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Preface

This thesis serves the purpose of outlining research and analysis carried out by a student from Delft
University of Technology. The document before you is written in fulfilment of the requirements for
the degree of Master of Science in Geo-technical Engineering at the faculty of Civil Engineering
and Geo-sciences. The conducted research is supported by Delft University of Technology and
Bentley Systems, PLAXIS. The main focus of this thesis is the research in the behaviour of the
newly PLAXIS implemented constitutive model NorSand. This research is carried out to have an
understanding of its capability to approximate the behaviour of particulate materials in various
loading paths. Doing so gives further insight on its potential to model and predict geo-technical
structures that consist of, or interact with, said particulate material, such that their integrity can
be maintained and potential failures can be mitigated. For this purpose, the model is verified
and validated by comparing it to various experimental lab tests and other methods. Additionally,
NorSand is applied on a finite element model of an underwater slope, which is in undrained
plain strain conditions, to determine the structural response. For more details on the conducted
analysis, refer to the final chapter and appendices of this report. Those interested in obtaining
further information may contact the author and the corresponding supervisors.

Delft, September 2021
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Abstract

As the construction of sub-aerial and submarine geotechnical structures increase in amount, rate
and size, so do their associated risks. Often, with use constitutive models, finite element analyses
(FEAs) are performed in order to identify and mitigate these risks. NorSand, which is a consti-
tutive model based on critical state soil mechanics for particulate materials (e.g., sand), is one
of the first models to integrate the state parameter ψ into its constitutive framework to model
dense and loose sands material with the same parameter set. Importantly, it is able to identify
the liquefaction potential as it can simulate softening behaviour due to pore pressure increase of
loose soils in undrained conditions. Since NorSand has recently been implement into PLAXIS,
a geotechnical analysis software capable of performing FEAs, it must be verified, validated and
applied with the software, which is done in this report.

First, stress-path and parametric analyses were conducted at single stress points. The stress-
path analyses show how the state variables evolve for different triaxial conditions. Systematically
changing the input parameters to extremes found in literature helped determine their influence on
the evolution of stresses and strains. The resulting figures can be used to help future calibrations
to experimental lab test data.

The PLAXIS implemented NorSand (PLAXIS NorSand) was verified by comparing it with an
implementation written in Visual Basic for Applications (VBA NorSand) by the authors of the
model Jefferies and Been. Verification in this context means determining if PLAXIS NorSand is
able to produce outputs as intended by the authors. Various testing conditions, both triaxial and
direct simple shear, showed overlap and agreement between the outputs of both implementations,
verifying PLAXIS NorSand.

Then, the model was compared to, albeit not in a traditional sense, an ’analytical solution’,
which is the relationship between the mobilized friction ratio Mi and state parameter ψ in its
simplest form. The mobilized friction ratio and stress ratio at peak strength of PLAXIS NorSand
and the ’analytical solution’ were compared. The values between both showed less than 3%
difference, further verifying PLAXIS NorSand.

The constitutive model was then validated - i.e., established that PLAXIS NorSand is able
to approximate soil behaviour as intended. First, by using the soil parameter set that had been
derived from lab tests of Erksak sand as a baseline, the input parameters were varied until PLAXIS
NorSand was calibrated to individual triaxial tests as best as possible. Then, triaxial tests of
Erksak, Nerlerk and Ticino sand were approximated with PLAXIS NorSand without changing the
soil parameters determined from lab test data.

PLAXIS NorSand is able to follow lab test data decently well with one parameter set. And if
one decides to take the time and calibrate individual lab tests, and deviate from soil parameters
determined from a set of lab tests, they can be matched even better. Additionally, it showed a
consistent need for activation of the softening flag (S = 1) in order to appropriately model loose
soils in undrained conditions. Furthermore, NorSand exhibits indefinite hardening in dense soils
during undrained loading, which can be avoided by employing a ’cavitation cut-off’.

The last part of this report tested PLAXIS NorSand by applying it in FEAs of a simplified
submerged landslide, which was subjected to 20 centimeters of displacement at the crest through
a rigid slab in undrained conditions. First, the difference in slope behaviour due to change in soil
density within NorSand was determined: dense soil resulted in the slope to be able to bear the full
20 centimeter displacement, whereas increasing the void ratio (i.e., increasing the positive value
for the state parameter) gave the effect of even quicker slope collapse and a lower bearing capacity.
In other words, when using NorSand, the looser soil the further the failure surface moves up and
the quicker the structure fails to maintain equilibrium.

Lastly, NorSand was compared to Modified Cam-Clay and Mohr-Coulomb to highlight the
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differences in their ability to model static liquefaction, while being triggered by unrealistic loading
conditions. Even though none of the FEAs showed actual liquefaction, since it is accompanied
with the fluidization and loss of structure, they still gave in indication of the liquefaction potential.
NorSand, contrary to the other constitutive models, showed the expected high sensitivity to forced
displacement resulting in clear shear bands resembling Prandtl-type failure mechanism and early
onset soil body collapse.
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1 Introduction

1.1 Problem description

Geo-technical problems often involve large structures that interact with soil or are made out of soil.
These structures can be sub-aerial, such as tailings dams, which are massive sand dikes that contain
rejected soil from mining operations and belong to the largest man-made structures in the world,
as they can be more than 100 m high and in some cases several kilometers wide. Or submarine
structures, such as large natural or man-made slopes under water, which are one of the main
threats to offshore assets. Liquefied submerged slopes or embankments are often characterized by
relatively small failure angle, sudden failure, a considerable amount of released soil mass and large
influencing areas. These make static liquefaction to be one of the most catastrophic mechanisms
of under-water slope failures. Instability of these slopes can be triggered by static loads, such
as sediments deposition, toe erosion, rising of an embankment height, scours near a structure or
dredging activities (W. Zhang and Askarinejad, 2019). Collapse of these sub-aeral and submarine
structures can result in massive economical and environmental impact.

Figure 1.1: Left: Newcrest Cadia tailings dam failure. Right: illustration of a submarine landslide affecting
underwater infrastructure (taken from X. Zhang et al., 2019).

1.2 Project background

For these reasons, it is crucial analyze the stability of these sensitive structures with the use of
numerical methods (e.g., FEM) with advanced constitutive models that can simulate the mechan-
ical behaviour of tailings materials and identify and prevent potential failure mechanisms (e.g.,
liquefaction) from different hydro-mechanical conditions. In this study, the constitutive model
formulated by Jefferies and Been (1993), known as NorSand, will be used to analyze the perfor-
mance of underwater slopes through numerical simulations performed with PLAXIS 2D. Based on
fundamental principles of the critical state theory, NorSand can capture the porosity dependency
of granular materials to simulate the compaction of loose soils as well as the tendency of dilating
characterizing dense material through normality and limit hardening.
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1.3 Objectives

The objectives of this thesis are threefold. First, it is to analyze the model behaviour. Then, it
is to verify and validate the NorSand constitutive model as it has only recently been integrated
into PLAXIS. Finally, NorSand is applied to established how well the constitutive model is able
to simulate the behaviour of underwater slopes - in particular their failures. To achieve these
objectives, many questions have to answered:

• What is NorSand?

– What is the difference between NorSand and other constitutive models?

– What is the physical meaning behind all the components of NorSand?

• How does NorSand perform in PLAXIS?

– What are the mechanics of the model during various stress paths in single stress point
analyses?

– What are the influences of individual model parameters?

– How close is the PLAXIS integrated NorSand to the original model?

– How well does the model agree with the ’analytical solution’?

• How well does NorSand model sand behaviour?

• How does NorSand simulate failure in underwater slopes?

– Are there well-documented case studies of flow liquefaction failures of underwater
slopes?

– What are underwater slopes and what are the mechanics behind flow liquefaction within
these structures?

– What data and which parameters are important in order to make realistic models?

– What can be assumed, to which extent can one simplify the problem and what are the
resulting boundary conditions?

– How does soil density influence the FEA?

– What are the differences in behaviour of FEM models with different constitutive mod-
els?

1.4 Methodology

Answering the aforementioned questions can be made easier if one establishes a framework:

• Literature review. This entails an in-depth study on constitutive models in general and the
inner workings of the NorSand model itself, structures at which liquefaction can occur, and
previous case studies.

• Model behaviour Analyses.

– The constitutive framework will be used to investigate the performance of the model
through parametric analyses to explore the effect of each parameter on the soil response.

– Employing a stress-path analysis to check the evolution of certain state variables though
various loading conditions.

• Verification and Validation. Demonstrating that the newly PLAXIS implemented NorSand
is the same as the original model developed by the authors verifies NorSand. Determine that
PLAXIS NorSand behaves as expected, validates the model.
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– Comparison between the PLAXIS integrated-NorSand (PLAXIS NorSand) versus the
original NorSand that is written in excel through VBA (VBA NorSand).

– Comparison of PLAXIS NorSand to the theoretical formulation on which it is based
on.

– Comparison of PLAXIS NorSand to the stress-strain response of experimental lab test
data by performing single stress-point analyses.

• Application. Use the constitutive model in conjunction with finite element models.

– Compare NorSand to different constitutive models through FEA of a simplified under-
water slope.

– Pre-processing and preparation of data for the creation of numerical models.

– Running and re-running the simulations.

– Post-processing of results.

• Conclusion. Conclusions, capabilities, limitations and recommendations on the use of the
NorSand model for applications involving liquefiable structures will be provided.

1.5 Outline

The structure of this report goes as follows. Chapter 2 lays down the general framework on
concepts that are repeated in other chapters. This includes what liquefaction entails; the use and
benefits of triaxial tests; typical stress-strain behaviour of sand; and the over-consolidation ratio.

Before the actual modeling can be expounded, the general concepts of constitutive models must
be explained, which is done in chapter 3. A few models will be shown, which are in a sense the
stepping stones on which the NorSand model has been built on. Then, NorSand itself is explained
in-depth. This includes the reasoning and logic behind its various components.

Chapter 4 goes through parametric and stress-path analyses to go deeper into the model
behaviour.

The next chapter checks if the newly implemented constitutive model within PLAXIS is actu-
ally the model that was created by the authors through verification. This is followed by validation,
which explores the constitutive model behaviour en determines if it behaves as intended.

Chapter 6 goes into the application of PLAXIS NorSand by modeling of an underwater slope.
It first explains the general structure of these entities and how they are approached within models.
Then a simplified finite element model of an underwater slope is introduced, which is then analyzed
by simulating deformation with different constitutive models, i.e., Mohr-Coulomb, Modified Cam-
Clay, and NorSand, to determine the differences, benefits and drawbacks of each model. It will
also research the effects of different densities on the FEA.

The last chapter will conclude this report by summarizing the results and related discussions,
followed by giving recommendations.
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2 General Framework

Behaviour of soil depends on many factors, such as effective stress regime, void ratio, fabric, etc.
Constitutive models aim to capture the effects of these factors on soil behaviour, and in turn
predict their behaviour for engineering problems as close as possible. One must not forget that
constitutive models are based on idealizations after all.

This chapter lays establishes a general framework for understanding soils. First, the concept
of liquefaction is explained. Then, a quick rundown on common lab-tests within the field of
Geo-technical engineering are illustrated. Lastly, the typical stress-strain behaviour of sand is
introduced.

2.1 Liquefaction

When a unit of granular material, such as soil, sediments and wastes in tailings dams, is subjected
to stresses, part of it is carried by the soil skeleton as effective stresses (σ′) and, if saturated, part
of it by the water inside the pores as pore water pressure (u). This is can be summed up with
Terzaghi’s Principle:

σ = σ′ + u (2.1)

The strength of granular material is given by the magnitude of effective stress, and the deformation
of the material is due to the change in effective stress. Loading these materials will increase the
total stress, but if the pore water has no time to drain (i.e., undrained loading conditions) the
water will take the stress instead of the soil skeleton (σ = u). Particulate material will liquefy when
it is contractive, saturated and the effective stress is zero - it will lose its strength and stiffness and
start behaving like a fluid. After liquefaction, the excess pore pressure will dissipate and the soil
will consolidate again (Figure 2.1). Liquefaction comes in two flavours: static liquefaction (e.g.,
due to monotonic loading when increasing the embankment height) and cyclic liquefaction (e.g.,
due to earthquakes). This report will focus on the mechanisms of static liquefaction.

Figure 2.1: Sunken car stuck in densified soil after an liquefaction due to an earthquake.
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2.2 Triaxial test

Lab testing is the primary source for our understanding of soil behaviour. Control of initial
conditions and stress paths are huge advantages of these tests. Different tests approach (read: do
not simulate, but at best somewhat approximate) different real-life failure mechanisms.

Figure 2.2: Different tests used for different parts of a failure mechanism. Taken from Wang, Shen, and
Ye, 2008.

The triaxial test (Figure 2.3) in particular is used both in the industry and research. In short,
the test involves consolidating a cylindrical soil specimen under confining pressure (σ3, which is
assumed hydrostatic for convenience. A deviator stress ∆σ is then applied in the vertical direction,
such that the total stress in the vertical direction is σ1 = σ3 +∆σ. As all principal stresses (section
3.1.2) are known and controlled during a triaxial test no stresses or strains are inferred when used
as part of a constitutive model. This way no stress conditions have to be assumed, otherwise
resulting in uncertainty in a model that already approximates behaviour. The steps during a
triaxial test are described in more detail in Appendix A.

During testing, the soil is either compressed or ’extended’. True extension is not possible since
many soils do not have strong cohesion like intact rocks. Therefore, soil samples are compressed
such that cell pressure is larger than the axial load, simulating extension as a result. This report
focuses on triaxial compression.

A typical set-up of triaxial testing hardware is illustrated in Figure 2.4. Axial load, resulting
in deviatoric stress, is applied with use of a drive unit capable of delivering different strain rates.
The applied load is measured by a load cell. The axial displacement is measured using a linear dis-
placement transducer (LVDT). The triaxial cell is filled with de-aired water exerting cell pressure
on the sample. The soil sample has two porous discs at the sample bottom and top for possible
drainage, and is surrounded laterally by a rubber membrane. The top and bottom porous discs
are attached to the upper and lower platens, respectively. There are three pressure connections to
the system that are used to measure the pore pressure or volume changes and apply back pressure
and cell pressure. The typical size of the cylindrical soil specimen is 36mm in diameter and 76mm
in length.
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Figure 2.3: Schematic representation of triaxial compression and extension during phase 2. Altered from
Gao and Zhao, 2013.

Figure 2.4: Schematic representation of the triaxial apparatus. Taken from Dabeet, 2005.
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2.3 Typical stress-strain behaviour of sand

From strain-controlled triaxial lab tests in compression, typical schematics of stress-strain curves
for dense and loose sand in drained and undrained condition can be made. It is important to
keep in mind that behaviour that is shown in drained conditions is an indication how the soil
will behave in undrained conditions. Undrained behaviour arises due to boundary conditions, and
is not in itself fundamental soil behaviour, which is the case for drained behaviour. Therefore,
understanding and modeling drained behaviour is key for approaching soil behaviour in general.

Consolidation due to isotropic compression is well known. Another important characteristic of
particulate material is its ability to contract or dilate upon shearing. When the material is loosely
packed the material can further densify by moving into its pore space when sheared (Figure 2.5a).
Dense material, however, cannot further densify when sheared. Hence, it must roll over itself
during deformation, increasing its pore space with dilation as a result (Figure 2.5b).

Figure 2.5: (a) Illustration of densification of loose material upon shearing. (b) Illustration of dilation of
dense material upon shearing. Altered from Elbadawy, 2014.

It is important to differentiate between the definition of dilation in the absolute sense or that
of rate (Figure 2.6b). In short, the first definition is simply the integral of the latter over the
particular stress path imposed on the soil. In many cases, the absolute volume change may
be contractive after a particular shear strain, even though the material is dilating in terms of
rate. If the soil dilates according to the absolute definition, then the undrained strength will be
greater than the drained (Figure 2.7a), and hence, liquefaction becomes impossible (as long as the
situation was originally statically stable). This report uses the rate definition of dilation. This
definition is preferred because it is an expression of the work flow in the soil, which is fundamental
to plasticity-based constitutive models.
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Figure 2.6 shows the typical behaviour of dense and loose sand in drained conditions, starting
from the same initial stress conditions (i.e., same mean effective stress p′). Both axial (ε1) and
deviator (εq) strains are used in literature as they both give similar trends (strains are explained
in section 3.1.3). From Figure 2.6a it can be seen that dense sand shows a peak deviator stress and
softens to a residual value at larger strains. Loose sand, however, does not peak and instead reaches
its residual strength directly. Figure 2.6b illustrates that in dense sand, after some contraction, the
soil turns dilative (i.e., the soil volume increases as its pore size increase). Loose sand remains fully
contractive. After large axial strain both soils reach critical state and stop changing in volume.
When shearing is continued they simply further deform without volumetric strain - this behaviour
occurs when a soil is at critical state.

Figure 2.6: Typical drained behaviour of dense and loose sand. (a) Deviator stress q vs. axial ε1 or
deviator εq strain. (b) Volumetric strain εv vs. axial ε1 or deviator εq strain.
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Undrained behaviour is a boundary condition which indicates the inability of pore water to
properly dissipate during loading. As fluids can generally be assumed infinitely stiff, volume
change of the soil as a whole is inhibited during loading (i.e., Poisson’s ratio ν = 0.5).

Since loose soil contracts during drained loading, it will also have the tendency to contract
during undrained loading. However, pore water is occupying the pore space and cannot move.
Therefore, the grains will push into the pore water, increasing the water pressure (Figure 2.7b).
Recalling Terzaghi’s Principle (equation 2.1), one can deduce that the initial effective stress is
reduced by the current increase of pore pressure, where the pore pressure is equal to the applied
axial stress. In other words, the loose soil softens until it reaches critical state and the soil stops
its tendency to change in volume (Figure 2.7a). Loose soil can liquefy in undrained conditions if
it softens sufficiently and its effective stress is reduced to zero.

Undrained conditions have the opposite effect on dense sands. Whereas loose soil contracts
upon shearing, dense soils dilate. But again, due to undrained conditions, the pore water is
trapped and is unable to move. The grains start ’pulling’ on the pore water resulting in negative
pore pressures. This in turn increases the effective stress of the sand and it starts hardening - the
soil will not liquefy. Keep in mind that there is a physical limit to how low the water pressure can
go (about -100 kPa i.e., absolute vacuum), before the water vaporises due to cavitation.

Figure 2.7: Typical undrained behaviour of dense and loose sand. (a) Deviator stress (q) vs. axial (ε1) or
deviator (εq) strain. (b) Pore pressure (u) vs. axial (ε1) or deviator (εq) strain.
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Soil strength is directly related to mean effective stress. For higher mean effective stresses soil
has a stiffer response and higher strength. Figure 2.8 is a schematic demonstrating the effect of
mean effective stress on stress-strain curves. The three plots have identical initial void ratios and
preparation methods.

Figure 2.8: Typical drained behaviour of sand with different consolidation pressures.

Although the behaviours described in Figures 2.6, 2.7 and 2.8 are generally applicable, differ-
ences in soil behaviour are observed for different soils, and also for the same soil using different
preparation methods. This is due to different sample preparation methods resulting in different
initial fabric, where fabric refers to “the arrangement of particles, particle groups, and pore spaces
in a soil” (Mitchell and Soga, 2005 as cited in Dabeet, 2005). The effect of different fabric is
illustrated in Figure 2.9. One of the samples was prepared by moist tamping and the other sample
was prepared by wet pluviation, with the former showing stiffer behaviour than the latter. This
demonstrates that fabric, or anisotropy, is of equal importance for the behaviour of sands. This is
an inconvenience, given that there is no easy and standard method for measuring fabric. Promis-
ing research is done to quantify inter-particle contact orientations and forces in the constitutive
behaviour and represent it as an equivalent state parameter (section (3.3.3) as a scalar description
of packing density. For now, it is best to recognize its effects and be conservative in how the effects
are included in engineering design and assessment.

Figure 2.9: Effect of sample preparation on the behaviour of Kogyuk sand. Taken from Been and M.
Jefferies, 2015.
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3 NorSand elasto-plastic model

In this chapter, the NorSand model is explained in detail. First, the concept and basics of consti-
tutive models are explained. Then, Cam-Clay, which can be seen as the stepping stone leading up
to NorSand, is illustrated. Other models, such as Mohr-Coulomb, which are important in their
own right and may give a better understanding of constitutive models, are explained in Appendix
B. The last section gives the model formulation of NorSand, explaining the ideas and experimental
justification behind the parameters.

3.1 Constitutive models

Soil constitutive modelling provides qualitative and quantitative understanding of soil behaviour,
which are derived from mechanics. The need for proper models are in high demand as com-
puters are able to handle increasingly complex numerical analysis, which are becoming standard
procedure.

Soil behaviour depends on many factors including stress level and void ratio. Even though tests
give great insights to behaviour of a soil in question, they by no means describe other possible
combination of stress levels. And performing numerous tests at every possible combination of
stress level and void ratio is impractical. Useful constitutive models allow for quick, cheap and
sufficiently accurate prediction in strength change and deformation characteristics for the full
range of applicable combinations of stress level and void ratio.

This section briefly describes elasto-plastic soil modelling. This is followed by an explanation
on stress invariants, followed by strain elasticity and plasticity. Finally, an overview of commonly
used soil models is given, ending at NorSand.

3.1.1 Elasto-plastic modelling

Soil is an elasto-plastic material, meaning it exhibits both elasticity and plasticity. A typical
elasto-plastic model is comprised out of elasticity and plasticity, a yield surface, a flow rule, and
a hardening/softening rule.

• Elasticity is associated with recoverable strains, and purely elastic behaviour is usually only
observed in soil at very small strains. The direction of an elastic strain increment is the
same as its related stress.

• Plasticity is associated with irrecoverable strains. These can occur alongside elasticity or
without (e.g., at peak dilation).

• The yield surface, commonly denoted as function f = 0, is the boundary between elastic
and plastic strains (Figure 3.1). A change in stress state inside the yield surface (i.e., where
f < 0) causes elastic strains while stress states that want to evolve beyond the original yield
surface (i.e., where f = 0 and ḟ 6= 0, will push the boundary until the yield surface arrives
at that state, causing plastic strains (the soil yields).

• A flow rule controls the direction and relative magnitude of the plastic strain increments
due to yielding (i.e., change in yield surface size). When a soil is sheared its volume changes
according to this flow rule, which is the stress-dilatancy relation.

Flow rules can be associated or non-associated, meaning the plastic strain increment ratio is
normal or not normal to the yield surface, respectively. Associated flow (i.e., normality) rules
have been used in original soil constitutive models as these models do not violate Drucker’s
postulate (Drucker, 1951 as cited in Been and M. Jefferies, 2015), with convex yield surfaces
and plastic strain increment vectors that are normal to those surfaces as a result (Figure
3.1). Normality greatly simplifies models since flow rules are automatically defined if the
yield surfaces are defined (Figure 3.1).
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• Hardening/softening rules describe the amount of plastic strains and movement of the yield
surface itself during yielding: they increase in size during hardening and decrease during
softening. Since stress states cannot lie outside the yield surface, they stay on it as the
surface changes in size due to the consistency condition (Figure 3.2).

Figure 3.1: An example of a yield surface and depiction of normality.

Figure 3.2: Illustration of change in yield surface size (hardening) and the consistency condition. Altered
from Been and M. Jefferies, 2015.
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3.1.2 Stress invariants

Imagine an infinitesimally small unit volume and its related coordinate system within a stress
state. The normal and shear stresses acting on that volume can be summarized in stress tensor σ
shown in Figure 3.3a:

Figure 3.3: (a) A representation of the stress state, (b) A Representation of the orientation of the principal
stresses for that same stress state, where σ1 is the major, σ2 the intermediate and σ3 the minor principal
stress. Taken from Heidbach et al., 2018.

When a body subjected to a stress tensor, it can change both in size and shape, which is done
by the hydrostatic and deviatoric part of the stress tensor, respectively. As such, written in index
notation, the stress tensor can be decomposed into:

σij = sij + pδij (3.1)

where δij is the Kronecker delta (with δij = 1 if i = j and δij = 0 if i/ = j), p is the mean stress
given by:

p =
1

3
σkk (3.2)

The product pδij is the hydrostatic, or isotropic, stress tensor and contains only normal stresses.
The deviatoric stress tensor can be obtained by subtracting the isotropic stress tensor from the
stress tensor:

sij = σij − pδij (3.3)

If one changes, i.e., transforms, the orientation of that volume and its coordinate system, different
forces of that stress state act upon that volume. Due to the conservation of momentum the stress
tensor has to be symmetric. This implies that a coordinate system exists where shear stresses
vanish along the faces of the volume, leaving only the normally acting principal stresses (figure
3.3 b). σ1 is the major principal stress, σ2 the intermediate and σ3 the minor (i.e., σ1 ≥ σ2 ≥ σ3).
Therefore, alternatively, if one applies only the normally acting principal stresses (where σ1 > σ3)
shear stresses do develop on other planes. The magnitude and direction of the principal stresses
can be found by determining the eigenvalues and eigenvectors of the stress tensor σ leading to the
characteristic equation:

σ3 − σ2I1 + σI2 − I3 = 0 (3.4)

where coefficients I1, I2 and I3 are called the first, second and third stress invariant, respectively,
since they do not vary depending on orientation and are thus constant for a giving stress state.
This same concept can be applied to the deviatoric stress tensor, giving rise to the deviatoric stress
invariants J1, J2 and J3.



3 NorSand elasto-plastic model 14

As one seeks to generalize constitutive models such they can be applied in numerical models
while not having to rely on friction angles (measure of strength, explained in Appendix B) or
worry about which orientation the problem is looked at, stress invariants σ′m and σ′q, which are
the isotropic (mean) and deviatoric (shear) stresses, are used (equations 3.5 and 3.6, respectively).
The apostrophe next to the letters indicate effective stresses.

σ′m =
1

3
I1 =

1

3
(σ′11 + σ′22 + σ′33) =

1

3
(σ′1 + σ′2 + σ′3) (3.5)

σ′q =
√

3J2 =

√
3(

1

6
[(σ′11 − σ′22)2 + (σ′22 − σ′33)2 + (σ′33 − σ′11)2] + σ′212 + σ′223 + σ′231)

=

√
1

2
[(σ′1 − σ′2)2 + (σ′2 − σ′3)2 + (σ′3 − σ′1)2]

(3.6)

However, a third invariant is needed if three principal stresses are reduced to two without losing
information. This invariant is called the Lode angle, θ (equation 3.7). Figure 3.4 shows how the
three stress invariants work in conjunction. The Lode is the angle between point p and the pure
shear line, and depends on σ2 (table 3.1)

θ =
1

3
arcsin(

13.5s1s2s3

σ′3q
), with s1 =

(2σ′1 − σ′2 − σ′3)

3
, etc. (3.7)

Table 3.1: Lode angles (TX = triaxial).

TX Compression (σ2 = σ3) TX Extension (σ2 = σ1) Plane-strain (σ2 varies)

θ 30◦ -30◦ -30◦≤ θ ≤ 30◦

Figure 3.4: (a) Representation of the principal stress space, (b) Deviatoric plane. Taken from Barnichon,
1998.

Most ideas in soil mechanics have developed in the context of the triaxial test, and therefore
the stress invariants are rewritten. Since in triaxial compression σ′2 = σ′3, the invariants σ′m and
σ′q turn into p′ and q, respectively:

p′ =
(σ′1 + σ′2 + σ′3)

3
(3.8)

q = (σ′1 − σ′2) (3.9)

Notice how the deviator stress invariant q does not contain a dash. This is because this invariant
is inherently effective since the pore pressure is never included in its value, even if the total
principal stresses are used. For the sake of ease, from now on effective stresses are written without
apostrophes (e.g., p instead of p′), unless explicitly mentioned otherwise.
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3.1.3 Elastic and plastic strains

Most soil models are based on plasticity, which is in itself a macro-scale abstraction of the underly-
ing micro-mechanical reality of grain realignments and movements (Been and M. Jefferies, 2015).
In spite of this abstraction, it reasonably captures the behaviour of soils in a computable way. An
important behavioural aspect of soil is its the way it deforms, which is quantified by measuring
strains (∆L

L ). Analogous to stresses, similar quantities can be defined for the strain tensor εij :

εij =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 = ε (3.10)

The strains related to the isotropic σ′m (equation 3.5) and deviatoric σ′q (equation 3.6) stress
invariants are the volumetric εv and deviatoric (shear) εq strains, respectively. εv, which is a
measure of the relative change in size (and thus not shape), is defined as the sum of the principal
strains:

εv = ε11 + ε22 + ε33 (3.11)

εq, which is a measure shape deformation, is defined as:

εq =

√
2

3
(εsijεsij ) =

√
2

3
‖εs‖ (3.12)

where εsij is the deviatoric strain tensor:

εsij = εij −
εvδij

3
=

ε11 − εv
3 ε12 ε13

ε21 ε22 − εv
3 ε23

ε31 ε32 ε33 − εv
3

 (3.13)

and the norm of that tensor is:

‖εs‖ =

√
(ε11 −

εv
3

)2 + (ε22 −
εv
3

)2 + (ε33 −
εv
3

) + 2(ε2
12 + ε2

23 + ε2
31) (3.14)

Recall that σm and σq can be rewritten for triaxial conditions into p and q. The same can be done
for the volumetric and deviatoric strains:

εv =
(ε33 + 2ε11)

3
(3.15)

εq =
2|ε33 − ε11|

3
(3.16)

Within geo-technical engineering, and thus also this report, a compression positive notation is
used (opposite to the convention within other engineering domains), such that positive volumetric
strain εv is associated with void ratio reduction.

Strain can be recoverable (elastic) or irrecoverable (plastic). The boundary between recoverable
and irrecoverable strains as a yield condition was first proposed by Tresca (1864). Before yielding
only elastic strains occur. During yielding both elastic and plastic strains can occur. The total
stress can then be decomposed into:

ε = εe + εp (3.17)

where εe is the elastic recoverable strain and εp is the plastic irrecoverable strain, which is illus-
trated in Figure 3.5. The most important takeaway is that if stress is reduced before the soil
yields, all deformations are recovered.
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Figure 3.5: Simplified and idealized illustration of an unloading and reloading cycle on a soil. During
unloading, the recovered elastic strain εe is identified as well as the permanent plastic strain εp.

Another important distinction between the two, is the treatment of strains. In elasticity,
principal strain increments are in the same direction as principal stress increments. This creates
the relationship between stress and elastic strains as:

σij = Cijklε
e
kl (3.18)

where Cijkl is the stiffness matrix containing Hooke’s Law. With plasticity, plastic strain are
directed normal to the stress defining the yield surface, and not the stress increments that initiates
the yielding. This is called normality and it is essentially a way for a material to maximize the
energy absorbed during yielding. Normality can be summarized in equation form:

ε̇pij = Λ

(
∂g

∂σij

)
(3.19)

where Λ is the plastic multiplier and g the plastic potential function, which in the case of normality
is the same as the yield function (i.e., g = f). Using normality, the volumetric and deviatoric
plastic strains are computed as:

ε̇pv = Λ

(
∂g

∂p

)
ε̇pq = Λ

(
∂g

∂q

)
(3.20)

and the related plastic dilatancy function Dp is then computed as:

Dp =

∂g
∂p

∂g
∂q

=
ε̇pv
ε̇pq

(3.21)

The state of the material is governed by the so-called Khun-Tucker conditions:

f ≤ 0 Λf = 0 Λ ≥ 0 (3.22)

If f < 0 then the material state is elastic (i.e., λ = 0), while if f = 0 the state of the material
can be in plastic (Λ > 0) or neutral loading (Λ = 0). To characterize the state of the material the
same logic can be used by considering further conditions, the so-called persistency conditions:

ḟ ≤ 0 Λḟ = 0 Λ ≥ 0 (3.23)

where ḟ < 0 represents an elastic unloading, ḟ = 0 and Λ > 0 a plastic loading, and ḟ = 0 and
Λ = 0 a neutral loading.
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3.2 Cam-Clay

Cam-Clay is an associated flow constitutive model based on critical state soil mechanics (CSSM),
and one of the earliest advanced constitutive models for soil. CSSM revolves around the concept
that particulate materials tend to a final critical void ratio (Figure 3.8c) and residual strength
(Figure 3.8b) after large shear strains. Cam-Clay exists in two main varieties: Original Cam-Clay
(OCC) and Modified Cam-Clay (MCC). Even though OCC is not utilized in commercial software,
it has been the stepping stone in the development of MCC, NorSand and other critical state soil
models. MCC, however, is widely used in geotechnical analyses for normally consolidated clays.

Cam-Clay is a work dissipation model (Schofield and Wroth, 1968 as cited by Been and M.
Jefferies, 2015). This means that an idealized dissipation of plastic work, done on an element of
soil by the stresses acting on it, is assumed as the soil undergoes a strain increment. The rate of
working on the soil skeleton by the external loads per unit volume is:

Ẇ = qε̇q + pε̇v (3.24)

During dissipation, only plastic strains are involved as elastic strains are recoverable. As such,
equation 3.24 can be rewritten into:

Ẇ p = Ẇ − Ẇ e = qε̇pq + pε̇pv (3.25)

Dividing by p and ε̇pq gives:

Ẇ p

pε̇pq
= Dp + η (3.26)

which are the plastic dilatancy Dp and stress ratio η (= q
p ), respectively, and together represent

the dimensionless normalized dissipated plastic work. Cam-Clay is based on the assumption that
the dissipation rate is constant throughout plastic shearing:

Ẇ p

pε̇pq
= M (3.27)

In other words, all the yield surfaces intersect the critical state line, illustrated in Figure 3.6. This
due to the assumption of a single isotropic normal consolidation line (iso-NCL) which is parallel
with the critical state line (CSL) in the e-p stress space, illustrated in Figure 3.7. Therefore,
the mean effective stress at critical state pc can be used as a reference parameter for calculating
volumetric strains. Combining equations 3.26 and 3.27 gives a stress-dilatancy relationship (i.e.,
a flowrule):

Dp = M − η (3.28)

which indicates that for critical state conditions (Dp = 0) it follows from equation 3.28 that:

η = M =
qc
pc

(3.29)

The yield surface can be derived by assuming normality in q-p plane and the stress-dilatancy
relationship of equation 3.28. As q = ηp by definition the differential is taken to define the change
in shear stress as:

q̇ = pη̇ + ηṗ (3.30)

Assuming the soil to be a work hardening plastic material from normality:

q̇

ṗ
= − ε̇

p
v

ε̇pq
= −Dp (3.31)
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Rewriting gives:

q̇ = −Dpṗ (3.32)

Substituting equation 3.30 into 3.32 gives:

ṗ

p
+

η̇

Dp + η
= 0 (3.33)

This identity of the normality condition is true regardless of the internal dissipation mechanisms
of the soil, as long as perfect plasticity or work hardening holds. Substituting equation 3.28 into
3.33 and integrating with the integration coefficient as ln(pc) when η = M (i.e., critical state and
p = pc), turns equation 3.33 into the yield surface:

f(p, q, pc) = q −M
[
1− ln

(
p

pc

)]
p (3.34)

Imagine a soil on which primary loading, by means of isotropic compression (i.e., q = 0 and thus
η = 0), is imposed. This would mean the yield surface is pushed outwards (i.e., hardens) at the
bottom right of Figure 3.6. The critical mean effective stress is then determined by substituting
p = p0 and η = 0 into equation 3.34, giving pc = p0/2.718.

The essence of Cam-Clay is its hardening and softening mechanism. For now, drained triaxial
conditions are assumed. When normally consolidated soils are sheared, stress states reach the
yield surface at η < M and the surface hardens, which is associated with contractive volumetric
strains (Figure 3.8). Hardening continues until η = M where the soil reaches the critical state and
further shear strain increments do not cause any change in volume. Alternatively, when loading
over-consolidated soils, the stress state reaches the surface at η > M the surface softens, which is
associated with dilation, until reaching the CSL.

The hardening rule, for OCC, is given in terms of increment of plastic volumetric strain in
equation 3.35. Recall how pc is used as a reference parameter for Cam-Clay as all the yield
surfaces intersect the CSL. The CSL then becomes the hardening law for all stress paths. As such,
the size of the yield surface can be linked to pc.

ṗc
pc

=
(1 + e)

λ− κ
ε̇pv (3.35)

MCC differs from OCC in the shape of its yield surface. Looking at the surface of OCC (Figure
3.6), one can see that it predicts shear strains for hydrostatic loading - i.e., the strain increment
vector is not horizontal at p0 due normality. MCC solves this by introducing an elliptical yield
surface (Figure 3.8b). Another important improvement is the inclusion of elastic shear in MCC,
whereas OCC is rigid (meaning it is not accounted for) in elastic shear resulting in overestimation
of strain increments at small strains.
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Figure 3.6: OCC yield surface where the dilatancy function D (i.e., dilation) is negative on the dry side
and positive (i.e., contraction) on the wet side.

Figure 3.7: Parallel CSL and NCL with a URL intersecting both.

Figure 3.8: Hardening and softening behaviour until critical state. Behaviour is approached using the
MCC constitutive model where a drained triaxial stress path is applied. Altered from Espinoza, 2019.
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3.3 NorSand

This section goes into detail of the constitutive model that is NorSand. The reasoning behind
using NorSand and the justifications and formulations of its components are explained.

3.3.1 Why NorSand?

CSSM explicitly recognizes that any particulate soil can exist over a spectrum of densities, and it
quantifies the effect of void ratio (density) on soil behaviours, making it a powerful framework for
predicting soil behaviour. Despite this, variants of OCC and MCC are avoided to model real sands
as their behaviour, such as dilation and yielding, is represented poorly. This is due to the fact
that soils that are denser than the CSL are treated as over-consolidated, resulting in unrealistic
stiffness with heavily over-estimated strength. The math behind Cam-Clay models is not the cause
of these unrealistic predictions, but the assumption is: all yield surfaces intersect the critical state
line.

Instead of assuming a single iso-NCL, it must be recognized that granular soils exist in a
spectrum of states - i.e., there exists an infinity of normal compression loci in the e-p plane,
depending on the initial void ratio at deposition (which in general is arbitrary). The difference
between the two is further illustrated in Figure 3.9. It may also become clear that instead of
the singular NCL and CSL being parallel and offset by a ’spacing ratio’, there exist infinite NCL
that are not parallel to the CSL. The proof and in-depth explanation on the existence of infinite
iso-NCLs is given in Appendix C.1.

Figure 3.9: (a) Single NCL and (b) Infinite NCL. Altered from Been and M. Jefferies, 2015.

3.3.2 Critical state line

This section will explain the critical state theory. The history and in-depth explanation is given
in C.2. Critical state theory is generalized using two axioms (M.G. Jefferies, 1993):

• Axiom 1. A unique locus, called the critical state locus (CSL), exists in q, p, e space such
that soil can be deformed without limit at constant stress and constant void ratio.

• Axiom 2. The CSL forms the ultimate condition of all distortional processes in soil, so that
all monotonic distortional stress state paths tend to this locus.

In other words, the critical state is taken to be the ultimate state the soil reaches if it is
continuously deformed (sheared), defined as Axiom 2. Note that there are two conditions in the
definition:

• (1) The soil is at constant void ratio.



21 3.3 NorSand

• (2) It has no propensity to change from this constant void ratio condition.

Incorrect assessments and confusion arises if condition (2) is ignored, which is explored in section
3.3.5. The relationship between critical void ratio and mean effective stress is called the critical
state locus:

ec = Γ− λln(pc) (3.36)

where Γ and λ are intrinsic soil properties, meaning that they are not affected by fabric, stress
history, density, etc. The subscript ’c’ denotes critical state conditions. Caution is needed when
looking at quoted values of λ as both log base 10 and natural logarithms are used. Natural
logarithms are more convenient for constitutive modelling, whereas base 10 logarithms arise when
plotting experimental data: the notations λ (or λe where emphasis is needed) and λ10 (= 2.303λ)
are used, respectively. The parameter Γ also has an associated stress level, which is p = 1 kPa by
convention.

Figure 3.10: Critical state line for Erksak 330/0.7 sand from undrained tests that reached a distinct critical
(steady) state. Taken from Been and M. Jefferies, 2015.

3.3.3 State parameter

As soils exist within a spectrum of states, it is important to measure that state against a reference
point to predict and explain behaviour. A concept for such a reference has been established in
section 3.3.2 as the CSL, which is unique for each soil. And since there exists an infinite amount
of NCLs, there is no set distance from the CSL during primary loading like in Figure 3.9a. The
distance of the soils void ratio from the reference state in void ratio-stress space is a first-order
measure: soils not at the critical state must change volume as they are sheared since it is a basic
postulate that the critical state represents the ultimate condition which is reached after sufficient
shear. And the further a soils state deviates from the final critical state, the faster dilation or
contraction happens. The state parameter ψ is illustrated in Figure 3.11a, and is defined as the
measure of this deviation:
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ψ = e− ec (3.37)

where e is the current void ratio of the soil and ec is the void ratio of the critical state at the
current mean stress.

Since the critical void ratio is dependent on mean effective stress, so is the state parameter.
Soils can now be defined loose or dense in a more quantitative sense: a soil with a negative state
parameter can be classified as a dense soil, whereas one with a positive state parameter is loose.
This concept gives insight to how dilatancy in sands with a high relative density (i.e., low void
ratio) is suppressed and can contract under high confining stress levels (i.e., high mean effective
stress). It is the magnitude of dilation that determines strength, not the void ratio or density at
which dilation occurs, which is Rowe’s stress–dilatancy concept rephrased (chapter 3.3.5).

Figure 3.11a illustrates the meaning of the state parameter, where the CSL is simplified and
the bend is left out as engineering practices rarely exceed isotropic stress states of 1000 kPa.
Additionally, it shows how expected state paths of sheared soils can approximated as straight
lines. In reality, if starting from isotropic conditions, there will be an initial contraction before
dilation sets in, but this is a detail on the basic state path vector and can be ignored for simplicity.
Alternatively, these paths can be illustrated in the p′ − q space (Figure 3.11b).

It is convenient to use conditions at the start of a test when reducing laboratory data to develop
soil properties, as that requires the least effort. However, working in terms of initial conditions
unnecessarily complicates things when moving from practical engineering to doing the math and
putting things in a formal framework – the math is simpler if expressed in terms of current values.
As each approach has its own application, both are defined as:

• ψ0 = state parameter as measured at the start of the loading path using initial void ratio
and critical void ratio at initial mean effective stress: ψ0 = e0 − ec (at p0)

• ψ = state parameter measured using current void ratio and critical void ratio at the current
mean effective stress: ψ = e− ec

Finally, instead of taking the theory at face value, it can be substantiated with experimental data.
Figure 3.12 shows minimum dilation versus the state parameter for 20 different soils, presented
in the form of Dmin against ψ0 as explained earlier. The data plotted on this figure range from
clean quartz sands through to silty sands and the mean effective confining stress from 19 to 1200
kPa. The overall trend shows that for a negative initial state parameter, the soil shows a peak
dilation rate, which coincides with a dense soil. From this point onward, the current value of the
state parameter is used.
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Figure 3.11: Projection of the critical state line in (a) e− p′ space and (b) q − p′ space. The CSL in this
space has the slope M = qc

pc
, which are the deviator and mean effective stress at critical state.

Figure 3.12: Maximum dilatancy Dmin of 20 soils in standard drained triaxial compression. Taken from
Been and M. Jefferies, 2015.
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3.3.4 State-dilatancy

As mentioned in section 3.3.1, dense soils exhibit a maximum dilatancy for a given state. Figure
3.12 in section 3.3.3 showed a relation between the state parameter and dilatancy. Realizing that
the trend between Dmin and ψ0 was unique depending on the fines content of a soil (hinted by
the large scatter in Figure 3.12) gave an indication that there exists a soil property involved in
relating state parameter to maximum dilatancy:

Dmin = χtcψ (3.38)

where χtc is a soil property defined under drained triaxial compression. Importantly, note that ψ
is defined as its current, not initial, value and Dmin generally occurs at the peak stress ratio. Dmin

is preferred to strength (i.e., ηmax) to quantify the effect of state as Dmin is related to the change
in void ratio and ψ has void ratio as its input – essentially, the same quantity is used on both
sides of equation (3.38). As the current definition of ψ is used, that means that for the condition
of ψ = 0 naturally gives Dmin = 0, which is the critical state. Figure 3.13 shows several examples
of Dmin versus ψ from drained triaxial tests from which the values of χtc were determined. Then,
if the data in Figure 3.12 is re-plotted using Dmin/χtc, there is a notable reduction in scatter of
the data set as shown in Figure 3.14. Finally, as elastic strains are negligible at peak conditions,
equation (3.38) can be rewritten as:

Dp
min = χtcψ (3.39)

Figure 3.13: Derivation of χ for selected sands (χ is a material property relating maximum dilatancy to
the state parameter for each sand). Taken from Been and M. Jefferies, 2015.
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Figure 3.14: Maximum dilatancy Dmin/χ of 20 soils in standard drained triaxial compression. Notice the
improvement normalizing Dmin by χ compared to figure 3.12. Taken from Been and M. Jefferies, 2015.

3.3.5 Stress-dilatancy

Analogous to state-dilatancy, so too can dilatancy be related to stress. The history and logic behind
stress-dilatancy is given in C.3. Dense granular material exhibit a momentary ’image condition’
(Figure 3.15), as in the image of the critical state, which indicates the change in volumetric strain
rate from contraction to dilation. The stress-dilatancy relationship in NorSand is:

Dp = Mi − η (3.40)

which is similar to the stress-dilatancy relationship in Cam-Clay (equation 3.28) but now with
Mi, where subscript i denotes the current image condition (Figure 3.15). Mi is used in lieu of
Mf (C.3), where Li and Dafalias (2000) suggested that the requirement becomes that Mi must
approach M as the state parameter ψ goes to 0 - i.e., Mi = f(ψ). It is easy to define the nature of
Mi for dense soils (ψ < 0) as they display a peak strength that fits Nova’s flowrule (Figure 3.17):

ηmax = Mtc − (1−N)Dmin (3.41)

where M is the friction ratio at critical state, and N the soil property that represents the volumetric
coupling between the mean and distortional strains, and comes from Nova’s flowrule at peak
strength. In the OCC flowrule N = 0. An equally valid equation for peak strength is (i.e., simply
equation 3.40 rewritten for peak strength):

ηmax = Mi −Dmin (3.42)

Equivalencing equations 3.41 and 3.42 gives a more direct relationship between Mi and the state
parameter:

Mi = M +NDmin = M +N(χψ) (3.43)

where Dmin can be determined with equation 3.38.
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Loose soil (ψ > 0) is more challenging to determine the nature of Mi as the limiting Dmin in
drained compression is at large strain as the soil gets to the critical state - there are no equivalent
plots for loose soils as those produced with dense soils. Presently, two options are considered to
tackle this issue (Figure 3.16):

• Modified Bishop, which links Bishop’s (Skempton and Bishop, 1950 as cited by Been and
M. Jefferies, 2015) observation on near constant friction in loose soils as they were sheared.

• Extended Dafalias, which makes equation 3.43 symmetric

Generally, the Extended Dafalias idealization is used to model loose sands. One reason is that
peak strength develops at low strain in undrained conditions, and Mi < M in order to achieve
this.

Figure 3.15: Plot of single drained triaxial test on dense Erksak sand reduced to stress-dilatancy form.
Altered from Shuttle and M. Jefferies, 2010.

Figure 3.16: Formulation of friction ratio Mi according to Li and Dafalias, 2000 and Skempton and Bishop,
1950.
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There is however an issue with defining the mobilized friction ratio as a function of ψ: during
neutral loading, where the stress-state goes around the yield surface without any yielding (i.e., no
plastic strains), the change in the mean stress will cause ψ to vary. But, a change in ψ means
the soil is yielding, which contradicts the concept of neutral loading. To resolve this issue, the
limiting dilation is defined in terms of ψi, which is the state parameter at the image condition. As
a result, since there is only one image state per yield surface, ψi does not change during neutral
loading and there is no unwanted yielding.

The next step is to define a new hardening limit as equation 3.38 cannot directly be used any-
more. To ensure peak stress still occurs while using the calibration data, the following equivalency
can be set up:

χiψi = χψ (3.44)

After some re-writing, the new hardening limit is found to be:

Dmin = χiψi (3.45)

with

χi =
χtc

(1− χtcλ/Mtc)
(3.46)

and

ψi = e− ei = ψ + λln

(
pi
p

)
(3.47)

The relationship for Mi suggested by Jefferies and Shuttle, which is simply an expanded and more
general version of equation 3.43, is given as:

Mi = M(θ)

(
1− NDp

min

Mtc

)
= M(θ)

(
1− Nχi|ψi|

Mtc

)
(3.48)

M(θ), previously written simply as M, is the general critical friction ratio and depends on the lode
angle (expressed in radians):

M(θ) = Mtc −
M2
tc

3 +Mtc
cos

(
3θ

2
+
π

4

)
(3.49)

Mtc is the critical friction ratio at triaxial conditions, i.e., M(θ) = Mtc at θ = π
6 , and is used

as a reference parameter. Soil property Mtc is generally found by doing multiple drained triaxial
compression tests on sample of various densities. Each test is reduced to a value of peak measured
dilatancy Dmin at peak strength ηmax (peak dilatancy should occur at the same point in the test
as peak strength, see Figure 3.15). Fitting lines through the scatter and extrapolating, one can
find ηmax at Dmin = 0, corresponding to the true critical state (Figure 3.17). In practice, elastic
property data may not not be available. Hence, total strain (D instead of Dp) is used and reducing
test data to η and D should give insight to soil behaviour.
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Figure 3.17: Experimental data for relation between peak strength and peak dilatancy for Erksak sand in
triaxial compression and extension. Taken from Been and M. Jefferies, 2015.

3.3.6 Yield surface and Hardening

To quickly reiterate, NorSand adopts a Cam-Clay like stress-dilatancy relationship:

Dp = Mi − η (3.50)

where Mi is the image stress ratio, which tends to critical state M with shear strain, and is equal
to:

Mi = M(θ)

(
1− Nχi|ψi|

Mtc

)
(3.51)

Determining the yield surface for NorSand follows the same route as done in Cam-Clay. Using the
equation for a general yield surface:

ṗ

p
+

η̇

Dp + η
= 0 (3.52)

and putting in the revised stress-dilatancy (equation 3.50) gives the NorSand yield surface:

f(q, p, pi) = q −Mi

[
1− ln

(
p

pi

)]
p (3.53)

Analogous to Cam-Clay, where the hardening parameter controlling the size of the yield surface is
pc, the hardening parameter in NorSand is pi. A hardening law, which follow the Second Axiom,
can be written as:

ṗi =

[
H
p

pi

(
Mi

Mtc

)
(pi,max − pi)− Ssoft

]
ε̇q (3.54)

where pi,max, which is found by defining the yield surface at maximum dilation, is defined as:

pi,max = p exp

(
−D

p
min

Mtc

)
= p exp

(
−χiψi
Mtc

)
(3.55)
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pi,max is not the true maximum but the maximum allowed pi for that current state. It limits
the evolution of pi, and thus hardening, with respect to the current stresses in turn allowing to
control dilatancy through normality. This hardening limit results in an internal cap to the yield
surface (Figure 3.18). The hardening parameter H is a model soil property, and is a substitute
for λ as it can no longer function as the plastic compliance since the yield surface and the CSL
are decoupled. Ssoft is the softening flag, which is defined as:

Ssoft = Sω

(
η

Mi

)(
K

p

)
Dppi ω = 1− λχtc/Mtc (3.56)

The softening flag can be turned off (S = 0) for drained conditions and on (S = 1) for undrained
conditions. At variance with drained loading, for which the evolution of pi is governed by the
smooth change enforced through the first-order hardening law, during undrained loading, the rate
of change of p can easily become faster than the basic hardening law, thus leading to pi > pi,max.
For this reason, a softening term Ssoft is added to the hardening law resulting to a further decrease
of the image stress pi during undrained conditions to match the increased rate of change of p
(Figure 3.19).

Yielding during unloading is another possible feature of NorSand, but is not implemented in
PLAXIS as of yet. Even though no further time will be spent on this feature, it is still interesting
to get a feeling of it and can therefore be read upon in Appendix C.4.

Figure 3.18: NorSand yield surface and internal cap due to limiting stress ratio ηL from the limit on
hardening.
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Figure 3.19: Effect of activating the softening flag (S = 1) on a loose soil in undrained triaxial conditions.

3.3.7 Elasticity

Even though real soil behaves cross-anisotropic, isotropic plasticity is adopted in NorSand on
the grounds that it approached the behaviour adequately, requires few parameters, and it is
difficult enough to determine those parameters. For now, anisotropy remains highly academic
and theoretical, and is therefore not considered in this model. The dimensionless shear and bulk
(equation 3.57) modulus are written as

Ir =
G

p

K

p
=

1 + e

κ
= Ir

2(1 + ν)

3(1− 2ν)
(3.57)

where Ir is the shear rigidity, and the shear modulus G is called Gmax in engineering practices,
which is often measured during site investigation. Poisson’s ratio ν is rarely measured but is
generally taken in the range 0.15 < ν < 0.25 without testing.

3.3.8 Initial soil state measures

In order to create a starting point, NorSand requires three state measures:

• Geo-static stress state pNCi : It is assigned using a single value of K0, which is equivalent
to assuming a ”green field” level-ground site as the starting point for any boundary value
problem. The geo-static stress-state gives initial values for p0 and q0, and thus η0. These are
then used to compute the normally consolidated yield surface image stress as (i.e., equation
3.53 rewritten at geo-static stress-state conditions):

pNCi = p0exp

(
η0

Mi
− 1

)
(3.58)

• Initial over-consolidation pi,o: Over-consolidation pushes the yield surface away from the
current stress-state thus:

pi,o = RpNCi (3.59)

where R ≥ 1 is the input over-consolidation ratio. It is worth noting that what is reported
as heavily over-consolidated (i.e., soils characterized by R ≥≥ 1) is actually more accurately
viewed as a dense soil. Thus, if modelling heavily over-consolidated deposits, it is suggested
to use a dense choice for ψ0 combined with more modest estimate of R to determine the
initial position of the yield surface.
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• Initial state parameter ψ0: The initial value of the state parameter is assigned using a single
value for each stratum. However, it is found that common depositional conditions for the
soil produces the same soil state parameter despite the natural changes in gradation - in
essence, both void ratio and the CSL change together. This shows up in CPT soundings
which profiles commonly show near constant values of ψ within identifiable strata. For this
reason, ψ becomes the basic input for boundary value problems using CSSM. The assigned
psi0 should be ”characteristic” in the sense of the structural eurocode EN1997 (Marinelli,
2020).

3.3.9 Formulation summary

This section quickly recaps basic theory and NorSand. This report focuses on static liquefaction,
which occurs when the effective stress becomes 0. To predict when liquefaction occurs, constitutive
models are needed. Constitutive models are models which simulate and predict soil behaviour. In
order to generalize models as much as possible, stress (σ′q and σ′m) and strain (ε̇q and ε̇v) invariants
are used, with a compression positive notation. These can be converted into triaxial invariants
(q and p′) as soil properties can be found using solely triaxial tests. Even though they are found
using triaxial tests, they act as a reference point for all other stress combinations.

Soils exist within a whole spectrum of densities (or void ratio e), but have a unique CSL (First
Axiom), which is the ultimate state the soil will reach when sheared indefinitely (Second Axiom).

ec = Γ− λln(σ′m,c) (3.60)

Upon shearing, soils with a negative state parameter dilate whereas soils with a positive state
parameter contract (i.e., do not dilate). In short, soil behaviour can be expressed in terms of
dilatancy (dense) or lack of dilatancy (loose).

ψ = e− ec (3.61)

Dilatancy (equation 3.62) depends on state (state-dilatancy) and stress (stress-dilatancy).

Dp =
ε̇v
ε̇q

(3.62)

State-dilatancy in NorSand is found to have the relationship:

Dp
min = χiψi (3.63)

where Dp
min is the maximum dilatancy (which occurs at ηmax) found in dense soils, χi is a material

property and ψi is the image state parameter. Material property χi relates maximum dilatancy
to the image state parameter for each sand. It is defined by χtc, which is found under drained
triaxial conditions:

χi =
χtc

(1− χtcλ/Mtc)
(3.64)

The image state parameter ψi, which defined at the image critical state (figure ??) and is unique
for each yield surface, can be determined with:

ψi = e− ei = ψ + λln

(
σ′m,i
σ′m

)
(3.65)

Stress-dilatancy in NorSand has the relationship in the form:

Dp = Mi − η (3.66)

where Dp is the plastic dilatancy, Mi is the image critical friction ratio and η =
σ̄q

σ̄m
is the stress

ratio. It is found that the critical friction ratio mobilizes, and evolves until reaching the final
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critical friction ratio M . This mobilized critical friction ratio Mi is anchored to the image state
and is defined as:

Mi = M(θ)

(
1− NDp

min

Mtc

)
= M(θ)

(
1− Nχi|ψi|

Mtc

)
(3.67)

The general critical friction ratio M(θ) can be defined, using the critical friction ratio found in
triaxial tests Mtc, as:

M(θ) = Mtc −
M2
tc

3 +Mtc
cos

(
3θ

2
+
π

4

)
(3.68)

The yield surface in NorSand (Figure 3.18) is defined by:

f(σ′q, σ
′
m, σ

′
m,i,max) = σ′q −Mi

[
1− ln

(
σ′m
σ′m,i

)]
σ′m (3.69)

Its internal cap is defined as:

σ′m,i,max = σ′mexp

(
−D

p
min

Mtc

)
= σ′mexp

(
−χiψi
Mtc

)
(3.70)

where σ′m,i,max is the maximum allowed σ′m,i for that current state. Hardening of the yield surface
depends on he difference between the hardening parameter σ′m,i, which is also anchored to the
image state, and σ′m,i,max, and is defined as:

σ̇′m,i = H
[
σ′m,i,max − σ′m,i − Ssoft

]
ε̇q (3.71)

Elasticty in NorSand is captured with the shear rigidity Ir and ν as these can be used to
determine the bulk modulus as well:

Ir =
G

σ′m
(3.72)
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4 Parametric and Stress-path Analysis

NorSand has been implemented into PLAXIS, which is a geotechnical analysis software capable
of performing advanced finite element or limit equilibrium analysis of soil and rock deformation
and stability, as well as soil structure interaction and groundwater and heat flow.

Before applying NorSand to research real-life case studies, its numerical behaviour must be
determined, which in this report is done in the Soil Test facility of PLAXIS by means of single stress
point analysis. First, a parametric analysis is done to determine the influence of each parameter.
Lastly, the stress-path responses are determined for different sand states and boundary conditions.

4.1 Model parameters

This section quickly recaps the parameters that exist within NorSand:

• Gref : Reference value of the shear modulus at the reference pressure.

• pref : Reference mean pressure (generally the common value of 100 kPa is used).

• nG: Exponent of the power-law elasticity.

• ν: Poisson’s ratio.

• Mtc: Friction ratio at critical state in triaxial conditions.

• N : Material parameter controlling the maximum stress ratio as a function of the minimum
dilatancy.

• χtc: Material parameter which governs the inclination of the minimum dilatancy as a function
of the state parameter.

• H0 & Hψ: Hardening parameters.

• R: Over-consolidation ratio.

• S: Softening flag.

• ψ0: Initial value of the state parameter.

Elastic properties used in NS are Gref , nG and ν (equation 4.1). NS anchors elasticity to
Gref ≡ G100, which is the value of the mean effective stress at the reference pressure pref equal to
100 kPa (a widespread convention), combined with an exponent nG for a power-law trend, thus
introducing the stress-dependency on this modulus. Commonly, Poisson’s ratio ν is not measured
and 0.2 is adopted as ”not unreasonable” based on the extensive testing of Ticino sand.

G = Gref

(
p

pref

)nG

(4.1)

During undrained loading the rate of change of p can easily become faster than the basic hardening
law, thus leading to pi > pi,max (contrary to the basic principle of the hardening limit). For this
reason, a softening term Ssoft is added to the hardening law resulting to a further decrease of the
image stress pi during undrained conditions (i.e., for drained loading Ssoft ≡ 0). In other words,
it decreases (softens) the peak stress.

Plastic hardening parameter H. Plastic hardening modulus is the only NS-specific property as
it relates only to the NS hardening law. There is an element of softening associated with increasing
η, and better fits are obtained to test data if that is recognized. Thus, H = H0 −Hψψ is used for
the hardening modulus. Both H0 and Hψ are determined by optimization a set of drained triaxial
tests which include loose and dense states. Where using only H0 makes H a static parameter,
using Hψ adds a dependence on the evolving ψ and makes H dynamic.
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4.2 Parametric analysis

The first step of the numerical behaviour is to systematically determine the effects of the model
parameters on the computed behaviour.

4.2.1 Analysis results

Each model parameter is changed over a large enough range to clearly see an effect, but within
the domain of realistic values for sands in general. Tables from different sources (Been and M.
Jefferies, 2015, Ghafghazi, 2011, Marinelli, 2020, and Shuttle and M. Jefferies, 2010) are used as
a reference to establish this domain. The baseline parameters are given in Table 4.1 and do not
represent any sand in particular.

Table 4.1: Baseline parameters for parametric analysis

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R S ψ0 p0
350 100 0.5 0.2 1 0.03 1.2 0.35 4 300 0 1 0 -0.15/0.15 200

The analysis is done in triaxial compression for each parameter in undrained (TXU) and drained
conditions (TXD), for dense and loose sand, from an initial consolidation pressure of p0 = 200
kPa. The range for each parameter is tabulated as well (table 4.2).

Table 4.2: Parametric analysis

Ir (pref = 100) Mtc N χtc H0 Hψ
35, 350, 3500 1.1, 1.2, 1.3 0.25, 0.35, 0.45 3, 4, 5 100, 300, 500 0, 1000, 3000
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Shear rigidity Ir

Figure 4.1: Parametric analysis of shear rigidity Ir on dense soil for the values Ir = [35, 350, 3500].

Figure 4.2: Parametric analysis of shear rigidity Ir on loose soil for the values Ir = [35, 350, 3500].
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Critical friction ratio Mtc

Figure 4.3: Parametric analysis of critical friction ratio Mtc on dense soil for the values Mtc = [1.1, 1.2,
1.3].

Figure 4.4: Parametric analysis of critical friction ratio Mtc on loose soil for the values Mtc = [1.1, 1.2,
1.3].
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Volumetric coupling coefficient N

Figure 4.5: Parametric analysis of the volumetric coupling parameter N on dense soil for the values N =
[0.25, 0.35, 0.45].

Figure 4.6: Parametric analysis of the volumetric coupling parameter N on loose soil for the values N =
[0.25, 0.35, 0.45].
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Soil property χtc

Figure 4.7: Parametric analysis of χtc on dense soil for the values χtc = [3, 4, 5].

Figure 4.8: Parametric analysis of χtc on loose soil for the values χtc = [3, 4, 5].
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Hardening parameter H0

Figure 4.9: Parametric analysis of the hardening parameter H0 on dense soil for the values H0 = [100,
300, 500].

Figure 4.10: Parametric analysis of the hardening parameter H0 on loose soil for the values H0 = [100,
300, 500].
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Hardening parameter Hψ

Figure 4.11: Parametric analysis of the hardening parameter Hψ on dense soil for the values Hψ = [0,
1000, 2000].

Figure 4.12: Parametric analysis of the hardening parameter Hψ on loose soil for the values Hψ = [0,
1000, 2000].
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4.2.2 Discussion: Parametric analysis

The influence of the shear rigidity on dense undrained sand (Figure 4.1) shows that the stiffer
the sand (i.e., the higher Ir) the quicker it tends to maximum dilation resulting in very strong
negative pore pressures, i.e., high increase of mean effective stress and a higher peak strength. The
upper left sub-figure shows a distorted picture: in reality the graph for Ir = 3500 goes way up for
the same axial strain as the others. The current range for the figure is chosen such that clearly
illustrates the initial behaviour. To sum up, increasing Ir in dense sands in undrained conditions
increases the peak strength. For drained conditions there seems to be a threshold where increasing
Ir does not really affect the behaviour anymore. A more comprehensive analysis is needed to find
that threshold.

In loose sands, the effect of increasing Ir is clear: it accelerates the process of reaching the CSL
and liquefaction, seen in the top left sub-figure of Figure 4.2. Alternatively, it offsets reaching the
peak strength, shown in the top right sub-figure in Figure 4.2. Changing Ir in drained conditions
has no effect on loose sands.

Changing the critical friction ratio has very little effect on the volumetric strain. However,
increasing Mtc has the expected effect of increasing the peak strength in both drained dense
and undrained loose tests (equation 4.2). Since soil has a tendency to follow roughly the same
trajectory during loading (e.g., seen in Figure 3.15), increasing Mtc results in increasing the peak
strength at essentially same maximum dilatancy (since Dmin is mostly unaffected as χtc remains
unchanged).

ηmax = Mtc − (1−N)Dmin (4.2)

The biggest effect of increasing the volumetric coupling coefficient N is seen when looking at
the change in peak strength: increasing the volumetric coupling coefficient N decreases the peak
strength in both undrained and drained conditions, in both dense and loose sands.

Increasing χtc, which means a larger minimum dilatancy for the same state parameter value
(equation 4.3), shows that it increases the peak strength in drained dense sands but has the
opposite effect in loose sands in undrained conditions, i.e., it decreases the peak strength.

Dmin = χtcψ (4.3)

Increasing H0, which increases H as well (equation 4.5), results in quicker hardening (equation
4.4) and therefore its peak strength is reached faster. In undrained condition for dense sands, this
results in a stronger increase in mean effective stress p. Dense sands in drained conditions only
see a sharper rise to peak strength. Loose sands do not see a decrease in peak strength, but a
quicker path to liquefaction when H0 is increased. This is illustrated by a softer curve in the top
right sub-figure in Figure 4.10.

ṗi =

[
H
p

pi

(
Mi

Mtc

)
(pi,max − pi)− Ssoft

]
ε̇q (4.4)

H = H0 −Hψ ∗ ψ (4.5)

The hardening parameters H0 and Hψ shows similar effects when changed. This makes sense
when looking at the equation for the hardening modulus H. Caution is needed, however, as
increasing Hψ for dense sands has the same effect as increasing H0. Because as the state parameter
is negative, it cancels out the negative signs in equation 4.5. But in loose sands, increasing Hpsi

has the opposite effect as H0.
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4.3 Stress-path response

Different stress evolutions are described in this section. The first sub-section illustrates the be-
haviour of dense and loose sand in drained and undrained conditions. The second describes the
effects of the softening flag on the stress-path on loose undrained soil.

4.3.1 Stress-path response: general soil conditions

The stress-path response shown in Figures 4.13 to 4.16 illustrate the constitutive behaviour of
the NorSand model more clearly for dense and loose sand in drained and undrained conditions.
The input parameters are the same as the baseline values used in the previous section, but are
re-tabulated in Table 4.3. An initial isotropic consolidation pressure p0 = 200 kPa is used for all
stress-path responses. These figures show: the stress path and the corresponding yield surface in
combination with the hardening variables (i.e., the image stress pi and its maximum value pi,max
at that state), thus showing their evolution during the loading path in sub-figures a; the evolution
of the shear stress and the dilatancy in sub-figures b; the difference between pi,max and pi, which
characterizes the incremental hardening (equations 3.70 and 3.71), in sub-figures c; and the road
to critical state, depicted by ψ and ψi tending to zero, in sub-figures d.

Table 4.3: Baseline parameters for stress path response

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R S ψ0

350 100 0.5 0.2 1 0.03 1.2 0.35 4 300 0 1 0 -0.15 or 0.15

Recalling the hardening rule helps to explain the evolution of stress paths:

ṗi =

[
H
p

pi

(
Mi

Mtc

)
(pi,max − pi)− Ssoft

]
ε̇q (4.6)

where

pi,max = exp

(
−D

p
min

Mtc

)
= exp

(
−χiψi
Mtc

)
(4.7)

The evolution of the drained dense test (Figure 4.13) stops before the soil reaches critical state,
which is indicated by the circle labeled qcs. This figure clearly shows how hardening stops, and
peak strength is reached, when pi = pi,max. However, since ψi 6= 0, a difference occurs again
between pi and pi,max after further shearing (subplot d). Consequently, the soil then undergoes
softening as the difference pi,max − pi turns negative (note that this difference is indeed small).
Subplot b also illustrates how the soil contracts (Dp > 0) during the first part of shearing, and then
quickly turns into dilation (Dp < 0), with the peak of that graph indicating maximum dilation.
Additionally, it can be seen how dilation occurs while the soil hardens.

Figure 4.14 illustrates how the undrained dense soil has a tendency to harden indefinitely as
the difference between pi and pi,max is kept from reaching 0 (see subplot c). In other words, the
soil keeps increasing in strength as long as it is sheared in undrained conditions and will not reach
critical state.

Drained loading of a loose soil (Figure 4.13) is fairly straight-forward. What is interesting,
however, is the quick increase in size of the yield surface during first few steps of axial deformation
- this is where the difference between pi,max and pi is relatively large. At the same time, one can
observe from subplot b that contraction starts off at a high rate, but quickly slows down. After
the difference turns really small, but not 0 (subplot c), hardening occurs at a slower pace and
continues until critical state is reached.

Undrained loading of loose soil might have the most complicated evolution. The biggest dif-
ference compared to the other stress-paths is how quickly difference between pi and pi,max turns
negative, meaning pi > pi,max. This indicates that, after the mean stress decreases due to pore
pressure increase, softening occurs very quickly. Note that softening, which in this case is not true
softening behaviour, which is where soil degradation occurs, but a softening ’trick’ enforced by
NorSand to simulate the undrained behaviour where the pore pressure increases.
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Model response of dense soils

Figure 4.13: Model response during a drained triaxial test on a dense sand (ψ0 = −0.15) with the input
parameters given in Table 4.3.

Figure 4.14: Model response during an undrained triaxial test on a dense sand (ψ0 = −0.15) with the
input parameters given in Table 4.3.
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Model response of loose soils

Figure 4.15: Model response during a drained triaxial test on a loose sand (ψ0 = 0.15) with the input
parameters given in Table 4.3.

Figure 4.16: Model response during an undrained triaxial test on a loose sand (ψ0 = 0.15) with the input
parameters given in Table 4.3.
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4.3.2 Stress-path response: softening flag

This section covers three elements: the difference in the behaviour of loose soil in undrained
conditions when the softening flag is deactivated or activated; the re-hardening behaviour loose
soil in undrained behaviour can exhibit; and the effect of increasing the consolidation pressure. In
order to clearly show the to-be-described behaviour in this section, different parameters must be
used:

Table 4.4: Parameters for stress path response

Gref/pref pref nG ν Γ λe Mtc N χtc H0 Hψ R S ψ0 p0
300 100 1.0 0.15 0.875 0.03 1.27 0.35 4 100 0 1 0/1 0.03 100/500

The figures in this section show: the yield-surfaces at select points, such as the beginning and
the end of the test, and their related hardening variables in sub-figures a; the evolution of the
shear stress and the dilatancy in sub-figures b; the stress path in the non-logarithmic compression
plane with the aforementioned hardening variables in sub-figures c; and the difference between
pi,max and pi, which characterizes the incremental hardening, in sub-figures d.

The evolution of the undrained loose test where the softening flag is turned off, illustrated
in Figure 4.17 (ψ0 = 0.03), shows similar behaviour as seen in Figure 4.16 (ψ0 = 0.15). The
difference, however, is that the effect of softening is much stronger in Figure 4.16 than seen in
Figure 4.17 due to looser state of the former resulting in a stronger reaction to undrained shearing.

Activating the softening flag gives interesting results (Figure 4.18). One must not forget that
the point at which the soil arrives at critical state does not change when the softening flag is
activated. The first effect of S = 1 is that the peak strength is reduced. This is attributed to
larger decrease of pi due to Ssoft - in other words ṗi becomes more negative resulting in earlier
softening.

The next part of the evolution shows how the stress-path crosses the critical state line (i.e.,
ψ = 0 for a moment), shown in sub-figure c. The stress-path keeps going, even though ψ = 0, since
there is still a difference between pi,max and pi, resulting in further softening. Note that sub-figure
d only shows a positive difference between pi,max and pi, indicating that only hardening should
occur throughout the evolution, but one must not forget that Ssoft contributes to the further
decrease, resulting in ṗi < 0 and thus softening.

Then, there comes a point where re-hardening occurs after softening, which is indicated by
yield surface 3 in sub-figure a. This is explained as the stress-path crosses the CSL and continued
on softening, the soil turned slightly dense (i.e., ψ < 0). This continues until ṗi > 0, to which there
is hardening until the soil reaches true critical state where ψ = 0 and there is no more difference
between pi,max and pi.

Figures 4.19 and 4.20 show that an increase in consolidation pressure results in an increase
in size but no change in shape if all other parameters are kept the same. Also, even though the
values differ, the movement of the stress-paths remain the same.
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Model response difference between S = 0 and S = 1

Figure 4.17: Model response during an undrained triaxial test on a loose sand with the softening flag
turned off (S = 0 and p0 = 100 kPa). The input parameters are given in Table 4.4.

Figure 4.18: Model response during an undrained triaxial test on a loose sand with the softening flag
turned on (S = 1 and p0 = 100 kPa). The input parameters are given in Table 4.4.
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Model response difference between S = 0 and S = 1 at a higher consolidation pressure

Figure 4.19: Model response during an undrained triaxial test on a loose sand with the softening flag
turned off (S = 0 and p0 = 500 kPa). The input parameters are given in Table 4.4.

Figure 4.20: Model response during an undrained triaxial test on a loose sand with the softening flag
turned on (S = 1 and p0 = 500 kPa). The input parameters are given in Table 4.4.



5 Verification and Validation 48

5 Verification and Validation

After new models are implemented, they must be verified to ensure they are in fact the same
model that was originally developed and validated to determine if it approximates sand behaviour
as intended. Verification is done with two methods: verification by checking the output of PLAXIS
NorSand with the values calculated with formulation on which the model is based (section 5.1);
and verification by comparison between the newly integrated NorSand in PLAXIS and an original
implementation of NorSand, produced by the authors of the model (section 5.2). Validation
is done by comparing PLAXIS NorSand to experimental lab test data (section 5.3), which can
be found on the website of the publisher of the book written by Been and M. Jefferies, 2015:
http://www.crcpress.com/product/isbn/9781482213683.

5.1 Original formulation versus PLAXIS NorSand

Solving problems can be done analytically or numerically. An analytical solution involves framing
the problem in a well-understood form and calculating the exact solution. A numerical solution
means making guesses at the solution through iterations until the solution is accurate enough. As
NorSand is a plasticity model, which is strongly non-linear, calculating the stress-path manually
would be extremely difficult and is not a closed-form solution. As such, there exists no analytical
solution for the stress path. Instead, to further verify PLAXIS NorSand a comparison is made
between the output of PLAXIS NorSand and the solution of the formulation on which the imple-
mentation is based on. The peak strength and their related mobilized friction ratio in both dense
drained and loose undrained condition are chosen as reference points for the verification.

5.1.1 Formulation

Before diving into the formulation and different processes for the comparison, it is important to
highlight that the original formulation will have an initial input that was an output of PLAXIS
NorSand. This will be further expanded on when the processes are explained.

Soil behaviour has been observed to follow the formulation given in equation 5.1, which is a
re-written form of the Dafalias dilatancy equation:

Mi = η +D (5.1)

As mentioned in section 3.3.5, a more direct relationship between the mobilized friction ratio Mi

and the state parameter ψ is determined as:

Mi = Mtc +NDmin = Mtc −Nχtc|ψ| (5.2)

This equation is, in essence, directly used in the PLAXIS implementation of NorSand. These two
equations are used to determine the peak strength ηmax for the original formulation.

Since the loose test is done in undrained conditions, there is no volumetric strain. As such,
the process to arrive at the peak for the formulation is different than that for the dense drained
test. Both processes will be explained separately.

Process dense drained test

After running the implementation, using the parameters given in Table 5.2 and ψ0 = −0.15,
the program outputs, after a little bit of post processing, ηmax and Dmin. This Dmin, along
with Mtc and N that were known beforehand (Table 5.2), will then be used as an input for the
original formulation (equation 5.2) to determine Mi (Mi,form). Then, both Mi,form and Dmin,
recall that peak strength occurs at maximum dilation, are used in equation 5.1 to determine ηmax
(ηmax,form). Equation 5.1 is also used to determine the mobilized friction ratio at peak strength
for the implementation (Mi,PLAXIS).
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Process loose undrained test

Since undrained conditions does not allow for volumetric strain, there is no related maximum
dilation at peak strength for the undrained loose test. Instead, the state parameter at peak
strength from PLAXIS is used as an input in equation 5.2 to determine Mi,form. Similarly, the
peak strength for the original formulation can be determined using a modified version of equation
5.1:

ηmax = Mi,form − χtcψ (5.3)

The peak strength and the related state parameter, which are extracted from the output of the
implementation, are used to determine Mi,PLAXIS using equation 5.3.

5.1.2 Test results

Following the steps presented in the previous section it is possible to determine and compare the
mobilized friction ratio and the peak strength for both the original formulation and the imple-
mentation for dense drained and loose undrained tests. The results are given in the table below.
Figure 5.1 illustrates the peak strength and the related minimum dilation at that point.

Table 5.1: Original formulation and PLAXIS NorSand mobilized friction ratio Mi and peak strength ηmax
results.

Dense drained Loose undrained

Mi ηmax Mi ηmax
Original formulation 1.0767 1.429 1.0160 0.4904

PLAXIS NorSand 1.0801 1.4324 1.0465 0.5208

Figure 5.1: Illustration of the peak stress points from which the model data is extracted.
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Table 5.2: Parameters for comparison between PLAXIS (PLX) NorSand and original formulation at peak
strength.

Γ λe Mtc N χtc H0 Hψ Gmax at p0 nG ν ψ0 p0 R S

1 0.030 1.20 0.35 4 300 0 70 0.5 0.2 -0.15 or 0.15 200 1.0 0

5.1.3 Discussion: Original formulation versus PLAXIS NorSand

Even though the verification is not done in the classical sense, i.e., comparing a numerical solution
with an analytical solution, the applied process still allowed for some comparison to check whether
the implementation arrives at realistic values for a reference point (in this case peak strength).

It can be seen from Table 5.1 that PLAXIS NorSand consistently produces higher values than
the original formulation. Comparison for the dense drained test indicates a very small difference
between values for both the mobilized friction ratio Mi and peak strength ηmax. Comparison for
the loose undrained test shows a slightly bigger difference.

Lastly, it is worth noting that the D− η plot in Figure 5.1 for the loose undrained test is quite
unrepresentative. Strictly speaking, undrained tests result no volumetric strains and therefore
D = 0 throughout the test as well. However, as the PLAXIS implementation uses Young’s
modulus of water, which is very large, in its stiffness matrix to calculate the elastic response
during undrained loading there is still some, albeit negligibly small, volumetric strain. As such,
one can still plot the evolution of the dilatancy versus the stress ratio for loose undrained tests,
which interestingly somewhat follows the same path for loose drained tests (see subplot b of Figure
C.5 in Appendix C.3).
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5.2 VBA NorSand versus PLAXIS NorSand

One of the first implementations of NorSand by the authors of NorSand is done in Visual Basic for
Applications (VBA) on Excel and is modeled with a purely explicit strategy using forward Euler
method. This VBA version of NorSand (VBA NorSand) is what the PLAXIS version of NorSand
(PLAXIS NorSand) will be compared to. The process is done in two steps: first, different tests
are used to properly calibrate the VBA NorSand. Then, after a proper fit is established, the same
input values are fed into the PLAXIS NorSand. In essence, the more true to the original, the
more the VBA and PLAXIS NorSand should overlap. Even though PLAXIS NorSand employs a
slightly different strategy than VBA NorSand, e.g., automatic sub-stepping with error control to
further enhance the model, the outputs of both versions should mostly overlap nonetheless. The
verification process is done in the context of triaxial and direct simple shear tests. As undrained
direct simple shear (DSSU) data is very scarce and the VBA NorSand does not model drained
direct simple shear (DSSD) well, it was opted to simply use variables that do not describe a
particular soil in order to establish the overlap between VBA and PLAXIS NorSand.

5.2.1 Determined soil properties from lab tests

The experimental data is derived from tests done on Erksak 330/0.7, where the first number
denotes the D50 of sand in micrometers (e.g., 330 µm = 0.360 mm for Erksak) and the second
number the fines content in percentage (e.g., 0.7% for Erksak). The soil properties derived from
this data are shown in figure 5.2. Each soil property is derived by processing triaxial test data.
Parameter N and critical friction ratio in triaxial conditions Mtc, illustrated in subplot a, can be
found by plotting the maximum stress ratio ηmax at maximum dilatancy Dmin of multiple drained
dense tests (figure 3.15 shows one such point of a test). Mtc, the point where soil has arrived at
critical state, is found at the intersection where Dmin = 0. Subplot b shows how plotting the state
parameter at the point of maximum dilatancy - again, from dense drained triaxial tests - gives a
linear relationship, which has the slope χtc. The CSL in subplot c is derived by fitting a line, in
log-scale, through the endpoints of tests where critical state is reached - these points are generally
from undrained loose tests as they tend to quickly reach critical state.

Figure 5.2: Illustration of derivation of soil properties for Erksak 330/0.7. The black graphs in subplot c
are that of dense tests, whereas the grey lines represent loose tests.
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5.2.2 Calibration and comparison

This section shows the extent to which VBA NorSand and PLAXIS NorSand overlap while using
the same parameter set. These parameters will also show how far they deviate from the lab test-
determined soil parameter. One can appreciate that these results are both a form of verification,
in that they show the similarities between the original implementation and the new one, but also
a form of validation, in that they show how well the constitutive model is able to simulate lab
tests. Further validation is done in section 5.3.

The similarity between the VBA and PLAXIS NorSand are illustrated in figures 5.3 to 5.6.
Four different tests (table 5.3) are used to calibrate VBA NorSand. These tests range from drained
to undrained on dense and loose sands. The resulting parameters, which were then used as the
input for PLAXIS NorSand, are given in table 5.4. Figure 5.7 compares the VBA and PLAXIS
NorSand in DSSU conditions without calibration, where the variables, that do not describe any
soil in particular, are given in table 5.5.

Table 5.3: Test values of Erksak 330/0.7 monotonic triaxial tests. MT = moist tamped and WP = wet
pluviated.

Test ψ0 p0 (kPa) G0 (MPa) Preparation method

1. CID D664 (dense drained) -0.101 300.3 158 WP

2. CIU L602 (dense undrained) -0.012 500.1 161 MT

3. CID D681 (loose drained) 0.068 1005.4 194 MT

4. CIU C609 (loose undrained) 0.076 499.7 129 MT

Table 5.4: Calibrated parameters to the triaxial tests. T = Test.

CSL Plasticity Elasticity

T Γ λe Mtc N χtc H0 Hψ Gmax at p0 nG ν ψ0 p0 R S

1. 0.86 0.022 1.27 0.40 5.2 30 1000 160 0.5 0.2 -0.101 300 1.0 0

2. 0.86 0.022 1.26 0.37 4.6 50 0 160 0.5 0.2 -0.012 500 1.3 0

3. 0.86 0.022 1.21 0.37 4.6 60 0 190 0.5 0.2 0.068 1005 1.0 0

4. 0.86 0.022 1.17 0.45 5.5 140 100 55 0.5 0.2 0.076 500 1.15 1
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VBA NorSand versus PLAXIS NorSand: dense triaxial tests

Figure 5.3: Calibrated comparison between PLAXIS (PLX) NorSand, VBA NorSand and dense drained
triaxial (CID D664) test data.

Figure 5.4: Calibrated comparison between PLAXIS (PLX) NorSand, VBA NorSand and dense undrained
triaxial (CIU L602) test data.
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VBA NorSand versus PLAXIS NorSand: loose triaxial tests

Figure 5.5: Calibrated comparison between PLAXIS (PLX) NorSand, VBA NorSand and loose drained
triaxial (CID D681) test data.

Figure 5.6: Calibrated comparison between PLAXIS (PLX) NorSand, VBA NorSand and loose undrained
triaxial (CID G154) test data.
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VBA NorSand versus PLAXIS NorSand: dense and loose DSSU tests

Without going into too much detail, this section will quickly explain what the direct simple shear
test entails and show the results of the comparison between the two implementation of NorSand
in undrained conditions.

Figure 2.2 from section 2.2 illustrates how direct simple shear (DSS) tests can also give infor-
mation about soils, such as the horizontal shear strength τmax, cohesion c and friction angle φ (see
Appendix B). The sample is consolidated in one direction as it is constrained horizontally (i.e.,
no lateral strain) - this keeps the sample in a K0 condition, to simulate the deposition of natural
soils. In a DSS test the sample can be constrained by different methods: a stack of metal rings,
a wire reinforced membrane or a confining cell pressure, with plane strain conditions as a result.
One should keep in mind that, contrary to triaxial tests where the stresses can be expressed in
the p-q space (as σ2 = σ3), DSS tests are commonly expressed in shear stresses.

As mentioned before, the comparison between PLAXIS NorSand and VBA NorSand for undrained
direct simple shear conditions is done without the calibration of lab tests as they were scarce and
insufficiently accurate to be useful. As such, they are compared with the use of variables, given
in table 5.5, that does not describe any particular soil.

Figure 5.7: Comparison between PLAXIS (PLX) NorSand and VBA NorSand in DSSU conditions.

Table 5.5: Parameters of no particular soil for comparison between PLAXIS (PLX) NorSand and VBA
NorSand in DSSU conditions.

Γ λe Mtc N χtc H0 Hψ Gmax at p0 nG ν ψ0 p0 R S

1 0.030 1.20 0.35 4 300 0 70 0.5 0.2 -0.15 or 0.15 200 1.0 0
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5.2.3 Discussion: VBA NorSand versus PLAXIS NorSand

In an ideal world, one set of soil parameters (i.e., CSL, plasticity and elasticity parameters), most
of which have been derived from the data mentioned in section 5.2.1, along with different initial
parameters (e.g., state parameter and consolidation pressure), are used as input parameters while
acquiring accurate results.

It became evident, however, in order to fit individual lab test data as best as possible, the soil
properties had to be treated as if they had ’freedoms’, meaning that the values can deviate from
what has been determined from lab test data (Figure 5.2). One explanation for the difference in
properties from test to test, even when applied to the same sand-type (e.g., Erksak 330/0.7), is
due to the inherent and unrepresented aspect of soil called ’fabric’. This difference in fabric can,
among other influences, arise due to different preparation methods (Been and M. Jefferies, 2015).

Overall, in triaxial conditions, calibration of the models resulted in decent approximation of
the experimental data. The first parameter that stood out was that an R larger than 1.0 was
needed for both undrained tests, even though the tests were prepared without over-consolidating
the samples. This further emphasises that all parameters must be regarded as having ”freedoms”
and thus used in order to properly calibrate the models.

Another parameter that deviated from test data, albeit expected, was the need for a lower
Mtc for the loose samples. It was observed in Been, Hachey, and M. Jefferies, 1991 (Figure C.7)
that looser soils had a lower critical state friction angle φ′. This was also touched upon by Been
and Jefferies (2015) when it was observed that loose sands consistently required lower Mtc values
for NorSand to properly match experimental data. An explanation could be that values of Mtc,
determined by use of regression lines (figure 3.17), are larger than the critical friction ratio at
critical state Mtc found in loose sands. This is illustrated in figure C.5 in Appendix C.3, where
sub-figure b indicates a trend-line with a lower M than those found in a and c. As such, because
the Mtc for dense sands are larger, it results in ”pulling up” of the regression line in sub-figure c.
Therefore, a lower Mtc is required when calibrating for loose sands.

Aside from the need to utilize all parameters to calibrate each test individually, inputting the
resulting values in both VBA NorSand and PLAXIS NorSand gave very similar outputs.

As there were no proper experimental DSSU lab tests available, only a verification was done.
The DSSU tests show a very good agreement in their results. The main observable difference, al-
though negligible, is the minimal difference in strength: the strength determined in VBA NorSand
is slightly larger than that of PLAXIS NorSand. One reason for this difference could be that the
time stepping in the VBA implementation is larger (i.e., smaller number of steps and therefore a
courser solution) than that of PLAXIS NorSand, resulting in an over-estimation of the strength.
But, again, the difference is essentially negligible.
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5.3 First-order lab test data approximation

Recall that a part of the single stress point analysis was done in the previous chapter in section
5.2, where the model was calibrated to each individual lab test. Section 5.3.1 goes further into
comparing the model output to experimental data, but now only with one soil parameter set
per sand type. This comparison can be seen a first-order approximation and can illustrate the
limitations of the model.

Monotonic loading in triaxial tests of three different sands are used as reference data. These
tests differ from drained to undrained on loose and dense sands. If a dense or loose test in
drained or undrained conditions is unavailable, the test that comes closest to it will be used as
a substitute (e.g., a dense undrained test for Nerlerk is substituted with a loose undrained test
where ψ0 = 0.015). The sands used for validation are Erksak 330/0.7, Nerlerk 270/1, and Ticino-4
530/0. Afterwards, the results are discussed in section 5.3.2

5.3.1 Soil description and results

Erksak

Test data of Erksak 330/0.7 is the first sand to which NorSand was calibrated. Erksak was used
as a core-fill for a caisson-type drilling unit called the Molikpaq, deployed in the Beaufort Sea by
Gulf Canada Resources Ltd. The sand was extensively tested both in-situ and in the laboratory.
The parameters and test values are summarized in tables 5.6 and 5.7, respectively. These values
are based on those found in table 3-2 in Shuttle and M. Jefferies, 2010, which contain examples
of calibrated soil property sets for NorSand. The results are shown in figures 5.8 and 5.9, which
are for dense and loose sand, respectively.

Table 5.6: General parameters for Erksak 330/0.7 monotonic triaxial calibration. MT = moist tamped
and WP = wet pluviated.

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R

150 - 1000 100 0.5 0.2 0.817 0.014 1.26 0.3 4.1 WP: 70 WP: 1400 1
MT: 130 WP: 1400

Table 5.7: Test values of Ersak 330/0.7 monotonic triaxial tests. MT = moist tamped and WP = wet
pluviated.

Test ψ0 p0 (kPa) Gref H0 Hψ S Preparation method

CIU G635 (dense undrained) -0.158 200 35E3 130 1400 0 MT

CID G762 (dense drained) -0.139 250 100E3 70 1400 0 WP

LIQ G604 (loose undrained) 0.056 700 15E3 130 1400 1 MT

CID G685 (loose drained) 0.069 194 100E3 130 1400 0 MT
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Figure 5.8: Calibration attempt of NorSand to dense Erksak 330/0.7 sand in triaxial compression. Top
row sub-figures correspond to the undrained test (CIU G635) while the bottom sub-figures correspond to
the drained test (CID G762).

Figure 5.9: Calibration attempt of NorSand to loose Erksak 330/0.7 sand in triaxial compression. Top
row sub-figures correspond to the undrained test (LIQ G604) while the bottom sub-figures correspond to
the drained test (CID G685).
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Nerlerk

Nerlerk B-67 was to be an exploration well drilled in 45m of water, with the Dome Petroleam’s
platform founded on a 36m high sand berm constructed on the seabed, in the Canadian Beaufort
Sea during the winter in 1983/1984. As such a large volume was needed for the fill, the local
Nerlerk barrow was used. During construction, the Nerlerk berm succumbed to liquefaction due
to static loading, prompting additional interest into extensive research of the structure and soil.
The data that came out of that research is used in this paper.

The parameters and test values are summarized in tables 5.8 and 5.9, respectively. These
values are based on those determined directly from sand lab test data, provided by the download
link from Been and M. Jefferies, 2015. The elasticity parameter Gref was determined from Figure
9.13 (middle line) in Been and M. Jefferies, 2015 and the hardening parameters H0 and Hpsi were
taken from Table 1 of Marinelli, 2020. The results are shown in Figures 5.10 and 5.11, which are
for dense and loose sand, respectively.

The available experimental data set of Nerlerk did not include any dense undrained triaxial
tests. As such, a loose undrained test with the least positive state parameter is chosen as a
substitute (test GIU G107).

Table 5.8: General parameters for Nerlerk 270/1 monotonic triaxial calibration. MT = moist tamped and
WP = wet pluviated.

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R

450 100 0.5 0.2 0.853 0.0208 1.26 0.38 4 MT: 85 MT: 75 1

Table 5.9: Test values of Nerlerk 270/1 monotonic triaxial tests. MT = moist tamped and WP = wet
pluviated.

Test ψ0 p0 (kPa) S Preparation method

CIU G107 (loose undrained) 0.010 700 1 MT

CID G157 (dense drained) -0.170 204 0 MT

CIU G103 (loose undrained) 0.069 501 1 MT

CID G154 (dense drained) -0.033 50 0 MT
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Figure 5.10: Calibration attempt of NorSand to dense Nerlerk 270/1 sand in triaxial compression. Top
row sub-figures correspond to the undrained test (CIU G107) while the bottom sub-figures correspond to
the drained test (CID G157).

Figure 5.11: Calibration attempt of NorSand to loose Nerlerk 270/1 sand in triaxial compression. Top
row sub-figures correspond to the undrained test (CIU G103) while the bottom sub-figures correspond to
the drained test (CID G154).
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Ticino-4

Ticino-4 differs from the previous two in the sense that it is a laboratory sand without any fines,
whereas Erksak and Nerlerk are considered natural sands. Laboratory standard sands are used in
academic studies to find, for example, how elasticity depends on stress and void ratio.

The parameters and test values are summarized in tables 5.10 and 5.11, respectively. These
values are taken from table 3-2 in Shuttle and M. Jefferies, 2010. The elasticity parameter Gref
was determined from the Gvs.p plot from sand lab test data, provided by the download link from
Been and M. Jefferies, 2015. The results are shown in figures 5.12 and 5.13, which are for dense
and loose sand, respectively.

The available experimental data set of Ticino did not include any loose drained triaxial tests.
As such, a dense drained test with the least negative state parameter is chosen as a substitute
(test CID C262.

Table 5.10: General parameters for Ticino 530/0 monotonic triaxial calibration. MT = moist tamped and
WT = wet pluviated.

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R

10.255 100 0.5 0.2 0.962 0.0248 1.23 0.3 3.5 MT: 115 MT: 420 1

Table 5.11: Test values of Ticino 530/0 monotonic triaxial tests. MT = moist tamped and WT = wet
pluviated.

Test ψ0 p0 (kPa) S Preparation method

LIQ 1102 (loose undrained) 0.0016 470.3 0 MT

CID C264 (dense drained) -0.117 206 0 MT

LIQ 1105 (loose undrained) 0.075 279 1 MT

CID C262 (loose drained) 0.020 200 0 MT
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Figure 5.12: Calibration attempt of NorSand to dense Ticino 530/0 sand in triaxial compression. Top row
sub-figures correspond to the undrained test (LIQ 1102) while the bottom sub-figures correspond to the
drained test (CID C264).

Figure 5.13: Calibration attempt of NorSand to loose Ticino 530/0 sand in triaxial compression. Top row
sub-figures correspond to the undrained test (LIQ 1105) while the bottom sub-figures correspond to the
drained test (CID C262).
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5.3.2 Discussion: First-order approximation

The main noticeable trend was the consistent need for activation of the softening flag (S =
1) during undrained loading of loose sands (left figure of the top row for all the loose sands).
Immediate improvement was seen and the peak strength matched that of the experimental data
more closely. Another consistent occurrence is the inherent behaviour of unending increase of
peak strength during undrained loading of dense soils. Normally, as explained in section 2.3,
during undrained loading of dense soil, the excess pore pressures will positively influence the
effective stress up until the total pore pressure reaches u = −100kPa. After which, cavitation will
occur and the water vaporizes, with soil collapse and a peak strength as a result. This natural
phenomenon is not incorporated into the framework of NorSand. As such, one must keep this
behaviour in mind when using the Soil Test facility of PLAXIS and make sure the ’cavitation
cut-off’ is activated during FEAs.

As seen in table 5.6, there is a range for Gref . This is the only parameter - and only for this
sand - that is treated as a ’freedom’ (meaning it is not pre-set from parameter determination).
As such, experimental data was immediately improved. Changing Gref (or rigidity Ir) had no
effect on loose sand in drained condition within NorSand, which is illustrated in section 4.2. For
calibration of dense undrained Erksak data, NorSand only correctly approaches the experimental
data up to 5% axial strain. Any further and the model continues to shoot straight up. At first
glance, this would be attributed to the inherent tendency of the model to harden indefinitely. But,
this is only part of the story: the soil sample has yet to reach the cavitation point as PLAXIS
NorSand and the lab test part their ways at around 7% axial strain. Since the back-pressure
(section A) of the test is at 1300 kPa and the excess pore pressure is at around -800 kPa at 7%
axial strain, there is still around -600 kPa left before reaching the cavitation point - the soil sample
should have increased in strength. One explanation for this could be a local collapse mechanism
within soil, resulting in a decrease of negative excess pore pressure.

Other than the mismatch of peak strength in drained conditions, dense data is matched quite
well. Aside from the over-estimation of residual strength for the loose drained test and under-
estimation of the softening in the loose undrained test, loose Erksak sand is quite well approxi-
mated.

Calibration of Nerlerk sand in general seems to decently match experimental data. The biggest
mismatch is seen in the strain plot for the dense test in drained conditions (bottom right of Figure
5.11). One explanation could be that the input value for the initial state parameter found in the
experimental data is wrong, and must be less than ψ0 = −0.033 (table 5.9). Another interesting
mismatch is when the softening flag is activated for test CIU G107 (top row of Figure 5.10). One
explanation could be that since ψ0 is so close to 0, the softening flag results in too much of a
decrease in peak strength.

Overall, the behaviour of Ticino is very well approximated, considering one set of parameters
is used.

All in all, using one set of input parameters can generally give a decent first-order indication
of soil behaviour. It is good to note that post-peak behaviour is generally neglected when fitting
the model to data. Because once peak strength is reached during experimental testing, strains
localize and the average of strains over the whole sample no longer represents what is happening
in the zone of shearing (which the model tries to replicate through single stress point analysis).

This analysis is not thorough enough as a small sample size is used. Also, for some sand-types
various test conditions were not available, such as dense undrained lab test data for Ticino. To
further validate the model, a wider range of test data could be used. Additionally, it would be
wise to validate PLAXIS NorSand in plane strain conditions with use of experimental plane strain
tests, such as the bi-axial or DSS test.
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6 Application: FEA of a Submerged Landslide

This chapter goes through the application of the NorSand constitutive model in 2D PLAXIS
through a slope stability analysis of a simplified 2D model of a submerged landslide such that the
general behaviour of the constitutive model can be tested. First, a quick overview of failure modes
of slopes are illustrated and their cause of instabilities are given. Then, without going into detail,
the concept of the finite element method (FEM) is explained. Next, the set-up of the model is laid
out. The influence of soil density on the slope behaviour is then explored. The differences between
NorSand, Modified Cam-Clay and Mohr-Coulomb, are determined in subsection 6.5. Lastly, the
FEA results are discussed.

6.1 Types of Slope Failures and Instability Mechanism

As the submarine structure will be brought to failure for the analysis, it is important to familiarize
oneself with possible modes and mechanisms. A common mode of slope failure is a rotational slip
along an almost circular failure surface (Duncan, Wright, and Brandon, 2014). 4 main types of
slope failure can be described: Toe Failure, in which failure occurs along the surface that passes
through the toe (Figure 6.1a); base failure, in which the failure surface passes below the toe (Figure
6.1b); slope failure, in which the failure occurs along a surface that intersects the slope above the
toe (Figure 6.1c); compound failure, in which the failure is a combination of the rotational and
translational slip and generally occurs when a hard stratum exists (Figure 6.1d).

Figure 6.1: (a) Toe Failure, (b) Deep-Seated Failure, (c) Slope Failure, and (d) Compound Failure. Altered
from Wanstreet, 2007.

As long as the shear strength of the soil is greater than the shear stresses it is subjected to, it will
remain stable. Instability can occur due to two mechanism: either a decrease in shear strength,
e.g., due to scouring, an increase in moisture content, excess pore water pressure, monotonic
or cyclic loads, weathering, etc.; or an increase in shear stress due to weight of water causing
saturation of soils, surcharge loads, seepage pressure, et cetera (Duncan, Wright, and Brandon,
2014).
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6.2 Finite element analysis

Engineering problems, which are generally complex continuous physical problems, can be analyzed
and solved with use of the finite element method (FEM). An FEM creates a mesh by discretization
of a domain into smaller, simpler parts that are called finite elements, thus greatly simplifying the
problem. It numerically solves differential equations that arise in engineering and mathematical
modeling, such as structural analysis, heat transfer, fluid flow, mass transport etc. In practice, a
finite element analysis (FEA) usually consists of three principal steps:

• Pre-processing: Constructing a to-be-analyzed model with the assigned material data, which
is then divided into elements with the use of the FEM. If a finer mesh (i.e., more elements)
is applied, then the accuracy of the analysis increases - but so does the computational power
and time. However, an extremely fine mesh is rarely needed to sufficiently and effectively
tackle engineering problems. By imposing boundary conditions, certain nodes will have fixed
displacements, and others will have prescribed loads.

• Analysis: The behaviour of each element is analyzed, often by means of relationships between
force and displacement. Then, the elements, which are linked together at discrete points
called nodes, are solved in a large system of equations to determine how they relate to each
other with the use of continuity equations (which make sure the elements do not overlap
and/or rip):

[Km]{U} = {F} (6.1)

where {U} and {F} are the displacements and externally applied forces, respectively, at
the nodal points. The formation of the stiffness matrix [Km] is dependent on the type of
problem being attacked.

• Post-processing: Plots of the output, such as stress, displacement, and strain can be produced
to visualize the initial state and the effects of the problem statement. Using these results,
one can, for example, iteratively apply changes to the model to reinforce a structure such
that yielding does not occur anymore.

6.3 2-D underwater slope set-up

It is possible, with the use of properly chosen assumptions, to transform a three dimensional
problem into a 2-D problem, immensely simplifying the problem statement. Plane-strain, in which
there is zero strain in the direction normal to the axis of applied stress, is one such assumption.
It is often applied in geotechnical engineering for very wide structures, such as tailings dams and
underwater slopes. Since VBA NorSand has been validated in DSSU conditions, which occur in
plane strain conditions, PLAXIS NorSand can indirectly be seen validated for those conditions as
well. As such, NorSand can be applied in finite element analyses where plane strain is assumed.
This section goes through the set-up of a finite element (FE) model of a submerged slope.

6.3.1 Initial and boundary conditions

The conditions are similar to the problem presented in Jefferies and Been (2015) where the loading
process is aimed to simulate a flow liquefaction process which is triggered by applying a displace-
ment of 20 cm on the top of the slope through a rigid slab (Figure 6.2) with the initial NorSand
soil parameters representing a normally consolidated quartz sand with trace of silts (Table 6.1).
With an attempt to simulate flow liquefaction, undrained conditions are prescribed to the entire
finite element domain. In this deformation controlled approach, contrary to a load controlled
approach where the post-failure modes are not available for analysis, one can track the evolution
of stresses and displacements after ‘failure’ (which is the point of maximum applicable load). As
failure progresses it is possible watch the evolution up to the state within the domain where the
program fails to maintain equilibrium.
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Table 6.1: NorSand parameters proposed in Jefferies and Been (2015) for the 2-D slope liquefaction model.

Gref/pref pref [kPa] nG ν Γ λe Mtc N χtc H0 Hψ R S ψ0

300 100 1.0 0.15 0.875 0.03 1.27 0.35 4 100 0 1 0 0.03

Figure 6.2: Initial and boundary conditions of the finite element problem solved with PLAXIS 2D.

The slope is 8 m high, with a 1V in 4H outer face. The foundation below the slope is at
substantial depth so that the slope behaviour is not constrained by a strong base. It is assumed
that the structure lies on top of a rigid bedrock with infinite stiffness with fixed bottom boundary
conditions such that both lateral and vertical displacements are constrained. The boundary con-
ditions of the mesh sides are fixed laterally to simulate the existence of soil beyond the described
domain. Figures D.1 and D.2 in Appendix D.1 show how increasing the depth and width of the
boundary conditions, while keeping everything else the same, have fairly little effect on the load
capacity (i.e., they essentially share the same maximum applicable load) of the slope, even though
their post failure evolutions differ. Figure 6.2 shows how, even though there are various soil sec-
tions, a single soil profile covers the entire domain. It was opted to disregard zones of different
densities (or state parameters) to not over-complicate the FEAs due to time-constraints.

6.3.2 FEA phasing

The FEA of the slope is simulated in three phases:

• Phase 1: A K0 (= 1− sinφ) initialization where the initial stress, due to the soil weight, of
the domain is updated without reaching equilibrium since no shear stresses are calculated
with this initialization. A value of K0 = 0.5 corresponds to a friction angle φ = 30◦, which
is close to the friction angle determined with equation 6.2 and Mtc = 1.27:

sinφcv =
3Mtc

Mtc + 6
(6.2)

• Phase 2: A plastic loading phase with the assignment of soil properties to the model elements.
A new initial stress state, which is in equilibrium, is calculated according to the constitutive
model response to the stress field from phase 1.

• Phase 3: This phase can split into two sub-phases. First, the state variables are reset and
recalculated according to the more appropriate stress field determined in phase 2. This
guarantees the correct calculation of the state variables from the pre-determined densities of
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the domain. The second part is a plastic loading phase where a 20 cm deformation is applied
on top of the crest. This loading could also be viewed as additional lifts of fill placed on the
top of the slope.

An important aspect to note is the fact that the arc-length control is activated during the
FEAs to save computing time. When during the calculation it appears that the load to
be applied is larger than the failure load, the calculation would then try to apply the load
defined by the user over and over again without converging to a solution as the load can
simply not be applied. Hence, the calculation will keep iterating. When using the arc-
length control, the calculation will in fact accurately find how much of the load can really be
applied. Additionally, arc-length control is combined with an automatic failure detection.
This automatic failure detection says that if in 5 successive calculation steps the applied
load has to be decreased in order for the calculation to converge, failure is assumed and the
calculation stops (Van der Sloot, 2011). Figure D.3 in Appendix D.1 illustrates the difference
between turning it off and on. An artifact of the arc-length control is thus the sudden
decrease of vertical load and deformation on the structure, but these artifacts are manually
removed in other figures for clarity. Figures, such as the total deviatoric strains throughout
the domain in phase 3, are processed at steps before the automatic failure detection kicks
in.

6.3.3 Mesh size

A ’medium’ (one of the standard options for the meshing phase within PLAXIS) mesh size was
chosen, which comes to 5754 elements, to save time but still retain sufficient accuracy. There is
an observed mesh size dependency when applying different mesh densities to the domain while all
other input remained the same (Figures D.4 to D.7 in Appendix D.1). The mesh influences the
behaviour of slope rather than solely the constitutive model, where a finer mesh results in a lower
bearing capacity and shallower failure surface compared to courses meshes. Since there is no one
concrete correct solution for this analysis, one has more freedom to choose which element density
fits best to perform said analyses.

6.4 Influence of different densities on slope behaviour

This section will explore the effects of different densities (i.e., state parameters) on the behaviour
of the underwater slope. First, the effects of increasing the initial state parameter, where the soil
goes from normally consolidated (ψ0 = 0.03) to highly liquefiable (ψ0 = 0.07), are illustrated in
6.4.1). Then, the effects of changing the domain from loose to dense are shown in subsection 6.4.2.

Figure 6.3: Relevant plastic point types found in the FEA plastic point figures.

To differentiate the plastic points according to the hardening process, the existing symbols used
in PLAXIS output are employed with a different meaning: the failure points are plastic points at
critical states; hardening points are points which are in plasticity; and liquefaction points, which
are plastic points characterized by a stress ratio greater than the instability line (the line that goes
through peak strength of a stress path). It is worth noting that liquefaction points are plotted also
when the finite element analysis is performed in drained conditions, thus highlighting potential
liquefaction phenomena occurring if soil conditions switch from drained to undrained.
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6.4.1 FEA results: increase of initial void ratio in NorSand

Figure 6.4: Load-displacement response under the rigid slab for different loose soils with the softening flag
turned off and on.

Figure 6.5: Evolution of the total displacement |u| at section A-A’
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Figure 6.6: Total displacements |u| at phase 3 for different loose soils. Parameters are given in Table 6.2.
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Figure 6.7: Total deviatoric strain at phase 3 for different loose soils. Parameters are given in Table 6.2.
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Figure 6.8: Plastic points at phase 3 for different loose soils. Parameters are given in Table 6.2.
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6.4.2 FEA results: difference between dense and loose soil

Figure 6.9: Load-displacement response under the rigid slab for each constitutive model.

Figure 6.10: Evolution of the total displacement |u| at section A-A’



73 6.4 Influence of different densities on slope behaviour

Figure 6.11: Total displacements |u| at phase 3 for different densities. Parameters are given in Table 6.2.
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Figure 6.12: Total deviatoric strain at phase 3 for different densities. Parameters are given in Table 6.2.
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Figure 6.13: Plastic points at phase 3 for different densities. Parameters are given in Table 6.2.
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6.5 NorSand versus Mohr-Coulomb and Modified Cam-Clay

This section will explore the liquefaction potential of a 2-D model (Figure 6.2) of a simple un-
derwater slope when different constitutive models - NorSand, Mohr-Coulomb (MC), and Modified
Cam-Clay (MCC) - are applied to the materials.

6.5.1 Parameter setup

Throughout the FEA, different constitutive models are assigned to the domain. To perform the
comparison, the materials, albeit with different models, must more or less have the same prop-
erties. In other words, the material properties of a soil must be translated from one constitutive
model to the other. To do so, the baseline parameters of NorSand, which correspond to normally
consolidated behaviour (ψ0 = 0.03), given in Table 6.1 are used to translate the input parameters
from NorSand to the other two.

Importantly, one must adhere to certain contextual ’rules’ during the calibration of the other
models. For instance, in this FEA soils are assumed to be deposited without being over-consolidated
(i.e., R = 1). And where NorSand shows a peak strength for normally consolidated loose sands
in undrained conditions (which is also observed behaviour in experimental data), MCC does not.
MCC does show peak strength, however, when the soil is modeled as over-consolidated. However,
as the ’rules’ dictate, the soil cannot be assigned an over-consolidation ratio larger than 1.

In the initial analysis performed by Jefferies and Been (2015), the softening flag was chosen
as 0 (S = 0). S will be both deactivated and activated (S = 1) in this analysis, but the other
constitutive models will be calibrated against the undrained behaviour of NorSand where ψ0 =
0.03 and S = 0. Going from NorSand to MCC means dropping some of the NorSand specific-
parameters. Luckily, parameter such as λ, ν and Mtc can be used directly within MCC. The
initial void ratio can be chosen quite arbitrarily (generally taken as 0.5) as it has very little effect.
Choosing the unload-reload stiffness κ comes with a bit of freedom as there is no clear indication of
what value it should be. For now, it is chosen such that the peak strength in undrained conditions
approximates that of NorSand with the softening flag turned off. Determining the values for
Mohr-Coulomb is somewhat straightforward. The Young’s modulus can be calculated from the
shear modulus at the reference pressure with the following equation:

E = 2G(1 + ν) (6.3)

Since loose sands do not show cohesive behaviour, cref = 0. Additionally, no dilation angle is
chosen to keep assumptions to a minimum (even though ψ = 0 in itself is one) and maintain
a straightforward approach with MC. It should be noted that equation 6.2 provides the friction
angle (φ = 31.6) that is used in MC.

Table 6.2 summarizes the input parameters for each constitutive model, which have been
calibrated with the use of single stress point analysis, and Figure 6.14 illustrates the results of
these analyses.

Table 6.2: Plaxis input parameters of NorSand (NS), Modified Cam-Clay (MCC), and Mohr-Coulomb
(MC).

NS

Gref/pref pref nG ν Γ λe Mtc N χtc H0 Hψ R S ψ0

300 100 1.0 0.15 0.875 0.03 1.27 0.35 4 100 0 1 0/1 0.03

MCC

λ κ ν Mtc einitial
0.03 0.0015 0.15 1.27 0.5

MC

E (MPa) ν cref φ ψ

69 0.15 0 31.6 0



77 6.5 NorSand versus Mohr-Coulomb and Modified Cam-Clay

Figure 6.14 shows how all models match in drained conditions. Since the NorSand is unaffected
by the softening flag in drained conditions, the curves with the softening flag turned off and on
overlap exactly. In undrained conditions strong differences arise between all models. One can
see in the q-p stress space for MCC the stress state stops evolving when it has reached its peak
strength, which is explained by the hardening mechanism in MCC. The yield surface continues to
harden (i.e., the shear strength increases) until it reaches the CSL. At that point, the dilatancy
vector points upwards, resulting in ε̇pv = 0 (section 3.2). As the hardening mechanism is tied to
the plastic volumetric strain increment, hardening comes to a halt.

The stress evolution of Mohr-Coulomb in the q-p stress space in undrained conditions shows
that the path goes straight up, i.e., there is no change in mean effective stress throughout the test.
This is explained with the isotopic stiffness matrix of Mohr-Coulomb:[

ṗ
q̇

]
=

[
K 0
0 G

] [
ε̇ev
ε̇eq

]
(6.4)

During undrained loading, the increment of the total volumetric strain ε̇v (= ε̇ev + ε̇pv) is equal
to 0. As long as the stress state is in the elastic domain, there is no plastic volumetric strain
increment (ε̇pv = 0), meaning that the elastic volumetric strain must be zero as well to satisfy the
condition of ε̇v = 0. The equation above shows that the mean effective stress therefore does not
change. The deviatoric stress does change, however, until reaching the yield surface resulting in a
plateau.

Figure 6.14: Results of the single stress point analyses of NorSand (S = 0 and S = 1), Modified Cam-Clay
and Mohr-Coulomb in both undrained (top row) and drained (bottom row) triaxial conditions.
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6.5.2 FEA results: different constitutive models

This section shows the various results of the underwater slope analysis for each constitutive model.
Figure 6.15 shows the load-displacement response under the rigid slab and at which point the
structure is unable to maintain equilibrium. Figure 6.16 illustrates the evolution of the length of
total displacements at section A-A’, which goes from the bottom middle point of the rigid slab
vertically to the bottom of the domain (Figure 6.2). Lastly, Figures 6.17, 6.18 and 6.19 show the
total displacements |u|, total deviatoric strain γs and the plastic points, respectively, throughout
the domain right before the structure loses equilibrium in phase 3.

Figure 6.15: Load-displacement response under the rigid slab for each constitutive model.

Figure 6.16: Evolution of the total displacement |u| at section A-A’
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Figure 6.17: Total displacements |u| at phase 3 for each constitutive model. Parameters are given in Table
6.2.
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Figure 6.18: Total deviatoric strain γ at phase 3 for each constitutive model. Parameters are given in
Table 6.2.
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Figure 6.19: Plastic points at phase 3 for each constitutive model. Parameters are given in Table 6.2.
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6.6 Discussion: FEA of the underwater slope

Arguably the first phenomenon shown in all results, that induces immediate questions, is the
fact that the classic circular slip surface does not occur in the FEA results. What is found,
however, is a failure surface resembling a Prandtl-type (Figure 6.20) mechanism at the moment of
failure (i.e., when equilibrium cannot be maintained and the numerical solution fails to converge
within an iteration limit). This is explained by both the highly unrealistic loading conditions
on the structure and the employment of small strain theory within the finite element analysis.
Additionally, as large strain theory is not applied, true liquefaction is not simulated as there is no
fluidization and loss of structure. But, most importantly, the objective of this application is not to
simulate reality, but to determine the general effects and differences of NorSand and its behaviour
compared to other constitutive models.

Figure 6.20: Illustration of a Prandtl failure mechanism due bearing capacity failure in a limit-equilibrium
analysis where the length of the foundation is foundation is from points A to B. Taken from Mortensen,
2015.

The results shown in section 6.4.1 illustrate the expected effect of decreasing the packing
density of the structure. The looser the soil (i.e., the more positive the state parameter) the
quicker the structure fails under the prescribed loading. Interestingly, it can be seen in Figure 6.4
that for ψ0 = 0.07 and S = 0 the structure has a larger bearing capacity (roughly 50 kPa/m) than
for ψ0 = 0.03 and S = 1 (roughly 40 kPa/m). This is a good indication of the strong influence
of the activated softening flag on the behaviour of the loose soil. And, as the importance of
the inclusion of extra softening in loose soils in undrained experimental lab tests was determined
during verification and validation, this should also be kept in mind when modeling structures with
loose granular soils in undrained conditions.

Another interesting effect of decreasing the initial state parameter ψ0 is the ’shallowing’ of the
failure surface, where it gets closer to the surface the looser the soil becomes. This is explained by
the fact that soils are a frictional material. The void ratio and friction angle of a soil are inversely
proportional to each other (i.e., a larger void ratio is related to a smaller friction angle φ). As
such, not much of the strength is mobilized in a soil when subjected to loading, resulting in a
rapid and shallow failure mechanism.

Section 6.4.2 shows the effects of having a dense or a loose soil. As expected, the FEA of a
submarine slope consisting of dense granular material is able to take the full 20 cm displacement.
Additionally, the denser the soil, the larger the bearing capacity.

This is also illustrated in Figures 6.11 to 6.13, where more of its strength is mobilized and
strains are less localized, resulting in less deformation of the structure for the same prescribed
displacement.

The results in section 6.5.2 show the differences in behaviour between NorSand, Mohr-Coulomb
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and Modified Cam-Clay. As explained in the parameter setup, it was expected for Mohr-Coulomb
to be able to sustain the full 20 cm displacement at the top of the structure and have a large
bearing capacity. This is due to its large elastic region before reaching critical state in undrained
loading.

Modified Cam-Clay also shows a relatively large bearing capacity, but reaches critical state,
resulting in structural failure. Another observed feature, shown in Figures 6.18 and 6.19, is the
diffused compaction in the total deviatoric strain plot of the domain, whereas the other constitutive
models show at least a hint of defined shear planes. However, as explained in section 3.2, this
model is meant for normally consolidated clays and not particulate materials such as sands.

NorSand shows, in both cases, an overall lower bearing capacity and larger sensitivity to
the applied displacement. This is especially true for the analysis with the softening flag turned
on: Figures 6.17 and 6.18 show a lower maximum value for S = 1 compared to when S = 0.
Additionally, the plastic point figures for NorSand clearly show liquefied points that coincide with
the shear bands, indicating the liquefaction potential.

All-in-all, the FEAs of the simplified submerged landslide, which consists of granular material,
indicate that NorSand, compared to the other 2 constitutive models, shows the most appropriate
response to displacement in undrained conditions due to its relatively low bearing capacity, high
sensitivity and propensity to failure when subjected to forced displacement. And, the model is
able to clearly give liquefied points.
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7 Conclusions and Recommendations

7.1 Conclusions

The objectives of this report were threefold: analyze the behaviour of the NorSand constitutive
behaviour; then, to verify and validate the PLAXIS integrated NorSand; finally, to establish the
capabilities of NorSand in modelling static liquefaction of underwater slopes in finite element
analyses.

Two types of single stress-point analyses were performed to establish model behaviour: stress-
path analyses and parametric analyses. The stress-path analyses showed the evolution of state
variables for a various triaxial loading conditions. The parametric analyses showed the influence
for a range of input parameters, which can then be used to help calibrate experimental lab test
data.

The PLAXIS implemented NorSand (PLAXIS NorSand) was verified through two methods.
First, it was compared to an implementation written in Visual Basic for Applications (VBA Nor-
Sand) by the authors of the model Jefferies and Been, which has been tested with positive results.
Both models showed agreement in triaxial compression, for dense and loose soil in drained (TCD)
and undrained (TCU) conditions, and in direct simple shear in undrained conditions (DSSU) for
dense and loose soil.

Second, it was verified by means of an ’analytical solution’. The solution, albeit not an ana-
lytical solution in a traditional sense, was the relationship between the mobilized friction ratio Mi

and state parameter ψ in its simplest form. The mobilized friction ratio and stress ratio at peak
strength of PLAXIS NorSand and the ’analytical solution’ were compared. The values between
both showed less than 3% difference; further verifying PLAXIS NorSand.

NorSand has been validated by establishing that it is capable to approximate experimental
lab tests. First, by NorSand was validated by changing the baseline soil parameters, which have
been determined from TCD and TCU tests, until it was calibrated to experimental lab tests of
Erksak 330/0.7 sand. Then, it was validated by comparing it to TCD and TCU lab tests for three
different sands, namely Erksak 330/0.7, Nerlerk 270/1 and Ticino 530/0, but without changing
the baseline soil parameters for each sand. The results showed that NorSand is able to follow lab
test data decently well with one parameter set. And if one decides to take the time and calibrate
individual lab test and deviate from the baseline soil parameters, they can be matched even better.
Additionally, it showed a consistent need for activation of the softening flag (S = 1) in order to
appropriately model loose soils in undrained conditions. Then, the user needs to be aware that
a ’cavitation cut-off’ should be enforced as the model will increase the effective stress indefinitely
when simulating dense granular soil in undrained conditions.

Finally, NorSand was applied in finite element analyses of a submarine slope. On it, a 20
centimeter displacement was applied at the top through a rigid slab, to determine its behaviour
in simulating static liquefaction, expecting a circular failure mechanism.

First, the difference in slope behaviour, due to a change in soil density, with NorSand was
determined: dense soil resulted in the slope to bear the full 20 centimeter displacement whereas
increasing the void ratio (i.e., increasing the positive value for the state parameter) gave the effect
of even quicker slope collapse and a lower bearing capacity. In other words, when using NorSand,
the looser soil the further the failure surface moves up and the quicker the structure fails to
maintain equilibrium.

Lastly, the difference in behaviour, compared to NorSand, for various constitutive models were
explored. NorSand, contrary to the other constitutive models, showed the high sensitivity to forced
displacement resulting in clear shear bands resembling Prandtl-type bearing capacity failure and
early onset soil body collapse - it showed the most appropriate sensitive behaviour that is expected
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from submarine slopes, where a high liquefaction potential is indicated. And, even though the
failure mechanism was unrealistic due to the equally unrealistic loading conditions, and the fact
that small strain theory was employed, these analyses still allowed to give an indication of overall
behaviour and the differences between each constitutive model.

7.2 Recommendations

Based on the results during validation, it became clear that the activation of the softening flag (S =
1) for loose soils during undrained loading is paramount. Furthermore, the indefinite hardening of
dense soils in undrained conditions calls for the employment of a ’cavitation cut-off’ when using
NorSand.

NorSand has been validated to numerous triaxial compression lab tests. Even though triaxial
tests belong to the industry standard to determine soil characteristic, other tests such as triaxial
extension, bi-axial, and direct simple shear tests are used as well. And due to the fact that the lode
angle θ is incorporated into the NorSand formulation to account for various loading conditions, it
could be further validated for other types of lab tests.

The same reasoning could be applied to the stress-path analyses - they have been done in
various triaxial compression conditions, but other loading paths exist as well. As such, analyses
can be done for other loading conditions to determine its effects on the state variables.

In the finite element analysis, the underwater landslide was brought to liquefaction by means
of monotonic loading, for instance due to sudden increase of sediment deposition, at the crest.
However, there exist various causes for slope movement, which would be worth analyzing using
NorSand. For instance, another cause for slope failure is due to erosion and scouring, caused
by waves and marine currents. These result in gradual increase of local seabed inclination and
formation of slopes around hydraulic structures and offshore foundations, monotonically increasing
the stress stress in the soil body (W. Zhang and Askarinejad, 2019).

Furthermore, it must be recognized that the static liquefaction analyzed in this report was
a very simplified approach: it had a uniform soil domain, had a constant water level, and it
was displacement controlled. Adding phased layering, transient water conditions, weak zones and
different loading conditions will introduce more intricate soil conditions to the analysis and model
liquefaction more realistically.

Finally, submarine slopes are not the only structures where softening behaviour play an im-
portant role in their stability analysis. In tailings dams, for instance, weak zones of loose soil
are detrimental to structure stability. Therefore, applying NorSand to various case studies where
softening behaviour of particulate material has played a role can help analyze the problem.
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A Extra information on general framework

A.1 Triaxial test

The procedure for triaxial compression consists of 3 phases:

• Phase 0 is to ensure total saturation, i.e. without any bubbles, of the soil sample by applying
back-pressure.

• Phase 1 is the consolidation phase, where the valve is closed so that pore fluid of the soil
cannot escape. The cell pressure is increased resulting in buildup of pore pressure within
the sample. Then, the valve is opened to release the excess pressure, increasing the effective
stress of the soil to that of the cell pressure. This results in isotropic consolidation where
the soil contracts - i.e. its void ratio ( Vv

V s , where Vv is the volume of voids and Vs the volume
of solids) reduces. If the valve is kept closed, then it does not consolidate.

• Phase 2, which is the last phase, is where the sample is brought to failure by applying
deviatoric stress - it is sheared. This can be done drained, where excess pore pressure is not
generated, or undrained, where excess pore pressure is generated. During the shearing stage
the sample is loaded by increasing the axial load in increments for stress controlled testing
or by applying displacement increments for strain controlled testing.

There are three main types of triaxial compression tests and these depend on which phases have
been done drained or undrained:

• The unconsolidated undrained (UU) test is performed quickest (also known as the Q-test)
since one does not have to wait for saturation in phase 0, consolidation in phase 1, and
drained loading conditions during phase 2.

• Consolidated drained (CD) tests take the longest (also known as the Slow or S-Test) as
the sample has to be saturated and consolidated, and drained loading conditions must oc-
cur during shearing. This takes even longer for clay samples due to their low hydraulic
conductivity.

• Consolidated undrained (CU) tests are quicker than consolidated drained tests, but slower
than unconsolidated undrained tests (and also known as the R-test).

A.2 Over-consolidation ratio

The over-consolidation ratio (R) is a state parameter for clays, indicating how far the current
stress is from its previously maximum experienced stress. This maximum stress is also known as
the pre-consolidation stress (σ′0). The relation between the two is given as:

R =
σ′0
σ′

(A.1)

If the current stress is lower than the pre-consolidation stress, then the R > 1. If the current
stress is equal to that of σ′0, then the R = 1. When the current stress is increased further, σ′0
increases equally. The current stress can never be larger than the pre-consolidation stress, i.e. the
R is never smaller than 1.
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Figure A.1: Illustration of the normal consolidation line (NCL) and the unloading-reloading line (URL).

The normal consolidation line (NCL) indicates the evolution of σ′0 and is related to total strains.
The unloading/reloading line (URL), also known as the swelling line, indicates the current stress
when it is smaller than the pre-consolidation stress and is related to elastic strain. In other words,
if the pre-consolidation stress is reached, the soil yields and total strains occur, permanently
deforming the sample. If the current stress is then decreased (unloading), elastic strains occurs in
the form of swelling. This deformation is not permanent and can be ”reset” by reloading the soil
until reaching σ0 again.

One can appreciate that clays have a single NCL, simplifying their behaviour greatly. This is
not the case with particulate materials such as sands, which is elaborated further in section 3.3.
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B Basic constitutive models

Perhaps the most well-known model is the Mohr-Coulomb (MC) model, which is a simple linearly
elastic perfectly plastic (LEPP) effective stress model (i.e. does not harden or soften upon yield-
ing). When within the yield surface (which is actually a failure criteria in this case), elasticity is
assumed linear. MC is an effective stress model, where its shear strength (as shear is the yield
causing stress) is defined by:

τf = c+ σntanφ (B.1)

where τ is the shear stress, c the effective cohesion (which would be 0 for sands), σn the effective
normal stress, and φ the friction angle of the soil. It is explained in section 3.1.2 that applying
principal stresses result in shear stresses on other planes. This is re-illustrated in figure B.1, but
now in 2 dimensions for simplification. If the rotated unit is assumed in equilibrium, then its
normal and shear stresses can be calculated using the principal stresses and trigonometry.

Figure B.1: Stresses on a rotated plane. The shear stresses σ13 and σ31 are equivalent to τ and the normal
stresses σ11 and σ33 are equivalent to σn. Altered from Verruijt, 2012.
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The principal stresses at failure can be plotted in the MC plane (i.e. τ − σ plane) with a
circle between the points from which the shear and normal stress can be determined for other
orientations. If one does at least 2 drained triaxial tests until failure, its failure envelope can be
drawn, which has the form described in equation B.1:

Figure B.2: Stresses plotted in the MC stress plane. Altered from Verruijt, 2012.

Alternatively, equation B.1 can be rewritten in terms of principal stresses and plotted in the
3-D stress space (figure B.3):

σ1 + ccotφ

σ3 + ccotφ
=

1 + sinφ

1− sinφ
(B.2)

But just how it is preferred to have the stresses expressed in stress invariants, so too is it preferred
to have the yield surface expressed in stress invariants. Hence, rewriting equation B.2 in triaxial
stress invariants:

q

p+ ccotφ
=
−6sinφ

3 + sinφ
(B.3)

assuming c = 0 for sands, since they have no cohesion (unlike clays for instance), and η = q
p

equation B.3 turns into:

η =
−6sinφ

3 + sinφ
(B.4)

As mentioned in the introduction of this subsection, MC is actually a failure surface (meaning it is
the end-point for stress states, also known as the critical state) rather than a yield surface. When
the friction angle at failure is known from triaxial tests, equation B.4 is rewritten finally as:

Mtc =
−6sinφcv
3 + sinφcv

(B.5)

where Mtc is the critical stress ratio found in triaxial compression and φcv is the friction angle at
constant volume, i.e. the critical state.



91

Figure B.3: Mohr-Coulomb failure criteria plotted in the 3-D principal stress space.

Figure B.4: Tresca failure criteria plotted in the 3-D principal stress space.
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To complete the story, there exists an undrained version of the MC model, known as the Tresca
model (figure B.4). It is used to model the undrained behaviour of clay in a total stress analysis.
Figure B.5 shows how the maximum shear strength of the soil is independent of mean stress and
depends on the undrained shear strength Su. Su, which in literature is also known as cu, is the
same as the parameter c in equation B.1 but specified for undrained conditions. Hence, this model
is often used to model undrained uncompressed (UU) behaviour of soils. Since the yield surface
is now horizontal, the friction ratio is equal to 0, simplifying equation B.1 into:

τf = Su (B.6)

Figure B.5: Stresses plotted in the MC stress plane.

Applying normality to the MC surface implies that the dilation angle is equal to the friction
angle. This results in unrealistically high volumetric strains and hence MC is typically used as a
non-associated flow model with a dilation angle close to zero. MC gives reasonable predictions for
strength in unconfined problems but it models volume changes poorly.
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C Extra information on NorSand

C.1 Infinite NCL

The existence of infinite NCL has been proven through various experimental data, but the easiest
one to follow is by comparing direct isotropic compression of Erksak 330/0.7 samples prepared
at different densities with an independently determined CSL, shown in figure C.1. Each line is
regarded as a true NCL because of two factors. First, the samples were prepared under low
stresses (either by gentle moist tamping or pluviation) and never over-consolidated. Second, the
unload–reload loops (figure C.1b to e) define a classic elastic–plastic form, even when the samples
are denser than the CSL, which was previously defined as over-consolidated within the Cam-Clay
framework.

Figure C.1: Experimental evidence of an infinity of NCL. (a) All tests at same scale, (b) test 874/MT at
expanded scale, (c) test LDUL-1/PV at expanded scale, (d) test LDUL-2/PV at expanded scale and (e)
test LDUL-4/PV at expanded scale. Taken from Been and M. Jefferies, 2015.

Each NCL can be viewed as a hardening law for an associated yield surface. An infinity of
NCL means a ’multiple infinity’ of yield surfaces because any NCL can be viewed as the trace of
a set of yield surfaces as they harden. Correspondingly, soil in any part of the e-p domain can
plastically strain - there is no ‘elastic wall’ confining plastic behaviour.

Another key feature of soils, which is not captured by Cam-Clay models, is the limited maxi-
mum dilatancy dense soils exhibit for that specific soil state. There is a strong relationship between
Dminp and ψ and is explored in section 3.3.4.

With this maximum dilatancy comes an internal yield cap and is further explained in section
3.3.6. Having an internal yield cap means that soils can yield during unloading instead of simply
swelling elastically.
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C.2 CSL

The history behind these axioms are explored in this section. The concept that soil will eventually
reach a constant stress and void ratio (density) was explored by Casagrande in 1936. He observed
from shear box tests that both dense and loose sand, under same vertical effective stress, after
large strain eventually reach a constant void ratio at which shear deformation continues at constant
shear stress (figure C.2). This large strain void ratio distinguished which mode of behaviour the soil
exhibited: sand looser than this void ratio contracts and sand that is denser dilates. Casagrande
termed this void ratio as the critical void ratio.

Figure C.2: Early hypothesis of critical void ratio from direct shear tests. (a) Shear stress vs. displacement,
(b) Void ratio vs. displacement and (c) Void ratio vs. normal stress. Taken from Casagrande, 1975.

The first theoretical development that captured the density of soils as a state variable, rather
than a soil property, and thereby accounted for volume changes during shearing, was the framework
that became known as ’critical state soil mechanics’ (Schofield and Wroth, 1968). The name critical
state derives from anchoring the theory to Casagrande’s critical void ratio. The critical state was
defined by Roscoe et al. (1958) as the state at which a soil continues to deform at constant
stress and constant void ratio – essentially a formalization of Casagrande’s idea. In other words,
the critical state is taken to be the ultimate state the soil reaches if it is continuously deformed
(sheared), defined as Axiom 2. Note that there are two conditions in the definition:

• (1) The soil is at constant void ratio

• (2) It has no propensity to change from this constant void ratio condition.

Incorrect assessments and confusion arises if condition (2) is ignored, which is explored in section
3.3.5.
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The question of the uniqueness of the critical state was investigated by Been et al. (1991) who
provided evidence to indicate that the critical state is likely unique, being both independent of
fabric, loading rate, stress path, and initial density. Figure 3.10 shows that both moist compacted
and pluviated samples in undrained tests finish at the same critical state line. Drained tests
were also observed to follow the same trend. The change in the slope of the critical state line at
about 1000 kPa is thought to be due to grains crushing at high mean effective stress levels. The
relationship between critical void ratio and mean effective stress is called the critical state locus
(CSL):

ec = Γ− λln(pc) (C.1)

where Γ and λ are intrinsic soil properties, meaning that they are not affected by fabric, stress
history, density, etc. The subscript ’c’ denotes critical state conditions. Caution is needed when
looking at quoted values of λ as both log base 10 and natural logarithms are used. Natural
logarithms are more convenient for constitutive modelling, whereas base 10 logarithms arise when
plotting experimental data: the notations λ (or λe where emphasis is needed) and λ10 (= 2.303λ)
are used, respectively. The parameter Γ also has an associated stress level, which is p = 1 kPa by
convention.

Figure C.3: Critical state line for Erksak 330/0.7 sand from undrained tests that reached a distinct critical
(steady) state. Taken from Been and M. Jefferies, 2015.

Within literature, there is mention of a steady-state locus (SSL) for soils, where steady-state
is defined by Poulos (1981) as: ‘The steady state of deformation for any mass of particles is that
state in which the mass is continuously deforming at constant volume, constant normal effective
stress, constant shear stress and constant velocity’. This is a locus of steady-state void ratios is
found by doing load-controlled tests, whereas the CSL is found by doing strain-controlled tests.
Since strain-controlled tests result in the same steady-state conditions, the SSL and CSL can
essentially be considered analogous to each other. Strain-controlled testing is actually preferable,
as it requires less in the way of transducer response time and data acquisition rates, avoids inertial
corrections to measured loads and provides more detailed data on the post-peak behaviour. As
such, this paper will build its theory around the CSL.

Traditional geotechnical practice has approached the same soil over different densities as differ-
ent materials. For instance, the same geological material may be assigned a friction angle φ′ = 32◦

in a loose in-situ state, but given φ′ = 36◦ for design after densification or compaction. This is
an incorrect approach since intrinsic properties, such as friction angles, are not a function of soil
density itself, but of state. State ( section 3.3.3) relates the density of soil to its critical density.
Soil is a material that exists across a range of states, with the state determining how the intrinsic
properties are transformed into engineering behaviour such as strength and stiffness.
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C.3 More information on stress-dilatancy

Reynolds (1885) first showed that, when sheared to failure, dense sand dilates and loose sand
contracts. Taylor (1948) showed that soil strength can be broken down into a frictional component,
which is a measure of the minimal strength the soil has due to inter-particle friction, and a dilational
component. Loose soil lends its strength from the frictional resistance between the particles. Peak
strength in dilative soils (i.e. dense sand) is caused by both the frictional resistance and the
tendency of dense particles to override each other in the form of dilation. Rowe (1962) related the
mobilized stress ratio to the plastic strain rates, in what has become known as stress–dilatancy
theory. This relationship applied to the whole strain history, not just peak strength values. Rowe’s
original proposition can be stated as (for a compression positive convention):

σ′1
σ′3

= K(1− ε̇v
ε̇1

) (C.2)

After initial introduction of this theory, it was thought that K could be a constant and related
to the soil mineral-mineral friction - it is now known not to be the case. This, however, does not
invalidate equation C.2 entirely as it still recognizes the dilation is a work transfer mechanism
between the principal stress directions and that the rates of dilation and stresses are related to
each other and not their absolute values. Early on it was discovered that soil behaviour indicated
that there exists an ’operating’ friction ratio:

Mµ < Mf < M (C.3)

where Mµ is the mineral-mineral sliding friction ratio, Mf the ’operating’ friction ratio and is
related to K in equation C.2, and the critical friction ratio M. Rewriting Rowe’s stress–dilatancy
approach, it can be anticipated that soil behaviour will follow:

η = f(Mf , D
p) (C.4)

where f() indicates an undefined function of Mf and Dp. Mf is the mobilized critical friction
ratio, varies a little with strain and rather more with state, and goes towards M as the soil goes
towards critical state. Dp is the plastic components of the strain rates.
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The mobilization of Mf can be illustrated experimentally with use of drained triaxial tests.
First, a single test on dense Erksak 330 sand is shown in figure C.4, where its behaviour is plotted in
the dimensionless stress-dilatancy space. The maximum stress ratio ηmax and minimum dilatancy
Dmin are tagged in the top left, which is analogous to the maximum of the graph for dense sand in
figure 2.6a. Due to the compression positive convention and that deviator strain is positive, dilation
in dense soils correspond to negative values. Therefore, ’maximum’ dilation, which corresponds
to its peak strength, is actually the largest negative value (Dmin).

It is important to note that this particular sample was not sheared to critical state, which
would be indicated by the plot continuing in the downwards-right direction until reaching D = 0.

Figure C.4: Plot of single drained triaxial test on dense Erksak sand reduced to stress-dilatancy form.
Altered from Shuttle and M. Jefferies, 2010
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Figure C.5 shows multiple plots from which general trends can be determined. For dense
samples (figure C.5a), two regression lines can be fitted. At pre-peak, there is a point where the
plastic dilatancy Dp = 0, and turns its behaviour from contractive to dilative. This is not the
critical state, however, but the image condition (also known in literature as the transient condition
or pseudo-steady state) as one of two conditions of critical state is met. In mathematical terms,
at the image condition Dp = 0 but Ḋp 6= 0.

The regression line indicates a value less then M, which is the mobilized friction ratio Mf .
After peak dilation (Dp

min) the second regression line, which is in the negative Dp space, goes to
Dp = 0 where the soil does go to true critical condition and where Mf = Mtc. Mtc is the critical
friction ratio for triaxial conditions. For loose samples (figure C.5b) the regression line indicates
M rather than Mf as these samples move to critical state directly.

Figure C.5: Plots of multiple drained triaxial data on dense (a), loose (b) and both (c) Erksak sand
reduced to stress–dilatancy form. Taken from Been and M. Jefferies, 2015
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C.4 Unloading in NorSand

Figure C.6 gives a glimpse of the dynamics of the yield surface in NorSand during unloading.
Starting from ’neutral’ loading, where the stress state is on the yield surface but does not push it
further, the stress is decreased. In Cam-Clay the unloading path could go to the left of the yield
surface, similarly as in figure C.6a, without any softening resulting in too much (i.e. unrealistic)
dilation. Since NorSand employs a hardening limit resulting in an internal softening cap, the soil
yields and its yield surface softens (shrinks) when the internal cap is reached, illustrated in figure
C.6b. Softening continues until the appropriate size for the yield surface is reached at the end of
unloading. Realistically, the internal cap has a curved shape like in figure C.6a. But, a straight
internal cap, like in figure C.6b, is a simpler and adequate approximation.

Figure C.6: NorSand yield surface softening as result of unloading. Altered from Been and M. Jefferies,
2015.
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Figure C.7 shows how the critical state friction angle φ′ decreases with the decrease of the
initial void ratio of the soil (Been, Hachey, and M. Jefferies, 1991). This further shows how looser
soils require a lower value for Mtc.

Figure C.7: Critical state friction angle for Erksak 330/O.7 sand (range in φ′ not shown where range is
less than size of symbol). Taken from Been, Hachey, and M. Jefferies, 1991.
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D Extra information on Application

D.1 Boundary conditions

Figure D.1: Domains with different boundary conditions.

Figure D.2: Load-displacement response under the rigid slab for different boundary conditions.
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D.2 Arc-length control

Figure D.3: Load-displacement response under the rigid slab for NorSand where the arc-length control is
turned off (pink) and on (black).

D.3 Mesh size dependency

Figure D.4: Vertical force Fy at the pre-described displaced nodes versus the displacement for different
mesh size densities
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Figure D.5: Total displacements |u| at phase 3 for three different mesh sizes with NorSand (S = 1).
Parameters are given in Table 6.2.



D Extra information on Application 104

Figure D.6: Total deviatoric strain γs at phase 3 for three different mesh sizes with NorSand (S = 1).
Parameters are given in Table 6.2.



105 D.3 Mesh size dependency

Figure D.7: Plastic points at phase 3 for three different mesh sizes with NorSand (S = 1). Parameters are
given in Table 6.2.
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