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Integration of mass cytometry and mass 
spectrometry imaging for spatially resolved 
single-cell metabolic profiling

Joana B. Nunes    1,9, Marieke E. Ijsselsteijn    1,9, Tamim Abdelaal2,3,4, 
Rick Ursem    1,5, Manon van der Ploeg1, Martin Giera    5,6, Bart Everts    7, 
Ahmed Mahfouz    4,8, Bram Heijs5,6,9 & Noel F. C. C. de Miranda    1,9 

The integration of spatial omics technologies can provide important 
insights into the biology of tissues. Here we combined mass spectrometry 
imaging-based metabolomics and imaging mass cytometry-based 
immunophenotyping on a single tissue section to reveal metabolic 
heterogeneity at single-cell resolution within tissues and its association with 
specific cell populations such as cancer cells or immune cells. This approach 
has the potential to greatly increase our understanding of tissue-level 
interplay between metabolic processes and their cellular components.

Metabolism is an essential aspect of biological systems that must be 
considered to comprehend tissue homeostasis and pathogenesis1,2. 
Single-cell proteomic and transcriptomic analyses have substantially 
advanced our understanding of metabolic variations across differ-
ent cell populations, particularly immune cells, to uncover metabolic 
heterogeneity as well as explore links between cell phenotypes and 
metabolic profiles3–5. Most de facto single-cell analysis approaches 
extract cells from their natural context and, thus, lack spatially resolved 
information and disregard cellular interactions. Furthermore, the reli-
ance on surrogate markers, such as enzymes or their transcripts may 
provide an inadequate representation of metabolic states. Imaging 
mass cytometry (IMC) and mass spectrometry imaging (MSI)-based 
spatial metabolomics are increasingly being utilized for the multi-
plexed detection of cellular markers and metabolites, respectively, 
while preserving the spatial context of tissues6.

We developed a novel multimodal MSI approach for the integrated 
analysis of metabolites and immunophenotypes in human tissues. 
This was achieved by integrating the experimental workflows and the 
data generated from spatial metabolomics using matrix-assisted laser 
desorption/ionization MSI (MALDI-MSI) and multiparameter spatial 

immunophenotyping by IMC. We developed and optimized a wet-lab 
protocol that allows the application of both technologies on the same 
tissue section. Additionally, we have implemented a data integration 
strategy that enables the relative quantification of metabolites (meas-
ured by MALDI-MSI) at the single-cell level (defined by IMC) (Fig. 1a).

Spatial immunophenotyping and per-cell metabolite analysis 
were accomplished by combining MALDI-MSI with IMC on the same 
tissue section. Details on the optimization of this methodology can be 
found in Supplementary Notes and Supplementary Figs. 1 and 2. Briefly, 
MALDI-MSI can be followed by IMC on 5 µm tissue sections, as opposed 
to the typical 10 μm sections used for MALDI-MSI. This is achieved by 
using an IMC antibody panel for formalin-fixed paraffin-embedded tis-
sues (Supplementary Table 1 (ref. 7)) combined with a formalin fixation 
step after matrix removal.

We applied our optimized protocol on three tumor samples, 
including one mismatch repair-deficient colorectal cancer (CRC1). 
To merge the output data from MALDI-MSI and IMC, we performed 
image coregistration based on visual features that contained recogniz-
able landmarks such as empty areas or epithelial structures (Extended 
Data Fig. 1a). However, owing to the pixel size differences between 
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driven by the distinct immune cell types. Except for plasma B cells, 
no association was found (Extended Data Fig. 2c,d). Interestingly, 
even though CD204+ macrophages did not form a distinct cluster in 
the UMAP embedding (Fig. 1d), they displayed a distinctive glycer-
ophospholipid profile in the hierarchical clustering heatmap (Fig. 1b). 
Therefore, we delved into the unique glycerophospholipid profiles 
of CD204+ macrophages by comparing those with the ones from the 
remaining immune and stromal cells. This analysis revealed several 
glycerophospholipids, notably phosphatidylglycerole PG(40:7) and 
lysophosphatidylinosytol LPI(18:1), that were more abundant in CD204+ 
macrophages (Fig. 2a,b). Interestingly, LPI(18:1) has been suggested 
to play a role in cancer as lysophosphatidylinosytols induce ERK1/2 
phosphorylation via the GPR55 receptor12,13.

We further explored if distinct glycerophospholipid profiles 
could be identified in the macrophage compartment that are inde-
pendent of the assigned phenotypes. By applying k-means clustering 
to macrophages and monocyte populations based on glycerophos-
pholipid features, we were able to distinguish various clusters within 
this compartment (Fig. 2c–e). For instance, cluster 8 was marked by 
high abundance of phosphatidylethanolamine PE(O-36:5), PE(O-38:5) 
and phosphatidic acid PA(36:1), which were scarcely present in other 
clusters (Fig. 2e and Extended Data Fig. 3). Overall, the multimodal 
imaging and analysis approach used in this study not only facilitates 
the evaluation of metabolites at the single-cell resolution but also 
underscores the existence of glycerophospholipid abundance differ-
ences both between and within cellular phenotypes. Furthermore, 
our observation of cell-specific lipid signatures resonates with the 
recently proposed ‘lipotype hypothesis’, which suggests a bidirectional 
connection between transcriptional states and lipid signatures. This 
finding highlights the importance of multimodal, spatially resolved 
single-cell analyses14.

Discussion
Substantial advancements have been made in using MSI for single-cell 
metabolic characterization in cancer research15. However, a major 
challenge remains in profiling the metabolism of immune cells within 
the complex tumor microenvironment. Past efforts have combined 
MALDI-MSI with immunofluorescence (IF) or IMC on consecutive tis-
sue sections, but data integration can be challenging16,17. Alternatives, 
such as performing immunohistochemistry (IHC) or IF after MALDI-MSI 
on the same section, are limited by the number of targets they can 
assess18–20. Although desorption electrospray ionization MSI as well 
as time-of-flight (TOF) secondary ion mass spectrometry have been 
combined with IMC on the same tissue section, they are hindered by 
limited spatial resolution or sensitivity respectively21,22. The MALDI-IHC 
technique, while similar, also faces issues with spatial resolution for 
immunophenotyping compared with IMC23,24. Recent studies have 
used formalin-fixed paraffin-embedded tissue for combining IMC and 
MSI owing to better preservation of tissue architecture and antibody 
performance, but the use of fixated tissue complicates the detection 
of several metabolites22,25. In our study, we introduce an optimized 
workflow that utilizes fresh frozen tissue, combining MALDI-MSI for 
metabolite detection with IMC for cellular phenotype identification 

MALDI-MSI and IMC, it was necessary to adjust for these variations to 
determine metabolite abundance at the single-cell level. To accom-
plish this, we assigned the metabolite abundance of each MALDI-MSI 
pixel to the corresponding overlapping 25 IMC pixels (Methods and 
Extended Data Fig. 1b). Cells were identified through cell segmenta-
tion by using the DNA, keratin (epithelial cells) and vimentin (stromal 
cells) images derived from the IMC data8. Subsequently, using the 
previously assigned pixel metabolite abundance, we calculated the 
relative metabolite abundance per cell. Additionally, by leveraging 
the cell marker expression from the IMC data, we identified a total 
of 22 cellular phenotypes, including cancer cells, macrophages and 
T cells (Extended Data Fig. 1c). Given that MALDI-MSI pixels measure 
5 × 5 µm, a single MSI pixel may encompass multiple cells, potentially 
leading to mixed metabolite profiles being assigned to different cells. 
However, our observations revealed that ~30% of MSI pixels in regions 
with tissue typically contained only one cell (Extended Data Fig. 1d).

Using trapped ion mobility separation (TIMS), we identified 
and named 112 metabolites, mainly glycerophospholipids, from the 
MALDI-MSI data (Supplementary Table 3). Employing these glycer-
ophospholipids as features, we conducted a hierarchical clustering 
analysis across the 22 identified cell populations. This analysis revealed 
that distinct cell types, such as cancer cells, plasma B cells and CD204+ 
macrophages, showed varying abundances of glycerophospholipid 
features (Fig. 1b and Extended Data Fig. 1e). To delve deeper, we focused 
on the CRC1 sample, notable for its high immune infiltration, in line with 
its mismatch repair-deficient status. We performed Uniform Manifold 
Approximation and Projection (UMAP) dimensionality reduction on all 
cells, and specifically on immune cells, using metabolite abundances 
as features (Fig. 1c,d). Consistent with the distinct metabolite profiles 
observed in Fig. 1b, cancer cells were separated from stromal–immune 
cells in the UMAP embedding (Fig. 1c and Extended Data Fig. 2a,b). 
This separation was supported by a greater pairwise distance between 
the metabolite abundance profiles of cancer cells versus stromal and 
immune cells as compared with within these compartments (Extended 
Data Fig. 2b). To discern glycerophospholipids with differential abun-
dances between cancer cells and stromal–immune cells, we calculated 
fold changes between these subsets (Fig. 1e). Notably, phosphatidyl-
choline PC(37:5) was found to be most differentially abundant in the 
stromal–immune compartment, while phosphatidylinositol PI(34:1) 
was predominantly present in cancer cells. This was corroborated 
by the fact that the spatial localization of these lipid molecules was 
found to be highly overlapping with the one of keratin (for cancer cells) 
or vimentin (for the stromal–immune cell compartment) (Fig. 1f). 
Both PI(34:1) and PC(37:5) have been described to be upregulated in 
cancer9,10. Interestingly, while PI(34:1) is known to be abundant in CRC 
cell lines11, comprehensive data on lipid profiles in the context of the 
tumor microenvironment remains limited.

In the immune cell compartment, only a few immune cell subsets, 
notably plasma B cells, were grouped by cell type on the basis of their 
metabolic features (Fig. 1d). This observation suggests variability in 
metabolic processes across most immune cell populations. By using 
a confusion matrix, we investigated whether k-means clustering of 
immune cells, using glycerophospholipid features, resulted in clusters 

Fig. 1 | Identification of single-cell metabolic profiles in CRC. a, Integrated 
workflow of consecutive MALDI-MSI and IMC analyses. Fresh-frozen tissue 
sections were cut (1) and treated with MALDI matrix (2). MALDI-TOF-MSI was 
performed to obtain spatial metabolomics data (3), followed by matrix removal 
(4). Sections were then labeled with metal-conjugated antibodies, and IMC  
was used to analyze the areas previously imaged by MALDI-TOF-MSI (5). Both 
datasets were preprocessed (6) and coregistered using visual landmarks (7).  
Cell segmentation and phenotype identification were performed (8), and MALDI-
MSI-derived metabolic abundances were assigned to each cell (9), enabling 
downstream analysis (10). Created with BioRender.com. b, Scaled metabolite 
abundance profiles across cell populations identified in CRC1. Hierarchical 

clustering was guided by glycerophospholipid abundances (heatmaps of CRC2 
and CRC3 are shown in Extended Data Fig. 1e). c,d, UMAP embedding of all cells 
(c) or immune cells (d) of CRC1, clustered by glycerophospholipids. Phenotypes 
of labeled cells are visualized on the UMAP embedding. e, Top differentiating 
glycerophospholipid features between cancer cells and the stromal–immune cell 
compartment, calculated for all images in the dataset. f, Left: representative IMC 
image of CRC1 highlighting cancer cells and stromal cells (keratin in red, vimentin 
in green and DNA in blue). Middle and right: MALDI-MSI image of the same region 
of interest showing differentially abundant metabolites in the stromal–immune 
cell compartment (PC(37:5)) and in cancer cells (PI(34:1)) displayed using viridis 
colors with saturated pixels above the 99th percentile (n = 2).
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on a single tissue section. This method overcomes previous challenges 
with image alignment and can be directly applied to various tissue 
types to characterize the metabolite composition of single cells in situ. 
Limitations of the work described here include the small sample size, 
which limits the interpretability of the findings, and the specific focus 
on glycerophospholipids. However, by adjusting the range of the mass 
spectrometer, this approach can analyze the entire metabolic spec-
trum. Additionally, to fully explore metabolic heterogeneity in specific 
immune cells, the current 26-target IMC panel can be expanded to 
include more than 40 cellular targets, allowing for the identification 
of more immune subsets and states. In summary, our method provides 
a powerful tool for tissue characterization, simultaneously revealing 
cellular composition and directly linking it to metabolic phenotypes. 
This is particularly valuable to be applied in complex systems like the 
tumor microenvironment, where cellular composition and metabolism 
have a high degree of heterogeneity.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02392-6.
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Methods
Sample collection and sampling
Material was used of three CRCs from patients that have given informed 
consent under the study protocol P15.282, approved by the Medical 
Ethical Committee of the Leiden University Medical Centre. Patient 
samples were anonymized and handled according to the medical ethi-
cal guidelines described in the Code of Conduct for Proper Secondary 
Use of Human Tissue of the Dutch Federation of Biomedical Scientific 
Societies. After surgery, cancer tissue was snap-frozen and stored  
at −80 °C.

Using a micro cryostat (CM3050 S, Leica), 5-µm-thick tissue sec-
tions were thaw-mounted on indium-tin-oxide (ITO)-coated micro-
scope slides (Bruker Daltonics GmbH) and immediately processed for 
MALDI-MSI analysis.

MALDI-MSI
Samples from the cryomicrotome were transferred on dry ice and equil-
ibrated to room temperature using a vacuum freeze drier (Alpha 2-4 
LSCbasic, Christ) for 20 min. Following, the MALDI matrix, 1-napthylyl 
ethylenediamine dihydrochloride was sublimated onto the slide using 
a Sublimator T1 (HTX Imaging). Sublimation was performed at 180 °C 
for 6 min, which resulted in a matrix coverage of 31.73 pmol mm−2. 
MSI analyses was performed on a timsTOF fleX MALDI-2 platform 
with microGRID (Bruker Daltonics GmbH) in both oTOF and timsON 
modes. To achieve single-cell resolution, single-pixel mass spectra 
were recorded in oTOF mode at a 5 × 5 µm2 spatial resolution cover-
ing a m/z range between 300 and 1,100, and summing 25 laser shots. 
For collisional cross-section (CCS)-enhanced identification of m/z 
features, single-pixel mass spectra were recorded in timsON mode 
at a 10 × 10 µm2 spatial resolution covering a m/z range between 300 
and 1,100 and summing 74 laser shots. Ion mobility separation was 
achieved over a 300 ms ramp over a 1/K0 interval ranging from 0.6 to 
1.6 V s−1 cm−2. The flexImaging software (v7.2, Bruker Daltonics) was 
used to define measurement regions of approximately 1 × 1 mm2 for 
oTOF mode measurements, and regions of approximately 0.5 × 1 mm2 
for consecutive timsON and oTOF mode measurements. Post measure-
ment, samples were immediate processed for the IMC analysis. Raw 
data files were loaded into SCiLS Lab PRO software (v2024a, Bruker 
Daltonics). Two separate files were created, one with timsON data 
for molecular annotations, and one with oTOF data for visualization 
at the single-cell level. Feature selection was performed in the tim-
sON dataset by using the T-ReX3 feature finding algorithm in SCiLS 
Lab (parameters: neighborhood size 4 × 4, coverage 100%, relative 
intensity threshold 0.3%). CCS-aware molecular annotation was per-
formed against a subset of the Lipid Maps Structural Database (lipid 
classes: glycerophospholipids (GP) and glycosphingolipids (SP);  
https://HMDB.ca (ref. 26)) using the MetaboScape (v2023b, Bruker 
Daltonics) target list annotation tool, directly accessed by SCiLS Lab 
(parameters: Enabled CCS-Predict Pro, m/z_narrow 5.0 ppm, m/z_wide 
15.0 ppm, mSigma_narrow 100, mSigma_wide 900, CCS_narrow 2.0%, 
CCS_wide 4.0%). Following molecular annotation, only deprotonated 
molecular ions ([M − H+]−) with a mass error tolerance below 10 ppm 
and a CCS error tolerance below 5% were selected and considered for 
further analysis. The m/z intervals (m/z ± 6.6 ppm) of the selected 
features in the timsON dataset were transferred to the oTOF dataset, 
from which single-ion images at single-cell resolution were exported 
as OME-TIFF images for every individual measurement area.

IMC
After MALDI-MSI data acquisition, excess MALDI matrix was removed 
by washing the tissue slides with 100% ethanol, ice-cold acetone, 100% 
ethanol and 70% ethanol for 5 min each, followed by a 2-min wash with 
50% ethanol and 3× 1-min washes with 1× phosphate-buffered saline. 
The tissues were then fixed with 10% formalin for 1 h at room tempera-
ture. Antigen retrieval, blocking and labeling with metal-conjugated 

antibodies (Supplementary Table 1) was performed as previously 
described by IJsselsteijn et al.7. The utilized panel has been applied to 
various studies and was validated after conjugation by IHC and through 
assessment of colocalization with expected other markers by IMC. To 
obtain the data in Supplementary Fig. 1b, tissue fixation was performed 
after excess MALDI matrix removal with 4% paraformaldehyde for 
30 min at 4 °C and the IMC staining according to the protocol of Guo 
et al.27. Data from 1,100 × 1,100 μm2 areas was acquired using a Hype-
rion Mass Cytometry System (Standard BioTools) and CyTOF software 
(7.0.5189, Standard Biotools), exported as .mcd files and visualized 
using MCD Viewer (1.0.5, Standard BioTools).

Phenotype identification and counting was done as described 
previously8. In short, .mcd files were converted to TIFF images and 
normalized by saturating pixels above the 99th percentile. Next, 
background removal was performed using the random forest classi-
fier of Ilastik after which all remaining pixels were binarized to 1, with 
background set to 0. Cell segmentation masks were created using 
Ilastik and CellProfiler using the keratin, vimentin/CD45 and DNA 
images, and marker intensities per cell were extracted using ImaCytE. 
Cells were analyzed by t-distributed stochastic neighbor embedding in 
Cytosplore, and by mean-shift clustering, cells forming visual neigh-
borhoods in the t-distributed stochastic neighbor embedding were 
grouped to define cellular phenotypes. Cell types were defined on 
the basis of current literature using the protein markers described in 
Supplementary Table 2. Furthermore, all identified phenotypes were 
visually confirmed on the raw images. RStudio (2022.07.1, R version 
4.2.0) was used for the counting of phenotypes per sample and visual 
representation.

MSI and IMC data integration
For each tumor sample, MALD-MSI and IMC data were combined in 
Python (version 3.9), by coregistering the two image sets based on 
visual features in both datasets showing clear landmarks, such as empty 
areas or epithelial structures. Excess pixels, which can be found on the 
borders of the images belonging only to one dataset, were excluded, 
retaining only coregistered pixels. Since MALDI-MSI resolution is 
5 × 5 μm2 and IMC resolution is 1 × 1 μm2, each MALDI-MSI pixel maps 
to 25 IMC pixels.

Cells often do not exactly overlap with one MALDI-MSI pixel and 
can cover only part or several MALDI-MSI pixels. To calculate metabo-
lite abundance per cell, the peak intensity of the overlapping 5 × 5 µm 
MALDI-MSI pixel was assigned to each 1 × 1 µm IMC pixel. The IMC cell 
segmentation mask and the assigned peak intensities of each 1 × 1 µm 
were combined, and the relative metabolite abundance per cell was 
calculated using the mean of all pixels within a cell. For instance, if a cell 
consists of 10 IMC pixels, and 5 of those fall into a MALDI-MSI pixel with 
peak intensity 1, and 5 IMC pixels fall in a MALDI-MSI pixel with peak 
intensity 0, then the mean intensity of the cell is (5 × 1) + (5 × 0)/10 = 0.5 
(exemplified in Extended Data Fig. 1b).

In mathematical terms: let Xi = {x1, x2, … , xN}  be the set of IMC 
pixels, where N  is the total number of coregistered pixels, and 
Yj = {y1, y2, … , yM} be the set of MALDI-MSI pixels, where M  is the total 
number of coregistered pixels, such that M = N/25. Each yj  maps to 25 
xi s, while xi maps to (is part of) a single yj; therefore, yj = f(xi), where f() 
is a defined mapping function returning the corresponding yj  pixel  
for the input xi pixel.

For both modalities, each pixel represents a one-dimensional 
vector containing the features measured by that modality. Cells were 
segmented using the high-resolution IMC dataset; let Ck = {c1, c2, … , ck} 
be the set of segmented cells, and n is the total number of cells. Each 
cell ck  is a set of several IMC pixels xi s, while one IMC pixel xi  is part  
of only one cell. To obtain the cellular IMC expression data, we define

̄Pk,p =
1
mk

mk

∑
i=1

Pi,p,

http://www.nature.com/naturemethods
https://HMDB.ca
https://HMDB.ca


Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02392-6

where ̄Pk,p is the cellular expression of IMC protein feature p in cell ck, 
Pi,p is the pixel expression of protein feature p in IMC pixel xi, and mk  is 
the number of IMC pixels corresponding to cell ck. In other words, the 
cellular expression of the IMC data is the average expression of the IMC 
pixels corresponding to each cell. Similarly, let Tj,t  be the pixel expres-
sion of metabolic feature t  in pixel yj; therefore,

T̄k,t =
1
mk

mk

∑
i=1

Tf(i),t,

where T̄k,t is the cellular expression of metabolic feature t  in cell ck, and 
Tf(i),t  is the pixel expression of metabolic feature t  in MALDI-MSI pixel 
mapping to IMC pixel xi. In other words, the cellular expression of the 
MALDI-MSI data is the weighted-average expression of the MALDI-MSI 
pixels corresponding to each cell, where each MALDI-MSI pixel is 
weighted by how many IMC pixels are mapping to it. It is important to 
note that one MALDI-MSI pixel yj may contribute to the expression of 
one or more cells.

Data analysis
Cellular phenotypes and metabolite abundance per cell were com-
bined using Python (version 3.9), and metabolite abundance counts 
were normalized to the relative abundance per cell. RStudio was 
used for visualization and consecutive analyses. For each sample, 
data from two images were combined and mean relative metabolite 
abundance was determined for each cellular phenotype and visual-
ized in a heatmap per sample using the ComplexHeatmap R package 
(version 2.14.0). Differential feature expression analysis was done 
by Wilcoxon rank test on the group of interest versus the remaining 
cells in the dataset and visualizing the features by fold change and 
P value. Finally, for dimensionality reduction, the cells were visual-
ized by UMAP28 using the umap R package (version 0.2.10.0) using 
the parameters n_neighbors of 5, min_dist of 0.05 and n_epochs of 
1,000, and cell phenotypes or k-means clusters were visualized on 
the embedding.

Statistics
As a methodological proof of principle, the study was conducted on 
three CRC tissue samples, with two areas imaged per sample. Differen-
tially abundant metabolites were identified using the Wilcoxon test, 
and features with a false discovery rate (FDR)-adjusted P value below 
0.05 were considered significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw IMC and MSI data as well as combined datasets and source  
data are available via figshare at https://figshare.com/s/c58ddc-
70fa8dc0602842 (ref. 29). Source data are provided with this paper.

Code availability
Python scripts used for the coregistration and integration of MALDI- 
MSI and IMC data are available on GitHub at https://github.com/
deMirandaLab/MALDI-MSI-IMC.
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Extended Data Fig. 1 | Integration of MALDI-MSI metabolite data with 
cellular phenotypes. a. Approach for aligning MALDI-MSI and IMC data 
using visual landmarks present in both datasets. b. Schematic illustrating the 
approach for calculating metabolite abundance in each cell as pixel sizes differ 
between MALDI-MSI and IMC. Five 5 × 5 µm MALDI-MSI pixels are shown, each 
containing 25 1 × 1 µm IMC pixels. Cells within the pixels are colored with a red 
border, and a cell can span multiple MALDI-MSI pixels. To calculate metabolite 
abundance per cell, the peak intensity of the overlapping 5 × 5 µm MALDI-MSI 

pixel was assigned to each 1 × 1 µm IMC-pixel. The IMC cell segmentation mask 
(red borders) and the assigned peak intensities of each 1 × 1 µm were combined, 
and the relative metabolite abundance per cell was calculated using the mean of 
all pixels within a cell. c. Relative marker expression and abundance per image 
of cellular phenotypes determined by IMC. d. distribution of the number of cells 
contained in a single MSI pixel for each image. e. Glycerophospholipid profiles 
across distinct cellular phenotypes, in CRC2 and CRC3. Hierarchical clustering 
was guided by glycerophospholipid abundances.
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Extended Data Fig. 2 | Glycerophospholipid heterogeneity within cell 
populations. a. Density of cancer cell phenotypes and immune/stromal 
phenotypes corresponding to the UMAP of Fig. 1c. b. Pairwise distances between 
cancer cells, cancer cells and the stromal/immune compartment or the stromal/
immune compartment only, visualized in a boxplot with median distance, 
interquartile range and min-max whiskers. n = 9066 cancer cells and 4889 
stromal/immune cells. c. k-means clustering of all immune cells in CRC1 based on 

glycerophospholipid features, visualized on the UMAP embedding shown  
in Fig. 1d. d. Confusion matrix comparing IMC phenotypes with k-means clusters 
to determine clustering by cell type or glycerophospholipid features. The 
heatmap indicates the number of cells that overlap between the two clustering 
methods. e. Density of CD204+ macrophage phenotypes corresponding to the 
UMAP of Fig. 1d.
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Extended Data Fig. 3 | Glycerophospholipid abundance in myeloid cell k-means clusters. Enlarged heatmap of Fig. 2e: Relative abundance of glycerophospholipids 
in the k-means clusters, visualized in Fig. 2d.
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