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Summary 
 
Seismic imaging is crucial for subsurface exploration and monitoring, with a focus on deep and complex 

structures. Seismic wave migration solves the wave equation, and an accurate propagator is essential. 
Full Wavefield Modeling (FWMod) was developed based on recursive and iterative up/down wavefield 

propagation, modeling both primaries and multiples. Embedded within Full Wavefield Migration 

(FWM) it can be used to image data including multiples, resulting in better illumination in case primary 
illumination is not sufficient. FWM can be efficient and effective, but conventional one-way wave 

operators, such as Phase Shift Plus Interpolation Migration, have limitations in strongly inhomogeneous 

media. Local velocity-based one-way operator based on eigen decomposition was proposed and 
integrated within FWMod and FWM in this study, improving image amplitudes and fidelity and 

improving converage speed in the least-squares inversion process. 
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Full wavefield migration based on eigen-decomposition propagation operators 

 

Introduction 

 

Seismic imaging is a critical process for exploration and monitoring, particularly in deep and complex 

structures. The goal of seismic wave migration is to solve the wave equation, making an accurate 

propagator crucial for success. Conventional migration treats multiples as noise and removes them 

during migration, but properly handling multiples is crucial for accurate seismic imaging. Full 

Wavefield Modeling (FWMod), based on recursive and iterative up/down one-way wave-propagation, 

was developed to model both primaries and multiples (Berkhout 2014a; Davydenko and Verschuur, 

2017). Full Wavefield Migration (FWM) algorithm is employed to image the data including multiples, 

resulting in better illumination (Berkhout 2014b). FWM has much potential for development due to its 

high computational efficiency and less wavefield storage compared to reverse time migration (Liu et 

al., 2015). 

 

However, the conventional one-way wave operator used in FWM, such as Phase Shift or Phase Shift 

Plus Interpolation (PSPI) Migration, has limitations when dealing with strongly inhomogeneous 

media due to its global velocity approximation (Gazdag and Sguazzero, 1984). To address this, local 

velocity-based one-way operators have been proposed, which calculate a local homogeneous solution 

for the velocity at each grid node and can accommodate arbitrarily variant velocity media (Kosloff 

and Kessler, 1987; Grimbergen et al., 1998; Hammad and Verschuur, 2016; Li and Liu, 2021). In this 

study, we integrated the one-way wave operator based on eigen decomposition (ED) into the FWMod 

and FWM framework to make it better suited for heterogeneous media, resulting in improved imaging 

amplitude and accelerated converage speed. 

 

Eigen decomposition  operator for FWM 

 
The Full Wavefield Modeling approach involves decomposing the wavefield into two components, 

namely a downgoing component represented by 𝑃+ and an upgoing component represented by 𝑃−. 

This representation is made regarding a preferred direction, which is typically the vertical direction. 

Additionally, the method categorizes the wavefield by its order of scattering 𝑗 . The source 

extrapolation equation can be expressed for one frequency component, as described by Berkhout 

(2014a):  
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where the equation involves a physically induced source at depth level z, denoted by 𝑆, which can be 

either blended or unblended. The vectors represent monochromatic wavefields for one original source 

experiment j In addition, there is a secondary source, 𝛿𝑆, triggered by the medium in response to an 

incident wavefield. It also mentions the matrices 𝑊±(𝑧𝑚
∓ , 𝑧0) represent the scattering-free downward 

and upward propagation operators, respectively, between depth levels 𝑧0  and 𝑧𝑚  (n > m). The 

secondary source is connected to the medium parameters through the following relationship 
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where 𝑹 and 𝑻 represent the vertical components of reflection and transmission operators.  

 

The common approach for computing wavefields in neighboring layers involves using a one-way 

wave migration operator is  

i ze = Λ
W ,                                                              (3) 

where Δz is the depth step, and 𝜦 represents the square root operator.With the relationship of the 

Helmholtz operator 𝚲2, as  
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in which a second-order discretization of 𝜕2/𝜕𝑥2 is included, can be written for a depth level as 
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Λ .                            (5) 

 

This matrix can effectively manage variations in lateral velocity in horizon coordination, thanks to the 

diagonal elements contained within the matrix. These diagonal elements correspond to all velocity 

points located at a specific depth. Note that the matrix is constructed using a second-order finite-

difference discretization technique, but to improve the accuracy for FWMod and FWM, it is 

recommended to be substituted with a higher-order discretization method. 

 

With matrix transformation theory, the self-adjoint matrix 𝚲2 can be factorized into the product of its 

eigenvalues and eigenvectors as 
2 T ,Λ = VMV                                                                   (6) 

where the matrix 𝐌 and 𝐕, respectively, denote the eigenvalues and eigenvectors of 𝚲2 , and the 

superscript 𝑇  represents the matrix transpose. Using the matrix eigen decomposition theory 

framework, the eigenvalues of matrix functions are dependent on the eigenvalues of the original 

matrix, while their eigenvectors remain constant. Consequently, the eigenvalues and eigenvectors of 

the sub-functions can be represented as such. 
T ,Λ = V MV                                                                  (7) 

T .i ze  = M
W V V                                                            (8) 

 

In depth-domain wavefield extrapolation, it is crucial to address the issue of evanescent waves. If the 

eigenvalue is real-valued, significant waves propagate during extrapolation. However, the presence of 

evanescent waves can lead to instability as they grow exponentially with depth. The growth of 

evanescent waves is attributed to complex-valued eigenvalues. To mitigate this issue, by keeping the 

real-valued eigenvalues and disregarding the complex-valued ones, our approach is straightforward to 

eliminate the evanescent waves. 

 

Numerical example 

 

The size of the velocity model is 1000 × 2000 m with a grid of 20 × 20 m, which has a strong lateral 

velocity contrast and steep dipping angles, as shown in Figure 1a. We use this model to verify the 

imaging performance of the proposed FWM algorithm. Figure 1b is the true reflectivity model. The 

shot gathers were generated by the full wavefield modeling with 5th-order multiples. The shot 

distance and receiver distance are 100 m and 20 m respectively. 

 
Figure 1 Velocity model. (a) The true velocity model; (b) the true reflectivity model. 

b) a) 
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The four sub-figures in Figure 2 provide a comprehensive representation of the real and imaginary 

components of the complex propagation operator at a depth of 300 m with a frequency of 10 Hz. 

Specifically, Figures 2a and 2b display the real and imaginary parts, respectively, of the conventional 

PSPI operator, while Figures 2c and 2d  illustrate the real and imaginary parts of the ED operator, 

respectively. From this picture, we can see that the ED operator is more sensitive to lateral velocity 

changes at a depth level. 

 

 
Figure 2 The real and imaginary of the complex propagation operator at 400m depth with 10 Hz.  

(a) the real part of the conventional PSPI operator; (b) the imaginary part of the conventional PSPI 

operator; (c) the real part of the ED operator; (d) the imaginary part of the ED operator. 

 

 
Figure 3 The imaging section after (a) 1 iteration and (b) 10 iterations of the ED operator; (c) 

objective function compared with the conventional PSPI operator in FWM, and (d) the difference 

between true reflectivity and estimated reflectivity for the two operators. 

 

The imaging outcomes for 1 and 10 iterations are presented in Figures 3a and 3b, respectively. Figure 

3c shows the objective function converges curve compared with the conventional PSPI operator in 

FWM, which reveal the fast convergence speed of our method. Figure 3d shows the difference 

between true reflectivity and estimated reflectivity of using the conventional PSPI operator and the 

proposed ED operator, as a certification that our method can better recover reflectivity. Furthermore, 

Figure 4 displays the imaging amplitude and reflectivity at different positions. Specifically, Figure 4a 

illustrates the imaging amplitude at a specific location on the x-axis (x=860 m), while Figure 4b 

depicts the reflectivity at a particular depth of 740 m. 

 

Comparison with the true model and imaging section reveals that the proposed algorithm can 

effectively handle strong velocity contrasts, accurately depict the structure, and achieve true-

amplitude reflectivity recovery as a true amplitude method. Notably, the amplitude and reflectivity 

curves illustrate that the algorithm considers transmission compensation and multiple imaging, 

a) b) 

b) c) d) a) 

c) d) 
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thereby enabling us to obtain a true amplitude migration result. Compared with the PSPI operator, the 

ED operator gets more accurate amplitudes calculation. 

 

 
Figure 4 Imaging amplitude and reflectivity. (a) X=860 m (b) Depth=740 m. 

 

Conclusions 

 

This study proposed a novel approach that incorporated an eigendecomposition-based one-way wave 

operator into the full wavefield migration framework. Through the computation of eigenvalues and 

eigenvectors of the Helmholtz operator, an operator that characterizes the behavior of the wavefield 

during subsurface propagation was constructed. The true-amplitude imaging capabilities of this 

approach were verified by examining wavefield propagation in the model with pronounced lateral 

velocity heterogeneity. 
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