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Abstract

The main goal of this thesis is to understand the topological properties of semantic
networks, to find language-specific patterns, and to investigate their connection princi-
ples. Interpreting unstructured texts in natural language is a crucial task for computers.
Natural Language Processing (NLP) applications rely on semantic networks for struc-
tured knowledge representation. Although NLP technologies have been applied to
various domains with some degree of success, they still face many challenges due to
the ambiguity of human language. To inform better algorithms, we need to pay atten-
tion to fundamental structures of semantic networks in different languages. However,
these remain to be investigated properly. In this thesis we extract semantic networks
with 7 distinct relations for 11 languages from ConceptNet. We systematically ana-
lyze the degree distribution, degree correlation and clustering of these networks. We
also measure their structural similarity and complementarity coefficients. Our findings
show that semantic networks have universalities in basic structures: they have high
sparsity, high clustering, and power-law degree distributions. Our findings also show
that the majority of the considered networks are scale-free. In addition, our results
show that networks in different languages exhibit different properties, which are deter-
mined by grammatical rules. For example, the networks of highly inflected languages
show peaks in the degree distributions that deviate from a power-law. Furthermore,
we find that depending on the type of semantic relation and the language, the connec-
tion principles of networks are different. Some networks are more similarity-based,
while others are more complementarity-based. We conclude the thesis by demon-
strating how the knowledge of similarity and complementarity can better inform NLP
in link prediction tasks.
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1
Introduction

Due to the explosion in availability of digital content over time, the demand for com-
puters to efficiently handle textual data has never been greater. The large amounts
of data and computing power have enabled a significant amount of research on Nat-
ural Language Processing (NLP). The goal of NLP is to allow computer programs to
interpret and process human language texts. A text is represented in a computer as
a string, but human language is much more than just a string. We can relate various
concepts to a text based on our knowledge. To effectively interpret the meaning of
a text, a computer must have access to a considerable knowledge base related to
the domain of the topic [1]. Semantic networks play an important role in representing
human knowledge.

A semantic network is a graph representation of structured knowledge. It is com-
posed of nodes, which represent concepts (e.g., words or phrases), and links, which
represent semantic relations between concepts [2, 3]. ‘Semantic’ means ‘relating to
meaning in language or logic’. Fig. 1.1 presents a toy example of a semantic network.
In the 1960s, semantic networks were first suggested by Quillian [4, 5] as a means of
representing human knowledge in a computer.

Figure 1.1: Toy example of a semantic network with five concepts and four semantic relations.

The past two decades have witnessed a rise in the significance of semantic net-
works in NLP [6–8]. Today, activities in our daily lives are already inseparable from
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2 1. Introduction

semantic network applications. Semantic networks are employed in NLP technolo-
gies to represent and extract knowledge. For instance, Google introduced Google
Knowledge Graph to enhance their search engine results [9]. A knowledge graph is a
specific type of semantic network, in which the relation types are more explicit [10, 11].
The use of Knowledge Graph allows Google’s computers to store and analyze compli-
cated information, improving search results and user experience. Likewise, voice as-
sistants and digital intelligence services, such as Apple Siri [12] and IBM Watson [13],
use semantic networks as a knowledge base for retrieving information [14, 15]. As a
result, machines can process the received information, comprehend the conversation,
and achieve the goal of communicating with users.

1.1. Motivation and Objectives
Language is a complex system with diverse grammatical rules. To grasp the meaning
of a sentence, humans count on their natural understanding of language and con-
cepts in contexts. However, it is difficult for computers to utilize similar strategies
since computers do not have the capability of understanding. Namely, machines op-
erate under unambiguous instructions that are strictly predefined and structured by
humans. Though we can argue that human languages are structured by grammar,
these rules are ambiguous [16]. After all, in computer languages, there are no syn-
onyms, namesakes or tones that can lead to misinterpretation [17]. Thus, computers
rely on external tools to enable the processing of the structure and meaning of texts.

In this thesis, we conduct systematic analyses of the topological properties of se-
mantic networks. Our work is motivated by the following purposes:

• Inform better NLP methods.
Although there have been numerous real-world NLP applications across various
domains, existing NLP technologies still face limitations [18]. For example, pro-
cessing texts in a language where multiple words have similar meanings make
a difficult task for computers [19]. Other issues occur due to lexical ambiguity
when a word or phrase conveys more than one meaning [20, 21]. Furthermore,
it is challenging to analyze a text that includes spelling inconsistencies, dialects
or culture-specific phrases [22, 23]. Existing algorithms are usually domain-
specific, and achieving more accurate and broader applications remains a prob-
lem. To design finer language models that can handle NLP challenges such as
language ambiguity, we first need to understand what semantic networks look
like. Therefore, it is necessary to study the topological properties of semantic
networks.

• Understand fundamental formation principles of semantic networks.
In many social networks such as friendship networks, connections between
nodes are driven by similarity [24–27]. The more similar (in terms of number
of common neighbors) two nodes are, the more likely it is that they are con-
nected. Thanks to the intensive study of similarity-based networks, many suc-
cessful tools of data analysis and machine learning were developed, such as link
prediction [28] and community detection [29]. But these tools may not work well
with semantic networks, because words in a sentence do not necessarily pair
together because of similarity. Sometimes, two words are used in conjunction
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because they have complementary features. Therefore, we would like to learn
what the basic principles are that drive the formation of semantic networks.

• Document language-specific features.
Languages vary greatly between cultures and across time [30]. Two languages
that originate from two different language families can differ in many types of fea-
tures since they are structured based on different rules. It is natural to conjecture
that there exist diverse structures in semantic networks for different languages.

Previous studies on semantic networks focused on a few basic properties and re-
lied on distinct datasets with mixed semantic relations, which we discuss in detail in a
dedicated section later. Therefore, it is and was difficult to compare results within one
work and between two different works. To our knowledge, there has been no system-
atic and comprehensive analysis on the topological properties of semantic networks
at the semantic relation level.

To sum up, the main objective of this thesis is to understand the structure of seman-
tic networks. Specifically, we first study the general topological properties of semantic
networks from a single language with distinct semantic relation types. Secondly, we
compare semantic networks with the same relation type between different languages
to find language-specific patterns. In addition, we investigate the roles of similarity
and complementarity in the link formation principles in semantic networks.

1.2. Contributions
The main contributions of this thesis include:

1. We extract semantic networks based on semantic relations (link types). We
study topological properties of seven English semantic networks. Each network
is defined by a specific link type. We show that all networks possess high sparsity
and a power-law degree distribution. In addition, we find that most networks
have a high average clustering coefficient, while others show the opposite.

2. We extend the study of the topological properties of semantic networks to ten
other languages. We perform analyses based on two types of language clas-
sifications. We find non-trivial structural patterns in networks from languages
that have many grammatical inflections.Due to the natural structure of grammar
in these languages, words have many distinct inflected forms, which leads to
peaks in the degree distribution and results in deviations from a power-law dis-
tribution. We find this feature not only in inflecting languages, but also in one
language that is classified as agglutinating.

3. We study the organizing principles of 50 semantic networks. We apply the al-
gorithm from [31] to quantify the structural similarity and complementarity of
semantic networks, and show to what extent these networks are similarity- or
complementarity-based. Furthermore, we present that the connection principles
in semantic networks are related to the type of semantic relation.
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1.3. Thesis Outline
This thesis is organized in the following manner: In Chapter 2 we first introduce funda-
mental concepts from graph theory and complex networks on which this thesis relies.
Additionally, some network models and randomization methods are presented. Then,
we provide a brief overview of recent work on semantic networks. Finally, we con-
clude the chapter by clarifying the research gap and the scope of our research. In
Chapter 3 we present the general topological properties of seven English semantic
networks. We also introduce our dataset, types of semantic relation and network ex-
traction procedure. In Chapter 4 we study semantic networks from different languages.
By inspecting the degree distributions, we find patterns related to grammatical inflec-
tions in several languages. We also compare topological properties between multiple
language families. Chapter 5 deals with the fundamental connection principles in se-
mantic networks in eleven languages. We measure and compare the structural simi-
larity and complementarity of different networks. We present and discuss the patterns
that we find. Finally, we draw conclusions from the results and findings obtained in
the thesis and give recommendations for future research in Chapter 6.



2
Background

A semantic network is a graph that represents human knowledge. Before diving into
the study of topological properties of semantic networks, we introduce the terminolo-
gies in graph theory and properties of complex networks that will be utilized in the
subsequent chapters. Besides, we explain the random network models that are used
and two methods of network randomization. After clarifying network-related concepts,
we briefly discuss recent work on semantic networks in the last section. At last, we
refine the objective and scope of this thesis.

2.1. Graph Theory
A network is a graph 𝐺(𝑁, 𝐿) that consists of 𝑁 number of nodes (vertices) and 𝐿
number of links (edges). Nodes are connected via links. A self-loop is a link that has
the same node as the endpoints. A subgraph of a graph 𝐺 is a graph whose nodes
and links all belong to 𝐺 [32].

A network is called undirected if the links do not specify the source and destination
nodes, otherwise the network is directed. Networks with self-links that have the same
source and destination nodes are not taken into account in this thesis. Sometimes,
links are associated with weights. We call this type of network a weighted network.
In this thesis, we only consider undirected and unweighted networks. We provide
explanations for the choice in the end of this chapter.

In an undirected network, a path is a sequence of links that joins a set of nodes in
which all nodes are distinct [32]. The length of a path equals the number of links in
the path. For example, a path of length 2 that originates from node 𝑖 and travels via 𝑗
to 𝑘 can be represented as (𝑖, 𝑗, 𝑘).

An adjacency matrix 𝐴 is a matrix representation of a network that provides the
complete link information. It is an 𝑁 × 𝑁 matrix where every element 𝑎𝑖𝑗 is equal to 0
or 1. If a link exists between node 𝑖 and 𝑗, then 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0.

2.2. Topological Properties in Complex Networks
The primary metrics that we use in this thesis are listed in Table 2.1 together with their
mathematical notations. We consider the following metrics: maximum degree 𝑑𝑚𝑎𝑥,
average degree 𝐸[𝐷], degree distribution Pr[𝐷 = 𝑘], degree correlation coefficient

5



6 2. Background

𝜌𝐷, Average Nearest Neighbor Degree (ANND), clustering coefficient 𝑐𝐺 and graph
transitivity �̌�𝐺.

Mathematical notation Metrics

𝑁 number of nodes
𝐿 number of links
𝑘 degree
𝑑𝑚𝑎𝑥 maximum degree
𝐸[𝐷] average degree
Pr[𝐷 = 𝑘] degree distribution
𝜌𝐷 degree correlation coefficient
ANND average nearest neighbor degree
𝑐𝐺 clustering coefficient
�̌�𝐺 graph transitivity
𝛾 power-law exponent for the degree distribution

Table 2.1: Primary metrics used in the thesis and their mathematical notations.

2.2.1. Degree
We begin with the simplest, yet key, property of a network: the node degree. The
degree 𝑑𝑖 of a node 𝑖 in a graph 𝐺(𝑁, 𝐿) equals the number of its neighbors, i.e., the
number of links that connect to node 𝑖 [33]. The degree of node 𝑖 satisfies 0 ≤ 𝑑𝑖 ≤
𝑁 − 1. The maximum degree 𝑑𝑚𝑎𝑥 = 𝑁 − 1 is achieved in a connected graph for
nodes with the most neighbors. The sum of nodal degrees in a network follows the
rule given by Eq. 2.1, which is twice the number of links

𝑁

∑
𝑖=1
𝑑𝑖 = 2𝐿. (2.1)

The average degree 𝐸[𝐷] of a network is an important global measure, it is defined
as

𝐸[𝐷] = 1
𝑁

𝑁

∑
𝑖=1
𝑑𝑖 =

2𝐿
𝑁 . (2.2)

In network theory, degree distribution plays a crucial role. Even though the degree
of individual nodes is a local metric, the distribution of degrees provides a global view
of the structure of a network. The density of the degree distribution Pr[𝐷 = 𝑘] is the
fraction of nodes in a network that have degree 𝑘. Mathematically,

Pr[𝐷 = 𝑘] = 𝑁𝑘
𝑁 , (2.3)

where 𝑁𝑘 is the number of 𝑑 = 𝑘 nodes, and 𝑁 is the total number of nodes. The
degree distribution shows the probability that a network node chosen at random has
degree 𝑘 [34]. The probability Pr[𝐷 = 𝑘] is normalized as

𝑁−1

∑
𝑘=1

Pr[𝐷 = 𝑘] = 1. (2.4)
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It is useful to plot the degree distribution as a function of degree 𝑘, using a his-
togram or scatter plot. The shape of the curve illustrates important structure properties
of various kinds of networks. The degree distribution of many real complex networks
is a power-law distribution [35]

Pr[𝐷 = 𝑘] ∼ 𝑘−𝛾, (2.5)

where 𝛾 is the power-law exponent. By taking the logarithm of Eq. 3.1, we have

log(Pr[𝐷 = 𝑘]) ∼ −𝛾 log(𝑘). (2.6)

If we plot the logarithm of degree distribution log(Pr[𝐷 = 𝑘]) with respect to the loga-
rithm of degree log(𝑘), we should see a linear dependency between log(Pr[𝐷 = 𝑘])
and log(𝑘). And the slope of the line is the power-law exponent 𝛾.

For scale-free networks, the power-law exponent 𝛾 typically lies between 2 and
3. The power-law exponent 𝛾 ∈ (2, 3) means the average degree is finite, but the
variance is infinite.

2.2.2. Degree Assortativity
Degree assortativity, also known as assortative mixing, describes the tendency of
nodes to connect to other nodes with either similar or opposite degree [36]. A net-
work is said to be assortative if high-degree nodes connect to high-degree nodes.
Conversely, a network is disassortative if high-degree nodes connect to low-degree
nodes. There are two common measures for capturing degree assortativity.

The first metric is the degree correlation coefficient 𝜌𝐷, defined as the linear
correlation coefficient of the degrees at either ends of a link 𝑙 = 𝑖 ∼ 𝑗 [36]. Van
Mieghem [33] expresses the degree correlation coefficient 𝜌𝐷 in terms of graphmetrics
as

𝜌𝐷 = 1 −
∑𝑖∼𝑗 (𝑑𝑖 − 𝑑𝑗)

2

∑𝑁𝑖=1 𝑑𝑖3 −
1
2𝐿 (∑

𝑁
𝑖=1 𝑑𝑖2)

2 , (2.7)

where 𝑑𝑖 and 𝑑𝑗 are the degrees of node 𝑖 and 𝑗 which are connected by a link. If
𝜌𝐷 > 0, the network is assortative. And 𝜌𝐷 < 0 denotes a disassortative network.

The other metric is Average Nearest Neighbor Degree (ANND) as a function
of the degree 𝑘. It is determined by the number of nodes and the degrees of its
direct neighbors in a network. The definition of the ANND as a function of the degree
was introduced by Boguñá and Pastor-Satorras [37]. The average nearest neighbor
degree of node 𝑖, ANND(𝑖), is the expected degree of all its neighboring nodes. We
rewrite the definition of ANND(𝑖) using the adjacency matrix as follows

ANND(𝑖) = 𝐸[𝐷𝑗|𝑎𝑖𝑗 = 1], (2.8)

where 𝐷𝑗 is the degree of a neighboring node 𝑗. Therefore, the average nearest neigh-
bor degree ANND of the whole network is the average over all nodes

ANND = 1
𝑁

𝑁

∑
𝑖=1

ANND(𝑖). (2.9)
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Similarly, we can calculate ANND for nodes with degree 𝑘. Then we will have a
function of ANND with respect to 𝑘, which we denote as ANND(𝑘). A function that
explicitly depends on degree 𝑘 indicates the existence of degree correlations in a
network. According to Newman [36], when ANND(𝑘) is an increasing function of 𝑘, the
network is assortative. Contrariwise, a network is disassortative if ANND(𝑘) decreases
along 𝑘.

2.2.3. Clustering
The clustering coefficient quantifies the graph connectivity structure. Here we intro-
duce three basic measures of clustering.

The first one is the clustering coefficient 𝑐𝐺(𝑖), which quantifies the local density
around a node 𝑖. It is defined as the ratio of the number of connected neighbor pairs
of node 𝑖 over the number of its all possible neighbor pairs [38, 39],

𝑐𝐺(𝑖) =
∑𝑗,𝑘 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘
𝑑𝑖(𝑑𝑖 − 1)

. (2.10)

The local clustering coefficient 𝑐𝐺(𝑖) ranges from 0 to 1. When there are zero connec-
tion between the neighbors of node 𝑖 or the degree of the node is less than or equal
1 (𝑑𝑖 ≤ 1), 𝑐𝐺(𝑖) = 0. The maximum 𝑐𝐺(𝑖) = 1 is reached only when the neighbors of
node 𝑣 are all connected.

The second measure is the average clustering coefficient 𝑐𝐺 of an entire network.
It measures how closely nodes in a network cluster together. The clustering coefficient
𝑐𝐺 of a network with 𝑁 nodes is defined as the average over all nodes

𝑐𝐺 =
1
𝑁

𝑁

∑
𝑖=1
𝑐𝐺(𝑖). (2.11)

Similar to the local clustering coefficient 𝑐𝐺(𝑖), the average clustering coefficient satis-
fies 0 ≤ 𝑐𝐺 ≤ 1. Theminimum 𝑐𝐺 = 0 is attained in graphs where there are no triangles
at all, while the largest 𝑐𝐺 = 1 only happens when a network is fully connected.

The graph transitivity �̌�𝐺, often referred to as the global clustering coefficient [38]
or the ratio of transitive triples [40], calculates the ratio of the number of closed trian-
gles in a network relative to the total possible triples. As defined in [40, 41],

�̌�𝐺 =
6𝑡

∑𝑁𝑖=1 𝑑𝑖(𝑑𝑖 − 1)
, (2.12)

where 𝑡 is the total number of triangles in a network. The value of the graph transitivity
�̌�𝐺 is constrained within 0 and 1. A fully connected graph has �̌�𝐺 = 1, while �̌�𝐺 goes to
zero for a random graph as its size increases.

2.2.4. Connectedness
A graph is connected if there exists a path between any pair of its nodes [42]. Con-
nectedness is an important concept in graph theory. In a not fully connected graph, a
connected component is a connected subgraph that does not belong to any other
connected subgraph of a bigger size..
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The Largest Connected Component (LCC) is the connected component with the
largest number of nodes in a network. If a network is connected, then the network itself
is the largest connected component.

In this thesis, we focus on the study of the largest connected component of seman-
tic networks.

2.3. Random Networks
A random network is a network in which the connections are completely random apart
from specific constraints. One famous random network model is the Erdős–Rényi ran-
dom graph 𝐺(𝑁, 𝐿), where 𝑁 nodes are randomly connected with 𝐿 links [43]. In such
a network, the average degree is fixed to 𝐸[𝐷] = 2𝐿/𝑁. A more flexible network model
is the configuration model. The Configuration Model (CM) allows users to generate
networks with any desired degree sequence [44]. As a consequence, the degree of
each node is fixed. However, networks created using the configuration model may
contain self-loops and multi-links. A multi-link is composed of more than one link that
have two identical endpoints.

In many statistical analyses, results obtained from randomized networks serve as
benchmarks for comparison with real networks. Hence, we introduce two algorithms
to randomize the semantic networks. The algorithms are degree-preserving network
rewiring and degree-preserving network reconstruction.

The purpose of degree-preserving randomization is to keep the link density of each
node but randomize the connections among all nodes. This way, we can compare the
extracted real networks with the random networks that are expected by chance based
on node degrees. In this thesis, the rewired and reconstructed networks are
obtained via these two randomization methods respectively.

2.3.1. Degree-preserving Network Rewiring
Degree-preserving network rewiring randomly rewires the links between nodes, but
keeps the degree of all nodes unchanged. To preserve the degrees of all nodes, we
randomly select 1 link pair (4 nodes), and swap the endpoints of these 2 links. Fig. 2.1
illustrates the rewiring method. To make sure that all links are likely to be rewired at
least once, we repeat the random selection of links for 𝑇 times, where 𝑇 is set to four
times the number of links. The pseudocode is provided in Algorithm 1.

Figure 2.1: Illustration of degree-preserving rewiring. By randomly swapping the endpoints of two
links (𝑎, 𝑏) and (𝑐, 𝑑), new links can be constructed without changing the node degrees.
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Algorithm 1: Degree-preserving network rewiring
Data: a list of links
Result: a rewired network
𝐸 ← a list of links;
𝑇 ← 4𝐿 ; /* all links are rewired at least once */
while 𝑇 ≠ 0 do

(𝑎, 𝑏) and (𝑐, 𝑑) ← randomely pick 2 links from 𝐸;
𝑛 ← |set(𝑎, 𝑏, 𝑐, 𝑑)| ; /* number of unique nodes in 2 links */
if 𝑛 < 4 then

continue
else

𝑎 and 𝑐 ← randomly select one node from each link ;
(𝑐, 𝑏) and (𝑎, 𝑑) ← swap the two slected nodes;
if (𝑐, 𝑏) ∈ 𝐸 or (𝑎, 𝑑) ∈ 𝐸 then

continue
else

𝐸 ← update the list of links with the 2 rewired links (𝑐, 𝑏) and (𝑎, 𝑑);
𝑇 ← 𝑇 − 1

end
end

end

2.3.2. Degree-preserving Network Reconstruction
In degree-preserving network reconstruction, all links in a network are disconnected,
then links are added randomly between nodes according to the original degree of
each node, until all degrees are satisfied. We use a weighted probability random
number generator to select nodes such that the probability of a node being chosen is
proportional to its degree. The pseudocode is provided in Algorithm 2.

Figure 2.2: Illustration of degree-preserving reconstruction. After disconnecting all nodes, every node
is left with an unmatched degree number. In this example, the array 𝑤 has a length of 10. And the

sum of all unmatched degree values 𝑆 = 10.

First, we create two variables. The first variable is an array w with length 2𝐿, which
is the degree sum of all nodes. The elements inside the array are node labels 𝑖 re-
peated 𝑑𝑖 times, where 𝑑𝑖 is the degree of node 𝑖. The second one is a variable 𝑆 that
indicates the number of unmatched node degrees, the initial value of 𝑆 equals the
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length of the array w. An example is given in Fig. 2.2. The resulting networks have
degree distributions very close to the original ones. Specifically, in some instances,
only a few nodes are left with degree value less than the original ones.

Algorithm 2: Degree-preserving network reconstruction
Data: a list of links
Result: a reconstructed network
𝐸 ← an empty list storing links;
𝑤 ← an array of node labels (weighted by node degrees, see Fig. 2.2);
𝑆 ← 2𝐿;
while 𝑆 ≠ 0 do

𝑎 and 𝑏 ← randomely pick 2 nodes from 𝑤;
if 𝑎 = 𝑏 then

continue
else

if link (𝑎, 𝑏) ∈ 𝐸 then
continue

else
𝐸 ← add link (𝑎, 𝑏) to the list 𝐸;
𝑤 ← remove the chosen node labels 𝑎 and 𝑏 from 𝑤;
𝑆 ← 𝑆 − 2

end
end

end

2.4. Related Work
With the prior knowledge of complex networks, we now review some important work
that has been carried out concerning the structure of semantic networks. Due to the
vast interest in semantic networks, the related studies were carried out in different
fields for diverse purposes. Based on our scope, we concentrate on two main aspects:
(1) Topological properties that were analyzed in the literature, including the dataset
used. (2) Common or different patterns in different languages which were found and
discussed.

The majority of semantic networks literature targeted at three link types:

• Co-occurrence
In a co-occurrence network, a pair of words that co-occur in a sentence or text
form a link. This is commonly used in text analysis.

• Association
A word can be associated with multiple other words. In cognitive-linguistic ex-
periments, participants are given a word and asked to give the first word that
they think of. There are several Free Association data sets, one example is the
University of South Florida Free Association Norms [45].
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• Semantic relation
Semantic relations are defined by professionals like lexicographers. Typical se-
mantic relations are synonym, antonym, hypernym and homonymy. In networks
constructed from dictionary or thesaurus, semantic relations are the links that
connect one word to another.

In 2001, Ferrer-i-Cancho and Sole [46] studied undirected co-occurrence graphs
constructed from the British National Corpus dataset [47]. Theymeasured the average
distance between two words and observed the small-world property, which was found
in many natural networks [38]. Motter et al. [48] analyzed an undirected conceptual
network constructed from an English Thesaurus dictionary [49]. They focused on three
properties: sparsity (small average degree), average shortest path length and cluster-
ing. That same year, Sigman and Cecchi [50] studied undirected lexical networks
extracted from WordNet [51, 52], where nodes are various noun meanings. They
grouped networks by three semantic relations: antonymy, hypernymy and meronymy.
A detailed analysis of characteristic length (the median minimal distance between
pairs of nodes), degree distributions and clustering of these networks were provided.
Both [48] and [50] highlighted that semantic networks possess small-world structure
with sparse connectivity, short average path lengths, and strong local clustering.

Later, Steyvers and Tenenbaum [53] performed statistical analysis of 3 kinds of
semantic networks: word associations [45], WordNet and Roget’s Thesaurus [54].
Apart from the above mentioned network properties, they also considered network
connectedness and diameter. They pointed out that the small-world feature may origin
from the scale-free organization of the network, which exists in a variety of real-world
systems [35, 55].

As for patterns in different languages, Ferrer-i-Cancho et al. [56] built syntactic
dependency networks from corpora (collections of sentences) for three European lan-
guages: Czech, German, and Romanian. They showed that networks in different lan-
guages have many non-trivial topological properties in common, such as small world
structure, power-law degree distribution and disassortative mixing.

Existing studies have obtained general network structures such as small-world
structure and power-law degree distribution. However, the text sources used for build-
ing these semantic networks are heterogeneous. Some used associative networks
generated from experiments, and some chose a thesaurus manually created by peo-
ple. Plus, most of the research performed coarse-grained statistical analyses. Specif-
ically, various semantic relations were treated equally and nodes were only words
(some only certain type of words, like nouns). Further, there are only very few studies
on semantic networks of languages other than English.

Therefore, our analyses focus on semantic networks with distinct semantic rela-
tions (link types). We look at undirected and unweighted networks with specific link
types, and compare the structural properties among networks with different link types.
In addition, we apply similar analyses to such defined networks across different lan-
guages. Furthermore, we investigate how similarity and complementarity play roles
in the connection principles of semantic networks.



3
General Topological Properties of

Semantic Networks

To understand the structure of semantic networks, we start with their general topolog-
ical properties. In this Chapter, we first introduce the dataset that we use throughout
the thesis. Based on the primary objectives of the study, we provide the reasoning for
our choice over other available datasets. Next, we define a number of semantic rela-
tions that are adopted to construct our networks. Later, we explain the procedure for
building our semantic networks from the dataset, including the data cleaning process.
At the moment, we center on the English semantic networks. Then, we compute var-
ious topological properties of these networks related to the connectedness, degree,
assortativity and clustering. We characterize the structure of semantic networks with
the obtained quantitative results. Finally, we give a summary of the overall network
statistics.

3.1. Selection of the Dataset
There are a variety of datasets that can be used for semantic network analysis. Be-
cause this thesis focuses on semantic networks with different relations and languages,
we draw our attention to the large datasets (i.e., the total number of words is at least
larger than 5k). Three frequently mentioned datasets in the network literature are
listed as follow:

• WordNet [51] is a lexical database that was collected manually by lexicogra-
phers. It resembles a thesaurus, where nodes that have similar meanings are
grouped together [57]. WordNet stores data in ASCII format across several files.
The number of words ranges from 5k to 100k. It contains three types of relations:
hyperonym, meronym and antonym. However, this dataset is only available in
English.

• DBPedia [58] is an open knowledge graph that stores structured information
extracted from Wikipedia. It was created by crowdsource groups from various
projects. This large multilingual database consists of links connecting website
pages. There are around 14million links in DBPedia, but the link types (semantic
relations) are limited.

13
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• ConceptNet [59] is a multilingual database in the form of a semantic network
where nodes are words and phrases from natural language. Links indicate in to-
tal 34 semantic relations. The knowledge is collected from a variety of resources,
including crowdsourced resources, expert-created resources, and games with
a purpose [59]. Most languages have more than 200k different nodes.

Based on the difficulty of network extraction, the number of specified semantic re-
lations and the size of the dataset, we decided to use ConceptNet. The structure of
ConceptNet is in the form of assertions, which are units of knowledge in ConceptNet.
An assertion contains multiple entries, such as Uniform Resource Identifier (URI), lan-
guage, relation, sources and weight. A URI specifies the relation between two natural-
language concepts and what languages they are in. This is convenient for the network
extraction. Besides, there are 34 defined relations that connect the nodes of Concept-
Net [60]. ConceptNet covers hundreds of languages, among which 78 of them have
at least 10k concepts (words or phrases). Moreover, ConceptNet includes parts of
WordNet and DBPedia.
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3.2. Semantic Relations
We consider in total 7 link types (relations), and 6 of them are selected from Concept-
Net. They are ‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’, ‘Antonym’ and ‘Synonym’. These
are most meaningful and important relations with sufficiently large data. In addition,
we define an additional link type ‘Union’, which is the integration of four networks, ‘Has-
A’, ‘Part-Of’, ‘Is-A’ and ‘Related-To’. The purpose of adding this link type is to treat all
four relations equally and to see how the structure of the whole network is different
from the individual ones. Table 3.1 shows the definition of selected six relations and
related examples from ConceptNet.

Relation Description Directed Examples Creation
Method

Has-A B belongs to A, either as an inher-
ent part or due to a social construct
of possession. Has-A is often the
reverse of Part-Of.

Yes bird → wing Manual +
Automatic

Part-Of A is a part of B. This is the part
meronym relation in WordNet.

Yes gearshift →
car

Manual +
Automatic

Is-A A is a subtype or a specific instance
of B; every A is a B. This can include
specific instances; the distinction
between subtypes and instances is
often blurry in language. This is the
hyponym relation in WordNet.

Yes car → vehicle Manual +
Automatic

Related-
To

The most general relation. There is
some positive relationship between
A and B, but ConceptNet can’t deter-
mine what that relationship is based
on the data.

No learn ↔ erudi-
tion

Manual +
Automatic

Antonym A and B are opposites in some rel-
evant way, such as being oppo-
site ends of a scale, or fundamen-
tally similar things with a key differ-
ence between them. Counterintu-
itively, two concepts must be quite
similar before people consider them
antonyms. This is the antonym rela-
tion in WordNet.

No black ↔ white Automatic

Synonym A and B have very similar meanings.
They may be translations of each
other in different languages. This is
the synonym relation in WordNet.

No sunlight ↔
sunshine

Automatic

Table 3.1: Definition of the six relations and related information from ConceptNet [60].

Though some networks are directed, i.e., ‘Has-A’, ‘Part-Of’ and ‘Is-A’, we treat all
networks as undirected. In most of the literature on network topologies, undirected net-
works were studied as key benchmarks mainly because the methods were developed
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for undirected networks only. To avoid sophisticated analysis of directed networks,
and to meet the requirements of future work, we focus on undirected networks.

3.3. Extraction of Semantic Networks
Processing the dataset and extracting the desired semantic networks is the prepara-
tion of our network analysis. We first explain the extraction process of English seman-
tic networks with different link types. In ConceptNet, a complete link information exists
in the Uniform Resource Identifier (URI) provided by an assertion. Due to the clear
structure, we are able to identify both the two natural-language concepts (nodes) and
the relation between them. Besides, the languages of two concepts are also indicated.
First, we extract the English subgraph with all link types from ConceptNet. Then, for
each relation (link type), we extract links from the obtained English subgraph and store
the networks in the edge list format. An edge list is a network representation in the
form of edges, where each edge contains a start node and an end node. Each link
is unweighted, undirected and connects two different nodes. For the convenience of
statistical analysis, we give numerical labels to the nodes in a network and save them
in an edge list. At the same time, we keep an index file for every semantic network,
which indicates the nodes (i.e., in words) and corresponding labels.

3.3.1. Multi-word Phrases
In our networks, a phrase is represented by multiple words that are connected by un-
derscores. During the extraction, we discover that some phrases contain many words.
To understand the composition of the networks better, we count the occurrences of
phrases with different numbers 𝑛 of words for each network. For example, the phrase
‘a_lot_of_places’ has 𝑛 = 4 words. Note that when 𝑛 = 1, the phrase is equivalent to
a word, such as ‘cat’, ‘plant’ and ‘people’.

Fig. 3.1 reveals the frequencies of phrases with 𝑛 = 1, 2, ..., 5 words in the seven
networks. In the upper right corner of the plots, we present the percentage of 𝑛-word
phrases in entire networks as well as the total percentages of phrases with 𝑛 ≤ 5. It
is clear that phrases with not more than 5 words make up almost the entire (>98%)
network. In addition, words (𝑛 = 1) are the major type of nodes most networks (ex-
cept for the ‘Has-A’ network). Fig. 3.1a shows that ‘Has-A’ network has more 2-word
phrases than words.

The maximum phrase length 𝑛𝑚𝑎𝑥 of each network is listed in Table 3.2. Most net-
works have phrases with the maximum phrase length 𝑛𝑚𝑎𝑥 less than 20. However, it
is surprising to see that in some networks, i.e., ‘Related-To’ and ‘Union’, the maximum
phrase length 𝑛𝑚𝑎𝑥 reaches 53 words. Such long phrases are usually not common
and lack practical meaning, and they are likely caused by automatic extraction part of
the dataset.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
𝑛𝑚𝑎𝑥 9 14 8 53 53 11 17

Table 3.2: The maximum number of words 𝑛𝑚𝑎𝑥 in a phrase of the seven networks.
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(c) Network ‘Part-Of’
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(d) Network ‘Related-To’
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(e) Network ‘Union’
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(f) Network ‘Antonym’
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(g) Network ‘Synonym’

Figure 3.1: Histogram of 𝑛-word phrases in the seven English semantic networks extracted from
ConceptNet. In the upper right corner of the plots, we present the percentage of 𝑛-word phrases in

entire networks as well as the total percentages of phrases with 𝑛 ≤ 5.
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After investigating the distributions of 𝑛-word phrases of all networks, we arrive at
a conclusion that the raw semantic networks need further processing. Specifically, fil-
tering longer phrases is necessary. Since the networks are almost entirely comprised
of phrases with less than 5 words, intuitively, we set the cut-off value 𝑛 equals 5 for
filtering all seven networks. The uniform cut-off value is for the consistency in nodes
among all networks.

3.4. Overview of Semantic Networks
We calculate the overall descriptive statistics of the seven semantic networks, they
are the number of nodes 𝑁, the number of links 𝐿, the maximal degree 𝑑𝑚𝑎𝑥 and the
average degree 𝐸[𝐷]. Table 3.3 summarizes the results.

Based on the number of nodes, network ‘Has-A’ is the smallest and ‘Union’ is the
largest. Given the network sizes, all of them have a very small average degree. For
instance, in network ‘Part-Of’, on average a node only has connections to 2 (0.02%) of
the 11,839 total number of nodes. In other words, the number of links are of the same
order as the number of nodes, which indicates that semantic networks are sparse.
With this in mind, we continue to study other topological properties in the following
sections.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

𝑁 7,503 152,538 11,839 592,816 677,426 16,867 166,922
𝐿 5,421 220,589 12,003 1,610,452 1,819,646 14,371 155,048
𝑑𝑚𝑎𝑥 372 2913 116 4025 5263 38 103
𝐸[𝐷] 1.45 2.89 2.03 5.43 5.37 1.70 1.86

Table 3.3: Basic statistics of the seven English semantic networks extracted from ConceptNet.

3.5. Connectedness
We first investigate the connectedness of the semantic networks. We measure the
connectedness of a network by the size of the largest connected component and the
size distribution of all connected components. Table 3.4 lists the sizes of the largest
connected components and the percentage of nodes in corresponding networks. The
same statistics are computed for the rewired semantic networks for comparison. Judg-
ing from the percentages of nodes in the largest connected component, all seven
semantic networks are not fully connected. Networks ‘Is-A’, ‘Related-To’ and ‘Union’
are almost connected, since their largest connected components contain over 90% of
nodes. As for the other networks, (i.e., ‘Has-A’, ‘Part-Of’, ‘Antonym’ and ‘Synonym’),
they are widely disconnected.

Most rewired networks show more connectedness than corresponding real net-
works, especially for ‘Antonym’ and ‘Synonym’. In other words, the majority of seman-
tic networks are less connected than expected by chance. As for network ‘Related-To’
and ‘Union’, the percentage of the largest connected component remains almost un-
changed. However, the ‘Is-A’ network is more connected than expected by chance.
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Network Size of full network Size of LCC Percentage

Has-A 7,503 1,664 22.18%
Has-A (rewired) 2,416 ± 35 (32.20 ± 0.47)%
Is-A 152,538 140,024 91.80%
Is-A (rewired) 127,258 ± 73 (83.43 ± 0.05)%
Part-Of 11,839 7,562 63.87%
Part-Of (rewired) 7,993 ± 53 (67.51 ± 0.45)%
Related-To 592,816 571,079 96.33%
Related-To (rewired) 570,012 ± 116 (96.15 ± 0.02)%
Union 677,426 650,079 95.96%
Union (rewired) 650,474 ± 182 (95.77 ± 0.03)%
Antonym 16,867 5,912 35.05%
Antonym (rewired) 8,845 ± 59 (52.44 ± 0.35)%
Synonym 166,922 53,279 31.92%
Synonym (rewired) 103,466 ± 142 (61.98 ± 0.09)%

Table 3.4: Size of Largest Connected Component (LCC) of the seven networks compare to their full
and rewired networks. The size of LCC of each rewired network is the average of results obtained

from 10 times rewiring with standard deviation.
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(d) Network ‘Related-To’

Figure 3.2: Size distributions of connected components of the seven English semantic networks. The
dashed lines indicate the percentage of nodes in connected components.



20 3. General Topological Properties of Semantic Networks

0.00% 0.00% 0.00% 0.01% 0.15% 1.48% 14.76% 95.96%
Percentage of nodes in the network

100 101 102 103 104 105 106

Size of the connected componnets

100

101

102

103

104

Nu
m

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s

(e) Network ‘Union’

0.00% 0.01% 0.06% 0.59% 35.05%
Percentage of nodes in the network

100 101 102 103

Size of the connected componnets

100

101

102

103

Nu
m

be
r o

f c
on

ne
ct

ed
 c

om
po

ne
nt

s

(f) Network ‘Antonym’
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(g) Network ‘Synonym’

Figure 3.2: Size distributions of connected components of the seven English semantic networks. The
dashed lines indicate the percentage of nodes in connected components (cont.)

Apart from the largest connected component, we are also interested in the size dis-
tribution of connected components in our semantic networks. Thus, we compute all
connected components for each network and count the occurrence of different sizes of
connected components. The results are presented in Fig. 3.2. Overall, almost every
network has a large connected component that is several orders of magnitude larger
than the rest of the connected components, except for network ‘Has-A’, which has mul-
tiple larger connected components. Network ‘Has-A’ is more fragmented. It has three
relatively larger connected components, where the node with the largest degree is not
in the largest connected component but in the second largest one. We checked these
three connected components and discovered that their nodes have distinct themes.
The component with the largest degree node contains all kinds of disease names.
We believe that the fragmentation is caused by the manual and automatic creation of
the dataset.

From now on, we restrict all further semantic network analyses to the largest
connected components of all networks, unless otherwise mentioned.

3.6. Degree Distributions
The degree distribution captures the structure of a network. A common way to vi-
sualize the degree distribution is through a histogram. After obtaining the degree of
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all nodes of a network, we plot the probability Pr[𝐷 = 𝑘] against discrete degree 𝑘
in a histogram using a bin width of 1. As shown in the log-log plots in the first col-
umn of Fig. 3.3, for seven networks, the probability Pr[𝐷 = 𝑘] decays in an almost
straight line for larger values of 𝑘, followed by a fat tail. The linear dependency be-
tween log(Pr[𝐷 = 𝑘]) and log(𝑘) in the tail confirms that all semantic networks have
power-law degree distributions, which can be characterized by

Pr[𝐷 = 𝑘] ∼ 𝑘−𝛾, (3.1)

where 𝛾 is the power-law exponent.
Next, we estimate the power-law exponent 𝛾 of each network. This step is done by

estimating the slope of a degree distribution using linear regression. To obtain better
estimation, we implement logarithmic binning (see Appendix A) to suppress the noise
at larger values of the degree 𝑘 (the fat tail). The second column of Fig. 3.3 depicts
the results of degree distributions using logarithmic binning and linear regression. The
estimated power-law exponents 𝛾 of the seven networks are listed in Table 3.5.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

𝛾 2.3 2.3 2.4 2.4 2.4 2.5 3.7

Table 3.5: The power-law exponents 𝛾 of the seven English semantic networks.

Discussion The power-law exponent 𝛾 of most semantic networks lies between 2
and 3, except for the ‘Synonym’ network (𝛾 = 3.7). Because of 2 < 𝛾 < 3, we expect
these networks to have a finite average degree but a very large variance, which can
be explained by the 𝑛th moment of the degree distribution [33, 34]

𝐸[𝐷𝑛] =
∞

∑
𝑘=1

𝑘𝑛 Pr[𝐷 = 𝑘]. (3.2)

The first moment (𝑛 = 1) is the average degree 𝐸[𝐷]. The second moment 𝐸[𝐷2] is
related to the variance 𝜎2 = 𝐸[𝐷2] − 𝐸[𝐷]2.

For a network that has a degree distribution with a power-law exponent 𝛾 ∈ (2, 3),
the first moment 𝐸[𝐷] is finite but the second moment 𝐸[𝐷2] is infinite. Networks
with this property are known as scale-free networks [35, 55]. The average degree of
these network is not representative, because the variance is very large. The name
‘scale-free’ indicates that there is no characteristic scale for networks with a power-
law degree distribution. In scale-free networks, nodes have widely different degrees,
there are many nodes with small degree and a few nodes with very large degree.

We find that most semantic networks are scale-free networks. This coincides with
the findings inmost literature. That is semantic networks are highly heterogeneous [53,
61]. There are many specific or unique words that can be paired with only a few
other words, but there are also some general words that can be matched with almost
anything. We relate the generality of a word with its degree, the more general a word
is, the larger its degree. Examples of general words are ‘plant’, ‘water’, ‘person’, ‘time’,



22 3. General Topological Properties of Semantic Networks

etc. Whereas, words like ‘neotectonic’, ‘ungraced’, ‘cofinance’ and ‘informatically’ are
much less general.

Nevertheless, we should not ignore that the power-law degree distribution has
been observed in an abundance of networks, ranging from social [62], biological [63]
to communication networks [64]. Our results show that semantic networks, like many
other types of networks, have power-law distributions in their degree.
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(b) Network ‘Has-A’ (logarithmically binned)
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(c) Network ‘Is-A’
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(d) Network ‘Is-A’ (logarithmically binned)
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(e) Network ‘Part-Of’
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(f) Network ‘Part-Of’ (logarithmically binned)

Figure 3.3: Degree distributions of seven English semantic networks and power-law exponent
estimation over logarithmically binned degree distribution. The regression fitting does not always start
from the first data point. Because we focus on the linear part at the larger values of the degree 𝑘, we

inspect the degree distribution of each network and exclude the non-linear part.
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(g) Network ‘Related-To’
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(h) Network ‘Related-To’ (logarithmically binned)
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(i) Network ‘Union’
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(j) Network ‘Union’ (logarithmically binned)
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(k) Network ‘Antonym’
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(l) Network ‘Antonym’ (logarithmically binned)
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(m) Network ‘Synonym’
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Figure 3.3: Degree distributions of seven English semantic networks and power-law exponent
estimation over logarithmically binned degree distribution. The regression fitting does not always start
from the first data point. Because we focus on the linear part at the larger values of the degree 𝑘, we

inspect the degree distribution of each network and exclude the non-linear part (cont.).
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3.7. Degree Assortativity
After inspecting the node connectivity, we would like to learn what are the mixing pat-
terns in these networks. Do nodes tend to connect to nodes with similar degree? Or
alternatively, do larger-degree nodes tend to connect with small-degree nodes? This
property of networks is known as degree assortativity. One can distinguish the latter
type of networks as disassortative, while the former type of networks are assortative.
There have been established a number of measures to quantify the degree assortativ-
ity. One of them is the degree correlation coefficient and another one is the Average
Nearest Neighbor Degree (ANND), both of which we defined in Section 2.2.2.

We plot the average nearest neighbor degree as a function of the degree 𝑘.
Fig. 3.4 depicts the function ANND(𝑘) together with the degree correlation coefficient
𝜌𝐷. Meanwhile, for every network, we calculate the ANND(𝑘) of its rewired network
for comparison. Randomized networks with preserved degree distribution have no
degree-degree correlation. As a result, the function ANND(𝑘) dose not vary with 𝑘.
Therefore, we use these randomized networks as a reference to see the ANND val-
ues we could expect when the links are distributed at random.

(a) Illustration of degree assortativity
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Figure 3.4: Degree assortativity of semantic networks. (a) Examples of disassortative and assortative
mixing; (b-h) Average nearest neighbor degree (ANND) as a function of degree 𝑘 and degree
correlation coefficient 𝜌𝐷 of seven English semantic networks. Data points in light blue are the

average ANND of nodes with degree 𝑘 in a network, red triangles represent the data after logarithmic
binning, and green squares are the average ANND of nodes with degree 𝑘 in the rewired network.

Note logarithmic binning is applied to reduce the noise and better visualize the data.
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Figure 3.4: Degree assortativity of semantic networks. (a) Examples of disassortative and assortative
mixing; (b-h) Average nearest neighbor degree (ANND) as a function of degree 𝑘 and degree
correlation coefficient 𝜌𝐷 of seven English semantic networks. Data points in light blue are the

average ANND of nodes with degree 𝑘 in a network, red triangles represent the data after logarithmic
binning, and green squares are the average ANND of nodes with degree 𝑘 in the rewired network.

Note logarithmic binning is applied to reduce the noise and better visualize the data (cont.).

Discussion Fig. 3.4 illustrates that most semantic networks are disassortative as
ANND(𝑘) is a decreasing function over degree 𝑘. These networks are ‘Has-A’, ‘Part-
Of’, ‘Is-A’, ‘Related-To’ and ‘Union’. The negative degree correlation coefficients also
validate the disassortativity. In disassortative networks, nodes with larger degree (gen-
eral words) tend to connect to nodes with smaller degree (less general words). This is
not surprising as when we use these relations, we often relate specific words to more
general words. For example, we say ‘horse racing is a sport’, in which ‘horse racing’
is a very specific phrase while ‘sport’ is more general.

On the other hand, network ‘Synonym’ is assortative as the function ANND(𝑘) in-
creases in the degree 𝑘. This indicates that large-degree nodes (general words) as-
sociate with nodes that have similar degree (words with the same generality). The
same applies for network ‘Antonym’, though the degree correlation is not very visible,
we still see a slight upward trend in the curve of ANND(𝑘). This is also reflected in the
small correlation coefficient 𝜌𝐷 = −0.005.

Note that the function ANND(𝑘) of a rewired network is not degree-dependent any-
more (see the green curves in Fig. 3.4). For example, the curve is almost flat for
‘Synonym’ and ‘Related-To’. At the larger degree 𝑘, the curve may drop slightly. This
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induced disassortativity is caused by large-degree nodes having not enough neigh-
bors to connect to.

3.8. Clustering Coefficient
In networks such as social networks, the neighbors of a node tend to be connected
as well. This tendency is known as clustering [65]. If a person has a group of friends,
there is a high chance that these friends also know each other. In such networks,
there are lots of triangular connections. What is the clustering in semantic networks?
In this section, we investigate this property by measuring the clustering coefficient 𝑐𝐺.
The clustering coefficient 𝑐𝐺 is a measure of how closely nodes in a network cluster
together.

We calculate the average local clustering coefficient 𝑐𝐺(𝑘) of nodes with degree
𝑘 for each network. Fig. 3.5 demonstrates the results. In addition, we calculate the
𝑐𝐺(𝑘) for rewired networks as a guideline for comparison with the semantic networks.
To compare the clustering of semantic networks and a completely random network, we
calculate the average clustering coefficient of an Erdős–Rényi (ER) random graph with
the same number of nodes 𝑁 and links 𝐿, indicated by the yellow line in Fig. 3.5. The
average clustering coefficient of an ER random graph 𝐺(𝑁, 𝐿) is simply 𝑝 = 𝐸[𝐷]/(𝑁−
1), the proof is given in [39].

Discussion Fig. 3.5 shows that all semantic networks have much larger average
clustering coefficients 𝑐𝐺 than the ER random graph, except for ‘Has-A’. Because in a
random network with a large number of nodes 𝑁 and relatively small number of links
𝐿 (sparse), the probability of three nodes forming a triangle is very small.

Moreover, there are some semantic networks that have substantially larger clus-
tering coefficients than their randomized versions (rewired), i.e., ‘Part-Of’, ‘Antonym’
and ‘Synonym’. There are more triangles in these networks than expected by chance.

On the other hand, network ‘Has-A’ has lower clustering coefficients 𝑐𝐺(𝑘) than
the randomized network. Our hypothesis is that the ‘Has-A’ network is organized
differently from the other networks, as there are fewer triangles.

As for ‘Is-A’, ‘Related-To’ and ‘Union’, the clustering coefficients 𝑐𝐺(𝑘) are similar
as their corresponding rewired networks.

We discover that networks with different link types show different degrees of clus-
tering. This encourages us to to further inspect the organizing principles of these
semantic networks, which we will discuss explicitly in Chapter 5.
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(a) Illustration of 𝑐𝐺 of a node
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(f) Network ‘Union’
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(g) Network ‘Antonym’

100 101 102

Degree k

10 5

10 4

10 3

10 2

10 1

100

c G
(k

)

Data
Log binned
Log binned (rewired)
ER random graph

(h) Network ‘Synonym’

Figure 3.5: Clustering coefficient of semantic networks. (a) Toy examples of clustering coefficient of a
node 𝑣; (b-h) The average local clustering coefficient 𝑐𝐺(𝑘) of nodes with degree 𝑘 of seven English
semantic networks (in light blue data points). Red triangles represent data after logarithmic binning,
and green squares are the average clustering coefficient of nodes with degree 𝑘 (logarithmically

binned) in the rewired networks. The yellow horizontal line indicates the implied 𝑐𝐺 of an Erdős–Rényi
(ER) random graph with the same number of nodes and links.
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3.9. Statistics of Semantic Networks
We calculated the overall descriptive statistics of semantic networks, the number of
nodes 𝑁, number of links 𝐿, the maximal degree 𝑑𝑚𝑎𝑥, the average degree 𝐸[𝐷],
average nearest neighbor degree (ANND), the average clustering coefficient 𝑐𝐺 and
the graph transitivity �̌�𝐺. Besides, we rewire and reconstruct all semantic networks
using the methods described in Section 2.3. The same statistics are calculated for
the rewired and reconstructed networks. Additionally, we also include the power-law
exponents. The results are summarized in Table 3.6.

For networks obtained by degree-preserving rewiring and reconstruction, only the
ANND, the average clustering coefficient 𝑐𝐺 and graph transitivity �̌�𝐺 change. The
statistics of both random networks, rewired and reconstructed, are quite similar. The
average nearest neighbor degree ANNDbecomes smaller for all randomized semantic
networks except for ‘Synonym’.

As for the average clustering coefficient, all networks except ‘Has-A’ have remark-
ably larger 𝑐𝐺 (at least by an order of magnitude) than the randomized networks. Be-
cause in random networks links are randomly distributed, there are fewer triangles.
On the contrary, randomized networks of ‘Has-A’ exhibit more than seven times larger
clustering coefficients than its original network.

The graph transitivity provides the ratio of the number of closed triangles in a net-
work relative to the total possible triples. We see that the graph transitivity and the av-
erage clustering coefficient are different for every network. All networks have smaller
graph transitivity �̌�𝐺 than the average clustering coefficient 𝑐𝐺, except for ‘Antonym’.
And the 𝑐𝐺 and �̌�𝐺 show big discrepancy in ‘Related-To’ and ‘Union’. This discrep-
ancy may be related to certain motifs in a network as Estrada [66] pointed out. Due
to limited time, we leave the investigation of the discrepancy in graph transitivity and
average clustering coefficient for future work.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

𝑁 1,664 140,024 7,562 571,079 650,079 5,912 53,279
𝐿 1,842 213,319 9,212 1,598,548 1,804,666 7,986 80,668
𝑑𝑚𝑎𝑥 198 2913 116 4025 5263 38 103
𝐸[𝐷] 2.21 3.05 2.44 5.6 5.55 2.7 3.03
ANND 33.6 242 14.1 170 219 6.77 7.13
ANND rewired 23.3 142 10.8 145 173 6.25 7.51
ANND reconstructed 22.8 137 10.6 144 171 6.26 7.54
𝑐𝐺 2.17 × 10−3 5.66 × 10−2 4.61 × 10−2 1.02 × 10−1 1.04 × 10−1 1.50 × 10−2 1.13 × 10−1
𝑐𝐺 rewired 1.83 × 10−2 6.26 × 10−3 1.95 × 10−3 3.26 × 10−3 3.68 × 10−3 7.26 × 10−4 1.48 × 10−4
𝑐𝐺 reconstructed 1.56 × 10−2 7.11 × 10−3 1.29 × 10−3 3.33 × 10−3 3.86 × 10−3 7.42 × 10−4 9.68 × 10−5
̌𝑐𝐺 1.16 × 10−3 2.20 × 10−3 1.79 × 10−2 8.01 × 10−3 7.22 × 10−3 2.18 × 10−2 9.07 × 10−2
̌𝑐𝐺 rewired 1.28 × 10−2 3.80 × 10−3 3.53 × 10−3 4.09 × 10−3 4.35 × 10−3 1.56 × 10−3 3.14 × 10−4
̌𝑐𝐺 reconstructed 1.34 × 10−2 5.30 × 10−3 3.98 × 10−3 4.61 × 10−3 5.13 × 10−3 1.98 × 10−3 2.45 × 10−4
𝛾 2.3 2.3 2.4 2.4 2.4 2.5 3.7

Table 3.6: Statistics of largest connected component of seven English semantic networks extracted
from ConceptNet.

In summary, we find universalities of semantic networks across degree distribution,
degree assortativity, clustering, sparsity and connectedness.

• All semantic networks have power-law degree distribution and most of them are
scale-free networks.
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• There are two types of degree mixing patterns in semantic networks, assortative
and disassortative.

• Most networks have higher average clustering coefficients than expected by
chance, except for one network, ‘Has-A’, which shows lower clustering.

• All semantic networks have high sparsity.

• Most networks have a single connected component with the majority of nodes,
except for network ‘Has-A’, which is more fragmented.





4
Semantic Networks in Different

Languages

We have investigated the general topology and found universal characteristics of
seven English semantic networks. Nevertheless, there are thousands of other lan-
guages in the world. Do semantic networks in other languages possess the same
topological properties as in English? In this Chapter, we zoom out from the English
semantic networks and consider many other languages in ConceptNet. Based on the
vocabulary size and sources of knowledge, we chose 10 languages besides English.
They are French, Italian, German, Spanish, Russian, Portuguese, Dutch, Japanese,
Finnish and Chinese. We extract these semantic networks using the same procedure
explained in Section 3.3.

Foremost, we classify the 11 languages into several language families. Then we
calculate the basic statistics for seven semantic networks (seven link types) for eleven
languages. To explore whether there exist special patterns in semantic networks in
different languages, we compare several topological properties based on language
families. At last, we present an interesting phenomenon, language inflection, that we
observe in the degree distribution of the ‘Related-To’ networks.

4.1. Language Families
In linguistics, languages are grouped into multiple categories according to different
rules. There are two kinds of language classifications: genetic and typological.

Genetic classification, also known as genealogical classification, assorts lan-
guages according to their level of diachronic relatedness [67]. In other words, lan-
guages are categorized into the same family if they evolved from the same root lan-
guage. Take one of the world’s primary language families, Indo-European, for exam-
ple. This family has several branches such as Germanic, Balto-Slavic and Italic [68].
Moreover, Germanic languages include English, German, Danish, etc.

Typological classification classifies languages based on their structural features.
One popular typological classification distinguishes isolating, agglutinating and inflect-
ing languages. It groups languages in accordance with the morphological formation
of words. A morph (or morpheme) is the basic unit of a word [69] such as stems and
affixes. For instance, the word ‘undoubtedly’ consists of three morphs: ‘un-’, ‘doubted’

31
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and ‘-ly’. In an isolating language, each word contains only a single morph [67]. One
particular example of a highly isolating language is Chinese. On the contrary, words
in an agglutinating language can be divided into morphs with distinctive grammatical
categories such as tense, person and gender. But in an inflecting language, there is
no exact match between morphs and grammatical categories [67]. A word changes
its form depending on different grammars. Most Indo-European languages belong to
this inflecting family.

Based on these two classifications, we divide the 11 selected languages (including
English) into several language families. Table 4.1 specifies the sub-families of typo-
logical and genetic classifications respectively. Typologically, most of the languages
that we study (8 out of 11) belong to the inflecting family. This classification is more
general since it only has three categories. While genetic classification identifies more
sub-families and distributes the eleven languages more evenly. Therefore, we adopt
six genetically classified language families in our semantic network analyses. Never-
theless, we will make use of the typological classification as a reference.

Genetic
Typological Inflecting Isolating Agglutinating

Italic French, Italian
Spanish, Portuguese

Germanic English, Dutch
German

Balto-Slavic Russian
Transeurasian Japanese
Sino-Tibetan Chinese
Uralic Finnish

Table 4.1: Sub-families of typological and genetic classifications of eleven languages chosen from
ConceptNet.

4.2. Overview of Semantic Networks in Eleven Lan-
guages

For every language, we construct seven undirected semantic networks with separated
link types: ‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’, ‘Union’, ‘Antonym’ and ‘Synonym’.
Due to a data availability limitation, only three languages have the ‘Has-A’ relation.
For languages without the ‘Has-A’ relation, the ‘Union’ network is just the union of
three link types: ‘Part-Of’, ‘Is-A’ and ‘Related-To’. In this section, we give an overview
of the size and average degree of the semantic networks. Again, we restrict our study
to the largest connected component of these networks.

Table 4.2 shows the number of nodes of each semantic network in eleven lan-
guages. A blank element in the table indicates that the network does not exist, i.e.,
a relation is unavailable in a language. Regarding the number of nodes in these net-
works, ‘Related-To’ and ‘Union’ are generally the largest networks, in which the French
‘Union’ network is the largest. At the same time, there are many small networks with
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size 𝑁 < 100, particularly in ‘Part-Of’ and ‘Synonym’ networks. In the following sec-
tions, we will focus on the larger networks.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

English 1,664 140,024 7,562 571,079 650,079 5,912 53,279
French 17,519 2,832 1,289,083 1,296,622 1,361 20,144
Italian 2,663 9 36,295 46,468 13 1,580
German 113,301 5 100,737 172,147 187 43,072
Spanish 255 11 12,094 22,861 15 3,491
Russian 557 3 20,268 25,887 12 1,148
Portuguese 3,341 15 5,929 11,426 17 6,421
Dutch 191 53 303 1,418 111 11,964
Japanese 38 40,256 7,230 7,200 43,286 20 230
Finnish 76 12 4,483 6,958 24 1,569
Chinese 6,355 10,073 3,417 3,163 17,128 4 17

Table 4.2: Number of nodes 𝑁 of semantic networks in the eleven languages extracted from
ConceptNet. A blank element indicates the corresponding network is unavailable. The ‘Union’

network is the union of four networks (‘Has-A’, ‘Is-A’, ‘Part-Of’ and ‘Related-To’). Because we display
largest connected component sizes, for some ‘Union’ networks, the number of nodes exceeds the

sum of the sizes of its four constituent networks.

Similar to English semantic networks, we observe that most networks (with more
than 100 nodes) in other languages are sparse. Table 4.3 lists the average degree
𝐸[𝐷] of all semantic networks. We can see that all networks have an average degree
between 1 and 6. Consider the Dutch ‘Is-A’ network for example, a node has about 5
connections on average, which is only 2.45% of 191 nodes in the whole network.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

English 2.21 3.05 2.44 5.6 5.55 2.7 3.03
French 2.64 2.51 3.44 3.46 2.45 2.81
Italian 2.86 2.89 2.2 2.27 1.85 2.54
German 2.75 1.6 4.77 4.53 2.16 3.57
Spanish 2.45 2.73 2.13 2.13 1.87 2.57
Russian 2.23 1.33 4.14 3.88 1.83 2.26
Portuguese 2.24 2.67 2.49 2.65 2 2.84
Dutch 4.68 4.98 2.3 2.69 2.11 3.53
Japanese 2.89 4.42 4.11 4.34 4.79 2 2.73
Finnish 1.97 1.83 2.3 2.26 1.92 2.24
Chinese 3.58 3.02 3.36 4.06 3.78 1.5 2.24

Table 4.3: Average degree 𝐸[𝐷] of semantic networks in the eleven languages extracted from
ConceptNet. A blank element indicates the corresponding network is unavailable.

In the subsequent sections, we compare three principal topological properties of
semantic networks in eleven languages in general. Specifically, degree distribution,
degree correlation coefficient and clustering. Complete statistics of topological prop-
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erties of the full networks and corresponding largest connected components in every
language can be found in Appendix B.

4.3. Degree Distribution
First, we look at the degree distribution of each of the semantic networks. We estimate
the power-law exponents for networks with size 𝑁 > 1000. The reason we leave out
networks with fewer than 1000 nodes is that we need sufficient data to estimate the
power-law exponent 𝛾. Appendix D includes the plots of the degree distributions of all
semantic networks (and the logarithmically binned version if there is a power-law).

Table 4.4 lists the estimated power-law exponent 𝛾 for each semantic network
in the eleven languages. We consider a network to not have a power-law degree
distribution if the distribution (log-log scale) clearly deviates from a straight line at
larger values of degree 𝑘.

Additionally, we are interested in the power-law degree distribution with 2 < 𝛾 < 3.
Thus, we plot the estimated power-law exponent 𝛾 of semantic networks for better
comparison (Fig. 4.1).

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym

English 2.3 2.3 2.4 2.4 2.4 2.7 3.7
French 2.4 2.3 X X 2.7 3.1
Italian 2.3 None 2.6 2.6 None 3.7
German 2.5 None 2.6 2.5 None 3.1
Spanish None None X X None 3.0
Russian None None 3.6 3.5 None 3.0
Portuguese 2.6 None 2.4 2.5 None 4.4
Dutch None None None 2.2 None 4.8
Japanese None 2.4 2.3 2.2 2.3 None None
Finnish None None X X None 4.2
Chinese 2.5 2.3 2.7 1.9 2.3 None None

Table 4.4: Power-law exponent 𝛾 of semantic networks in different languages. The 𝛾 is shown as
‘None’ for networks with size 𝑁 < 1000. A cross (X) represents that the degree distribution of that

network is not a power-law.

Discussion Fig. 4.1 tells us thatmost networks are scale-free, with a few exceptions.
Specifically, Chinese ‘Related-To’ has a 𝛾 < 2, Russian ‘Related-To’ and ‘Union’ both
have power-law exponents larger than 3.

From Table 4.4, we notice that all ‘Synonym’ networks have a 𝛾 ≥ 3. The reason
for ‘Synonym’ networks to have such high power-law exponents is that their nodes
have smaller degree compared to other networks. As a result, the slope of the de-
gree distribution is steeper. This is not strange, since most words only have a certain
amount of words that have similar meanings as them. It is quite difficult to find a word
that has many synonyms.

Another interesting phenomenon is that the degree distributions of several
‘Related-To’ and ‘Union’ networks are not perfect power-laws, i.e., networks for French,
Spanish and Finnish. We discuss this phenomenon explicitly in Section 4.4.
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Figure 4.1: Power-law exponent 𝛾 of semantic networks in different languages. The range where
2 < 𝛾 < 3 is shaded in grey.

4.4. Language Inflection
During the investigation of the degree distribution of networks ‘Related-To’ and ‘Union’,
we notice some peculiar features. That is, for some languages, their degree distribu-
tions are not a perfect power-law. Instead, there are peaks in the distributions that
lead to a deviation from a power-law. An example is the Spanish ‘Related-To’ network
(see Fig. 4.2). We observe a peak in the tail of the distribution. Why do these nodes
have such a high degree? This phenomenon encourages us to find its origin.
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Figure 4.2: Degree distribution of the Spanish ‘Related-To’ network.
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To really understand the phenomenon in the degree distribution, we look into the
words in the peak and their neighboring words in the Spanish ‘Related-To’ network.
Table 4.5 provides some examples of these peak words.

We find that most of the peak words are not only verbs, but also similar in the
written forms. Hence, we suspect that these are grammatical inflections of different
words. Our hypothesis is inspired by the knowledge that Spanish is a highly inflected
language. Furthermore, we observe a similar anomaly in the degree distributions of
French, Portuguese and Finnish ‘Related-To’ and ‘Union’ networks.

Peak word English Neighborsmeaning

cenar dine cená, cenábamos, cenáculo, cenáis, cenáramos, cenáremos, ...
viajar travel viaja, viajaba, viajabais, viajaban, viajabas, viajad, viajado, ...
pasear walk pasea, paseaba, paseabais, paseaban, paseabas, pasead, ...
reparar repair repararais, repararan, repararas, reparareis, repararemos, ...
comparar compare comprar, comparaba, comparabais, comparaban, comparabas, ...

Table 4.5: Examples of words in the peak and their neighoring words in the Spanish ‘Related-To’
network.

Therefore, we decide to investigate whether this anomaly is caused by language in-
flection. From Table 4.2 we learn that network ‘Union’ is mostly composed of ‘Related-
To’ in these four languages, thus, we restrict the analyses to the ‘Related-To’ networks.

4.4.1. Percentage of Word Types
In the previous section, we discover that words in the peak are mostly verbs for the
Spanish ‘Related-To’ network. And similar anomaly in the degree distributions is ob-
served in French, Portuguese and Finnish networks. To be concise, we refer to these
words as peak words from now on. In this section, we want to know the significance
of verbs in the peak words. To know the composition of these words better, we first
compute the percentage of different word types in the peak words.

In ConceptNet, the word type of a node is provided in assertions. There are four
types of words: verb, noun, adjective and adverb. However, the word type is not
available for all nodes. Therefore, we only count the percentage based on nodes
with known word types. We also calculate the percentage of four word types for the
whole network (the largest connected component) for comparison. The percentages
of verbs, nouns, adjectives and adverbs in both peak words and the whole ‘Related-
To’ network are shown in Table 4.6. We can see that for all four languages, nouns and
verbs are the major word types both in the LCCs and among the peak words.

In French, Spanish and Portuguese the major words are verbs. Furthermore, the
percentage of verbs in the peak is larger than in the LCC. For example, 100% of
Portuguese peak words are verbs.

However, for Finnish, the majority of peak words are nouns. Moreover, the per-
centage of nouns in the peak is larger than in the LCC.
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Percentage (%) French Spanish Portuguese Finnish

LCC Peak LCC Peak LCC Peak LCC Peak

Words with types 98.71 98.66 92.72 77.84 67.60 60.00 81.37 64.13

Verb 68.90 89.97 87.62 98.44 32.56 100.00 11.40 11.36
Noun 19.21 7.14 9.20 1.56 51.96 0 77.96 84.09
Adjective 11.53 2.75 2.89 0 14.60 0 7.17 4.55
Adverb 0.36 0.15 0.29 0 0.88 0 3.47 0

Table 4.6: Percentages of four word types among peak words and in the Largest Connected
Component (LCC) of network ‘Related-To’ in four inflecting languages.

The high percentage in one type of words in peak words make us wonder if there is
indeed special grammatical structure involved. So we are curious about the neighbors
of each peak word, i.e. the type of words of these neighbors. Since verbs and nouns
are the major types, we focus on these two types in the following analyses.

To obtain the percentage of verbs and nouns of all neighbors of peak words, we
first compute the percentage in the neighbors of each peak word. Then we take the
mean of all percentages. The mean percentage and standard deviation are presented
in Table 4.7.

It turns out that most neighbors of French, Spanish and Portuguese peak words
are verbs. Particularly, more than 97% of neighbors of Spanish and Portuguese peak
words are verbs. However, for Finnish, almost 90% of neighbors of peak words are
nouns.

Percentage (%) French Spanish Portuguese Finnish

Mean SD Mean SD Mean SD Mean SD

Words with types 97.39 0.88 96.96 1.73 97.74 0.75 93.72 4.45

Verb 87.26 25.85 97.24 2.59 99.23 0.94 3.86 14.64
Noun 9.34 20.08 2.07 2.15 0.77 0.94 89.67 26.50

Table 4.7: The mean and Standard Deviation (SD) percentage of verbs and nouns in the neighbors of
peak words of network ‘Related-To’ in four inflecting languages.

This strengthens our belief that there may be a connection between the abnor-
mal number of nodes with certain degree 𝑘 and grammatical structures in these four
languages. As we mentioned in Section 4.1, French, Spanish and Portuguese are
classified as inflecting languages based on typological classification, here we explain
two typical classes of inflection.

• Conjugation: inflection of verbs.
Depending on the grammatical categories, the form of a verb changes. For
example, ‘slept’ is an inflection of ‘sleep’. Many italic languages, for example,
Spanish, French and Portuguese, are rich in conjugations.

• Declension: inflection of nouns.
In English, the declension is very simple, e.g., the plural form ‘men’ is a declen-
sion of the singular form ‘man’. In some other languages, declensions are more
common and more diverse.
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We suspect that high degrees of the peak words are related to the inflection in
French, Spanish, Portuguese and Finnish. To validate our hypothesis, we make use
of a new relation in ConceptNet: ‘Form-Of’. The method and results are shown in the
next section.

4.4.2. Merging of Inflected Words
To validate our hypothesis that the peaks in the degree distributions of these language
networks are related to inflection, we inspect another relation in the dataset, ‘Form-Of’.
In ConceptNet, the relation ‘Form-Of’ connects two words A and B if A is an inflected
form of B, or B is the root word of A [60].

Our idea is to merge every root word and its inflection (neighbors) in the ‘Form-
Of’ network, and apply the merged words to the ‘Related-To’ network (see Fig. 4.3).
Then we evaluate the effect of language inflection on the degree distribution. If the
peak in the degree distribution disappears, it proves that the peak words are related
to language inflection.

Figure 4.3: Illustration of words merging in the ‘Related-To’ network. After merging a root word and its
neighbors, all words in a circle are seen as one single word.

First, we extract the network ‘Form-Of’ in the same way as for all other networks.
Then we treat the merged group of words as a single word in the ‘Related-To’ network
in the same language. Next we calculate the number of nodes with degree 𝑘 in the
new ‘Related-To’ network. Finally, we plot the degree distribution of French, Spanish,
Portuguese and Finnish networks.

Fig. 4.4 illustrates the degree distribution of the original ‘Related-To’ network and
after node merging. We highlight the anomalous peak in the degree distribution in
yellow. These peaks indicate that there are more number of nodes with certain degree
𝑘 than expected based on the power-law.

As shown in Fig. 4.4b, the peak completely disappears in Spanish ’Related-To’.
This tells us that after merging the inflected words, there are no more number of nodes
with degree 𝑘 than expected. This validates our hypothesis that peak words and cor-
responding neighboring words are inflected forms, i.e., conjugations.
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We also observe the peak reduction in the degree distribution of Portuguese and
Finnish ‘Related-To’. It seems that only some of the inflections are merged but not all.
However, there seems no big change in the degree distribution of French ‘Related-To’.
We believe this minor reduction of the peak is caused by the partial coverage in the
‘Form-Of’ network. That is the ‘Form-Of’ network does not contain all peak words and
their inflected forms.
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Figure 4.4: Degree distributions of the original networka ‘Related-To’ and after node merging in
French, Spanish, Portuguese and Finnish. The logarithmically binned degree distributions of

networks after node merging are shown in red. The peaks are highlighted in yellow. The vertical black
lines indicate the number of grammatical variations in different languages, which are derived from

corresponding grammatical rules (see Section 4.4.3).

To validate that network ‘Form-Of’ does not include all peak words and their in-
flected forms, we compute the number of peak words 𝑁𝑃 and the number of common
nodes 𝑁𝐶 in the ‘Form-Of’ network and the peak words. Dividing 𝑁𝑃 over 𝑁𝐶 gives us
the percentage of peak words covered by ‘Form-Of’. Similarly, we obtain the percent-
age of neighbors of peak words covered by ‘Form-Of’. The results are presented in
Table 4.8.

We find that more than 97% of peak words and their neighbors are covered by
‘Form-Of’ in Spanish. This explains the disappearing of the peak in degree distribution.
While there is only 17% of words matched by ‘Form-Of’ in the French ‘Related-To’
network. Hence, we see no big change in its degree distribution. As for Finnish and
Portuguese, the percentage of matched words is moderate, which is around 50%.
This is reflected in the minor reduction of the peak in the degree distribution.
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Percentage French Spanish Portuguese Finnish

Percentage of peak words cov-
ered by ‘Form-Of’

33.72% 100% 60.00% 91.30%

Percentage of neighbors of peak
words covered by ‘Form-Of’

17.38% 97.76% 55.47% 45.08%

Table 4.8: The percentage of matched words in peak words of network ‘Related-To’ in four languages.

4.4.3. Grammar
After investigating the percentages of verbs and nouns in the peak words, we are now
convinced that the anomaly in degree distribution of ‘Related-To’ is closely related to
language inflection. But does the location where the peaks occur correspond to the
number of grammatical variations? To answer this question, we refer to the grammat-
ical rules of these four languages and examine whether the degree range where the
peaks appear matches those rules. We focus on the basic grammar, any irregular
forms are not considered in this study.

To begin with, we introduce several important terms for better understanding of the
grammatical rules.

• In grammar, a pronoun is a word that can substitute a noun. For example, ‘you’,
‘she’ and ‘they’ are pronouns in English.

• A tense is a grammatical time reference [70]. Tenses typically appear in specific
forms of verbs (e.g., conjugations). In English, typical tenses are past, present
and future tense. A verb may change its form depending on the combination of
the pronoun and tense.

We first look at the grammar for verbs. In Spanish, there are 6 pronouns and
9 simple verb tenses [71, 72]. The simple verb tenses are in the single word form.
Each pronoun has its distinctive verb form (conjugation), and there are 54 (6 times 9)
combinations of pronouns and tenses. As a result, the standard number of inflections
of a Spanish verb is around 54. Table 4.9 provides an example of a Spanish verb in
these tenses and pronouns.

Similar to Spanish, Portuguese has 6 pronouns and 9 tenses [73]. This results
in 54 inflected forms of a Portuguese verb in general. As for French, there are 6
pronouns and 7 tenses (5 simple tenses and 2 mood tenses) [74]. There is another
mood tense in French which has only a few verb variations, thus, we do not take this
tense into account. Therefore, the number of inflections of a French verb is around
42.

In Finnish grammar, the form of a noun changes according to grammatical cases.
There are in total 15 cases which are manifested in different endings at the nouns [75].
A noun has singular and plural forms. Thus there are approximately 30 inflected forms
of a Finnish noun.

We now have an idea of the number of inflected forms 𝑚 in these languages. The
exact number of inflection forms of a word varies from case to case. Thus, we use our
obtained 𝑚 as a reference to the general number of grammatical variations.

Table 4.10 summarizes the number of grammatical variations 𝑚 in basic French,
Spanish, Portuguese and Finnish grammar. The minimum and maximum degree 𝑘𝑚𝑖𝑛
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and 𝑘𝑚𝑎𝑥 where the peak starts and ends are also listed. We can see that the num-
bers of grammatical variations 𝑚 of these four languages land in or next to the range
[𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]. This further validates our hypothesis: the peak in the degree distribution
of network ‘Related-To’ manifests language inflection.

Tense
Pronoun Yo Tú Él/Ella/Usted Nosotros Vosotros Ellos/Ellas

(I) (You) (He/She) (We) (You) /Ustedes (They)

Present
Indicative amo amas ama amamos amáis aman

Imperfect
Indicative amaba amabas amaba amábamos amabais amaban

Preterite
Indicative amé amaste amó amamos amasteis amaron

Future
Indicative amaré amarás amará amaremos amaréis amarán

Conditional
Indicative amaría amarías amaría amaríamos amaríais amarían

Present
Subjunctive ame ames ame amemos améis amen

Imperfect
Subjunctive 1 amara amaras amara amáramos amarais amaran

Imperfect
Subjunctive 2 amase amases amase amásemos amaseis amasen

Future
Subjunctive amare amares amare amáremos amareis amaren

Table 4.9: Conjugated forms of the Spanish verb ‘amar’ (to love) based on 6 pronouns and 9 tenses.

Language Grammatical variations 𝑘𝑚𝑖𝑛 𝑘𝑚𝑎𝑥
French 42 36 51
Spanish 54 45 61
Portuguese 54 53 53
Finnish 30 25 35

Table 4.10: The number of grammatical variations for basic grammar in French, Spanish, Portuguese
and Finnish. The minimum and maximum degree 𝑘𝑚𝑖𝑛 and 𝑘𝑚𝑎𝑥 where the peak starts and ends in

the degree distributions of networks ‘Related-To’ are included for comparison.

Discussion Summarizing, we observe grammatical features in the degree distri-
butions of ‘Related-To’ networks. Because of the special structure of French, Span-
ish, Portuguese and Finnish, words in these languages have many distinct inflections.
There are more words with certain degree than expected. Consequently, we observe
peaks in the degree distributions, which results in the deviation from a power-law.
For French, Spanish and Portuguese, the inflected words are mostly conjugations.
Whereas for Finnish, the inflected words are mostly declensions.
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As defined in the typological classification of languages, French, Spanish and Por-
tuguese are inflecting. However, although Finnish is typologically classified as agglu-
tinating, it still has many declensions. This suggests that the two language categories
(agglutinating and inflecting) are not mutually exclusive. 

4.5. Degree Correlation Coefficient
After exploring the degree distributions of semantic networks in different languages,
we are now curious about the mixing patterns in them. Do networks in different lan-
guages have similar degree-degree mixing? Or are there differences between lan-
guages? Hence, we compute the degree correlation coefficient 𝜌𝐷 of networks with
size 𝑁 > 100 using Eq. 2.7. The results for each network are presented in Ap-
pendix C.2.

To compare the degree assortativity of different languages and language families,
we plot the results as bar charts in Fig. 4.5. Different colors represent different genetic
language families.

Discussion The figure demonstrates that most networks have negative degree cor-
relation coefficients. This coincides with our finding in English semantic networks in
Section 3.7. Specifically, networks ‘Has-A’, ‘Part-Of’, ‘Is-A’ and ‘Antonym’ are disas-
sortative regardless of the language. Additionally, in the ‘Related-To’ networks, only
French has a slightly positive degree correlation coefficient.

However the signs of the degree correlation coefficients of network ‘Synonym’ vary
from language to language. For example, the Russian ‘Synonym’ network has 𝜌𝐷 <
−0.2 while Japanese ‘Synonym’ has 𝜌𝐷 > 0.15. Moreover, the degree assortativity
differs even within the same language family, e.g., the Italian and Spanish ‘Synonym’
networks.

In the ‘Union’ networks, only Dutch shows a clear positive degree correlation coef-
ficient, but it is not immediately clear what is the cause. The French ‘Union’ network
shows a slightly positive 𝜌𝐷 = 0.002 because ‘Related-to’ makes up the majority of
this network, and the French ‘Related-To’ network has positive degree correlation. As
for ‘Union’ in the other languages, they present negative degree correlation.
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Figure 4.5: Degree correlation coefficient 𝜌𝐷 of semantic networks in eleven languages (classified
into six genetic language families). Only networks with size 𝑁 > 100 are shown.
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4.6. Clustering
Similarly, we study the clustering in these networks. Is high clustering a uniform prop-
erty across semantic networks in different languages? To investigate this, we compute
the average clustering coefficient and graph transitivity for networks with size 𝑁 > 100.
See numerical results in Appendix C.3 and C.4. Fig. 4.6 shows the average clustering
coefficient of semantic networks in eleven languages. Languages that belong to the
same genetic family share one color.

Discussion As shown in the figure, the average clustering coefficient varies for dif-
ferent networks in different languages. We observe small clustering coefficients in all
‘Antonym’ networks. Other than that, there are no obvious patterns in languages from
the same family.

The graph transitivity of semantic networks in eleven languages are compared in
Fig. 4.7. Most ‘Synonym’ networks have a larger graph transitivity �̌�𝐺 > 0.10 than
other networks, which indicates that there are more triangles in ‘Synonym’. Besides,
Dutch ‘Union’, Japanese ‘Related-To’ and Russian ‘Related-To’ and ‘Union’ also have
larger graph transitivity �̌�𝐺 > 0.10 than others. The rest of the networks show a graph
transitivity smaller than 0.1, particularly for ‘Antonym’. This reveals that in ‘Antonym’
networks, there are few connected triples. Likewise, we observe no clustering patterns
in semantic networks from same language families.
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Figure 4.6: Average clustering coefficient 𝑐𝐺 of seven semantic networks in eleven languages
(classified into six genetic language families). Only networks with size 𝑁 > 100 are shown.
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Figure 4.7: Graph transitivity ̌𝑐𝐺 of seven semantic networks in eleven languages (classified into six
genetic language families). Only networks with size 𝑁 > 100 are shown.





5
Similarity and Complementarity in

Semantic Networks

In the previous chapters we study the basic topological properties of semantic net-
works. What are the organizing principles of semantic networks? This is the question
that inspires this chapter. We already see from previous chapters that there are univer-
sal similarities between their network structures. But we also notice several structural
differences. For example, some of the networks have higher clustering than rewired
networks while others do not. Some networks are assortative but others are disassor-
tative. We therefore conjecture that there are different mechanisms involved in the
formation of these semantic networks.

A well-studied organizing principle is similarity. In networks where connections are
driven by similarity, similar nodes (based on the number of common neighbors) are
likely to be connected. A lot of NLP algorithms are developed based on social network
analysis, where similarity is recognized as one of the leading mechanisms. In social
networks, similar people are more likely to be connected.

Does this principle of similarity naturally make sense in our semantic networks?
Do similar words co-occur in the same text or sentence? If we only use similar words
in speech, it would sound rather boring. In reality, we combine different types of words,
e.g., nouns and adjectives, verbs and nouns, and verbs in combination with adverbs.
Different types of words complement each other and together form sentences. Ad-
ditionally, when we compare things with contrasting nature, the words we use to de-
scribe them have contrasting meanings, too. All these cases we mention do not fall
under the umbrella of similarity. In sentences, words have different meanings and
types.

Hence, we presume that there is something else that drives the connections in
semantic networks. Complementarity can be the other important organizing principle.

In this chapter we set to evaluate the organizing principles of semantic networks
in a systematic way. First, we introduce the definition of similarity and complementar-
ity, and the importance of them. Then, we present two measures that can quantify
structural similarity and complementary of a network. Relying on these measures, we
calculate the structural coefficients of our semantic networks and compare the results.
At last, we conclude this chapter with important insights for improving NLP algorithms.

47
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5.1. Similarity and Complementarity
Historically, the principle of similarity has been identified in various types of networks,
including friendship, marriage and information exchange networks [24, 25]. Similarity
is transitive. If node A is similar to B and B is similar to C, then A is similar to C. Thus,
transitivity implies triangle closure (Fig. 5.1a) [25, 76, 77]. Due to the transitivity of
similarity, there are lots of triangles in similarity-based networks. In a similarity-driven
network, nodes that havemany common neighbors are expected to be connected. For
example, two persons who have a lot of common friends are very likely to be friends as
well [78]. Many state-of-the-art algorithms in network science were developed based
on this triangle closure principle [28].

However, in many other networks, nodes form connections not because they are
similar but because they have complementary properties [79]. What is complementar-
ity? Intuitively, two different objects complement each other by providing qualities or
attributes that the other object lacks. The connection principle of complementarity
is discovered in networks such as molecular interaction [80], interdisciplinary collabo-
ration [79] and production networks [81]. For example, in company-level production
networks, trading partners complement each other. Unlike similarity, complementarity
is not transitive. If node A and B are complementary and B and C are complemen-
tary, it does not mean that A and C also complement each other. As a result, the
triangle closure principle does not hold in complementarity-based networks. Instead,
recently it was shown that complementarity-based connections lead to a large number
of quadrangles in a network [82].

The emerging study of complementarity challenges the established methods of
network science rooted in social networks. In a recent work on protein interactions [80],
the authors show that current algorithms fail to accurately predict protein interactions
due to the different organizing principles of protein interactions networks. Proteins
interact when one of them is similar to the other’s partners, not when they are similar
to each other [80].

5.2. Structural Coefficients
From the previous section, we learn that similarity-based networks are rich in triangles
because of the triangle closure principle. Our first observations are in the context of
clustering coefficients in Section 3.8. The clustering coefficient is a classic measure of
the density of triangles in a network. However, we cannot simply compare the number
of triangles and quadrangles between two networks, because these networks have
different sizes and degree distributions. We need to reliably calculate the statistics of
triangles and quadrangles of a network to quantify similarity and complementarity. To
this end, we rely on a recent work of complementarity [31]. Analogous to the clustering
coefficient, we can use structural complementarity measures based on quadrangle
closure rules (Fig. 5.1d).

Table 5.1 lists the procedures of how we compute the structural similarity and com-
plementarity coefficients to quantify the density of triangles and quadrangles in a net-
work 𝐺, respectively.
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Procedure Structural coefficients Network 𝐺
Similarity (△) Complementarity (□)

Step 1 Wedge triple/quadruple 𝑠𝑊𝑖 , Eq. 5.1 𝑐𝑊𝑖 , Eq. 5.5
Head triple/quadruple 𝑠𝐻𝑖 , Eq. 5.2 𝑐𝐻𝑖 , Eq. 5.6

Step 2 Node-wise 𝑠𝑖, Eq. 5.3 𝑐𝑖, Eq. 5.7
Step 3 Network-wise 𝑠(𝐺) = 1

𝑁 ∑
𝑁
𝑖=1 𝑠𝑖, Eq. 5.4 𝑐(𝐺) = 1

𝑁 ∑
𝑁
𝑖=1 𝑐𝑖, Eq. 5.8

Step 4 Calibrated Network-wise 𝒞(𝑠)𝐺 =
1
𝑅 ∑

𝑅
𝑖=1 log

𝑠(𝐺)
𝑠(𝐺𝑖)

𝒞(𝑐)𝐺 =
1
𝑅 ∑

𝑅
𝑖=1 log

𝑐(𝐺)
𝑐(𝐺𝑖)

Table 5.1: The procedure of calculating the structural similarity coefficient and complementarity
coefficient of a network 𝐺. The calibrated structural coefficients in step 4 are obtained by taking the
average log ratio of network-wise coefficient over the coefficient of a sampled network 𝐺𝑖, see Eq. 5.9

in Section 5.3.1 and Appendix E.

(a) Triangle closure (b) Wedge triple (c) Head triple

(d) Quadrangle closure (e) Wedge quadruple (f) Head quadruple

Figure 5.1: Quadrangle and quadruples in comparison with triangle and triples. Wedge and head
triples (or quadruples) are different at where node 𝑖 is centered. Node 𝑖 in a wedge triple (b) is

centered in the middle, while 𝑖 in a head triple (c) is centered at the beginning. Similarly, node 𝑖 in a
wedge quadruple (e) is centered at the second location, while 𝑖 is at the beginning of a head

quadruple (f).

5.2.1. Structural Similarity Coefficient
The structural similarity generalizes the local clustering and closure coefficients. The
local clustering coefficient 𝑠𝑊𝑖 of a node 𝑖 is the same as 𝑐𝐺(𝑖) in Eq. 2.10. It is defined
as the fraction of triples centered at 𝑖 which can be closed to form a triangle [31]

𝑠𝑊𝑖 = 2𝑇𝑖
𝑡𝑊𝑖

=
∑𝑗,𝑘 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘
𝑑𝑖 (𝑑𝑖 − 1)

, (5.1)

where 𝑇𝑖 is the number of triangles including 𝑖 and 𝑡𝑊𝑖 is the number of wedge triples
(Fig. 5.1b), or 2-paths with node 𝑖 in the middle, e.g., (𝑗, 𝑖, 𝑘). The definition of the local



50 5. Similarity and Complementarity in Semantic Networks

closure coefficient [83] is given as follows

𝑠𝐻𝑖 =
2𝑇𝑖
𝑡𝐻𝑖

=
∑𝑗,𝑘 𝑎𝑖𝑗𝑎𝑖𝑘𝑎𝑗𝑘
∑𝑗 𝑎𝑖𝑗 (𝑑𝑗 − 1)

, (5.2)

where 𝑡𝐻𝑖 is the number of head triples (Fig. 5.1c), i.e., 2-paths starting from node 𝑖,
such as (𝑖, 𝑗, 𝑘). Both 𝑠𝑊𝑖 and 𝑠𝐻𝑖 are bounded in the range [0, 1], but they capture
different parts of the spectrum of similarity-driven structures [31].

Combining the weighted average of these two coefficients results in a more com-
prehensive measure of local structure, the structural similarity coefficient [31], which
captures the full spectrum of structural similarity. It is defined as

𝑠𝑖 =
4𝑇𝑖

𝑡𝑊𝑖 + 𝑡𝐻𝑖
= 𝑡𝑊𝑖 𝑠𝑊𝑖 + 𝑡𝐻𝑖 𝑠𝐻𝑖

𝑡𝑊𝑖 + 𝑡𝐻𝑖
. (5.3)

The coefficient 𝑠𝑖 = 1 only if node 𝑖 is in a fully connected network.
The structural similarity coefficient of a whole network 𝐺 is then the average over

all nodes

𝑠(𝐺) = 1
𝑁

𝑁

∑
𝑖=1
𝑠𝑖 . (5.4)

5.2.2. Structural Complementarity Coefficient
Analogously, the local quadruples clustering coefficient at node 𝑖 is defined as the
fraction of closed quadruples with 𝑖 at the second position [31]

𝑐𝑊𝑖 = 2𝑄𝑖
𝑞𝑊𝑖

=
∑𝑗≠𝑖 𝑎𝑖𝑗 ∑𝑘≠𝑖,𝑗 𝑎𝑖𝑘 (1 − 𝑎𝑗𝑘)∑𝑙≠𝑖,𝑗,𝑘 𝑎𝑘𝑙𝑎𝑗𝑙 (1 − 𝑎𝑖𝑙)

∑𝑗 𝑎𝑖𝑗 [(𝑑𝑖 − 1) (𝑑𝑗 − 1) − 𝑛𝑖𝑗]
, (5.5)

where 𝑄𝑖 represents the number of quadrangles contain that node 𝑖 and 𝑞𝑊𝑖 is the
number of wedge quadruples (Fig. 5.1e), or 3-paths with 𝑖 at the second node, e.g.,
(𝑙, 𝑖, 𝑗, 𝑘). Similarly, the local quadruples closure coefficient of a node 𝑖 calculates the
percentage of closed quadruples beginning at 𝑖

𝑐𝐻𝑖 =
2𝑄𝑖
𝑞𝐻𝑖

=
∑𝑗≠𝑖 𝑎𝑖𝑗 ∑𝑘≠𝑖,𝑗 𝑎𝑖𝑘 (1 − 𝑎𝑗𝑘)∑𝑙≠𝑖,𝑗,𝑘 𝑎𝑘𝑙𝑎𝑗𝑙 (1 − 𝑎𝑖𝑙)

∑𝑗≠𝑖 𝑎𝑖𝑗 ∑𝑘≠𝑖,𝑗 𝑎𝑗𝑘 (𝑑𝑘 − 1 − 𝑎𝑖𝑘)
, (5.6)

where 𝑞𝐻𝑖 is the number of head quadruples originating from node 𝑖 (Fig. 5.1f).
Finally, the structural complementarity coefficient is constructed as the weighted

average of the local quadruples clustering and closure coefficients [31]

𝑐𝑖 =
4𝑄𝑖

𝑞𝑊𝑖 + 𝑞𝐻𝑖
= 𝑞𝑊𝑖 𝑐𝑊𝑖 + 𝑞𝐻𝑖 𝑐𝐻𝑖

𝑞𝑊𝑖 + 𝑞𝐻𝑖
. (5.7)

The structural complementarity coefficient 𝑐𝑖 ∈ [0, 1], which is proven to be a more
general measure than using only 𝑐𝑊𝑖 or 𝑐𝐻𝑖 [31]. The maximum 𝑐𝑖 = 1 happens only
if node 𝑖 belongs to a fully connected bipartite graph. In a bipartite graph, nodes are



5.3. Structural Similarity and Complementarity Coefficients in Semantic Networks 51

divided into two groups, and connections are only formed between groups but not
within the same group.

The structural complementarity coefficient of a whole network 𝐺 is then the average
of all nodes:

𝑐(𝐺) = 1
𝑁

𝑁

∑
𝑖=1
𝑐𝑖 . (5.8)

5.3. Structural Similarity and Complementarity Coeffi-
cients in Semantic Networks

Using the structural similarity and complementarity coefficients, we measure and com-
pare the density of triangles and quadrangles in a real network. Therefore, we can
determine the relative roles of similarity and complementarity in a network. In this
section, we calculate and compare the average structural coefficients of our semantic
networks with the help of the algorithm provided in [31]. To compare the structural
coefficients of different semantic networks, the values need to be normalized based
on a configuration model to correct for the effects purely induced by the degree se-
quences [31]. The configuration model and more details of the calibration process are
explained in Appendix E.

5.3.1. Calibration of Structural Coefficients
First of all, we calculate one structural coefficient (similarity or complementarity) of a
given network 𝐺. We denote this coefficient as 𝑥(𝐺). Second, we sample 𝑅 random-
ized copies 𝐺𝑖’s of the given network from the Configuration Model (CM). Then, we
calculate the structural coefficient 𝑥(𝐺𝑖) for each sampled network. At last, we take
the average log-ratio of 𝑥(𝐺) and 𝑥(𝐺𝑖)’s. As a result, the calibrated coefficient 𝒞(𝑥)𝐺
according to 𝑅 samples from CM is obtained as follows [31]

𝒞(𝑥)𝐺 =
1
𝑅

𝑅

∑
𝑖=1

log
𝑥(𝐺)
𝑥 (𝐺𝑖)

. (5.9)

The calibrated structural coefficient can be less, equal or larger than zero. Consider
the calibrated structural similarity coefficient 𝒞(𝑠)𝐺 for example:

• 𝒞(𝑠)𝐺 < 0, the structural similarity coefficient 𝑠(𝐺) is smaller than 𝑠(𝐺𝑖) of ran-
dom networks.

• 𝒞(𝑠)𝐺 = 0, the structural similarity coefficient is comparable to the ones in ran-
dom networks.

• 𝒞(𝑠)𝐺 > 0, the structural similarity coefficient is larger than in random networks.

Fig. 5.2 shows the scatter plot of the calibrated average structural coefficients of 50
semantic networks in different languages. The grey lines at 𝑥 = 0 and 𝑦 = 0 indicate
the expected coefficients based on the Configuration Model.
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Discussion As illustrated in Fig. 5.2, we see clusters of colors but not really based
on shapes. This suggests that the type of relation matters more for the organizing
principles of a semantic network, rather than the language.

Figure 5.2: Calibrated average structural coefficients of 50 semantic networks in different languages.
Languages that belong to the same family are marked with similar shapes. Triangles represent Italic,
quadrilaterals represent Germanic, circles represent Balto-Slavic, star represents Transeurasian,
cross represents Sino-Tibetan and pentagon represents Uralic. The marker size is proportional to

(log(𝑁))2.1, where 𝑁 is the number of nodes in a network. The grey lines at 𝑥 = 0 and 𝑦 = 0 indicate
the expected coefficients based on the configuration model (see Appendix E). The dashed line at
𝑦 = 𝑥 indicates that the structural similarity and complementarity coefficients are equal. Networks in
the upper left area (shaded in red) are more complementarity-based, while networks in the lower right
area (shaded in blue) are more similarity-based. We highlight four clusters of networks using different

colors.

If we inspect networks in specific languages, we observe symbols of the same
shape distributed all over the plot. The fact that networks from one language do not
cluster together implies that our networks are properly constructed, networks with dif-
ferent relation types show different connection principles.

There are mainly three categories of networks: predominantly complementarity-
based, predominantly similarity-based, or both. Most semantic networks exhibit both
patterns of similarity and complementarity. Our results show that the prevalence of
similarity and complementarity in semantic networks is mostly related to semantic
relation type. We list the observed patterns.
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• Cluster 1 (cyan): ‘Synonym’ networks show stronger similarity than complemen-
tarity. A cluster of ‘Synonym’ networks indicates that words tend to connect to
words with similar meanings, which coincides with the definition of the ‘Synonym’
relation in ConceptNet. Consequently, there are lots of closed triples in these
networks.

• Cluster 2 (orange): ‘Antonym’ networks are more complementarity-based, that
is, two words that share a lot of neighboring words are not certainly connected.
As a result, there exist many quadrangles in these networks. This can be ex-
plained by two words that have opposite meanings of another word are not nec-
essarily opposite to each other. For example, in the English ‘Antonym’ network,
the word ‘small’ is the opposite of ‘big’ as well as ‘great’, however, ‘big’ and ‘great’
do not have opposite meanings. But since the word ‘little’ is also connected to
‘big’ and ‘great’, the four words form a quadrangle.

• Cluster 3 (dark green): ‘Has-A’ networks show more structural complementar-
ity than similarity. Intuitively, words in ‘Has-A’ complement one another. For
instance, ‘a house has a roof ’ is a complementary relation, while these two ob-
jects are not similar to each other..

• Cluster 4 (light green): Most ‘Related-To’ and ‘Union’ networks show more sim-
ilarity, except for Chinese. As defined in the ‘Related-To’ relation, words are
connected if there is a positive relation between them, therefore, it is easy to
form triangles.
Though one exception is that Chinese ‘Related-To’ (green cross) shows the
strongest complementarity among all networks and decreased similarity (relative
to the configuration model). One possible explanation is that Chinese has plenty
of measure words that are connected to all kinds of words (nouns). Measure
words, also known as numeral classifiers, are used in combination of numerals
to describe the quantity of things [84, 85]. For example, in English we usually
say ‘one apple’, but in Chinese a measure word must be added between the
number ‘one’ and the noun ‘apple’ as a unit of measurement. This grammatical
phenomenon is comparable to when we say ‘one box of apples’ in English, but in
English these measure words are rare. Depending on the situation, the measure
word of the same noun can be different. In the Chinese ‘Related-To’ network,
there are many measure words connecting to different nouns. But these nouns
may have no connection between each other at all. Hence, the structural simi-
larity is lower than expected from the configuration model. However, since there
are many choices for the measure word of a noun and one measure word can be
used with multiple nouns, it leads to numerous quadrangles. Therefore, Chinese
‘Related-To’ shows the highest structural complementarity coefficient.

• Most large semantic networks present stronger complementarity and similarity.

Conclusion To summarize, the connections in semantic networks are driven by
similarity and/or complementarity, mainly depending on the semantic relation type.
Networks from different languages may present very different complementarity-based
structures due to grammatical features.
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Since Natural Language Processing (NLP) methods use tools that are based on
similarity, they may work very well for similarity-based semantic networks. But they
are not expected to work as well for complementarity-based networks. Therefore, new
NLP methods need to be developed accordingly.



6
Conclusion and Future Work

In this chapter, we review the main objective of this thesis and summarize the study
that has been carried out. Based on our results of structural properties of semantic
networks, we draw conclusions and propose some suggestions for future work.

6.1. Conclusions
The primary objective of this thesis is to study the topological properties of semantic
networks. We studied semantic networks with 7 distinct semantic relations from 11
different languages.

Overall, we observed universal characteristics in the basic structure of semantic
networks. In chapter 3, we focused on the study of seven English semantic networks:
‘Has-A’, ‘Part-Of’, ‘Is-A’, ‘Related-To’, ‘Union’, ‘Antonym’ and ‘Synonym’. We found
that these semantic networks can be characterized with high sparsity and a power-
law degree distribution. We also found that most semantic networks are scale-free.
We observed two patterns of degree mixing in these networks. Some networks are
assortative and others are disassortative. In addition, we found that most networks
have higher clustering coefficients than degree-preserving rewired networks.

On the other hand, we also found different properties in semantic networks from dif-
ferent languages. In Chapter 4, we considered semantic networks from 11 languages.
They are English, French, Italian, German, Spanish, Russian, Portuguese, Dutch,
Japanese, Finnish and Chinese. We divided them into different language families
according to two classifications: typological and genetic. Interestingly, we discovered
non-trivial structural patterns in networks from languages that have many grammati-
cal inflections, i.e., French, Spanish, Portuguese and Finnish. Because of the natural
structure of grammar in these languages, words have a large number of conjugations
or declensions. A large number of connections due to inflections results in peaks in
the degree distributions. Moreover, we found that not only inflecting languages have
many inflected forms of words but also one agglutinating language, which is Finnish.

All the aforementioned structural patterns in semantic networks encouraged us
to investigate the organizing principles of these networks. We introduced the two
organizing principles similarity and complementarity in Chapter 5. By computing the
structural similarity and complementarity coefficients of 50 semantic networks from dif-
ferent languages, we observed both similarity and complementarity in the connection
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principles of semantic networks. But the proportions of similarity and complementarity
in networks are different depending on the semantic relation type. For example, ‘Syn-
onym’ networks show stronger similarity, while connections in ‘Antonym’ are more
driven by complementarity. Additionally, the Chinese ‘Related-To’ network stood out
with the highest structural complementarity coefficient from the rest of the networks.
We were able to partially relate this strong complementarity to a unique grammatical
phenomenon in Chinese: measure words.

The results we presented in Chapter 5 are important for Natural Language Pro-
cessing (NLP), because NLP algorithms mostly rely on the similarity principle and
neglect the principle of complementarity. Existing NLP algorithms may work well for
networks that are similarity-based, but different methods are required for processing
complementarity-based semantic networks.

6.2. Outlook
The motivation of our study was the desire to improve upon existing NLP technologies.
Though we did not give an exact solution, we are certain that our results (especially
in Chapter 5) serve as evidence that we inform better NLP methods. Here we give
an example of where the difference of similarity and complementarity manifests in a
fundamental task, that is, link prediction.

(a) Triangle closure (similarity) (b) Quadrangle closure (complementarity)

(c) Quadrangle closure (complementarity) (d) Quadrangle closure (complementarity)

Figure 6.1: Comparison of similarity and complementarity principles in networks. (a) Lots of common
neighbors of A and B imply similarity between A and B, therefore they are connected. (b) An example
of triangle closure in ‘Synonym’ network. (c) In complementarity-based networks, if node X and Y

share many common neighbors, the additional neighbor Z of node X implies the link between Z and Y.
(d) An example of quadrangle closure in ‘Antonym’ network.

In the view of traditional link prediction (see Fig. 6.1a), two nodes A and B are
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considered to be similar if they have a lot of common neighbors. Therefore, nodes A
and B must be connected. The basic rational is that people who have many common
friends will most likely also establish connections. In the ‘Synonym’ network (Fig. 6.1b),
the words ‘type’ and ‘class’ share lots of neighbors that have similar meanings, such
as ‘kind’, ‘form’ and ‘genre’. Therefore, ‘type’ and ‘class’ also have similar meanings.

However, in complementarity-driven networks, the principle of similarity does not
work for predicting links. Two nodes that share a lot of common neighbors maybe
similar, but they do not necessarily complement each other. Instead, the connection
principle is, if a node X has an additional connection to a node Z that is not shared with
node Y, then node Z and Y might be connected as well (See Fig. 6.1c). For example,
in our ‘Antonym’ network (Fig. 6.1d), the words ‘few’ and ‘minor’ have lots of neighbors
that have the opposite meaning as them. The word ‘few’ is additionally connected to
‘majority’. Hence, we can conclude that ‘majority’ and ‘minor’ are also connected by
the antonym relation.

The principle of complementarity is not only identified in semantic networks but
also in other network classes such as interdisciplinary collaboration [79], biological [80]
and company-level production networks [81]. And traditional algorithms such as link
prediction fail to yield satisfying results [80]. Therefore, it is important to develop algo-
rithms that take complementarity into account.

We identify the following interesting directions for future research on semantic net-
works, NLP and related fields.

• It is recommended to investigate semantic networks extracted from other
databases to compare to the topological properties we found in ConceptNet.

• To obtain a better overview of differences and similarities between semantic net-
works from different languages, it is also suggested to further explore the topolog-
ical properties of semantic networks in the same language family and between
different language families.

• Our results imply that some of the existing similarity-based methods need to be
revised. It is recommended to study basic NLP methods, such as link predic-
tion and sentiment analysis, to gain more insights of how to reformulate these
methods.
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A
Appendix

This appendix presents the method of logarithmic binning used across the thesis.
In the linear binning, every bin has the same linear size (𝑘𝑖+1 − 𝑘𝑖), while in the

logarithmic binning, bins have constant logarithmic width 𝑏, where 𝑏 = log(𝑘𝑖+1) −
log(𝑘𝑖) [86]. Thus, the linear bin width of a logarithmically-binned bin, 𝑤𝑖 = 𝑘𝑖+1−𝑘𝑖 =
𝑘𝑖(𝑒𝑏 − 1), is proportional to 𝑘𝑖. The sizes of logarithmic bins grow exponentially.
Therefore, the number of observations 𝑥 in a bin is equal to the density of observations
𝑓(𝑘) in that bin times the width 𝑤 of that bin.

A.1. Power-law Exponent Estimation
The above mentioned method is utilized for most analysis. However, we need extra
steps to estimate the power-law exponents. Since the probability density function 𝑓(𝑘)
is proportional to 𝑘−𝛾, the number of observations 𝑥 ∝ 𝑓(𝑘) × 𝑤 ∝ 𝑘1−𝛾. Regressing
log(𝑥) against log(𝑘) yields a slope equal to 1 − 𝛾.

To estimate 𝛾 accurately, the normalization of number of observations 𝑥 is required.
Due to the linearly increasing width of bins, a bin can contain more than one value
of degree value 𝑘. The sum of all observations within a bin is 𝑥. To preserve the
probability of a node with degree 𝑘 such that the total probability of degree distribution
is equal to 1, the number of observations 𝑥 should be normalized by the linear width of
the bin. This converts 𝑥 to the number of observations per unit of bin, so (𝑥/𝑤) ∝ 𝑘−𝛾.
As a result, regressing the normalized logarithmic bin counts log (𝑥/𝑤) against the
logarithmic degree log (𝑘) yields a slope of −𝛾 [86].

Additionally, the choice of the number of bins matters, since we want to decrease
the number of empty and low-count bins to get a better estimation of 𝛾 [86]. Thus,
according to different sizes of networks, the bin numbers vary. However, finding the
optimal number of bins for each network requires future work.
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Appendix

This appendix presents the complete statistics of semantic networks in ten languages.
For each language, the statistics are computed for both the full network and the largest
connected component.

B.1. French

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 27,598 5,254 1,405,857 1,411,997 12,293 68,591
𝐿 31,099 5,512 2,321,424 2,346,989 8,649 63,080
𝑑𝑚𝑎𝑥 773 804 78952 78957 49 113
𝐸[𝐷] 2.25 2.10 3.30 3.32 1.41 1.84
ANND 49.24 101.09 1371.08 1363.67 2.11 3.89
ANND rewired 39.92 81.55 2815.22 2791.08 2.38 4.34
ANND reconstructed 39.91 73.05 2572.11 2551.63 2.40 4.37
𝑐𝐺 0.0921176 0.0709545 0.0725957 0.0731421 0.0122623 0.1145248
𝑐𝐺 rewired 0.0040955 0.0151831 0.0057348 0.0056810 0.0000322 0.0000257
𝑐𝐺 reconstructed 0.0036711 0.0159415 0.0060876 0.0060172 0.0000843 0.0000186
̌𝑐𝐺 0.0103522 0.0046753 0.0004334 0.0004503 0.0237738 0.1797682
̌𝑐𝐺 rewired 0.0038628 0.0028443 0.0003672 0.0003686 0.0002503 0.0000850
̌𝑐𝐺 reconstructed 0.0045368 0.0034957 0.0004687 0.0004716 0.0002503 0.0001133
𝛾 2.5 2.4 2.3 2.3 3.4 3.3

Table B.1: Statistics of six French semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 17,519 2,832 1,289,083 1,296,622 1,361 20,144
𝐿 23,157 3,549 2,216,411 2,243,044 1,665 28,264
𝑑𝑚𝑎𝑥 773 804 78952 78957 49 113
𝐸[𝐷] 2.64 2.51 3.44 3.46 2.45 2.81
ANND 73.58 183.29 1492.49 1482.26 5.99 8.10
ANND rewired 54.48 144.75 3012.17 2976.66 5.23 6.97
ANND reconstructed 51.69 112.70 2717.38 2686.65 5.40 7.03
𝑐𝐺 0.1330360 0.1177744 0.0790695 0.0795575 0.0084102 0.1563091
𝑐𝐺 rewired 0.0090988 0.0419280 0.0068039 0.0067468 0.0019302 0.0003799
𝑐𝐺 reconstructed 0.0111658 0.0438683 0.0072894 0.0072133 0.0030997 0.0003367
̌𝑐𝐺 0.0102118 0.0044024 0.0004335 0.0004504 0.0067114 0.1516492
̌𝑐𝐺 rewired 0.0060552 0.0042900 0.0003859 0.0003939 0.0046141 0.0006007
̌𝑐𝐺 reconstructed 0.0086643 0.0061726 0.0004980 0.0005021 0.0058725 0.0007773
𝛾 2.4 2.3 2.3 2.3 2.7 3.1

Table B.2: Statistics of largest connected component of six French semantic networks extracted from
ConceptNet.

B.2. Italian

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 3,816 45 108,983 110,770 2,847 21,928
𝐿 4,675 38 98,743 103,343 1,611 16,038
𝑑𝑚𝑎𝑥 247 6 1355 1355 7 28
𝐸[𝐷] 2.45 1.69 1.81 1.87 1.13 1.46
ANND 41.83 2.45 17.36 18.54 1.26 1.98
ANND rewired 38.84 2.66 16.04 17.19 1.32 2.44
ANND reconstructed 36.85 2.45 15.83 16.86 1.33 2.45
𝑐𝐺 0.0632934 0.0000000 0.0579386 0.0582161 0.0000000 0.0685227
𝑐𝐺 rewired 0.0262871 0.0162963 0.0002225 0.0002295 0.0000000 0.0000181
𝑐𝐺 reconstructed 0.0261353 0.0459259 0.0001485 0.0002521 0.0000000 0.0000184
̌𝑐𝐺 0.0073074 0.0000000 0.0139081 0.0133864 0.0000000 0.2991435
̌𝑐𝐺 rewired 0.0128538 0.0526316 0.0002717 0.0003603 0.0000000 0.0001298
̌𝑐𝐺 reconstructed 0.0181390 0.0526316 0.0002717 0.0004026 0.0000000 0.0001298
𝛾 2.4 None 2.8 2.8 4.6 3.8

Table B.3: Statistics of six Italian semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 2,663 9 36,295 46,468 13 1,580
𝐿 3,802 13 39,961 52,729 12 2,010
𝑑𝑚𝑎𝑥 247 6 1355 1355 7 15
𝐸[𝐷] 2.86 2.89 2.20 2.27 1.85 2.54
ANND 58.03 4.63 44.35 39.19 3.82 4.31
ANND rewired 48.54 4.52 36.68 32.66 3.86 4.31
ANND reconstructed 44.36 3.47 35.87 32.21 3.62 4.23
𝑐𝐺 0.0847080 0.0000000 0.0533138 0.0601817 0.0000000 0.1424910
𝑐𝐺 rewired 0.0553913 0.6888889 0.0018624 0.0012401 0.1062271 0.0022310
𝑐𝐺 reconstructed 0.0597332 0.3259259 0.0015406 0.0012814 0.0000000 0.0009228
̌𝑐𝐺 0.0070217 0.0000000 0.0065990 0.0085331 0.0000000 0.2774144
̌𝑐𝐺 rewired 0.0181617 0.3947368 0.0017431 0.0014382 0.1111111 0.0041065
̌𝑐𝐺 reconstructed 0.0273120 0.3214286 0.0019928 0.0015799 0.0000000 0.0031939
𝛾 2.3 None 2.6 2.6 None 3.7

Table B.4: Statistics of largest connected component of six Italian semantic networks extracted from
ConceptNet.

B.3. German

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 122,810 50 108,479 176,164 3,545 80,271
𝐿 162,971 34 245,089 392,221 2,691 103,967
𝑑𝑚𝑎𝑥 2228 4 2542 2593 16 284
𝐸[𝐷] 2.65 1.36 4.52 4.45 1.52 2.59
ANND 80.17 2.12 109.23 100.43 2.17 8.68
ANND rewired 50.12 1.77 79.98 82.09 2.42 9.79
ANND reconstructed 48.59 1.72 78.66 80.51 2.44 9.87
𝑐𝐺 0.0656267 0.0000000 0.0812345 0.0870983 0.0147656 0.1419571
𝑐𝐺 rewired 0.0014066 0.0000000 0.0039561 0.0025991 0.0000000 0.0001979
𝑐𝐺 reconstructed 0.0014423 0.0000000 0.0040200 0.0028831 0.0000000 0.0001646
̌𝑐𝐺 0.0092784 0.0000000 0.0078443 0.0110564 0.0377854 0.1040466
̌𝑐𝐺 rewired 0.0026754 0.0000000 0.0026620 0.0030590 0.0000000 0.0003251
̌𝑐𝐺 reconstructed 0.0031767 0.0000000 0.0031971 0.0036737 0.0000000 0.0003022
𝛾 2.5 None 2.6 2.5 3.6 3.1

Table B.5: Statistics of six German semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 113,301 5 100,737 172,147 187 43,072
𝐿 155,806 4 240,482 389,847 202 76,898
𝑑𝑚𝑎𝑥 2228 4 2542 2593 10 284
𝐸[𝐷] 2.75 1.60 4.77 4.53 2.16 3.57
ANND 86.42 3.40 117.51 102.74 3.89 13.85
ANND rewired 52.56 3.40 82.41 82.39 3.50 12.50
ANND reconstructed 51.49 1.40 80.49 81.55 3.27 12.42
𝑐𝐺 0.0705959 0.0000000 0.0859303 0.0887972 0.0000000 0.1775439
𝑐𝐺 rewired 0.0015456 0.0000000 0.0042611 0.0027321 0.0051821 0.0004686
𝑐𝐺 reconstructed 0.0017990 0.0000000 0.0043755 0.0029790 0.0108480 0.0004635
̌𝑐𝐺 0.0092892 0.0000000 0.0078301 0.0110530 0.0000000 0.0966821
̌𝑐𝐺 rewired 0.0029596 0.0000000 0.0026440 0.0031052 0.0125261 0.0006826
̌𝑐𝐺 reconstructed 0.0035600 0.0000000 0.0033392 0.0036694 0.0187891 0.0007412
𝛾 2.5 None 2.6 2.5 None 3.1

Table B.6: Statistics of largest connected component of six German semantic networks extracted
from ConceptNet.

B.4. Spanish

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 1,253 81 104,445 105,053 1,414 14,437
𝐿 1,199 64 101,354 102,593 836 12,663
𝑑𝑚𝑎𝑥 70 6 65 76 7 61
𝐸[𝐷] 1.91 1.58 1.94 1.95 1.18 1.75
ANND 14.02 2.80 41.53 41.45 1.40 2.86
ANND rewired 12.46 2.57 22.47 22.42 1.42 3.17
ANND reconstructed 11.57 2.37 22.42 22.36 1.44 3.20
𝑐𝐺 0.0214615 0.0000000 0.0284659 0.0284010 0.0000000 0.1320876
𝑐𝐺 rewired 0.0126838 0.0000000 0.0002006 0.0002151 0.0000000 0.0000000
𝑐𝐺 reconstructed 0.0115027 0.0000000 0.0001852 0.0001602 0.0000000 0.0001386
̌𝑐𝐺 0.0138260 0.0000000 0.0042407 0.0043782 0.0000000 0.2585298
̌𝑐𝐺 rewired 0.0160481 0.0000000 0.0022488 0.0021946 0.0000000 0.0000000
̌𝑐𝐺 reconstructed 0.0172825 0.0000000 0.0022184 0.0022315 0.0000000 0.0003229
𝛾 2.6 None 2.6 2.4 4.4 3.6

Table B.7: Statistics of six Spanish semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 255 11 12,094 22,861 15 3,491
𝐿 312 15 12,858 24,392 14 4,481
𝑑𝑚𝑎𝑥 32 6 65 76 4 61
𝐸[𝐷] 2.45 2.73 2.13 2.13 1.87 2.57
ANND 8.91 4.27 42.53 41.49 2.89 5.76
ANND rewired 8.01 3.97 22.57 21.90 2.71 5.07
ANND reconstructed 7.82 2.89 22.45 21.65 2.68 5.02
𝑐𝐺 0.0163449 0.0000000 0.0414353 0.0402895 0.0000000 0.1637785
𝑐𝐺 rewired 0.0270048 0.3393939 0.0025752 0.0010344 0.0000000 0.0017602
𝑐𝐺 reconstructed 0.0196794 0.3939394 0.0025220 0.0014533 0.0000000 0.0014583
̌𝑐𝐺 0.0154719 0.0000000 0.0083946 0.0080899 0.0000000 0.1813969
̌𝑐𝐺 rewired 0.0355854 0.2926829 0.0147184 0.0080720 0.0000000 0.0026171
̌𝑐𝐺 reconstructed 0.0355854 0.3913043 0.0153530 0.0085750 0.0000000 0.0027807
𝛾 None None 2.5 2.3 None 3.0

Table B.8: Statistics of largest connected component of six Spanish semantic networks extracted
from ConceptNet.

B.5. Russian

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 1,748 26 56,978 57,570 1,857 12,582
𝐿 1,622 15 83,705 85,286 1,079 9,501
𝑑𝑚𝑎𝑥 105 2 113 117 7 31
𝐸[𝐷] 1.86 1.15 2.94 2.96 1.16 1.51
ANND 13.20 1.31 8.70 9.17 1.36 2.41
ANND rewired 8.96 1.27 8.13 8.34 1.39 2.50
ANND reconstructed 9.14 1.27 8.08 8.31 1.38 2.53
𝑐𝐺 0.0273367 0.0000000 0.1758516 0.1729486 0.0026925 0.0597137
𝑐𝐺 rewired 0.0040824 0.0000000 0.0000930 0.0000816 0.0000000 0.0000000
𝑐𝐺 reconstructed 0.0037436 0.0000000 0.0001221 0.0001240 0.0000000 0.0000000
̌𝑐𝐺 0.0130687 0.0000000 0.2038037 0.1937980 0.0432692 0.1360682
̌𝑐𝐺 rewired 0.0070184 0.0000000 0.0003143 0.0002591 0.0000000 0.0000000
̌𝑐𝐺 reconstructed 0.0055663 0.0000000 0.0003345 0.0002879 0.0000000 0.0000000
𝛾 2.5 None 2.9 2.9 4.4 3.6

Table B.9: Statistics of six Russian semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 557 3 20,268 25,887 12 1,148
𝐿 622 2 41,981 50,262 11 1,299
𝑑𝑚𝑎𝑥 105 2 113 117 7 23
𝐸[𝐷] 2.23 1.33 4.14 3.88 1.83 2.26
ANND 24.80 1.67 11.54 12.05 5.16 5.35
ANND rewired 16.69 1.67 10.51 10.30 4.57 4.40
ANND reconstructed 15.46 1.67 10.39 10.32 2.19 4.35
𝑐𝐺 0.0419918 0.0000000 0.2436609 0.2236226 0.0000000 0.0952778
𝑐𝐺 rewired 0.0246127 0.0000000 0.0007270 0.0006514 0.1011905 0.0018042
𝑐𝐺 reconstructed 0.0252673 0.0000000 0.0005522 0.0004168 0.0000000 0.0011219
̌𝑐𝐺 0.0115815 0.0000000 0.2128178 0.1965126 0.0000000 0.1033279
̌𝑐𝐺 rewired 0.0135118 0.0000000 0.0011607 0.0008966 0.1071429 0.0041890
̌𝑐𝐺 reconstructed 0.0239028 0.0000000 0.0009331 0.0008902 0.0000000 0.0041890
𝛾 None None 3.6 3.5 None 3.0

Table B.10: Statistics of largest connected component of six Russian semantic networks extracted
from ConceptNet.

B.6. Portuguese

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 5,667 146 34,541 37,760 1,427 18,299
𝐿 5,189 108 33,593 38,862 894 17,142
𝑑𝑚𝑎𝑥 110 8 294 294 6 34
𝐸[𝐷] 1.83 1.48 1.95 2.06 1.25 1.87
ANND 9.37 2.87 35.01 30.88 1.53 2.73
ANND rewired 8.48 2.51 21.57 20.25 1.57 3.37
ANND reconstructed 8.21 2.51 21.43 20.29 1.56 3.37
𝑐𝐺 0.0165339 0.0093770 0.0527061 0.0495699 0.0051390 0.1308075
𝑐𝐺 rewired 0.0012414 0.0076321 0.0010061 0.0009226 0.0000000 0.0000619
𝑐𝐺 reconstructed 0.0016592 0.0010274 0.0010767 0.0008424 0.0000000 0.0000000
̌𝑐𝐺 0.0081459 0.0171429 0.0106169 0.0111971 0.0354331 0.2870057
̌𝑐𝐺 rewired 0.0030347 0.0171429 0.0052403 0.0040381 0.0000000 0.0001470
̌𝑐𝐺 reconstructed 0.0043125 0.0171429 0.0056623 0.0038392 0.0000000 0.0000000
𝛾 2.6 None 2.4 2.6 4.2 3.7

Table B.11: Statistics of six Portuguese semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 3,341 15 5,929 11,426 17 6,421
𝐿 3,737 20 7,392 15,117 17 9,125
𝑑𝑚𝑎𝑥 110 8 294 294 6 34
𝐸[𝐷] 2.24 2.67 2.49 2.65 2.00 2.84
ANND 14.75 5.52 51.62 25.73 3.35 4.67
ANND rewired 11.18 5.48 37.89 22.19 3.31 4.80
ANND reconstructed 11.15 3.45 35.79 22.42 3.39 4.73
𝑐𝐺 0.0268333 0.0912698 0.1030854 0.0893813 0.0000000 0.2353418
𝑐𝐺 rewired 0.0030750 0.4050794 0.0160122 0.0048174 0.0000000 0.0004554
𝑐𝐺 reconstructed 0.0041104 0.3549206 0.0191889 0.0052573 0.0000000 0.0004310
̌𝑐𝐺 0.0081021 0.0447761 0.0112864 0.0168496 0.0000000 0.2830883
̌𝑐𝐺 rewired 0.0050741 0.2238806 0.0090722 0.0056969 0.0000000 0.0011397
̌𝑐𝐺 reconstructed 0.0084295 0.3260870 0.0149447 0.0063813 0.0000000 0.0008767
𝛾 2.6 None 2.4 2.5 None 4.4

Table B.12: Statistics of largest connected component of six Portuguese semantic networks extracted
from ConceptNet.

B.7. Dutch

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 1,278 142 19,859 20,790 2,127 21,983
𝐿 1,244 194 16,550 17,943 1,378 28,720
𝑑𝑚𝑎𝑥 40 24 27 45 17 34
𝐸[𝐷] 1.95 2.73 1.67 1.73 1.30 2.61
ANND 6.25 7.2 3.85 4.13 1.70 3.88
ANND rewired 7.62 10.41 3.08 3.67 1.74 4.89
ANND reconstructed 7.39 9.92 3.06 3.65 1.76 4.91
𝑐𝐺 0.0330612 0.110967 0.0413025 0.0415835 0.0025074 0.2682013
𝑐𝐺 rewired 0.0032895 0.0454031 0.0000000 0.0000132 0.0000000 0.0002374
𝑐𝐺 reconstructed 0.0050336 0.0454412 0.0000108 0.0000716 0.0000000 0.0001786
̌𝑐𝐺 0.1483806 0.234917 0.0650352 0.0977919 0.0057637 0.3276525
̌𝑐𝐺 rewired 0.0131810 0.0866496 0.0000000 0.0001259 0.0000000 0.0002688
̌𝑐𝐺 reconstructed 0.0139342 0.0997963 0.0000882 0.0004408 0.0000000 0.0003495
𝛾 2.3 None 4.1 3.0 4.4 3.9

Table B.13: Statistics of six Dutch semantic networks extracted from ConceptNet.
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Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 191 53 303 1,418 111 11,964
𝐿 447 132 348 1,908 117 21,146
𝑑𝑚𝑎𝑥 40 24 17 45 17 34
𝐸[𝐷] 4.68 4.98 2.3 2.69 2.11 3.53
ANND 16.54 14.61 5.02 7.31 5.12 5.62
ANND rewired 16.37 16.19 4.12 9.06 4 5.89
ANND reconstructed 14.37 12.77 4.34 8.47 3.99 5.85
𝑐𝐺 0.115344 0.240704 0.0903214 0.0618426 0 0.3373450
𝑐𝐺 rewired 0.130678 0.317215 0.008369 0.0039301 0.0426288 0.0007485
𝑐𝐺 reconstructed 0.135231 0.274288 0.0053362 0.0052691 0.0101086 0.0004559
̌𝑐𝐺 0.193433 0.246269 0.106857 0.1838883 0 0.3090331
̌𝑐𝐺 rewired 0.136781 0.262551 0.0160285 0.0101128 0.0521739 0.0006107
̌𝑐𝐺 reconstructed 0.173246 0.294923 0.0053428 0.0150660 0.0347826 0.0006107
𝛾 None None None 2.2 None 4.8

Table B.14: Statistics of largest connected component of six Dutch semantic networks extracted from
ConceptNet.

B.8. Japanese

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
𝑁 457 41,809 8,300 14,156 44,758 2,235 11,147
𝐿 401 90,002 15,585 20,810 104,668 1,378 8,477
𝑑𝑚𝑎𝑥 15 1118 225 145 1163 7 15
𝐸[𝐷] 1.75 4.31 3.76 2.94 4.68 1.23 1.52
ANND 3.07 87.79 23.36 12.36 86.75 1.44 2.16
ANND rewired 2.98 57.03 22.57 16.26 58.14 1.51 2.53
ANND reconstructed 2.91 56.30 21.45 16.02 57.14 1.51 2.51
𝑐𝐺 0.0056285 0.1782808 0.1063128 0.1344127 0.1778910 0.0019985 0.0897062
𝑐𝐺 rewired 0.0001858 0.0062874 0.0060578 0.0024470 0.0064016 0.0000000 0.0000000
𝑐𝐺 reconstructed 0.0003456 0.0071730 0.0066768 0.0025707 0.0064782 0.0000000 0.0000000
̌𝑐𝐺 0.0156454 0.0278480 0.0720310 0.1095622 0.0315147 0.0129870 0.3336179
̌𝑐𝐺 rewired 0.0039113 0.0063782 0.0091209 0.0051749 0.0062536 0.0000000 0.0000000
̌𝑐𝐺 reconstructed 0.0078227 0.0075674 0.0113028 0.0052705 0.0076118 0.0000000 0.0000000
𝛾 None 2.4 2.3 2.3 2.3 4.6 3.3

Table B.15: Statistics of seven Japanese semantic networks extracted from ConceptNet.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
𝑁 38 40,256 7,230 7,200 43,286 20 230
𝐿 55 89,040 14,855 15,623 103,778 20 314
𝑑𝑚𝑎𝑥 15 1118 225 145 1163 3 15
𝐸[𝐷] 2.89 4.42 4.11 4.34 4.79 2 2.73
ANND 8.12 91.11 26.54 22.19 89.64 2.42 4.98
ANND rewired 7.03 58.69 23.38 21.30 59.06 2.35 5.27
ANND reconstructed 6.71 57.00 22.74 21.02 57.80 2.37 5.54
𝑐𝐺 0.0676901 0.1846882 0.1199764 0.1793375 0.1835516 0 0.187087
𝑐𝐺 rewired 0.142064 0.0072961 0.0088438 0.0065473 0.0068235 0.0833333 0.0277398
𝑐𝐺 reconstructed 0.165176 0.0074941 0.0081923 0.0075345 0.0074216 0 0.0147212
̌𝑐𝐺 0.0446097 0.0278460 0.0720742 0.1055655 0.0315140 0 0.277652
̌𝑐𝐺 rewired 0.111524 0.0062355 0.0102078 0.0109094 0.0064250 0.111111 0.0293454
̌𝑐𝐺 reconstructed 0.130952 0.0075228 0.0128349 0.0113982 0.0080536 0 0.0293454
𝛾 None 2.4 2.3 2.2 2.3 None None

Table B.16: Statistics of largest connected component of seven Japanese semantic networks
extracted from ConceptNet.
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B.9. Finnish

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 2,615 17 35,800 37,718 1,730 24,595
𝐿 2,152 14 32,340 34,443 1,033 17,660
𝑑𝑚𝑎𝑥 64 11 86 86 7 38
𝐸[𝐷] 1.65 1.65 1.81 1.83 1.19 1.44
ANND 8.35 7.59 14.77 14.72 1.42 2.04
ANND rewired 6.02 7.24 9.29 9.27 1.45 2.18
ANND reconstructed 5.94 2.13 9.29 9.30 1.47 2.18
𝑐𝐺 0.0216604 0.0000000 0.0500543 0.0517182 0.0000000 0.0862996
𝑐𝐺 rewired 0.0004001 0.0000000 0.0000996 0.0002309 0.0000000 0.0000000
𝑐𝐺 reconstructed 0.0003591 0.0000000 0.0002141 0.0002135 0.0000000 0.0000000
̌𝑐𝐺 0.0128492 0.0000000 0.0228548 0.0236020 0.0000000 0.2060870
̌𝑐𝐺 rewired 0.0032123 0.0000000 0.0007734 0.0009631 0.0000000 0.0000000
̌𝑐𝐺 reconstructed 0.0037964 0.0000000 0.0011097 0.0011536 0.0000000 0.0000000
𝛾 2.7 None 3.0 2.9 4.3 4.0

Table B.17: Statistics of six Finnish semantic networks extracted from ConceptNet.

Network Is-A Part-Of Related-To Union Antonym Synonym
𝑁 76 12 4,483 6,958 24 1,569
𝐿 75 11 5,152 7,846 23 1,756
𝑑𝑚𝑎𝑥 64 11 86 86 6 25
𝐸[𝐷] 1.97 1.83 2.30 2.26 1.92 2.24
ANND 54.32 10.17 18.90 19.57 3.41 4.21
ANND rewired 52.96 10.17 10.97 10.95 2.96 3.75
ANND reconstructed 20.80 2.67 10.98 11.12 2.71 3.69
𝑐𝐺 0.0000000 0.0000000 0.0623683 0.0580776 0.0000000 0.0891202
𝑐𝐺 rewired 0.0000000 0.0000000 0.0021050 0.0014318 0.0513889 0.0000000
𝑐𝐺 reconstructed 0.0026484 0.0000000 0.0030546 0.0017647 0.1000000 0.0003612
̌𝑐𝐺 0.0000000 0.0000000 0.0294814 0.0247665 0.0000000 0.0932416
̌𝑐𝐺 rewired 0.0000000 0.0000000 0.0083471 0.0069679 0.0714286 0.0000000
̌𝑐𝐺 reconstructed 0.0037453 0.0000000 0.0099455 0.0059455 0.1428571 0.0006258
𝛾 None None 2.4 2.6 None 4.2

Table B.18: Statistics of largest connected component of six Finnish semantic networks extracted
from ConceptNet.
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B.10. Chinese
Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
𝑁 6,932 11,479 4,004 7,507 18,426 79 145,262
𝐿 11,774 16,136 6,131 10,270 33,186 45 79,220
𝑑𝑚𝑎𝑥 207 434 155 1129 435 3 10
𝐸[𝐷] 3.40 2.81 3.06 2.74 3.60 1.14 1.09
ANND 26.25 63.70 12.21 162.93 57.97 1.24 1.10
ANND rewired 22.44 41.65 13.98 185.39 42.40 1.23 1.25
ANND reconstructed 21.92 41.00 14.73 163.25 41.54 1.28 1.25
𝑐𝐺 0.0179595 0.0297284 0.0358902 0.0083528 0.0369246 0 0.0489128
𝑐𝐺 rewired 0.0056755 0.0089165 0.0052837 0.0616974 0.0072875 0 0.0000000
𝑐𝐺 reconstructed 0.0069028 0.0098144 0.0039351 0.0665837 0.0072398 0 0.0000000
̌𝑐𝐺 0.0174370 0.0127920 0.0579787 0.0003615 0.0232420 0 0.8347986
̌𝑐𝐺 rewired 0.0119444 0.0150729 0.0107718 0.0032367 0.0139189 0 0.0000000
̌𝑐𝐺 reconstructed 0.0146595 0.0192065 0.0083151 0.0049678 0.0162964 0 0.0000000
𝛾 2.5 2.3 2.7 1.9 2.3 None 5.6

Table B.19: Statistics of seven Chinese semantic networks extracted from ConceptNet.

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
𝑁 6,355 10,073 3,417 3,163 17,128 4 17
𝐿 11,366 15,212 5,748 6,424 32,344 3 19
𝑑𝑚𝑎𝑥 207 434 155 1129 435 3 9
𝐸[𝐷] 3.58 3.02 3.36 4.06 3.78 1.5 2.24
ANND 28.38 72.27 13.96 383.10 62.20 2.5 3.79
ANND rewired 22.82 46.03 15.19 381.71 44.52 2.5 4.47
ANND reconstructed 23.00 43.50 15.21 212.58 42.50 1 4.25
𝑐𝐺 0.0194065 0.0338779 0.0420557 0.0130727 0.0397228 0 0.0702614
𝑐𝐺 rewired 0.0073810 0.0118020 0.0065544 0.3140124 0.0089426 0 0.119281
𝑐𝐺 reconstructed 0.0084757 0.0131889 0.0065041 0.2059449 0.0092014 0 0.140523
̌𝑐𝐺 0.0174636 0.0128126 0.0582090 0.0003313 0.0232570 0 0.0576923
̌𝑐𝐺 rewired 0.0152167 0.0177354 0.0126360 0.0092905 0.0145521 0 0.0576923
̌𝑐𝐺 reconstructed 0.0157160 0.0228107 0.0132431 0.0142171 0.0175878 0 0.115385
𝛾 2.5 2.3 2.7 1.9 2.3 None None

Table B.20: Statistics of lcc of seven Chinese semantic networks extracted from ConceptNet.
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Appendix

This Appendix shows the statistics of 4 properties of semantic networks from the
eleven languages. Each property is compared among the seven networks for the
eleven languages.

C.1. Maximum Degree

Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
English 198 2,913 116 4,025 5,263 38 103
French 773 804 78,952 78,957 49 113
Italian 247 6 1,355 1,355 7 15
German 2,228 4 2,542 2,593 10 284
Spanish 32 6 65 76 4 61
Russian 105 2 113 117 7 23
Portuguese 110 8 294 294 6 34
Dutch 40 24 17 45 17 34
Japanese 15 1,118 225 145 1,163 3 15
Finnish 64 11 86 86 6 25
Chinese 207 434 155 1,129 435 3 9

Table C.1: Maximum degree 𝑑𝑚𝑎𝑥 of semantic networks in different languages.

77



78 C. Appendix

C.2. Degree Correlation Coefficient
Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
English -0.146332 -0.0827203 -0.155642 -0.0884337 -0.0837246 -0.0046235 0.104139
French -0.120703 -0.14666 0.0024895 0.0023905 -0.100085 -0.0518867
Italian -0.274367 -0.822804 -0.0333226 -0.0327359 -0.414141 0.0686239
German -0.0508463 -1 -0.054565 -0.0602081 -0.303106 -0.05007
Spanish -0.304536 -0.692961 -0.668534 -0.650121 -0.641026 -0.0616795
Russian -0.18001 -1 -0.0561318 -0.0791576 -0.844636 -0.234003
Portuguese -0.15915 -0.609884 -0.200251 -0.11843 -0.536266 0.0918521
Dutch -0.357844 -0.531119 -0.227659 0.24378 -0.310662 0.118875
Japanese -0.53168 -0.10287 -0.0883566 -0.0919621 -0.0987381 -0.212121 0.167217
Finnish -0.783611 -1 -0.442636 -0.472006 -0.564626 -0.143689
Chinese -0.0836939 -0.204188 -0.0057228 -0.268103 -0.138984 -1 -0.249394

Table C.2: Degree correlation coefficient 𝜌𝐷 of semantic networks in different languages.

C.3. Average Clustering Coefficient
Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
English 0.0021657 0.056611 0.0460611 0.102285 0.103635 0.0150401 0.112972
French 0.133036 0.117774 0.0790695 0.0795575 0.0084102 0.156309
Italian 0.084708 0 0.0533138 0.0601817 0 0.142491
German 0.0705959 0 0.0859303 0.0887972 0 0.177544
Spanish 0.0163449 0 0.0414353 0.0402895 0 0.163778
Russian 0.0419918 0 0.243661 0.223623 0 0.0952778
Portuguese 0.0268333 0.0912698 0.103085 0.0893813 0 0.235342
Dutch 0.115344 0.240704 0.0903214 0.0618426 0 0.337345
Japanese 0.0676901 0.184688 0.119976 0.179338 0.183552 0 0.187087
Finnish 0 0 0.0623683 0.0580776 0 0.0891202
Chinese 0.0194065 0.0338779 0.0420557 0.0130727 0.0397228 0 0.0702614

Table C.3: Average clustering coefficient 𝑐𝐺 of seven semantic networks in different languages.

C.4. Graph Transitivity
Network Has-A Is-A Part-Of Related-To Union Antonym Synonym
English 0.0011555 0.0021951 0.0179152 0.0080132 0.0072214 0.0218321 0.0907131
French 0.0102118 0.0044024 0.0004335 0.0004504 0.0067114 0.151649
Italian 0.0070217 0 0.006599 0.0085331 0 0.277414
German 0.0092892 0 0.0078301 0.011053 0 0.0966821
Spanish 0.0154719 0 0.0083946 0.0080899 0 0.181397
Russian 0.0115815 0 0.212818 0.196513 0 0.103328
Portuguese 0.0081021 0.0447761 0.0112864 0.0168496 0 0.283088
Dutch 0.193433 0.246269 0.106857 0.183888 0 0.309033
Japanese 0.0446097 0.027846 0.0720742 0.105566 0.031514 0 0.277652
Finnish 0 0 0.0294814 0.0247665 0 0.0932416
Chinese 0.0174636 0.0128126 0.058209 0.0003313 0.023257 0 0.0576923

Table C.4: Graph transitivity ̌𝑐𝐺 of seven semantic networks in different languages.



D
Appendix

This appendix provides the plots (in log-log scale) of degree distribution of all semantic
networks, and the estimation of power-law exponents 𝛾 using logarithmic binning.

For networks have fewer than 1000 nodes, we do not show the degree distribution
as we do not estimate their power-law exponent. Additionally, we do not estimate the
power-law exponents 𝛾 for networks that do not have power-law degree distribution.
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Figure D.1: Degree distributions of six French semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.1: Degree distributions of six French semantic networks and power-law exponents
estimation over logarithmically binned degree distribution (cont.).
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D.2. Italian
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Figure D.2: Degree distributions of four Italian semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.3: Degree distributions of four German semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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D.4. Spanish
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Figure D.4: Degree distributions of three Spanish semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.5: Degree distributions of three Russian semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.6: Degree distributions of four Portuguese semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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D.7. Dutch
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Figure D.7: Degree distributions of two Dutch semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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D.8. Japanese
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Figure D.8: Degree distributions of four Japanese semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.9: Degree distributions of three Finnish semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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D.10. Chinese
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Figure D.10: Degree distributions of five Chinese semantic networks and power-law exponents
estimation over logarithmically binned degree distribution.
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Figure D.10: Degree distributions of five Chinese semantic networks and power-law exponents
estimation over logarithmically binned degree distribution (cont.).



E
Appendix

This appendix presents the configurationmodel used to calibrate structural coefficients
of semantic networks. The details of the calibration process are provided as well.

E.1. Undirected Binary Configuration Model
In this thesis, we utilize Undirected Binary Configuration Model (UBCM) [87] to cali-
brate the structural coefficients. The UBCM generates a maximum entropy probability
distribution over a network with the constraints of an expected degree sequence. It
is suitable for undirected and unweighted networks. The resulting maximum entropy
distributions are maximally unbiased with respect to any other property [88].

E.2. Details of Calibration Process
Networks that have fewer than 100 nodes are skipped, because there is a high chance
that there exist no triangles or quadrangles in a sampled network. As a result, the
structural coefficient 𝑥(𝐺𝑖) = 0. When 𝑥(𝐺𝑖) = 0, Eq. 5.9 is undefined.

Since the runtime of the algorithm depends on the size of a network and the choice
of the number of randomized networks 𝑅, we skip the two largest networks French
‘Related-To’ and ‘Union’ with 𝑁 > 1, 200, 000 due to limited time. Because the cal-
ibrated values are arithmetic averages taken over independent samples, intuitively,
any 𝑅 between 100 and 1000 should give a relatively good estimation of the null distri-
bution of a structural coefficient. We also validate that the calibrated values obtained
using 𝑅 = 100 and 𝑅 = 500 differ mostly at the hundredths. Therefore, we use
𝑅 = 500 for most networks. Only for the two large networks, English ‘Related-To’ and
‘Union’, we use 𝑅 = 100 to avoid long computation time.
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