table 5. The
final results of the optimized models are shown in Figures 9–11. According to these results, R2 values related
to the cooling and heating demands increased to 0.85 and 0.66, respectively. Also, the average R2 values are
in the range of 0.58–0.92 for the annual thermal comfort indices.

Figure 5. Cross-validation.

Figure 6. Cross validation.
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Discussion

In this study, the accuracy of seven ML models in predicting thermal comfort and energy demands are
studied and reported. Accuracy of models in similar studies in the literature (see Table 1) are between
0.4 and 1.00 for the prediction of heating and cooling demand in terms of R2. In this study, the highest
R2 was 0.97 for ERT for prediction of cooling demand and 0.84 for the BR in predicting heating demand.
Also, the accuracy values of the best models in this study for predicting comfort indices are between 0.74 and
0.96(R2) for BR and ERT(Figure 12).

In contrast with the energy demand that has been studied vastly in literature, little research is conducted
for the annual thermal comfort performance. These studies are conducted on real case situations using field-
measured datasets like ASHRAE Comfort Database II (Luo et al. 2020). The current approach differs from

Figure 7. Accuracy of base models in prediction of the unseen data based on R2.

Figure 8. Accuracy of base models in prediction of the unseen data based on MAE.
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existing studies in that the simulated data is used instead of the measured data to compare the accuracy of
different ML methods.

There are multiple factors affecting final accuracy, including the number of samples, feature and label
data types, ML algorithms and model architectures, and validation strategy. Thus comparing different
studies with different approaches may not be reasonable. For example, Singaravel et al. implemented
Deep-learning neural network architecture with a component-based approach for a similar purpose (Sun-
daravelpandian Singaravel, Suykens, and Geyer 2018). In this approach, heat transfers through envelope
were predicted using a dataset of 800 design combinations of a two-story building in Brussels with monthly
energy data as the training set. This approach has resulted in an R2 of 0.96-0.99 in predicting 201 unseen
cases. This component-based approach also is investigated in other publications of these authors (Geyer
and Singaravel 2018; Sundaravelpandian Singaravel and Geyer 2016)

Figure 9. Accuracy of optimized models in prediction of the unseen data based on R2.

Figure 10. Accuracy of optimized models in prediction of the unseen data based on MSE.
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Present study has comparatively investigated the feasibility of using ML models for the prediction of
building energy demand and annual thermal comfort. Results of this study can be used to develop a
data-driven framework by determining the most accurate and reliable prediction model for each of the tar-
get variables. This algorithmic framework is presented in three steps, including 4 (1) Defining inputs by the
users, (2) Importing user-defined inputs to the black-box models, and (3) Calculation of final results. This
framework and two of the most accurate models for each of the target variables are presented in Figure 12.

This study is constrained to definite sets of design parameters (dimensions, WWR, window and walls U-
values, shading depth, and rotation angle) with specific ranges as input features. For a more inclusive frame-
work, all possible input parameters and value ranges need to be considered to increase the generalizability of
the models and include more complex design options, such as different glazing systems, shadings, façade

Figure 11. Accuracy of Optimized models in prediction of the unseen data based on MAE.

Figure 12. Framework for calculation of building energy demand and annual thermal comfort.
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control strategies, etc. In addition, this study was limited to a single zone calculation. Building level frame-
works should be studied for a more applicable framework. Other common building types, such as residential
and educational, also should be included in the training data. Moreover, different weather conditions should
be included for generating the training set. Other novel ML approaches, like deep-learning, should also be
investigated and compared with other algorithms in terms of prediction accuracy. Finally, RMSE is not cal-
culated as an accuracy metric; it is suggested that this metric be taken into account in the future research,
considering its good performance in comparing different linear regression models.

Conclusion

According to the results, MLmethods can predict building energy demand and thermal comfort by up to the
R2 of 0.99 and 0.95 respectively by using the ERT model. Overall, single and ensemble models based on
decision trees are shown to have relatively better performance.

Data-driven methods are implemented in some of the building energy modeling web-based toolkits such
as Enerpro. These toolkits utilize hundreds of pre-simulated (DOE-2) model-based archetypes for its analy-
sis, and Targeting Tool for Energy Retrofits (BETTER) that uses regression techniques to analyse a build-
ing’s monthly energy use history and find the most cost-effective energy conservation measures (Szum
Berkeley et al. 2018; Enersys Analytics Inc. n.d.). Moreover, reduction of simulation and computation
time relative to physics-based models and elimination of the need for detailed energy modeling in the
early stages are other advantages of this method. However, to achieve a suitable trained model capable of
predicting unseen samples, much time and computation need to be dedicated to generating enough training
data and conducting corresponding simulations.
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