
Adding QUIC support to the Tor network

W. F. Sabée

Adding QUIC support to the Tor network

Master’s Thesis in Embedded Systems

Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

W. F. Sabée

Tuesday 27th August, 2019

Author
W. F. Sabée

Title
Adding QUIC support to the Tor network

MSc presentation
Friday 30th August, 2019

Graduation Committee
Dr.ir. J.A. Pouwelse Delft University of Technology
Dr. S. Roos Delft University of Technology
Dr. N. Yorke-Smith Delft University of Technology

Abstract

Privacy in the Internet is under attack by governments and companies indiscrim-
inately spying on everyone. The anonymity network Tor is a solution to restore
some privacy, however, Tor is slow in both bandwidth and latency. It uses a TCP-
based connection to multiplex different circuits between nodes and this causes dif-
ferent independent circuits to interfere with each other. To solve this, we propose
a transport layer implementation using the UDP-based protocol QUIC, as it allows
independent streams over a single connection. We built a Tor prototype that uses
this protocol and evaluated its performance using a custom network simulator, as
existing simulators were shown to be incompatible. We show that the QUIC-based
implementation increased performance in several of the use case scenarios, mainly
outperforming on the ‘time to first byte’ metric. However, due to certain analy-
sis issues, not all results are conclusive and continued work on our prototype is
required and encouraged.

iv

Preface

No one shall be subjected to arbitrary interference with his privacy,
family, home or correspondence, nor to attacks upon his honor and
reputation. Everyone has the right to the protection of the law against
such interference or attacks.

Article 12 of the 1948 Universal Declaration of Human Rights

Thanks to my supervisor Stefanie, who helped me get through it with her advice
and weekly meetings, to all the proofreaders for their very valuable feedback, with
in particular Kian, and every one else who supported me, even when at times I had
to tell them no for being too busy.

W. F. Sabée

Delft, The Netherlands
Tuesday 27th August, 2019

v

vi

Contents

Preface v

1 Introduction 1
1.1 Problem description . 2
1.2 Research questions . 3
1.3 Contribution . 3
1.4 Thesis outline . 3

2 The Tor network 5
2.1 Connections . 7
2.2 Channels . 7
2.3 Circuits . 8
2.4 Streams . 8
2.5 Cells . 8

3 Internet protocols 11
3.1 Transmission Control Protocol (TCP) 12
3.2 User Datagram Protocol (UDP) 12
3.3 Head-of-line blocking . 13
3.4 TCP congestion protocol . 14

3.4.1 Congestion control and multiplexing 14
3.5 The QUIC transport protocol . 15

3.5.1 Reducing round trips . 16
3.5.2 Reducing retransmissions and blocking 17

4 Related work 19
4.1 IPSec Tor . 19
4.2 DTLS Tor . 20
4.3 uTor . 20
4.4 QuicTor . 20

5 Integrating QUIC in Tor 23
5.1 Design requirements . 23

5.1.1 Head-of-line blocking 23

vii

5.1.2 TCP congestion control 24
5.1.3 Performance . 24
5.1.4 Privacy and anonymity 24
5.1.5 Deployability . 24

5.2 Why QUIC? . 25
5.3 Hop-to-hop . 25
5.4 Tor network layers . 27

6 Implementing QUIC in Tor 29
6.1 QUIC libraries . 29

6.1.1 Quiche . 30
6.2 Tor connection model . 31

6.2.1 Connections . 31
6.2.2 TLSChannel . 33
6.2.3 TLS libraries . 33

7 Tor network simulation 37
7.1 Existing simulators . 37

7.1.1 Shadow . 37
7.1.2 Chutney . 40
7.1.3 NetMirage . 42

7.2 Manual network simulation . 43
7.2.1 Network namespaces . 43
7.2.2 Traffic control . 44
7.2.3 Chutney . 44
7.2.4 Limitations . 46

8 Network performance evaluation 49
8.1 Experimental setup . 49
8.2 Scenario 1: A single circuit path with a single client 50

8.2.1 Results and discussion 51
8.3 Scenario 2: Two circuit paths with two clients, sharing a single node 54

8.3.1 Results and discussion 54
8.4 Scenario 3: A single circuit path with two interfering clients . . . 57

8.4.1 Results and discussion 58
8.5 Scenario 4: Two circuit paths with two clients, sharing two nodes . 62

8.5.1 Results and discussion 62
8.6 Scenario 5: A scaled down Tor network model 66

8.6.1 Results and discussion 66
8.7 Discussion . 67

viii

9 Future work 69
9.1 Network performance evaluation 69
9.2 Prototype implementation . 70

9.2.1 TLS libraries . 70
9.2.2 Backwards compatibility 70

9.3 Performance improvements . 70
9.4 Security review . 71

10 Conclusion 73

ix

x

List of Figures

2.1 Schematic view of a circuit in the Tor network 6
2.2 Schematic view of the network layers in a Tor circuit 7
2.3 Schematic view of the structure of a Tor cell 9

3.1 The OSI model of network layers 11
3.2 Head-of-line blocking problem 13
3.3 TCP congestion control problem with multiplexing. 15
3.4 Connection handshake for TCP, TCP+TLS and QUIC 16
3.5 Multiplexing mutliple requests: HTTPS/2 vs QUIC 17

5.1 Schematic view of the network layers in a Tor circuit with QUIC. . 27

6.1 Tor TCP-based OR connection sequence 32
6.2 Tor QUIC-based OR connection sequence 35

7.1 Packet flow architecture in Shadow 38
7.2 Minimal Shadow network topology 39
7.3 Basic Chutney network definition 40
7.4 Chutney architecture . 41
7.5 NetMirage setup topology . 43
7.6 Manual topology with namespaces and traffic control 45
7.7 Performance metrics of 320 KiB with packet loss 47

8.1 Scenario 1: setup with a single client, single circuit 50
8.2 Scenario 1: time to first byte . 52
8.3 Scenario 1: time to last byte . 53
8.4 Scenario 2: setup with two clients, non-interfering circuits 54
8.5 Scenario 2: time to first byte . 55
8.6 Scenario 2: time to last byte . 57
8.7 Scenario 3: setup with two clients, fully interfering circuits 58
8.8 Scenario 3: time to first byte . 59
8.9 Scenario 3: time to last byte . 61
8.10 Scenario 4: setup with two clients, partially interfering circuits . . 62
8.11 Scenario 4: time to first byte . 63
8.12 Scenario 4: time to last byte . 65

xi

8.13 Scenario 5: time to first byte . 67
8.14 Scenario 5: time to last byte . 67

xii

List of Tables

8.1 Scenario 2: Distribution of stalled and non-stalled clients 56
8.2 Scenario 3: Distribution of stalled and non-stalled clients 60
8.3 Scenario 4: Distribution of stalled and non-stalled clients 64

xiii

xiv

Chapter 1

Introduction

Privacy and anonymity on the Internet are all but an illusion. Edward Snowden
gave us proof that governments all around the world are indiscriminately watching
our every move online, with government intelligence agencies such as the NSA
adopting the all-telling internal slogan ‘Collect it all’ [20]. And this is not with-
out consequences. The Freedom on the Net 2018 report estimates that 71% of all
Internet users live in a country where Internet users have either been arrested or
imprisoned for the political, social or religious content they posted on the Inter-
net [23]. And due to the underlying architecture of the protocols upon which the
Internet is built, anything you do online can be linked back to you if no special
precautions are taken.

It is not just governments that Internet users have to fear are spying on them.
In 2017, The Economist reported that data had overtaken oil as the worlds most
valuable resource [11]. This has led to what some call the age of Surveillance Cap-
italism, where companies such as Google and Facebook have their entire business
models built around collecting as much data as possible about as many people as
possible, all in the name of targetting those people with advertisements. And often
breaking the law in doing so, even after warnings or sometimes record breaking
fines [2, 3, 16, 24, 40].

To illustrate to which extend these companies have access to your online ac-
tivity, Englehardt et al. found that about 85% of the websites in the Alexa top 1
million site list will cause your web browser to make contact with Google servers
on visit, while about 35% of the sites in that list will make your web browser con-
nect to Facebook servers in the background [12]. And this practice has only been
increasing over the years [5, 33]. Even worse, Maris et al. found that 93% of
pornography sites, arguably one of the most private activities that people conduct
on the web, leak information about their users to a third party [37]. Especially in
countries where some sexual orientations or activities are prohibited by law or can
even carry a capital punishment, collecting and sharing this kind of sensitive data
with third parties can be life ruining.

Fortunately, there are precautions users can take to increase their privacy and

1

stay anonymous on the Internet. One of them is the usage of the Tor network to
mask the user’s IP address [9]. Tor is a free anonymity network that is run by
volunteers and consists of several thousands of Tor nodes [48]. The intended use
of Tor is to provide its users privacy by preventing network surveillance by for
example governments or network providers. Simultaneously it provides its users
with anonymity from who they are communicating with, such as the website they
are visiting. It does so by routing the user’s traffic through a number of Tor nodes,
as explained in more detail in Chapter 2, with Figure 2.1 in particular. A network
provider can only observe that the user is using Tor, but not for which purpose. The
visited website can only tell the visitor is using Tor, but not who the user is. Under
the assumption that an adversary can not observe the whole Tor network or control
a majority of the Tor network, the network traffic of the user can not be directly
linked back to them.

1.1 Problem description

Tor is slow and this is a problem [10]. That users value speed can be illustrated
by two statistics: Amazon said an increase in load time of its webpage with 100
ms resulted in a drop in sales of 1% [31], while Google discovered that increase in
page load time from 0.4 seconds to 0.9 seconds decreased traffic and ad revenues
by 20% [34].

While Tor will always inherently be slower than normal, identifiable Internet
usage because of its design (see Chapter 2), part of the performance issues can be
attributed to the way Tor handles traffic between nodes: all traffic between two
nodes is multiplexed over one single TCP connection. For Tor circuits that share
the same TCP connection, this introduces two notable problems:

• Head-of-line blocking: Since TCP traffic is delivered in order and reliable,
dropped packets block all other packets on the same connection until the
missing packet is retransmitted. One dropped packet will therefore increase
the latency of the packets directly after it as they wait for the dropped packet
to be retransmitted, even if these waiting packets have already been received
by the receiver and are unrelated to the dropped packet.

• TCP congestion control: The second problem is caused by the way TCP
controls congestion. Whenever too many packets are dropped, the conges-
tion window is reduced by 50%. When this is caused by a high-latency
high-bandwidth circuit, any unrelated low-latency low-bandwidth circuits
will unfairly suffer from the increased latency because they belong to the
same TCP connection.

These problems have been known for over a decade and one proposal is to use a
UDP-based connection instead [10].

2

1.2 Research questions

The research question this thesis aims to answer is the following:

What are the effects on the performance of the Tor network when using
a UDP-based protocol as the transport layer protocol?

To answer the general research question, the following subquestions will be evalu-
ated:

• How can one best integrate a new transport layer protocol into Tor?

• How can one measure the performance impact of using another transport
layer protocol in Tor?

• What are the performance impacts of using a UDP-based protocol as trans-
port layer protocol on the head-of-line blocking problem in a simple best or
worst case scenario?

• What are the performance impacts of using a UDP-based protocol as trans-
port layer protocol on the TCP congestion control problem in a simple best
or worst case scenario?

• What are the performance impacts in a combined scenario modelled after the
real Tor network of using a UDP-based protocol as transport layer protocol?

1.3 Contribution

This thesis builds upon the existing hypothesis that the TCP-based protocol that
is used by Tor to communicate between nodes has a significant impact on why
Tor is slow and that a UDP-based transport protocol could improve this. It pro-
vides arguments as to why the QUIC transport protocol is a good candidate for this
UDP-based protocol and details a design based on a list of requirements that are
formulated in Section 5.1. To evaluate the performance of this design, the metrics
on how the performance can be measured are defined and a prototype implementing
the design is created. Because existing network simulation tools were not sufficient
in this case, a script was developed to run the Tor network inside a virtualized en-
vironment and existing tools were modified to utilize this environment and to keep
a log of the metrics that are used to evaluate the performance.

1.4 Thesis outline

The contents of this document are structured as follows: Chapter 1 start with the in-
troduction, an overview of the research question and a problem description. Chap-
ter 2 gives background about the Tor network, while Chapter 3 gives background

3

about various Internet protocols. Next, Chapter 4 gives an overview of related
work. Chapter 5 sets out the design of how to implement QUIC in Tor, while
Chapter 6 documents the actual implementation. In Chapter 7 methods to simu-
late the Tor network are detailed and in Chapter 8 the implementation is evaluated
using the chosen method. Finally, Chapter 10 draws a conclusion from the results
and Chapter 9 lists several future improvements.

4

Chapter 2

The Tor network

The Tor network is a circuit-based, low latency anonymity network designed to
anonymize TCP traffic, like web browsing and messaging. The nodes that par-
ticipate in the Tor network are publicly known servers that are run by volunteers
that donate their bandwidth to the network. To use the Tor network, clients create
a circuit of nodes in which the nodes only know their predecessor and their suc-
cessor, but not any other node in the circuit [9]. Traffic is then relayed between
those nodes and because none of them know the full circuit, this breaks linkability
between the Tor client on one side of the circuit, and the traffic destination on the
other side of the circuit. A simplified view of the make-up of a Tor connection is
shown in Figure 2.1, where the user’s Tor client uses an encrypted connection via
three randomly picked Tor nodes (called a circuit) to communicate with the web.

Tor’s threat model makes the assumption that an adversary is not able to observe
the whole network, also known as a global passive adversary. Because of the low-
latency nature of the Tor network, such a strong adversary would be able to follow
the traffic all the way through the network from node to node and link the Tor client
and the destination of the traffic. A high-latency anonymity network where nodes
collect traffic, hold it, mix it with other traffic and only then relay it in batches
defends against this, but this adds such a significant delay to each hop (think tens of
seconds, minutes or more) that this makes it unsuitable for low-latency applications
such as browsing the web. Instead, Tor assumes that an adversary is only able to
observe some subset of the network and in addition is able to generate, modify,
delete or delay traffic, for example by operating or compromising some of the
nodes.

Tor’s threat model also makes the assumption that there is no single adversary
that is in control of a large portion of the Tor nodes. An adversary would need
to grow its part in the network slowly, in different jurisdictions and with different
characteristics as to not cause any suspicion. And even then it is a game of chance
for the Tor client to pick a circuit with enough related nodes. Less sophisticated
adversaries that add a large number of nodes in a short timespan without explicitly
declaring they are related (so that the Tor client knows not to combine them) are

5

Tor network

user tor
client node

guard
node

node

node

node

relay
node

node

exit
node

node

web

Figure 2.1: A schematic view of a circuit in the Tor network. The user’s Tor client
randomly picks a guard node, a relay node and an exit node to set up an encrypted
connection (the green arrows) to anonymously communicate with a web site. Only
the client knows of which nodes the full circuit consists of, while the participating
nodes only know their predecessor and their successor in the circuit, which breaks
linkability.

regularly detected and removed [43].
In the following sections, each layer of the internal and network design of the

Tor network will be detailed. A schematic view of the different layers can be found
in Figure 2.2.

6

conns.

channels

circuits

streams

user client guard relay exit web
TCP TCP TCP TCP TCP

SOCKS TLS TLS TLS HTTP

cells

bytestream

Figure 2.2: A schematic view of the network layers in a Tor circuit, such as the one
shown in Figure 2.1. On the bottom layer are TCP connections (Section 2.1). Con-
nections denoted by a black arrow are local connections, a green arrow connections
with encrypted data, while the red arrow denotes connections with unencrypted
data. The user uses the SOCKS protocol to talk to the Tor client, while the Tor
nodes talk over TLS channels (Section 2.2). Over these channels, the client sends
cells (Section 2.5) to build a circuit (Section 2.3), step by step. Over this circuit a
TCP-like stream (Section 2.4) is established from the user to the destination. The
last node decrypts the data (in this case, HTTP) and forwards it to the destination.

2.1 Connections

The most fundamental layer that Tor uses to communicate between nodes in the
network are connections. The connections between Tor nodes are TCP based (see
Section 3.1) and are used to transport an ordered and reliable stream of bytes be-
tween the nodes. Between every node there is only one connection, which means
that the circuits (see Section 2.3) of multiple clients are multiplexed over a single
connection. This is done for both performance and anonymity reasons. Reusing an
existing connection means no time is spent on a TCP handshake every time a new
circuit is built. In addition to that, heavily used relays might serve tens or hundreds
of thousands of nodes at the same time. Keeping open that many TCP connections
uses up unnecessary resources and might not even be possible by default on some
operating systems. Reusing connections also means that an outside passive ob-
server can not easily distinguish between the traffic of different circuits, improving
anonymity and the unlinkability of those circuits.

2.2 Channels

Channels are an abstraction over the connections between Tor nodes that are used
to carry cells (see Section 2.5). They are mostly an internal abstraction of Tor that
is used to add encryption to the connection and to provide a simpler cell based
interface between nodes. Currently, the only channel implementation in Tor is
the TLS channel, that creates a TLS connection between nodes and buffers byte

7

streams to send and receive cells.
The TLS encryption that the channels utilize, uses ephemeral keys. This protects

the data from both active and passive attackers. Because the keys are single use, a
single key disclosure does not compromise all past traffic. By using TLS, Tor also
tries to hide itself from detection by emulating regular web traffic.

2.3 Circuits

Circuits are a series of nodes that a Tor client incrementally builds to create a
virtual circuit of encrypted connections through the Tor network. As can be seen
in Figure 2.2, the circuit consists of three hops. For the first hop, the Tor client first
picks one of its three guard nodes, which are the main nodes the client uses to talk
to the Tor network. These nodes stay the same for long periods of time for security
reasons [36]. For the second hop, the Tor client picks a random node to use as its
relay node and then extends the circuit through the guard node to the relay node.
For the last hop, the Tor client picks a random exit node, a special node that allows
traffic to leave the Tor network, and extends the circuit through the guard and relay
node to the exit node. Since each node in the circuit is only aware of the previous
hop and the next hop1, no individual relay is aware of the complete path the circuit
consists of. Once the circuit is set up, it can be used to transport streams.

Under the assumption that there is no global passive observer that can see all
traffic and the nodes that the client has selected do not work together, it is not
possible for a malicious node to link the client with the contents and destination of
the traffic.

2.4 Streams

Streams are direct TCP-like connections over a circuit between the Tor client and
the target server, usually a web server. Just like TCP, it is an ordered and reliable
stream of bytes. The data in a stream is encrypted and decrypted while it is relayed
along the circuit, with each node stripping off one additional layer of encryption.
Once it reaches the exit node, the stream data is fully decrypted2 and forwarded to
the target server.

2.5 Cells

Cells are the messages that nodes use to communicate between each other. Whereas
connections deal with streams of bytes (like in TCP), channels and circuits deal

1The guard node is only aware of the client and relay node. The relay node is only aware of the
guard and exit node, and the exit node is only aware of the relay node and destination of the traffic.

2Although many applications, like web browsers, nowadays use their own encryption which
would prevent the exit node from inspecting the data in the clear.

8

with cells, which can be compared to the datagrams in UDP, although cells have a
fixed, predefined length. However, because they are sent over a TCP connection,
they do have an ordering and delivery guarantee.

Cells come in two types: control cells and relay cells. Both cell types have a
circuit id field to associate them with a specific circuit. Control cells include
a command that is to be interpreted by the node that receives them, for example a
connect cell that is used to establish a circuit between two nodes. Control cells
are encrypted with (only) the public key of the receiving node and thus only the
receiving node is able to read the contents of the cell.

The other type of cells are relay cells. These cells have their command set to
relay and contain additional headers before the payload, such as a stream id,
digest and relay cmd. Whenever a relay cell is received, the cell is decrypted
and the hash in the digest header is checked. If this hash matches the cell3,
this means the contents are successfully decrypted and the cell is interpreted by the
receiving node. If the digest head does not match, there is still another layer of
encryption around the relay cell. The receiving node looks up the next node using
the circuit id and relays the cell. This design guarantees that a Tor client can
communicate securely with any node in the circuit while each node only knows
the its predecessor and successor, but never the whole circuit. Because cells are
padded to have a fixed length, it is not possible to infer what kind of command or
content the cell contains by its length. A schematic view of the structure of a cell
can be found in Figure 2.3.

Figure 2.3: A schematic view of the structure of a Tor cell. At the top is a control
cell: the first two bytes contain a circuit identifier (CircID) and the third byte is a
one byte command (CMD). The remaining 509 bytes contain the payload (DATA).
At the bottom is the relay cell. This is a cell with the third byte set to the relay
command. Relay cells contain an additional header in front of their payload which
consist of a two byte stream identifier (StreamID), a 6 byte digest over the payload
(Digest), a 2 byte payload length field (Len) and a one byte relay command (CMD)
field. The remaining 498 bytes contain the payload (DATA). Figure taken from [9].

3Since the digest field contains 48 bits, the chance of an accidental match is 2−48, which is a
practical impossibility.

9

10

Chapter 3

Internet protocols

To understand the underlying problems with Tor, a basic understanding about the
used network protocols is required. The standards that are for network communi-
cations are divided in layers according to the Open Systems Interconnection (OSI)
model. Figure Figure 3.1 shows a schematic view of the model and its layers.

Figure 3.1: The Open Systems Interconnection (OSI) model that defines the ab-
straction layers that are used in network communications. Image taken from [7].

The two bottom layers contain the protocols to exchange simple data frames on a
local network connection, such as Wi-Fi. On top of that is the network layer, which

11

is the layer that does IP addressing and routing. Tor uses IP addresses to address
other nodes in the network. On top of that is the transport layer, which contains
protocols to exchanges sequences of bytes between hosts. In the case of Tor, this is
the TCP protocol that is used to set up connections between nodes. It corresponds
to the connections as described in Section 2.1. The three upper layers in the model
are usually handled by the application and in practice, the strict distinction between
the three is not always well defined. In case of Tor, these layers contain the TLS
session and the Tor protocol itself.

In the following sections, the main focus is on the protocols that are contained in
layer 4, the transport layer, with in particular the TCP and UDP protocols in Sec-
tions 3.1 and 3.2. The head-of-line blocking and TCP congestion control problem
that were identified in Section 1.1 are further explained in Sections 3.3 and 3.4.
And finally, the proposed replacement transport layer protocol QUIC is detailed in
Section 3.5.

3.1 Transmission Control Protocol (TCP)

TCP, or the Transmission Control Protocol [8], is one of the main Internet proto-
cols. It is designed to send an ordered and reliable stream of data over the network
between two endpoints. It provides limited data integrity using checksumming and
uses ports for source and destination addressing. TCP is based on connections,
and before two endpoints can communicate, a connection has to be setup between
specifying a specific port on the other endpoint using a 3-way handshake. Data
streams that are sent over the TCP network are put into packets with a header spec-
ifying several options of the packet and reassembled at the other endpoint. When
a packet is dropped for whatever reason, TCP will detect this and transparently re-
transmit the dropped packets. This causes all other pending packets to be blocked
until every preceding packet has been acknowledged. It also uses congestion and
flow control to make optimal use of the network connection without oversaturating
it.

Other than that, TCP presents itself as an interface to a ‘dumb’ data pipe that
only sees a stream of bytes. Encryption and other features have to be implemented
on the application level. If multiple independent connections are multiplexed over
a single TCP connection, such as when tunnelling other TCP connections or re-
questing multiple files or pages over a single HTTP/2 connection, these indepen-
dent connections can interfere with each other as described in Sections 3.3 and 3.4.

3.2 User Datagram Protocol (UDP)

UDP, or the User Datagram Protocol [45], mainly differs from TCP in the sense
that it is not stream based. Instead it is a message based protocol that communicates
using datagrams. Like TCP, it provides limited data integrity using checksumming
and uses ports for source and destination addressing, but lacks all other features

12

that TCP provides. As a connectionless protocol, it has no concept of connections,
and there is no handshake to setup a connection. It gives no guarantees in terms
of delivery, ordering or duplicate detection, and leaves it up to the application to
implement these features, if necessary.

Since UDP is little more than a simple header around datagrams, it is often used
as a transport protocol to tunnel other existing protocols that are not widely sup-
ported over the Internet, or to implement new protocols without requiring support
from intermediate routers, such as QUIC (see Section 3.5).

3.3 Head-of-line blocking

Reliable and in order delivered connections, such as TCP, work on a first-in first-
out (FIFO) basis to preserve the order of the packets. A single dropped packet
will block all other packets behind it until it is retransmitted. Every packet that
arrives has to be acknowledged by the receiving party. TCP uses cumulative ac-
knowledgement for this, which means that an acknowledgement for a single packet
implicitly means that all packets that were transmitted before the acknowledged
packet are also acknowledged. This reduces the number of acknowledgements,
but also means that every packet that comes after a dropped packet will also be
retransmitted, even if it has already been received.

Figure 3.2: A schematic view of the head-of-line blocking problem. Clients OP1

and OP2 both have a circuit that goes from Tor relay OR1 to OR2. The rectangular
blocks represent packets that are currently in transit, their colour corresponding to
the originating client. OP1 has a high latency, high bandwidth load, while OP2 has
a low latency, low bandwidth load. Now that one of OP1 packets is lost, all packets
already in transit are delayed until the lost packet is retransmitted. The packet from
OP2, unrelated with the dropped packet, is punished with additional, unnecessary
delay.

The Head-of-line blocking problem applies when packets that are unrelated
share the same FIFO buffer, in this case a TCP connection. An example is shown
in Figure 3.2. In a worst case scenario, client OP1 has a high bandwidth load

13

without a low latency network load, such as downloading a big file. This causes
many packets to be transmitted, but latency is not an issue. Client OP2 has a low
bandwidth, low latency network load such as browsing webpages. As mentioned
in Section 1.1, even a small additional latency is perceived as slow by many users.

Since Tor multiplexes the data of different circuits over a single TCP connection,
they share the same FIFO buffer. The packets between node OR1 and OR2 show
the packets that are in transit. Now that the first packet, originating from OP1, is
dropped, all packets that are already in transit will not be accepted by OR2, even if
the packet behind that originated from OP2. Instead, OR1 will first have to detect
that the packet was lost (by lack of acknowledgement within a specific timeout)
and then start retransmitting again from the lost packet. This means all packets
after it, that were already in transit, will be retransmitted too. Only after successful
retransmission of the packet for OP1 will the packet for OP2 be received by OR2

with additional latency, even though those packets are independent of each other.

3.4 TCP congestion protocol

When a network connection gets oversaturated with more incoming traffic than it
can handle, congestive collapse might occur. In this state, network performance
is severely degraded by a large amount of dropped packets. To prevent this, TCP
utilizes congestion control algorithms to slow down the transmission of packets
when a network becomes saturated (or speed up again when possible). To do this it
maintains a congestion window, which is the number of unacknowledged packets.
Once the window is full, it stops transmitting packets until previously transmitted
packets are acknowledged and free up the congestion window.

3.4.1 Congestion control and multiplexing

When a network connection becomes oversaturated, packets will start to drop.
Most congestion control algorithms will take this as a signal to reduce the con-
gestion control window. An example is shown in Figure 3.3. Here client OP1 has
a high bandwidth load without a low latency network load, such as downloading
a big file. This causes many packets to be transmitted, but latency is not a large
issue. Client OP2 has a low bandwidth, low latency network load such as browsing
webpages, for which increased latency is highly perceivable.

Since Tor multiplexes the data of different circuits over a single TCP connection,
they share the same congestion window. Now when the network link between OR1

and OR2 starts to get saturated and packets start to get dropped, OR1 will decrease
its congestion window by halving it. Decreasing the congestion window leads to a
lower bandwidth and a higher latency for both clients, even though it was the many
packets of OP1 that caused the reduction in window size.

14

Figure 3.3: Schematic view of the TCP congestion control problem with multi-
plexing. Clients OP1 and OP2 both have a circuit that goes from Tor relay OR1

to OR2. The rectangular blocks represent packets, their colour corresponding to
the originating client. OP1 has a high latency, high bandwidth load, while OP2

has a low latency, low bandwidth load. Now when the network link between OR1

and OR2 starts to get saturated and the shown packet is dropped, OR1 will halve
its congestion control window, leading to a lower bandwidth for both clients. OP2

gets punished with reduced bandwidth because of the many unrelated packets from
OR1.

3.5 The QUIC transport protocol

QUIC is a protocol designed by Google in order to improve the latency of HTTP/2’s
multiplexed connections [50, 25]. After showing the improvements by deploying
it in their own browser, it was adopted by the IETF under the IETF QUIC Working
Group, which split the protocol into multiple parts. The QUIC transport layer and
the HTTP-over-QUIC, also known as HTTP/3, are the two main parts [18].

The QUIC transport layer aims to be a replacement for the TCP protocol, pro-
viding (multiple) ordered and reliably streams of data. It is mainly focussed on
reducing latency by reducing the number of round trips and by having native sup-
port for multiplexing multiple data streams into a single connection. It also has
native support for encryption, based on TLS 1.3. Instead of relying on ports and
IP addresses to keep track of connections, like TCP does, every connection has
a unique identifier which is included in every packet. This allows endpoints to
change IP address without having to reconnect. It is a UDP-based protocol and
implements all its features on top of it.

15

3.5.1 Reducing round trips

TCP has a 3-way handshake and on top of that TLS needs an additional 3 or 4-
way handshake1. In comparison, QUIC combines them into a single handshake by
including the data to set up an encrypted session in the first packet. In order to do
this, it needs to know some things about the other endpoint, such as the supported
cipher suites. Since this is largely static data that does not change very often, it
only has to be requested once and can be cached for every subsequent connection.
The other endpoint can then respond with a certificate and, assuming the initiating
endpoint accepts the certificate as valid, it can start sending encrypted data after
a single round trip. A schematic illustration of the handshake can be found in
Figure 3.4.

Figure 3.4: A schematic comparison of the handshake process between TCP,
TCP+TLS and QUIC. Most secure connections, such as HTTPS web traffic and
Tor connections between nodes, use the TCP+TLS handshake to set up a connec-
tion. Because the connection and encryption layer are strictly separated, the TLS
handshake can only be started once the TCP connection handshake is fully com-
pleted. QUIC combines the two layers and, in the best case, is able to immediately
start sending data with the first packet, greatly reducing the time needed to set up a
secure connection. Image taken from [4].

In order to reduce the number of round trips for subsequent new connections
even more, the client can also use a special cookie provided previously by the
server. Because the client already has the certificate of the server, it can skip the
first packet and immediately start sending encrypted data without a single round
trip. It includes this cookie in the packet in order to authenticate itself to the server.
This is similar to the 0-RTT handshake in TLS 1.3. However, some concerns have

1Depending on the version and features like 0-RTT.

16

been raised about the security of this method, for example because of the lack of
perfect forward secrecy or the protection against replay attacks [13].

3.5.2 Reducing retransmissions and blocking

Because QUIC is a UDP-based protocol which has no loss detection or retransmis-
sion support, it implements those as part of the protocol. Because QUIC has native
support for multiplexing multiple streams of bytes over a single connection, it also
implements retransmission on a per-stream basis. If a single packet is dropped,
only the stream that the packet belongs to has to wait for retransmission. This
solves the head-of-line blocking issue of TCP detailed in Section 3.3, without the
loss of performance or security. A schematic view of the differences can be found
in Figure 3.5.

Figure 3.5: At the top is a normal HTTP/2 client multiplexing three different re-
quests over a single TCP connection. Because TCP only supports one single stream
at a time, the requests are handled sequentially. At the bottom, a QUIC client mul-
tiplexing the same three requests over a single UDP connection. Because UDP
is unordered and QUIC supports multiple streams at the same time, requests are
handled in parallel and do not interfere with each other. Image taken from [44].

Congestion control is also implemented on a per-stream basis and could even use
different algorithms for different network loads. This solves the TCP congestion
control issue as detailed in Section 3.4. An additional way that is being explored
to reduce retransmission is to make use of the unused space in packets and include
Forward Error Correction information in that space. This would make it possible
to reconstruct a dropped packet with the data from other packets, preventing the
need to retransmit that packet entirely. Another improvement over TCP and TLS is

17

to encrypt all packets individually. This is not possible in TCP because it exposes
a stream of bytes to the TLS layer. The TLS layer has no knowledge about where
a packet starts or ends. Because QUIC encrypts all packets encrypts individually,
it is possible to decrypt them while previous packets are still being retransmitted.

18

Chapter 4

Related work

Others have tried to solve the problems performance problems in Tor in various
ways, ranging from relatively small transport layer changes to almost complete
overhauls of the network model. To give an overview of the previous research,
some of them are detailed in the sections below.

4.1 IPSec Tor

Kiraly et al. [30] showed the performance penalties of running TCP over TCP tun-
nels and propose using a Layer 3 approach with a combination of NAPT and IPSec
to solve these performance issues. Instead of using TLS over TCP, the connections
between nodes are encrypted on a lower level, by using the kernel space imple-
mentation of IPSec. When used in tunnel mode, this encrypts the full IP packet,
including the header, making the destination IP and port of the packet confidential.
Instead of using circuit ids like in the current implementation of Tor, they propose
using the NAPT (dest ip, trans proto, dest port) tuple as a label for
which circuit the packets belong to. This has the advantage that you have a real
network that can transport TCP, UDP and any other transport layer protocol.

However, this is also a disadvantage. Because the packets in the transport layer
are forwarded as-is, it is now possible to fingerprint the originating network stack
at the destination side of the circuit. Tools are readily available for this purpose,
such as the OS detection feature in the nmap utility [51]. In addition to that,
while relying on the host Operating Systems IPSec implementation for encryption
might give a slight performance boost because there is less time spent on moving
bytes between user space and kernel space, it could also reduce the security and
portability. Not all hosts might have the latest updates applied and the kernel has
to be trusted to correctly apply all encryption which might reduce security and
because not all Operating Systems might have a compatible IPSec implementation
available it might reduce portability. In addition to that, the deployability of this
solution is very low because it would require setting up a whole new network,
without any backwards compatibility with the existing Tor network.

19

4.2 DTLS Tor

Joel [49] noted the same problems with Tor as described in Chapter 3 and proposed
to use TCP-over-DTLS to improve the performance. This is done by replacing all
system TCP sockets with user space TCP sockets and wrapping the resulting TCP
data inside a DTLS packet, a protocol which uses the TLS protocol over UDP data-
grams. Since the packets are now wrapped inside a DTLS packet, it is possible to
establish a new TCP connection for each circuit instead of multiplexing them over
a single TCP connection without the security and performance penalties as stated
in Section 2.1. This solution is quite similar to how a QUIC-based implementation
of Tor would be, although it does not solve the latency penalties such as the ones
that are associated multiple round trips to set up a secure connection. In fact, the
QUIC design document [50] states that:

The eventual protocol may likely strongly resemble SCTP, using en-
cryption strongly resembling DTLS, running atop UDP.

In that quote SCTP is used to multiplex different streams over a single connec-
tion instead of multiple TCP connections, but the idea is similar. It seems that using
QUIC is an incremental improvement over the TCP-over-DTLS design.

4.3 uTor

Nowlan et al. [41] noted that the strict in-order delivery of TCP was one of the con-
tributing factors of why Tor is slow and proposed using unordered TLS (uTLS) over
unordered TCP (uTCP) to improve the performance. Limited evaluation seems to
suggest that this indeed solves the head-of-line-blocking problem as described in
Section 3.3. While the solution has the advantage that this only requires a very
limited amount of code to be changed in the Tor code base and it does not alter
wire-format of the traffic an outside observer would observe (in other words, it
would not interfere with the ability of Tor to blend in with normal TLS traffic), it
has the major downside that using uTLS requires a kernel patch which makes the
probability of it ever being widely deployed very unlikely, even more so if this is
to be supported on the client side as well.

4.4 QuicTor

Ku et al. [32] also noted the current performance issues of Tor as described in
Chapter 3, and also found that an UDP-based network protocol might be a way to
solve those performance issues and found that QUIC might be a good candidate. At
the time, the QUIC protocol was still a Google-only experiment that they were test-
ing in their own web browser and was not yet adopted by the IETF working group
in order to be standardized. They made a prototype by wrapping the Chromium

20

QUIC network stack in a custom and now unmaintained wrapper to simulate a
TCP socket-like API and integrated it into a now obsolete version of Tor.

Additionally they had a flaw in their implementation: the identifier that Tor gives
to the end-to-end streams between a Tor client and an exit node (via the circuit)
were reused as the stream id values of the QUIC streams. This has the benefit
that streams using the same circuit do not interfere with each other, but this has two
drawbacks: first of all, the Tor stream identifiers are only known to the beginning
and end of the Tor stream, not the nodes in between. The relaying nodes have
the Tor stream identifier default to zero, meaning that all the node traffic would
then share the same QUIC stream number zero. Secondly, if all Tor streams would
use their own QUIC stream, this would leak information to the relaying nodes as
they can now distinguish between different streams inside a circuit, increasing the
chance of linkability.

Despite that and the limited performance and security analyses, the results still
suggest that using QUIC as the UDP-based transport protocol in Tor could indeed
an improvement over the current TCP-based Tor implementation and a topic worth
researching.

21

22

Chapter 5

Integrating QUIC in Tor

There are multiple ways to switch out the current TCP-based transport layer proto-
col that Tor uses. There are multiple options to as to what to replace TCP with, as
only UDP does not provide many of the features that Tor relies on, such as man-
aging connections and congestion control. Additionally, there is a choice between
implementing these features hop-to-hop or end-to-end. In the former case, the con-
nection and channel layers of the Tor network model (see Chapter 2) are modified
and only the direct connections between nodes use the new UDP-based protocol.
The second option would mean implementing them on the stream layer of the Tor
network model, simulating a real end-to-end connection, and doing no (or less)
ordering, congestion control and other network features on the lower levels.

In the first part of this chapter, a list of design requirements is formulated that
the new design will have to comply with. Based upon these requirements, a case is
made why QUIC was chosen as the new transport layer protocol and the decision
to use hop-to-hop instead of end-to-end is explained. Finally, it is described how
these design choices will fit in the current Tor network architecture.

5.1 Design requirements

In order for the design to be a clear improvement over the current version of the
Tor implementation, several requirements have been formulated. They are based
on the observations made about the shortcomings in the previous chapters and .

5.1.1 Head-of-line blocking

In the current implementation of Tor, several circuits are multiplexed over a single
TCP connection. One of the observations of Dingledine et al. was that this is a
contributing factor as to why Tor is slow [10].

Independent Tor cells that belong to different circuits and that are multiplexed
over the same connection should not block unrelated cells from being delivered,

23

for example when a cell is dropped. In other words, the design should solve the
problem called head-of-line blocking, as detailed in Section 3.3.

5.1.2 TCP congestion control

As described in the previous requirement, independent Tor cells that belong to
different circuits that are multiplexed over the same TCP connection also share
the same TCP congestion control algorithm and congestion window. Whenever it
resizes the congestion window, it applies to all circuits.

Independent Tor cells that belong to different circuits and that are multiplexed
over the same connection should not share the same congestion window and should
not slow down other circuits when they oversaturate the network link. In other
words, the design should solve the TCP congestion control problem as detailed in
Section 3.4.

5.1.3 Performance

Since the goal of the design is to improve the performance of Tor, one of the key
requirements is the ability to evaluate the performance and to verify it is actually
improved. The performance of normal use of the Tor network should not be nega-
tively impacted.

There are two metrics on which the performance will be evaluated. First is the
time to first byte, which is the time it takes between initiating a connection and get-
ting the first byte from the remote server, which takes a full round trip. The second
metric is the time to last byte, which is the time between initiating a connection and
getting the last byte from the remote server, after which the connection is usually
closed. For the exact definitions used during the evaluation, see the descriptions in
Section 8.1.

5.1.4 Privacy and anonymity

As the anonymity of its users is one of the core functions of the Tor network, the
proposed design should not introduce any problems or features that increases the
chance of linkability or decrease the anonymity of the users of the Tor network in
any other way. For example, just not multiplexing different circuits over the same
TCP connection between nodes and instead opening a new TCP connection for
each circuit could improve the two main performance problems that were identified
earlier. However, it is not a valid solution, one of the reasons being that this could
increase the linkability of the circuits because they are now distinguishable to a
passive observer.

5.1.5 Deployability

The solution should be deployable in stages. As the Tor is a decentralized dis-
tributed system, different versions of the software run side by side and not every

24

node in the network will or is able to update to the latest version in a timely matter.
While a significant part of the network uses a reasonably recent version of Tor, over
one sixth of the current Tor relays still use a version that is over 3 years old, while
the oldest version that is still being reported was first released six years ago [48].

In other words, the design should be backwards compatible with existing nodes.
If nodes that support QUIC are incompatible with older versions of Tor there will
be a network split which will severely decrease the chance of it ever being de-
ployed.

5.2 Why QUIC?

HTTP connections, which are used by web browsers, have a similar problem as
the Tor network has: websites consist of different elements that are requested sep-
arately, often with a wide variety in size. Loading the text of a web page has
high priority but is usually only a small payload, while downloading big media
files usually has a lower priority but is a big payload. While historically browsers
would open multiple connections and then sequentially send requests over these
connections, waiting for the request to complete before sending a new one, the
more modern HTTP/2 standard multiplexes these requests into a single connec-
tion. But, as HTTP/2 is still using TCP, it suffers from the same drawbacks as Tor
when multiplexing different circuits over a single TCP connection. Work has been
done by Google to create a new UDP-based transport protocol for the next version
of HTTP/3 under the name of QUIC [50].

As described in Section 3.5, the QUIC protocol natively supports multiplexing
independent data streams over a single connection. This allows it to avoid the head-
of-line problem as data that is associated with different streams can be received out
of order. It also has support for congestion control which is independent for each
of the multiplexed streams, which allows it to avoid the TCP congestion control
problem. Additionally, it also uses (modern) TLS to encrypt the connection, just
like Tor uses as its outer layer encryption. Because TLS is integrated directly into
the protocol, it can also reduce latency by doing the connection and secure session
handshake at the same time, instead of sequentially like when setting up a secure
TLS session over TCP. Since it works over UDP instead of TCP, it is possible to
listen on both ports to maintain backwards compatibility with Tor nodes that do not
support QUIC yet.

All this together means that QUIC can replace multiple parts of the Tor network
layers as described in Chapter 2.

5.3 Hop-to-hop

Instead of relaying the QUIC connection over the circuits and making it end-to-
end, the decision was made to only establish the QUIC connection hop-to-hop.
This is because it has multiple advantages over the end-to-end approach, while still

25

solving the two main performance problems that were identified in the old design.
First of all, hop-to-hop has the advantage of being less of a change to the current
Tor network model than making the QUIC connection end-to-end. This makes the
change less invasive with less chance of introducing new unintended security vul-
nerabilities into the design of the network, as well as reducing the implementation
complexity.

Making the QUIC connection dependent on only two communicating nodes in-
stead of all the nodes in a circuit also greatly improves the deployability of the
design. In an end-to-end design, all intermediate nodes in a circuit will have to
be upgraded to a QUIC-capable version or else the whole circuit will have to fall
back on the old design. As noted while defining the deployability requirement in
Section 5.1.5, there is still a significant part of public nodes in the Tor network that
runs an older version. There is a trade-off to be made here by the Tor client: does
it favour security over performance by building a circuit from all possible nodes,
likely falling back to the older, legacy circuits, or does it favour performance over
security by building a circuit from only QUIC-capable nodes, reducing the number
of nodes it can pick from?

But even when most or even all public nodes in the network are updated to a
newer, QUIC-capable version and the client does not have to pick from a reduced
set of nodes to get performance improvements, an end-to-end design is also depen-
dent of the number of clients that are capable of using the new QUIC-based circuits.
Because not only does an end-to-end design expose additional information about
a client to all intermediate nodes in a circuit1, it also exposes extra information to
a passive observer which can observe the traffic between certain nodes, because it
can now differentiate between newer QUIC-capable and older non-QUIC-capable
clients. This could especially increase linkability if your client is either part of a
small number of clients that already builds the new end-to-end QUIC-based circuits
when not many clients have updated, or is part of a small number of clients that
still builds the old legacy circuits when most clients have updated. In an end-to-
end design, this problem can only be fully avoided by switching the whole network
from one type to the other all at once. But again considering that a significant part
of the network still runs a Tor version which was first released many years ago,
this could either take many, many years or this would mean locking out part of the
network until they upgrade.

In contrast, in the case of a hop-to-hop design, any connection between nodes
will opportunistically switch over to a QUIC-based transport protocol when both
sides have upgraded their Tor version. Even clients that have not updated yet will
benefit from the performance improvements when they build a circuit with QUIC-
capable nodes, although the connection from the client to the guard node might
still benefit from a QUIC-based transport. While this will likely improve in the fu-

1Because now the relay and exit node have an additional bit of information about the, unknown
to them, initiator of the circuit: is it running a Tor version new enough to use the new QUIC-based
circuits or not?

26

ture as HTTP/3 will be introduced and becomes popular, some restricted networks
might block UDP traffic while still allowing TCP traffic that looks like normal web
browsing. A client on such a censored or restricted network will have to fall back
on the old implementation without any of the performance benefits in and end-to-
end design, while in a hop-to-hop design it can still benefit.

5.4 Tor network layers

Figure 5.1 is an updated version of Figure 2.2, showing the new layers that are
used when using QUIC. First, the TCP connection between nodes is replaced by
an UDP connection. On top of the connection, there is still an encrypted TLS
layer, although in the new case this TLS layer is now part of the QUIC connection
and therefore handled by the QUIC library instead of as a separate layer. This is
illustrated by having a QUIC channel instead of a TLS channel.

conns.

channels

circuits

streams

user client guard relay exit web
TCP UDP UDP UDP TCP

SOCKS QUIC QUIC QUIC HTTP

cells

bytestream

Figure 5.1: An updated version of Figure 2.2, showing a schematic view of the Tor
network layers when using QUIC. In this updated figure, the TCP connections be-
tween the Tor nodes are replaced by UDP connections. On top of the connections
is still a layer of TLS encryption, but this is now part of the QUIC protocol. This
is illustrated by replacing the TLS channels with a new QUIC channel. Their be-
haviour is the same to the upper layers, other than that the circuit id is reused
to multiplex independent streams for each circuit.

In the original Tor network layers, channels pass the cells they send between
nodes in order, due to the nature of the underlying TCP connection. The order
of the cells can not change during transit2 and the channels themselves do not
care about the contents of the cells. In the new situation, channels will read the
circuit id header of the cell and use the circuit id to create independent
QUIC streams for each circuit. In practice this means that each circuit gets its own
independent byte stream inside the QUIC connection, without the performance
overhead or security loss of multiple TCP connections as described in Section 2.1.

2The packets carrying the cells can, but the TCP stack puts them back into order, making cells
wait for their predecessors.

27

28

Chapter 6

Implementing QUIC in Tor

Based on the requirements and the design decisions in Chapter 5, a prototype was
implemented to evaluate the performance improvements of using a QUIC-based
transport protocol instead of a TCP-based transport protocol. One of the main
implementation choices is which QUIC library to use, as this has a big impact
on the implementation. The requirements and the subsequent library choice are
detailed in Section 6.1. A description of how the library and QUIC protocol fit in
the current Tor implementation is described in Section 6.2.

6.1 QUIC libraries

Due to the as of yet still experimental status of the QUIC specification, there are
no mature or go-to implementations yet, nor a standard API that libraries can im-
plement. The libraries that do exist are of varying maturity and interoperability
between different libraries is not guaranteed and often lacking. There is no guar-
antee that clients and servers can communicate unless they use the same version
of the same library. There are currently 22 different implementations listed on the
IETF QUIC Working Group wiki that implement the “IETF QUIC transport” stan-
dard [19].

The requirements for the QUIC library are:

• Integration: The library should be accessible from Tor as a library via a stan-
dard interface. In practice, this means that it should expose a C compatible
interface.

• Platform: The library should at least run on Linux, as this is by far the most
used platform for public Tor relay nodes [48]. Ideally, it should also run on
popular client platforms such as Windows and macOS.

• License: The library should be open source under a license which is com-
patible with the Tor license and should allow Tor to link to it and distribute
it (for example with the Tor Browser bundle).

29

• Dependencies: The library should not have other unusual, unmaintained, or
hard-to-use dependencies.

• Maturity: The library should actually work and implement the important
parts of the specification, and be able to both act as server and as client.

• Maintained: The library should be actively maintained to lower the chance
of bitrot and the need to invest into switching to a different library in the
future.

6.1.1 Quiche

The Quiche library is an open source implementation of QUIC in Rust, a compiled
systems language focused on safety, particularly safe concurrency and memory
safety. Since the Rust language provides the tools create a C compatible inter-
face. Additionally, since the Tor code base is slowly moving towards integrating
more and more Rust code [47], this seems like a future-proof choice. The external
interface of the library is relatively simple: It has functions to create and mod-
ify a connection configuration object and TCP-like functions to create and accept
connection objects. The actual I/O, reading and writing to a socket, is left to the
application. This makes it possible to reuse the existing socket functions and ab-
stractions in Tor. For all these reasons, Quiche satisfies the integration requirement.

In addition to Linux, the library also builds on iOS, Android, macOS and Win-
dows, making it likely that it supports most, if not all platforms that Tor supports,
which makes it satisfy the platform requirement.

Quiche is licensed under the 2-Clause BSD License, which is a very permissive
license whose only requirements are to include a copyright notice and disclaimer
while either distributing the library source or as a binary. This satisfies all the
license requirements.

It has two major dependencies: the Rust cryptography library ring and the TLS
library BoringSSL. Ring is well maintained with regular updates, while BoringSSL
is a OpenSSL fork by Google, that is used as their go-to TLS implementation (see
Section 6.2.3). Since these are both widely used and well maintained, this satisfies
the dependencies requirement.

The Quiche library itself is developed at Cloudflare, one of the biggest content
delivery networks. It is also well maintained with regular commits and implement-
ing the latest QUIC specifications. According to the libraries’ README.md file, it
is used in production at Cloudflare [6]. This makes it likely that this library will
keep being maintained, satisfying the last two requirements.

In conclusion, seeing as the Quiche library satisfies all the previously defined
requirements, it was chosen as the QUIC library.

30

6.2 Tor connection model

The other main implementation challenge is how to fit the design choices made in
Chapter 5 into the current Tor implementation. The following subsections go into
detail about the parts of Tor that were changed and how they fit into the new QUIC
design.

6.2.1 Connections

Recall from Section 2.1 that the lowest layer of the Tor network model are connec-
tions. Tor implements these connections with an abstract connection t object,
whose interface is implemented by connection specific implementations depend-
ing on their use, such as the or connection t for Onion Router connections
(connections between nodes) or the edge connection t for connections leav-
ing the network, such as in exit nodes. All these connections use TCP as their
underlying network protocol 1.

When Tor opens a port to accept connections, it creates a special TCP listener
connection on a specific port. Libevent is used to monitor the opened socket for
incoming data. Whenever another Tor node wants to open a connection on this
port, libevent fires the read event on the listener connection. The functions that
handles this read event then uses the accept() system call which creates a new
TCP socket and wraps it in a new connection t object. With the connection es-
tablished, this is its own independent connection and any communication over this
new socket is independent of the original listener connection and socket. Any time
some new bytes arrive for this connection, a read event is raised and libevent calls
the read function specific for this connection. A schematic view of this process is
found in Figure 6.1.

As QUIC uses a UDP socket, this model does not apply because UDP lacks
the concept of connections (see Section 3.2). Instead, any time the UDP socket
receives a datagram, libevent fires the read function for the listener connection,
which loads the datagram into a buffer and passes it to the QUIC library. The
QUIC library then parses the header inside the buffer. In case the packet was
internal and requires a response, such as packets for establishing or maintaining
connections, the library queues up new QUIC packets in its outgoing buffer. If
the packet contained actual data, the library signals that one of the connections
is readable. The listener connection has to read the packets connection id2,
and either has to create a new connection t object (linked to the same listener
socket) or find a matching existing one. For this purpose, the listener connection
has to maintain a list of connection objects and their connection id. It then

1Except the DNS port listener, but this is a separate implementation that only implements the
DNS protocol.

2The connection id is a replacement for the originating (IP, port) tuple that TCP and UDP
use. It is encrypted to prevent spoofing and makes it possible to keep the connection going when one
of the hosts IP address changes.

31

mainloop OR listener OR connection

listener connection new()

CONN OR LISTENER

new listenernew listener

conn handle listener read()

accept()

socket
or connection new(socket)

CONN OR

CONN OR

new connectionnew connection

conn handle read()

buf read()

read eventread event

Figure 6.1: A schematic view of the sequence opening and reading TCP-based
OR connections. In the first block, a new TCP socket is opened and a new
connection t OR listener is returned. In the second block, when a read event
is fired on this socket, a new socket is created with the accept() syscall. This
socket is used to create a new connection t OR connection. The third block
shows that a read event on this new socket is handled directly by the OR connec-
tion.

passes the connection to the read function to handle the incoming data and tries to
write any waiting QUIC packages to the UDP socket. A schematic view of this
process is found in Figure 6.2.

In contrast to the original listener connection, the QUIC listener needs to keep

32

its socket open until all other associated connections are closed, because they all
share the same socket.

6.2.2 TLSChannel

As mentioned in Section 2.2, channels are one of the layers of the Tor protocol.
They are an internal only layer that provides a cell-based interface over the raw
connections between nodes. The current Tor implementation tries to implement
an abstract channel interface in the channel t object. Specialized channels can
then implement this interface without having to modify all code dealing with chan-
nels. However, the only implementation is currently the tlschannel t object
and the abstraction between the channel and tlschannel is often violated3.
More than once, TLS specific functions are called outside the tlschannel im-
plementation, making it non-trivial to swap out the tlschannel implementation
with something different.

Additionally, the Quiche also handles the TLS layer of the connection. This
means that, instead of handling the TLS handshake and connection setup in the
tlschannel, this is done automatically when a QUIC connection is established.

Because of these two reasons combined, the current prototype modifies the ex-
isting tlschannel object to bypass the TLS initialization and to call the QUIC
related functions to send and receive buffers that contain cells, based on a flag set
on the connection objects that determines if the connection uses QUIC or not.

6.2.3 TLS libraries

The current Tor implementation supports two different TLS libraries: the widely
used OpenSSL library and Mozilla’s Network Security Services (NSS) library. By
default however, OpenSSL is used. These two libraries are abstracted into a com-
mon internal API defined in tortls.c, respectively in tortls openssl.c
and tortls nss.c. QUIC uses TLS as encryption layer, but it uses a modified
handshake for which the currently used TLS libraries have no API to support this
yet. For this reason, the Quiche library that provides the used QUIC implementa-
tion uses an OpenSSL fork by Google called BoringSSL.

This is not a perfect or permanent solution however. To quote the BoringSSL
manual [17]:

Although BoringSSL is an open source project, it is not intended for
general use, as OpenSSL is. We don’t recommend that third parties
depend upon it. Doing so is likely to be frustrating because there are
no guarantees of API or ABI stability.

This is also a reason to avoid implementing a tortls boringssl.c abstrac-
tion that would avoid using multiple TLS libraries at the same time and only use

3As noted in this, at the moment of writing, still open ticket: https://trac.torproject.
org/projects/tor/ticket/23993.

33

https://trac.torproject.org/projects/tor/ticket/23993
https://trac.torproject.org/projects/tor/ticket/23993

BoringSSL for all TLS operations in Tor. For this reason, until OpenSSL gains
support for the QUIC handshake, both libraries will have to be used side-by-side.
However, since BoringSSL is a OpenSSL fork, they still share much of the same
symbols. Linking both directly in Tor is not possible. To keep these separated, the
Quiche library needs to be built as a shared library that only exposes the external
QUIC connection API instead.

34

mainloop OR listener OR connection

listener connection new()

CONN OR LISTENER

new listenernew listener

conn handle listener read()

find connection(conn id)

NULL
quiche accept()

or connection new(socket)

CONN OR

CONN OR

new connectionnew connection

conn handle listener read()

find connection(conn id)

CONN OR
conn handle read()

buf read()

read connectionread connection

Figure 6.2: A schematic view of the sequence opening and reading QUIC-based OR
connections. In the first block, a new UDP socket is opened and a new connection t
OR listener is returned. In the second block, when a read event is fired on this socket, the
OR listener tries to find an existing connection associated with the incoming packet based
on the connection id. None were found, so a new connection t OR connection
is created, linked to the listener socket. The third block shows when a read event on
the listener socket does find an existing connection, and calls the read event of the OR
connection.

35

36

Chapter 7

Tor network simulation

To evaluate the QUIC-based implementation of Tor against the requirements as
defined in Section 5.1 and compare it to the existing TCP-based implementation, a
virtual Tor network will be simulated and tested. In the following subsections the
available simulators that were used and considered are detailed.

7.1 Existing simulators

Over the years, multiple ways were developed to test modifications to the Tor net-
work. While their implementation and features differ, they all have the goal to run
the Tor client in a virtual network to observe its behaviour. As there is no need to
reinvent the wheel, several of these options were first tested and considered.

7.1.1 Shadow

Shadow [28] is a network simulator that was built to test large scale Tor networks
on a single machine in a local, isolated environment. Instead of using the hosts real
in-kernel network stack it simulates a virtual network stack in user space.

To define the network that will be simulated, Shadow uses GraphML network
topology files. These network topology files are XML files that define a directed
or undirected graph with a list of nodes and edges. Nodes represent either a single
client or a network cluster, while edges are the network links between nodes. Each
node can have various properties set such as limited up and down bandwidth or a
certain percentage of packet loss. When the node is a cluster, this bandwidth is
shared with all the Tor clients that are linked to this cluster. When the node is a
single client, it only applies to that specific client. The network links between nodes
that are defined by the edges of the graph can also have a number of properties, such
as network latency and packet loss. If there is a direct edge between two nodes,
this edge will be used as a network link to communicate. In case there is no direct
edge, Shadow will use Dijkstra’s algorithm to find the shortest path between the
two nodes. An example of a very minimal topology can be found in Figure 7.2.

37

Socket buffers

Interface

Applications

Socket buffers

Applications

Interface
receive buffer

Socket buffers

Applications

Interface
receive buffer

Socket buffers

Applications

Discrete event queue

Socket buffers

Interface

Applications

Sending hosts

Receiving hosts Interface
receive buffer

Socket buffers

Applications

Applications call sendto to
place packet in socket buffer

Interface takes packet from
socket buffer and places it

in discrete event queue

Packets taken from discrete
event queue and placed in

interface receive buffer

Packet taken off interface
receive buffer and placed

on socket buffer

Application calls readfrom
to receive packet

If socket buffer is full (-1 returned
and errno set to EAGAIN)

At rate controlled by
bandwidthup

Packets routed to receiving host

At a rate controlled by
packetloss

If interface receive buffer is full

If socket buffer is full

At rate controlled by
bandwidthdown

Rate limiting

Packet dropping?

???

???

? ? ?

? ? ? ? ? ? ?

Packet Flow in Shadow

Steven J. Murdoch

--interface-buffer

--socket-send-buffer

--socket-recv-buffer

v0.1 (2013-06-14)

Figure 7.1: A schematic overview of how the packet flow in Shadow works. Appli-
cations are modified so that all network syscalls can be hooked and routed through
a virtualized network instead. Packets flow from application specific socket buffers
to a shared a discrete event queue, at which point some packet drop is applied and
they are routed to first the receive buffer of the receiving application and finally the
socket buffer, at which point the hooked syscalls will receive them. All this is done
in user space, without the hosts network stack. Image by Steven Murdoch [26].

38

<?xml version="1.0" encoding="utf-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<key attr.name="packetloss" attr.type="double" for="edge" id="d6" />
<key attr.name="latency" attr.type="double" for="edge" id="d5" />
<key attr.name="packetloss" attr.type="double" for="node" id="d4" />
<key attr.name="countrycode" attr.type="string" for="node" id="d3" />
<key attr.name="bandwidthdown" attr.type="int" for="node" id="d2" />
<key attr.name="bandwidthup" attr.type="int" for="node" id="d1" />
<key attr.name="ip" attr.type="string" for="node" id="d0" />
<graph edgedefault="undirected">
<node id="poi-1">

<data key="d0">0.0.0.0</data>
<data key="d1">2251</data>
<data key="d2">17038</data>
<data key="d3">US</data>
<data key="d4">0.0</data>

</node>
<edge source="poi-1" target="poi-1">

<data key="d5">50.0</data>
<data key="d6">0.05</data>

</edge>
</graph>

</graphml>

Figure 7.2: A very minimal GraphML network topology file as used by Shadow. It
defines a single node poi-1 with various properties such as a limited amount of
up and down bandwidth and no packet loss. The edge connects the node to itself
through a network connection with 50 ms latency and a 5% packet loss, as defined
in key d5 and d6.

While Shadow was originally developed with Tor in mind, it can be extended for
use with other distributed and peer-to-peer systems through the use of plugins. Cur-
rently, only a Tor plugin and a Bitcoin plugin are available [26]. Although Shadow
requires a plugin for an application to work with Shadow, it does not require any
Shadow specific modifications to the source code of the application itself. How-
ever, in order to hook into the application, this means that Shadow does require
access to the source code of the application and does not work with existing, un-
modified and general purpose binaries.

Because Shadow does not use the host’s real network stack, it instead hooks
into the application to simulate the underlying network stack, which has definite
performance advantages. It also has the advantage that the network behaves the
same on every computer, there is no interference with the host network and there
are no root permissions required to run Shadow. However, it also means that it only
has support for the network protocols it explicitly supports. Currently, Shadow
only supports TCP which means that testing a Tor network based on a UDP-based
protocol such as QUIC is not possible with Shadow.

39

7.1.2 Chutney

Chutney [46] is a collection of scripts to make it easier to do local testing of the Tor
network. In contrast to the other network simulators, it doesn’t do actual simulation
or emulation of the underlying network. All Tor clients run on the same machine
over the loopback interface (all sharing the same localhost IP address). This means
that there is no packet loss and practically no delay.

To set up a network, it makes use of very simple network configuration files.
These exist of snippets of Python code that instantiate a list of Node definition
objects and assigns a type to each Node, such as client or relay. A simple example
can be seen in Figure 7.3. Depending on the type, Chutney picks certain template
files and combines them to generate a torrc configuration file for each of the
nodes. These template files contain snippets of torrc configuration options that
get set based on the properties set to the Node definition objects. Because the
network files are run as Python code, it is possible to add custom code to modify
certain properties of the Nodes, such as setting custom variables on them.

By default, Authorities are not configured as exits
Authority = Node(tag="a", authority=1, relay=1, torrc="authority.tmpl")
ExitRelay = Node(tag="r", relay=1, exit=1, torrc="relay.tmpl")
Client = Node(tag="c", client=1, torrc="client.tmpl")

NODES = Authority.getN(3) + ExitRelay.getN(5) + Client.getN(2)

ConfigureNodes(NODES)

Figure 7.3: A basic network definition as used by Chutney. In this case, a network
with 3 directory authority nodes, 5 exit nodes and 2 client nodes is defined and
configured. Chutney does not have any concept of topology.

Once all the Tor instance have their own customized configuration file generated,
each of the Tor instances is launched. Depending on how Chutney is used, it has
the option to wait for the local Tor network to bootstrap by watching the log files of
each of the Tor instances. The network test step in Chutney is called the verification
step and is limited to one single action that is the same for all of the Tor clients.
It launches a single local server, called EchoServer, that takes TCP traffic on a
single port and immediately returns a copy of the received data back to the client.
For each of the client Nodes defined in the network file, a local SOCKS connection
is created. This SOCKS connection has two steps: For the send-data step
it connects to the local SOCKS port of the corresponding Tor client and asks to
connect, trough the Tor network, to the EchoServer. Once the connection is
successful, it sends a predefined amount of random data to the EchoServer. The
exact random data and its length is a global value shared by all clients. Once all the
data has been successfully outputted on the SOCKS connection, the send-data
step is marked as complete. The second step is the check step. This step runs
for any data that is received on the SOCKS connection. For every chunk of bytes

40

that is received, it is checked against the random data that has already been sent
and that chunk of bytes is marked as received. Once all the data has been marked
as received, the check step is also marked as complete. A schematic view of this
process can be found in Figure 7.4.

Figure 7.4: A schematic view of the Chutney architecture. The Chutney process
configures and launches unmodified Tor binaries and waits for them to bootstrap.
All Tor instances bind to localhost and all traffic goes through the local loopback
interface. The verification clients connects to the Tor client and builds a circuit
through the other Tor nodes, making a connection to the echo server. The verifica-
tion client then sends random data, which the echo server receives and sends back,
where the verification client verifies that all and the same data was returned by the
echo server.

If both steps are marked as complete for each of the clients within a certain time-
out, the verification step is considered successful. If one or more of the steps fails,
the whole verification round might be repeated a predefined number of times until
it is successful. Chutney does not keep or report any metrics about the performance
of the tests, other than the speed of the slowest stream and the overall cumulative
bandwidth of the whole network.

41

7.1.3 NetMirage

NetMirage [42] is a network emulator for large scale networks. It differs from
Shadow in that it uses the real in-kernel network stack and does not require the
tested applications to be modified or write application specific plugins to work
with NetMirage. Because it presents itself as real, local network interfaces, it can
work with existing, unmodified binaries.

To setup the virtual network it uses two types of nodes: the core node and one
or more edge nodes. The core node is responsible for emulating layer 2 of the vir-
tual network. To define this virtual network, NetMirage uses the same GraphML
network topology files that shadow uses. These topology files are loaded by the
core node and based on the defined nodes a number of Linux network namespaces
are created. Network namespaces are a whole virtual network stack with their own
network interfaces, IP addresses, network sockets, routing tables and more. They
can be linked to other network namespaces by creating a virtual network interface
in each of the namespaces and linking those together. To simulate various network
conditions such as a limited amount of bandwidth, network latency or packet loss,
NetMirage uses Open vSwitch [15]. Open vSwitch is a Software Defined Network-
ing (SDN) virtual switch that can do layer 2 routing and bridge network interfaces
together.

The edge node is responsible for emulating layer 3 of the virtual network and
for running the actual applications. It does so by connecting to the core node an by
allocating a list of IP addresses in a specified IP subnet. Each of the allocated IP
addresses gets its own virtual network interface. Each application has to be con-
figured to bind to one of the network interfaces. To run Tor network experiments,
a slightly modified version of Chutney is used to launch the Tor processes, where
each of the defined Tor nodes in the network file (such as in Figure 7.3) is assigned
an IP address to bind to.

Network traffic that is destined for any of the edge node’s virtual interfaces is
routed from the edge note to the core node and to the core’s root network names-
pace. The root network namespace routes the traffic to the network namespace cor-
responding to the appropriate node as defined in the topology file, where network
limitations such as packet loss, bandwidth and latency are applied using Traffic
Control (see Section 7.2). The traffic is then routed back to the edge node trough
the core node’s root network namespace. A schematic overview of the setup can
be found in Figure 7.5.

The core node and edge nodes have to run on separate machines and are to
be linked by a dedicated network link. This puts a limit on the ease of use of
NetMirage, as it requires two separate machines with a dedicated network link
between them in addition to their normal network interface. It also requires root
access on both the core and edge nodes, as it manipulates the hosts’ network stack.

However, during the evaluation it came to light that while the unmodified TCP-
based Tor client worked well in NetMirage, the modified QUIC-based Tor client
did not. Even with the simplest topology where all Tor clients were connected to

42

Figure 7.5: Schematic view of the NetMirage setup topology, consisting of two
nodes that are connected via a dedicated network connection. On the core node,
the specified GraphML network topology is simulated in a virtualized network.
The edge node runs the Tor processes, that get assigned a dedicated IP address
from the virtualized network. Any traffic to these IP addresses is forwarded over
the dedicated connection to the core node, routed over the virtualized network, and
then send to the edge node.

a single point in the graph (like in Figure 7.2) without any artificial loss or delay,
the QUIC-based Tor client often failed to bootstrap the network or experienced
long, unexplained delays in communication. Whether this is a limitation of NetMi-
rage, the implementation of the QUIC-based Tor client or a combination thereof is
unfortunately not known due to limited time constraints.

7.2 Manual network simulation

Because both Shadow and NetMirage did not work for their own reasons to eval-
uate the differences between the TCP-based Tor implementation and the QUIC-
based Tor implementation, a manual virtual network setup approach was taken
which in concept is similar to that of NetMirage, but without the problems that
were encountered while evaluating the QUIC-based implementation as described
in Section 7.1.3. In the following subsections, the individual parts that make up the
evaluation setup are detailed. A schematic view of the resulting this setup can be
found in Figure 7.6.

7.2.1 Network namespaces

As noted in section Section 7.1.3, the Linux kernel implements the concept of
network namespaces, which are a whole virtual network stack with their own net-

43

work interfaces, IP addresses, network sockets, routing tables and more. The fol-
lowing network namespaces are used to emulate the virtual network: a general
bridge namespace ns-bridge, a chutney namespace ns-chutney and a Tor
node namespace ns-n for each of the Tor nodes that participate in the network,
where n is the number of the specific Tor node. Each of the Tor node namespaces
is linked to the ns-bridge namespace and the ns-chutney namespace by a
linked virtual network interface pair, where the virtual interface in the Tor node
namespaces gets assigned its own IP address based on the number of the node. A
local route is added to make all the traffic that matches the subnet of the assigned IP
address route through the associated virtual network interface. In the ns-bridge
namespace, all virtual network interfaces linked to a Tor node interface are bridged
together. This assures that all Tor node namespaces can route traffic to each other
under the default network limitations, such as network latency. Using a bridge
namespace like this also prevents the need to create n2 linked network interfaces
to make sure all Tor node namespaces can communicate with all other Tor node
namespaces.

7.2.2 Traffic control

Traffic control is a framework in the Linux kernel that allows network traffic to be
shaped or policies to be set on incoming traffic and traffic to be dropped. In this
case, the network emulation layer, or tc-netem is of particular interest. It can
for example be used to add artificial delays to local network interfaces to simulate
network latency, add packet loss or rate limit network links.

The traffic routed through the ns-bridge namespace will have default net-
work limitation applied to them, which means that all traffic between nodes will
share the same limitations. To set custom limitations on a network link between
two specific Tor node namespaces, an extra pair of linked virtual network interfaces
can be created between them with a higher priority network route.

The virtual network links between the Tor node namespaces and the ns-chutney
namespace have no additional network limitations applied as they emulate a local
SOCKS connection between an application and a local Tor client.

7.2.3 Chutney

To set up a local test instance of the Tor network a modified version of Chutney was
used. Chutney itself is launched in the ns-chutney namespace and each of the
Tor processes launched by Chutney is then launched in its own Tor node network
namespace. The network configuration files and the torrc templates have been
modified so that each of the Tor nodes knows which IP address it needs to bind
to. Because each of the Tor processes is running in its own network namespace,
all traffic is routed through the virtual interfaces and the ns-bridge namespace
where the network limitations are applied. Because the interfaces between the Tor
node namespaces and the ns-chutney namespace do not have any network lim-

44

Figure 7.6: Schematic overview of the manual topology with the use of Linux
namespaces. Chutney is launched in its own ns-chutney namespace, and
launches each of the Tor processes in their own namespace ns-n. These names-
paces are linked and bridged inside the ns-chutney namespace, connecting to
the Chutney process. Another namespace, ns-bridge is also linked to all Tor
processes where they are all bridged together. However, traffic through this names-
pace will have a delay added, simulating a real network. This is the default route
the traffic between the Tor processes will take. Additional direct links between
Tor namespaces can be make with a higher routing priority to add a custom delay
between two Tor instances.

45

itations applied to them, this emulates the near-instant local connections between
an application and a local Tor client.

To collect the metrics of each of the experiments, Chutney had to be modified
to record the timestamp of when the local SOCKS connection was initiated, the
local SOCKS connection was established, when the first byte was received on the
SOCKS connection and when the last byte was received on the SOCKS connection.
With these timestamps, the time to first byte, the time to last byte and the throughput
of each of the experiments is calculated and logged to a CSV file. This CSV file is
then analysed at the end of the experiments to produce the cumulative metrics as
shown in the graphs for each of the experiments.

Other modification to Chutney include the ability to differentiate in the amount
of data each of the clients needs to transmit and the ability to watch the Tor pro-
cesses while running an experiment to detect crashing Tor nodes.

7.2.4 Limitations

However, due to the limitations of traffic control, only the latency of the network
links can be emulated. As noted in the documentation of tc, packet loss on TCP
connections gets reported back up instead of having to wait for a timeout to occur
without packages being acknowledged by the receiving host as would be the case
in a real network, which gives an obvious advantage to the TCP-based implemen-
tation of Tor over the QUIC-based implementation which uses UDP with packet
loss detection instead implemented in user space [14]. The effects of this can be
seen in Figure 7.7, which shows the performance metrics for the smallest network
possible with one client OP1, one guard node OR1, one relay node OR2, one exit
node OR3 and only a single possible circuit. A more detailed description of this
scenario can be found in Section 8.2 and Figure 8.1.

Recall the performance metrics as defined in Section 5.1.3. Where the QUIC-
based implementation performs equally well with or without packet loss in the time
to first byte metric (where packet loss is unlikely to have an effect) and clearly
beats the TCP-based implementation as expected, it performs significantly worse
with packet loss compared to the TCP-based implementation in the time to last byte
metric, against expectations, because of the unfair advantage that the TCP-based
implementation has.

46

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-20ms-1%
quic-320kib-20ms-1%

(a) Time to first byte

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-20ms-1%
quic-320kib-20ms-1%

(b) Time to last byte.

Figure 7.7: The time to first byte and last byte comparison between the TCP-based
and the QUIC-based implementations, on a transfer of 320 KiB with a 20 ms per
hop link delay and either a 0% or 1% per hop packet loss. This demonstrates the
shortcomings of using tc to artificially simulate packet loss on a local connection.

47

48

Chapter 8

Network performance evaluation

Testing the QUIC transport protocol implementation in Tor has been performed for
several scenarios, varying from simple best and worst case scenarios to compare
the theoretical performance effects, to a scaled down realistic model of the real
Tor network to compare the practical performance effects. However, due to the
limitations of the network simulation, only small networks could be tested.

8.1 Experimental setup

Recall the metrics from the performance design requirement (see Section 5.1.3) to
evaluate the performance of the QUIC-based Tor prototype. In the used experi-
mental setup, they are defined as follows:

• Time to first byte: This is defined as the amount of time between when the
local SOCKS connection is established to the time the first byte is returned
from the remote server. In this time, the client sets up a circuit, connects
through the circuit via the exit node to the destination server, sends its first
DATA cells and received the first DATA cell back from the exit node.

• Time to last byte: This is defined as the amount of time between when the
local SOCKS connection is established to the time the last byte is returned
from the remote server. In this time all the steps that are taken in the time
to first byte metric are included, but now the client will have to send all its
DATA cells and receive all its DATA cells back from the exit node.

For each scenario, there are two flavours: one with a default, vanilla Tor version
0.3.5 that uses the TCP transport protocol, and one with a modified Tor version
0.3.5 that uses the QUIC transport protocol. Both versions of Tor were modified to
make it possible to preselect the guard, relay and exit node of a circuit for consis-
tency reasons. This is also the only modification that was made to the TCP-based
Tor version.

49

The network setup uses a manually defined combination of namespaces as de-
tailed in Section 7.2. Where applicable, different amounts of latency were tested.
The results for each of the scenarios and metrics are presented in graphs, where
the dashed lines show the results for the TCP-based implementation, and the solid
lines show the results for the QUIC-based implementation. Experiments that have
the same parameters also have the same line colour in the same graph. For ex-
periments with only a single or a small number of clients, the same experiment is
repeated and the results of those experiments is combined until there are at least
50 data points for each specific metric. For experiments with a larger number
of clients, the experiment is ran only once or a limited amount of times as they
produce more data points per experiment. The legend labels have the format of
{protocol}-{payload size}-{hop latency}-{hop loss}, where:

• protocol is either quic for the modified QUIC-based implementation of
Tor or tcp for the unmodified TCP-based implementation.

• payload size is the size of the transfer payload, either 320 KiB or 5 MiB.

• hop latency is the default per-hop network latency in milliseconds on the
network link between two nodes, either 20 ms or 40 ms.

• hop loss is the default per-hop percentage of packet loss on the network
link between two nodes.

8.2 Scenario 1: A single circuit path with a single client

The first experiment is the smallest possible network: a single client OP1 with a
guard node OR1, a relay node OR2 and an exit node OR3, as seen in Figure 8.1.
This represents a best case circuit, as the client has all the bandwidth to itself.
While the scenario is rather unrealistic, it is the simplest scenario possible and
shows if the QUIC protocol has a positive or negative effect without outside influ-
ences.

user client
OP1

guard
OR1

relay
OR2

exit
OR3

web
c0 c0 c0 c0 c0

Figure 8.1: The setup of the first scenario. It includes a single client with a single
circuit c0, with nodes OR1, OR2 and OR3.

To evaluate the scenario two differently sized payloads will be used (320 KiB
and 5MiB). Each individual link between each node has a latency of either 20 ms or
40 ms, bringing the round trip latency to respectively 120 ms and 240 ms. Because
there is only one client in this scenario, it will be repeated 50 times. The result is
presented as the fraction of nodes which have reached the time to first byte or the
time to last byte.

50

8.2.1 Results and discussion

The results of the first scenario can be seen in Figures 8.2 and 8.3. As expected,
it is clear that the QUIC-based implementation has an obvious advantage over the
TCP-based implementation when looking at the time to first byte metric. Where the
QUIC graphs show almost a vertical line where all clients get the first byte at nearly
the same time, the TCP graphs show a much bigger variation in time between
the initiation of the connection and when the first byte arrives on the client. An
explanation for this can be that the TCP-based implementation uses the TCP slow
start algorithm, while the QUIC-based implementation is much more aggressive
in starting the connection. In addition to that, in the TCP-based implementation
the TCP connection handshake and the TLS encryption handshake are separate,
sequential processes, while the QUIC-based implementation combines those two
in a single handshake (as described in Section 3.5.1). This appears to be the case
for both the small transfer (Figure 8.2a) as the large transfer (Figure 8.2b).

Doubling the amount of network latency roughly doubles the time to first byte
metric for the QUIC-based implementation, suggesting that there is no adverse
effect other than the latency itself. For the TCP-based implementation however,
doubling the latency roughly triples the time to first byte metric. This can again be
explained by the additional and separate handshakes that are performed and which
take multiple round trips.

For the time to last byte metric, the QUIC-based implementation again have an
advantage over the TCP-based implementation, where the QUIC-based implemen-
tation is about 10% faster with a 20 ms network latency, and about 15% faster with
a 40 ms network latency. As the transfers are run sequentially and have the full
dedicated network link to themselves, there is no interfering traffic that can explain
this difference and the advantage that the QUIC-based implementation has over the
TCP-based implementation in the time to first byte metric is not significant enough
to explain the difference. Likely, the QUIC-based implementation is using a more
aggressive congestion control algorithm that allows for a slightly higher throughput
than the standard TCP congestion control algorithm combined with more efficient
acknowledgements that can also be tacked onto regular data packets, reducing the
number of different packets sent. This appears to be the case for both the small
transfer (Figure 8.3a) as the large transfer (Figure 8.3b).

51

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.2: Scenario 1: the time to first byte by transfer size, with varying amounts
of latency.

52

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.3: Scenario 1: the time to last byte by transfer size, with varying amounts
of latency.

53

8.3 Scenario 2: Two circuit paths with two clients, sharing
a single node

The second scenario has a distinct circuit path for each of the clients with their own
nodes, except for a single node, as seen in Figure 8.4. Since this means that the two
circuits do not share any connection between the nodes, the expected result is that
there should not be any significant difference between QUIC-based implementa-
tion and plain TCP-based implementation, as independent connections should not
suffer from the head-of-line problem and do not share a TCP congestion window.
The only real shared limitation in this scenario is the bandwidth and the local re-
sources of the shared node OR3.

user

user

client
OP1

client
OP2

guard
OR1

guard
OR2

relay
OR3

exit
OR4

exit
OR5

web

web

c0

c1

c0

c1

c0

c1

c0

c1

c0

c1

Figure 8.4: The setup of the second scenario. It includes two clients whose circuits
c0 and c1 share only a single node, which means they do not share any connection.

8.3.1 Results and discussion

The results of the second scenario can be seen in Figures 8.5 and 8.6. When looking
at the time to first byte graph, the lines look similar to that of the first scenario with
the QUIC-based implementation having about the same advantage over the TCP-
based implementation, until it gets to around 70% to 80% of the clients where the
line for the QUIC-based implementation suddenly becomes almost horizontal. It
appears that some of the clients stall during the formation of a circuit. This is
not necessarily due to the two circuits interfering on a network level. Because the
experiment only has two clients and thus only returns two distinct data points for
each round, the experiment was repeated 25 times in order to gain 50 distinct data
points. For some rounds, both clients fell into the first 70% of clients, for some
rounds both clients stalled, and for some rounds one of either clients stalled. The
distribution of this can is show in Table 8.1 for each of the different combinations.
Since both clients only share the relay node OR3, but no network links, the issue
must occur inside the relay node. Upon further inspection, the issue is likely a

54

scheduling issue within OR3
1. However, due to time constraints it was not possible

to effectively fix this issue before running the evaluation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.5: Scenario 2: the time to first byte by transfer size, with varying amounts
of latency.

The stalling issue mostly effects the circuit creation, and not the data transfer

1Recall the sequence diagram in Figure 6.2, in particular the read connection block. It appears
that the listener socket does read the incoming data and finds a matching connection in a time frame
comparable to the TCP-based version. However, the time to fire the time specific read handler was
not always consistent, occasionally taking a lot longer, which is a likely explanation of the stalling.

55

Hop delay
Stalled clients 20 ms 40 ms
0 of 2 65% 56%
1 of 2 26% 40%
2 of 2 9% 4%

Table 8.1: Scenario 2: The distribution between the number of stalled and non-
stalled clients for each round for the time to first byte metric with the QUIC-based
implementation of the Tor client. The percentages reflect the fraction of rounds in
which that number of nodes stalled. The data suggests that the client’s circuits are
not directly interfering and are not directly making the other client stall. In total,
in both case about 20% to 25% of the clients initially stall. Thus, the fraction of
clients that did not stall is about 75% to 80%.

itself. As can be seen in Figure 8.6a where the time to last byte metric is graphed,
the results look very similar to the first scenario for more than 90% of the QUIC-
based implementation clients. Only less than 10% of the clients somewhat slower
than most other QUIC-based clients, although they still perform at least as well or
slightly better than the TCP-based implementation.

56

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.6: Scenario 2: the time to last byte by transfer size, with varying amounts
of latency.

8.4 Scenario 3: A single circuit path with two interfering
clients

The third scenario is a variation on the first one, but adds an additional client,
as seen in Figure 8.7. Both clients are using the same nodes in their circuit and
thus will share the same connection between the nodes. Client 1 will have a low-
latency, low-bandwidth load (such as is typical with web browsing) while client 2

57

will have a high-latency, high-bandwidth load (such as is typical with downloading
large files). This demonstrates the classic worst-case scenario for the head-of-line
blocking problem.

user

user

client
OP1

client
OP2

guard
OR1

relay
OR2

exit
OR3

web

web

c0

c1

c0

c1

c0,1 c0,1 c0

c1

Figure 8.7: The setup of the third scenario. It includes two clients whose circuits
c0 and c1 share the same nodes and thus connections.

8.4.1 Results and discussion

The results of the second scenario can be seen in Figures 8.8 and 8.9. When looking
at the time to first byte graph, the lines look similar to that of the second scenario
with the QUIC-based implementation having about the same advantage over the
TCP-based implementation, until it gets to between 70% and 80% of the clients
where line for the QUIC-based implementation suddenly becomes almost horizon-
tal again. Again, it appears that some of the clients stall during the formation of
a circuit. However, in comparison to the previous scenario, the TCP-based imple-
mentation also stalls, although only slightly later when it gets to between 80% and
85% of the clients. Again, as can be seen in Table 8.2, there does not necessarily
appears to be a direct interference between the two clients as there is no significant
difference between this scenario and the previous scenario, with latency having a
bigger influence on the TCP-based clients than the QUIC-based clients.

For the TCP-based implementation however, there is a significant number of
clients stalling where there were no stalling clients in the previous scenario. Seeing
as the difference is that the two clients now share the same nodes in the circuit
instead of having separate network links in their circuits, this suggest that the two
circuits are interfering with each other while they are getting created.

Again, the stalling issue mostly effects the circuit creation, and not the data
transfer itself. As can be seen in Figure 8.9a where the time to last byte met-
ric is graphed for the 320 KiB transfer, the results look very similar to the earlier
scenarios for about 85% of QUIC-based implementation clients with 20 ms link la-
tency. Interestingly, the clients with 40 ms of link latency do not show any stalling,
although the line is less horizontal and follows the curve of the TCP-based imple-
mentation more than in the previous scenarios. The clients with a 5 MiB transfer
(Figure 8.9a) show a similar pattern, although a larger fraction stalls. Again, the

58

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.8: Scenario 3: the time to first byte by transfer size, with varying amounts
of latency.

QUIC-based implementations are faster than the TCP-based implementation for
most or all of the clients in the first case and a clear majority in the last case. The
difference increases in favour of the QUIC-based implementation as the latency
increases.

59

Hop delay
Stalled clients 20 ms 40 ms
0 of 2 52% 47%
1 of 2 42% 46%
2 of 2 6% 7%

Table 8.2: Scenario 3: The distribution between the number of stalled and non-
stalled clients for each round for the time to first byte metric with the QUIC-based
implementation of the Tor client. The percentages reflect the fraction of rounds in
which that number of nodes stalled. The data suggests that the client’s circuits are
not directly interfering and are not directly making the other client stall. In total,
in both case about 25% to 30% of the clients initially stall. Thus, the fraction of
clients that did not stall is about 70% to 75%.

60

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.9: Scenario 3: the time to last byte by transfer size, with varying amounts
of latency.

61

8.5 Scenario 4: Two circuit paths with two clients, sharing
two nodes

The fourth scenario is a variation on the second and third scenario. There are still
two clients with two circuit paths, but now those two circuit paths share two of
their three nodes. This means that while the connections between the client and
the first node and the first node and the second node are distinct from each other,
the connection between the second and the third node is shared between the two
circuits.

As with scenario 3, client 1 will have a low-latency, low-bandwidth load while
client 2 will have a high-latency, high-bandwidth load to demonstrate the head-of-
line blocking problem.

user

user

client
OP1

client
OP2

guard
OR1

relay
OR2

exit
OR3

exit
OR4

web

web

c0

c1

c0

c1

c0,1 c0

c1

c0

c1

Figure 8.10: The setup of the fourth scenario. It includes two clients whose circuits
share the same nodes and thus connections.

8.5.1 Results and discussion

The results of the fourth scenario can be seen in Figures 8.11 and 8.12. The TCP-
based 40 ms delay transfers are not included in these graphs because the simulation
failed to run for this specific case, despite numerous attempts. The Tor clients
either failed to bootstrap or to open new circuits which made it impossible to run
the transfers.

When looking at the time to first byte graph, the lines look similar to that of the
second scenario, with the QUIC-based implementation having a nearly vertical line
with the same advantage over the TCP-based implementation, until around 70%
to 75% of the clients, when the lines become nearly horizontal. One interesting
exception is the 320 KiB transfer clients under the 40 ms link delay, which does
not have any stalling clients. The reason for this difference between the two transfer
sizes is not exactly clear. As shown in the previous scenarios, the stalling appears
to be a matter of chance instead of clients directly interfering with each other. The
stall rates for this scenario, which can be seen in Table 8.3, again show the same
behaviour. A likely explanation is that the 320 KiB clients got lucky and none of
them stalled.

62

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.11: Scenario 4: the time to first byte by transfer size, with varying
amounts of latency.

Similar to the previous scenario, the QUIC-based clients outperform the TCP-
based clients until about 70% and 90% on the time to last byte metric, as seen
in Figure 8.9a. There is no concise answer to give if the latency increase is still
advantageous to the QUIC-based clients, because there is no data for the TCP-
based clients.

63

Hop delay
Stalled clients 20 ms 40 ms
0 of 2 49% 65%
1 of 2 45% 35%
2 of 2 6% 0%

Table 8.3: Scenario 4: The distribution between the number of stalled and non-
stalled clients for each round for the time to first byte metric with the QUIC-based
implementation of the Tor client. The percentages reflect the fraction of rounds
in which that number of nodes stalled. The data suggests that the client’s circuits
are not directly interfering and are not directly making the other client stall. The
fraction of clients that initially stall is less than 30% and 20% for the 20 ms and 40
ms delay, respectively. Thus, the fraction of clients that did not stall is over 70%
and 80%, respectively.

64

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

(a) Transfers of 320 KiB.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-5mib-20ms-0%
quic-5mib-20ms-0%
tcp-5mib-40ms-0%
quic-5mib-40ms-0%

(b) Transfers of 5 MiB.

Figure 8.12: Scenario 4: the time to last byte by transfer size, with varying amounts
of latency.

65

8.6 Scenario 5: A scaled down Tor network model

The fifth scenario is a scaled down, reasonably accurate model of the Tor network.
Since the real Tor network has over 6000 relay nodes with a combined advertised
bandwidth of around 400Gbit/s and peaks with over 3.5 million users [48], running
a test network with the same size and bandwidth is not feasible. Luckily, Jansen
et al. [27] describes a methodology to create a reasonably accurate scaled down
model the Tor network, that has successfully been used in practice such as for the
evaluation of performance the KIST scheduler [29].

However, due to the limitations of the network simulation, only a small network
could be tested. In addition, there were problems running the simulation with
larger transfers for both the TCP-based and the QUIC-based Tor implementations,
in a similar fashion as the TCP-based client in the previous scenario. As a result,
this scenario was limited to only 320 KiB transfer sizes. This led to a network with
8 Tor relay nodes and 16 Tor clients and the simulation to be repeated 5 times to get
a sufficient number of data points. In contrast to the previous scenarios, the nodes
in a circuit are not hardcoded. Because of the higher number of clients, circuits are
build randomly as they are in the real Tor network.

8.6.1 Results and discussion

The results of the fifth scenario can be seen in Figures 8.13 and 8.14. The time to
first byte metric looks similar to the previous scenarios now that there are multiple
clients building circuits and interfering with each other throughout the network,
more similar to how the real network works. The QUIC-based clients keep their
consistent advantage over the TCP-based clients in this metric, that grows with the
amount of latency on the network links. Until they start to stall, that is, which the
QUIC-based clients do 10 to 15 percent points before the TCP-based clients, which
is consistent with the previous scenarios.

Looking at the time to last byte metric in Figure 8.14, the results are a bit differ-
ent from the previous scenarios. While in the previous scenarios the QUIC-based
transfers had a majority or sometimes all of the transfers finishing before their TCP-
based counterparts, in this case the intersection of the two lines is already around
50%. It appears that the read event scheduling issue that is suspected to cause
clients to stall or the performance to degrade might be more pronounced when
there are multiple random circuits following different paths through the network as
opposed to (parts of) the same path as in previous circuits.

66

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Time to first byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

Figure 8.13: Scenario 5: the time to first byte with 320 KiB transfer size, with
varying amounts of latency.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Time to last byte (s)

Fr
ac

tio
n

of
no

de
s

tcp-320kib-20ms-0%
quic-320kib-20ms-0%
tcp-320kib-40ms-0%
quic-320kib-40ms-0%

Figure 8.14: Scenario 5: the time to last byte with 320 KiB transfer size, with
varying amounts of latency.

8.7 Discussion

Several reasons have been identified as to why the results are not as conclusive as
expected:

• The network simulation: due to lacking support for UDP (Shadow) or less
clear reasons (NetMirage), it was not possible to run the evaluation in a real

67

network simulator. Because it was not possible to either extend of fix the
current simulators, a custom solution was developed based on Linux network
namespaces and the Linux traffic control system. However, this solution is
clearly limited. The biggest limitation is the inability to reliably simulate
packet loss on TCP-based connections, a scenario is which QUIC is expected
to have the advantage.

• The implementation: several instances have been observed where the per-
formance decreased in cases where stalling was present with QUIC-based
clients. The stalling is likely caused by a scheduling issue with the Tor read
events (which Section 8.3.1 explains in more detail). This issue could not be
resolved due to time constraints, despite researching efforts to identify and
solve it. It is unknown how much the stalling exactly contributes to the per-
formance degradation of the QUIC-based clients, and although they appear
to be correlated, the underlying cause first needs to be solved in order for the
correlations to become apparent.

• QUIC maturity: while it is claimed that the used QUIC library is used in
production at Cloudflare [6], it is still under heavy development, as are all
other QUIC libraries currently available. It might be that the way Tor uses
the QUIC connections, such as sending lots of small cells over a stream,
could cause the performance of the connection to be suboptimal.

With this in mind, the results do appear to indicate that sharing no circuit at
all (scenario 1) gives the QUIC-based clients a clear performance advantage. As
clients share the whole circuit, the stalling also happens with the TCP-based clients
(scenario 3). However, these are just speculations based on the data available.
There is no conclusive answer possible yet with the current data and more research
is required.

68

Chapter 9

Future work

While this thesis lays the groundwork for the research into a QUIC-based transport
protocol in Tor, in the following sections related additional future improvements
are suggested.

9.1 Network performance evaluation

Partially because of the limitations of the network simulators, the evaluation of the
prototype was limited. The already existing network simulators that were taken
into consideration either had no support for the required network protocols (UDP)
or had other limitations that made it impossible to use them. This is the reason
that a manual, custom solution was developed based on Linux namespaces and
the traffic control system, which had a more limited feature set than the existing
network simulators. One example of such a limitation is that it was not possible to
reliably test packet loss, which QUIC is expected to better deal with than TCP.

One options is to extend the network simulator that was used during the evalua-
tion. One could route traffic over a real network before applying delays or package
loss, similar to how NetMirage works. However, as this would be a significant in-
vestment of time, the required time is probably better spent improving the already
existing network simulators. As Shadow is developed by a Tor developer and also
actively used in Tor research, extending Shadow to work with UDP-based proto-
cols instead of just TCP-based protocols is an avenue worth pursuing. Another
options is to find out why NetMirage did not work with the UDP-based proto-
type. This is potentially less work, because it is not new implementation work as
with Shadow, but the uncertainty of what the actual problem is makes it difficult
to compare. Also, the pay off might be lower as NetMirage is not widely used yet
(it is still beta software [42]), although that could change in the future, especially
because NetMirage should work with any software, without modifications.

Using network simulators that were specifically built for and are know to work
well with Tor also opens the doors to do large scale network tests with thousands
of nodes.

69

9.2 Prototype implementation

The prototype of the QUIC-based is exactly that: a prototype. The code is not yet
ready for general use or ready to be upstreamed as-is. One of the ways to get there,
is to create a dedicated QUICChannel instead of modifying the TLSChannel
to work with QUIC. However, this still needs a lot of work, because there are
still a significant number of violations between the abstract Channel and the
TLSChannel implementation1.

9.2.1 TLS libraries

Another implementation improvement would be to stop mixing TLS libraries. The
QUIC library that is used, Quiche, requires the BoringSSL library while Tor itself
uses the OpenSSL library. As explained in Section 6.2.3, these do not mix well
because BoringSSL is a fork of OpenSSL and still shares a lot of symbols with the
latter. The best solution here is to make Quiche compatible with OpenSSL, which
requires modifications to be upstreamed to the OpenSSL project. Coincidentally,
during the last few days of this project, work was started to make Quiche work
with a development version of OpenSSL2. Once this work is finished, both on the
OpenSSL as on the Quiche side, this also opens the door to compiling Quiche
statically into the Tor binary.

9.2.2 Backwards compatibility

Because of the hop-to-hop design, it is possible to mix both old TCP-based Tor
instances and new QUIC-based Tor instances. Connections between nodes can au-
tomatically connect over QUIC if possible or fall back to TCP when needed. This
requires Tor to listen on both a UDP and a TCP port. Ideally, this would be imple-
mented through the QUICChannel and TLSChannel separation as described in
the previous section. It would be interesting to evaluate the performance improve-
ments in mixed networks where only part of the circuit uses QUIC.

9.3 Performance improvements

The performance of the prototype implementation was unfortunately not always
optimal. Likely due to a scheduling issue of the read and write events of the QUIC-
based connections, which causes cells to be delayed and some clients to stall. First
and foremost, this needs to be confirmed and resolved to improve the performance.

Once that problem is fixed, there are still further improvements to the QUIC
connection that could be considered. Does it for example make sense to use differ-

1As noted in this still open Tor ticket: https://trac.torproject.org/projects/
tor/ticket/23993.

2See the relevant pull request: https://github.com/cloudflare/quiche/pull/
126

70

https://trac.torproject.org/projects/tor/ticket/23993
https://trac.torproject.org/projects/tor/ticket/23993
https://github.com/cloudflare/quiche/pull/126
https://github.com/cloudflare/quiche/pull/126

ent types of congestion control algorithms for different kinds of loads on streams?
If so, what are the security implications of this? Would an adversary be able to
distinguish between different streams inside a circuit this way?

A second improvement is to implement Forward Error Correction (FEC). This
is currently not yet implemented in Quiche, but might prove to be a performance
improvement once it is.

A third improvement is to investigate the 0-RTT handshake of QUIC. Does it
make sense to use this? What are the implications of using this (for example,
losing perfect forward secrecy? Or losing replay detection?) and are they worth it
compared to the possible performance benefits?

9.4 Security review

While the prototype design had no deep and big architectural changes to Tor net-
work model, there needs to be a thorough security review of the implications of
using a QUIC-based transport protocol instead of TCP and the way it is applied
here. This to prevent mistakes like in the Quictor implementation (see Section 4.4).

Another issue is that lowering the latency inevitably makes it easier to do timing
attacks against Tor [22, 38]. Research needs to be done to find out how big this
impact is and if it is significant enough to need additional mitigations.

71

72

Chapter 10

Conclusion

This thesis has sought to answer the following research question:

What are the effects on the performance of the Tor network when using
a UDP-based protocol as the transport layer protocol?

To answer this question, first is was necessary to decide which UDP-based protocol
would have to be used as the transport layer protocol. Previous research has already
considered a few, such as the DTLS-based protocol in Section 4.2. However, the
main issues with the current TCP-based protocol are very similar to the issues with
the current HTTP/2 protocol as used on the web today. Considering that the QUIC
protocol, also a UDP-based protocol, is specifically being developed to solve these
issues, this was deemed to be the best available option.

The next step in answering this question was to define how to measure the per-
formance import of different transport layer protocols in Tor. The two main metrics
that were found to be important are the time between the when local SOCKS con-
nection is established and the first byte is returned, or time to first byte, and the
time between when the local SOCKS connection is established and the last byte is
returned, or time to last byte. With these two metrics, the responsiveness and the
throughput of the Tor circuits can be evaluated. Multiple Tor network simulators
were evaluated but found lacking for either lack of UDP support or less clear rea-
sons. A custom solution was developed in which and extended version of one of
the existing tools was integrated. Section 7.2 explains this in more detail.

However, the final answer to the research question is as of yet not conclusive
due to the limitations during the network performance evaluations. The QUIC-
based implementation performs better on some metrics, mainly in the time to first
byte metric on most scenarios, but only up to a point. Some clients stalled, likely
due to a scheduling issue of the read handler, which would suggest that this is not
caused by network traffic interference. However, without actually solving this is-
sue, it is impossible to prove that this is the case. Additionally, the limitations with
the existing network simulators had the consequence that no larger scale network
simulation could be run. Without improving on these two limitations, it is impos-

73

sible to prove and therefore state with absolute confidence that using QUIC has a
definitive performance benefit.

That being said, this thesis also has some other contributions that were made.
It defines a design for a QUIC implementation and a prototype that implements
that design. In addition to that, it contributes a script to set up virtualized network
in which network delays can be simulated. The existing Chutney tool is modified
to integrate with this, launching the Tor processes inside the virtualized network.
Other modifications include logging individual metrics about the transfers, running
multiple different transfers in parallel and monitor the Tor processes during the
experiments.

With these contributions, this thesis has laid the groundwork for further research
into the performance benefits of the QUIC transport protocol. It aims to inspire
the continuation of the research towards a faster, widely used Tor. Privacy online
should not be privilege, it is a universal human right.

74

Bibliography

[1] Mashael AlSabah and Ian Goldberg. Performance and security improvements for
tor: A survey. 2015.

[2] Autoriteit Persoonsgegevens (AP). Dutch data protec-
tion authority: Facebook violates privacy law. https:
//autoriteitpersoonsgegevens.nl/en/news/
dutch-data-protection-authority-facebook-violates-privacy-law.

[3] Autoriteit Persoonsgegens (AP). CBP issues sanction to google for infringements
privacy policy. https://autoriteitpersoonsgegevens.nl/en/news/
cbp-issues-sanction-google-infringements-privacy-policy,
2014.

[4] Chromium Blog. A quic update on googles experimen-
tal transport. https://blog.chromium.org/2015/04/
a-quic-update-on-googles-experimental.html, 2015.

[5] Buildswith. Web technology usage trends. https://trends.builtwith.
com/analytics/, 2019.

[6] Cloudflare. Quiche readme. https://github.com/cloudflare/quiche/
blob/master/README.md, 2019.

[7] Cisco CCENT/CCNA Networking Concepts. The osi network model - what you need
to know. https://cisconetworkingbasics.blogspot.com/2013/
06/the-osi-network-model-what-you-need-to.html, 2013.

[8] DARPA. Transmission control protocol. RFC 6793, 1981.
[9] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation

onion router. 2004.
[10] Roger Dingledine and Steven Murdoch. Performance improvements on Tor. 2009.
[11] The Economist. The worlds most valuable resource is no longer oil, but

data. https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data,
2017.

[12] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site mea-
surement and analysis. 2016.

[13] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The case
of the tls 1.3 handshake candidates. 2017.

[14] The Linux Foundation. Traffic control netem. https://wiki.
linuxfoundation.org/networking/netem, 2019.

[15] The Linux Foundation. What is Open vSwitch? http://docs.openvswitch.
org/en/latest/intro/what-is-ovs/, 2019.

[16] United States Federal Trace Commission (FTC). FTC imposes $5
billion penalty and sweeping new privacy restrictions on facebook.
https://www.ftc.gov/news-events/press-releases/2019/07/

75

https://autoriteitpersoonsgegevens.nl/en/news/dutch-data-protection-authority-facebook-violates-privacy-law
https://autoriteitpersoonsgegevens.nl/en/news/dutch-data-protection-authority-facebook-violates-privacy-law
https://autoriteitpersoonsgegevens.nl/en/news/dutch-data-protection-authority-facebook-violates-privacy-law
https://autoriteitpersoonsgegevens.nl/en/news/cbp-issues-sanction-google-infringements-privacy-policy
https://autoriteitpersoonsgegevens.nl/en/news/cbp-issues-sanction-google-infringements-privacy-policy
https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
https://trends.builtwith.com/analytics/
https://trends.builtwith.com/analytics/
https://github.com/cloudflare/quiche/blob/master/README.md
https://github.com/cloudflare/quiche/blob/master/README.md
https://cisconetworkingbasics.blogspot.com/2013/06/the-osi-network-model-what-you-need-to.html
https://cisconetworkingbasics.blogspot.com/2013/06/the-osi-network-model-what-you-need-to.html
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
http://docs.openvswitch.org/en/latest/intro/what-is-ovs/
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions

ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions,
2019.

[17] Google. BoringSSL readme. https://boringssl.googlesource.com/
boringssl/, 2019.

[18] IETF QUIC Working Group. QUIC: A UDP-based multiplexed
and secure transport. https://tools.ietf.org/html/
draft-ietf-quic-transport-22, 2019.

[19] IETF QUIC Working Group. QUIC implementations. https://github.com/
quicwg/base-drafts/wiki/Implementations, 2019.

[20] The Guardian. Everyone is under surveillance now, says whistleblower Edward
Snowden. https://www.theguardian.com/world/2014/may/03/
everyone-is-under-surveillance-now-says-whistleblower-edward-snowden,
2014.

[21] Morley Gunderson and Byron Y Lee. Pay discrimination against persons with dis-
abilities: Canadian evidence from pals. 2016.

[22] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much anonymity
does network latency leak? 2007.

[23] Freedom House. Freedom on the net 2018. https://freedomhouse.org/
report/freedom-net/freedom-net-2018, 2018.

[24] United Kingdom Information Commissioner’s Office (ICO). Ico
issues maximum £ 500,000 fine to facebook for failing to pro-
tect users personal information. https://ico.org.uk/
about-the-ico/news-and-events/news-and-blogs/2018/10/
facebook-issued-with-maximum-500-000-fine/, 2018.

[25] J. Iyengar and M. Thomson. QUIC: A UDP-based multiplexed and
secure transport (draft). https://quicwg.org/base-drafts/
draft-ietf-quic-transport.html, 2019.

[26] Rob Jansen. Shadow wiki. https://github.com/shadow/shadow/wiki,
2019.

[27] Rob Jansen, Kevin Bauer, Nicholas Hopper, and Roger Dingledine. Methodically
modeling the Tor network. In Presented as part of the 5th Workshop on Cyber Secu-
rity Experimentation and Test, Bellevue, WA, 2012.

[28] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a box for accurate and
efficient experimentation. 2012.

[29] Rob Jansen and Matthew Traudt. Tors been KIST: A case study of transitioning tor
research to practice. 2017.

[30] C. Kiraly, G. Bianchi, and R. Lo Cigno. Solving performance issues in anonymiza-
tion overlays with a L3 approach.

[31] Ron Kohavi and Roger Longbotham. Online experiments: Lessons learned. 2007.
[32] Kevin Ku and Xiaofan Li. QuicTor: Tor running on QUIC protocol. 2016.
[33] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.

Internet jones and the raiders of the lost trackers: An archaeological study of web
tracking from 1996 to 2016. 2016.

[34] Greg Linden. Marissa Mayer at web 2.0. https://glinden.blogspot.com/
2006/11/marissa-mayer-at-web-20.html, 2006.

[35] Karsten Loesing, Steven J. Murdoch, and Roger Dingledine. A case study on mea-
suring statistical data in the Tor anonymity network. In Proceedings of the Workshop
on Ethics in Computer Security Research (WECSR 2010), LNCS. Springer, January
2010.

76

https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://boringssl.googlesource.com/boringssl/
https://boringssl.googlesource.com/boringssl/
https://tools.ietf.org/html/draft-ietf-quic-transport-22
https://tools.ietf.org/html/draft-ietf-quic-transport-22
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://www.theguardian.com/world/2014/may/03/everyone-is-under-surveillance-now-says-whistleblower-edward-snowden
https://www.theguardian.com/world/2014/may/03/everyone-is-under-surveillance-now-says-whistleblower-edward-snowden
https://freedomhouse.org/report/freedom-net/freedom-net-2018
https://freedomhouse.org/report/freedom-net/freedom-net-2018
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2018/10/facebook-issued-with-maximum-500-000-fine/
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2018/10/facebook-issued-with-maximum-500-000-fine/
https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2018/10/facebook-issued-with-maximum-500-000-fine/
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://github.com/shadow/shadow/wiki
https://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html
https://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html

[36] Isis Lovecruft, George Kadianakis, Ola Bini, and Nick Mathewson. Another algo-
rithm for guard selection. https://gitweb.torproject.org/torspec.
git/tree/proposals/271-another-guard-selection.txt, 2016.

[37] Elena Maris, Timothy Libert, and Jennifer Henrichsen. Tracking sex: The implica-
tions of widespread sexual data leakage and tracking on porn websites. 2019.

[38] Nick Mathewson and Mike Perry. Towards side channel analysis of datagram tor vs
current tor.

[39] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. Shining light in dark places: Understanding the Tor network. pages 63–
76, 2008.

[40] Commission nationale de l’informatique et des liberts (CNIL). The
CNILs restricted committee imposes a financial penalty of 50 mil-
lion euros against google llc. https://www.cnil.fr/en/
cnils-restricted-committee-imposes-financial-penalty-50-million-euros-against-google-llc,
2019.

[41] Michael F. Nowlan, David Isaac Wolinsky, and Bryan Ford. Reducing latency in tor
circuits with unordered delivery. 2013.

[42] University of Waterloo CrySP. NetMirage. https://crysp.uwaterloo.ca/
software/netmirage/, 2019.

[43] OrNetRadar. Monitoring the tor network for new relay groups and events. https:
//nusenu.github.io/OrNetRadar/, 2019.

[44] Frank Orozco. How quic speeds up all web applica-
tions. https://medium.com/@verizondigital/
how-quic-speeds-up-all-web-applications-62964aadb3d1,
2018.

[45] J. Postel. User datagram protocol. RFC 768, 1980.
[46] The Tor Project. Chutney readme. https://gitweb.torproject.org/

chutney.git/tree/README, 2019.
[47] The Tor Project. RustInTor - Tor bug tracker & wiki. https://trac.

torproject.org/projects/tor/wiki/RustInTor, 2019.
[48] The Tor Project. Welcome to Tor metrics. https://metrics.torproject.

org/, 2019.
[49] Joel Reardon. Improving Tor using a TCP-over-DTLS tunnel, 2008.
[50] Jim Roskind. QUIC: Design document and specification ratio-

nale. https://docs.google.com/document/d/1RNHkx_
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit, 2013.

[51] NMAP Network Scanner. Chapter 8. remote os detection. https://nmap.org/
book/osdetect.html, 2019.

[52] Joost Schellevis and Winny de Jong. Verzekeraars sturen surfgedrag naar
facebook, ook van medische pagina’s. https://nos.nl/artikel/
2226902-verzekeraars-sturen-surfgedrag-naar-facebook-ook-van-medische-pagina-s.
html, 2018.

[53] Florian Tschorsch and Björn Scheuermann. Mind the gap: Towards a backpressure-
based transport protocol for the Tor network. 2016.

[54] Chris Wacek, Henry Tan, Kevin Bauer, and Micah Sherr. An empirical evaluation of
relay selection in Tor, 2013.

77

https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://gitweb.torproject.org/torspec.git/tree/proposals/271-another-guard-selection.txt
https://www.cnil.fr/en/cnils-restricted-committee-imposes-financial-penalty-50-million-euros-against-google-llc
https://www.cnil.fr/en/cnils-restricted-committee-imposes-financial-penalty-50-million-euros-against-google-llc
https://crysp.uwaterloo.ca/software/netmirage/
https://crysp.uwaterloo.ca/software/netmirage/
https://nusenu.github.io/OrNetRadar/
https://nusenu.github.io/OrNetRadar/
https://medium.com/@verizondigital/how-quic-speeds-up-all-web-applications-62964aadb3d1
https://medium.com/@verizondigital/how-quic-speeds-up-all-web-applications-62964aadb3d1
https://gitweb.torproject.org/chutney.git/tree/README
https://gitweb.torproject.org/chutney.git/tree/README
https://trac.torproject.org/projects/tor/wiki/RustInTor
https://trac.torproject.org/projects/tor/wiki/RustInTor
https://metrics.torproject.org/
https://metrics.torproject.org/
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://nmap.org/book/osdetect.html
https://nmap.org/book/osdetect.html
https://nos.nl/artikel/2226902-verzekeraars-sturen-surfgedrag-naar-facebook-ook-van-medische-pagina-s.html
https://nos.nl/artikel/2226902-verzekeraars-sturen-surfgedrag-naar-facebook-ook-van-medische-pagina-s.html
https://nos.nl/artikel/2226902-verzekeraars-sturen-surfgedrag-naar-facebook-ook-van-medische-pagina-s.html

	Preface
	Introduction
	Problem description
	Research questions
	Contribution
	Thesis outline

	The Tor network
	Connections
	Channels
	Circuits
	Streams
	Cells

	Internet protocols
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	Head-of-line blocking
	TCP congestion protocol
	Congestion control and multiplexing

	The QUIC transport protocol
	Reducing round trips
	Reducing retransmissions and blocking

	Related work
	IPSec Tor
	DTLS Tor
	uTor
	QuicTor

	Integrating QUIC in Tor
	Design requirements
	Head-of-line blocking
	TCP congestion control
	Performance
	Privacy and anonymity
	Deployability

	Why QUIC?
	Hop-to-hop
	Tor network layers

	Implementing QUIC in Tor
	QUIC libraries
	Quiche

	Tor connection model
	Connections
	TLSChannel
	TLS libraries

	Tor network simulation
	Existing simulators
	Shadow
	Chutney
	NetMirage

	Manual network simulation
	Network namespaces
	Traffic control
	Chutney
	Limitations

	Network performance evaluation
	Experimental setup
	Scenario 1: A single circuit path with a single client
	Results and discussion

	Scenario 2: Two circuit paths with two clients, sharing a single node
	Results and discussion

	Scenario 3: A single circuit path with two interfering clients
	Results and discussion

	Scenario 4: Two circuit paths with two clients, sharing two nodes
	Results and discussion

	Scenario 5: A scaled down Tor network model
	Results and discussion

	Discussion

	Future work
	Network performance evaluation
	Prototype implementation
	TLS libraries
	Backwards compatibility

	Performance improvements
	Security review

	Conclusion

