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Understanding and protecting the coherence of individual quantum systems is a central challenge in
quantum science and technology. Over the past decades, a rich variety of methods to extend coherence have
been developed. A complementary approach is to look for naturally occurring systems that are inherently
protected against decoherence. Here, we show that pairs of identical nuclear spins in solids form
intrinsically long-lived qubits. We study three carbon-13 pairs in diamond and realize high-fidelity
measurements of their quantum states using a single nitrogen-vacancy center in their vicinity. We then
reveal that the spin pairs are robust to external perturbations due to a combination of three phenomena: a
decoherence-free subspace, a clock transition, and a variant on motional narrowing. The resulting
inhomogeneous dephasing time is 735 = 1.9(3) min, the longest reported for individually controlled
qubits. Finally, we develop complete control and realize an entangled state between two spin pairs through
projective parity measurements. These long-lived qubits are abundantly present in diamond and other
solids and provide new opportunities for ancilla-enhanced quantum sensing and for robust memory qubits

for quantum networks.

DOI: 10.1103/PhysRevX.12.011048

I. INTRODUCTION

Solid-state spins provide a versatile platform for
investigating quantum physics and realizing quantum
technologies [1-28]. A central challenge is to protect
spin qubits from decoherence due to their environment.
Various methods to extend coherence times have been
developed for spin ensembles [2,7-9] as well as individually
controlled spin qubits [1,3-6,10,11,16,17]. These methods
include the precise tuning of magnetic fields to create
magnetic-field-insensitive clock transitions [7,9,10,29,30],
decoherence-free subspaces to protect against correlated
noise [5,10,19,30], dynamical decoupling to mitigate slowly
varying noise [2—4,8,9,11,31], real-time Hamiltonian esti-
mation [6], quantum error correction [16,17,32], and iso-
topic purification to remove the spin background [2,3,8].
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Here, we take a different approach: we look for naturally
occurring qubits that are inherently protected against
decoherence. We investigate pairs of identical interact-
ing nuclear spins [33]. Such spin pairs are naturally
and abundantly present in solids like diamond, silicon,
silicon-carbide, germanium, graphene, and MoS,
[11,13,14,21,22]. Traditionally, the dynamics of such spin
pairs have been regarded as a primary noise source for
solid-state spin qubits [7,11,21,22,37]. In contrast, we show
that spin pairs themselves provide individually controllable
and decoherence-protected quantum systems. First, we
develop high-fidelity initialization and single-shot readout
of multiple spin-pair qubits. Then, we investigate their
coherence and show that they are inherently protected by a
combination of a decoherence-free subspace, a clock
transition, and a variant on motional narrowing. Finally,
we highlight the potential of these spin pairs as qubits by
creating an entangled state of two spin pairs through
sequential nondestructive parity measurements.

I1. SPIN PAIRS

The system that we investigate is illustrated in Fig. 1(a).
We consider three pairs of coupled *C nuclear spins in the

Published by the American Physical Society
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FIG. 1. System and basic spectroscopy. (a) We study three *C

spin pairs (A, B, and C) in a diamond. The pairs are detected and
controlled using a nearby NV center. The insets show the spatial
configuration of the pairs. Pairs A and B are nearest-neighbor
pairs oriented along the external magnetic field B,. For pair C, we
show one of the three possible orientations (Appendix H). The
main source of decoherence is the surrounding bath of '3C spins
(1.1% abundance). (b) Sensing the pair pseudospins [11,13,14].
The NV electron spin is prepared in a superposition, and a
periodic sequence of z pulses is applied. If the interpulse delay is
resonant with the dynamics of a pair, a loss of electron coherence
is observed. We set 7 = m2x/w; with m an integer and w; the
13C Larmor frequency to avoid interactions with individual *C
spins [11,14]. The vertical lines mark the values for 7 used in this
work for the three pairs (r4 =75 = 120.330 s and
7c = 177.026 us). The NV spin is prepared (RS) and read out
(RO) optically (Appendix A). The error bars represent one
standard deviation.

vicinity of a nitrogen-vacancy (NV) center in a diamond at
3.7 K. The NV center provides a controllable electron spin
with long coherence times that can be initialized and
measured optically [2,4,11,14,16-18]. Because the NV
spin creates a switchable local magnetic-field gradient over
each pair, it can be used to sense and manipulate the spin
pairs [11,13,14], despite their excellent protection from
external influences.

A spin-1/2 pair is described by four states: [11), [1]),
[41), and ||{ ). We focus on the dynamics in the antiparallel

subspace and define a pseudospin spanned by [}) = |1{)
and [{}) = [{1) [11,13,14]. The pseudospin Hamiltonian is
(Appendix C)

H=XI,+mcZl., (1)

in which 7 . and 1, are spin-1/2 operators. X is the dipolar
coupling between the *C spins, which creates the evolution
M) < [{) (flip flops). m, = {—1,0,+1} is the NV spin
projection, and Z is the difference between the two NV-13C
hyperfine couplings (Appendix C).

Pair A and pair B are nearest-neighbor pairs oriented
along the external magnetic field with X, = Xp =
2080.9900(3) Hz, Z, = 130(1) Hz, and Zz =91(2) Hz
(see measurements below). Pair C has a larger spatial
separation between the spins resulting in X-=
188.33(2)Hz, and Z- = 2802(2) Hz. In the following,
we develop initialization, control, and measurement for
pairs A and B, for which X > Z (see Appendix D for pair
C control, for which Z > X).

Previous work demonstrates that the pseudospin of pairs
can be detected through decoupling sequences that toggle
the m,ZI, term by periodically inverting the NV electron
spin [Fig. 1(b)] [11,13,14]. For an interpulse delay of
2t = 7/w,, with @, = \/X>+ (Z/2)?, the sequence is
resonant with the pseudospin dynamics, and the effective
NV-pair interaction is of the form S.7,, with S. the spin
operator for the NV electron spin [11,13,14]. The NV
center thus accumulates a phase that depends on the z
projection of the pseudospin. We use the NV center as a
sensor to detect the spin pairs in its environment
by sweeping 7 [Fig. 1(b)] [11,13,14] and find the reso-
nances for pairs A and B (z = 120.330 ps) and pair
C (z = 177.026 ps).

III. INITIALIZATION AND READOUT

We start by developing projective single-shot measure-
ments. Unlike all previous work, which is limited to
manipulating mixed states of the parallel and antiparallel
subspaces [11], these measurements enable us to initialize
and measure the complete state of the spin pairs with high
contrast.

Our method is based on repeated nondestructive mea-
surements and illustrated in Fig. 2. Each repetition com-
prises an interaction period between the NV and the pair
pseudospin before optical readout. During the interaction,
the NV electron spin accumulates a positive (negative)
phase if a pair is in |[f}) (|{})). For a pair in the parallel
subspace (|11) or |1 )), the NV spin does not accumulate
any phase. We choose 7 such that pairs A and B interact
with the NV spin simultaneously. Therefore, the NV spin
accumulates a phase that depends on which of the 16
possible states the two pairs are in [Fig. 2(c)]. By repeatedly
applying this sequence, we realize a projective
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FIG. 2. Projective spin and parity measurements for pairs A and B. (a) Sequence to measure the pseudospin states. The NV electron
spin starts in m; = 0. The :?Zi . interaction sequence (7 = 120.330 us and Ny = 14) maps the state of the two pairs onto the NV spin. The
NV spin is subsequently read out (RO) and reset (RS) to m, = 0. We synchronize subsequent repetitions by calibrating a waiting time
7y = 323.5 ps to compensate for the 1, evolution during NV readout. This ensures that the full sequence duration is a multiple of 1/X.
(b) Sequence to measure the pseudospin parity (N, = 20, Supplemental Sec. IV [38]). We set rg = 81 us to synchronize subsequent
measurements [sequence duration a multiple of 1/(2X)]. (¢) XY plane of the NV Bloch sphere showing the possible phases accumulated
in the spin measurement. The NV spin starts along x and picks up a positive (negative) phase for a pair in |f}) (|)) and no phase for a
pair in a parallel state (|11) or |]J)). Reading out along the y axis distinguishes the four pseudospin states (blue). Note that ||| ) (not
shown) gives the same result as [11). (d) XY plane of the NV Bloch sphere under parity readout. The initial state (x axis) and the readout
axis (x axis) are identical so that the parity of pairs A and B is measured. (¢) Measurement sequence to calibrate single-shot readout and
initialization. The top right of each block indicates the number of repetitions. The optimal number of spin readouts is 30 (Supplemental
Sec. III [38]). (f) Conditional histograms for 30 spin readouts after initialization in |f})|f}) (green) and |{})|{}) (blue). The initialization
conditions for the 30 preceding spin readouts are indicated in red. (g) Combined initialization and readout fidelity for [})|{}') (green) and
[4)]U) (blue) for 30 spin readouts. We find an optimum of F = 98.1(5)% for a decision threshold of 14 out of 30. The error bars
represent one standard deviation.

measurement that can distinguish multiple states in a single ~ parity versus {|f1{}),|U)}: odd parity; Figs. 2(b)
shot and with high contrast. and 2(d)]. Because the pseudospins evolve as |}) <> |{)

We construct two types of measurements by setting  with a frequency of approximately X during the NV spin
different interaction times and NV readout axes [Figs. 2(a)  readout, each repetition must be timed to align the meas-
and 2(b)]. The “spin” measurement distinguishes the four =~ urement axes. This synchronization of repeated nondestruc-
pseudospin states [| 1), [T U), |[U 1), and |} U ); Figs.2(a)  tive measurements to the system evolution is similar to the
and 2(c)]. The “parity” measurement distinguishes only the ~ case of repeated measurements on individual spins, e.g., in
pseudospin parity of the two pairs [{|T11),|UU)}: even  the context of quantum algorithms [16,23], atomic
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frequency locking and quantum Zeno dynamics [24], and
weak measurement sequences [25,26].

We combine these sequences to realize high-fidelity
initialisation and measurement [Fig. 2(e)]. We first apply
the parity measurement sequence (20 repetitions) to herald
preparation in an even parity state and to exclude the cases
for which one or both pairs are in their parallel subspace.
Then, we apply a spin measurement (30 repetitions) to
herald either | f}) or || |}). Finally, we measure the
pseudospin state with another spin measurement (30
repetitions). The resulting conditional histograms show
well-isolated distributions [Fig. 2(f)], and an optimization
of the measurement decision threshold [Fig. 2(g)] yields a
combined initialization and readout fidelity of 98.1(5)%.
We refer to Supplemental Material [38] for the full
optimization procedure.

IV. COHERENCE OF PAIRS A AND B

We use the developed high-contrast measurements to
investigate the coherence of pairs A and B. First, we
perform a free-evolution experiment with the NV spin in
my = —1 [Fig. 3(a)], for which the N'V-pair coupling is on.
Because the pseudospin precession frequency v X* + Z? is
different for the pairs (Z, # Zp), this measurement reveals
the presence of the two pairs and characterizes their
couplings Z to the NV. The two frequencies observed
give Z, = 130(1) Hz and Zy = 91(2) Hz (Appendix B).
We obtain the dephasing times from a Fourier transform
[Fig. 3@@)]: T5,=026(2)s and Tj,=0.39(6)s
(Appendix B). These values are 1-2 orders of magnitude
larger than for individual '3C spins in the same sample [4].

Second, we perform the same experiment with the NV
spin in m, = 0, so that the coupling to the NV is effectively
turned off. Now both pairs precess with frequency X, =
Xp =2080.9900(3) Hz [Fig. 3(b)], and a coherent oscil-
lation that extends past 70 s is observed. To extract the
dephasing time, we measure the oscillation amplitude at
various times [Fig. 3(c)]. The resulting decay yields
T5; = 1.9(3) min, a 4-orders-of-magnitude improvement
over an individual spin [4] and the longest inhomogeneous
dephasing time reported for any individually controllable
quantum system [29].

V. DECOHERENCE MECHANISMS

We now elucidate the mechanisms which lead to these
remarkable coherence properties. We add a magnetic-field
noise term AZ(¢) to the pseudospin Hamiltonian:

H = XI, + [m,Z + AZ(1)]1.. (2)

The first mechanism which enhances the coherence is the
decoherence-free subspace [30,39] formed by the pseudo-
spin states. Because the spins are identical, AZ(t) is given
by the fluctuations of the magnetic-field difference between
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FIG. 3. Coherence of pairs A and B. (a) Ramsey measurement

with the NV in m; = —1. Top left: experimental sequence. Top
right: Fourier transform of the signal indicating two frequencies.
From the data, we obtain the coupling of the pairs to the NV:
Z, = 130(1) Hz and Zy = 91(2) Hz. (b) Ramsey measurement
with the NV in m; = 0. Top left: experimental sequence. Top
right: Fourier transform indicating a single frequency. From the
data, we obtain X = 2080.9900(3) Hz. For (a) and (b), a
detuning is applied (Appendix B). (c) Each data point corre-
sponds to the amplitude of a Ramsey measurement in m; = 0. A
fit yields 7% = 1.9(3) min; see Appendix B. The data deviate
from a simple exponential decay, indicating that processes
beyond pure dephasing contribute to decoherence (Supplemental
Sec. I [38]). The error bars represent one standard deviation.

the two spins. The atomic distance between the spins
ensures near-complete immunity to noise from distant
sources, such as the external magnetic field and the control
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signals. The main source of noise is the surrounding '3C
spin bath. Hence, AZ(¢) can be approximated as a Gaussian
distribution with a correlation time 7, [40,41] and variance
b* = %Zk(A,(cl) — A2, where A" (A,((Q)) is the dipolar
coupling of bath spin & to the first (second) spin of the pair.
We calculate the typical effective noise strength b ~ 10 Hz
by numerically simulating many spin-bath configurations.
This is a noise reduction by a factor of approximately 2 due
to the decoherence-free subspace (Appendix F).

We first analyze the case of the NV electron spin in m; =
—1 [Fig. 3(a)], which enables us to extract the strength of
the noise due to the spin bath. Because X > Z > AZ(r),
the Hamiltonian can be approximated as (Supplemental
Sec. I [38])

H= <w_1 - = AZ(t))ix, (3)

-1

with w_, = vV X? + Z?. Additionally, the NV spin creates a
field gradient that suppresses spin flip flops in the bath (a
frozen core [4,9]). Therefore, the noise can be treated as
quasistatic, and the signal decay is Gaussian [40], as
experimentally observed [Fig. 3(a)]. The dephasing time
is given by [40]

L_ 0 V2

In this case, the coherence is enhanced by a factor of
(w_1/Z) ~20 in addition to the enhancement by the
decoherence-free subspace. Finally, inserting the measured
dephasing times into Eq. (4) yields noise strengths b, =
13.9(2) Hz and by = 12.5(4) Hz. These values are con-
sistent with the interpair distance and '3C concentration
(Appendix F).

Second, we analyze the case with the NV electron spin in
m; = 0 [Fig. 3(b)]. Because X > AZ(t), the Hamiltonian
can be approximated as (Supplemental Sec. I [38]) [41]

AZ%(1)
. 5)

H=XI, +

The eigenenergies are now first-order insensitive to AZ(r)
as the spin pair forms a clock transition due to the coupling
X, a second mechanism that enhances coherence. Note that
the clock transition in this system does not require a
specific magnetic-field value, as the simultaneous
decoherence-free subspace removes the dependence on
global magnetic fields.

The decoherence-free subspace and clock transition
alone cannot yet explain the observed m; = 0 dephasing
time. In particular, for quasistatic or slow noise, the
coherence would be limited to approximately 10 s
(Supplemental Sec. I [38]). However, the increased coher-
ence, in combination with the lack of a frozen core for

my; = 0, unlocks a new regime in which the nuclear-spin
bath fluctuations become relatively fast (7, < X/b%). A
mathematically equivalent Hamiltonian is analyzed theo-
retically by Dobrovitski et al. [41]. The resulting time
constant is

(6)

The dependence on the correlation time 7, reveals a third
mechanism, similar to motional narrowing [41], that further
enhances the coherence. Inserting the parameters obtained
from the m; = —1 measurement and a typical value for
7.~ 0.1 s[16], inhomogeneous dephasing times of approx-
imately 100 s are predicted. Together, these three mech-
anisms thus provide an explanation for the observed
dephasing times.

VI. COHERENCE OF PAIR C

To further analyze the different physical regimes that
play a role, we investigate pair C (Fig. 1). Because Z > X,
the dynamics are different and the clock transition can be
switched on (m, = 0) and off (m; = —1) (Supplemental
Sec. I [38]). We develop complete control, initialization,
and single-shot readout of such pairs in Appendix D.

For evolution under m, = 0, the situation is similar
to pairs A and B. We find T; =0.6(1) s, which is
reduced compared to pairs A and B, because the smaller
coupling X makes the clock transition less effective
(Appendix D). Additionally, similar values obtained for
spin echo [T, =0.7(1) s] and relaxation measurements
[T; = 0.9(2) s] indicate that relaxation plays a role in
limiting the coherence (Supplemental Sec. I [38]). For
my, = —1, afrozen core is formed and the clock transition is
turned off, so that the noise AZ(r) affects the eigenfre-
quencies linearly. We find 75 = 18(1) ms with Gaussian
decay, indicating quasistatic noise [40], which is consistent
with spin echo [T, = 0.3(2) s > T%] and relaxation mea-
surements (7; > 1 s) (Appendix D). In this case, there is
no significant coherence protection, and the results are
similar to individual *C spins [4].

VII. ENTANGLING TWO SPIN-PAIR QUBITS

Finally, we demonstrate the potential of the spin pairs as
qubits by demonstrating an entangled state of pair A and
pair B. We create entanglement through subsequent pro-
jective measurements of the oy, and 6.6, pseudospin
parity [Fig. 4(a)]. We herald on outcomes (6,0,) = +1 and
(6.6.) = —1, so that the resulting state is (1/v/2)(|1H{})+
|Ur)). This state is a four-spin-entangled state
(1/vV2)(I11) + [411])) that encodes two qubits of
information in two long-lived pseudospin states.

To characterize the resulting state, we first measure
parity oscillations by varying the evolution time ¢
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FIG. 4. Entanglement of pairs A and B. (a) Experimental sequence. We prepare the entangled state (1/v/2)(|fd) + |U1)) by
consecutively measuring (c,0,) and (6.c). We herald on the +1 (> 14/20 counts) and —1 (< 1/4 counts) outcomes in the initialization
steps. Final operators are measured through optional basis rotations (dashed boxes) and a (5.5,) parity measurement. /. (¢) stands for
a rotation around x/z by an angle ¢. (b) Parity oscillations show a frequency of 4.20(4) kHz (approximately 2X). For (c,0,), no
oscillation is observed, as the pseudospin eigenstates are along x. (c) Measurement of the three nonzero operators of the entangled state.
The state fidelity is F = (1 — (0,0,) + (0,0,) + (0,0,))/4 = T5(2)%. We use t = 225 us for measuring (c.0,) and ¢ = 105 us for
(oy0,). The results are not corrected for readout infidelity, and the error bars represent one standard deviation.

[Fig. 4(a)]. The observed frequency is 4.20(4) kHz, which
equals 2X, as expected [Fig. 4(b)]. To determine the state
fidelity, we measure the pseudospin parity operators
(010,), (0y0,), and (6.0,). We realize the required sin-
gle-qubit rotations through waiting times (for x rotations)
and dynamical decoupling sequences with the NV spin in
an eigenstate (for z rotations) [Fig. 4(a)]. Figure 4(c) shows
the resulting expectation values, which yield a fidelity
F =0.75(2), confirming entanglement (F > 0.5) [42].
This result highlights the high-fidelity initialization, con-
trol, and nondestructive measurements realized.

VIII. CONCLUSION

In conclusion, we have developed complete control over
multiple nuclear-spin pairs. These spin pairs provide
inherently long-lived quantum states due to a combination
of three physical phenomena: a decoherence-free subspace,
a clock transition, and a variant of motional narrowing. This
inherent coherence protection makes spin pairs promising
systems for a variety of applications, such as robust
memories for optically connected quantum networks
[18-20,43] and memory-enhanced sensing [44-49].

For quantum networks, the long coherence time and
small effective coupling to the NV electron spin (a few
hertz) might enable faithful storage of quantum states
during the probabilistic generation of NV-NV entanglement
through optical channels. Such a robust memory is a key
requirement for progressing toward larger-scale networks
based on defect spins [19,43,50]. For sensing, a hybrid
system consisting of a sensitive quantum sensor (e.g., the
NV electron spin) in conjunction with a robust quantum
memory can increase sensitivity and enhance sensor
properties [44—49].

Furthermore, the presented methods might be
extended to electron spin pairs, where greater
control speeds are possible, and provide new opportu-
nities for the magnetic imaging of spin systems through
spin-spin interactions [12]. Further improved control
over the spin pairs might be realized by using tailored
decoupling sequences [51-58]. Such long-lived nuclear
spin pairs are available for most NV centers
(Appendix H) and are present in a variety of other
materials. Therefore, our results reveal a new, promis-
ing, and abundantly available resource for quantum
science and technology.
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APPENDIX A: SAMPLE AND SETUP

The experiments are performed on a naturally occurring
NV center in a cryogenic confocal microscope (3.7 K). The
diamond is homoepitaxially grown using chemical vapor
deposition and cleaved along the (111) axis (Element Six).
There is a natural abundance (1.1%) of '3C. The NV center
is selected on the absence of strongly coupled '*C spins
exceeding approximately 500 kHz hyperfine coupling but
without any other criteria on the spin environment or
spin pairs.

The NV electron spin has a dephasing time of 775 =
4.9(2) ps and a spin echo time of 7, = 1.182(5) ms. The
electron relaxation (7 > 1 h) at this temperature is
negligible [11]. We measure the NV spin state in a single
shot using spin-selective optical readout [16]. The readout
fidelities are 0.905(2) [0.986(2)] for the m; = 0 (my, = —1)
state with an average fidelity of F = 0.946(1). The
dynamical decoupling sequences follow the XY8 scheme
to mitigate pulse errors [59]. The NV studied in this work is
the same NV studied in Abobeih et al. [12]. However, the
13C spins that constitute the pairs studied in this work are
not part of the 27 spins that are found in Ref. [12].

APPENDIX B: DATA ANALYSIS

1. Fit functions
The Ramsey data in Fig. 3(a) (m, = —1) are fitted to

F(1) = a+ exp[=(t/T)"|[A cos(2xf at + $a)

+ Bcos(2zf gt + ¢p)]. (B1)

We obtain 7 =0.53(4) s, n =2.1(4), f4 =9.07(6) Hz,
and fp = 7.0(1) Hz (measured with a 10-Hz detuning with
respect to 2086 Hz). Using f=+vVX>+Z> and

X = 2080.9900(3) Hz, the values for f, and fp yield
Z, =130(1) Hz and Zz = 91(2) Hz, respectively. The
observed shape of the decay [n = 2.1(4)] is in agreement
with the predicted Gaussian (n = 2) decay for quasistatic
noise (Supplemental Sec. I [38]).

To extract the dephasing times, we fit the Fourier
transform in Fig. 3(a) to

F(f) =a+Aexp[—(f + f4)*/203]
+ Bexp|—=(f + f5)*/203].
We find o, = 0.88(6) Hz and 65 = 0.57(9) Hz, which

gives T3 , =1/(V2r6,) =0.26(2) s and T , = 0.39(6) s.
The Ramsey data in Fig. 3(b) (m; = 0) are fitted to

(B2)

F(1) = exp|[—(¢/T)"] cos(2zft + ).

We obtain 7 =98(44) s, n=0.5(4), and f = 0.2400(3) Hz
(measured with a 0.25-Hz detuning with respect to
2081 Hz). Therefore, we obtain X =2080.9900(3) Hz. Note
that the precise value obtained for X deviates from simple
theoretical estimates and is analyzed in Supplemental
Sec. VII [38]. The Fourier transform is fitted to

(B3)

F(f) = a+ Aexp[=(f + fo)*/203].

We obtain f, = 0.2402(3) Hz and o, = 0.0074(3) Hz.

The data in Fig. 3(c) are fitted to exp[—(#/T)"], obtaining
T =1.9(3) min and n = 0.23(2). Note that n deviates
from the simple exponential decay (n = 1) associated to
Eq. (6), indicating that other effects beyond pure dephasing
contribute to the decoherence (Supplemental Sec. I [38]).

The data in Fig. 3 as well as the data in Fig. 7 are
corrected for NV ionization.

(B4)

2. Error analysis

All error bars on data points represent one standard
deviation. The error on data involving single-shot readout
of (the parity of) nuclear spin pairs is given by a binomial

error:
_/p(1=p)
o = )
n

where p is the success probability in a Bernoulli process
and n is the number of trials. When a data point consists of
m independent datasets, the individual errors are added in

quadrature:
o= S a.
m\/ &

In Fig. 3(c), the error bars are instead given by the fit
error on the amplitude of the underlying Ramsey
measurements.

(BS)

(B6)
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APPENDIX C: PSEUDOSPIN HAMILTONIAN H=o,1" + w0, 1¥ + mAD . 1)
The Hamiltonian for two '3C spins in the vicinity of an +mA® 1?0 + H), (C1)
NV center in the interaction picture with respect to the
electron energy splitting and under the secular approxima-  where @, = y.B is the 1*C spin Larmor frequency, with y,
tion can be written as the °C gyromagnetic ratio. B is the magnetic field along the
m =0 ms =-1
(@) : N/2
t t ( T i 2t i T\
B B \ /
z z
X>>Z
Pair A, B X X X
IX - IX SZIZ
(0) m =0 m = -1
N/2
t t i f
T 2t T
i
z z z
Z>> X
Pair C X X X
IX = IZ SZIX

FIG. 5. Overview of pair pseudospin dynamics during various sequences on the NV electron spin. (a) Pseudospin dynamics of pairs
with X > Z (pairs A and B). The top row indicates the sequence performed on the NV electron spin, the middle row indicates the
corresponding pair dynamics in the XZ plane of the pseudospin Bloch sphere, and the bottom row indicates the effective pseudospin
Hamiltonian term under that sequence. For the left two columns, the rotation frequencies are given inside the Bloch spheres. From left to
right, the sequences are free evolution in m; =0 and my; = —1 and a dynamical decoupling sequence with 7 resonant, i.e.,

2t = /+/X? + (Z/2)?. Rotations that are unconditional on the NV electron spin state can be obtained by setting 7 = 7/1/X> + (Z/2)?
(unconditional z rotation) and by setting 7 far off resonant (unconditional x rotation), but these are not shown or used here. Note that the
z-rotation frequency depends on the hyperfine field difference Z, so that pairs A and B can, in principle, be controlled individually.
(b) Pseudospin dynamics of pairs with Z > X (pair C). Like above, z and x rotations that are unconditional on the NV electron-spin state
can be obtained by setting different values for 7 (not shown). Together, these operations enable universal control of the system consisting
of the three pseudospins and the NV center.
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NV axis. I() are the spin-% operators acting on spin i, m,; =
{-1,0,+1} are the NV electron spin states, and Al =
[A,. A, A,] is the NV-1C hyperfine interaction vector of
spin i. H, is the dipolar interaction between two '3C spins.
Throughout the paper, all units in equations (X, Z, b, etc.)
are in angular frequency. For a large magnetic field
compared to the dipolar (X) and hyperfine couplings
(AN, A®), H, can be written as

Hp=x31V1% — 100 12), (€2)
_ HoYcrch (1 = 3cos?0),), (©3)
8zl [?

where pu, is the vacuum permeability, r;, is the vector
between the two '*C atoms, and 6, is the angle between
the magnetic-field axis and the pair axis. Since w; =
y.B = 432.140 kHz is large compared to the dipolar (X)
and hyperfine couplings (A1), A®)), the antiparallel states
|1)) and |]1) form an isolated subspace in which we
define a pseudospin 1 as |f) =|t]) and [{)=[|1)
[11,13,14,37]. The Hamiltonian in this subspace is given
by [13,37]

H=XI,+mZI.. (C4)

(@)

NV readout

NV-pair interaction

2T, m a2 im | —
¢ 1l
Spin = \ 7 |
U S — XlamZl, - XI,
(© X
y < RO axis
1) +14) -1

(d) RO axis

Z originates from the difference of the hyperfine couplings
of the two spins to the NV electron spin and is given by [37]

Z2=2+2, =A}

I A (C5)

where A‘(‘i) =AY and AV = /(A1) + (AP)? for spin i

of the pair.

APPENDIX D: PAIR C CONTROL, COHERENCE,
AND RELAXATION

Pair C has a dipolar coupling X = 188.33(2) Hz and a
hyperfine difference Z = 2802(2) Hz. Therefore, Z > X,
in contrast to pairs A and B for which X > Z. This changes
the dynamics in two ways. First, for m; = —1, Z is the
dominant term in the pair frequency w_; = v X* 4 Z? and,
thus, sets the location of the resonance in Fig. 1(b). Second,
the effective NV-pair interaction during the dynamical
decoupling sequence becomes S’jx [11] (Fig. 5).

We implement two types of projective measurements
on pair C (see Fig. 6). The spin measurement sequence
distinguishes the pseudospin states (1/v2)(|f1) & |)).
The parity measurement sequence distinguishes between

the parallel (|11),/{))) and antiparallel (|1}),]{))

(b)

NV readout

NV-pair interaction
Ny/2 1

o \P 3T,

T

1
2Ty m

2t

¢
g — s,

Parity =
— XI+mZl, - XI

/
1

L
N

Y

M+ 1 m-1)

FIG. 6. Projective spin and parity measurements for pair C. (a) Sequence to measure the spin state of pair C. The NV starts in m; = 0.
Because Z >> X, the effective interaction between the NV spin and pseudospin is S . I'.. During the NV readout (RO) and reset (RS), the
NV can spend an unknown time in m; = —1 which causes dephasing of the pair spin. Additionally, pair C undergoes a deterministic z
rotation for any known time spent in m; = —1. To minimize these effects, we use a fast readout and reset. N, = 8. (b) Sequence to
measure the parity of the two spins that make up pair C. Note that in this case the timing of the sequence is unimportant, as evolution in
mg = —1 orm; = 0 does not change the parity. N, = 14. (c) XY plane of the NV Bloch sphere during the NV-pair interaction in (a). The
NV picks up a positive or negative phase depending on the x projection of the pair pseudospin and no phase when the pair is in the
parallel subspace. (d) XY plane of the NV Bloch sphere during the NV-pair interaction in (b).
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(a) Initialise Sequence Measure
6
0
0 Spin
i+ | |
[1)-1¥)
©) © ook e
— G- X, — LGn) —
1.0 1.0
0.8 0.8 H ® 1
E‘ 0.6 E‘ 0.6 1
S S
i 04 i 04 B
0.2 0.2
00 I I I I I I I 1 00 1 I 1 1
0 5 10 15 20 25 30 35 40 45 0.0 0.5 1.0 1.5 2.0 25
t (ms) t(s)
— Xl4Zl, — ) — X+Zl, — — G- xi. - L) — X, — LG —
1.0 1.0
0.9 k 0.9
> 0.8 k > 0.8
L 06 1 *06
0.5 k 0.5
04 04 ! ! ! !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 15 2.0 25
t(s) t(s)
(f) T T i T T i
[ sows || 1338 ks H 1338 ps [ 8ops | (9) t
— LG — G0 — Xi+zI, — LGn) — LG — X,
0.9 T 1.0
le® & 3 3
0.7} |
2 2
3 05} R g 0.5
[ i
0.3f ® é ]
!i (] .
01 I I I I
0 2 6 8 10 12 0.0

t(s)

t(s)

FIG. 7. Coherence and relaxation of pair C. (a) Measurement sequence. First, we use ten parity readouts to herald the pair in the
antiparallel subspace (condition > 7/10). Then, we use seven spin readouts to initialize the pair in (1/v/2)(|1) + |{)) (> 4/7, blue
data) or (1/v/2)(I) = |{})) (< 3/7, green data). The various evolution sequences are given as insets in (b)—(g). Finally, six spin
readouts are used to read out the spin state. (b) and (c) are fitted to F(t) = a + Ae~"/T)" cos(2zft + ¢) and (d), (e), and (g) to
F(t) = a + Ae™/T)"_ (b) Ramsey measurement in m; = —1. T5 = 0.018(1) s, n = 1.4(2), and f = 2808(1) Hz (measured with a 200-
Hz detuning with respect to 2807 Hz). (c) Ramsey measurement in m; = 0. T5 = 0.6(1) s, n =0.7(1), and f = 188.33(2) Hz
(measured with a 5-Hz detuning with respect to 186.8 Hz). (d) Spin echo measurement in m; = —1. T, = 0.3(2) s and n = 0.6(2).
(e) Spin echo measurement in my = 0. T, = 0.7(1) sand n = 1.3(3). (f) Relaxation measurementin m; = —1. 7| > 1 s. (g) Relaxation
measurement in m, = 0. T, = 3.6(7) s and n = 0.8(2) for the blue data [(1/v2)(|) + [{))]. T = 0.9(2) s and n = 1.0(2) for the
green data [(1/v/2)(|ft) = |{))]. The relaxation times are different for the two eigenstates, indicating a mechanism that depends on
whether the state is a singlet or triplet.

011048-10



ENTANGLEMENT OF SPIN-PAIR QUBITS WITH INTRINSIC ...

PHYS. REV. X 12, 011048 (2022)

(@) i) (b)

Prepare

Sequence  Measure

2 n m 1

0.6
>
3
('8
05
0.4 ‘ ‘ ‘ ‘ L1 ]
427 428 429 430 431 432 433 434
rf frequency (kHz)
FIG. 8. Spectroscopy and control of the complete pair Hilbert
space. (a) Level diagram for pair C with the electron spin in
my; = —1. w; (w,) is the frequency associated to the first (second)
spin of the pair with the NV in m; = —1. (b) Sequence to reveal

the transitions between the subspaces. First, the pair is initialized
in the antiparallel subspace through a parity measurement, then
an 1f pulse with variable frequency with the NV in m; = —1 is
applied, and finally the subspace population is measured using
another parity measurement. If the frequency of the rf pulse is
resonant with a single-spin transition, the spin pair changes
its subspace. (c) Measurement result. Four transitions are ob-
served corresponding to the marked transitions in (a). The green
dashed line corresponds to the bare Larmor frequency
w; = 432.140 kHz. We fit the data to four Lorentzians and
extract w; = 429.314(5) kHz and w, = 432.122(7) kHz. For
the left (right) dips, we also obtain X = 184(3) [194(4)] Hz.
These results corroborate the assignment of the signals to *C
pairs and enable complete control over the full pair state.

subspaces of the pair. We obtain high-fidelity initialization
and readout by repeatedly applying these sequences
(Supplemental Secs. V and VI [38]).

For spin pairs with Z > X, the timing of repetitions is
complicated by the fact that the m; =0 and m; = —1
evolution frequencies and eigenstates differ significantly.
Here, we mitigate this by minimizing the NV readout time
(approximately 5 us) and applying a fast reset of the NV
spin, so that the potential time spent in m, = —1 is small.
Because the states that the measurement projects onto

[(1/v2)(|f1) & |U))] are eigenstates of the m, = 0 evo-
lution, there is no timing requirement after resetting the NV,
and we simply concatenate subsequent measurements.
For pairs A and B (X > Z), we use free evolution and
dynamical decoupling sequences to realize universal sin-
gle-qubit control for the pseudospins (Figs. 4 and 5). For
pair C (Z > X)), all single-qubit operations can be obtained

by letting the system evolve freely. Evolution with the NV
electron spin in m, = 0 implements a rotation around the x
axis, and evolution under m, = —1 realizes a rotation
around the z axis. Note that the z-axis rotation is approxi-
mate, as Z is finite. In principle, this can be corrected for,
but this is not done here. We use the pair C control to
measure the pseudospin dephasing time 77, the spin echo
time 7',, and the relaxation time 7'; in both NV electron spin
states; see Fig. 7.

APPENDIX E: SPECTROSCOPY AND CONTROL
OF THE FULL HILBERT SPACE

Most of the work presented is focused on initializing,
controlling, and measuring the states in the antiparallel
subspace of spin pairs, i.e., |1]) and |{1). In Fig. 8, we
demonstrate that the entire Hilbert space of the spin pairs
can be controlled by tf driving the single-spin-flip tran-
sitions of pair C.

The single-spin transition frequencies are o; =
429.314(5) kHz and w, = 432.122(7) kHz [Fig. 8(a)].
Since the frequency of a single-spin transition in m, =

—1 is @~y - A), this yields A}" =2826(5) Hz and

A|<|2) = 18(7) Hz. Note that these values assume that A is

of similar magnitude, so that it can be neglected. The
frequencies observed are consistent with the characteristic
13C frequencies (w; = 432.140 kHz), further corroborating
our assignment of '3C-13C pairs as the source of the signals.

These results also demonstrate selective initialization,
control, and measurement of an individual carbon spin
with negligible coupling to the NV by using its coupling
to neighboring spins. Spin 2 couples negligibly to the
NV [18(7) Hz], so that it overlaps in precession frequency
with most of the spin bath. Nevertheless, it can be initialized
and controlled selectively by using the NV to directly detect
its flip flops with spin 1 (i.e., pseudospin dynamics).

APPENDIX F: DECOHERENCE-FREE SUBSPACE
AND SPIN BATH NOISE

The noise AZ(t) on a spin pair originates from the
surrounding *C spins. As a pair is sensitive only to field
gradients (a decoherence-free subspace), distant external
noise sources can generally be neglected. There are k bath
spins that each create a field difference A,(cl) — A,iz) on the
pair [Fig. 9(a)]. We model AZ(t) as an Ornstein-Uhlenbeck
process with a variance b?> = L—I‘Zk(Ag{l) —A,(f))z. The
question that we address in this section is what b is for
typical spin baths.

We numerically generate 10° different baths (1.1% '*C
abundance) surrounding a pair [Figs. 9(b) and 9(c)] or a
single spin [Fig. 9(d)] in a volume of 15 x 15 x 15 unit
cells. For each bath, we calculate b* = %Zk(Az(:) — APy

but exclude spins with [A!"| > 50 Hz or |A{”| > 50 Hz;
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FIG. 9. Distributions of the noise strength b for typical baths. (a) Schematic of the situation. A pair is surrounded by k bath spins that

each create a magnetic-field difference A,(f) - A,(f) on the pair. Assuming Gaussian noise, we obtain b from b = }Tzk(A;(l) —-A

]({2>)2.

(b)—(d) Distribution of b for 10° generated baths for the parameters of pairs A and B (b), for the parameters of pair C (c), and for a single

spin (d). Strongly coupled spins (|A,((1>| > 50 Hz or |A,<€2)| > 50 Hz) are excluded.

i.e., we exclude strongly coupled spins for which the
system would not be a well-defined spin pair anymore.
The expectation is that the closer the spins of the pair are,
the more correlated the noise and the smaller b is.

The result for a nearest-neighbor pair oriented along the
magnetic field (like pair A or B) is shown in Fig. 9(b). We
find a mean of 10 Hz and a standard deviation of 4 Hz. For
the parameters of pair C [Fig. 9(c)], we find a mean of
14 Hz and a standard deviation of 5 Hz. Last, for an
individual '3C spin [Fig. 9(d)], we find a mean of 20 Hz and
a standard deviation of 6 Hz. A decrease in the effective
noise is observed for the pairs compared to an individual
spin. Furthermore, the closer the pair spins are, the smaller
the effective noise is.

APPENDIX G: DECOHERENCE-FREE SUBSPACE
AND EXTERNAL NOISE

The decoherence-free subspace makes pairs nearly
immune to noise from distant sources. In this section,
we consider the effect of two such external sources. For

single !*C spins in the same sample, typical inhomogeneous
dephasing times of 10 ms are observed [4], which sets a
bound on the noise strength. If we take the extreme case
that all noise comes from an external source, i.e., not from
the spin bath, this gives an upper limit of the noise
magnitude b = 1/v/2xT} = 22.5 Hz. Since we are inter-
ested in an order-of-magnitude estimate, we take
b ~ 107 Hz, corresponding to magnetic-field fluctuations
of 6B ~ 107 T. Now we consider that these fluctuations
originate from either the on-chip MW line that we use to
apply microwaves or from the external magnets that we use
to apply a magnetic field.

1. Microwave line

We approximate the microwave line as an infinite wire
that generates a field at a distance r from the wire of
magnitude B(r) = uol/2xnr, where pq is the vacuum per-
meability and / the current through the wire. Given r ~
10 ym and 6B ~ 10~ T, we obtain I = 27réB/uy ~ 1074
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A. Now we turn to the effect of this noise on a decoherence-
free subspace formed by a '3C pair. The positions of the pair
spins are r, = 10 yum and r, = 10 ym + a,, where for a
we take a conservative value of approximately 107° m.
Given I = 10~ A, the MW line adds a field difference to the
decoherence-free  subspace of AB = B(r,) — B(r,) =
[(uol)/27)[(1/ry) — (1/r,)] ~ 10710 T. That corresponds
to approximately 103 Hz, which has a negligible effect
on the coherence.

2. Magnet

The external magnetic field comes from a cylindrical
permanent magnet. We calculate the effect of that field
(approximately 0.04 T) on the decoherence-free subspace
of a pair. From the above, we know that the maximum field
fluctuations are on the order of 6B ~ 10~ T. We consider a
magnet with an NV-magnet distance r ~ 1072 m, the radius
of the magnet R = 5 mm, the length L = 5 mm, and the
remanence field B, = 1.5 T. To calculate the magnetic
field at r, we use

_ﬂ L+r B r
2 <\/R2+(L+r)2 \/R2+r2>' Gy

B(r)

At r~1072 m, the magnetic field is approximately
0.04 T. The expected effect of the permanent field on
the decoherence-free subspace is then B(r,)—B(r,)~
108T or 107! Hz. We use r,=1cm and r, =1 cm+ay,
where for a, we take a conservative value of 10~ m. This
is a constant field difference (cf. Z) added to the pair.
However, the field fluctuations are 6B ~ 10~ T, more than
3 orders of magnitude less than the permanent field of
approximately 0.04 T. The influence of 6B on the
decoherence-free subspace is, therefore, < 1 mHz, which
has a negligible effect on the coherence.

APPENDIX H: EXPECTED NUMBER OF
NEAREST-NEIGHBOR PAIRS PER NV

In this section, we address how many nearest-neighbor
pairs with similar Z as pairs A and B one would expect
surrounding a typical NV center. To that end, we generate
10* different '*C baths with 1.1% abundance surrounding
an NV center in a volume of 15 x 15 x 15 diamond unit
cells. For every generated bath, we look for the nearest-
neighbor pairs along the magnetic-field axis and calculate
the hyperfine field difference Z due to the NV, assuming a
dipolar NV-13C interaction. Then, we estimate a control-
lable region of 50 < Z < 500 Hz. The upper bound comes
from the required condition X > Z, and the (approximate)
lower bound is a limit due to the detrimental effect of
electron dephasing for a large number of dynamical
decoupling pulses. Additionally, for smaller Z, resolving
a pair from the background bath of pairs with

0.35

0.30 1

0.25

0.20 1

Fraction

0.15

0.10

0.05 1

0.00 -
0 1 2 3 4 5 6

Number of pairs

FIG. 10. Expected number of nearest-neighbor pairs per NV.
The expected number of pairs with 50 < Z < 500 Hz for a
volume of 15 x 15 x 15 unit cells surrounding an NV center. We
estimate that pairs with a Z within the indicated region to be
controllable with high fidelity. When Z is larger, it becomes
comparable to X, and the control methods presented in this paper
do not hold anymore. When Z is much smaller, more pulses are
required in the dynamical decoupling sequence, resulting in more
electron dephasing, and resolving the pair from the background
bath of pairs becomes more challenging.

small Z is expected to be challenging. For every generated
bath, we determine how many pairs satisfy this condition
and plot the result in Fig. 10. The expected number of such
nearest-neighbor pairs per NV is 1 & 1. Moreover, more
than 70% of simulated NVs host at least one nearest-
neighbor pair, indicating that such pairs can commonly
be found.

In the above, we consider only nearest-neighbor pairs
along the magnetic-field axis. Other pairs with smaller X
and larger Z can also be detected and controlled (pair C; see
Appendix D). In Table I, we show the ten largest values of

TABLE I. The occurrence of a given coupling X when fixing
one of the '3C spins of the pair and moving the other around the
lattice. The vector between the two '3C spins of the pair is given
for each X coupling in units of /4, where a is the lattice
constant of diamond. All permutations of the entries of r give the
same coupling X.

X (Hz) Occurrence r (in units aq/4)
2062 1 (1,1.1]

687 3 ~1.1,-1

237 12 [+£2,42.0] and [F 2, +2,0]
187 3 [~1,-1,-3]

134 3 [1,1,-3]

102 3 [1,3,3]

76.38 1 [-3,-3,-3]
75.95 6 (4, £2, 42

61 6 [-3,-1,3]

46 6 [F 4, £2, £2]
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X with their corresponding occurrence and vector r
between the two '3C spins.
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