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Abstract

Reliable malaria diagnosis techniques that are suitable for point-of-care testing in high burden
areas, are vital for effective treatment and monitoring of the disease. Identification of malaria
parasites in Giemsa stained blood slides is currently the most widely accepted technique, but
its availability is limited by the need for highly trained experts to interpret the data.
In this work, a two stage automated image classification strategy is proposed, to eliminate this
dependency on human expertise. Blood slides that were photographed at 20 × magnification
were used in our experiments, allowing for a larger Field of View than regular thin film
microscopy at 100 ×. Erythrocytes are first localised and segmented by a Convolutional
Neural Network, the architecture of which is based on U-Net, with some adaptations and
improvements made for our purposes. The sensitivity and positive predictive value of the
localisation were both 0.998, resulting in accurate cell counts. A transfer learning strategy,
in which the existing VGG-16 network is used as a feature extractor and combined with a
new fully connected layer to predict correct activations for our classification, is then used to
classify the segmented erythrocytes as either infected with Plasmodium Falciparum parasite
or healthy. Sensitivity and specificity of the predicted classification were 0.795 and 0.915
respectively. It is concluded that, although this method may not fully eliminate the need for
trained experts, the algorithms proposed can be of great assistance in aiding the diagnostic
decision making process.
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Chapter 1

Introduction

Malaria is a serious, but curable disease that affects millions of people every year. It is caused
by infection with a parasite of the Plasmodium genus, five species of which (P. falciparum,
P. vivax, P. ovale, P. malariae and P. knowlesi) can infect humans. Primarily, these para-
sites are transmitted to humans via the bite of female Anopheles mosquitoes, which act as
the disease vector. After entering a person’s blood, they develop and multiply, first in the
liver cells and then in the erythrocytes. The erythrocytic parasites are responsible for the
clinical manifestations of the disease. Common symptoms include fever, fatigue, nausea and
headaches. However, in severe cases, the infection can result in organ failure and death. Most
severe cases occur after infection with the falciparum parasite [6].
In 2018 alone, the World Health Organization (WHO) reported an estimated 228 million cases
and 405 000 deaths. Figure 1-1 shows the global case incidence rate of malaria. The burden
of the disease concentrates heavily in sub-Saharan African countries and India, together they
account for 85% of fatal cases. Two-thirds of total fatalities were children under five [1]. F
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WHO: World Health Organization.
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Figure 1-1: Map of malaria cases in 2018 (per 1000 population at risk), from [1]
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2 Introduction

When the infection is diagnosed early, it can be treated effectively with medication, pre-
venting a mild case of malaria from developing into a life-threatening one. Accurate malaria
diagnosis is crucial for proper treatment and disease monitoring. However, in the areas where
the malaria burden is the greatest, access to diagnostic methods is most limited, due to lim-
ited resources and remoteness [7]. Clinical diagnosis of malaria (based on symptoms, such as
the presence of a fever, rather than a diagnostic test), requires the least amount of resources
and is therefore still widely practised. However, malaria symptoms are varied and overlap
with many other common tropical diseases, which leads to low specificity in clinical diagnosis.
False positives are common in highly endemic regions, which not only leads to the real cause
of the symptoms going untreated, but also to over-prescription of antimalarial drugs, which
introduces unnecessary side effects and contributes to drug resistance in parasites [8, 9, 10].

The WHO therefore recommends that all cases of suspected malaria should be confirmed with
a parasitological test. The number of cases for which this happens has dramatically increased
in sub-Saharan African countries over the past decade, from 38% of all suspected cases in
2010, to 85 % in 2018, mainly due to the development of Rapid Diagnostic Tests (RDTs).
However, this trend is not universal; in some countries, tests are still only administered in
50% of cases [1]. Furthermore, the increase in testing has come to a stop over recent years.
It is therefore evident that the development of new, accurate diagnostic methods that can be
used for point-of-care testing in resource-limited, on-field settings is still necessary.

We will now first give an overview of existing diagnostic methods. Their advantages and
limitations are discussed, in order to identify relevant opportunities for improvement. From
this, the research objective of this thesis follows, which will be introduced in section 1-2.

1-1 Available diagnostic methods and their limitations

1-1-1 Light microscopy with stained blood smears

Parasite identification through light microscopy inspection of blood smears is currently the
recommended method for diagnosing malaria accurately. The standard microscopic diagnostic
procedure, as recommended by the WHO, consists of the following steps [5]:

1. Preparation of blood films: A sample of the patient’s peripheral blood is acquired,
usually from the finger. The blood is applied to a microscopic slide, and a thick- or thin
film is prepared. Thick films consist of multiple layers of blood cells, while thin films
are spread out such that only one layer of erythrocytes is present.

2. Staining: To allow for distinction of the blood cells and parasites, a stain is applied. Mi-
croscopy slides are most commonly stained with a Giemsa stain, but other Romanowsky
stains such as Field’s and Leishman stains can also be used. Field’s stain has the ad-
vantage of very short staining time, but a slightly lower sensitivity is achieved when this
stain is used [11]. Leishman staining takes half as long as Giemsa staining, and leads
to the same diagnostic accuracy, but the solution is less stable [12, 13].

3. Examination with light microscope: The microscopic slides are examined with a
100x oil immersion objective. For thick films, at least 100 Field of View (FOV) should
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1-1 Available diagnostic methods and their limitations 3

be examined before a negative diagnosis is reached, while for thin films, the minimum
is 800 FOV.

4. Data interpretation: In thick smears the parasite density is determined in parasites
per µL of blood, by determining the number of parasites × 8000, divided by the number
of white blood cells. In thin smears the number of infected and non-infected red blood
cells is tallied, and parasitaemia is expressed as percentage of total cells infected. The
species and stage of the parasites is also identified.

(a) Thick smear with several ring stage par-
asites and one white blood cell. Dit is zodat
mijn plaatjes op één lijn liggen.

(b) Thin smear with a single layer of red blood
cells, three of which infected with multiple ring
stage parsites.

Figure 1-2: Giemsa stained blood smears of peripheral blood infected with P. falciparum parasites,
as seen under 100x oil immersion objective. [2]

In figure 1-2 a thick- and thin smear of malaria infected blood is shown. The advantage of
thick smears is that a larger amount of blood can be inspected in one FOV, so a high sensitivity
can be reached in less time. However, when parasite density is high, it can be difficult to
distinguish individual parasites, so thin smears are used. Accurate knowledge on parasiteamia
is important for decisions on treatment administration. Hyperparasiteamia, which is defined
as parasiteamia > 4 %, or 200 000/µL in endemic regions (> 2 % for non-immune people,
such as travellers), is associated with severe malaria. Patients with hyperparasiteamia need
to be closely monitored, if feasible in hospital, even when not suffering from severe symptoms,
because risk of treatment failure is high [9].
Thin smears are also useful for reaching accurate conclusions on parasite species and life stage.
Table 1-1 summarises the differences in appearance between all Plasmodium parasites that
can infect humans, in their four erythrocytic life stages.

The sensitivity of light microscopy diagnosis is limited by the number of FOV examined.
When the WHO recommended procedure is followed, the theoretical detection limit is 5 par-
asites /µl of blood, making for a very sensitive test. This, along with the possibility to
obtain species and life stage information, are the main advantages of this diagnostic method.
Furthermore, the relatively inexpensive equipment makes this the most cost-effective test
currently available for highly endemic settings, even when not taking into consideration that
light microscopy equipment can also be used for the diagnosis of other diseases [14].
However, the preparation of the stained blood slides and the data interpretation are labour
intensive and require highly trained experts [8, 15]. In practice, the theoretical detection limit

Master of Science Thesis Noor van Driel



4 Introduction

Table 1-1: Thin smear images of each of the four life stages that appear in human erythrocytes
infected with different species of Plasmodium parasites. Based on [3, 4], images from [2].

P. Falciparum P. Vivax P. Ovale P. Malariae P. Knowlesi

R
in
g
st
ag

e

Characterised by a cytoplasm ring
with one or two chromatin dots.
P. falciparum and P. knowlesi may
appear on periphery of cell (ap-
pliqué/allocé form). Cells infected
with P. vivax and P. ovale can be
slightly enlarged. "Bird’s-eye" form
is characteristic for P. malariae.

T r
op

ho
zo
ite

Parasites have matured and the pig-
mented cytoplasm has grown. For
P. falciparum, they appear as larger,
thicker circles. Cells with P. vi-
vax and P. ovale trophozoites are
often enlarged and appear speckled
(Schüffner’s dots). Band forms are
characteristic for P. malariae and P.
knowlesi.

Sc
hi
zo
nt

Contain anywhere between 6 and 24
merozoites, which appear as chro-
matin dots clustered around dark-
brown pigment. Larger amounts (>
12) are typical for P. vivax. P.
falciparum merozoites are slightly
smaller and don’t fill the cell com-
pletely. P. malariae pigment is
coarse.

G
am

et
o c
yt
e

Gametocytes of most species are
round to oval and fill the host cell.
For P. falciparum, however, they
have a crescent shape, which dis-
torts and enlarges the host cell.

is rarely reached. A non-expert microscopist can commit many errors when interpreting the
data; misidentification of the parasite species is common, as well as seriously underestimating
the parasite count [16]. Best estimates for the sensitivity and specificity of microscopic di-
agnosis in district-hospitals and health-centre general labs in sub-Saharan countries are only
82% and 85% respectively [14].
The applicability of this method in on-field settings is further limited by the required main-
tenance, the cost and the need for electricity of the microscopy equipment. To address this
limitation, several simple, portable microscopes which are battery operated have been de-
veloped over the years [17]. For example, Agbana et. al proposed that the wide-spread
availability and advances in imaging capabilities of mobile phones could be leveraged on, by
attaching an oil immersed ball lens onto the built-in camera, which effectively turns a mobile
phone into a microscope [18].

1-1-2 Fluorescence microscopy

As an alternative to light microscopy, several diagnostic methods using fluorescence mi-
croscopy have been proposed. In these methods, a fluorochrome that attaches to the nucleic
acids of the malaria parasite is used to stain a blood sample [19, 20]. The blood sample
is than examined under a fluorescence microscope, which only emits light at the excitation
wavelength of the fluorochrome. The advantage of using fluoresence microscopy over standard
light microscopy is that a microscopist can easily spot the light-emitting parasites, and that
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1-1 Available diagnostic methods and their limitations 5

the interpretation can thus be done more quickly [21].
Of all fluorescence microscopy methods that have been published, the Quantitative Buffy
Coat (QBC) method, in which blood samples are placed in acridine orange stained capillary
tubes and centrifuged before examination, has most widely gained acceptance. The theoret-
ical detection limit of this technique is about the same as that of light microscopy, but in
several field experiments it was shown for low parasiteamia to outperform light microscopy in
terms of sensitivity [19, 22, 23]. However, since acridine orange (AO) is a non-specific stain,
meaning other cell nuclei also fluoresce when they are dyed with this stain, difficulties can
arise in distinguishing the parasites, which limits the sensitivity. When the patient is infected
with P. falciparum, this test offers excellent specificity (> 93%), but for other species, speci-
ficity was found to be very low compared with light microscopy (52%) [24]. Furthermore,
this method is technically demanding, requiring specialised equipment to separate the cell
layers by centrifugation, and it is not possible to accurately determine parasite species and
parasiteamia with this test.

1-1-3 Rapid Diagnostic Tests

In order to reduce diagnostic complexity and allow for point-of-care testing, RDTs were devel-
oped. RDTs are lateral flow immunochromatographic tests, that detect the antigens produced
in human blood by the presence of malaria parasites. They consist of a strip of nitrocellulose,
with some dye-labelled antibody specific for the target antigen on one end, and a test line of
antibody on the other end. A sample of the patient’s blood is collected by a prick to finger,
mixed with a buffer and applied to the dye-labelled antibody end. If malaria antigens are
present in the blood, these labelled antibodies will attach to them, be carried over to the strip
by the buffer and accumulate on the test line. This produces a visible line, which indicates a
positive test result. [24]
Several WHO-qualified RDTs are available commercially and have been tested extensively
in laboratory and field. The most commonly used ones can only detect P. falciparum or P.
vivax, but tests that can detect multiple species and even distinguish between them are also
available. A very crude estimation of the parasiteamia can be made by the intensity of the
test line. The main advantage of RDTs is that no expertise is required to administer and
interpret them, which means they can even be used for self-diagnosis [25]. Furthermore, they
only take 15-30 minutes to process and require no electricity or additional equipment, making
them uniquely suitable for in-field use.
However, RDTs have several limitations. They are less sensitive (detection limit ± 100 para-
sites /µl), making them unsuitable for detecting early-stage infections. Some commonly used
target antigens remain present in the blood beyond the clearance of the parasites, severely
limiting the specificity of these tests (51 %) and making them unsuitable for disease moni-
toring or detecting repeated infections [26]. The average cost per test in endemic settings,
though low compared with other methods discussed in this section, is higher than that of
light microscopy [14].

1-1-4 Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) is a technique in which a specific strand of DNA is multi-
plied rapidly. In PCR-based malaria diagnostic tests, the blood of a patient is tested for the
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presence of the DNA of a plasmodium species, by using a string of the parasitic RNA as the
primer. After the multiplication process, the PCR products can be analysed by electrophore-
sis and a diagnosis is reached [27].
This diagnostic method has been shown to be more accurate than others, both in lab condi-
tions and in field. It has excellent sensitivity, with a practical detection limit of 5 parasites
/µl of blood, and is highly specific; false positives can be ruled out when two PCR sets are
used. It can also be used to accurately detect mixed infections and drug-resistant parasites.
[10, 28].
The usefulness of this technique, particularly in settings where access to laboratory facili-
ties is limited, is however limited by the complexity of the methodology, the need for highly
specialised equipment and trained experts, and the time lag between sample collection and
the diagnosis. In many of the promising field tests described in literature, the PCR was per-
formed weeks after the blood sample acquisition, which obviously makes the results unusable
in routine clinical practice [29].
As an alternative, loop-mediated isothermal amplification (LAMP) has been developed, which
is claimed to combine the low costs and technical requirements of other diagnostic techniques
with the sensitivity and specificity of PCR. [30, 31] However, clinical trials in field settings
have thus far been limited [8, 32].

1-1-5 Experimental malaria tests

In literature, many additional novel diagnostic tests have been proposed. A multitude of alter-
native microscopy techniques, such as multispectral microscopy, quantitative phase imaging
and Raman spectroscopy have been applied towards the identification of malaria parasites in
experiments, however, none of these methods have gained clinical acceptance yet [33, 34].
Several tests aimed at detecting the presence of hemozoin, a disposal product formed by the
plasmodium parasite in the blood, were proposed. Examples include the use of flow cytom-
etry and laser desorption mass spectrophotometry [35, 36]. Both methods show promise in
terms of sensitivity and specificity, but require highly specialised diagnostic equipment and
personnel.
Recently, as an alternative to PCR and LAMP, some novel methods to detect specific para-
sitic DNA sequences were proposed. One example of these are methods which makes use of
a surface-enhanced Raman scattering (SERS) platform. These methods are claimed to have
excellent sensitivity and specificity, and be suitable for integration into portable platforms,
however, no field tests have been published yet [37, 38].
In addition to diagnostic tests, serological tests, which show past infection by checking blood
samples for the presence of antibodies, have been around for a long time. The most commonly
used test for this is the Indirect Fluorescence Antibody Test (IFAT), but Enzyme-Linked
ImmunoSorbent Assay (ELISA) test kits have recently been proposed as a promising alter-
native. Serological tests are generally more suitable for epidemiological studies and screening
for malaria at bloodbanks, than for diagnosis in clinical settings. However, under limited
circumstances, they have been shown to also be suitable for diagnosis [39, 40].
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1-2 Research objective

When comparing all diagnostic methods discussed, it becomes clear that no test is available
yet that combines the simplicity and suitability for point-of-care testing of RDTs, with the
excellent sensitivity and specificity of PCR and more novel DNA detection tests. Light
microscopy remains a good middle ground between the two, while offering the added ability
to determine infection stage and parasiteamia. However, interpreting the images is labour
intensive, and its sensitivity and specificity are limited by the skill level of the microscopist.
When developing an alternative diagnostic method that is suitable for point-of-care testing
in resource-limited settings, it would ideally satisfy the following criteria:

Diagnostic Test Requirements

1. Detection limit ≤ 50 parasites /µl of blood, specificity ≥ 90%;

2. Ability to determine parasiteamia count;

3. Ability to identify parasite species and stage;

4. Low cost of equipment, minimal use of electricity, etc.;

5. Minimal labour and skill required.

It is clear that any malaria diagnosis method would become far more suitable for the target
setting when the dependency on a human expert is limited or altogether removed. This can
be achieved through automation. Introducing automation into the diagnostic procedure can
vary from introducing automated stages to increase throughput, to automating the interpre-
tation of the result. The focus of this thesis will be on the latter. Since light microscopy with
Giemsa stained thin and thick blood smears is most significantly limited the time and ex-
pertise it takes to interpret the images, this is seen as a major area for potential improvement.

The aim of this work is to explore how recent advances in image classification technology can
be used to automate the interpretation of blood films. By integrating this with the use of a
low-cost, portable light microscope, we can develop a method that has the potential to meet
all requirements listed above. We therefore specifically aim to develop a classification method
that is suitable for the interpretation of images produced by the ‘Assist B.02’, a portable
microscope that is currently in development at AiDx, which uses a 20 × objective instead of
the standard 100 × oil immersed objective.
Thus, the main research question we attempt to answer is:

To what extent can neural networks be applied towards eliminating
the need for trained experts in the interpretation of low magnifi-
cation Giemsa stained thin blood smears for malaria diagnostics?

In order to investigate this, a two step image classification strategy is proposed; in which the
erythrocytes are first segmented from the blood smear images to compute a cell count and
then classified as either being either healthy or infected with Plasmodium parasite to compute
an infection rate.
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This thesis is structured as follows. Firstly, in chapter 2, background for this work is provided.
Previous work on the subject of automated image analysis and its application to malaria
diagnostics is discussed to identify which of the techniques that have been applied previously
to this problem are promising, and which strategies have not yet been explored. This provides
a motivation for the choice of neural networks, the concept of which is introduced more
in-depth, to provide a theoretical framework for the work that follows. In chapter 3, the
proposed image analysis methods are introduced, as well as the blood smear image datasets
that were used to develop and test these methods. Two different erythrocyte segmentation
methods are presented; a basic threshold based method, and a method based on a U-shaped
convolutional neural network architecture. A classification method based on transfer learning,
which exploits the existing ‘VGG-16’ neural network architecture is proposed. In chapter 4,
the experimental results of applying these methods are presented, and performance measures
are calculated. In chapter 5, a discussion on the results and methods used is provided;
limitations are discussed and recommendations for future work are made. Finally, in chapter
6, conclusions are presented.
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Chapter 2

Background

In this chapter, a review of previous work on the application of automated image analysis
techniques to the diagnosis of malaria is presented. Automated image analysis is a varied field
of research in which numerous techniques have been developed, of which the applications are
constantly expanding. The field has undergone explosive growth in recent years, due to the
rapid development of machine learning computer vision techniques.
A lot of research has been published on applying these techniques to the classification of
Giemsa stained thick and thin slide microscopic images, to aid in the diagnostic decision
making process [4]. Several classifiers, which are algorithms in which objects are divided
over classes to minimise intra-class variance and maximise inter-class variance based on their
features, have been proposed to automatically localise erythrocytes and determine cell count,
as well as determine whether these erythrocytes are infected with Plasmodium parasite.

Most proposed classification algorithms follow the same basic steps; preprocessing, segmen-
tation of erythrocytes, feature extraction and erythrocyte classification. These steps, as well
as techniques that have been proposed for each of them, are described in section 2-1. A
discussion of literature in which this conventional set of steps is followed is provided.
The recent development of ‘deep learning’, which refers to the use of artificial neural net-
works with multiple hidden layers as classifier, is identified as a high potential technique for
the purpose of image classification in general and our objective in specific. The mathemat-
ical principles behind these classifiers are introduced in section 2-2, to provide a theoretical
framework for the work that follows in this thesis. Previous work on the application of deep
learning to malaria diagnosis is discussed, and limitations to this research are identified, which
serve as a starting point for the method that will be proposed in the following chapter.

2-1 Conventional malaria image analysis techniques

Most algorithms proposed in literature are focussed on the classification of thin-smear Giemsa
stained images, acquired through the procedure described in section 1-1-1. They aim to
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automatically count all uninfected and parasitised erythrocytes, and often follow the following
steps to do so; (1) preprocessing the blood smear image, (2) segmenting the erythrocytes
from the background, (3) extracting parasite features and (4) mathematically dividing the
erythrocytes into classes. This approach is schematically depicted in figure 2-1. Examples of
techniques used for each step are given below.

1 2 3 
4 

𝑓 𝑥  

Figure 2-1: Schematic representation of the basic image analysis pipeline followed by most
(traditional) automated malaria diagnosis algorithms, the numbers underneath the arrows refer
to the four operations in this pipeline; 1) preprocessing, 2) segmentation, 3) feature extraction
and 4) classification.

1. Preprocessing
Preprocessing is aimed at removing noise and enhancing image quality, and is often
the first step when performing digital analysis on any type of image data. For noise
removal, lots of established filters exist, such as median or Gaussian. In median filters,
each pixel value is simply replaced by the median of those in a radius surrounding it. In
Gaussian filters, a Gaussian distribution function in two dimensions is used to determine
a weighted average of each pixel’s neighbourhood, which then replaces that pixel value.
These basic filters remove noise sufficiently and are often implemented in proposed au-
tomated malaria diagnostic systems, though more complicated filtering techniques have
also been used. [41, 42, 43, 44, 4].
Low contrast is also a common problem, which is most commonly fixed through con-
trast stretching or histogram equalisation techniques. Contrast stretching is a linear
normalisation that stretches the interval of the intensities of an image to a larger tar-
get interval. Histogram equalisation is a non-linear normalisation that stretches the
histogram areas where intensities are concentrated and compresses the area with low
abundance intensities [45, 41, 43].
Other problems that are typical for Giemsa stained thick- and thin film microscopic im-
ages are uneven illumination and variations in staining color. This can be fixed through
color normalisation techniques, one that is often used is gray world assumption[46, 47].

2. Erythrocyte segmentation
When the thin smear is of good quality, meaning cells are separated completely and
the image is in focus and well-illuminated, segmenting the individual erythrocytes is
fairly straight-forward. It can be achieved through basic thresholding techniques, such
as Otsu’s, which optimally divides pixel values into two bins. This works well when
the image is strongly bimodal, which can partly be achieved through preprocessing
[48, 49]. When bimodality can’t be achieved through preprocessing, or when the image
is blurred, K-means clustering is a good alternative to iteratively assign pixels to fore-
ground or background. Its disadvantage is that is more computationally complex than

Noor van Driel Master of Science Thesis



2-1 Conventional malaria image analysis techniques 11

thresholding techniques [50].
Problems with both methods arise when cells are touching or overlapping. To separate
individual erythrocytes when this is the case, many methods have been proposed. Some
simply iteratively threshold the larger objects until only objects that are the approxi-
mate correct size remain. This method can work well under circumstances, but is not
very robust [51]. Watershedding is also a popular algorithm for cell segmentation, but
its success is heavily dependent on the boundary gradients of the objects not being too
weak [52]. Circle Hough Transforms have also been used and can work well, but they
assume a circular shape and fixed size for the erythrocytes and fail when cells deviate
from these assumptions too much [53].

3. Feature extraction
In pattern recognition, feature extraction refers to computing values from the raw (pixel)
data that will optimally provide information for the classification that you want to per-
form, without loss of information or redundancies.
For diagnosis of blood slides with stained parasites, colour values of pixels are obvi-
ously informative features for determining infection. From these, features such as co-
occurrence matrices, local binary patterns and histogram of oriented gradients can be
computed. Some papers have proposed specifically extracting colour features only from
the green channel of an image in RGB-colour space, as it provides the most contrast
between the erythrocyte and the stained parasite. Others have suggested transforming
the image to HSB-space before extracting colour features, or using a combination of
both.
Morphological features, such as granulometry and relative shape measurements, can
also be computed to aid in classification [54].

4. Classification
When dividing objects over classes, the objective is to minimise inter-class variance,
based on the object features supplied. Essentially, a classification algorithm approxi-
mates a mapping f from the input features x to the output class y, such that f̃(x) ≈ y.
An example of a simple classification method is the earlier mentioned ‘thresholding’,
where objects are divided into classes based on whether their value is above or below
a certain threshold. More complicated classification methods often use a training set
of pre-classified objects to find a classification strategy that minimises the error rate,
which is called ‘supervised learning’. ‘Unsupervised learning’, where only the input data
and the cost function are known a priori, is also possible. A great number of learning
algorithms have been developed, such as Support Vector Machine (SVM), Bayesian
classifiers, K-nearest neighbour classifiers, logistic regression trees, artificial neural net-
works and many more. All of these have been applied to analysis of malaria infected thin
smears. Binary classification, dividing objects simply into non-infected and parasitised
erythrocytes is a common objective, but attempts have also been made to further divide
parasitised cells in up to 20 classes (one for each life stage of each species, as described in
table 1-1), for example by Tek et al [55]. Success of these methods is dependent on the
quality and the separability of the features that were extracted from the erythrocytes
and the parasites.

A typical example of a method following this pipeline was proposed by Savkare et al. They
collected RGB images and preprocessed with median and Laplacian filters and standard his-
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togram equalisation. They converted the image to grayscale, and applied Otsu thresholding
to the grayscale image and to the green channel, resulting in two separate binary masks which
were combined into one. The average size of erythrocytes was calculated, objects not corre-
sponding to this size were deemed artefacts or leukocytes and removed, resulting in a binary
mask of background and erythrocytes objects. Success rate of 99.43 % was reported in the
recognition of erythrocytes, however, in calculating this rate, objects consisting of multiple
erythrocytes were deemed correctly recognised. Watershedding was applied to segment these
objects and resultant objects too small to be erythrocytes were removed. Given the high
accuracy reported before the watershedding, the removed objects were likely the result of
over-segmentation, but since no separate accuracy is reported after this step, it is impossible
to tell how many separated erythrocytes were successfully found with this method.
Of the resultant objects, mean, standard deviation and third moment of the green channel
histogram were calculated, as well as shape and textural features. These were used to de-
termine whether erythrocytes were infected using a SVM, sensitivity and specificity for this
classification were reported at 93.12 % and 93.17 % respectively [56].
Another example is the method proposed by Das. et al., who investigated the classification
of thin blood smears infected with P. vivax and P. falciparum. They preprocessed their im-
ages using gray world assumption to correct illumination and geometric mean filter to remove
noise, before applying marker controlled watershedding to segment erythrocytes. No separate
performance measures were reported for the segmentation. They then computed a total of
96 textural and morphological features, the most significant of which were selected through
statistical analysis. After this a Bayesian classifier and a SVM were trained to classify ery-
throcytes, not only as infected or non-infected, but also to distinguish between 5 P. vivax and
P. falciparum life-stages. On this task, an accuracy of 84 % was obtained with the Bayesian
classifier [57].

The above reported performance measures are comparable to those of other methods that
use different techniques following the same basic pipeline. Das et al. compiled an extensive
review the literature on this topic, and compared accuracy and (where given) sensitivity
and specificity scores of 35 different published approaches, which were typically in the range
80 − 100% [58]. However, the images used to test each of these methods is different, so it is
impossible to fairly compare between them on the basis of the reported performance measures.

2-2 Neural Networks and malaria image analysis

As stated previously, for malaria image classification, no standardised comparison is currently
available, making it very hard to quantify the state-of-the-art. However, in more general image
classification research, such comparisons are possible. Image classification contests such as the
ImageNet Large Scale Visual Recognition Challenge (INLSVRC), make it very clear that the
field has become dominated over recent years by deep learning techniques which use Artificial
Neural Network (ANN) [59]. Therefore, these will be discussed more in-depth here.
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2-2-1 Mathematical principles

Basic principle

An ANN is a type of classifier, inspired by biological neural networks, in which the feature
extraction and classification are combined in one algorithm. The most basic type of ANN
is a feedforward neural network, or multilayer perceptron, which is schematically depicted in
figure 2-2.
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Figure 2-2: Schematic depiction of a feed forward neural network with three inputs, two outputs
and one hidden layer. On the right side, the general architecture of a single neuron is depicted.

They consist of an input layer with all the data input points, an output layer in which inputs
are mapped to outputs, and (optionally) any number of hidden layers. If all nodes in all layers
pass outputs to each other, like in the network depicted here, the ANN is referred to as ‘fully
connected’. When many hidden layers are incorporated into the architecture of the network,
they are often referred to as ‘deep neural networks’ and the training and application of the
network are called ‘deep learning’. The hidden layers consist of artificial neurons. In each of
these neurons a combination of an affine transformation and a non-linear activation function
are used to transform the inputs. Let the output of a single neuron k in layer l, be denoted
al

k. Each neuron uses the vector of outputs of the previous layer al−1 as inputs, the first step
is to compute a weighted sum zl

k of these;

zl
k =

n∑
i=1

(al−1
i wl

ki)) (2-1)

where n is the dimension of the previous layer, wk1 . . . wkn are weights of the neuron. A bias
bk is added, and the output is then computed by applying some non-linear activation function
g;

al
k = g(zl

k + bl
k) (2-2)

This output is then propagated to the neurons in the next layer, where they the same type of
transformation. The total mapping of the inputs x to outputs y is thus a function of all the
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weights and biases; ŷ = f(x,W,b). The correct mapping from the inputs to the outputs is
approximated such that ŷ ≈ y by adjusting the weights and biases during learning. Neural
networks have been proven to be universal function approximators, meaning that any map-
ping can be approximated arbitrarily well, given enough hidden units are used [60].

Activation functions

The activation function plays an important role in the approximating ability, without them,
only linear mappings could be approximated. Different commonly used activation functions
are shown in figure 2-3.3.3. Training 19
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Figure 3.5: Three common activation functions

A disadvantage is that when 𝑥 > 0, ∀𝑥 ReLU loses its ability to introduce nonlinearity and the
solution will be linear. In practice, this is unlikely to occur and ReLU is a good choice for introducing
nonlinearity.

Small adaptions have been made, such as Leaky ReLU (max{0.1𝑥, 𝑥}) to prevent the ‘dying ReLU’
problem, but this does not give consistent results. There is not a best choice for an activation function
and different functions should be used to find the best performing one for that specific task.

3.2.5. Initialization
The learnable parameters need to be initialized to compute the first prediction and loss. The values
of the initialization are important for the learning process, especially for neural networks with many
layers. Stacked hidden layers result in the multiplication of the weight matrices. Due to the number
of matrix multiplications, bad initialization of the weights can cause vanishing activation outputs when
sent through many layers, which causes vanishing gradients and prevents the network from learning.
Keeping the standard deviation of the activation outputs normalized makes it possible to stack many
layers without vanishing or exploding gradients.

Initialization methods are developed in such a way that they achieve this standard deviation of ap-
proximately one. A commonly used initialization technique is Xavier initialization, introduced as normal-
ized initialization in [30]. With Xavier initialization the weights are drawn from the uniform distribution:

𝑊 ∼ 𝑈( −√6
𝑛። + 𝑛።ዄኻ

, √6
𝑛። + 𝑛።ዄኻ

) ,

where 𝑛። is the number of inputs of the 𝑖th layer and 𝑛።ዄኻ the number of outputs of the 𝑖 + 1st layer.
This causes the activation outputs to have mean 0 and standard deviation 1 and prevents vanishing
gradients. It works especially well for activation functions that have outputs between -1 and 1, such as
the tanh. For ReLU activation functions, the Kaiming initialization method has been developed [40].
For Kaiming initialization weights are chosen from the standard normal distribution and then multiplied
by √፧ᑚ

√ኼ and the biases are initialized to zero.

3.3. Training
During training, the training data is passed through the network multiple times to adapt or train the
learnable parameters in the neural network. The training consists of three important phases: forward
propagation (computing prediction and loss), backward propagation (computing gradients), and opti-
mization (updating learnable parameters). First, the forward propagation algorithm is discussed after
which the loss functions are considered in more detail. In Section 3.3.3, the backpropagation algorithm
is explained, and in Section 3.3.4 two gradient-based optimization algorithms are discussed. Section
3.3.5 explains commonly used regularization techniques.

3.3.1. Forward propagation
Forward propagation is the computation of the prediction ŷ = 𝑓(x,p), the loss 𝐿(ŷ, y) and total costs
𝐽(ŷ, y,p) during the training process. The total costs are a sum of the loss 𝐿 and a regularization term Γ,
which are discussed in Section 3.3.2 and Section 3.3.5 respectively. During forward propagation, the

(a) ReLU=max(0, x)

3.3. Training 19

𝑥-4 -2 0 2 4

1

2

(a) tanh

𝑥-4 -2 0 2 4

-1

1

2

(b) Sigmoid (፱)  Ꮃ
ᎳᎼᑖᎽᑩ

𝑥-4 -2 0 2 4

2

4

(c) ReLU =max{ኺ, ፱}

Figure 3.5: Three common activation functions

A disadvantage is that when 𝑥 > 0, ∀𝑥 ReLU loses its ability to introduce nonlinearity and the
solution will be linear. In practice, this is unlikely to occur and ReLU is a good choice for introducing
nonlinearity.

Small adaptions have been made, such as Leaky ReLU (max{0.1𝑥, 𝑥}) to prevent the ‘dying ReLU’
problem, but this does not give consistent results. There is not a best choice for an activation function
and different functions should be used to find the best performing one for that specific task.

3.2.5. Initialization
The learnable parameters need to be initialized to compute the first prediction and loss. The values
of the initialization are important for the learning process, especially for neural networks with many
layers. Stacked hidden layers result in the multiplication of the weight matrices. Due to the number
of matrix multiplications, bad initialization of the weights can cause vanishing activation outputs when
sent through many layers, which causes vanishing gradients and prevents the network from learning.
Keeping the standard deviation of the activation outputs normalized makes it possible to stack many
layers without vanishing or exploding gradients.

Initialization methods are developed in such a way that they achieve this standard deviation of ap-
proximately one. A commonly used initialization technique is Xavier initialization, introduced as normal-
ized initialization in [30]. With Xavier initialization the weights are drawn from the uniform distribution:

𝑊 ∼ 𝑈( −√6
𝑛። + 𝑛።ዄኻ

, √6
𝑛። + 𝑛።ዄኻ

) ,

where 𝑛። is the number of inputs of the 𝑖th layer and 𝑛።ዄኻ the number of outputs of the 𝑖 + 1st layer.
This causes the activation outputs to have mean 0 and standard deviation 1 and prevents vanishing
gradients. It works especially well for activation functions that have outputs between -1 and 1, such as
the tanh. For ReLU activation functions, the Kaiming initialization method has been developed [40].
For Kaiming initialization weights are chosen from the standard normal distribution and then multiplied
by √፧ᑚ

√ኼ and the biases are initialized to zero.

3.3. Training
During training, the training data is passed through the network multiple times to adapt or train the
learnable parameters in the neural network. The training consists of three important phases: forward
propagation (computing prediction and loss), backward propagation (computing gradients), and opti-
mization (updating learnable parameters). First, the forward propagation algorithm is discussed after
which the loss functions are considered in more detail. In Section 3.3.3, the backpropagation algorithm
is explained, and in Section 3.3.4 two gradient-based optimization algorithms are discussed. Section
3.3.5 explains commonly used regularization techniques.

3.3.1. Forward propagation
Forward propagation is the computation of the prediction ŷ = 𝑓(x,p), the loss 𝐿(ŷ, y) and total costs
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Figure 2-3: Different activation functions used by artificial neurons.

The choice for which activation function to use is an important design parameter. Sigmoid
and tanh both have smooth gradients and normalise the outputs of the neuron. As opposed to
the sigmoid function, tanh is zero-centered, which makes it more suitable for inputs that can
be strongly negative. The disadvantage of using these S-shaped activation function, is that
their gradients become very small for large values, which can slow down the learning of the
network significantly. This has been termed the vanishing gradient problem. Furthermore,
both activation functions are fairly computationally demanding. This is why, Rectified Linear
Unit (ReLU), which is a piecewise linear function that outputs the input value when it is
positive, and 0 otherwise, has become a popular choice. Neurons that use a ReLU activation
function can become inactive when only negative values are put through, resulting in sparsity
in networks, which can be advantageous in training [61]. However, when too many units
become inactive, this impedes learning, which is referred to as the ‘dying ReLU problem’.
Several suggestions have been made to prevent this, such as using ‘Leaky ReLU’, which
passes a scaled down output for negative values (max{0.1x, x}) [62].

Convolutional Layers

A Convolutional Neural Network (CNN) is a type deep neural network that was developed
specifically with the goal of image classification in mind. A core concept in the architecture
of CNNs is the introduction of convolutional layers. Unlike in the previously described fully
connected layers, in convolutional layers, the input of each neuron is a function of only a
small region of the outputs of the previous layer. This input is produced by convolving the
previous layer with a a small matrix of weights called a kernel. The kernel ‘slides’ over the

Noor van Driel Master of Science Thesis
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original image, and the convolution of the kernel with the region surrounding the input pixel
is computed, by;

zij = W ∗ xij =
∑

a

∑
b

wab · x(i−a)(j−b) (2-3)

where wab ∈ w00 . . . wNN are the weights in the kernel W of size N ×N and xij ∈ x00 . . . xnn

are the values of input matrix X with size n× n. The convolution zij is than passed through
an activation function, to produce the output yij ;

yij = g(zij + b) (2-4)

Equations 2-3 and 2-4 replace equations 2-1 and 2-2. Besides this, the convolutional layer are
implemented in the same way as the standard network layers described above.
Note that the neurons in convolutional layers are structured in a grid, this make convolutional
layers especially suitable for the classification of structured data such as image data. The
kernel essentially acts as a feature extraction filter, where the learnable weights converge
towards features in the image. By using the same kernel with the same weights on the
entirety of the input, an activation map of these features is produced. The output of the
convolutional layer is therefore called a feature map.
The convolutional layer operation is schematically depicted in figure 2-4.

𝑥𝑖𝑗 𝑦𝑖𝑗 

∗ 

𝑁 

𝜔𝑎𝑏 

 

Input matrix 𝑋 

Padded matrix 𝑃 

Kernel W Feature map Y 

Figure 2-4: Schematic depiction of the convolution of a 6× 6 input image with a 3× 3 kernel.
In order to produce a 6× 6 feature map, padding is used.

Given an n×n image X as input, and a N ×N kernel W , which slides over the input matrix
with stride 1 (meaning it moves 1 pixel for each convolution), the size of the feature map will
be n−N + 1× n−N + 1. When a feature map of equal size to the input is desired, padding
can be used around the input matrix. This is also depicted in figure 2-4. Often, multiple
kernels are used in one convolutional layer to produce multiple feature maps. If M kernels
are used, the size of the output (with padding) will be n× n×M .
The convolution described above assumes a single channel input. It is possible to have a
multi-channel input to a convolutional layer. In this case, the convolution can be described
as;

zij = W ∗ xk
ij =

K∑
k=1

(∑
a

∑
b

wk
ab · xk

(i−a)(j−b)

)
(2-5)
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Here, xk
ij refer to the pixels in the kth input channel, the total number of input channels is K.

The kernel in this case takes the size N ×N ×K, but the output remains two dimensional.
Even though the kernel is now 3D, this is still referred to as a 2D convolution, since the
kernel slides over the input only in horizontal and vertical direction. It can be thought of as
a stack of filters, where each filter is convolved with one input channel, and the outputs of
the convolution are summed.

In order to reduce the dimensionality and prevent over-fitting in CNNs, pooling layers are
often added after convolutional layers. In these, the outputs of the convolutional layers are
down-sampled. The n × n feature map is reduced in size to n

p ×
n
p , by dividing the feature

map in p× p patches and taking some function of the values in this patch as the output. In
average pooling layers, the average of the values is passed, while Max pooling layers pass the
largest value.

It is also possible to up-sample through convolution, when a feature map of a bigger size
than the input is desired. This concept was introduced as ‘deconvolution’, but ‘transposed
convolution’ has since been suggested to be a more accurate name [63, 64]. To understand the
concept of transposed convolution, first note that the convolution operation can be written
as a matrix multiplication, by rearranging the weights of the kernel into a convolution matrix
which represents all positions the kernel takes on the input, and rearranging the input matrix
into a vector. This is explained visually for the convolution of an input image X of 3×3 with
a 2 × 2 kernel W in figure 2-5. Now note that if the transpose of the convolution matrix is
taken instead to produce the feature map of an image Z of size 2× 2, so W̃ T × Z̃ = Y , this
feature map will be of size 4× 4, and thus has been up-sampled by the size of the kernel.
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Figure 2-5: Upper image: convolution of a 3 × 3 input matrix with a 2 ×2 kernel to create a
2 × 2 feature map, expressed as a matrix operation. Lower image: transposed convolution of a
2×2 input image with that kernel, to create a 4×4 feature map, expressed as a matrix operation.
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Training

The first step in training the ANN is initialisation. In order to ensure convergence of the
network it is important that the outputs of layers don’t explode or vanish after the first pass.
Initialising the weights and biases in such a way that the standard deviation of the activation
outputs of each layer is normalised is a good way to prevent this. In order to achieve this, the
‘Xavier initialisation’ was proposed, where the weights of a layer are drawn from a uniform
set, which is bounded between ±

√
6√

ni+ni+1
, where ni refers to the number of incoming network

connections, and ni+1 the number of outgoing connections [65]. This strategy works well for
continuous activation functions that are symmetric about zero, such as tanh. For asymmetric
functions such as ReLU, a initialisation dubbed the ‘Kaiming initialisation’, in which weights
are randomly drawn from a standard normal distribution and scaled by

√
2√
ni
, was shown to

lead to faster convergence [66]. Biases are usually initialised at zero.
Each training iteration of the network can be divided into three phases: forward propagation of
the data, backward propagation and optimisation. During forward propagation, the prediction
ŷ of the current network on the data is computed, by computing equation 2-2 for every neuron
in every layer. This prediction is used to determine the value of the loss function J , which is
some measure of the total error in the system. Often the Mean Squared Error (MSE) is used;

J = 1
n

n∑
i=1

(yi − ŷi)2 (2-6)

where y is a vector containing the ground truth of the network. Other options for loss functions
that are commonly used are the Root Mean Squared Error and the the Mean Absolute Error.
These loss functions are effective when the targeted output is a continuous value. When
dealing with classification, the target output is one of integer classes. In this case, cross-
entropy is a more effective measure of the error in the system, and therefore often used as
loss-function. When dealing with a two class classification problem, the binary cross-entropy
loss function is given by;

J = − 1
n

n∑
i=1

yi · log (ŷi)) + (1− yi) · log (1− ŷi) (2-7)

It is possible to add additional terms to the loss function to influence the outcome, for example,
a regularisation term that penalises large weights, which can help reduce over-fitting. When
extra terms are added, the objective function is no longer only a function of the loss, and is
therefore referred to as cost function.
The next phase is backpropagation, during which the gradient of the cost function is calculated.
This is done by computing an error function δl at each layer, by taking the derivative of the
cost function with respect to the weighted inputs zl;

δl = ∂J

∂zl
=
∑

k

∂J

∂al
k

∂al
k

∂zl
k

= ∇aJ ◦ g′(zl) (2-8)

where ∇aJ is a vector of derivatives of J with respect to the components of al. In the output
layer L, these components are known (ŷ = aL), making it easy to compute the error of the
output layer . This error can then be propagated back through the network to compute the
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error of each neuron. An equation for the error at a layer l − 1, in terms of its succeeding
layer is given by

δl−1 =
(
(Wl)T δl

)
◦ g′(zl−1) (2-9)

This can be used to compute the errors all the way through the network efficiently. When
errors are known, these can be used to compute the gradient of the network by realising that

∂J

∂bl
k

= δl; ∂J

∂wl
ki

= al−1
k δl (2-10)

The gradient is finally used to update the weights and biases during optimisation. A gradient
descent method is used for this; since the gradient gives the direction of the largest increase
of the cost function, in order to minimise it, a step in the opposite direction of the gradient
is taken:

wl
ki ← wl

ki − α
∂J

∂wl
ki

J ; bl
k ← bl

k − α
∂J

∂bl
k

J (2-11)

The size of this step α is called the ‘learning rate’ and it is a tunable parameter in training
the network.
Often, the training samples are divided into batches, and the gradient is determined for all
training samples in the batch before updating the weights. The size of this batch is a hyper-
parameter of the network which can be tuned to achieve the desired performance. Small
batch size leads to stochastic weight updates, while large batch size leads to slow learning.
An epoch is defined as the number of iterations after which all training data has been passed
through the network exactly once.

2-2-2 Neural networks applied to malaria image data

Some research has been published on the application of neural networks to the classification
of Giemsa stained malaria-infected blood smears.
Dong et al. trained three different CNN architectures on small dataset of segmented ery-
throcyte objects, which they obtained through thresholding and then applying a Hough circle
transform to blood slide images. They used this to create training and testing sets of equal
size, both with 765 non-infected and 517 infected cells in them. No performance metrics for
the segmentation were given. The existing LeNet-5, AlexNet and GoogLeNet architectures
were trained on these images, and accuracies of 96.18%, 95.97% and 98.17 % were reported for
each of the networks respectively. This was compared with a SVM trained on the same data,
in a similar way as done by Das et al., which was described in section 2-1, which achieved an
accuracy of 91.66 % on the same data [67].
Rajamaran et al. also worked on the classification of Giemsa stained thin films. They first
segmented the erytrhocytes from blood slide images, using another conventional cell segmen-
tation algorithm as described in section 2-1. They produced a database 27,558 cell images
with equal instances of parasitised and uninfected cells, which they made publicly available,
and went on to develop a CNN based classifier for. They proposed a network architecture
consisting of three blocks of two convolutional layers, the first of which containing a max
pooling layer, the second with a average pooling layer and the third followed by directly by
three fully connected layers. On the object level, they achieved sensitivity and specificity of
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93.11 % and 95.12 % respectively. The performance of their proposed network architecture
was later compared with the use of pre-existing network architectures such as VGG-16 and
ResNet-50, and slightly outperformed by these [68].
Gopakumar et al. proposed training a network on a focus stack of RGB cell images, instead
of just a single image per cell object. This was claimed to improve performance in distin-
guishing parasites from artefacts such as dust specks. Segmented cells were acquired with a
two-stage threshold based method. Details on the specific architecture of the CNN used were
not provided. A sensitivity and specificity of 96.98 % and 98.50 % were reported respectively.
However, the estimated parasiteamia produced by their total proposed algorithm was not
very close to the ground truth, at 173 % of the actual parasiteamia [69].
All research described so far combined a CNN based classifier, with a simple segmentation
method. Erythrocyte segmentation with CNN is also possible [70]. Delgado-Ortet et al.
applied this to the classification of thin smear images, using a network architecture where
convolutional layers are followed by deconvolutional layers to create a segmentation mask for
slide images. They combined this with a CNN with 8 convolutional layers to classify segmen-
tation output, achieving a global accuracy of 93.72 % on segmentation over the test set and
a specificity for malaria detection of 87.04 % [71].
Finally, Mahanian et al. proposed a method for the classification of Giemsa stained thick
blood smear images, using the Caffe CNN architecture, which uses 5 convolutional layers
followed by 3 fully connected layers ([72]), as a feature extractor. The candidate objects
produced by the network are then used to train a logistic regression classifier, which divides
them into parasites and non-parasites with a sensitivity of 91.6% and a specificity of 94.1%
[73].

2-3 Discussion of automated malaria diagnosis techniques

The methods discussed in this chapter, and their performance measures, are summarised in
table 2-1. Making an objective statement on the relative performance of automated malaria
image analysis techniques is difficult, since performance measures are usually only reported
on a small set of (private) data. Often, no separate performance is reported for the seg-
mentation of the erythrocytes, and the performance is only evaluated in terms of segmented
cells classified correctly, making it impossible to assess to overall performance of the proposed
method. Reporting the specificity and sensitivity on object-level only makes sense from a im-
age classification point of view, but from a clinical point of view, these performance metrics
are not very informative; number of cells identified correctly over an entire dataset, doesn’t
give insight into whether the classification is suitable for diagnosis at patient-level.
Furthermore, a limited number of images is often used for testing, which are typically acquired
in exactly the same manner as the images used to develop and train the algorithm were. Es-
pecially in conventional image analysis techniques, the extracted features that are used, such
as size parameters and staining colours, can vary heavily if the images are acquired with a
different method or even just a different camera, it is doubtful these methods will perform
well when tested on images from another source.
In practice, smear and image quality can be of much lower quality than they are under ideal
lab conditions, but research that deals with the classification sub-standard microscopic images
has thus far been limited.
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Table 2-1: Summary of automated malaria classification methods. Performance is given in terms
of accuracy (acc) or sensitivity (sens) and specificity (spec), depending on what was reported.

Ref. Segmentation method Performance Classification method Performance

[56] Otsu thresholding + watershed Acc 0.994
(b. watershed)

SVM Sens 0.931,
Spec 0.932

[57] Marker controlled watershed - SVM with feature selection,
classification of species/stage

Acc 0.84

[67] Threshold + Hough circle transform - CNN: GoogLeNet Acc 0.982
[68] Level-set based algorithm Sens 0.962

PPV 0.944
Custom CNN Sens 0.931,

Spec 0.951
[69] Two stage threshold - CNN Sens 0.970,

Spec 0.985
[71] Convolutional + Deconvolutional NN Acc 0.937 Custom CNN Spec 0.87
[73] Thick smears used, no segmentation - CNN + logistic regression Sens 0.916,

Spec 0.941

In general, it is clear that for an automated classification technique to be suitable for use in
diagnostics, its performance would ideally be just as high or higher than that of a human
expert. We can define the performance of a human expert by looking at the requirements the
World Health Organization (WHO) sets on a ‘level 1’ microscopist; which are given in table
2-2.

Table 2-2: Performance requirements for WHO microscopist competence levels, from [5].

Competence Level. Parasite detection (%). Species identification (%).
Parasite count within
25% of true count (%)

1 90-100 90-100 50-100
2 80-89 80-89 40-49
3 70-79 70-79 30-39
4 0-69 0-69 0-69

In terms of parasite detection, the techniques discussed in this section are generally claimed
to perform above 90%, so as good as a level 1 microscopist. Automated species classification
has also been attempted, results thus far have not been as good as those of classifiers that
only determine infection. Even though reported sensitivities and specificities are high, the
methods reported don’t necessarily result in accurate parasiteamia counts; Gopakumar et al.
reported the highest performance measures of all methods discussed, but their parasiteamia
was 73 % off [69].
In the general field of image analysis, CNN based deep learning techniques have shown impres-
sive performance on image classification, and the research published so far on the application
of them for malaria diagnosis is promising. This research is however limited; it is mostly fo-
cussed on the classification of pre-segmented thin smear erythrocytes, which means only part
of the diagnostic process is performed by the algorithm. Accurate cell segmentation with help
of CNN has for this specific problem, been scarcely attempted. Furthermore, no attempts
were found to verify the performance of a classifier trained on a large set of erythrocyte im-
ages, as was done by Rajaraman et al., on image data that was acquired with a different set-up.

Noor van Driel Master of Science Thesis



Chapter 3

Method

In this chapter, an automated method for interpretation of Giemsa stained thin smears is
proposed. The process of classifying Giemsa stained thin smears was split into two steps;
first the erythrocytes are segmented out of the full blood slide image, and then the individual
erythrocytes are classified. The first stage is needed to determine cell count and create clas-
sifiable objects for the second stage. It is theoretically possible to detect malaria parasites
without first segmenting out the individual erythrocytes, however, this approach is far more
demanding for the classifier and would make it impossible to also determine parasitemia, so
was not chosen here.
Firstly, the datasets that were used in the development and testing of the algorithm are
discussed in section 3-1. Then, two different methods for erythrocytes segmentation are pre-
sented. A simple threshold based segmentation method was implemented, which is described
in 3-2. A more sophisticated classifier, based on a ‘U-shaped’ Convolutional Neural Net-
work (CNN) architecture was also developed, which is described in section 3-3. Performance
of both methods will be compared in chapter 4, and the segmentation method that produces
the best results will be included in the full data interpretation pipeline.
Finally, in section 3-4, the concept of ‘transfer learning’ is utilised to design a classifier based
on the existing VGG-16 CNN architecture.

3-1 Datasets

In developing and testing the segmentation and classification methods described in this chap-
ter, three datasets of Giemsa stained thin blood smears infected with P. Falciparum were
used. The first one, which was used for segmentation, consists of 18 blood film images, taken
from the database that was made available by Loddo et al. for public use [74]. This data-set
is used to develop and test the segmentation algorithm. We will refer to these images as the
‘Loddo dataset’ from now on. The blood films were magnified with a 100× oil immersion
objective, and pictured using a Leica DM2000 optical laboratory microscope, with a 30 Watt
halogen light source and a built-in 5 megapixel camera. Every image is stored in PNG format
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with a 2592 × 1944 resolution and 24 bit colour depth. The Field of View (FOV) of each
image is about 140µm× 100µm. Figure 3-1 shows a sample of this dataset. As can be seen,
the quality of the thin smears and the illumination varies over the images; some of them have
large amount of overlapping cells. This is realistic to images taken in practical settings, and
makes this dataset suitable for testing the robustness of a segmentation method with respect
to these differences.

(a) Well contrasted, cells mostly separated
with central pallor visible.

(b) Poorer contrast and focus, groups of over-
lapping cells present.

(c) Cells very well separated, no central pallor
visible.

(d) Good contrast, some overlap, one white
blood cell visible.

Figure 3-1: Four images from the Loddo dataset of Giemsa stained thin blood smears infected
with P. Falciparum, taken with 100 × oil immersed objective.

To develop and test the classification algorithm, a dataset of segmented erythrocytes was
used, which was made available for public use by Rajaraman et al. [68]. This dataset will be
referred to as the ‘Rajaraman dataset’. To create it 200 Giemsa-stained thin blood smears, 150
P. falciparum infected and 50 healthy, were photographed with a smartphone camera attached
to a conventional light microscope with a 100× oil immersed objective. Erythrocytes were
cropped out of these images with a level set algorithm, and hand-labelled as either parasitised
or uninfected. In total, the dataset consists of a total of 27,558 cell images with equal instances
of both classes. Cells were cropped at the cell border and the images were stored as three-
channel RGB images in PNG format. Cells were not resized or reshaped, so the dimensions
vary over the dataset, average size of one image is ±120×120 pixels. A sample of this dataset
is shown in figure 3-2.
The final dataset used contains six images, which were taken with a digital microscope that
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Parasitized 

 
 
 
 
 
 
 
 
 

Uninfected 

Figure 3-2: Six images from each of the two classes in the Rajaraman dataset

is currently in development at AiDx called the Assist B.02. We will refer to these images
as the ‘AiDx dataset’ from now on. The blood films were magnified with a 20 × lens and
illuminated with a white LED ( wavelengths 400nm − 650nm). The images were captured
with a 18 megapixel color camera and stored in JPEG format. The average FOV of the images
is 250µm × 190µm. This larger FOV is an obvious advantage compared with conventional
thin smear microscopic images, however, the lower magnification that was used to achieve
it, causes some detail to be lost in the images, making segmentation and classification more
challenging. Figure 3-3 shows a sample from this dataset.
Infected cells in these blood film images were manually annotated and verified by an expert.
This dataset is used to test both the segmentation algorithms and the classifier and gain
insight on the performance when they are implemented back-to-back. It was chosen for this
specifically because the AiDx microscope was developed for in situ use, which is also the
target setting for the method proposed here.

Figure 3-3: Two images from the AidX dataset of Giemsa stained thin blood smears infected
with P. Falciparum, taken with 20 × objective.

3-2 Threshold based segmentation

The first method used for segmentation uses an automatic thresholding method to divide
pixels into background and erythrocytes. This method was implemented using the open-
source ImageJ software [75]. The steps of the algorithm are schematically depicted in figure
3-4.
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1 2 

3 
4 5 

Figure 3-4: Schematic depiction of the segmentation algorithm, which pre-processes the blood
film images (step 1-2), divides them into binary classes (step 3), separates the resultant objects
through watershedding (step 4) and crops them out of the original image (step 4-5).

1. Contrast Limited Adaptive Histogram Equalization (CLAHE)
In order to increase the contrast between the erythrocytes and the background, a mod-
ified histogram equalisation called CLAHE is applied [76]. Histogram equalisation can
be used to increase the contrast in images, by distributing the intensities evenly over
the histogram bins. This is done for each of the channels in the image separately. Given
a three-channel RGB image, one channel f contains a total of N pixels with L possible
integer intensities, the total number of pixels with an intensity n is denoted Nn. The
normalised histogram bins pn are defined by;

pn = Nn

N
n = 0, 1, . . . L− 1 (3-1)

When applying standard histogram equalisation, the intensity of each of the pixels
in f (denoted f(i, j)) are transformed by multiplying with the cumulative distribution
function of that intensity. The equalised image channel g is defined by;

g(i, j) = floor(L− 1)
f(i,j)∑
n=0

pn (3-2)

In the images we wish to process, illumination is often uneven, resulting in a non homo-
geneous distribution of pixel intensities over the image. When the same transformation
is applied to the entire image, this uneven distribution is only further amplified, and the
contrast between objects and background is not increased in all regions. This uneven
illumination can be fixed through adaptive histogram equalisation, where instead of us-
ing the histogram of the full image to transform each pixel, the histogram is calculated
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for a neighbourhood region of the pixel, the size sH of which is a tunable parameter.
The intensities in a region are distributed over the entire possible range when taken this
approach, thus maximising the contrast, which is not always desirable. When a pixel
has a fairly homogeneous neighbourhood, because the entire region consists of back-
ground pixels, implementing standard adaptive histogram equalisation would cause the
noise in those regions to be over-amplified. For this reason, a contrast limit was added,
which puts a maximum on the slope that the intensity transfer function (eq. 3-2) is
allowed to take. This contrast limit β is also a tunable parameter.

2. Median Filter
In order to filter out the noise, a 2D-median filter is applied to each of the channels.
This filter replaces each pixel value with the median of the surrounding pixel values,
within a neighbourhood of size sM . So for pixel f(i, j), the transformed pixel is given
by;

g(i, j) = median



h(i− sM , j − sM ) . . . h(i+ sM , j − sM )

... . . . ...

h(i− sM , j + sM )
... h(i+ sM , j + sM )


 , (3-3)

3. Otsu Thresholding
The pixels in the image are first converted to grayscale, and then divided over two
classes; background and foreground. When divided correctly, all erythrocytes will be
in the foreground. The classes are defined by a threshold t, every pixel with intensity
n = [0, t] is assigned to class 1, and every pixel with intensity n = [t + 1, L − 1]
is assigned to class 2. Otsu’s method is used to find an optimal threshold t∗, that
minimises the intra-class variance, which is the sum of the variances of the classes,
weighted by their cumulative probability density function [77]. For two classes, this is
equivalent to maximising the inter-class variance, which can be written as 1

σ2(t) = [µfω(t)− µ(k)]2

ω(t) [1− ω(t)] (3-4)

where ω(t) is the cumulative probability density at the threshold;

ω(t) =
t∑

n=0
pn (3-5)

µ(t) is the mean of the histogram up to the threshold;

µ(t) =
t∑

n=0
npn (3-6)

and µf is the mean intensity of all the pictures in the image, which is equal to µ(L−1).
The optimal threshold is found through exhaustive search, i.e. calculating σ2(t) for
every t ∈ [0, L− 1], and then setting t∗ such that

σ2(t∗) = max
0≤n<L−1

σ2(t) (3-7)
1This equation only holds for a two-class problem. The full derivation of this equation for the inter-class

variance can be found in [77].
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4. Binary Operations & Watershedding
Because the hemoglobin in erythrocytes concentrates at the cell boundaries, their cen-
tres are lighter when viewed under a microscope (this is called central pallor). When
converting the blood film images to binary images, this causes holes to be present in
the foreground. These holes are filled with binary operations; first some ‘dilations’ are
applied, meaning pixels are added to the edges of the objects, followed by some ‘ero-
sions’, which remove pixels from the edges of the objects. This encloses any open areas
present in the objects. The number of dilations and erosions needed to get good results,
differs with the magnification, sharpness and resolution of the original image, so this is
a tunable parameter of the algortihm called ν. After this, holes are filled, meaning every
background pixel fully enclosed by foreground objects is converted to foreground. This
operation can either increase or decrease the performance in the next step, so including
it is optional.
After this, touching foreground objects are separated with the ‘watershed’ method [78].
In order to do so, the euclidean distance map of the binary image is calculated, and the
‘ultimate eroded points’, which are the local maxima of this distance map, are found.
These points are then iteratively dilated until the edge of the object is reached, or the
edge of another of the region of another point. This process is visualised in figure 3-5.

(a) . (b) . (c) . (d) .

Figure 3-5: Visualisation of the watershedding algorithm; a) shows the original thin blood film
with several overlapping cells, b) shows the binary mask based on this image, c) shows the
euclidean distance map of this binary image, with the ultimate eroded points, and d) shows the
resultant binary mask after watershedding.

5. Transfer mask
Finally, all foreground objects in the binary image are measured. Erythrocytes have a
diameter of 6− 8µm, so an average area of ±40µm2. How many pixels this represents
in the blood film image is dependent on the magnification of the objective, and the
resolution and sensor size of the camera used. The average area of an erythrocyte in
pixels µA for the dataset is therefore pre-determined and supplied to the algorithm.
Any objects larger than 2µA are assumed to be poorly segmented cells or leukocytes,
so removed from the mask. Objects smaller than 1

2µA are assumed to be artefacts or
over-segmented cells, so also removed. Furthermore, objects on the borders of the image
are cells that are only partially in view, which makes them unsuitable for determining
parasitemia, so these are also removed. The resultant mask is transferred back onto the
original image, and the erythrocyte objects are cropped out.

Performance was evaluated on each of the images in the Loddo and AiDx datasets. As
described above, the algorithm has severable tunable parameters and options. The optimal
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values for these were determined for both of the datasets. Parameters were not tuned for each
image in the dataset individually. This might have improved performance, but it would also
have negated the extend to which this method could be called ‘automated’, thus undermining
the benefits.
Parameters of the preprocessing steps where decided experimentally such that they resulted
in a smooth and bimodal histogram. The number of dilations and erosions needed to enclose
the holes inside objects, and the choice to fill them, was also decided experimentally such that
the effectiveness of the watershedding algorithm was optimised. Average area of erythrocytes
was measured in one image in both datasets. The value of each parameter is given in table
3-1.

Table 3-1: Table of tunable parameters in the algorithm, and the values that were used for
segmenting both datasets.

Parameter Description Value for
Loddo dataset

Value for
AiDx dataset

sH
Size of adaptive histogram region
used in CLAHE (in pixels) 200 300

β
Maximum slope of intensity transfer
function used in CLAHE 3 3

sM Size of median filter (in pixels) 4 8
ν Number of dilations and erosions 5 0
Fill holes? Inclusion of hole filling operation, [Y/N] Y N
µA Average area of erythrocyte (in pixels) 13,000 20,000

3-3 U-Net based segmentation

To improve the segmentation of the AiDx dataset, a second segmentation method was im-
plemented. This method was based on a CNN architecture called U-Net [79], which was
developed specifically for the task of segmenting biomedical images. It can be trained to pro-
duce a binary or multi-class segmentation mask and has been shown to work well on various
segmentation problems, even with limited training data [80].

3-3-1 Architecture

The U-Net architecture consists of a contracting path, which has a classic CNN structure as
described in section 2-2, and supplements this with a symmetric expanding path, making the
network U-shaped. During the contraction, the spatial information is reduced while feature
information is increased. The contracting path consists of 10 convolutional layers, interspersed
with max pooling layers after every second convolutional layer. The convolutional layers all
have kernel size 3×3 and use Rectified Linear Unit (ReLU) activation functions. The pooling
layers all have window size 2× 2, so the size of the input is halved in each of them.
The expanding path is nearly symmetrical to the contracting path, consisting of another
10 convolutional layers, but feature layers are up-sampled instead of down-sampled. The
up-sampled feature layers are concatenated with the corresponding feature maps from the
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contracting path, which ensures that the features that are learned while contracting the image
will be used to create a spatially accurate reconstruction. These combined feature maps are
the input to the first of two successive convolutional layers, after which another up-sampling
operations follows.
To create the final output, a convolution with 1 kernel of size 1× 1 and a sigmoid activation
function is applied after the last convolutional layer in the expanding path. This results in a
grayscale segmentation map of the input image.
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Figure 3-6: Full network architecture used for creating a segmentation map for a 256 × 256 RGB
input image. The arrows denote convolutional (conv) and sampling operations, and the blocks
denote the output of each operation. The size (width × height) is written next to the levels, and
the number of channels or depth is written above each block.

A version of this network was implemented in Python using the Keras neural network library
with TensorFlow as backend [81, 82]. Some modifications and improvements to the original
architecture proposed by Ronneberger et al. were made for our purpose, namely;

• Their proposed architecture was built to segment 572×572×1 images, here, the number
of input channels is extended to three (RGB), and to speed up learning and predictions,
the input images are scaled to 256× 256.

• The number of kernels used in the convolutional layers is greatly reduced. The original
architecture contained 64 kernels in the first convolutional layer and doubles after every
pooling layer, here we start with 16 kernels in the first convolutional layer. This reduces
the number of learnable parameters from 31,030,593 to 1,941,105, making the model
much more light-weight.
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• To ensure that robust features are learned and prevent over-fitting the training data,
dropout with probability of 0.5 is used in two convolutions in the lowest layers of the
contracting path, meaning that some of the activations are randomly set to zero in each
iteration. This prevents complex co-adaptations, where high weights are assigned to
features that are only useful in the context of several other specific features [83].

• In the original network, in the expanding path, the feature maps are up-sampled with
a window size of 2×2 with a nearest neighbour method, after which a convolution with
kernel size 2 × 2 is applied. We propose the use of transposed convolutions (see figure
2-5) in the expanding path instead, in which the correct weights for up-sampling are
learned directly.

• Padding was added to ensure obtain an output segmentation mask the same size as
the input segmentation mask. This was not the case in the original architecture, where
segmentation maps of size 388 × 388, containing only the middle region of the input
image, were predicted. For the segmentation of full images, a tiling strategy with
overlap was proposed, where the missing context in the border regions is extrapolated
by mirroring the input image.
This was found to add unnecessary complexity, and did not result in smooth borders
between tiles. Here, padding is used to predict full segmentation maps instead, and the
image is tiled with overlapping border regions, on which predictions are made twice to
correct for any mistakes the padding produced.

The full architecture used is depicted in figure 3-6.

3-3-2 Training data

Training data is needed to train the network. In order to reduce computational complexity
in the training, the network was not trained to segment full images from the AiDx set, but
rather, square sections of the images. This also increases the amount of training objects avail-
able. The images were first down-scaled to 1024× 768, and 30 random squares with limited
overlap were cropped from two of the images. Binary segmentation masks were manually
drawn for these.

In order to increase the amount of training samples, data augmentation is used, which is
needed to teach the network the desired invariance and robustness properties. At each training
step, a new batch of training images is created by randomly applying some transformations
to one of the original training images and their corresponding masks. A combination of the
following transformations was used:

• Flips Images are randomly flipped horizontally and/or vertically.

• Zooms Images are randomly zoomed up to 105 %.

• Shifts and rotations Images are shifted horizontally and/or vertically, with a maxi-
mum of 5 % of the image size. They are also randomly rotated with a maximum of 10
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Figure 3-7: Left: 256 × 256 tile cropped out of an image in the AiDx dataset. Right: Hand-
drawn binary mask used for training.

degrees. Both operations create ‘empty’ pixels, which are filled with the value of the
nearest non-empty pixel.

• Elastic deformations Small random elastic deformations are applied, as proposed in
[84]. This is implemented by first creating a displacement field, which defines a direction
and magnitude to move each pixel in an image, and then using bilinear interpolation
to apply these fields to the images. In order to create the field, first, a matrix the size
of the image (256 × 256 in this application) is filled with values random selected from
a uniform distribution [−1, 1] . This matrix is smoothed with a Gaussian filter, i.e.
each pixel is convolved horizontally and then vertically with a vector kernel containing
sampled values of a Gaussian distribution;

1√
(2πσ2)

e−
x2

2σ2

Here, σ = 10 was chosen as an appropriate standard deviation. The filter was truncated
at 4σ+ 1, so that most of the continuous distribution area (96 %) is within the discrete
kernel. After smoothing, the displacement field is multiplied with a scaling factor φ to
achieve an appropriate distortion size. This scaling factor was set at φ = 150, which
resulted in images that were visibly different from the input, but still had naturally
shaped cells.

Figure 3-8 shows three samples from the augmented training data set, which were all created
by applying a random combination of the described transformations to the same image.

3-3-3 Training and testing strategy

The network is trained through back propagation as described in section 2-2, with Kaiming
initialisation for the weights. The binary cross entropy (equation 2-7) is used as the loss
function. All thirty image-mask pairs in the training set were used for training. New training
data was generated in real time, by applying data augmentation to each of the samples in
the training set before every epoch, meaning the (exact) same data was never passed through
the network twice, but instead, thirty new augmented data samples are used every time. The
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Figure 3-8: Three different augmented training samples and their corresponding masks, created
by applying three sets of transformations to the image and mask in figure 3-7.

thirty samples were evenly split into batches of 10, so one epoch consisted of 3 iterations.
During training, loss and accuracy are monitored.

In order to use the trained U-Net to segment full images, the following strategy is used;

1. Full images are scaled down to 768× 1024.

2. The images are divided into square 256× 256 regions and cropped. In order to ensure
smooth borders, there is overlap between the tiles in horizontal and vertical direction;
5× 4 squares are cropped out.

3. Trained U-Net is used to predict a segmentation mask on each of the images. Due
to the sigmoid activation in the final layer, the segmentation mask is grayscale (pixel
intensities ∈ [0, 255]). It is converted to a binary image by thresholding at 70 %. This
results in a mask with white erythrocytes on a black background.

4. The masks are stitched back together into a full size image. In the overlapping regions,
the pixel value is taken as the maximum value of the two overlapping images, so if the
region is classified as erythrocyte in either image, it will be in the final segmentation
mask. This was done because the zero padding used sometimes resulted in under-
predicting cell instances in the borders of the segmentation masks.

5. The final mask is scaled back up to full image size (4912 × 3684) and used to crop
cells out of the original image. As was the case in the thresholding based method, any
objects touching the borders or outside the size range

[
1
2µA, 2µA

]
are ignored.

This segmentation method was primarily evaluated on the six images of the AiDx dataset,
since it was trained specifically to segment those images. In order to see if this method
generalised to other data, despite only being trained to segment the AiDx data, performance
was also evaluated on the Loddo set.
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3-4 Classification

In order to determine infection in segmented erythrocytes, a transfer learning strategy is used;
meaning an existing CNN architecture is modified to classify the images.
The existing architecture that was used for this task is the VGG-16 network which was de-
veloped by Simonyan et al. (of the Visual Geometry Group from Oxford) [85]. This is a very
large-scale network, the ‘16’ in the name refers to 16 layers with trainable weights: 13 convolu-
tional of increasing depth and 3 fully connected, making the total number of learnable weights
in the network 138 million. Training a network of this size takes tremendous computational
power and is not feasible within the context of this project. However, the network has been
trained exhaustively on the ImageNet database [86], which contains an enormous variety of
images in many different classes, and the weights obtained are available. The image features
that the convolutional network was trained to extract on these images, are potentially also
suitable for our image classification problem.

3-4-1 Network architecture

The full architecture of the network is as follows: two sets of two convolutional layers are
followed by three sets of three convolutional layers. The sets are interspersed with four max
pooling layers, which have a window size of 2x2 and a stride of two, so the size of the chan-
nels is halved after every max pooling layer. The first set of convolutional layer contains 64
kernels, and the number of kernels doubles after every pooling layer except the last one. All
kernels in the network are of size 3 × 3 and use a ReLU activation function.
In the published network, the convolutional layers are followed by another Max Pooling layer,
and three fully connected layers. These are all omitted in the architecture used here. Instead,
the final convolutional layer is followed by a Global Average Pooling layer, as proposed in [87].
This reduces the extracted 6× 6× 512 feature map, to a one-dimensional 1× 1× 512 feature
map, by taking the average value. The result is the input to a fully connected layer with 1024
neurons which uses a ReLU activation function. During training, these neurons are dropped
out with a probability of 0.5. This is followed by a fully connected layer with two neurons and
a soft-max activation function, which maps the output to a two-dimensional vector containing
two class probabilities; probability of belonging to class ‘infected’ p0, probability of belonging
to class ‘uninfected’ p1. Obviously, since this is binary classifier, p1 = 1−p0. The architecture
of the VGG-16 network is depicted in 3-9.
This network was implemented in Python using the Keras neural network library with Ten-
sorFlow as backend [81, 82].

3-4-2 Training and testing strategy

The pre-trained weights for the convolutional layers of the VGG-16 network are downloaded
from the Keras library. The weights in the two fully connected layers were initialised with
Kaiming initalisation. The data is propagated forward and backward through the entire
network at each iteration, but only the weights in the fully connected layers are updated.
This means, the convolutional layers act as a static feature extractor, which provides the
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Figure 3-9: The architecture used for classification of segmented erythrocytes. The arrows
denote convolutional (conv), pooling and fully connected (FC) operations, and the blocks denote
the output of each operation. The output size is written above the blocks (width × height ×
depth), note that the output of the fully connected layers is vectorised so one-dimensional. The
convolutional layers of the VGG-16 net and their pre-trained weights on the ImageNet database
are not adjusted, only the final two fully connected layers are.

input to the simple Artificial Neural Network (ANN) which consists of only 1 hidden layer.
Data from the Rajaraman dataset is used to train the network. All images are scaled to
100 × 100. These are divided into training and validation data with an 80 / 20 split, so
11,023 samples per class are used for training and the remaining 2,756 are used to evaluate
performance. The batch size is set at 32, and the performance of the network in terms of loss
and accuracy is evaluated after every epoch (250 iterations) on the training and validation
data. The binary cross-entropy (equation 2-7) is used as loss function.
In order to accelerate gradient descent in the relevant direction and dampen oscillations in
the network updates, the gradient descent method as described in equation 2-11, is modified
here to include ‘momentum’, meaning a weighted average of the previous updates is used to
determine the next update U ;

Ut = βUt−1 + α
∂J

∂w
J (3-8)

Here, Ut refers to the update at this step and Ut−1 is the update at the previous step. So
after every iteration, the weights are now updated by w ← w − Ut. The scaling factor β is
set at 0.9, and the learning rate is set at α = 10−5.
In addition to evaluating performance of the trained network on the validation set, it is also
evaluated on the AiDx dataset, by applying it to make predictions on the erythrocytes im-
ages produced by the best of the two segmentation methods, which resulted in a dataset
with 2176 objects in total. In order to validate the predictions of the network, the pre-
determined ground truths were used to divide these objects into two classes. Some objects
that were not erythrocytes were found in the segmentation, which were assigned to the class
uninfected. It is to be expected that this limits performance, but it does provide insight of
the performance of the entire diagnostic procedure when segmentation and classification are
implemented back-to-back. This resulted in 202 infected cell objects and 1974 uninfected ones.
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In order to improve performance specifically on the AiDx dataset, the network was trained on
this image data. The same training strategy was used, except the learning rate was lowered to
α = 10−6 to prevent large gradient updates away from the learned activations. The erythro-
cytes objects of 5 image were selected to use as training data, with non-cell objects removed
to prevent learning wrong features, and the final image was reserved for testing, resulting in
a training set of 1564 uninfected and 163 parasitised cells.

Training on this unbalanced dataset would be problematic, as the predictions would quickly
converge to favour uninfected. In order to remedy this, data augmentation is used on the
objects in the parasitised class; 9-10 augmented images were created from each sample, to
achieve equal class sizes. Images were flipped, rotated at angles of 90 degrees, and random
elastic deformations as described in section 3-3-2 were applied with σ = 7 and φ = 100. An
example of the resultant images is shown in figure 3-10. As can be seen, applying the elastic
deformations causes the cell to lose their natural round shape. However, since a lot of objects
in the training and validation set used here were shaped irregularly to begin with, as a result
of the segmentation method used, this was not considered a problem.

Figure 3-10: Two parasitised erythrocytes from the AiDx images resized to 100×100, with three
augmented training samples based on on each. Original, non-augmented images are shown on
the left.
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Chapter 4

Results

In this chapter, the results of the segmentation and classification algorithms on the different
datasets are presented. Firstly in section 4-1-1, the results of the threshold based segmentation
method on the Loddo and AiDx dataset are discussed. Types of errors made by the algorithm
are shown, and quantified for all images separately. From this, performance measures for both
datasets are calculated and compared.
In section 4-1-2, the results of the U-net based segmentation method are discussed. First,
the learning results of the neural network are presented. Then, segmentation performance is
presented and compared to the performance of the first segmentation method. As the U-net
was specifically trained to segment AiDx data, the focus in this section is on the performance
on this dataset, but performance on the Loddo set is also discussed briefly.
Finally, in section 4-2, the classification results are presented. The VGG-16 based network
is first trained on the Rajaraman data, training and validation results for this are presented
in section 4-2-1. Performance of this network is also evaluated on the erythrocytes that were
segmented out of the AiDx images. This is done on an image-by-image basis, allowing us to
predict parisitemia estimates for each image, which are compared with the ground truth.
The network is than retrained on the majority of the segmented AiDx data, for which the
results are presented in section 4-2-2. Performance is evaluated on the one image from the
AiDx dataset which was not used for training, and compared with performance of the network
before retraining.

4-1 Segmentation results

4-1-1 Segmentation results with threshold method

The algorithm described in section 3-2 was applied to each of images in the Loddo and AiDx
datasets. The result for the first image in the Loddo dataset is shown in figure 4-1.
To quantify the performance of the segmentation method, results were compared with a

ground truth, in which cell locations were manually appointed. For each object found, the
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(a) Full binary segmentation mask, before removing objects that have touching
pixels with the border and objects that are outside the size range.

(b) Original image with segmentation overlay.

Figure 4-1: Segmentation result for image no. 1 in the Loddo dataset. Three wrong results are
pointed out; at 1) over-segmentation occurred, resulting in multiple small objects, which were
all removed before applying the segmentation mask, resulting in a false negative (FN), at 2) a
non-eryhtrocyte object was found (false positive (FP)) and at 3), under-segmentation occurred
(FN).
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number of manual ground-truth points in that objects region was checked. If there was exactly
one point in the region, this was counted as a true positive (TP). If there was no point in the
region, this was counted as a FP. If there were two points in the region, the object consisted
of multiple cells, so under-segmentation had occurred. This was counted as a FN, since one
cell was missed in this case. Theoretically, this could be extended to objects containing more
than two points. However, since any objects larger than two times the average cell size were
deleted when applying the mask, none were found.
The watershed algorithm sometimes resulted in over-segmentation, i.e. a cell was split into
two or more objects. When this occurred, often, one or more of the resultant objects were
smaller than half the average cell size so deleted. Only objects that covered at least half
an average cell area were kept, and for these, the standard rule was applied: an object that
contained the ground truth point was counted as TP and any other objects were counted as
FP.
Three examples of errors in segmentation are highlighted in figure 4-1.

Three performance measures were calculated for each of the images. The true positive rate
(TPR) or recall / sensitivity is a measure of the proportion of ground truth erythrocytes that
are correctly identified, calculated as;

TPR = TP

TP + FN
(4-1)

The positive predictive value (PPV) or precision, is the likelihood that a positive call is indeed
an erythrocyte, calculated as;

PPV = TP

TN + FP
(4-2)

The F1-score is a measure of the accuracy of the test, also known as the precision-recall score
since it is the harmonic mean of the two, calculated as;

F1 = 2× PPV × TPR
PPV + TPR

(4-3)

The results for the Loddo dataset are given in table 4-1, the results for the AiDx dataset are
given in table 4-2. On both datasets, the average PPV is high; ±0.98 for both. This means
that on average only 2% of detected objects are not erythrocytes. This is important when
segmentation and classification are implemented back to back; the classifier is not trained to
detect non-erythrocyte objects, and would not produce useful results when presented with
them. The average sensitivity for the Loddo dataset is also high (0.976), but on the AidX
dataset the sensitivity is significantly lower (0.895). This means that about 10 % of cells were
not detected as objects with this algorithm.

Master of Science Thesis Noor van Driel



38 Results

Table 4-1: Test results for threshold based segmentation algorithm on the Loddo dataset. For
each individual image, the number of objects that were TP, FP and FN are given, and the
performance measures were calculated from those.

Image no. TP FP FN TPR PPV F1-score

1 137 1 2 0.986 0.993 0.989
2 157 4 9 0.946 0.975 0.960
3 146 10 10 0.936 0.936 0.936
4 165 6 6 0.965 0.965 0.965
5 146 11 10 0.936 0.930 0.933
6 108 0 0 1.000 1.000 1.000
7 153 0 5 0.968 1.000 0.984
8 145 0 0 1.000 1.000 1.000
9 135 0 0 1.000 1.000 1.000
10 114 0 1 0.991 1.000 0.996
11 133 0 2 0.985 1.000 0.992
12 168 0 0 1.000 1.000 1.000
13 151 0 0 1.000 1.000 1.000
14 132 1 5 0.964 0.992 0.978
15 128 0 0 1.000 1.000 1.000
16 163 1 2 0.988 0.994 0.991
17 187 5 10 0.949 0.974 0.961
18 170 6 3 0.982 0.966 0.974

Average 147 2.5 3.6 0.976 0.985 0.981

Table 4-2: Test results for threshold based segmentation algorithm on the AidX dataset. For each
individual image, the number of objects that were TP, FP and FN are given, and the performance
measures were calculated from those.

Image no. TP FP FN TPR PPV F1-score

1 224 7 23 0.907 0.970 0.937
2 350 15 47 0.882 0.959 0.919
3 280 6 40 0.875 0.979 0.924
4 314 6 41 0.885 0.981 0.930
5 371 4 48 0.885 0.989 0.935
6 412 6 28 0.936 0.986 0.960

Average 325 7.3 37.8 0.895 0.977 0.934

When inspecting the segmentation masks of the AiDx images, it becomes clear what causes the
lower sensitivity. Larger groups of closely clustered cells could not adequately be separated
with watershedding, resulting in objects with size > 2µA, which were omitted when the
segmentation mask was transferred. An example of this happening is shown in figure 4-2.
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(a) (b) (c)

Figure 4-2: Error of threshold segmentation algorithm in image no. 5 from the AiDx datase; a)
is a section of the original image, with ground truth points overlaid, b) is the corresponding binary
segmentation mask and c) shows the result of applying the segmentation mask to the original
image, with hits and misses.

4-1-2 Segmentation results with U-Net method

Training results
Accuracy and loss were calculated at the end of every iteration on the batch of augmented
training data that was used. Accuracy is the fraction of pixels in predicted masks that exactly
match their ground truth and loss is the binary cross-entropy. The average of these measures
over the three iterations was calculated at the end of each epoch. Training was stopped
when significant improvements were no longer made, after 50 epochs. The training progress
is depicted in figure 4-3. At the end of training, the loss was calculated on the original data,
which was not used in training without augmentation. On this data, the loss was equal to
0.110 and the accuracy was 95.3 %.
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Figure 4-3: Progression of loss and accuracy of the U-Net during training. Both performance
metrics were calculated at the end of each iteration on the batch of augmented training data that
was used at that step. The values in this graph are the average over the three batches in the
epoch.
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Figure 4-4: Image no.5 of the AiDx dataset, with segmentation overlay produced by U-Net
algorithm. To allow for comparison between the two segmentation methods, the square indicates
the area for which the results of the threshold algorithm were depicted in figure 4-2.

Segmentation results
After training, the network was used to create segmentation masks for each of the images in
the AiDx dataset. The result for one of the images is shown in figure 4-4.
The performance of the network was evaluated in the same way as described in section 4-1;
segmented objects were compared with ground truth points, and the amount of TP, true
negative (TN) and FP objects was determined. The results are given in table 4-3.
The first two images had been used to extract training samples from, although differently

Table 4-3: Test results AiDx dataset U-Net based segmentation

Image no. TP FP FN TPR PPV F1-score

1 247 0 0 1.000 1.000 1.000
2 396 1 1 0.997 0.997 0.997
3 319 2 1 0.997 0.994 0.995
4 355 0 0 1.000 1.000 1.000
5 416 1 3 0.993 0.998 0.995
6 440 0 0 1.000 1.000 1.000

Average 362 0.7 0.8 0.998 0.998 0.998

cropped regions were used there than in the evaluation. The other four were completely un-
seen. If the network had over-fitted on the training set, it would be expected that performance
on the first two images would be better. Since this is not the case, it can be concluded that
overfitting did not occur.
The average TPR, PPV and F1-score of this method are all 0.998, which indicates signif-
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icantly better performance than the the threshold based algorithm. This can be observed
by comparing the area indicated by a square in figure 4-4, with the result of the threshold
method for the same area, which was depicted in 4-2.

Performance on the Loddo dataset was also evaluated. Average sensitivity, precision and
F1-score over eighteen images were 0.885, 0.997 and 0.933 respectively. The lower sensitivity
was to be expected, since the U-Net was only trained on the AiDx image data, so it only
recognises erythrocyte objects that look similar to those. When inspecting the results, it
became clear that the classifier especially does not recognise central pallor as being part of
the cell object, resulting in over-segmentation. This makes sense, because central pallor was
minimally visible in the AiDx images.
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4-2 Classification results

4-2-1 Results for network trained on Rajaraman data

Training results
The network was trained on the Rajaraman data, the learning curves are depicted in 4-5.
Loss decreases rapidly during training while accuracy increases, on both the training and val-
idation data, meaning the network is learning the correct predictions. At the end of training,
the training and validation curves show a good fit; indicating that the features of the vali-
dation set are represented well by the training set. At the beginning of training, loss on the
validation set is consistently better than loss on the training set, which makes sense, since loss
on the training set is taken as the average over the entire epoch, and loss on the validation set
is evaluated with the network parameters that are learned at the end of the epoch. Learning
was stopped after 100 epochs, since the loss on the validation set was no longer decreasing
significantly.
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Figure 4-5: Progression of loss and accuracy during training of the classification network on the
Rajaraman data. The loss is plotted on a logarithmic scale.

Classification results on validation sets
After training, the saved model was used to make final predictions on the Rajaraman val-
idation set. Performance was also evaluated of the segmented erythrocytes from the AiDx
dataset, as produced by the U-Net based method, which had the best segmentation perfor-
mance. The predicted class probabilities were used to assign classes to each instance; when
p0 > p1, the objects were assigned to class 0 (infected) and when p0 < p1, the objects were
assigned to class 1 (uninfected).
The results on both datasets are shown in the form of a confusion matrix in 4-6. The labels
predicted by the network are given in the columns, while the rows represent the ground truth
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class instances, the totals of which are given to the left of the column. In this way, the upper
left and lower right corners are the absolute amount of TPs and TNs respectively, and the
lower left and upper right corners are the FPs and FNs respectively.
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Figure 4-6: Confusion matrices for both validation sets, showing the total number of correct and
incorrect predictions made on each set.

The values in figure 4-6 were used to calculate performance measures for the classifier. The
sensitivity (TPR), precision (PPV) and F1 scores were calculated as described in eqs. (4-1)
to (4-3). Additionally, accuracy and specificity were calculated. Accuracy is the total rate of
correct predictions, given by;

Acc = TP + TN

TP + FP + TN + FN
(4-4)

Specificity, also known as true negative rate (TNR) is calculated by;

TNR = TN

TN + FP
(4-5)

The performance measures are summarised in table 4-4. It is clear that while good perfor-
mance was achieved on the Rajaraman validation data, performance on the AiDx validation
data is not as good, especially in terms of sensitivity and precision. It is plausible that
the parasitic features in the AiDx erythrocyte images, which were acquired with a different
set-up (different camera, illumination, magnification etc.) were not well represented by the
Rajaraman dataset that was used to train the network, leading to the diminished performance.

Table 4-4: Performance measures of the trained network on the Rajaraman validation set and
the segmented erythrocytes from the AiDx dataset.

Accuracy TPR TNR PPV F1-score

Rajaraman validation set 0.965 0.984 0.947 0.949 0.966
AiDx validation set 0.905 0.795 0.915 0.477 0.636

The values and performance measures given in figure 4-6 and table 4-4, are calculated for the
situation where objects are assigned to the class with the greatest predicted probability. In
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other words, since this is a binary classification problem, when p0 > 0.5 objects are assigned
to class 0, and when p0 < 0.5, objects are assigned to class 1. It is possible to choose
a different value than 0.5 for the classification threshold, to satisfy different performance
criteria. The range of possible operating points is depicted by plotting the Receiver Operating
Characteristic (ROC), which is determined by choosing different thresholds τ ∈ [0, 1], and
computing sensitivity and specificity at these thresholds. The ROC on both validation sets
is shown in 4-7.
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Figure 4-7: Receiver Operating Characteristic curves for both validation sets. Sensitivity and
specificity are plotted for different thresholds, starting at τ = 1 on the left (all objects are assigned
to class uninfected) and ending at τ = 0 on the right (all objects are assigned to class parasitised)
Area under the curve is given in lower right corner. The reference line depicts a theoretical
‘random guessing’ classifier (i.e. on that is right 50 % of the time at τ = 0.5).

For an ideal classifier, sensitivity and specificity would be equal to 1 at any threshold τ ∈ (0, 1),
and the area under the ROC would be equal to one. This means that the larger the area
under the curve is for a given validation set, the more closely the classifier approximates an
ideal classifier for that dataset. In general, when choosing a higher threshold, specificity is
improved at the cost of sensitivity, and vice versa. Any operating points that lie above the
line are not achievable by the classifier, so for instance, if we wish to have at least 90 %
sensitivity on the AiDx data, we can at most be 75 % specific.

To gain insight into the performance of both the U-Net segmentation algorithm and the
VGG-16 based classifier when implementing both back to back, to go automatically from raw
image to parasiteamia estimate, the performance of the classifier was also evaluated for each
of the images in the AiDx dataset separately. The number of total infected objects found
in each image was divided by the number of total segmented erythrocyte objects found in
that image to obtain a parasiteamia estimate. These were compared to the ground truth, full
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results are given in table 4-5. It is clear that the low precision leads to over-estimation of the
parasiteamia in these images.

Table 4-5: Ground truth cell and infection counts, compared with estimates for both by the
U-Net based segmentation method and the VGG-16 based classifier respectively. Ground truth
and estimated parasiteamia levels are given, and compared in the final column.

Image no. Ground truth values Values estimated by algorithm % Of true
parasiteamia

Cells Infected Parasiteamia Cells Infected Parasiteamia

1 247 33 0.1336 247 47 0.1903 142
2 396 39 0.0985 396 56 0.1414 144
3 320 31 0.0969 321 58 0.1807 187
4 355 25 0.0704 355 45 0.1268 180
5 418 35 0.0837 417 106 0.2542 304
6 440 38 0.0864 440 65 0.1477 171

The estimated erythrocyte and parasite locations in the AiDx images were visualised by plot-
ting them onto the original images. Results for one image are shown in figure 4-8.

Figure 4-8: Predicted locations of healthy erythrocytes, indicated with a gray bounding box, and
parasitised erythrocytes, indicated by a red bounding box, in image no. 6 from the AiDx dataset.
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4-2-2 Results for network trained on AiDx data

Training results
The model weights were initialised at the weights found in the previous section. Data of the
image no. 6 was reserved for validation, while the rest of the (augmented) training data was
used to estimate the correct weights on the AiDx dataset. The learning curves are shown in
figure 4-9. It is clear, that the data we reserved for validation was better represented by the
original model than the data in the training set was, as at the start of training, the loss is
lower on the validation set and the accuracy higher. However, as the network starts to learn,
the two curves converge. It was be observed that after ± 60 epochs, the loss on the validation
set remained static and later even started to go up, while the loss on the training set keeps
decreasing, indicating that the network starts to over-fit the training data. Based on this,
learning was halted after 60 epochs and the model weights that were saved at epoch 60, were
kept and used to evaluate performance on the validation data.
Compared with figure 4-5, it can be observed that loss and accuracy updates are more stochas-
tic, even though a smaller learning rate was used. This is explained by the fact that both the
training and validation sets were far smaller than the ones used previously, so the updates
are averaged over less samples, causing greater variation.
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Figure 4-9: Progression of loss and accuracy during training of the classification network on the
AiDx data.

Classification results on validation set
The retrained network was used to predict on the validation data set (segmented erythrocytes
objects of AiDx image no. 6), the confusion matrices for this data before and after retraining
are shown in figure 4-10. After retraining, the number of FPs declined, while the number of
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FNs remained the same. In fact, when comparing results between both network predictions,
the exact same cells were still marked as FNs.
The performance measures calculated from this are given in table 4-6. Specificity increased,
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Figure 4-10: Confusion matrices showing the number of correct and incorrect predictions on
erythrocytes from AiDx image no. 6, before and after retraining the network.

as did precision, but sensitivity remained the same; the network learned to better recognise
uninfected cells; but did not perform better in recognising parasitised cells. This is not un-
expected; the number of objects in the uninfected class available for re-training was a lot
bigger than the number of training objects in the parasitised class, making it likely that not
all parasite features present in the validation set were represented in the training set. This in
turn makes it impossible for the network to learn to distinguish these objects as parasites.

Table 4-6: Performance measures on erythrocytes from AiDx image no. 6, before and after
retraining the network.

Accuracy TPR TNR PPV F1-score

Before retraining 0.902 0.789 0.913 0.462 0.626
After retraining 0.934 0.789 0.948 0.588 0.689

In 4-7, the updated parasiteamia estimate is given. A clear improvement on the previous
estimate is noted.

Table 4-7: Ground truth parasiteamia for AiDx image no. 6, compared with prediction by network
before and after retraining

Source Cell count Infected cells Parsatimea % Of true
parasiteamia

Ground truth values 440 38 0.0864 100
Estimated by old network 440 65 0.1477 171
Estimated by retrained network 440 50 0.1136 132
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To gain some visual insight into which objects causes the algorithm to make wrong predictions,
the predictions are plotted onto the original image, with their ground truth score. The result
is shown in 4-11

Figure 4-11: Locations of cells as estimated by the U-Net algorithm, combined with locations
of parasites as estimated by the retrained VGG-16 based classifier, in image no. 6 from the AiDx
dataset. Predicted parasite locations are indicated by a red bounding box; TP cells are indicated
with a solid line while FP cells are indicated with a dotted line. FN cells are indicated by a blue
bounding box and TN cells indicated with a gray bounding box. To compare performance, see
4-8, in which the prediction by the network on this same image before retraining is depicted.
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Chapter 5

Discussion

In this chapter, the results will be interpreted and compared with the theoretical performance
of a human expert, as defined by the World Health Organization (WHO). Limitations to the
methods used are discussed. Some recommendations for modifications to the method used
that could improve performance are made here, as well as further steps that could be taken
to validate the results. More general recommendations for future work on this research topic
are given in the final paragraph of this chapter.

The simple threshold segmentation method proposed exhibited good performance (average F1-
score = 0.981) on the Loddo data set, which contained high magnification blood smears which
were generally of good quality, although overlapping cells were present, which were mostly
successfully separated through watershedding. Performance on the AiDx image data, which
was taken at lower magnification, was not as good; average positive predictive value (PPV)
was still sufficient (0.977), but the sensitivity was lower (0.895), combining to an F1-score of
0.934. The high PPV was achieved by removing any objects from the segmentation masks
that were much smaller or larger than the average cell area, which in large part took care of
removing over- and undersegmented objects.
When continuing to classify the segmented objects produced by this algorithm, the low sensi-
tivity for cell segmentation would not necessarily lead to bad parasiteamia estimates, assuming
that an equal rate of uninfected and parasitised cells were missed. However, the total number
of cells that are classified per image would be lower than the total number of cells in that
image, thus effectively limiting the Field of View (FOV), and needing to evaluate more images
before a diagnosis can be reached.
The U-Net based segmentation method showed a big improvement in performance when eval-
uating on the AiDx data, with an average sensitivity, PPV and F1-score of 0.998. This means
that nearly all objects that were found were indeed erythrocytes, and nearly no erythrocytes
were not found. Comparing with segmentation methods that were described in table 2-1,
this segmentation method outperforms the one that was proposed by Rajaraman et al. (PPV
0.941), and the one proposed by Delgado-Ortet et al. (accuracy 0.937). Though lower per-
formance was achieved on the Loddo dataset, it is believed that this network can be trained
with different data to produce good results on other datasets as well. An interesting research
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question to explore in future work, would be to see if a network of this type can be made more
robust to changes in input data, and be trained to produce good results on both datasets with-
out retraining in between. Though U-Net-type networks have been used on various datasets
in literature [80], no research was found in which this option was explored.
The performance measures of both segmentation methods were expressed in terms of correct
objects found, which does not provide insight into how well the cell border was detected.
Since cells were located closely together, any very wrong cell borders would still lead to lower
scores on these measures, so they were deemed sufficient to validate performance for our
purposes. Some objects were however found that only covered part of the cell, or included
staining artefacts that were touching the cell. These were counted as TP, so this was not
reflected in the performance measures.
It could be said, that the performance of these methods in terms of erythrocyte localisation
has been validated, but segmentation performance was not quantitatively demonstrated. A
good metric to do so, would be to calculate the Intersection over Union (IoU), in which the
overlap of the predicted erythrocyte object with its ground truth (intersection), is divided by
the total area encompassed by both the ground truth and the predicted object (union)[88].
However, calculating the IoU would require knowing the exact ground truth location and
shape of each erythrocyte in each image, which were not available and would have to be
created manually. The validation method used here was deemed more efficient, and would
also be far less labour intensive to extend to new validation data.
We can compare the results of the classification method with the performance requirements
the WHO sets for human microscopists, which were given in table 2-2. Ideally, we would like
our algorithm to perform as well as a ‘level 1’ expert microscopist on the AiDx data; which
means achieving a sensitivity ≥ 90%, and a parasiteamia estimate within 25% of the true
parasiteamia at least 50% of the time.
This sensitivity was more than achieved by the classifier on the Rajaraman validation data,
on which an average accuracy, sensitivity and specificity of 96.5 %, 98.4 % and 94.7 % were
achieved, outperforming all of the methods summarised in table 2-1 in terms of sensitivity,
and ranking high among them in total accuracy as well. Combined with the high PPV that
was achieved with this classifier, it is likely that good parasiteamia estimates would be made
if this classification was done on patient level.
However, on the AiDx image data, average sensitivity was 79.5 % over 6 images, which nar-
rowly puts the algorithm at the same level as a ‘level 2’ human microscopist. This is still
deemed acceptable for certification by the WHO.
Sensitivity was not improved when retraining on the obtained segmented erythrocyte data,
however, this can be attributed to the low volume of training data available. Data augmen-
tation was applied to the images in the parasitised class, but this did not seem to result in
a training set in which the parasite features of the validation set were well-represented. It
is expected that when a larger volume of AiDx data is used in retraining, the classifier can
reach the same level of performance as was achieved on the Rajaraman validation set.

Due to low precision of the network on the AiDx data, parasiteamia estimates for none of
the images on which the network was evaluated were within 25 % of the correct value, the
estimates were all overinflated, by 50.8 % on average, with one outlier were the estimate was
204 % higher. Here, retraining did improve performance, which can be attributed to the fact
that a larger sample of non-infected cells than infected cells was available for re-training. For
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the image that was used for validation, the parasiteamia estimate was 71 % too high before
retraining the network, and 32 % after, which suggests that by retraining further, on added
data, the predicted infection levels would eventually converge to the correct ones.
A binary classification strategy was used here, in which all objects were labelled as either
being uninfected cells, or parasitised cells. A third class could be added for objects that were
not cells. Given the high performance of the segmentation algorithm, this was not done here,
however, doing so would increase the robustness of the predictions when poor results are
produced in the segmentation step.
A transfer learning strategy was adopted in the design of the classifier, using the pre-trained
VGG-16 model as a feature extractor. This option was chosen because of the high performance
of this network on the ImageNet database and in other transfer learning image classification
tasks found in literature. However, many other pre-trained models such as Xception, Resnet50
and Densenet201 are available, that have also shown good performance on these classification
tasks [89]. Training a neural network based on on of these models, or selecting only the
layers of these models that are the most effective for our specific task to build a more efficient
ensemble model to use as feature extractor, might improve performance and would be an
interesting topic for future research.
It is also possible to train a neural network from scratch on malaria image data, which
would result in only extracting features that are useful for this specific task and remove
redundancies in the network. However, previous work done on this subject has shown that in
general, to extract robust image features of the same or better quality as the ones available
in pre-trained networks, larger amounts of training data then are available currently would
be needed. Networks trained from scratch on the currently available Rajaraman database,
are not likely to generalise well to new input data [68, 69, 90]. The segmentation strategy
proposed here, combined with the simple script that was developed to manually determine
their ground truth infection status and divide these segmented objects over classes, could be
applied towards efficiently generating a large malaria infected erythrocyte database, which
would make training from scratch a more viable option in future research.
The ground truths for both the Rajaraman data and the AiDx data that were used, were found
to be debatable. Rajaraman et al. reported that their ground truth had been determined by
an expert slide reader at the Mahidol-Oxford Tropical Medicine Research Unit in Bangkok,
Thailand [91], however when inspecting the images that had been labelled uninfected, some
showed peripheral chromatin dots and even ring shapes, which suggests that these should
have been labelled parasitised. It was unfortunately not doable within the constraints of this
project to re-evaluate the ground truth for every single instance in this dataset. Given the
good performance of the classifier trained on this data, on validation data from the same set,
these inconsistencies were apparently small enough in quantity to not hinder performance
significantly.
The ground truth for the AiDx dataset was verified by me, my colleague and dr. ir. T.E.
Agbana (expert in this field). However, since the data was taken at lower magnification than
is ordinarily the case, determining infection was not always straight-forward. Inspecting the
results of the classifier, by looking at images such as the one shown in figure 4-11 raised
some doubts about whether some of the objects that were labelled as FN in the validation
were actually infected, or whether these were in fact TN. The opposite was also true, some
objects labelled FP, might in fact be TP upon closer inspection. The best way to eliminate
these ambiguities would be to have another independent medical expert manually annotate
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the data.

Running the U-Net segmentation algorithm and the classification model consecutively, allows
us to start with a blood smear image, and end up with an image such as the one shown in
figure 4-8, in which predicted cell and parasite locations are indicated and a parasiteamia
estimate is printed. This takes 65 seconds on average on the laptop that was used (Intel Core
i7 processor with 4 GB of RAM) for a single image, when operating in batch, the time taken
per image is reduced. It is noted that the majority of running time was dedicated to operations
such as saving all individual cell images to a directory, which can be eliminated when running
consecutively. Predictions by the segmentation model took on average 6.045 seconds for a
full image (20 image tiles), while predicting on the erythrocytes by the classification network
took 59 ms per cell, so on average 21.24 seconds for a full image which contains 400 cells.

The WHO assessed that a human microscopist can realistically only read 30-40 slides a day,
and that long hours of continuous reading result in fatigue, which can significantly reduce
the accuracy of reading [5]. This is where this algorithm can make real impact, being able to
read at least 1152 FOV a day on a consumer laptop without need for pause. To be applicable
in on field settings, with a total size of 72 Mb, the software could be loaded onto a external
computing device or a smart phone. Alternatively, if mobile data coverage is extended to the
target setting, this can be leveraged to send images, perform interpretation externally and
send back the result, allowing for even faster interpretations.

The scope of this research was limited to the interpretation of P. Falciparum Giemsa stained
thin blood smears. This was chosen, as it is commonly the most widely accepted technique
for the microscopic diagnosis of malaria, as well as the diagnostic method most limited by the
time consumed to interpret the data. The choice to use only P. Falciparum infected samples
was made based on availability, and because this is the most predominant species and most
deadly species in the world. No attempts have thus been made in this project to attempt
to automatically distinct between species, we highly recommend this as an area for future
research.

Furthermore, as was discussed in chapter 1, other malaria microscopy methods are also avail-
able in practice, which could also benefit from automation, such as fluorescence microscopy, or
have been proposed in literature, such as multispectral microscopy with unstained blood films.
For the latter, some preliminary work was done during this project to design an appropriate
classifier architecture for multi-spectral images. However, as no such data was available, this
was not tested, and is therefore recommended as a topic for future work.
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Chapter 6

Conclusion

The aim of this work was to contribute to the development of malaria diagnostic methods
suitable for use in situ. Through review of the literature on diagnostic methods in chapter
1, a list of requirements for such a diagnostic method was presented in section 1-2. By
combining requirements 2 and 3; the ability to determine parasiteamia counts and identify
parasite species and stage, with requirement 5; the wish for minimal skill and labour needed to
interpret the test, we arrived at researching the possibilities of automating the interpretation
of Giemsa stained microscopy of thin blood films.
Through review of previous work on this subject, we arrived at the use of neural networks a a
promising technique for automated image interpretation. We chose to investigate specifically
the interpretation of low magnification images, based on image data produced by a microscope
that is currently in development at AiDx, which is portable and low cost and thus meets the
4th requirement we set for a novel diagnostic test.
This provided the motivation for our main research question;

To what extent can neural networks be applied towards eliminating the need for
trained experts in the interpretation of low magnification Giemsa stained thin
blood smears for malaria diagnostics?

To investigate this, two methods to segment erythrocytes from blood films were proposed,
which allow us to estimate a cell count and produce objects which can later be classified.
The threshold based segmentation method proposed performed well on standard 100× mag-
nification images (sensitivity 0.976), but performance was not as good on the AiDx images
(sensitivity 0.895). Since only erythrocytes that are found are passed on the classifier, to ob-
tain accurate diagnostics with this method, a larger volume of image data would be needed.
The U-net based segmentation method showed excellent performance on the AiDx data;
sensitivity, precision and F1-score were all 0.998. This method localises almost all present
erythorcytes, and can therefore be used to estimate cell count vary accurately.
To classify the erythrocyte objects, a transfer learning strategy was proposed, which allowed
us to exploit the robust general image features learned by the pre-trained VGG-16 network.
A single fully connected layer was added to this architecture to efficiently predict correct
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activations for these features. This classifier was trained and validated on a publicly available
database of segmented erythrocyte objects, performance on this data was adequate; sensitiv-
ity was 0.984, specificity was 0.947, PPV was 0.949 and F1-score was 0.966.
The trained network did not perform as well on erythrocytes segmented from the AiDx im-
ages; sensitivity on this data was 0.795, specificity was 0.915, PPV 0.477 and F1-score was
0.636. Parasiteamia estimates produced by this classifier were 1,5 × the actual parasiteamia
of on average.
Improvements on performance measures were achieved by retraining the network on AiDx
data; specificity increased to 0.948, PPV to 0.588 and the parasiteamia estimate on the val-
idation image was 39 % closer to the ground truth. However, since only one image was
available to validate this retrained model, no definitive conclusions can be drawn.

The first requirement we set for a diagnostic method, was to have a specificity of ≥ 90%, which
was achieved, and a detection limit of 50 parasites /µL of blood. To obtain that detection
limit with the proposed method, 250 thin smear AiDx images would have to be analysed,
which is theoretical possible since analysis is fully automated. However, the low precision did
not allow us to accurately determine parasiteamia, and no attempts were made to identify
parasite species and stage.
We can therefore conclude that the proposed CNN-based methods can not fully eliminate the
need for trained experts in the interpretation of low magnification Giemsa stained thin blood
smears for malaria diagnostics. However, automatically determining an accurate cell count,
as was done with the U-Net based segmentation method, is a big step in the right direction.
Furthermore, when the results of the classification are presented to an expert in the visual
way that was shown here, this expert can easily determine the true infection status of the
objects predicted as infected, to correct for the low precision. This would greatly reduce the
number of cells that need to be evaluated. We therefore believe that the method proposed
can contribute to reducing the diagnostic burden, and increasing the availability of malaria
diagnostics globally.

When the portable microscope is developed further, it can be used to obtain additional blood
slide images, which can be applied towards improving the performance of the proposed neural
networks. In future, a simple computing device that runs the proposed algorithms, such as
a Raspberry Pi, can be integrated into the microscope design, to automatically execute the
full diagnostic procedure in one integrated device.
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List of Acronyms

WHO World Health Organization

RDTs Rapid Diagnostic Tests

FOV Field of View

QBC Quantitative Buffy Coat

AO acridine orange

PCR Polymerase Chain Reaction

LAMP loop-mediated isothermal amplification

SERS surface-enhanced Raman scattering

SVM Support Vector Machine

ANN Artificial Neural Network

INLSVRC ImageNet Large Scale Visual Recognition Challenge

CNN Convolutional Neural Network

ReLU Rectified Linear Unit

MSE Mean Squared Error

CNN Convolutional Neural Network

CLAHE Contrast Limited Adaptive Histogram Equalization

TP true positive

FP false positive

FN false negative
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TN true negative

TPR true positive rate

TNR true negative rate

PPV positive predictive value

ROC Receiver Operating Characteristic

IoU Intersection over Union
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