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ABSTRACT
For autonomous navigation of mobile robots in an unknown environment, mapping the
robot’s environment, and localizing its relative position in the environment is of utmost
importance. However, in a known and controlled environment, being able to localize its
position at a given time instant is sufficient for the robot to navigate autonomously. This
thesis focuses on the pose estimation of a greenhouse robot using images from an on-
board camera and only for its motion on the guided rails. Therefore, to solve the problem
of pose estimation of a mobile greenhouse robot, Visual Odometry (VO) was the best-
suited approach. A review of the literature revealed that most of the current state-of-the
art VO techniques were developed for autonomous navigation in an urban environment
or an indoor space. Even though there were publicly available benchmark datasets for
VO evaluation such as KITTI and TUM datasets, there was no VO dataset available for a
greenhouse environment. A key challenge in collecting visual datasets in a greenhouse
was obtaining the ground truth poses associated with all the images. Therefore, an ex-
perimental setup was developed to collect VO datasets along with ground truth using
store-bought table plants, tomatoes, a mobile camera, and a stereo camera. The experi-
mental design was focused to emulate the greenhouse environment as much as possible.
The camera’s motion during the experiment was also chosen to emulate the robot’s mo-
tion on the guided rails. Subsequently, multiple pose estimation algorithms were run
on the collected datasets for a comparison study. The experiments provided insights
into the algorithms’ performances, and how it gets affected when there are changes to
the image resolution, the overlapping regions between two consecutive images, and the
camera to plants distance. The results show that, for the designed experimental setup,
the pose estimation of SVO Pro using the images obtained from a monocular camera
works best.
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1
INTRODUCTION

For autonomous mobile robots to navigate in an unknown environment, the autonomous
agent should be able to build a map of the environment, and estimate its current posi-
tion in the map. Subsequently, using the estimated position and map of the environ-
ment, the required path planning can be done for the robot to reach the target location
from its current location. However, for applications where the robot’s working environ-
ment is known, pose estimation alone is sufficient to solve the path planning problem.
Structure from Motion (SfM), Visual Odometry (VO), and Visual Simultaneous Locali-
sation and Mapping (V-SLAM) are three different, but closely interlinked concepts that
estimate poses using images obtained from an on-board camera. The differences lie in
their approaches, applications, and the problems they solve. In all three concepts, key
points are detected in the input images, tracked or matched across multiple frames, and
subsequently, the relative poses are obtained. While V-SLAM and SfM deal with simulta-
neous scene reconstruction and camera poses estimation, VO only estimates the camera
poses.

SfM estimates the three-dimensional structure of a scene using multi-view images
captured by multiple cameras or a single camera at multiple positions [1]. The relative
camera poses are obtained by detecting and tracking feature points across all the im-
ages, and the 3D locations of these points are obtained by triangulating the estimated
camera poses and feature points. Usually, in SfM, all the estimates are in a relative scale
and additional information, such as the size of a scene object, is required to obtain the
absolute scale. SfM is an offline implementation, whose computational time grows with
the number of images obtained and these images can be ordered or unordered.

SLAM solves the localization problem faced by an autonomous mobile robot when
navigating through an unknown environment. With each new incoming sensor mea-
surement, SLAM incrementally builds a consistent map of the environment while simul-
taneously determining the robot’s location within this map. In SLAM, both the trajectory
of the robot and the location of all landmarks are estimated online without the need for
any prior knowledge [2]. While SLAM starts pose estimation and map building relative to
its initial estimates, it detects loop closures by recognizing a previously visited location,
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2 1. INTRODUCTION

thereby obtaining a global trajectory and also improving its estimates. When SLAM is
implemented only using cameras it is called Visual-SLAM(V-SLAM).

VO solves the localization problem faced by an autonomous mobile robot when nav-
igating through a known environment. In VO, only the poses are estimated using images
from the onboard camera(s) [3]. The term ’Visual Odometry’ was first defined by Nister
et al in [4], analogous to the wheel odometry which incrementally estimates motion by
integrating the number of turns of wheels. For VO to function properly there should be a
static scene with enough texture to extract the apparent motion and also sufficient scene
overlap between consecutive frames. Contrary to SfM, V-SLAM, and VO are sequential
and online techniques that output new estimates and update previous estimates with
each new incoming image or image pair. This thesis will focus on solving the localiza-
tion problem of a deleafing green house robot.

1.1. KOMPANO DELEAFING ROBOT
The Kompano Deleafing Robot is used to cut the leaves of a tomato plant autonomously.
The robot is deployed in a greenhouse environment where it travels on guided rails, with
tomato plants on either side. For the deleafing task, the robot is equipped with a tele-
scopic arm with a stereo camera attached to it. During the robot’s motion from the be-
ginning to the end of a guided rail, it sequentially removes leaves from the plants on one
side of the rail. At the end of the rail, the robot’s arm switches sides, and the deleafing
is done to plants on the other side of the rail on its way back. When the robot reaches
the beginning of the guided rail, it rides onto a concrete platform, moves and positions
itself to match the orientation of the next guided rail, and continues its guided motion
along the next rail. In addition to the guided motion on the rails and the motion on the
concrete platform, the robot will also be subjected to travel for other purposes such as
servicing and charging.

The robot’s driven rear wheels have servo motors and at the front, there are omni-
wheels for maneuvering on the concrete platform. When the robot drives off the rails,
the rear wheels are the first to get on the concrete platform. The robot then rotates and
translates accordingly to get on the next guided rail. For the robot navigation, currently,
the following sensors are used:

• wheel encoders for odometry,

• Time of Flight (ToF) sensor at the front to detect the guided rail before moving on
it,

• a proximity sensor at the rear to detect if the robot is on the guided rail.

The navigation of the deleafing robot will be affected by the irregularities in the green-
house infrastructure. Given that the distance between two pillars that fit 5 guided rails is
precisely 8m, the average distance between two guided rails should be 1.6m. However,
that is not always the case (Figure 1.1a). Each guided rail’s length also varies between
70m and 120m. The guided rails and the concrete platform are not always perpendicu-
lar to each other. Due to this shift in the orientation, the robot should change its position
accordingly on the concrete platform before moving onto the guided rails (Figure 1.1b).
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Figure 1.1: Irregularities in the guided rails: (a) inconsistency in the distance between adjacent rails, (b)
irregularities in the rail’s orientation with respect to the concrete platform, (c) lateral Shift in the rails.

The rails might also be affected by the lateral shift. Locally, for a distance of 2 m on the
rails, the lateral shift can be 0.1 m, and globally, for the total length of 110 m of the rails,
the lateral shift is not more than 0.2m. (Figure 1.1c). There might also be cracks, uneven
spots, and other irregularities on the concrete platform. Therefore, for autonomous nav-
igation on the concrete platform and guided rails, precise pose estimation is required.
Furthermore, reliable pose estimates on the guided rails will help in accurately locating
crops with distinct features (disease-stricken crops), and the locations of vine tomatoes
can help in predicting the yield estimates.

1.2. RESEARCH QUESTION
Since the working environment for a deleafing robot is known, only pose estimation is
required for solving the navigation problem. This thesis will focus on the performance
comparison of different pose estimation techniques only for the motion of the robot on
the guided rails. The main research questions pertaining to this goal are:

1. Most of the existing publicly available VO algorithms have been developed for an
urban environment [5], [4] or an indoor space [6], [7]. How will these algorithms
perform on datasets that emulate the greenhouse environment?

2. Which camera (monocular or stereo) is best suited for the deleafing robot?

3. How does the camera’s positioning relative to the plants affect the performance
of the algorithms?
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4. What is the best achievable accuracy of VO on a datasets that emulate the green-
house environment?

1.3. THESIS OUTLINE
Chapter 2 will proved an overview of VO by explaining the core task of the all VO al-
gorithms, and a generic pipeline of how that task is performed. Subsequently, the list
of pose estimation algorithms used for the comparison study is also explained in this
chapter. Chapter 3 explains the experimental setup and different datasets collected. The
results obtained from running the pose estimation algorithms on the custom datasets is
explained in Chapter 4. Finally the conclusions drawn from the results and recommen-
dations for future work is discussed in Chapter 5.



2
VISUAL ODOMETRY

2.1. PROBLEM FORMULATION
Consider a monocular camera mounted on a mobile robot capturing images at discrete
time steps. At each time instant k, the cameras capture an image (Ik ). Therefore, for
n time steps, there will be n images, Il ,0:n = [I0, I1, ..., In]. Figure 2.1 shows the camera
poses corresponding to the first three time instances (k = 0,1, and 2).

Figure 2.1: The camera’s poses at time instances k = 0,1 and 2

Egomotion estimation involves estimating the camera pose, Ck , at each time instant
k. The camera pose is defined as

5
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Ck =



xk

yk

zk

αk

βk

γk

 , (2.1)

where, at each time instant k, the coordinates (xk , yk , zk ) specify the camera’s po-
sition and (αk ,βk ,γk ) are the rotations about the x-axis, y-axis, and z-axis respectively.
Since poses in VO are estimated relative to the initial pose, the origin of the world coor-
dinate frame coincides with the origin of the camera coordinate system at time instant
k = 0.

The change in a camera’s pose, from Ck−1 to CK , can be caused either by translation
or rotation of the camera. The translation can be expressed by separate motions along
the x, y and z directions as xk = xk−1 +a, yk = yk−1 +b, and zk = zk−1 + c. Using homo-
geneous coordinates, this translation can be represented as


xk

yk

zk

1

=


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1




xk−1

yk−1

zk−1

1

 (2.2)

Given that α, β, and γ are the rotations about the x-axis, y-axis, and z-axis respec-
tively, their corresponding rotation matrices are

Rx =
 1 0 0

0 cosα −sinα
0 sinα cosα

 ;Ry =
 cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

 ;Rz =
 cosγ −sinγ 0

sinγ cosγ 0
0 0 1


If the x − y − z rotation is used, the rotation matrix representing the camera’s orien-

tation at time step k, relative to its orientation at k −1, is given by

Rk,k−1 = Rx Ry Rz

Therefore, the change in the camera’s orientation can be represented as


xk

yk

zk

1

=
[

Rx Ry Rz 0
0 1

]
xk−1

yk−1

zk−1

1

 (2.3)
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Combining equations (2.2) and (2.3) results in
xk

yk

zk

1

=
[

Rk,k−1 tk,k−1

0 1

]
xk−1

yk−1

zk−1

1

 (2.4)

where

Rk,k−1 =
 cosβcosγ −cosβsinγ sinβ

cosαsinγ+cosγsinαsinβ cosαcosγ− sinαsinβsinγ −cosβsinα
sinαsinγ−cosαcosγsinβ cosγsinα+cosαsinβsinγ cosαcosβ


is the orthogonal rotation matrix, and

tk,k−1 =
 a

b
c


is the translation vector. The matrix is in equation (2.4) is defined as the transformation
matrix

Tk,k−1 =
[

Rk,k−1 tk,k−1

0 1

]
. (2.5)

Tk,k−1 relates the camera poses Ck and Ck−1 as
xk

yk

zk

1

= Tk,k−1


xk−1

yk−1

zk−1

1

 . (2.6)

The core task of all VO algorithms is to estimate this transformation matrix, Tk,k−1, using
the images obtained at time steps k −1 and k.

2.2. PIPELINE OVERVIEW
The main components of a VO pipeline are shown in Figure 2.2. For each image or image
pair, key features are detected and matched with those obtained from the previous time
steps. Let fk−1 be the feature set at time step k −1, and fk be the feature set at time step
k. Motion estimation is the core task of all VO algorithms. Using the matched features
between the current frame k, and previous frame k −1, the camera motion between the
two frames is computed. By concatenating all the frame-to-frame motion, the entire
trajectory of the camera can be obtained [3].

Depending on how the feature correspondences are specified (2D or 3D), different
motion estimation techniques are used.

• 2D-to-2D: Both the set of features fk and fk−1 are specified in 2D image coordi-
nates.
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Figure 2.2: VO Pipeline - Geometric Approach [3].

• 3D-to-3D: Both the set of features fk and fk−1 are specified in 3D by triangulating
the points using a stereo camera at each time step.

• 3D-to-2D: In this case, the features fk−1 are specified in 3D, and fk are specified in
2D image coordinates.

In motion estimation techniques that rely on detecting and matching features across
images, usually, there are outliers in the feature matches. Possible causes of outliers are
image noise, occlusions, blur, viewpoint changes, and illumination changes. These out-
liers affect the frame-to-frame pose estimates, causing a significant drift in the estimated
trajectory from the ground truth trajectory. One of the standard methods used for outlier
removal is Random Sample Consensus (RANSAC) [8]. In RANSAC, a model hypothesis is
generated using randomly sampled data points and the generated hypothesis is verified
on other data points. The model with the highest consensus from the other data points
is selected as the solution. For a VO problem, the model is the estimated Tk,k−1 matrix
between two consecutive camera views and the data points are the feature matches.

Instead of using only a certain number of features in each image, dense motion es-
timation techniques work directly on the images using the pixel intensity values [9],
and [10]. While the direct motion estimation techniques eliminate feature detection
and matching steps, they are relatively more computationally intensive. Semi-dense ap-
proaches are a trade-off between the feature-based and direct approaches. Semi-dense
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approaches eliminate the entire process of detecting and describing features without
compromising on the computational power requirement [7], and [11].

For a total number of n time steps, the pose Ck at each time step k is obtained by
applying equation (2.4) as follows


x1

y1

z1

1

= T1,0


x0

y0

z0

1

 and C1 =
[

x1 y1 z1 α1 β1 γ1
]⊤


x2

y2

z2

1

= T2,1


x1

y1

z1

1

= T2,1

T1,0


x0

y0

z0

1


 and C2 =

[
x2 y2 z2 α2 β2 γ2

]⊤
.

.

.
xn

yn

zn

1

= Tn,n−1


xn−1

yn−1

zn−1

1

 and Cn = [
xn yn zn αn βn γn

]⊤

where the angles αk , βk , and γk are obtained from the Rk,k−1 component in Tk,k−1.
Therefore, for a set of n image pairs, there will be n − 1 transformation matrices. The
above equations show that VO is a sequential process and the pose Ck depends on all
the transformation matrices {T1,0,T2,1, ...,Tk,k−1}. Therefore, the error associated with
the estimation of each Tk,k−1 matrix gets accumulated over time, leading to a significant
drift in the final pose estimate from the ground truth. To remove the noise and obtain
a more accurate estimate, local optimization is required. One of the most popular opti-
mization techniques used for VO is windowed bundle adjustment. Bundle adjustment
simultaneously optimizes both the 3D structure and the estimated camera parameters
using a cost function. In windowed bundle adjustment, this optimization is done only
over a fixed number of frames.

2.3. ALGORITHMS
To perform the comparative study of different pose estimation techniques, new datasets
were collected to emulate a greenhouse environment, and the following algorithms were
run on the collected datasets. Chapter 3 discusses in detail the experimental setup and
data collection process.

2.3.1. IMAGE REGISTRATION USING CORRELATION & FEATURE DISPLACE-
MENT

Image registration is a process that overlays two or more images from the same scene
to geometrically align them for analysis. The overlaying is done by transforming all the
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images into one coordinate system, thereby establishing correspondences between the
images. The main task of image registration is estimating the transformation function
that relates the images. One of the most commonly used methods for estimating the
transformation is correlation [12].

The transformation between two consecutive images in a dataset was estimated us-
ing MATLAB’s built-in function ’imregcorr’. The function returns a geometric transfor-
mation object that maps the pixels in the current image to pixels in the previous (refer-
ence) image. As will be explained in Chapter 3, in the datasets collected for this project,
the transformation of the images is predominantly caused by translation. Therefore, the
output of the ’imregcorr’ function will be the estimated translation in image pixels. To
obtain the translation in terms of unit length, a scale value representing the number of
pixels per unit length should be known. The required scale value is obtained by comput-
ing the feature displacements.

For all the images in the dataset, SURF features are detected and matched across two
successive frames. Subsequently, the feature displacements between the two frames are
calculated in image pixels. To remove the incorrect feature matches, matches with hori-
zontal and vertical displacements higher than user-defined threshold values are filtered
out. For the remaining matches, the median feature displacement value is calculated in
image pixels. Using the median feature displacement and corresponding ground-truth
camera displacement, the scale value representing the number of pixels per unit length
can be approximately calculated. Using this scale value, the translation in terms of unit
length can be calculated.

This method for computing the scale value and estimating the transformation using
correlation is reliable only when the images contain objects with depth values that do
not vary drastically, and the frame to frame camera displacement is known. The datasets
collected for this project satisfy these criteria (Chapter 3).

2.3.2. LIBRARY FOR VISUAL ODOMETRY 2 (LIBVISO2)
The LIBVISO2 is a sparse feature-based VO algorithm for monocular and stereo cam-
eras [6], built on the authors’ earlier work LIBVISO1 [13]. In comparison with LIBVISO1,
LIBVISO2 has higher density of feature matches, a speed-up in feature matching and
and pose estimation, and supports monocular camera. In this method, the input im-
ages are filtered with 5× 5 blob and corner masks. Subsequently non-maximum and
non-minimum suppressions are employed on the filtered images to obtain features be-
longing to one of the four classes - blob max, blob min, corner max, and corner min.
The features are only matched within their respective classes. Given two feature points,
the algorithm compares 11×11 block windows of horizontal and vertical Sobel filter re-
sponses to each other using the sum of absolute differences error metric. Sobel filter is
a discrete differentiation operator used to compute an approximation of the gradient of
an image intensity function.

The inputs to the stereo version are feature matches between the right and left im-
ages and two consecutive frames. For each feature candidate in the current left image,
using an MxM search window, the best matches are found in the previous left image,
next in the previous right image, then the current right image, and finally in the current
left image again. A feature match, called ’circle match’, is accepted if the last feature
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coincides with the first feature. The stereo algorithm uses the 3-point RANSAC estima-
tion and the monocular algorithm uses 8-point RANSAC algorithm. In either case, the
reprojection error of the feature matches is minimized to compute the camera pose.

The algorithm is available as a C++ library with MATLAB wrappers for computing
the 6 DOF motion of a moving stereo or monocular camera. The LIBVISO2 algorithm
was implemented on the Karlsruhe Dataset. The dataset contains stereo sequences of
an urban environment recorded from a moving vehicle in Karlsruhe.
Project URL: http://www.cvlibs.net/software/libviso/

2.3.3. ORB-SLAM2
ORB-SLAM2 is built on the authors’ earlier work, ORB-SLAM [14], which is a simulta-
neous localization and mapping algorithm that uses Oriented multiscale FAST and Ro-
tated Brief (ORB) corner feature detection and matching [15]. FAST corners are detected
at eight scale levels and with a scale factor of 1.2. Each scale level is divided into cells,
and corners are detected in each cell to ensure a minimum of 5 corners per cell. Sub-
sequently, the orientation and ORB descriptors are computed on the detected corner
points. With every new image, the algorithm matches 2-D points in the current frame
to the 3-D points obtained by triangulating matched points from the previous frames,
and then performs motion-only Bundle Adjustment(BA) to optimize the camera pose.
Motion only BA optimizes the camera orientation and position, minimizing the repro-
jection error between matched 3-D points in the world coordinates and 2-D points in
image coordinates.

While ORB-SLAM is a monocular SLAM algorithm, ORB-SLAM2 supports stereo and
RGB-S cameras as well. A key difference between the monocular and stereo versions
is the need for map initialization in the monocular version. Map initialization is done
to compute the relative pose between two frames to triangulate an initial set of map
points [5]. In the monocular version, two geometric models are computed in parallel: a
homography for a planar scene and a fundamental matrix assuming a non-planar scene.
A heuristic is used to select a model and recover the relative pose for the selected model.
When stereo cameras are used, the depth information can be obtained from just one
frame, and an initial map is created from the stereo keypoints.

The implementation is available in C++. The ORB SLAM algorithm was implemented
on the KITTI benchmark dataset [16], indoor sequences of TUM RGB-D dataset [17], the
robot sequences of NewCollege [18] and the EuRoC dataset [19] collected from a micro
aerial vehicle in an industrial environment.
Project URL: https://webdiis.unizar.es/~raulmur/orbslam/

2.3.4. FAST SEMI-DIRECT VO (SVO PRO)
SVO Pro is an extension of SVO [20], a semi-direct VO algorithm that estimates the rel-
ative camera pose by minimizing the photometric error between pixels corresponding
to the projected location of the same 3D points. However, feature-based methods are
used for optimizing the estimated motion. Hence, it’s a semi-direct method. Consider
an interest point in the current frame specified in 2D image coordinates. SVO Pro back-
projects this interest point to a 3D world point and subsequently projects it onto the next
frame. The positioning of the re-projected point in the current frame depends on the rel-

http://www.cvlibs.net/software/libviso/
https://webdiis.unizar.es/~raulmur/orbslam/
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ative pose between the current and the previous frames. Each interest point is denoted
by a patch of 4×4 pixels around the interest point. In SVO Pro, the transformation ma-
trix is optimized to obtain the minimum photometric difference between these image
patches. In comparison to SVO, SVO Pro supports different camera models, and has an
active exposure control method to maximize the gradient information in the images [7].

Extending the monocular version to the stereo version is done by introducing a body
frame B that is rigidly attached to the camera frame with known extrinsic parameters.
The algorithm estimates the incremental motion of the body frame by minimizing the
photometric error. Using the known extrinsic parameters, the relative pose of the cam-
eras with respect to the body frame can be obtained.

The implementation is available in C++. SVO Pro was implemented on an indoor
dataset collected from a camera attached to a MAV and sequences from a handheld cam-
era, with ground truth obtained from a motion tracking system.
Project URL: http://rpg.ifi.uzh.ch/svo_pro.html

2.3.5. COLMAP
COLMAP is a general-purpose SfM and Multi-View Stereo pipeline for reconstruction of
ordered and unordered images [21] and [22]. It starts with feature extraction and match-
ing, followed by geometric verification. For a given set of input images, scene overlap
and the projections of the same points in the overlapping images are identified. The
overlapping images are then verified by estimating a transformation that maps feature
points between images using projective geometry. If a valid transformation maps a suffi-
cient number of features between the images, they are considered geometrically verified.
The geometrically verified image pairs are represented as a scene graph, with images as
nodes and verified image pairs as edges. The reconstruction stage starts with a care-
fully selected two-view reconstruction. Subsequently, new images are registered by solv-
ing the Perspective-n-Point (PnP) problem using matches between the 3-D world points
(triangulated from previous frames) and 2-D image points (current image). With each
new image, there might also be additional feature points that extend the scene coverage.
When a minimum of two images cover the same scene containing these new points, they
are triangulated to increase the stability through redundancy. Finally, the reconstruction
is refined using BA.

The COLMAP SfM and Multi-View Stereo pipeline has a graphical and command-
line interface.
Project URL: https://colmap.github.io/

http://rpg.ifi.uzh.ch/svo_pro.html
https://colmap.github.io/


3
EXPERIMENTAL SETUP AND DATA

ACQUISITION

In order to study the performance of the algorithms, datasets were collected using store
bought tomatoes, and table plants. A mobile camera was used for the collecting the
monocular images and an Intel RealSense Depth Camera D455 was used for collecting
stereo images.

Figure 3.1: Experimental Setup

Figure 3.1 shows the pictorial representation of the top view arrangement of the
setup. The setup had four table plants positioned next to each other with the tomatoes
on the plants. The camera was positioned facing the plants, at a height of 22 cm, and at a
fixed distance of 25 cm or 40 cm from the plants with an expected positional accuracy of
3 mm. To prevent unintended camera motion during data collection, the mobile phone

13
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was fixed to a holder and the stereo cameras were fixed to a tripod. The cameras fixed
to the holder or the tripod stand, was placed on a cuboidal box. The frame to frame mo-
tion was obtained by moving the cuboidal box along a guided line parallel to the plants.
The images were captured in a stop and go method. After each image is captured, the
cuboidal box is moved by 1 cm or 2cm along the guided line and then the next image is
captured. The expected accuracy of the frame to frame camera displacement is 2mm.

3.1. MONOCULAR DATASETS
Four different datasets were obtained using the monocular camera, with changes in
camera resolutions, camera to plants distance, and frame to frame displacement.

• Dataset 1: Number of images = 21; camera resolution = 1280 x 720 pixels; camera
to plants distance = 25 cm; frame to frame displacement = 2 cm.

• Dataset 2: Number of images = 40; camera resolution = 1280 x 720 pixels; camera
to plants distance = 25 cm; frame to frame displacement = 1 cm.

• Dataset 3: Number of images = 37; camera resolution = 4032 x 3024 pixels; camera
to plants distance = 25 cm; frame to frame displacement = 1 cm.

• Dataset 4: Number of images = 23; camera resolution = 4032 x 3024 pixels; camera
to plants distance = 40 cm; frame to frame displacement = 1 cm.

Figure 3.2: Each row contains the first four consecutive frames from each dataset. The rows are in the order of
the datasets.

The camera was calibrated to obtain the intrinsic parameters using a standard cali-
bration checkerboard and MATLAB’s camera calibration toolbox. To perform the camera
calibration, around 20 images of a 10 x 7 checkerboard were captured by the mobile cam-
era. Separate set of images were captured for the two camera resolutions. Using these
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images and MATLAB’s Camera Calibrator app, the intrinsic parameters of the camera
were obtained. Table 3.1 contains two sets of parameters obtained for the two image
resolutions.

Table 3.1: Intrinsic Parameters of the mobile camera.

Parameters
Camera Resolution (Pixels)

1280 x 720 4032 x 3024

Focal Lengths (Pixels) [1007.6908,1007.6336] [3148.4217,3156.1837]
Principal Point (Pixels) [639.5568,361.3941] [2012.2010,1506.4947]

Radial Distortion [0.0985,−0.3629] [0.0324,−0.0917]
Tangential Distortion [0,0] [0,0]

Skew 0 0

3.2. STEREO DATASETS
The stereo images were captured by two camera sensors with a baseline of 95 mm. Three
different datasets were obtained using the stereo cameras, with changes in the camera
resolution and camera to plants distance.

• Dataset 1: Number of image pairs = 22; camera resolution = 640 x 480; camera to
plants distance = 25 cm; frame to frame displacement = 1 cm;

• Dataset 2: Number of images = 18; camera resolution = 1280 x 720; camera to
plants distance = 25 cm; frame to frame displacement = 1 cm.

• Dataset 3: Number of images = 11; camera resolution = 1280 x 720; camera to
plants distance = 40 cm; frame to frame displacement = 1 cm.

Rectified grayscale images were obtained directly from the stereo cameras. The in-
trinsic parameters for the stereo camera was obtained from the real-sense viewer appli-
cation. Table 3.2 contains the intrinsic parameters of the stereo cameras for both the
image resolutions.

Table 3.2: Intrinsic parameters of the stereo camera.

Parameters
Camera Resolution (Pixels)

640 x 480 1280 x 720

Focal Lengths (Pixels) [384.8152,384.8152] [641.3586,641.3586]
Principal Point (Pixels) [319.5187,237.9671] [639.1979,356.6119]

Radial Distortion [0.0,0.0] [0.0,0.0]
Tangential Distortion [0,0] [0,0]

Skew 0 0
Baseline (mm) 95.1063 95.1063
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Figure 3.3: Each row contains a pair of stereo images from each dataset. The rows are in the order of the
datasets



4
RESULTS

Since the experimental setup was designed to emulate the deleafing robot’s motion on
the guided rails, the performances of the algorithms are evaluated using the estimated
camera displacement along the x-axis only (Figure 3.1). Therefore, the algorithms were
run on the datasets to estimate the individual camera poses, and subsequently, using the
camera poses, the frame to frame displacement along the x-axis was calculated.

4.1. IMAGE REGISTRATION USING CORRELATION & FEATURE

DISPLACEMENT
The translation between two images estimated using MATLAB’s ’imregcorr’ function will
be in image pixels. The estimated translation can be used for the comparison study only
if the number of pixels per unit length is known. This value depends on the distance of
the camera from the plants, frame to frame displacement, and image resolution. Hence,
it should be computed individually for each dataset.

4.1.1. MONOCULAR DATASETS
In each of the four datasets, the entire image does not contain leaves or tomatoes. There
are regions in each image with little to no leave or tomatoes. Therefore, to compute
the number of pixels per unit distance and the translation, the images were cropped to
remove the regions without leaves or tomatoes. This also improved the results of the
’imregcorr’ function.

SURF features were detected and matched between two successive frames, and the
corresponding feature displacements in pixel coordinates were calculated. The SURF
feature detection was done with 3 octaves, 4 scale levels per octave, and a strongest fea-
ture threshold of 1000. Out of the detected SURF points, 500 points with the strongest
metric value were used for matching. The incorrect matches were filtered out with a
user-defined threshold for maximum feature displacement along the horizontal and ver-
tical directions. Using the matched features, the median feature displacement between
two consecutive images is calculated in image pixels. Finally, the number of pixels per

17
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Figure 4.1: Regions with minimal leaves or tomatoes removed in Dataset 2.

unit distance (meter) is obtained using the median feature displacement, and frame to
frame camera displacement.

Figure 4.2: Filtering out incorrect feature matches.

MATLAB’s built-in function ’imregcorr’ gives the translation between two consecu-
tive images in image pixels. The frame to frame displacements along the x-axis are com-
puted using the number of pixels per unit distance and the estimated translation. Figure
4.3 shows the results for all monocular datasets obtained using the mobile camera. The
frame to frame displacements calculated using the median feature displacements and
the number of pixels per unit distance is also shown for qualitative comparison.

4.2. LIBVISO2
4.2.1. MONOCULAR DATASETS
The monocular version of LIBVISO2 assumes that the camera is moving at a known and
fixed height over the ground. It uses the 8-point algorithm for estimating the funda-
mental matrix. The camera poses are estimated up to an unknown scale value. This
scale value is computed using the frame-to-frame displacement obtained from the cor-
relation method. The results obtained from running LIBVISO2 on datasets 1 and 2 are
shown in Figure 4.4.

LIBVISO2 did not successfully estimate the camera poses for all the frames in datasets
3 and 4. In pose estimation, using the estimated fundamental and essential matrices, the
rotation matrix, translation vector, and 3D coordinates of the matched points are com-
puted upto an unknown scale value. Subsequently, for all the points that fall in front of
the image plane, the sum of the absolute values of the x,y, and z coordinates are com-
puted in meters. If this median is greater than the pre-set motion threshold value (100
m), the pose estimation fails for the corresponding frame. Figure 4.5 shows the results
for datasets 3 and 4, obtained by setting larger motion threshold values. To prevent the
pose estimation failure for dataset 3, the motion threshold had to be greater than 365 m.
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Figure 4.3: Estimated camera displacement using phase correlation for the monocular datasets. For each
dataset, the results obtained using the median feature displacement is also shown. The values mentioned in
the titles are image resolution in pixels, camera to plants distance, and frame to frame displacement for the

corresponding dataset.

And for dataset 4, it had to be greater than 105 m. The estimated poses for dataset 3 show
the algorithm’s performance when the motion threshold is increased by more than 3.5
times the initial value. The parallax effect reduces in the features that are relatively far
away from the camera, thereby negatively affecting the performance of the algorithm.
The threshold of 100 m ensures that only feature points that are closer to the camera are
used for pose estimation.

4.2.2. STEREO DATASETS

Pose estimation using LIBVISO2 failed for all three stereo datasets. The minimum re-
quired number of feature matches for LIBVISO2 to perform pose estimation was 6. The
feature matching algorithm in LIBVISO2 did not produce enough matches for more than
half the frames in all the stereo datasets.
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Figure 4.4: Estimated camera displacement using LIBVISO2 for the monocular datasets 1 & 2.

Figure 4.5: Estimated camera displacement using LIBVISO2 with increased motion threshold for monocular
datasets 3 & 4.

4.3. ORB-SLAM22
4.3.1. MONOCULAR DATASETS
Running the ORB-SLAM22 on the monocular dataset did not result in any feature matches.
Subsequently, the feature detection and description parameters were tuned to obtain
feature matches and pose estimates. Below are the default values of the ORB parameters
in ORB-SLAM2:

• Number of features per image = 2000

• Scale factor = 1.2

• Number of levels in scale pyramid = 8

• Default FAST threshold = 20
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• Minimum FAST threshold = 7

ORB feature detection uses a multi-scale image pyramid, and the scale factor is the
pyramid decimation ratio. The value of the scale factor is always greater than 1. A higher
value of 2 will significantly degrade the feature matching scores. The algorithm was run
with different scale factor values starting from 1.2 to 1.5 with an increment of 0.1 during
each run.

For ORB feature detection and description in an image of size MxN in MATLAB, the
maximum number of levels in the multi-scale image pyramid is limited by the

levelmax =
(

log(min(M , N ))− log(63)

log(Scale factor)

)
+1 (4.1)

If the value of levelmax is a fraction, the nearest integer less than levelmax is chosen. The
number of levels in the scale pyramid, calculated using equation 4.1 and scale values (1.2
to 1.5), ranges from 7 to 14 levels for the images of size 1280 x 720, and 10 to 22 levels for
images of size 4032 x 3024.

In ORB-SLAM2, the default threshold value for FAST feature extraction is 20. If no
feature points are detected, the minimum threshold value of 7 is used instead of 20. The
algorithm was run with different minimum threshold values ranging between 3 to 7 with
an increment of 1 during each run. Irrespective of any of the above-mentioned changes
to the ORB parameters, there were no feature matches and hence, no pose estimates for
all of the datasets.

4.3.2. STEREO DATASETS
While ORB-SLAM2 failed to estimate poses for the monocular datasets, the stereo ver-
sion did not fail. Similar to the monocular setting, using the pose estimates, the frame to
frame displacement of the left camera is computed. Figure 4.6 shows the results for the
stereo datasets.
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Figure 4.6: Estimated camera displacement using ORB SLAM for the stereo dataset.

4.4. SVO PRO

4.4.1. MONOCULAR DATASETS

Running SVO Pro on the datasets 1, 2 and 3 did not result in pose estimates beyond
the third frame due to lack of matched features. Beyond the third frame, the number
of matched features keep decreasing with each new frame. However, SVO Pro did esti-
mate the relative camera poses for the first 19 frames in dataset 4, in which the camera
was positioned at a distance of 40 cm from the plants as opposed to 25 cm in the other
sequences. It should be noted that, unlike the results obtained from the other VO algo-
rithms, the estimated poses were not scaled using the ground truth. Figure 4.7 shows the
frame to frame displacement for the dataset 4.
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Figure 4.7: Estimated camera displacement using SVO Pro for monocular dataset 4

4.4.2. STEREO DATASETS
Similar to SVO Pro’s performance on the monocular dataset, pose estimation failed for
datasets containing images captured with the camera positioned at a distance of 25cm
from the plants. The results obtained from running SVO Pro on the stereo dataset 3 is
shown in Figure 4.8. Irrespective of the camera used (monocular or stereo), SVO Pro
estimates poses only for the datasets where the camera was positioned at 40 cm from
the plants.

Figure 4.8: Estimated camera displacement using SVO Pro for stereo dataset 3.
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4.5. COLMAP
COLMAP was run on the monocular dataset to recover the camera poses corresponding
to each image. COLMAP is a general-purpose Structure-from-Motion (SfM) and multi-
view stereo pipeline. The pipeline recovers a sparse representation of the scene and the
camera poses pertaining to all the input images. Unlike VO algorithms, COLMAP isn’t an
active pose estimation algorithm. The poses aren’t estimated with each new image. It is
an offline process. However, the pose estimation can be used to compare with the poses
estimated from algorithms. In COLMAP, results were obtained by running the algorithm
only on the monocular datasets. The camera poses were estimated up to an unknown
scale value. The scale value was computed using the frame to frame displacement ob-
tained from the correlation method.

Figure 4.9: Estimated camera displacement using COLMAP.
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4.6. QUANTITATIVE COMPARISON
For all of the above mentioned algorithms, the median and standard deviations of the
frame to frame displacements were calculated for quantitative comparison. Table 4.1
contains the the results for the monocular datasets obtained using the mobile camera.

Table 4.1: The median and standard deviation of the estimated frame to frame displacement for the
monocular datasets.

Image Reg.
(mm)

LIBVISO2
(mm)

SVO Pro
(mm)

COLMAP
(mm)

median std median std median std median std

Dataset 1 21.4980 4.7165 20.2014 17.1177 - - - -
Dataset 2 9.9723 1.7793 8.3293 9.6282 - - 9.8422 0.6833
Dataset 3 11.2010 1.7547 0.5479 23.2351 - - 10.0035 0.4676
Dataset 4 10.7952 2.4345 9.3586 8.3815 9.7756 1.5029 9.9107 0.5887

The results of running LIBVISO2 on the monocular datasets 1 and 2 show that the
variance of the estimated displacements for dataset 2 is less than the variance for dataset
1. While both the datasets have images of to same resolution, the frame to frame dis-
placement in dataset 2 is half the displacement in dataset 1. Therefore, dataset 2 has
more overlapping regions between two consecutive images than dataset 1. Furthermore,
in LIBVISO2, the average number of feature matches in dataset 2 was 57% more than in
dataset 1, and the average percentage of RANSAC inliers was 54.43% in dataset 2, and
41.45% in dataset 1. Therefore, larger frame to frame displacement would lead to rela-
tively poorer performance of VO algorithms. This condition is even more critical in the
case of the datasets collected for this project because the images contain objects with
depth values that do not change drastically.

Increasing the image resolution should increase the number of feature points de-
tected, and subsequently the number of feature matches. Evidently, the average num-
ber of feature matches produced by running LIBVISO2 on dataset 3 was 57% more than
the matches in dataset 2. However, LIBVISO2 performed poorly on dataset 3 with an
estimated median frame to frame displacements of 0.5479 mm. The performance of
LIBVISO2 improved for dataset 4, with the standard deviation being the least of all the
monocular datasets. While, datasets 3 and 4 have the same image resolution and frame
to frame displacement, the camera to plants distance is 25 cm for dataset 3 and 40 cm
for dataset 4. Furthermore, dataset 4 had 400% more matches than dataset 3, and the
average percentage of RANSAC inliers was 84.68% for dataset 4, and 39.05% for dataset
3. This is because, with the increase in the image resolution, more feature matches are
needed to produce reliable pose estimates. Between datasets 2 and 3, even though the
resolution increased, the overlapping regions remained the same. In dataset 4, the cam-
era was positioned at a distance of 40 cm from the plants for the same frame to frame
displacement as dataset 3. This created more overlapping regions, and subsequently
more feature matches. Additionally the monocular version of SVO Pro estimated results
only for dataset 4, and also performed well without the need for scaling the estimated
displacement.
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Image registration works best for dataset 2 since it contains images with the lowest
parallax effect. Note that the image registration techniques do not use feature detection
and mapping. COLMAP failed to estimate poses for dataset 1, and the results for datasets
2, 3, and 4 weren’t drastically different from each other.

Table 4.2: The median and standard deviation of the estimated frame to frame displacement for the stereo
datasets

LIBVISO2
(mm)

ORB SLAM2
(mm)

SVO Pro
(mm)

median std median std median std

Dataset 1 - - 25.6354 1.5367 - -
Dataset 2 - - 15.4181 4.9234 - -
Dataset 3 - - 15.4245 0.9310 16.2737 4.9476

Table 4.2 contains the results for the stereo datasets. For the stereo datasets, while
LIBVISO2 failed to estimate poses for all datasets and SVO Pro failed for the datasets 1
and 2, ORB-SLAM2 successfully estimated the camera poses for all the three datasets.
Datasets 1 and 2 were collected with the same camera to plants distance, and datasets 2
and 3 contain images of the same resolution. The results of ORB-SLAM2 also shows that
the performance on dataset 3 is better than the performance on datasets 1 and 2. SVO
Pro estimated results only for the dataset with the camera positioned at 40 cm from the
plants in the stereo setting as well.



5
CONCLUSIONS AND FUTURE WORK

This thesis compared different pose estimation techniques for a deleafing robot, by com-
paring each algorithm’s performance on multiple datasets collected using store-bought
table plants and tomatoes. The motivation behind collecting multiple datasets was the
lack of availability of a greenhouse dataset with ground truth for VO. The thesis focused
only on the motion of the deleafing robot on the guided rail. The experimental setup for
data collection prioritized the feasibility of recording the ground truth along with the im-
ages and emulating the robot’s motion on the guided rail in a greenhouse environment
as much as possible.

5.1. ADDRESSING RESEARCH QUESTIONS
1. Most of the existing publicly available VO algorithms have been developed for

an urban environment or an indoor space. How will these algorithms perform
on datasets that emulate the greenhouse environment?
For the monocular datasets, while ORB-SLAM2 failed to estimate poses for all the
datasets, LIBVISO2 and SVO perform well for images in dataset 4. For the stereo
dataset, while LIBVISO2 failed to estimate poses for all the datasets, ORB-SLAM2
and SVO perform well for images in dataset 3. For both the cameras, the VO al-
gorithms perform better on datasets containing images with resolution of 4032 x
3024 pixels, collected with the camera positioned at 40 cm from the plants.

2. Which camera (monocular or stereo) is best suited for the deleafing robot? And
how does the camera’s positioning relative to the plants affect the performance
of the algorithms?
The results show that positioning the cameras relatively close to the plants (25
cm) negatively impacted the performance of the VO algorithms, especially for the
datasets with images of higher resolutions. The results also show that the monoc-
ular camera is better suited for the deleafing robot, with the camera facing the
plants and its viewing direction perpendicular to its direction of motion on the
rails. The only drawback with monocular versions of LIBVISO2 and COLMAP is

27
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that the poses are estimated up to an unknown scale value. The pose estimation
improved with increase in the image resolution

3. What is the best achievable accuracy of VO on datasets that emulate the green-
house environment?
For the monocular dataset 4, SVO Pro estimated a median frame to frame displace-
ment of 9.7756 mm, and with a standard deviation of 1.2 mm without the need for
computing the scale value. This once again shows that the monocular camera is
better suited for the deleafing robot.

5.2. FUTURE WORK
Using the available results and inferences, more insights into the pose estimation of a
mobile robot in a greenhouse environment can be obtained by addressing the following
questions:

1. In all of the datasets, the mobile camera’s viewing direction was perpendicular to
its direction of motion. How will the performance be affected if the camera is
slightly tilted toward the direction of motion? The images obtained in this set-
ting will contain objects with varying depth values, and how would it affect the
performance of the VO algorithms? Will the stereo cameras be better suited than
the monocular camera for this setting?

2. Increasing the frame to frame displacement leads to relatively poorer performance
of the VO algorithms. Therefore, collecting images by recording a video with 5 or 10
fps instead of the stop and go technique might further improve the performance
of VO algorithms. However, the issue with recording a video is the difficulties in
recording the ground truth. This issue can be addressed by scaling up the experi-
mental setup with guided rails, bigger plants, and a motion tracking system. How
will these changes to the data collection process affect the performance of the VO
algorithms?

3. Can learning algorithms be used for pose estimation in a green house environ-
ment? To use learning algorithms for end-to-end pose estimation, a significant
amount of data with ground truth is required. Even a scaled-up experimental
setup will produce only a limited number of images with ground truth. How-
ever, with the limited number of images, would it be possible to generate synthetic
greenhouse datasets for VO? In the datasets collected for this thesis, the feature
displacement between two consecutive images does not vary significantly. Can
the mean feature displacement with a tolerance value be used as prior for gener-
ating the synthetic datasets?
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