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Theintegration of spatial omics technologies can provide important

insights into the biology of tissues. Here we combined mass spectrometry
imaging-based metabolomics and imaging mass cytometry-based
immunophenotyping on asingle tissue section to reveal metabolic
heterogeneity at single-cell resolution within tissues and its association with
specific cell populations such as cancer cells orimmune cells. This approach
has the potential to greatly increase our understanding of tissue-level
interplay between metabolic processes and their cellular components.

Metabolism is an essential aspect of biological systems that must be
considered to comprehend tissue homeostasis and pathogenesis'?.
Single-cell proteomic and transcriptomic analyses have substantially
advanced our understanding of metabolic variations across differ-
ent cell populations, particularly immune cells, to uncover metabolic
heterogeneity as well as explore links between cell phenotypes and
metabolic profiles®™. Most de facto single-cell analysis approaches
extract cells from their natural context and, thus, lack spatially resolved
information and disregard cellular interactions. Furthermore, the reli-
ance on surrogate markers, such as enzymes or their transcripts may
provide an inadequate representation of metabolic states. Imaging
mass cytometry (IMC) and mass spectrometry imaging (MSI)-based
spatial metabolomics are increasingly being utilized for the multi-
plexed detection of cellular markers and metabolites, respectively,
while preserving the spatial context of tissues®.

We developed anovel multimodal MSlapproachfor the integrated
analysis of metabolites and immunophenotypes in human tissues.
This was achieved by integrating the experimental workflows and the
datagenerated from spatial metabolomics using matrix-assisted laser
desorption/ionization MSI (MALDI-MSI) and multiparameter spatial

immunophenotyping by IMC. We developed and optimized a wet-lab
protocol that allows the application of both technologies on the same
tissue section. Additionally, we have implemented a data integration
strategy that enables therelative quantification of metabolites (meas-
ured by MALDI-MSI) at the single-cell level (defined by IMC) (Fig. 1a).

Spatial immunophenotyping and per-cell metabolite analysis
were accomplished by combining MALDI-MSI with IMC on the same
tissue section. Details on the optimization of this methodology canbe
foundinSupplementary Notes and Supplementary Figs.1and 2. Briefly,
MALDI-MSI can be followed by IMC on 5 um tissue sections, as opposed
to the typical 10 um sections used for MALDI-MSI. This is achieved by
using an IMC antibody panel for formalin-fixed paraffin-embedded tis-
sues (Supplementary Table1(ref. 7)) combined with aformalin fixation
step after matrix removal.

We applied our optimized protocol on three tumor samples,
including one mismatch repair-deficient colorectal cancer (CRC1).
To merge the output data from MALDI-MSI and IMC, we performed
image coregistration based on visual features that contained recogniz-
able landmarks such as empty areas or epithelial structures (Extended
Data Fig. 1a). However, owing to the pixel size differences between

'Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands. 2Department of Radiology, Leiden University Medical Center,
Leiden, The Netherlands. *Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt. “Pattern Recognition
and Bioinformatics, Delft University of Technology, Delft, The Netherlands. *Center for Proteomics and Metabolomics, Leiden University Medical
Center, Leiden, The Netherlands. °The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden,
The Netherlands. ‘Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands. 8Department of Human Genetics,

Leiden University Medical Center, Leiden, The Netherlands. °These authors contributed equally: Joana B. Nunes, Marieke E. ljsselsteijn, Bram Heijs,

Noel F. C. C. de Miranda. ></e-mail: N.F.de_miranda@lumc.nl

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02392-6
http://orcid.org/0000-0002-8968-9670
http://orcid.org/0000-0002-8195-736X
http://orcid.org/0000-0002-1607-8457
http://orcid.org/0000-0003-1684-1894
http://orcid.org/0000-0002-3764-5131
http://orcid.org/0000-0001-8601-2149
http://orcid.org/0000-0001-6122-1024
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02392-6&domain=pdf
mailto:N.F.de_miranda@lumc.nl

Brief Communication

https://doi.org/10.1038/s41592-024-02392-6

MALDI-MSI and IMC, it was necessary to adjust for these variations to
determine metabolite abundance at the single-cell level. To accom-
plish this, we assigned the metabolite abundance of each MALDI-MSI
pixel to the corresponding overlapping 25 IMC pixels (Methods and
Extended Data Fig. 1b). Cells were identified through cell segmenta-
tion by using the DNA, keratin (epithelial cells) and vimentin (stromal
cells) images derived from the IMC data®. Subsequently, using the
previously assigned pixel metabolite abundance, we calculated the
relative metabolite abundance per cell. Additionally, by leveraging
the cell marker expression from the IMC data, we identified a total
of 22 cellular phenotypes, including cancer cells, macrophages and
T cells (Extended Data Fig. 1c). Given that MALDI-MSI pixels measure
5x 5 um, a single MSI pixel may encompass multiple cells, potentially
leading to mixed metabolite profiles being assigned to different cells.
However, our observations revealed that~30% of MSI pixels in regions
with tissue typically contained only one cell (Extended Data Fig. 1d).

Using trapped ion mobility separation (TIMS), we identified
and named 112 metabolites, mainly glycerophospholipids, from the
MALDI-MSI data (Supplementary Table 3). Employing these glycer-
ophospholipids as features, we conducted a hierarchical clustering
analysis across the 22 identified cell populations. This analysis revealed
that distinct celltypes, such as cancer cells, plasmaB cellsand CD204"
macrophages, showed varying abundances of glycerophospholipid
features (Fig.1b and Extended DataFig. 1e). To delve deeper, we focused
onthe CRClsample, notable for its highimmuneinfiltration, inline with
its mismatch repair-deficient status. We performed Uniform Manifold
Approximationand Projection (UMAP) dimensionality reduction onall
cells, and specifically on immune cells, using metabolite abundances
asfeatures (Fig.1c,d). Consistent with the distinct metabolite profiles
observedinFig.1b, cancer cells were separated from stromal-immune
cells in the UMAP embedding (Fig. 1c and Extended Data Fig. 2a,b).
This separation was supported by agreater pairwise distance between
the metabolite abundance profiles of cancer cells versus stromal and
immune cells as compared with within these compartments (Extended
DataFig.2b). Todiscernglycerophospholipids with differential abun-
dancesbetween cancer cells and stromal-immune cells, we calculated
fold changes between these subsets (Fig. 1e). Notably, phosphatidyl-
choline PC(37:5) was found to be most differentially abundant in the
stromal-immune compartment, while phosphatidylinositol PI(34:1)
was predominantly present in cancer cells. This was corroborated
by the fact that the spatial localization of these lipid molecules was
foundtobe highly overlapping with the one of keratin (for cancer cells)
or vimentin (for the stromal-immune cell compartment) (Fig. 1f).
Both PI(34:1) and PC(37:5) have been described to be upregulated in
cancer”. Interestingly, while PI(34:1) is known to be abundant in CRC
cell lines", comprehensive data on lipid profiles in the context of the
tumor microenvironment remains limited.

Intheimmune cell compartment, only afew immune cell subsets,
notably plasma B cells, were grouped by cell type on the basis of their
metabolic features (Fig. 1d). This observation suggests variability in
metabolic processes across most immune cell populations. By using
a confusion matrix, we investigated whether k-means clustering of
immune cells, using glycerophospholipid features, resulted in clusters

driven by the distinct immune cell types. Except for plasma B cells,
no association was found (Extended Data Fig. 2c,d). Interestingly,
even though CD204" macrophages did not form a distinct cluster in
the UMAP embedding (Fig. 1d), they displayed a distinctive glycer-
ophospholipid profile in the hierarchical clustering heatmap (Fig. 1b).
Therefore, we delved into the unique glycerophospholipid profiles
of CD204" macrophages by comparing those with the ones from the
remaining immune and stromal cells. This analysis revealed several
glycerophospholipids, notably phosphatidylglycerole PG(40:7) and
lysophosphatidylinosytol LPI(18:1), that were more abundantin CD204*
macrophages (Fig. 2a,b). Interestingly, LPI(18:1) has been suggested
to play arole in cancer as lysophosphatidylinosytols induce ERK1/2
phosphorylation via the GPR55 receptor'>",

We further explored if distinct glycerophospholipid profiles
could be identified in the macrophage compartment that are inde-
pendent of the assigned phenotypes. By applying k-means clustering
to macrophages and monocyte populations based on glycerophos-
pholipid features, we were able to distinguish various clusters within
this compartment (Fig. 2c-e). For instance, cluster 8 was marked by
high abundance of phosphatidylethanolamine PE(O-36:5), PE(O-38:5)
and phosphatidic acid PA(36:1), which were scarcely present in other
clusters (Fig. 2e and Extended Data Fig. 3). Overall, the multimodal
imaging and analysis approach used in this study not only facilitates
the evaluation of metabolites at the single-cell resolution but also
underscores the existence of glycerophospholipid abundance differ-
ences both between and within cellular phenotypes. Furthermore,
our observation of cell-specific lipid signatures resonates with the
recently proposed ‘lipotype hypothesis’, which suggests a bidirectional
connection between transcriptional states and lipid signatures. This
finding highlights the importance of multimodal, spatially resolved
single-cell analyses™.

Discussion

Substantial advancements have been made in using MSI for single-cell
metabolic characterization in cancer research®. However, a major
challenge remainsin profiling the metabolism of immune cells within
the complex tumor microenvironment. Past efforts have combined
MALDI-MSI with immunofluorescence (IF) or IMC on consecutive tis-
sue sections, but data integration can be challenging'®". Alternatives,
such as performing immunohistochemistry (IHC) or IF after MALDI-MSI
on the same section, are limited by the number of targets they can
assess'®?°, Although desorption electrospray ionization MSI as well
as time-of-flight (TOF) secondary ion mass spectrometry have been
combined with IMC on the same tissue section, they are hindered by
limited spatial resolution or sensitivity respectively”-*>. The MALDI-IHC
technique, while similar, also faces issues with spatial resolution for
immunophenotyping compared with IMC?***, Recent studies have
used formalin-fixed paraffin-embedded tissue for combining IMC and
MSI owing to better preservation of tissue architecture and antibody
performance, but the use of fixated tissue complicates the detection
of several metabolites®>*, In our study, we introduce an optimized
workflow that utilizes fresh frozen tissue, combining MALDI-MSI for
metabolite detection with IMC for cellular phenotype identification

Fig.1|Identification of single-cell metabolic profilesin CRC. a, Integrated
workflow of consecutive MALDI-MSI and IMC analyses. Fresh-frozen tissue
sections were cut (1) and treated with MALDI matrix (2). MALDI-TOF-MSI was
performed to obtain spatial metabolomics data (3), followed by matrix removal
(4). Sections were then labeled with metal-conjugated antibodies, and IMC

was used to analyze the areas previously imaged by MALDI-TOF-MSI (5). Both
datasets were preprocessed (6) and coregistered using visual landmarks (7).
Cell segmentation and phenotype identification were performed (8), and MALDI-
MSI-derived metabolic abundances were assigned to each cell (9), enabling
downstream analysis (10). Created with BioRender.com. b, Scaled metabolite
abundance profiles across cell populations identified in CRC1. Hierarchical

clustering was guided by glycerophospholipid abundances (heatmaps of CRC2
and CRC3 are shown in Extended Data Fig. 1e). c,d, UMAP embedding of all cells
(c) orimmune cells (d) of CRC1, clustered by glycerophospholipids. Phenotypes
oflabeled cells are visualized on the UMAP embedding. e, Top differentiating
glycerophospholipid features between cancer cells and the stromal-immune cell
compartment, calculated for allimages in the dataset. f, Left: representative IMC
image of CRC1 highlighting cancer cells and stromal cells (keratin in red, vimentin
ingreen and DNA inblue). Middle and right: MALDI-MSI image of the same region
of interest showing differentially abundant metabolites in the stromal-immune
cell compartment (PC(37:5)) and in cancer cells (P1(34:1)) displayed using viridis
colors with saturated pixels above the 99th percentile (n = 2).
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onasingle tissue section. This method overcomes previous challenges
with image alignment and can be directly applied to various tissue
typestocharacterize the metabolite composition of single cells insitu.
Limitations of the work described here include the small sample size,
whichlimits the interpretability of the findings, and the specific focus
onglycerophospholipids. However, by adjusting the range of the mass
spectrometer, this approach can analyze the entire metabolic spec-
trum. Additionally, to fully explore metabolic heterogeneity in specific
immune cells, the current 26-target IMC panel can be expanded to
include more than 40 cellular targets, allowing for the identification
of moreimmune subsets and states. In summary, our method provides
a powerful tool for tissue characterization, simultaneously revealing
cellular composition and directly linking it to metabolic phenotypes.
This is particularly valuable to be applied in complex systems like the
tumor microenvironment, where cellular composition and metabolism
have a high degree of heterogeneity.
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Methods

Sample collection and sampling

Material was used of three CRCs from patients that have giveninformed
consent under the study protocol P15.282, approved by the Medical
Ethical Committee of the Leiden University Medical Centre. Patient
samples were anonymized and handled according to the medical ethi-
calguidelines described in the Code of Conduct for Proper Secondary
Use of Human Tissue of the Dutch Federation of Biomedical Scientific
Societies. After surgery, cancer tissue was snap-frozen and stored
at-80 °C.

Using a micro cryostat (CM3050 S, Leica), 5-pm-thick tissue sec-
tions were thaw-mounted on indium-tin-oxide (ITO)-coated micro-
scopesslides (Bruker Daltonics GmbH) and immediately processed for
MALDI-MSI analysis.

MALDI-MSI

Samplesfromthe cryomicrotome were transferred ondryice and equil-
ibrated to room temperature using a vacuum freeze drier (Alpha 2-4
LSCbasic, Christ) for 20 min. Following, the MALDI matrix, 1-napthylyl
ethylenediamine dihydrochloride was sublimated onto the slide using
aSublimator T1(HTX Imaging). Sublimation was performed at 180 °C
for 6 min, which resulted in a matrix coverage of 31.73 pmol mm™.
MSI analyses was performed on a timsTOF fleX MALDI-2 platform
with microGRID (Bruker Daltonics GmbH) in both oTOF and timsON
modes. To achieve single-cell resolution, single-pixel mass spectra
were recorded in oTOF mode at a 5 x 5 um? spatial resolution cover-
ing a m/z range between 300 and 1,100, and summing 25 laser shots.
For collisional cross-section (CCS)-enhanced identification of m/z
features, single-pixel mass spectra were recorded in timsON mode
at a10 x 10 um? spatial resolution covering a m/z range between 300
and 1,100 and summing 74 laser shots. lon mobility separation was
achieved over a300 ms ramp over a 1/K, interval ranging from 0.6 to
1.6 Vscm™. The flexImaging software (v7.2, Bruker Daltonics) was
used to define measurement regions of approximately 1 x 1 mm? for
oTOF mode measurements, and regions of approximately 0.5 x 1 mm?
for consecutive timsON and oTOF mode measurements. Post measure-
ment, samples were immediate processed for the IMC analysis. Raw
data files were loaded into SCiLS Lab PRO software (v2024a, Bruker
Daltonics). Two separate files were created, one with timsON data
for molecular annotations, and one with oTOF data for visualization
at the single-cell level. Feature selection was performed in the tim-
sON dataset by using the T-ReX? feature finding algorithm in SCiLS
Lab (parameters: neighborhood size 4 x 4, coverage 100%, relative
intensity threshold 0.3%). CCS-aware molecular annotation was per-
formed against a subset of the Lipid Maps Structural Database (lipid
classes: glycerophospholipids (GP) and glycosphingolipids (SP);
https://HMDB.ca (ref. 26)) using the MetaboScape (v2023b, Bruker
Daltonics) target list annotation tool, directly accessed by SCiLS Lab
(parameters: Enabled CCS-Predict Pro, m/z narrow 5.0 ppm, m/z_wide
15.0 ppm, mSigma_narrow 100, mSigma_wide 900, CCS_narrow 2.0%,
CCS_wide 4.0%). Following molecular annotation, only deprotonated
molecular ions ([M - H']") with a mass error tolerance below 10 ppm
and a CCS error tolerance below 5% were selected and considered for
further analysis. The m/zintervals (m/z + 6.6 ppm) of the selected
features in the timsON dataset were transferred to the oTOF dataset,
from which single-ion images at single-cell resolution were exported
as OME-TIFF images for every individual measurement area.

IMC

After MALDI-MSI data acquisition, excess MALDI matrix was removed
bywashingthetissueslides with 100% ethanol, ice-cold acetone, 100%
ethanoland 70% ethanol for 5 min each, followed by a 2-min wash with
50% ethanol and 3x 1-min washes with 1x phosphate-buffered saline.
The tissues were then fixed with10% formalin for1 hat room tempera-
ture. Antigen retrieval, blocking and labeling with metal-conjugated

antibodies (Supplementary Table 1) was performed as previously
described by IJsselsteijn et al.”. The utilized panel has been applied to
various studies and was validated after conjugation by IHC and through
assessment of colocalization with expected other markers by IMC. To
obtainthe datain SupplementaryFig. 1b, tissue fixation was performed
after excess MALDI matrix removal with 4% paraformaldehyde for
30 min at 4 °C and the IMC staining according to the protocol of Guo
et al.”. Data from 1,100 x 1,100 pm? areas was acquired using a Hype-
rion Mass Cytometry System (Standard BioTools) and CyTOF software
(7.0.5189, Standard Biotools), exported as .mcd files and visualized
using MCD Viewer (1.0.5, Standard BioTools).

Phenotype identification and counting was done as described
previously®. In short, .mcd files were converted to TIFF images and
normalized by saturating pixels above the 99th percentile. Next,
background removal was performed using the random forest classi-
fier of lastik after which all remaining pixels were binarized to 1, with
background set to 0. Cell segmentation masks were created using
llastik and CellProfiler using the keratin, vimentin/CD45 and DNA
images, and marker intensities per cell were extracted using ImaCytE.
Cellswere analyzed by t-distributed stochastic neighbor embeddingin
Cytosplore, and by mean-shift clustering, cells forming visual neigh-
borhoods in the t-distributed stochastic neighbor embedding were
grouped to define cellular phenotypes. Cell types were defined on
the basis of current literature using the protein markers described in
Supplementary Table 2. Furthermore, all identified phenotypes were
visually confirmed on the raw images. RStudio (2022.07.1, R version
4.2.0) was used for the counting of phenotypes per sample and visual
representation.

MSIand IMC dataintegration

For each tumor sample, MALD-MSI and IMC data were combined in
Python (version 3.9), by coregistering the two image sets based on
visual featuresin both datasets showing clear landmarks, such asempty
areas or epithelial structures. Excess pixels, which canbe found on the
borders of the images belonging only to one dataset, were excluded,
retaining only coregistered pixels. Since MALDI-MSI resolution is
5x5um?and IMC resolution is 1 x 1 pm?, each MALDI-MSI pixel maps
to 25IMC pixels.

Cells often do not exactly overlap with one MALDI-MSI pixel and
cancoveronly part or several MALDI-MSI pixels. To calculate metabo-
lite abundance per cell, the peak intensity of the overlapping 5 x 5 um
MALDI-MSI pixel was assigned toeach 1 x 1 um IMC pixel. The IMC cell
segmentation mask and the assigned peak intensities of each1x1pm
were combined, and the relative metabolite abundance per cell was
calculated using the mean of all pixels withinacell. For instance, ifacell
consists of 10 IMC pixels, and 5 of those fall into a MALDI-MSI pixel with
peak intensity 1, and 5 IMC pixels fall in a MALDI-MSI pixel with peak
intensity O, then the meanintensity of the cellis (5 x 1) + (5 x 0)/10 = 0.5
(exemplified in Extended Data Fig. 1b).

In mathematical terms: let X; = {x;, x5, ..., xy} be the set of IMC
pixels, where N is the total number of coregistered pixels, and
Y; =, ¥2, ..., yu} be the set of MALDI-MSI pixels, where M is the total
number of coregistered pixels, such that M = N/25.Each y; mapsto25
x;s, while x;maps to (is part of ) asingle y;; therefore, y;= f(x;), where f()
is a defined mapping function returning the corresponding y; pixel
for the input x; pixel.

For both modalities, each pixel represents a one-dimensional
vector containing the features measured by that modality. Cells were
segmented using the high-resolution IMC dataset; let C; = {c, ¢,, ... , ¢}
be the set of segmented cells, and n is the total number of cells. Each
cell ¢, is a set of several IMC pixels x; s, while one IMC pixel x; is part
of only one cell. To obtain the cellular IMC expression data, we define
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where P, , is the cellular expression of IMC protein feature pincell ¢,
P, ,isthe pixel expression of protein feature pin IMC pixel x;, and m is
the number of IMC pixels correspondingto cell ¢;. In other words, the
cellular expression of the IMC datais the average expression of the IMC
pixels corresponding to each cell. Similarly, let 7;, be the pixel expres-
sion of metabolic feature ¢ in pixel y;; therefore,

1 &
Tei=— Troe
k.t mk; St

where T, . isthe cellular expression of metabolic feature ¢ in cell ¢;, and
Trs, is the pixel expression of metabolic feature ¢ in MALDI-MSI pixel
mapping to IMC pixel x;. In other words, the cellular expression of the
MALDI-MSIl datais the weighted-average expression of the MALDI-MSI
pixels corresponding to each cell, where each MALDI-MSI pixel is
weighted by how many IMC pixels are mapping toit.Itisimportant to
note that one MALDI-MSI pixel y; may contribute to the expression of
one or more cells.

Data analysis

Cellular phenotypes and metabolite abundance per cell were com-
bined using Python (version 3.9), and metabolite abundance counts
were normalized to the relative abundance per cell. RStudio was
used for visualization and consecutive analyses. For each sample,
data from two images were combined and mean relative metabolite
abundance was determined for each cellular phenotype and visual-
ized inaheatmap per sample using the ComplexHeatmap R package
(version 2.14.0). Differential feature expression analysis was done
by Wilcoxon rank test on the group of interest versus the remaining
cells in the dataset and visualizing the features by fold change and
Pvalue. Finally, for dimensionality reduction, the cells were visual-
ized by UMAP* using the umap R package (version 0.2.10.0) using
the parameters n_neighbors of 5, min_dist of 0.05 and n_epochs of
1,000, and cell phenotypes or k-means clusters were visualized on
the embedding.

Statistics

As a methodological proof of principle, the study was conducted on
three CRC tissue samples, with two areasimaged per sample. Differen-
tially abundant metabolites were identified using the Wilcoxon test,
and features with a false discovery rate (FDR)-adjusted P value below
0.05 were considered significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw IMC and MSI data as well as combined datasets and source
data are available via figshare at https://figshare.com/s/c58ddc-
70fa8dc0602842 (ref. 29). Source data are provided with this paper.

Code availability

Python scripts used for the coregistration and integration of MALDI-
MSI and IMC data are available on GitHub at https://github.com/
deMirandaLab/MALDI-MSI-IMC.
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Extended Data Fig. 1| Integration of MALDI-MSI metabolite data with
cellular phenotypes. a. Approach for aligning MALDI-MSI and IMC data

using visual landmarks present in both datasets. b. Schematic illustrating the
approach for calculating metabolite abundance in each cell as pixel sizes differ
between MALDI-MSI and IMC. Five 5 x 5 pum MALDI-MSI pixels are shown, each
containing 251 x1pum IMC pixels. Cells within the pixels are colored with ared
border, and a cell can span multiple MALDI-MSI pixels. To calculate metabolite
abundance per cell, the peak intensity of the overlapping 5 x 5 um MALDI-MSI

pixel was assigned to each1x1pum IMC-pixel. The IMC cell segmentation mask
(red borders) and the assigned peak intensities of each1x 1 pm were combined,
and the relative metabolite abundance per cell was calculated using the mean of
all pixels within a cell. c. Relative marker expression and abundance per image
of cellular phenotypes determined by IMC. d. distribution of the number of cells
contained in a single MSI pixel for each image. e. Glycerophospholipid profiles
across distinct cellular phenotypes, in CRC2 and CRC3. Hierarchical clustering
was guided by glycerophospholipid abundances.
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glycerophospholipid features, visualized on the UMAP embedding shown

inFig. 1d. d. Confusion matrix comparing IMC phenotypes with k-means clusters
to determine clustering by cell type or glycerophospholipid features. The
heatmap indicates the number of cells that overlap between the two clustering
methods. e. Density of CD204" macrophage phenotypes corresponding to the
UMAP of Fig. 1d.

Extended Data Fig. 2| Glycerophospholipid heterogeneity within cell
populations. a. Density of cancer cell phenotypes and immune/stromal
phenotypes corresponding to the UMAP of Fig. 1c. b. Pairwise distances between
cancer cells, cancer cells and the stromal/immune compartment or the stromal/
immune compartment only, visualized in aboxplot with median distance,
interquartile range and min-max whiskers. n = 9066 cancer cells and 4889
stromal/immune cells. c. k-means clustering of allimmune cells in CRC1based on
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Extended Data Fig. 3| Glycerophospholipid abundance in myeloid cell k-means clusters. Enlarged heatmap of Fig. 2e: Relative abundance of glycerophospholipids
inthe k-means clusters, visualized in Fig. 2d.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested

OO X OK

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data obtained using fleximaging software (v7.2, Bruker Daltonics GmbH) and CyTOF software (7.0.5189, Standard Biotools)

Data analysis Imaging data was merged in Python (version 3.9) and further analyses and visualisation with R (version 4.3.3) in R-studio (version 2023-1-12)
using the following R packages: ComplexHeatmap (version 2.14.0), umap (version 0.2.10.0).
code avaible on https://github.com/deMirandaLab/MALDI-MSI-IMC

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw IMC and MSI data as well as combined datasets and source data are available via figshare: https://figshare.com/s/c58ddc70fa8dc0602842
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Data not collected

Population characteristics NA
Recruitment NA
Ethics oversight Medical Ethical Committee of the Leiden University Medical Centre

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Three samples, as the study is a methodological proof of principle. no differences were observed between samples and thus not more
samples were included

Data exclusions  no data excluded
Replication 2 areas imaged per sample, no areas or samples were discarded
Randomization  NA, no groups involved

Blinding samples were anonimised and analysed as such

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
X| Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry

Palaeontology and archaeology |:| MRI-based neuroimaging
Animals and other organisms

Clinical data
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Dual use research of concern

Antibodies

Antibodies used CD4 EPR6855 Abcam
CD8a D8A8Y Cell Signaling Technology
ICOS D1K2T Cell Signaling Technology
CD204 J5HTR3 Thermofisher Scientific
CD163 D6U1J Cell Signaling Technology
HLA-DR TAL 1B5 Abcam
CD11b D6X1N Cell Signaling Technology




Granzyme B D6ESW Cell Signaling Technology
CD138 MI15 Biolegend

CD14 D7A2T Cell Signaling Technology
CD7 EPR4242 Abcam

CD11c EP1347Y Abcam

CD45 DI9M8I Cell Signaling Technology
CD3 EP449E Abcam

FOXP3 D608R Cell Signaling Technology
CD27 EPR8569 Abcam

Vimentin D21H3 Cell Signaling Technology
Keratin C11 Cell signaling Technology
Keratin AE1/AE3 Biolegend

CD68 D4BIC Cell Signaling Technology
CD31 89C2 Cell Signaling Technology
CD57 HNK-1 / Leu-7 Abcam

Ki-67 8D5 Cell Signaling Technology

1gG1 EPR4417 Abcam

CD45RO UCHL1 Cell Signaling Technology
D2-40 D2-40 Biolegend

CD38 EPR4106 Abcam

Histone H3 D1H2 Cell Signaling Technology
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Validation All antibodies were selected based on thorough validation by the selling companies for human specificity and validated use for FFPE
IHC. Antibodies were further tested in house by IHC and by multiplex imaging mass cytometry as shown in ljsselsteijn et al 2019
(10.3389/fimmu.2019.02534) to confirm colocalisation with literature defined co expressed proteins.
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