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Sensitivity Analysis for Piecewise-Affine
Approximations of Nonlinear Programs

With Polytopic Constraints
Leila Gharavi , Changrui Liu , Bart De Schutter , Fellow, IEEE,

and Simone Baldi , Senior Member, IEEE

Abstract—Nonlinear Programs (NLPs) are prevalent in
optimization-based control of nonlinear systems. Solving
general NLPs is computationally expensive, necessitating
the development of fast hardware or tractable suboptimal
approximations. This letter investigates the sensitivity of
the solutions of NLPs with polytopic constraints when the
nonlinear continuous objective function is approximated
by a PieceWise-Affine (PWA) counterpart. By leveraging
perturbation analysis using a convex modulus, we derive
guaranteed bounds on the distance between the optimal
solution of the original polytopically-constrained NLP and
that of its approximated formulation. Our approach aids in
determining criteria for achieving desired solution bounds.
Two case studies on the Eggholder function and nonlinear
model predictive control of an inverted pendulum demon-
strate the theoretical results.

Index Terms—Perturbation analysis, non-convex
nonlinear programming, piecewise-affine functions, max-
min-plus-scaling systems, function approximation.

I. INTRODUCTION

NONLINEAR Programs (NLPs) are commonly encoun-
tered in optimization-based control of nonlinear systems,

e.g., Nonlinear Model Predictive Control (NMPC) [1].
Solving non-convex NLPs is intractable, posing a great
challenge in applying optimization-based controllers in real-
time operations, especially for systems having fast dynamics.
Various solutions have been proposed to address this issue,
such as adaptive problem formulations [2], learning-based
methods [3], and sensitivity analysis of NLPs [4].
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PWA approximations are widely used due to their tractabil-
ity [5], [6]. To obtain a continuous PWA approximation,
min and max operators can be used to maintain continuity
and to resolve numerical issues in the resulting optimization
problem [7], [8], [9]. The approximated problem can be used
to obtain a suboptimal solution [10], whose optimality highly
depends on the accuracy of the approximation. For example,
a warm start of a non-convex NLP can be obtained by
solving the approximated optimization problem [11], [12].
Optimality guarantees of such approaches can be derived
using sensitivity analysis, establishing an upper bound on the
distance between the original solutions and the approximated
ones. As a result, by finding a subset of the decision space
around the approximated solution, one can sample a structured
or random warm start to solve the original non-convex NLP
more efficiently.

Quantitative bounds on the distance between the origi-
nal and the approximated solutions have been studied in
the sensitivity analysis of quadratic [13] and convex [14]
optimization problems. Regarding NLPs, there exist several
results on their sensitivity to the parameters in the optimization
formulation [15], [16] and the initial solution [17]. In addition,
optimality and dissipativity conditions for the perturbed con-
vex NLP problem have also been established [18], [19]. For
a more extensive study, the reader can refer to [20]. Recently,
sensitivity analysis has also been applied to analyze the
infinite-horizon performance of MPC [21]. However, obtaining
quantitative bounds on the distance between the solutions of
a non-convex NLP and its PWA approximation is still a gap
that needs to be filled, and our work addresses this problem.

In this letter, we present a method to bound the solutions
of a polytopically-constrained non-convex NLP problem using
a continuous PWA approximation of the nonlinear objective
function. We employ the Max-Min-Plus-Scaling (MMPS)
formulation of continuous PWA functions in [8] to construct a
piecewise convex approximation formalism. Leveraging some
results in [14], we derive guaranteed bounds on the distance
between the original and the approximated optimal solution.
Moreover, our approach can not only establish such bounds
but also aid in determining necessary criteria during the
approximation stage to attain a desired solution bound. To
demonstrate the theoretical findings, we present two case
studies on the Eggholder function [22], a renowned benchmark
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optimization problem with multiple local minima, and an
NMPC optimization problem for an inverted pendulum [1].

The rest of this letter is organized as follows. In Section II,
we present preliminaries regarding the sensitivity analysis of
NLPs and the PWA approximation of nonlinear functions.
Section III formulates the problem and Section IV elaborates
our proposed approach to theoretically compute the confidence
radius for the local minima of the corresponding approximated
function. In Section V, we then demonstrate the derived
confidence radius through a case study on the Eggholder
function and we apply our analysis to an NMPC optimization
example. Section VI concludes this letter.

Notation: For a positive integer P, we use IP to denote the
set {1, 2, . . . , P}. For a connected set D ⊆ R

n, the diameter
of D is defined as diam(D) := maxx1,x2∈D ‖x1 − x2‖, where
‖ · ‖ is the Euclidean or the 2-norm.

II. PRELIMINARIES

A. Representation of Continuous PWA Functions
We start with formally defining a continuous PWA function

which will be frequently used throughout this letter.
Definition 1 (Continuous PWA Function [23]): A scalar-

valued function f : D ⊆ R
n → R is said to be a continuous

PWA function if and only if the following conditions hold:
1) the domain space D is divided into a finite number

of closed polyhedral regions R1, . . . ,RR with non-
overlapping interiors,

2) for each r ∈ IR, f can be expressed as

f (x) = αT
r x + βr if x ∈ Rr,

with αr ∈ R
n and βr ∈ R, and

3) f is continuous on the boundary between any pair of
regions.

PWA functions can be expressed in different forms, among
which MMPS form is powerful for decomposing PWA
functions.

Theorem 1 (MMPS Representation [8]): For a scalar-
valued continuous PWA function f as in Definition 1, there
exist non-empty index sets IP and IQp such that

f (x) = min
p∈IP

max
q∈IQp

(
aT

p,qx + bp,q

)
, (1)

for real numbers bp,q and vectors ap,q ∈ R
n.

For convenience, we define the p-th local convex segment
of f as

fp(x) := max
q∈IQp

(
aT

p,qx + bp,q

)
, (2)

where fp is convex since it is defined as the maximum of a
finite number of affine functions and its domain is also convex.
In addition, we define the region Cp,q in which a certain affine
function is activated and the region Cp,. in which a convex
PWA function is activated, that is,

Cp,q := {x ∈ D | f (x) = aT
p,qx + bp,q}, (3a)

Cp,. := {x ∈ D | f (x) = fp(x)}. (3b)

Further, we have Cp,. =⋃Qp
q=1 Cp,q. Lastly, we define

σp : Cp,. → IQp as the region index function for fp as

σp(x) = q ⇐⇒ x ∈ Cp,q. (4)

B. Sensitivity of the Convex Optimization Problem
The convexity modulus [14], being used to quantify con-

vexity, is useful in the sensitivity analysis of convex functions.
In the following, we define the convexity modulus specifically
for fp, the p-th convex segment of f , and its domain Cp,..

Definition 2 (Convexity Modulus [14]): For a given convex
function fp, the convexity modulus h1 : [0,+∞) → [0,+∞)

over the domain Cp,. is defined as

h1(γ ) :=
⎧⎨
⎩

inf
v,w∈Cp,.

‖v−w‖=γ

J(v, w) if γ < diam
(Cp,.

)

+∞ if γ ≥ diam
(Cp,.

) , (5)

where v and w are two points in Cp,. satisfying ‖v − w‖ = γ ,
and J(v, w) is given as

J(v, w) = fp(v) + fp(w)

2
− fp

(
v + w

2

)
. (6)

Theorem 2 [14, Th. 4.5]: Suppose that fp : Cp,. → R is a
scalar-valued convex function and δp : Cp,. → R is an arbitrary
function satisfying

sup
x∈Cp,.

|δp(x)| = �p < ∞. (7)

Let x∗
p be any global infimizer of fp and x̂∗

p be any global
infimizer of f̂p = fp + δp. Then

‖x̂∗
p − x∗

p‖ ≤ h−1
1

(
2�p

)
, (8)

where h1 is the convexity modulus in Definition 2.
For a more compact notation, we call the right-hand side

of (8), the confidence radius, defined as follows:
Definition 3 (Confidence Radius): For a given func-

tion f̂p : Cp,. ⊆ R
n → R approximating the function

fp : Cp,. ⊆ R
n → R with the maximal approximation error

�p from (7), the confidence radius is the upper-bound on the
distance between x̂∗

p, the global minimizer of f̂p, and x∗
p, the

global minimizer of fp, and is obtained by

χ = h−1
1

(
2�p

)
,

where h1 is the convexity modulus in Definition 2.
Proposition 1 [14, Proposition 2.2, 2.5]: Given a convex

function fp on a compact domain Cp,. with convexity modulus
h1 defined as (5), the following hold:

1) h1 is left-continuous on (0, diam(Cp,.)), and
2) for γ1, γ2 ∈ [0, diam(Cp,.), if γ1 < γ2, then h1(γ1)/γ1 ≤

h1(γ1)/γ2.

III. CONTINUOUS PWA APPROXIMATION OF NLPS

Consider an NLP with polytopic constraints

min
x∈X

F(x), (9)

where F : D ⊂ R
n → R is the nonlinear objective function

and X ⊆ D is the polytopic feasible region. From now on,
we assume that the domain D is compact. We approximate F
by a continuous PWA function f of the MMPS form (1) via
solving the approximation problem

min
A, B

∫

D

∣∣∣∣∣F(x) − min
p∈IP

max
q∈IQp

(
aT

p,qx + bp,q

)∣∣∣∣∣ dx, (10)
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Fig. 1. A conceptual example of approximating a nonlinear function F
with a continuous PWA approximation f using the MMPS form in (1).

to minimize the absolute approximation error, where the
ordered sets A and B respectively collect ap,q and bp,q.

Example 1: Figure 1 shows a 1-dimensional example of
approximating a nonlinear objective function F by a continu-
ous PWA function f using the MMPS form (1) as

F(x) ≈ f (x) = min

⎛
⎜⎝max

(
f1,1, f1,2

)
︸ ︷︷ ︸

f1,.

, max
(
f2,1, f2,2

)
︸ ︷︷ ︸

f2,.

, f3,.

⎞
⎟⎠,

with P = 3, Q1 = Q2 = 2, and Q3 = 1. The convex segments
of f are shown by fp,. which give the maximum value among
Qp affine functions fp,q, q ∈ IQp . The subregions Cp,q are
shown in the same color as their corresponding active affine
functions, fp,q. In this 1-dimensional example, diam(Cp,.) is
the distance between the upper and lower bounds of Cp,. on
the x-axis.

IV. THEORETICAL ANALYSIS

The main result of this section is the sensitivity bound in
Theorem 3. Before, we present some building blocks about
continuity and boundedness of the convexity modulus (cf.
Lemma 1, 2 and 3).

Lemma 1: For a convex PWA function fp expressed by (2),
∂h1/∂γ is a piecewise constant function.

Proof: For compactness, let us denote

i = σp(v), j = σp(w), k = σp

(
v + w

2

)
,

with i, j, k ∈ IQp . For fp expressed by (2), the function J in (6)
can be written as

J(v, w) =
aT

p,i − aT
p,k

2
v + aT

p,j − aT
p,k

2
w + bp,i + bp,j − 2bp,k

2
. (11)

The necessary Lagrange conditions for optimality at (v∗, w∗)
in (5) state that there must exist μ ∈ R that satisfies the
following simultaneously:

∇J
(
v∗, w∗)+ μ∇(‖v − w‖ − γ )

∣∣∣ v=v∗
w=w∗

= 0, (12a)

‖v∗ − w∗‖ = γ. (12b)

By calculating the gradient of (11), we have that (12) becomes

aT
p,i − aT

p,k

2
+ μ

v∗ − w∗

‖v∗ − w∗‖ = 0, (13a)

aT
p,j − aT

p,k

2
+ μ

w∗ − v∗

‖v∗ − w∗‖ = 0, (13b)

‖v∗ − w∗‖ = γ, (13c)

which implies the existence of μ ∈ R satisfying

aT
p,i − aT

p,j

2
+ 2μ

v∗ − w∗

γ
= 0. (14)

Note that ∂h1/∂γ. is equal to ∂J/∂γ., except where the
indices i, j, and k change. At such points, h1 is not differen-
tiable with respect to γ , which does not conflict with ∂h1/∂γ.

being a piecewise constant function. To find the slope of h1
where it exists, the chain rule can be applied as

∂h1

∂γ
= ∂J

∂v∗

/
∂γ

∂v∗ + ∂J

∂w∗

/
∂γ

∂w∗ = aT
p,i − aT

p,j

2

‖v∗ − w∗‖
v∗ − w∗ ,

which, considering (14), leads to

∂h1

∂γ
= −2μ, (15)

which implies that ∂h1/∂γ is a function of the aT
p,i − aT

p,j
values.

Lemma 2: For a convex PWA function fp expressed
by (2), the convexity modulus h1 in (5) is continuous on
[0, diam(Cp,.)).

Proof: From Proposition 1, we know that h1 is left-
continuous on [0,+∞). Seeking a contradiction, let us assume
that h1 is not right-continuous in γ0 ∈ [0, diam(Cp,.)), hence,

lim
γ→γ +

0

h1(γ ) �= h1(γ0).

The monotonicity property of h1 in Proposition 1 requires

lim
γ→γ +

0

h1(γ ) > h1(γ0).

Therefore, without loss of generality, we assume there exists
a gap ε0 > 0 and a point γ0 < γ +

0 < diam(Cp,.) such that

h1
(
γ +

0

) = h1(γ0) + ∂h1

∂γ

∣∣∣
γ=γ0

(
γ +

0 − γ0
)+ ε0. (16)

Using (5), we define the points v0, w0, and w+
0 such that

h1(γ0) = inf
v,w∈Cp,.

‖v−w‖=γ0

J(v, w) = J(v0, w0),

and ‖v0 − w+
0 ‖ = γ +

0 . Considering the optimality property
in (5), we have

h1
(
γ +

0

) ≤ J
(
v0, w+

0

)
,

and knowing that J is a continuous function by definition, we
can deduce

h1
(
γ +

0

) ≤ h1(γ0) + ρ
(
w+

0 − w0
)
,

where ρ : Cp,. → R is a function with the following property:

lim
ν→0+ ρ(ν) = 0. (17)

Substituting (16) into (17) and taking the limit on both sides
when γ +

0 approaches γ0 leads to

h1(γ0) + ε0 ≤ h1(γ0),
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which contradicts the fact that ε0 > 0. Therefore, h1 is right-
continuous on [0, diam(Cp,.)).

Proposition 2: For a convex PWA function fp expressed
by (2), we have

h1(γ ) = 0, ∀γ ≤ max
q∈IQp

{
diam

(Cp,q
)}

.

Proof: By seeking a contradiction, let us assume that

∃γ0 ≤ max
q∈IQp

{
diam

(Cp,q
)}

, such that h1(γ0) > 0,

with the corresponding optimal points v∗
0 and w∗

0 from (5) such
that

h1(γ0) = inf
v,w∈Cp,.

‖v−w‖=γ0

J(v, w) = J
(
v∗

0, w∗
0

)
.

Let us select two points, v0 and w0, on the largest subregion
in Cp,. such that

‖v0 − w0‖ = γ0.

which results in J(v0, w0) = 0. Considering the optimality
property in (5), we have

J
(
v∗

0, w∗
0

) ≤ J(v0, w0),

which contradicts the initial assumption that h1(γ0) > 0 and
h1(γ0) = J(v∗

0, w∗
0).

Lemma 3: For a convex PWA function fp expressed by (2),
the convexity modulus h1 is bounded by ĥ1 ≤ h1, with

ĥ1(γ ) :=
{

0 if γ < diam
(Cp,.

)
c1γ + c0 if γ ≥ diam

(Cp,.

) , (18)

where

c1 = min
j∈IQp

{
aT

p,i − aT
p,j

2

}
, (19a)

s.t. i = arg max
q∈IQp

diam
(Cp,q

)
, (19b)

Cp,i ∩ Cp,j �= ∅, (19c)

and c0 = c1 diam(Cp,.).
Proof: This can be directly deduced from Proposition 2,

considering the continuity of h1 from Lemma 2, the piecewise-
constant property of ∂h1/∂γ from Lemma 1, and the
increasing property of h1 from Proposition 1.

We are now in the position to state our main result:
Theorem 3: Let F : D → R be a scalar-valued objective

function and let f be a continuous PWA function as in
Definition 1 that approximates F with bounded approximation
error δ = f − F. Let fp in (2) be the local convex segment of
f in its MMPS form (1) on the set Cp,., and let δp : Cp,. → R

be the corresponding approximation error bounded by

sup
x∈Cp,.

|δp(x)| = �p < ∞.

Let x∗
p be any global minimizer of fp and x̂∗

p be any global
minimizer of F on Cp,.. Then, the following condition holds:

‖x̂∗
p − x∗

p‖ ≤ 2�p

c1
+ max

q∈IQp

{
diam

(Cp,q
)}

, (20)

where c1 is defined in (19).
Proof: This can be directly concluded by extending

Theorem 2 via considering Proposition 2 and Lemma 3.

V. CASE STUDY

To showcase the application of Theorem 3, we select
the 1-dimensional cut of the well-known Eggholder test
function [22] at x2 = 0 given by

F(x) = −47 sin

(√∣∣∣ x
2

+ 47
∣∣∣
)

− x sin
(√|x − 47|

)
.

We approximate F by a continuous PWA function f that we
arbitrarily take as

f (x) = min
p∈I5

(
fp,.

)
.

with local convex segments

f1,. = max
q∈I3

(
f1,q
)
, C1,. = [−512,−385], (21a)

f2,. = f2,1, C2,. = [−385,−330], (21b)

f3,. = max
q∈I3

(
f3,q
)
, C3,. = [−330,−180], (21c)

f4,. = max
q∈I3

(
f4,q
) C4,. = [−180, 180], (21d)

f5,. = f5,1, C5,. = [180, 512]. (21e)

Figure 2 shows the plots for the nonlinear objective function F
and its PWA approximation f . The subregions Cp,. with p ∈ I5
are illustrated by different colors. Theorem 3 can be used in
two ways:

1) guaranteeing bounds on the distance between the
regional minima of F and f on each subregion, given a
bound on the approximation error, and

2) finding the required criteria for the approximation to
obtain a desired bound on the distance between these
minima, which we refer to as the confidence radius.

We discuss each case separately by focusing on the approxi-
mation on C3,..

A. Case 1: Finding the Confidence Radii
Figure 3 shows F and two PWA approximations on Cp,. with

two approximation errors. The first is f (1)
3 , which divides C3,.

into 3 subregions with maximum approximation error �
(1)
3 =

19.9, and which is given by

f (1)
3 (x) = max

⎧⎨
⎩

−7.8x − 2365.7
−0.9x − 501.2
6.1x + 1176.1

⎫⎬
⎭.

The second approximation is f (2)
3 with 8 affine pieces, the

maximum error �
(2)
3 = 2.6, and defined as

f (2)
3 (x) = max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8.6x − 2613.1
−6.8x − 2095.6
−4.6x − 1477.9
−2.2x − 829.8
0.3x − 191.6
2.8x + 412.5
5.1x + 944

6.9x + 1348.1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

The inverses of the corresponding convexity moduli are shown
in Fig. 3(b) in the same color as their corresponding f in Fig. 3,
where χ is the confidence radius in Definition 3.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 21,2024 at 12:40:46 UTC from IEEE Xplore.  Restrictions apply. 



GHARAVI et al.: SENSITIVITY ANALYSIS FOR PWA APPROXIMATIONS OF NLPs WITH POLYTOPIC CONSTRAINTS 1275

Fig. 2. Plots of the nonlinear objective function F and its PWA approximation f .

Fig. 3. Comparison of two different PWA approximations of the
nonlinear function on C3,..

Using Theorem 3, the confidence radius for f (1)
3 by is

obtained by χ(1) = 70, which is the same value obtained by
finding h1 and its inverse function using (5), which is presented
in Fig. 3(b). The same process can be performed for the
second approximation, f (2)

3 , which gives χ(2) = 44.3. Note
that Theorem 3 is more conservative for larger values of �,
compared to directly using the definition of h1. For instance,
if �

(2)
3 = 12.5, employing Theorem 3 leads to χ(2) = 65.7,

while the computed confidence radius using h1 is 58.4. The
areas within the confidence radii for the PWA approximations
are highlighted on the x-axis in Fig. 3 as well.

B. Case 2: Finding the Approximation Criteria
In this case, we approach the problem from another direc-

tion: we select a desired confidence radius χ(3) and find the
required criteria for the corresponding approximated function,
f (3)
3 . Let the desired χ(3) = 15; then,

2�
(3)
3

c1
+ max

q∈IQp

{
diam

(C3,q
)} ≤ 10,

which means the diameter of the largest subregion C3,. must
be smaller than 10. Firstly, given that diam(C3,.) = 150, it can
be concluded that the PWA approximation requires at least 10
partitions. We can then start the approximation by partitioning
Cp,. into 15 subregions with the same diameter and find the
lowest possible error bound �

(3)
3 for the approximation, which

is obtained as 2.83 with c1 = 0.0072. For this approximation,
χ(3) already exceeds diam(C3,.).

To improve upon this example, we add another partition to
reduce the largest partition diameter further and this time we
do not aim at partitions of C3,. with the same diameter, but
require

max
q∈I16

{diam
(C3,q

)} ≤ 10.

We find �
(3)
3 = 2.47 with c1 = 1.03 and

max
q∈I16

{diam
(C3,q

)} = 9.4.

For this values, we obtain χ(3) = 14.24. In case this value is
acceptable, we can use the corresponding PWA approximation
while ensuring that the minimizer of F on C3,. lies in a
ball or radius 14.24 around the minimizer of f (3). In case a
tighter confidence radius is desired, the same procedure can
be followed by adding more subregions.

C. Application for NMPC Optimization
To showcase the application of our proposed method in

PWA approximation to control optimization problems, we
use an inverted-pendulum NMPC problem as in [1]. The
considered prediction horizon is Np = 2 and the initial rotation
velocity is set as θ̇ = 0. The objective function JNMPC can be
formulated as a function of the measured pendulum angle θk
and the control inputs uk and uk+1. For instance, for θk = 0
we have

JNMPC(0, uk, uk+1) =
√

(0.02uk + π)2 + 2π2

+ 0.02
√

u2
k + (uk + uk+1)

2 + 0.01
√

u2
k + u2

k+1.

Moreover, the feasible region is defined as the box constraint
|uk+i−1| ≤ 20N, i ∈ I2 with diam(C1,.) = 56.4.

We approximate JNMPC by two convex MMPS forms f (1)

and f (2) – with P(1) = P(2) = 1 in (1) – with different
complexities in terms of the number of affine functions as

Q(1) = 4, �(1) = 0.19, max
q∈I4

{diam
(
C(2)

1,q

)
} = 28.2,

Q(2) = 24, �(2) = 0.01, max
q∈I24

{diam
(
C(2)

1,q

)
} = 14.6.

The inverse of the convexity modulus and the corresponding
confidence regions for both approximations are shown in
Fig. 4(c). While f (1) has a low approximation error, its
complexity level does not allow to guarantee a confidence
radius lower than the diameter of the feasible region. However,
the more accurate approximation f (2) guarantees a smaller
confidence radius. Moreover, a general approximation criterion
can be obtained, similar to the Eggholder NLP example, for
an NMPC problem. In this case, it can be observed from (20)
and Fig. 4 that χ is lower-bounded by the maximum subregion
diameter. Therefore, if a particular confidence radius is desired,
the approximation problem (10) can be solved while imposing
constraints on the diameter of subregions, e.g., an upper bound
on the maximum subregion diameter.
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Fig. 4. Comparison of two PWA approximations of NMPC.

D. Discussion
The Eggholder function and the NMPC case studies are two

potential applications with, respectively, 1- and 3-dimensional
domains to illustrate the theoretical results. Nevertheless, our
proposed approach is applicable in higher dimensions since
we do not assume any bounds on the dimension of D
throughout this letter. Moreover, the following aspects should
be considered when applying the proposed approach:

• The conservatism of the current approach in obtaining the
confidence radii can be high, which can be seen in the
case studies.

• The complexity in determining the confidence radii is
irrelevant to the dimension of the optimization problem.
However, larger dimensions increase the computation
time and range of γ values for which (5) needs to be
solved. Nevertheless, since this problem is solved offline,
higher computation time do not limit the applicability of
our approach.

VI. CONCLUSION

This letter has introduced a novel approach for bound-
ing the minimizers of polytopically-constrained NLPs with
nonlinear continuous objective functions using continuous
PWA function approximations. We have leveraged the conti-
nuity of the PWA approximations resulting from employing
an MMPS formalism to construct a locally-convex repre-
sentation of the PWA approximation, thus facilitating the
derivation of guaranteed bounds on the distance between
the original and the approximated optimal solutions of the
NLP by considering the maximal approximation error. Our
approach offers a practical tool for determining criteria to
achieve desired solution bounds. The effectiveness of the
method has been demonstrated through two case studies on
the Eggholder function and NMPC of an inverted pendu-
lum, highlighting the practical application of the proposed
method and its potential impact in optimization and optimal
control.

For future work, our primary objectives are conducting
an in-depth analysis of the conservatism of our approach,
refining our sensitivity analysis, and extending our method
to NLPs with non-convex constraints. Moreover, we aim
to do more comparative studies to gain insight into the
impacts of the improved computational efficiency through
PWA approximation in light of the corresponding solution
bounds. Finally,investigating the effects of probabilistic error

bounds would be an interesting direction to help integrate our
approach into learning-based and data-driven applications.
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