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Reservoir Lithology Determination by Hidden
Markov Random Fields Based on

a Gaussian Mixture Model
Runhai Feng , Stefan M. Luthi, Dries Gisolf, and Erika Angerer

Abstract— In this paper, geological prior information is
incorporated in the classification of reservoir lithologies after
the adoption of Markov random fields (MRFs). The predic-
tion of hidden lithologies is based on measured observations,
such as seismic inversion results, which are associated with
the latent categorical variables, based on the assumption of
Gaussian distributions. Compared with other statistical methods,
such as the Gaussian mixture model or k-Means, which do
not take spatial relationships into account, the hidden MRFs
approach can connect the same or similar lithologies horizontally
while ensuring a geologically reasonable vertical ordering. It is,
therefore, able to exclude randomly appearing lithologies caused
by errors in the inversion. The prior information consists of a
Gibbs distribution function and transition probability matrices.
The Gibbs distribution connects the same or similar lithologies
internally, which does not need a geological definition from the
outside. The transition matrices provide preferential transitions
between different lithologies, and an estimation of them implicitly
depends on the depositional environments and juxtaposition rules
between different lithologies. Analog cross sections from the
subsurface or outcrop studies can contribute to the construction
of these matrices by a simple counting procedure.

Index Terms— Hidden Markov random fields (HMRFs),
lithology determination, seismic inversion, transition matrix.

I. INTRODUCTION

THE classification of lithologies is an essential step in
reservoir characterization and in the building of a static

reservoir model. The definition, the number, and the types of
lithologies can be provided by geologists. The preliminary
analysis of well-log data will identify various lithologies,
and most of the time, the number of lithologies will be
kept constant afterward. Other sources of information, such
as seismic data, can provide a larger areal coverage, thus
overcoming the limitations provided by sparse well locations.

Inference of lithologies from seismic data is a challeng-
ing task and actually an ill-posed inverse problem, because

Manuscript received October 13, 2017; revised March 22, 2018; accepted
May 22, 2018. This work was supported by the DELPHI Consortium.
(Corresponding author: Runhai Feng.)

R. Feng and S. M. Luthi are with the Department of Geoscience and
Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands
(e-mail: r.feng@tudelft.nl).

D. Gisolf is with the Department of Physics, Delft University of Technology,
2628 CJ Delft, The Netherlands.

E. Angerer is with OMV Exploration & Production, 1020 Vienna,
Austria.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2018.2841059

a variety of different facies characteristics may result in
identical or similar seismic responses [1]. The Bayesian
concept is usually applied to mitigate this problem as
applied by Mukerji et al. [2] and Houck [3] who identified
lithology/fluid (LF) classes based on the amplitude-versus-
offset (AVO) analysis. Buland and Omre [4] developed a
linearized AVO inversion approach under the Bayesian frame-
work. Subsequently, Buland et al. [5] proposed a fast Bayesian
inversion approach for a 3-D lithology and fluid prediction
from prestack data.

However, the approaches mentioned previously are point-
or location-based, which means that the spatial coupling
between data points is not considered. In order to address
this problem, prior information can be included, in which
a Markov chain or Markov random field (MRF) is applied.
Eidsvik et al. [6] translated well-log data into geological
attributes by hidden Markov chains. Larsen et al. [1] incor-
porated a stationary Markov-chain prior model to simulate
vertical continuity of LF classes along the profile. Ulvmoen
and Hammer [7] compared two algorithms—approximated and
exact likelihood models for the inversion of lithologies and
fluids in which the Markov a priori knowledge is incorporated
in the Bayesian setting. Ulvmoen et al. [8], [9] adopted a
profile MRF model to simulate a priori information of the
LF classes in order to improve the resolution in the Bayesian
LF inversion from prestack seismic data. Hammer et al. [10]
inverted a vertical profile of rock properties based on seismic
amplitude data in which a Markov prior process is included to
guarantee that vertical dependences are honored. Other reser-
voir parameters, such as porosity and saturation, could also be
inferred from seismic data combined with well observations
as have been done by Bosch et al. [11].

In this paper, instead of deriving the lithologies from
prestack or stacked seismic data, the efforts are geared toward
the usage of inversion results in reservoir description. The
elastic full-wavefield inversion scheme can provide high-
resolution results, because the intrinsically nonlinear relation-
ship between rock properties and the seismic data has been
fully exploited [12]. This feature makes the approach suitable
as a potential input for the reservoir characterization process.

The 3-D distribution of lithologies in the subsurface is not
directly observable, or hidden, with only limited information
provided by wells. However, indirect observations in the form
of measurements are available that contain information on
them. Hidden Markov models (HMMs) are trying to uncover
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Fig. 1. Schematic view of the dependence between nodes.

these latent states under this concept but only in 1-D, i.e., the
vertical direction [6], [13]. Here, we present a 2-D method,
in which the horizontal prior information is also incorporated
through the introduction of MRFs.

The rock properties obtained by the inversion of
seismic data are assumed to be distributed according to mul-
tivariate Gaussian functions [14]. Thus, a Gaussian mixture
model (GMM) is used to describe the conditional probabilities
of the properties from inverted seismic data, given different
lithologies [15].

In this paper, first a short introduction of the MRFs
is given, and then the theory of the GMM-based hidden
MRFs (GMM-HMRFs) is described. Finally, some synthetic
examples and a field case study from Vienna Basin will be
shown with discussions and some conclusions.

II. MARKOV RANDOM FIELDS

First introduced by Ising [16], a MRF is an undirected
graphical model and can be described by a group of random
variables that possess a Markov property. This Markov prop-
erty can be defined by a joint probability distribution, which is
determined by a local conditional distribution. Fig. 1 illustrates
this concept in which the white node is independent of all other
black nodes given the red nodes.

The following equation describes the conditional distribu-
tion of Xn :

Pr(Xn|Xm , m �= n) = Pr(Xn|Xm , m ∈ ε) (1)

where Xn can take a value in the set of categorical variables,
such as lithology, which is associated with the node n;
ε represents the local neighborhood set of nodes that share
an edge with node n in the graph.

However, it is not easy to construct the joint distribution
of a MRF based on the local conditional distribution of
Pr(Xn |Xm, m ∈ ε). The Hammersley–Clifford theorem builds
the equality between the joint distribution of any MRF and
a Gibbs distribution; the joint distribution of a MRF can be
defined by a clique potential (see in the following) [17], [18].
A Gibbs distribution is taking the form

Pr(X) = 1

Z
e−U (X) (2)

in which

U (X) =
∑
c∈C

Vc(X) (3)

Fig. 2. HMRFs with observable and hidden levels.

where Pr(X) is the probability distribution of random vari-
ables X, U(X) is the energy function, Z is the partition
function, c is a clique which is a subset of nodes satisfying
the demand that every node is linked to every other one, and
C is the set of c; Vc(X) can be referred as clique potential
functions [19].

III. GAUSSIAN MIXTURE MODEL-BASED

HIDDEN MARKOV RANDOM FIELDS

Similar to HMMs [6], [20], HMRFs are also trying to
uncover the categorical variables that are hidden to the
observers (Fig. 2). The difference with HMMs is that the
theory of 2-D MRFs is applied, instead of a vertical Markov
chain, which has no limitation in 1-D (depth). That is
why it is more suitable for quantifying reservoir properties
in 2-D or even 3-D, since both the vertical and horizontal
connections in categorical variables are considered.

In the HMRFs, the hidden level is associated with categori-
cal variables in physical space, whereas in the observable level,
the data can be obtained in statistical space. Hence, a HMRF
model is defined as a stochastic process derived by a MRF
whose label configuration cannot be observed directly [19].
However, a MRF could generate measurable data sets that
are assumed to honor certain probability distribution functions
known as the emission probability functions [19], [20].

According to the maximum a posterior criterion, in HMRFs,
the purpose is to seek the states X̂ that satisfy [21], [22]

X̂ = argmax
X

{Pr(Y|X,θ)Pr(X)} (4)

where Pr(X) is the prior probability, which is a Gibbs distri-
bution in (2); Pr(Y|X,θ) is the likelihood probability of the
observation Y.

A typical characteristic of Pr(Y|X,θ) is the conditional
independence of any particular configuration of X [21], [22]

Pr (Y|X,θ) =
∏

i

Pr(Yi |Xi , θXi ) (5)

Pr(Yi |Xi , θXi )(i = 1, 2, . . . , T ; where T is the total number of
data samples) is the emission distribution of observation Yi ,
with parameters θXi . Different probability functions can be
applied to describe it, but to keep analytical tractability,
a Gaussian assumption is made [13].
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Given the observation data Y, for a certain state Xi , which
takes a value in the state space S = {S1, S2, · · · , SN },
the Gaussian distribution has the following form with the
means μ j and the covariance matrices σ j ( j = 1, 2, . . . , N;
where N is the total number of lithologies):

Pr(Yi |Xi = Sj , θ j ) = f (Yi ; μ j , σ j ) (6)

where θ j = (μ j , σ j ) which is a specified θXi when Xi = Sj

and

f (Yi ; μ j , σ j ) = 1√
2πσ 2

j

exp

(
− (Yi − μ j )

2

2σ 2
j

)
(7)

In (7), the intensity distribution of each state, or lithology
to be classified, is a Gaussian distribution with the parameter
sets θ j = (μ j , σ j ). However, sometimes, it is insufficient to
describe the complexity in the distribution of the observation
data, especially for multimodal distributions. Thus, a GMM
is more powerful than a single Gaussian function to model
the complexity and can be described in the following with the
parameter sets θ j in which there are k components [15]:

θ j = {(μ j ,1, σ j ,1, ω j ,1
)
, . . . , (μ j,k, σ j,k, ω j,k)} (8)

where ω j,k is a mixture weight of the kth component given a
specific state Sj .

Accordingly, (7) will have a weighted probability form

f (Yi ; θ j ) =
k∑

n=1

ω j,n f (Yi ; μ j,n, σ j,n) (9)

Without the spatial correlation of Pr(X), (4) will become a
degenerated case of HMRFs, in which the GMM is defined
and can be specified fully by the histogram of the data [22].
After the incorporation of Pr(X) as a prior, the classification
problem is then approached statistically as well as spatially.

However, the prior Pr(X) only considers the spatial correla-
tion of the neighbors and tries to make the same (constant
image) or similar (continuous image) prediction with the
contextual constraints, and it does not need a specification of
geological knowledge which can be considered as an internal
prior. Thus, this is not sufficient, because some unrealistic
classifications could happen, such as a water sand on top of
a gas or oil sand in a given reservoir. This could be due
to measurement errors or misleading neighbors because of
the tendency to be the same or a similar state or lithology
(Fig. 1) [13]. Therefore, a profile Markov matrix as an external
prior is proposed in which another constraint on lithological
transitions will be introduced.

Unlike a traditional Markov chain matrix, which is obtained
by counting the transitions of lithologies in the vertical direc-
tion (depth) and normalizing afterward [23], the construction
of this new profile Markov matrix is using the same procedure
as the Markov chain in which the counting and normalizing
in the vertical direction will be kept, while also the left and
right neighbors in the lateral direction of the future state
are considered [8], [9]. A detailed description of this prior
matrix P(:,:) is provided in Appendix A.

Fig. 3. True and inverted properties of a selected part from the Book Cliffs
model. (a) κ . (b) M. The inverse triangle represents the location of the
two well logs (CMP = 1900 and 2000).

Thus, (4) has to be reformatted in order to take matrix P(:,:)
into account

X̂ = argmax
X

{Pr(Y|X,θ)Pr(X)P(:,:)} (10)

In order to find an estimated X̂, (10) is invoked, in
which both the states and the parameter sets in the GMM
are unknown, as described previously. Furthermore, they are
connected with each other. Different techniques have been
introduced to solve this problem, in which the expectation–
maximization (EM) method is the one most widely used [22].
The strategy in the EM approach is as follows. Given the
current estimated θ, predict the hidden variables X̂; then, θ can
be updated by maximizing the expectation of the complete-
data likelihood function E[Pr(X, Y|θ)P(:,:)] [19], [22]. This
process will be iterated until certain conditions are met. For
the mathematical details, please refer to Zhang et al. [22].

IV. BOOK CLIFFS EXAMPLE

The first example for applying the approach is the synthetic
Book Cliffs model created by Feng et al. [24] in which more
details have been added and more differentiation is put on the
potential reservoir lithologies than in the original [25]. As a
test, only a subset of the whole 2-D section has been selected,
and Fig. 3 shows the true and inverted properties in terms
of κ and M (κ = 1/K , with K being the bulk modulus;
M = 1/μ, with μ being the shear modulus).

The quality of inversion results is quite good when com-
pared with the truth, since most geometries have been
recovered correctly, as well as the properties, which is due
to the fact that the nonlinear relationship between rock
properties and seismic data has been fully exploited [12].
Observations from wells are needed for inferring the prior



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Two pseudowells at CMP = 1900 and 2000 as indicated by the
inverse triangle. Lithologies are known at the well locations with FS, VFS,
SS, and clay.

Fig. 5. True (red curves) and inverted (blue curves) properties at
(a) CMP = 1900 and (b) CMP = 2000. Note that the values in the wells
have been upscaled to the seismic grid interval.

Fig. 6. 90% confidence regions of the bivariate Gaussian likelihood model
for the distribution of each lithology.

Markov models [8], [9] as well as for building the lithological
templates. As a starting point of the classification process,
two pseudowells have been “drilled” at the leftmost and
rightmost locations of the selected section (CMP = 1900
and 2000) (Fig. 4).

The true and inverted properties at the well locations can
be seen in Fig. 5. Fig. 6 shows 90% confidence regions of the
Bivariate Gaussian likelihood model in terms of κ and M .

From Fig. 6, it can be seen that there are some overlapping
areas between different lithologies, especially for siltstone (SS)
and very fine-grained sandstone (VFS), which makes the

Fig. 7. Subsurface cross section in terms of lithologies.

Fig. 8. Starting model in terms of lithologies (MCC = 0.4234).

differentiation difficult when only the property values are
considered. Therefore, the Gaussian likelihood model (Fig. 6)
is adopted which is the emission probability of properties
given a specific lithology (5) [20]. However, in contrast to
other statistical methods, such as GMM or k-Means [26], two
additional parameter sets are introduced in GMM-HMRFs:
the Gibbs prior distribution and the profile Markov matrix.
These ensure that the geological information is implicitly
incorporated during the classification process. Fig. 7 displays
the cross-sectional truth in the subsurface. The starting model
of the classification is shown in Fig. 8, which is derived from
a noniterative histogram-based statistical approach with the
two “drilled” wells as lithological templates and inversion
results as inputs (Figs. 3–6). In order to measure the quality
of the lithological prediction, the Matthew’s correlation coef-
ficient (MCC) is adopted for which the value range is [−1 1],
where 1 means a perfect prediction and −1 represents the
worst result [27].

Since only the inverted property values are used, there
is no spatial correlation between the sample points, which
makes the prediction unreliable in the form of randomly
appearing lithologies, particularly at the layer boundaries.
Subsequently the GMM methodology is applied with the
lithological distributions in Fig. 8 as inputs. By contrast with
the simple histogram-based and noniterative approach used
in Fig. 8, the GMM clusters sample points into different groups
(lithologies), by applying an iterative procedure called EM,
as discussed previously.

The EM algorithm finds the maximum likelihood estimates
of parameters in probabilistic models in the presence of
missing data, which in this context means that the lithologies
are unknown [13]. An iterative scheme is performed in which
the expectation step calculates the probability of every sample
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Fig. 9. Result of GMM with the starting model shown in Fig. 8
(MCC = 0.5245).

Fig. 10. Result of GMM-HMRFs incorporated with the Gibbs prior only
(MCC = 0.6600).

Fig. 11. Result of GMM-HMRFs incorporated with the Markov matrix only
(MCC = 0.6417).

point belonging to each lithology, whereas in the maximiza-
tion step, it maximizes the means and covariance matrices
according to the probabilities computed in the expectation
step. As in [28], the spatial correlation is ignored in the
estimation of these parameters here in which some random
states or lithologies still occur, although the result in Fig. 9 is
improved compared with the initial one in Fig. 8.

In order to test the different roles of the prior informa-
tion, i.e., the Gibbs function (2) and the Markov matrix
(Appendix A), results incorporated with the prior information
separately are shown (Figs. 10 and 11). With only the Gibbs
prior used (Fig. 10), some lithologies are better connected than
with the GMM (Fig. 9). However, some random lithologies
still exist such as the SS in the VFS layer in the upper part
and the FS (fine-grained sandstone) in the lower-middle area,
which has been separated because of locally connected VFS
at the depths between 300m and 350m and CMPs between
1925 and 1940.

Fig. 12. Result of GMM-HMRFs incorporated with both prior information
(MCC = 0.7034).

With only the Markov matrix used, the distribution of
lithologies is preferential in the horizontal direction (Fig. 11),
since the transition has been governed by the left and right
neighbors, demonstrated as larger values, that provides infor-
mation on the lateral continuity or is under the consideration
of layered formations (Appendix A) [29]. However, these
matrices have to be modified in order to simulate transitions
in a given reservoir which will be discussed in the real case
study in the following.

By applying both prior information, the spatial correlation is
considered in the vertical and horizontal directions. Compared
with the result by the GMM (Fig. 9) and others with either
one of the prior information incorporated (Figs. 10 and 11),
the classified lithologies (Fig. 12) are distributed more orderly
and closer to the truth (Fig. 7), as well as shown by an increase
of MCC values [30].

V. REAL CASE STUDY IN THE VIENNA BASIN

In order to further test the ability of the proposed GMM-
HMRFs, a real field data set from the Vienna Basin is used.
Vintages of 3-D seismic surveys acquired in different years
have been merged into a single data set, Vienna Basin Super
Merge, which are used as inputs for the nonlinear elastic full-
wavefield inversion scheme [12]. The inverted rock properties
from the seismic data are then used as inputs for the lithology
prediction as illustrated previously.

A single cross section of inverted rock properties (κ and M)
has been selected from the available data set, which is tra-
versed by a logged well in the middle (Fig. 13).

Due to problems in the preprocessing phase, or fault cut-
outs, or both, the inversion result is of suboptimal quality,
even though in the upper part of the well, the match is quite
reasonable (Fig. 14). Fig. 15 shows the properties’ confidence
regions of three groups of lithologies.

In order to perform the new classification methodology,
the starting model in the form of lithologies (Fig. 16) is
obtained by applying the k-Means method [26] and a compar-
ison of Euclidean distances [31] between the cluster centroid
locations and the known lithologies properties in the well
(Figs. 14 and 15). This is different from the above-mentioned
synthetic example, since there is only one well here and the
inversion quality is lower.

The classified and “true” lithologies at the well location are
shown in Fig. 17 in which it can be seen that almost all of
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Fig. 13. Inverted rock properties. (a) κ . (b) M. The black line represents the
location of the logged well.

Fig. 14. True (red curves) and inverted (blue curves) rock properties at the
logged location (Fig. 13).

the sandstone units have been predicted correctly even though
the thin shale streaks have been missed due to the low seismic
resolution and inversion quality. The “true” lithology is defined
based on wireline logging data such as the gamma ray log,
instead of cored information.

After applying the proposed GMM-HMRFs in (10) and the
profile Markov matrices in Appendix B, the result is shown
in Fig. 18.

Compared with the result in Fig. 16, the distributions of
lithologies in Fig. 18 are more compact because of the incor-
porated priors which try to connect and simplify the lithology

Fig. 15. 90% confidence regions of the bivariate Gaussian likelihood model
of lithologies (Sand: sandstone and SH_Sand: shaly sandstone).

Fig. 16. Starting model in terms of lithologies by k-Means.

Fig. 17. “Truth” and prediction of k-Means at the well location (black line
in Fig. 16).

transitions, therefore reducing the noise in the data. However,
there are some “unlikely” transitions, such as sand on top of
shale (Fig. 19). (This could happen in many geological set-
tings. But here it is assessed “unlikely,” since it does not occur
in the cored “truth” well, as shown in Fig. 17.) The reason for
this is that small (but not zero) transition probabilities (0.0001)
have been assigned in the Markov matrices (Appendix B).

In order to exclude this transition and simulate a typical
transition in given reservoirs, such as a water sand not overly-
ing an oil or gas sand because of gravity segregation, Markov
matrices are modified as shown in Appendix C. After applying
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Fig. 18. Classified result of GMM-HMRFs with the Gibbs prior and Markov
matrices in Appendix B.

Fig. 19. “Truth” and prediction of GMM-HMRFs at the well location
(Fig. 18).

Fig. 20. Classified result of GMM-HMRFs with the Gibbs prior and modified
Markov matrices in Appendix C.

these new matrices, the transitions between sand and shale
have been removed (Figs. 20 and 21).

VI. DISCUSSION

In this paper, the spatial correlation during the lithological
classification process is taken into account through the concept
of MRFs, in which the Gibbs prior and the profile Markov
matrix are incorporated. In contrast to GMM or k-Means,
which do not use the geological spatial prior knowledge,
the proposed method of GMM-HMRFs is able to produce
better images of categorical variables, and each lithology tends
to connect with the same or similar lithology horizontally and
vertically based on preferential transitions. Other geostatistical
methods such as multiple-point geostatistics [32] cannot be

Fig. 21. “Truth” and prediction of GMM-HMRFs at the well location
(Fig. 20).

applied for these purposes, since it is not possible to obtain
2-D training images with only a few wells in the subsurface.

A. Input Data Set

The input data for the classification are elastic full-wavefield
inversion results [12]. Compared with other inversion methods,
this scheme can provide high resolution, since the nonlinear
relationship between the rock properties and seismic data
has been exploited by utilizing wave-mode conversions and
multiple scattering. In contrast to rock properties, such as
bulk density and velocities, the compressibility (κ) and shear
compliance (M) are used here, because they appear naturally
in the elastic wave equation and are more closely related to
rock types.

However, the classified result shown in Fig. 12 is not perfect
compared with the truth in Fig. 7 especially for SS in the upper
part, which has been clustered as VFS. From CMPs 1900 and
2000, the lithology of SS attempts to be continuous in the
beginning. However, when moving away from the controlled
information of the “drilled” wells, the wrong prediction of
VFS emerges and observations from the wells stand out, which
is due to errors in the inversion results (Fig. 5) as well as high
overlaps in the properties of lithologies (Fig. 6). The same
problem happens for SS which has been classified as VFS
at the depth 300 m on the left part, even though the starting
lithology in the well (CMP = 1900) is correct. Thus, the clas-
sification method highly depends on the quality of the input
data set and property difference between lithologies, which
is also the case for every other classification method. If the
inputs cannot provide a good description of the subsurface in
terms of rock properties and structures, or if properties of the
various lithologies are highly overlapping, perfect prediction
of lithologies cannot be expected, even with good geological
prior information.

B. Prior Information

The geological prior information that can be incorporated is
divided into two groups. One is the Gibbs distribution, which
can be obtained from the energy function [see (2) and (3)],
and the other one is the transition matrix (Appendixes A–C).
Different roles played by these two types of prior information
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have been shown in the synthetic example (Figs. 10 and 11),
whereby the first one tries to connect lithologies horizontally
and vertically and the second one gives preferential transi-
tions between different lithologies, while excluding unlikely
transitions (Figs. 20 and 21). The transition matrix can be
derived using a general understanding of the depositional envi-
ronments and the juxtapositions between different lithologies.
Application of Walther’s law [33] can help in making the
construction of these transition matrices easier. As a further
research, different scenarios in terms of the Markov matrices
could be designed in order to gain more confidence.

C. Number of Lithologies

The number of lithologies to be classified is determined
from the cored wells in the cross section and has been
maintained constant during the classification process in order
to facilitate the prediction problem. However, some lithologies
in the middle part of the section may not occur in the wells
because of pinch-outs in the layers or 3-D complexities. In the
synthetic case, this problem has been avoided, since the well
locations can be selected such that all the lithologies occur
in the two “wells”. In the real cases, this is not possible,
and additional geological knowledge, i.e., other fields or well
outside the line of section, should be used to address this
problem.

D. Markov Matrices

In the 2-D profile Markov transition matrix, the number of
matrices is related to the number of states or lithologies in the
system. If there are N lithologies, there will be N(N+1)/2
matrices which will not be easy to construct, since training
images are needed that may not always be available. In the
synthetic and real cases presented here, in order to make the
matrix construction feasible, values in the transitions are more
strongly controlled by the neighbors (Appendixes A–C), and
some unlikely transitions can be set to zero as simplified by
the transitions between sand and shale in the real case study
(red rectangle in Figs. 16, 18, and 20).

E. Starting Model

Since the EM algorithm converges locally, the initial model
including the starting lithological section and the parameter
sets such as means and covariance matrices in the GMM is
important. The histogram analysis helps to estimate the means
and covariance matrices in the absence of prior information.
According to the criteria of classification, the states should be
separated widely from each other in terms of their properties,
and at the same time, the intrastate variances need to be as
low as possible (Figs. 6 and 15). Other information about these
parameters should be brought in, such as a regional or empir-
ical model between the rock properties and lithologies.

Compared with the real case, the inversion quality is better
and more “wells” are available in the synthetic example, thus
a simple histogram-based method based on the inverted and
known properties at the well locations is used in order to
provide the initial model (Fig. 8).

In the real case study of Vienna Basin, the inversion quality
is low because of problems during the processing phase.

Thus, a different approach is adopted in the form of the
k-Means to provide the initial model (Fig. 16). The histogram-
based method used in the synthetic example has also been
tested, but the final result is relatively poor since only one well
is available and low-quality means and covariance matrices are
provided by the poor inversion at the well location.

VII. CONCLUSION

In this paper, seismic inversion results have been used
as inputs for lithological classification in an approach that
circumvents the limitations posed by sparse well locations. The
performance of the selected classifier, however, depends highly
on the inversion quality. The inversion scheme used here pro-
vides high-resolution properties, because it takes the internal
multiples and wave-mode conversions also into account.

Geological prior knowledge has been introduced for
the classification of reservoir lithologies by applying the
MRFs which constrain the vertical and horizontal couplings.
Compared with statistical or histogram-based methods,
GMM-HMRFs can help make the prediction more geolog-
ically reasonable, since lithologies are connected with each
other both in the lateral and vertical directions using known
preferential probabilities. In this way, a more realistic reservoir
architecture can be obtained.

APPENDIX A
PROFILE MARKOV RANDOM TRANSITION

MATRIX IN THE SYNTHETIC EXAMPLE

Adopting the idea as in [8] and [9], the transition matrices
of the 2-D MRFs in the synthetic study are as follows:

PFS,FS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.9997 0.0001 0.0001 0.0001
VFS 0.9997 0.0001 0.0001 0.0001
SS 0.9997 0.0001 0.0001 0.0001

Clay 0.9997 0.0001 0.0001 0.0001

(11)

PFS,VFS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.4998 0.5000 0.0001 0.0001
VFS 0.4998 0.5000 0.0001 0.0001
SS 0.4998 0.5000 0.0001 0.0001

Clay 0.4998 0.5000 0.0001 0.0001

(12)

PFS,SS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.4998 0.0001 0.5000 0.0001
VFS 0.4998 0.0001 0.5000 0.0001
SS 0.4998 0.0001 0.5000 0.0001

Clay 0.4998 0.0001 0.5000 0.0001

(13)

PFS,Clay =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.4998 0.0001 0.0001 0.5000
VFS 0.4998 0.0001 0.0001 0.5000
SS 0.4998 0.0001 0.0001 0.5000

Clay 0.4998 0.0001 0.0001 0.5000

(14)
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PVFS,VFS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.9997 0.0001 0.0001
VFS 0.0001 0.9997 0.0001 0.0001
SS 0.0001 0.9997 0.0001 0.0001

Clay 0.0001 0.9997 0.0001 0.0001

(15)

PVFS,SS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.4998 0.5000 0.0001
VFS 0.0001 0.4998 0.5000 0.0001
SS 0.0001 0.4998 0.5000 0.0001

Clay 0.0001 0.4998 0.5000 0.0001

(16)

PVFS,Clay =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.4998 0.0001 0.5000
VFS 0.0001 0.4998 0.0001 0.5000
SS 0.0001 0.4998 0.0001 0.5000

Clay 0.0001 0.4998 0.0001 0.5000

(17)

PSS,SS =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.0001 0.9997 0.0001
VFS 0.0001 0.0001 0.9997 0.0001
SS 0.0001 0.0001 0.9997 0.0001

Clay 0.0001 0.0001 0.9997 0.0001

(18)

PSS,Clay =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.0001 0.4998 0.5000
VFS 0.0001 0.0001 0.4998 0.5000
SS 0.0001 0.0001 0.4998 0.5000

Clay 0.0001 0.0001 0.4998 0.5000

(19)

PClay,Clay =

FS VFS SS Clay⎡
⎢⎣

⎤
⎥⎦

FS 0.0001 0.0001 0.0001 0.9997
VFS 0.0001 0.0001 0.0001 0.9997
SS 0.0001 0.0001 0.0001 0.9997

Clay 0.0001 0.0001 0.0001 0.9997

(20)

in which P(:,:) is the transition matrix with horizontal neigh-
bors of different lithologies (FS, VFS, SS, and clay). The
vertical transitions between lithologies are controlled by the
neighbors which is attributed to the lateral extension of layers.

APPENDIX B
PROFILE MARKOV RANDOM TRANSITION

MATRIX IN THE REAL CASE STUDY

The 2-D Markov random matrices in the real case study are
as follows:

PShale,Shale =
Shale SH_Sand Sand[ ]Shale 0.9998 0.0001 0.0001

SH_Sand 0.9998 0.0001 0.0001
Sand 0.9998 0.0001 0.0001

(21)

PShale,SH_Sand =
Shale SH_Sand Sand[ ]Shale 0.4999 0.5000 0.0001

SH_Sand 0.4999 0.5000 0.0001
Sand 0.4999 0.5000 0.0001

(22)

PShale,Sand =
Shale SH_Sand Sand[ ]Shale 0.4999 0.0001 0.5000

SH_Sand 0.4999 0.0001 0.5000
Sand 0.4999 0.0001 0.5000

(23)

PSH_Sand,SH_Sand

=
Shale SH_Sand Sand[ ]Shale 0.0001 0.9998 0.0001

SH_Sand 0.0001 0.9998 0.0001
Sand 0.0001 0.9998 0.0001

(24)

PSH_Sand,Sand =
Shale SH_Sand Sand[ ]Shale 0.0001 0.4999 0.5000

SH_Sand 0.0001 0.4999 0.5000
Sand 0.0001 0.4999 0.5000

(25)

PSand,Sand =
Shale SH_Sand Sand[ ]Shale 0.0001 0.0001 0.9998

SH_Sand 0.0001 0.0001 0.9998
Sand 0.0001 0.0001 0.9998

(26)

APPENDIX C
MODIFIED PROFILE MARKOV RANDOM TRANSITION

MATRIX IN THE REAL CASE STUDY

The 2-D modified Markov random matrices of the real case
study in order to simulate the unlikely transitions in a separated
reservoir are as follows:

PShale,Shale =

Shale SH_Sand Sand⎡
⎣

⎤
⎦Shale 0.9999 0.0001 0

SH_Sand 0.9998 0.0001 0.0001

Sand 0 0.5000 0.5000

(27)

PShale,SH_Sand =

Shale SH_Sand Sand⎡
⎣

⎤
⎦Shale 0.5000 0.5000 0

SH_Sand 0.4999 0.5000 0.0001

Sand 0 0.9999 0.0001

(28)

PShale,Sand =

Shale SH_Sand Sand⎡
⎣

⎤
⎦Shale 0.9999 0.0001 0

SH_Sand 0.4999 0.0001 0.5000

Sand 0 0.0001 0.9999

(29)
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PSH_Sand,SH_Sand

=
Shale SH_Sand Sand[ ]Shale 0.0001 0.9999 0

SH_Sand 0.0001 0.9998 0.0001
Sand 0 0.9999 0.0001

(30)

PSH_Sand,Sand =
Shale SH_Sand Sand[ ]Shale 0.0001 0.9999 0

SH_Sand 0.0001 0.4999 0.5000
Sand 0 0.5000 0.5000

(31)

PSand,Sand =
Shale SH_Sand Sand[ ]Shale 0.5000 0.5000 0

SH_Sand 0.0001 0.0001 0.9998
Sand 0 0.0001 0.9999

(32)
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