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One of the main bottlenecks in air transport operations is the runway capacity at air-
ports. As such, managing aircraft arrivals and departures is of great importance to ensure
smooth and efficient airport operations. The research objective of this article is to model
the airport departure process at Vienna Airport under the influence of uncertainty. In
order to simulate the departure process, the process is divided into smaller pieces. The
process consists of push-back, unimpeded taxi-out time, additional taxi-out time, waiting
time and runway occupancy time. The waiting time is found by using queue theory and
analysing runway availability. The queue is modelled as a G/G/1 queue, where the service
time is modelled as a gamma distribution. The other phases are modelled as stochastic
variables, given by an appropriate distribution. The model is capable of estimating the
flight departure duration on a runway with departing flights only with a mean error of 0.54
minutes. For mixed-mode operations, the model estimates the flight departure duration
with a mean error of 0.7 minutes.

Nomenclature

AABT Actual On Block Time
ATOT Actual Take-Off Time
ATA Actual Time of Arrival
AOBT Actual Off Block Time
DaTXOT Additional taxi-out time
DDROT Departure runway occupancy time
DPB Duration of push-back
DuTXOT Unimpeded taxi-out time

P (A|C) Probability of available runway
R Historic runway waiting time
S Service time
T Time between aircraft arriving at queue
TOT Take-Off Time
W Waiting time
WQ Queue waiting time
WR Runway waiting time

1. Introduction

One of the main bottlenecks in air transport operations is the runway capacity at airports. Therefore,
managing aircraft arrivals and departures is of great importance to ensure smooth and efficient airport
operations. Current research mainly focuses on solving this problem by proposing deterministic optimisation
models that either minimise delays or maximise throughput.1,2 However, during the actual operations,
aircraft arrivals and departures are characterised by a high level of uncertainty. The duration of the taxi-out
process can be influenced by the lay-out of the runways, the separation requirements, visibility, wind, type
of aircraft and other random factors.3 Also the decisions made by pilots, air traffic control or airport staff
can influence the departure process. These uncertainties are not captured in deterministic models, but are
captured in a stochastic model.

The research objective of this article is to model the airport departure process under the influence of
uncertainty, where the duration of push-back, taxi-out and runway occupancy are modelled as stochastic
variables. This model is then used to predict the take-off time.

This article is structured as follows: A study on relevant literature on modelling of the departure process
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is given in section 2. The case study data of Vienna Airport is given in section 3. Section 4 explains the
analysis of departure flight profiles. The model formulation is given in section 5. The model parameters
are estimated from the data, described in section 6. Section 7 presents and analyses the results. Finally,
conclusions and recommendations are provided in section 8.

2. Related work

This section describes existing literature on modelling the airport departure process. The literature is di-
vided into two groups: models based on queue theory and models based on statistical analysis. Both groups
are explained below.

Models based on queue theory
Queuing theory is a way to determine the extra taxi-out time due to waiting time at the runway entrance.
It is proven4 that the take-off queue size is identified to be the main causal factor that effects the taxi-out
time.

To model the departure process using queuing theory, it is necessary to divide the process into smaller
pieces. The simplest division that can be made, is by splitting the process into a travel time and a queue
time. The travel time can be determined by looking at the average taxi-out time in quiet periods of the
day.5 It is also possible to model the travel time by a normal distribution made of data when the number
of aircraft in the system is low.6,7 These models assume that the travel time remains unchanged and the
queue waiting time is the only factor that increases when the number of departing aircraft increases.

However, the estimation of the travel time can be improved by making a distinction between the unim-
peded taxi-out time and additional taxi-out time.8–10 In this case, the unimpeded taxi-out time equals
the time an aircraft needs to taxi without any interruptions and is represented by a distribution for each
runway-airline combination,10 or found by analysing the relation between the taxi-out time and the runway
queue length.8,9 International organisations EUROCONTROL11 and the FAA12 also developed a method
to determine the unimpeded taxi-out time. The additional taxi-out time is used to model the extra taxi-out
time due to interactions between aircraft in the taxi system, as there is a relation between the number of
aircraft in the system and the taxi-out time.8

Once the travel time is determined, it can be added to the actual off-block time to determine the queue
entry time, which results in a deterministic queue input.6–8,10 It is also possible to model the queue input
as a non-homogeneous Poisson process.5,9 In this case, the travel time is added to the calculated queue
time to determine the total duration of the departure process. The queuing delay is determined by the
input rate and the service rate of the queue. The service time is found by analysing the time between two
take-offs during busy periods of the day. The service time is often modelled by a (time-dependent) Erlang
distribution.5,9, 10 Another method to model the output flow of the queue is using a server absence model,5,6

where a probability states if the runway is available. Finally, it is possible to model the number of take-off
opportunities in a time period as a Poisson process.7

Models based on statistical analysis
The duration of the departure process can also be determined by statistical analysis. In these types of models
it is important to find out which factors influence the taxi-out time. The taxi-out time is then predicted by
multiple linear regression or by advanced machine learning methods.

Factors that influence the taxi-out time are the runway configuration, both capacity and lay-out, the
distance from gate to the runway, weather and the departure demand.4 Other research adds the number
of arrivals as an influencing factor, especially in mixed-mode operations.13 The departure demand and
resulting queue size are stated as the most significant factors.4 A research performed at a European airport14

discovered that the distance from gate to runway, in combination with the amount of turns and other traffic
in the system, explains the largest part of the variability in taxi times.

Finally, much research has been done to machine learning methods that can be used to determine the taxi-
out time. It is found that fuzzy rule-based models, where human knowledge is combined with mathematical
models by if-then statements, is a method that is suited for taxi time prediction.15 Furthermore, the technique
of reinforcement learning can be used.16 This method is compared to other machine learning techniques and
it is found that the regression tree method outperforms the reinforcement learning method.17
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3. Case study data

Vienna airport has 2 runways: runway 11/29 and runway 16/34 (see Figure 1). The airport makes use of
several runway configurations. However, during peak hours, the configuration D29M34, i.e., departing flights
from runway 29 and mixed-mode operations on runway 34, is used most frequently. As such, in this paper,
we consider the configuration D29M34.

Figure 1: Layout of runway system at Vienna International Airport.

The case study reported in this paper is based on flight data at Vienna Airport for the period 1st July until
31st December 2015. We consider all flights departing and arriving at runways 29 and 34. In total, there
are 80,000 arrivals and departures, of which 53,000 flights are executed while the airport is in configuration
D29M34. Table 1 shows the distribution of flights per runway, under configuration D29M34. It can be
seen that 77% of the flights depart from runway 29, while the other 23% depart from runway 34, where a
mixed-mode configuration is used. Almost all arrivals are, as required by configuration D29M34, landing on
runway 34.

Table 1: Number of arrivals and departures per runway, under configuration D29M34, Vienna Airport,

July-December 2015.

Departures Arrivals

Number Percentage Number Percentage

Runway 29 21138 77% 84 0.3%

Runway 34 6315 23% 25739 99.7%

Total 27453 100% 25823 100%

The flight data we consider is obtained from Advanced Surface Movement Guidance and Control Systems
(A-SMGCS), which specifies the Actual Off Block Time (AOBT), the Actual Take Off Time (ATOT), the
Actual Time of Arrival (ATA) and the Actual On Block Time (AABT), as well as the flight tracks recorded
by the radar, which specify the aircraft latitude, longitude, ground speed and flight level at every second.
The flight profile is measured from gate location until 30NM around the airport. Table 2 shows an example
of flight data considered.

Table 2: Example of flight data considered.

Date Call sign
Movement

type
Runway

Aircraft

type

Weight

category
AOBT Gate ATOT ATA AABT

1-Jul-15 RSD008 Departure 34 IL96 H 07:50:09 B52 08:06:20 - -

1-Jul-15 AUA935K Departure 29 DH8D M 07:56:51 E47 08:01:39 - -

1-Jul-15 AUA607 Depature 29 F70 M 08:00:13 E44 08:04:09 - -

1-Jul-15 AEE9PK Arrival 34 A320 M - - - 08:00:18 08:04:56
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4. Departure flight profile

We consider a departure flight profile consisting of 4 phases: i) the push back, ii) the taxi-out process, iii)
waiting time in front of the runway, and iv) the take-off procedure. The start and end of a departure are
marked by the AOBT and ATOT, respectively. Figure 2 shows how a departing flight is divided into several
phases. The unimpeded and additional taxi-out time form the taxi-out process.

Figure 2: The phases of a departure.

To define the 4 phases of a departure, we use the departure flight profile, the recorded aircraft ground speed
and known timestamps. Figure 3 shows an example of a flight profile and the ground speed for a flight
departing from runway 29 at Vienna Airport. The profile, given in figure 3a, shows exactly what route the
aircraft took to get to the runway. Figure 3b shows changes in the ground speed that illustrate the 4 phases
of the departure. It can be seen that the ground speed first increases to roughly 5kts, after which the aircraft
comes to a stop again. This duration is defined as the push-back process. When the ground speed increases
again, from 08:19-08:24, the aircraft is taxiing unimpeded to the runway. At the runway entry, the aircraft
has to wait in queue, since the ground speed is zero. At 08:26 the aircraft enters the runway to start its
take-off procedure. This flight does not encounter additional taxi-out time.

(a) Departure flight profile. 08:14 08:16 08:18 08:20 08:22 08:24 08:26 08:28
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(b) Ground speed.

Figure 3: Departure flight profile and ground speed of flight NLY170F departing from runway 29 - Vienna
airport, 18th August 2015.

Push-back
The push-back duration is determined by time difference between AOBT and the moment that the aircraft
starts taxiing to the runway, which we define as the moment the ground speed of the aircraft exceeds the
threshold of 7kts for more than 10 consecutive seconds. The threshold of 7kts is chosen such that it is higher
than a typical aircraft ground speed during push-back and lower than a typical aircraft taxi speed.

There are two types of parking places for aircraft at Vienna Airport. The first one is located next to a
gate and has a passenger loading bridge connected to the gate. Here, a push-back is always necessary before
the aircraft can start its taxi-out process. The second one is a parking place on the apron, which is not
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connected to a gate. In this case, the aircraft may start the taxi-out process without push-back. Using the
ICAO map of the airport and satellite images, it is determined which parking spots require a push-back.

Taxi-out time
The taxi phase consists of an unimpeded taxi-out time (uTXOT) and an additional taxi-out time (aTXOT).
The uTXOT is defined as the time an aircraft needs to travel to the runway entry without any interruptions.
We determine uTXOT as the time the aircraft is taxiing between push-back and runway entry, where the
ground speed is higher than the threshold of 7kts.

The aTXOT is determined as the time when, during the taxi process, the aircraft is interrupted, i.e.,
when the ground speed drops below 7kts. Such interruptions may be caused by other traffic in the taxi
system or bad weather.4

Waiting time in front of the runway
There are two types of waiting time in front of the runway. The first type is queue waiting time, which is
caused by a large demand of departing aircraft. We consider an aircraft to be waiting in the queue when
i) the ground speed is below 7kts, ii) the aircraft is within 300m away from the the runway entry and iii)
the previous aircraft is departing on the runway or also waiting in the queue. The requirement of 300m is
chosen after a geographical analysis of the airport, mainly focused on the entry to runway 29.

The second type of waiting time occurs at a runway in mixed-mode operations, which is waiting time
due to an arriving aircraft using the runway. Aircraft waiting due to an unavailable runway are waiting at
the runway entry, ready to enter the runway as soon as the arrival took place. We consider an aircraft to
be waiting due to runway availability when i) the ground speed is below 7kts, ii) the aircraft is within 300m
away from the the runway entry and iii) the previous aircraft is not departing on the runway and not waiting
in the queue.

Take-off procedure
The take-off procedure includes line-up and take-off roll. The duration of the take-off procedure is defined
as the departure runway occupancy time (DROT). The DROT is determined as the difference between the
runway entry time and the actual take-off time.

5. Model Formulation

In this section, we propose a model to estimate the duration of a flight departure process at Vienna Airport.
Figure 4 shows a representation of the departure process at Vienna Airport. We consider a system of 2
runways, where one runway is used for departures only (segregated operations), while the other is used for
both arrivals and departures (mixed-mode operations).

Figure 4: Representation of the departure process with multiple runways
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The first part of the model is the shared taxi system. The phases of push-back, the unimpeded taxi-out
time and the additional taxi-out time take place in the shared taxi system. A way to model the interactions
between all flights in the system is to analyse the additional taxi-out time, since this part of the taxi-out
time represents any extra taxi-out time due to interactions with other aircraft. The additional taxi-out time
is modelled as a function of the number of aircraft in the system.

When aircraft leave the shared taxi system, the model splits into two directions. The first flow of aircraft
takes off at runway 29 (segregated operations), while the second flow of aircraft departs from runway 34
(mixed-mode operations). This means that there are two separate queues, one for each runway. For mixed-
mode operations there may be additional waiting time caused by an unavailable runway. This runway waiting
time occurs when an arriving aircraft is using the runway.

The duration of each phase is added to obtain the estimated total duration of the flight departure process.
The take-off time is determined by:

TOTn = AOBT +DPB,n +DuTXOT,n +DaTXOT,n +Wn +DDROT,n (1)

where DPB,n, DuTXOT,n, DaTXOT,n, Wn and DDROT,n are the duration of the push-back process, the unim-
peded taxi-out time, the additional taxi-out time, the waiting time and the departure runway occupancy
time, respectively.

The push-back duration, unimpeded taxi-out time, additional taxi-out time and departure runway oc-
cupancy time are modelled as random variables with a distribution found by analysing historical data, as
explained in section 4. The waiting time is determined by:

Wn = WQ,n +WR,n (2)

where WQ,n is the queue waiting time and WR,n is the runway waiting time due to arrivals. The models to
determine queue waiting time and the runway waiting time due to arrivals are explained in section 5.1 and
5.2, respectively.

5.1. Queue waiting time

We define the queue waiting time, WQ, as the time that an aircraft has to wait in the runway queue, because
previous aircraft are still occupying the runway. We consider a G/G/1 queue where the arrival and the
service times follow a general distribution.

The service time is modelled as a distribution based on historical data and is determined by the duration
between two consecutive take-offs is analysed. This method can only be used when it is certain that the two
consecutive aircraft take-off immediately after each other. Otherwise, the time between take-offs is much
larger than the service time, because there was simply not enough demand at the runway. Therefore, the
service time is defined as difference in ATOT between consecutive aircraft, given that the following aircraft
has been waiting in queue.

The time for the (n)th aircraft to enter the queue, Tqueue entry,n, is denoted by:

Tqueue entry,n = AOBT +DPB,n +DuTXOT,n +DaTXOT,n, (3)

where DPB,n, DuTXOT,n and DaTXOT,n are the duration of the push-back process, the unimpeded taxi-out
time and the additional taxi-out time, respectively.

The queue waiting time of the (n+ 1)th aircraft, WQ,n+1, is recursively calculated using the equation of
Lindley18 :

WQ,n+1 = max (0,Wn + Un) , (4)

with W1 = 0 for a runway in segregated operations and W1 = WR,1 for a runway in mixed-mode operations.
Wn is the total waiting time of aircraft n. Furthermore, Un is defined as

Un = Sn − Tn, (5)

where Tn is the time between the nth and the (n+1)th aircraft arriving in the queue and Sn is the service time
between the nth and the (n+ 1)th aircraft. The model assumes independent service times in the simulation
of the queue.
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5.2. Runway waiting time due to arrivals

In mixed-mode operations, the runway does not only serve departures, it also serves arrivals. This means
that the runway is not always available for aircraft that are in front of the departure queue. This server
absence can be modelled in two different ways. Firstly, it is possible to use the information on arriving flights
to determine when the runway is available. The second option is to obtain a probability when the runway is
available by analysing historic data. Both options are discussed below.

5.2.1. Model 1: Modelling runway availability using information on arriving flights

This section explains how to estimate the runway waiting time in mixed-mode operations using the arrivals
schedule. The method states that a departure is allowed to enter the runway until the moment that the
arriving aircraft is at the required separation. The separation is measured from the runway threshold, the
beginning of the runway, to the aircraft. For simplicity, the required time separation is set to 2 minutes.
The value of 2 minutes is often used by EUROCONTROL in capacity studies at various European airports.

The queue waiting time determined in section 5.2.1 is used to determine the moment when the departing
aircraft leaves the queue and is ready to enter the runway, as seen in equation 6.

Tqueue exit,n = Tqueue entry,n +WQ,n (6)

Next, the queue exit time, Tqueue exit,n, is compared with the arrival schedule to find the arriving flight after
which there could be a possibility to enter the runway. This is the flight that is less than 2 minutes from
the runway threshold at the time of queue exit. The next arrival is more than two minutes from the runway
threshold at the queue exit time. This can be defined mathematically by equation 7, where T 2min

am
and T 2min

am+1

equal the times that arrivals m and (m+ 1) are exactly 2 minutes from the runway threshold.

T 2min
am

≤ Tqueue exit,n < T 2min
am+1

(7)

The mathematical definition of T 2min
am

and T 2min
am+1

is given in equation 8 and 9. Here, Sn is the arrival schedule
that is known from live information.

T 2min
am

= max
m∈Sa

{
T 2min
a (m)|T 2min

a (m) ≤ Tqueue exit,n

}
(8)

T 2min
am+1

= min
m∈Sa

{
T 2min
a (m)|T 2min

a (m) > Tqueue exit,n

}
(9)

The next step is to analyse whether it is possible for the departing aircraft n to enter the runway between
arriving aircraft m and (m+ 1). This is done by comparing the time that aircraft m has landed, the ATA,
with the time that aircraft (m+ 1) is exactly 2 minutes from the runway threshold.

When the ATA of arriving aircraft m is smaller than the time that aircraft (m+ 1) is 2 minutes from the
runway threshold, the departing aircraft is allowed to enter the runway. In that case, the runway entry time
for departing aircraft n is given by equation 10. The waiting time due to an unavailable runway is given by
equation 11.

Trunway entry,n = max (TATA,m, Tqueue exit,n) (10)

WRn
= Trunway entry,n − Tqueue exit,n (11)

When aircraft (m+ 1) is closer than 2 minutes from the runway threshold at the time that aircraft m leaves
the runway, there is no possibility for a departure. In that case, the next possibility to depart is after
aircraft (m+ 1). This process continues until aircraft n can depart.
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5.2.2. Model 2: Modelling runway availability by analysing historical data

It is also possible to model the runway availability by analysing historic data. For every aircraft that arrives
at the runway entry, there is a chance that the runway is not available, i.e. a server absence. This conditional
probability is determined from historical data. The probability is defined as:

P (A|C) = P (Runway is not available|Departing aircraft arrives at runway entry point) (12)

The waiting time, WR,n is then defined by:

WR,n = P (A|C) ·Rn (13)

where Rn equals the distribution for runway waiting time R, which is found by analysing historical data.
The runway waiting time is defined as explained in section 4.

6. Parameter Estimation

After analysing each flight profile separately and calculating the duration of each state, as explained in
section 4, it is possible to create a distribution for each phase of the departure process. Each empirical
distribution is fitted with a parametric or non-parametric distribution. The goodness of fit is tested using a
one-sample Kolmogorov-Smirnov test with a 5% significance level.

The push-back process cannot be modelled by a parametric distribution, since the Kolmogorov-Smirnov
test with 5% significance level rejects these distributions. Therefore, the kernel estimation is chosen to
represent the empirical data. The cumulative distribution function for the push-back process is shown in
figure 5.

The unimpeded taxi-out time depends on the distance between the gate and the runway.4 To maintain
enough data points in the distribution, data of gates that are close to each other and prove to have similar
unimpeded taxi-out times are combined. This results in fourteen gate groups, that each require a distribution.
The empirical distribution for each group is fitted with a normal distribution. Figure 6 is made for gate
group C1, which consists of seven adjacent gates. The distributions for all other gate groups show a similar
shape. The Kolmogorov-Smirnov test with a 5% significance level states the majority of the distributions
belong to the normal distribution.
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Figure 5: CDF of push-back duration with kernel
estimation
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Figure 6: CDF of uTXOT with normal fit -
Group C1

The distribution for additional taxi-out time depends on the number of aircraft in the system. Figure 7
shows the empirical CDF of the aTXOT for flights departing from runway 34. It can be seen that the CDF
shifts to the down-right corner, which indicates a higher aTXOT for increasing number of aircraft in the
system. For each of the six groups specified in figure 7, a distribution for aTXOT is created. First, the
percentage of flights that do not have aTXOT is determined. For the percentage of flights that do encounter
aTXOT, a distribution is created. These distributions are fit with an exponential distribution. DaTXOT is
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defined as:

DaTXOT =

0 with p = pNo aTXOT

exp(λ) with p = 1− pNo aTXOT

(14)

The service time is defined as the difference in ATOT between consecutive aircraft, given that the following
aircraft has been waiting in queue. The cumulative distribution function of the service time and the gamma
fit is depicted in figure 8. Although the Kolmogorov-Smirnov test with a 5% significance level rejects this
distribution, it is decided to use the gamma distribution as input to the simulation model. As explained in
section 2, it is common to model the service time as a distribution from the gamma family.
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Figure 7: CDF of aTXOT for increasing number
of aircraft, flights departing from runway 34.
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Figure 8: CDF of service time and gamma dis-
tribution.

The distribution for departure runway occupancy time is determined for every ICAO weight category. Fig-
ure 9 shows cumulative distribution function of the DROT for medium aircraft. The kernel distribution is
chosen as fit, because the parametric distributions are rejected by the Kolmogorov-Smirnov test.

The distribution for runway waiting time is needed when the mixed-mode operations are simulated by
model 2. The distribution consists of two parts: the probability that an aircraft has to wait at runway
entry and, if it has to wait, the runway waiting time. The available data proves that the probability equals
0.2477, which means that roughly 75% of the flights do not encounter runway waiting time. The cumulative
distribution function for runway waiting time is given in figure 10. It is chosen to use an exponential fit,
since other parametric and non-parametric distributions include negative values in the fit.
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Figure 9: CDF of departure runway occupancy
time with kernel estimation
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7. Results

In this section we present the estimates for the flight departure duration, from gate to take-off, for Vienna
Airport. We consider a system of 2 runways, where one runway is used only for departures, while the other
runway is used for mixed-mode operations. We consider 7 days in the period 1st July until 31st December
2015, which are 18 Aug, 18 Sept, 28 Sept, 4 Nov, 9 Nov, 27 Nov, 10 Dec. These dates are chosen randomly
from the data sample. In total, we consider 1614 flights departing from runways 29 and 34. A Monte Carlo
simulation with 10,000 simulation runs is used to determine the results presented in this section.

Table 3: Error between estimated and actual flight duration of the departure process and waiting time in

the queue, respectively. Results calculated over 7 days.

Duration departure (min) Waiting time in queue (min)

ME MAE RMSE ME MAE RMSE

Runway 29 0.54 1.57 2.08 0.41 0.76 1.19

Runway 34 (Mixed Mode 1) 1.13 2.23 2.91 0.57 1.15 1.70

Runway 34 (Mixed Mode 2) 0.70 2.07 2.68 0.14 0.98 1.28

Table 3 shows the error between the estimated and actual flight departure duration, as well as the error
between the estimated and actual time spent by the flights in the queue, prior to using the runway. The
results show that for runway 29, the estimated flight departure duration is, on average, 0.54 minutes higher
than the actual departure duration. The mean absolute error equals 1.57 minutes. For runway 34, both
models provide good estimates for the flight departure duration. The second (stochastic) model outperforms
the first (deterministic) model, since the stochastic model has a smaller mean error. The deterministic model
assumes a 2-minute separation, which appears to be higher than reality, since the model is overestimating
the actual flight departure duration.

Figure 11a shows the actual and estimated pdf for the flight departure duration for flights departing from
runway 29. Similarly, figures 11b and 11c show the results for runway 34, using mixed-mode model 1 and 2,
respectively. The results show that the distribution for the estimated flight departure duration is in all cases
slightly larger than the distribution for the actual departure duration. However, the shape of the estimated
distribution is similar to the actual distribution. When comparing mixed mode model 1 and 2, it can be
seen that the second model provides better estimates.
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Figure 11: PDF actual and estimated flight departure duration.

Figures 12 and 13 show the actual and estimated number of departures per 15 minutes on 18th of September
2015 for runway 29 and runway 34. 18th of September is the busiest day in the data sample, since the average
hourly throughput (both arrivals and departures) is highest on this day. From 4:00 in the morning until
19:00 in the evening, the D29M34 configuration is used. It can be seen that the model prediction and the
observed number of departures per 15 minutes match well.

Figures 14 and 15 show the actual and predicted mean flight departure duration per 15 minutes on
the 18th of September. The actual and predicted values are in line with each other, although sometimes
differences of a couple of minutes exist. This is explained by the fact that in quiet periods, where only one or
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Figure 12: Actual and estimated number of departures per 15 min, 18th Sept 2015 - runway 29.
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Figure 13: Actual and estimated number of departures per 15 min, 18th Sept 2015 - runway 34.

two aircraft depart, the average is also only based on one or two flights. This can result in large deviations
in the graph. When comparing mixed-mode model 1 and 2, it can be seen that model 2 provides better
results. Note that there is an outlier in the actual data, since a flight departure duration of 40 minutes is
unrealistic.
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Figure 14: Actual and estimated mean flight departure duration per 15 min, 18th Sept 2015 - runway 29.
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Figure 15: Actual and estimated mean flight departure duration per 15 min, 18th Sept 2015 - runway 34.
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8. Conclusion and Recommendations

It is concluded that the model can predict the flight departure duration for each flight, including confidence
interval and standard deviation, using data from 1st July until 31st December 2015. For runway 29 at Vienna
Airport, which is used for departures only, the expected take-off time is predicted with a mean absolute error
of 1.57 minutes. The duration of the departure process is overestimated with 0.54 minutes compared to the
actual data. However, the distribution of the simulation and the actual data prove to have a similar shape.

For mixed-mode operations, there are two types of models developed, a deterministic and a stochastic
model. Both types of models are suitable to predict the take-off time, although the second model, the
stochastic model, outperforms the first (deterministic) model. For runway 34 at Vienna Airport, the take-off
time is predicted with a mean absolute error of 2.23 minutes when using a deterministic model and 2.07
minutes when using a stochastic model. Furthermore, the simulation slightly overestimates the actual dis-
tribution, with 1.13 minutes and 0.7 minutes for model 1 and 2, respectively.

Recommendations for further research include a thorough analysis of the service time, since it is expected
that a better estimation of the service time will improve the results. This research assumes independent
service times, while the service time depends on the type of aircraft (both leader and follower).

Furthermore, the model results may improve by adding the influence of external factors to the model.
Weather related effects and seasonal effects should be analysed to determine if it has potential to improve
the model estimation.

Finally, to be able to use this model in daily business, it should be extended to all runway configurations.
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Summary
One of the main bottlenecks in air transport operations is the runway capacity at airports. As such,
managing aircraft arrivals and departures is of great importance to ensure smooth and efficient air-
port operations. Current research mainly focuses on solving this problem by proposing deterministic
optimisation models that either minimise delays or maximise throughput. However, during the actual
operations, aircraft arrivals and departures are characterised by a high level of uncertainty. The re-
search objective of this thesis is to model the airport departure process at Vienna Airport under the
influence of uncertainty.

Studying literature revealed that the airport departure process can be modelled by using queue theory
and statistical analysis. It is common to separate the process into travel time and queue time. The
model in this thesis follows the methods found in literature, however, the process is divided into smaller
pieces, since more detailed data is available. Also, there is only little research done to modelling mixed-
mode operations, which is necessary in this research.

This model is applied at Vienna Airport, consisting of two runways. The configuration that is modelled
in this research is D29M34, where runway 29 is used in segregated operations with only departing
flights, while runway 34 is used in mixed-mode operations. In order to simulate the departure process,
the process is divided into push-back, unimpeded taxi-out time, additional taxi-out time, waiting time
and runway occupancy time.

The first part of the model is the taxi system, where departing and arriving flights from both runways
share the taxiways. The push-back process, the unimpeded taxi-out time and additional taxi-out time
take place in the taxi system. These phases are modelled as stochastic variables with a distribution
obtained from historical data. After the shared taxi system, the model splits in two directions, with
separate queues for each of the runways.

For segregated operations, the waiting time is found by modelling the departure queue based on the
first-in-first-out principle. The queue is modelled as a G/G/1 queue, where the service time is modelled
as a gamma distribution. The service time is obtained from historical data by taking the difference in
take-off time of two consecutive aircraft, given that the following aircraft was waiting in queue. The
moment of arrival in the queue is determined by adding the push-back, unimpeded taxi-out time and
additional taxi-out time to the actual off-block time.

For mixed-mode operations, the waiting time consists of two components: the queue waiting time
and the runway waiting time due to arriving aircraft. The queue waiting time is determined similar to the
waiting time for segregated operations. In order to determine the runway waiting time due to arriving
aircraft, the runway availability is analysed. There are two possibilities to estimate the waiting time due
to runway availability.

The first method is a deterministic model, which states that a departure is allowed to enter the runway
until the moment that the arriving aircraft is at the required separation. The separation is measured from
the runway threshold, the beginning of the runway, to the aircraft. The time that the departing flight is
ready at runway entry is compared with the arrivals schedule to determine when the aircraft can start
its take-off procedure.

The second method is a stochastic model, which analyses historical data to determine the runway
availability. For every aircraft that arrives at the runway entry, there is a chance that the runway is not
available, i.e. a server absence. This probability is multiplied with the distribution of runway waiting
time determined from historical data to determine the runway waiting time due to arriving aircraft.

The final phase to be identified is the departure runway occupancy time. This phase includes the
line-up and take-off procedure and is obtained from historical data. The total flight departure duration
is determined by summing all the individual phases of the departure process.

The results for the case study at Vienna airport are generated by simulating six randomly chosen days
and the busiest day of the data sample. A total of 1614 flights departed from Vienna airport during

xi



xii Contents

those days. Roughly 75% of the flights departed from runway 29. A Monte Carlo simulation with
10,000 simulations is used to determine the results.

The model can estimate the flight departure duration for each flight, including confidence interval
and standard deviation. The flight departure duration for flights departing from runway 29 (segregated
operations) is estimated with a mean error of 0.54 minutes. For mixed-mode operations, the deter-
ministic model estimates the flight departure duration with a mean error of 1.13 minutes, while the
stochastic model provides these results with a mean error of 0.70 minutes.

The model is verified by testing increasing traffic samples of 10% and 20%, which show increasing
queue waiting times, as expected. For validation, the model is tested by simulating seven different
days. Since these results are similar to previously found results, the model is validated.

It is recommended to further research the service time, as it is expected that this will improve the model
results. Furthermore, factors, such as weather and seasonal effects, should be analysed in order to
improve the model.

In addition to that, the model should be extended to all runway configurations. It is also possible to
extend the model with processes upstream of the departure process, in order to give an estimation of
the take-off time earlier.
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1
Introduction

One of the main bottlenecks in air transport operations is the runway capacity. Therefore, managing
aircraft arrivals and departures is of great importance to maintain smooth and efficient airport opera-
tions. Current research mainly focuses on solving this problem by proposing deterministic optimisation
models that either minimise delays or maximise throughput [5] [8]. However, during the actual oper-
ations, aircraft arrivals and departures are characterised by a high level of uncertainty. The duration
of the taxi-out process can be influenced by the lay-out of the runways, the separation requirements,
visibility, wind, type of aircraft and other random factors [10]. Also the decisions by pilots, air traffic
control or airport staff can influence the departure process. These uncertainties are not captured in the
deterministic models. An analysis on the influence of uncertainty is therefore relevant.

The research objective of this thesis is to model the airport departure process under the influence of
uncertainty, where the duration of push-back, taxi-out and runway occupancy are modelled as stochas-
tic variables.

The thesis is structured as follows. A description of the current literature on modelling of the departure
process is given in chapter 2. The theoretical models for segregated operations and mixed-mode
operations are explained in chapter 3. The model is applied in a case study at Vienna Airport, described
in chapter 4. Chapter 5 shows and analyses the results. The conclusions and recommendations are
given in chapter 7. Finally, the verification and validation are performed in chapter 6
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2
Literature review

This chapter describes the literature closely related to the subject of airport departure processes and
is divided into three sections. Existing models that describe (part of) the departure process using
queuing theory are explained in section 2.1. Secondly, models that use statistical analysis to predict
taxi-out times are described in section 2.2. This section describes various forms of statistical analysis,
including machine learning. Finally, an elaborated explanation of the research questions that follow
from the literature review is given in section 2.3

2.1. Models based on queue theory
This section describes the group of literature that models the airport departure process using queuing
theory. Queuing theory is a way to determine the extra taxi-out time due to waiting time at the runway
entrance. It has proven [7] that the take-off queue size is identified to be the main causal factor that ef-
fects the taxi-out time. Therefore a large part of the uncertainty can be explained by using queue theory.

To model the departure process using queuing theory, it is necessary to divide the process into smaller
pieces. The simplest division that can be made is splitting the process into a travel time and a queue
time. This is done to determine the estimated time that aircraft will enter the runway queue. The es-
timation of the travel time can be improved by making a distinction between the unimpeded taxi-out
time and additional taxi-out time. Most models use the unimpeded taxi-out time, additional taxi-out and
queue time to model the departure process. Therefore the focus in this literature is put on the differ-
ences between the papers. These exist in chosen distributions for arrival rate and service rate of the
queue, calculation of unimpeded taxi time and calculation of the time due to interactions.

This section first explains several methods to calculate the unimpeded taxi-out time, one of which is
the method used by Eurocontrol. After that, complete departure process models are described. The
analytic models can be found in section 2.1.2, while the models based on simulation can be found in
section 2.1.3.

2.1.1. Unimpeded taxi-out time
The common factor in most papers is the use of an unimpeded, or nominal, taxi-out time, which is
calculated in a slightly different way in each paper. Next to that, the definition of unimpeded taxi-out
time is not exactly the same in all papers. According to Eurocontrol, the unimpeded taxi-out time is the
taxi-out time in non congested conditions at airports [2]. This definition is open to different interpreta-
tions, because it is difficult to asses when an airport is congested. This section states several methods
used to determine the unimpeded taxi-out time.

First of all, Eurocontrol developed a method to calculate the unimpeded taxi-out time [2]. In this ap-
proach the unimpeded taxi-out time is based on statistical analysis of historical data. The taxi-out time
is defined as the time between the Actual Off-Block Time (AOBT) and Actual Take-Off Time (ATOT).
The unimpeded taxi-out time is the median of all taxi-out times in low traffic periods and it is calculated

3
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per departure runway and stand group combination, where the stand group is a virtual grouping of
departure gates that are close to each other.

The first step in the calculation of the unimpeded taxi-out time is filtering of the data. The sample
for calculation is one year of data, in which only flight with a taxi time less than 300 minutes are taken
into account. Next, the congestion level is determined, which depends on the amount of departing
and arriving flight in the preceding hour and the runway throughput. After that,the saturation level is
determined. The saturation level describes the maximum amount of traffic that can be served when
there is no congestion. A flight is categorised as unimpeded when the congestion level is lower than
the saturation level multiplied with a congestion limit. This congestion limit equals 0.6 for major hubs
and 0.5 for all other airports. The unimpeded taxi-out time is calculated, when there are more than ten
flights left in the sample, by taking the median of the sample. If there are less than ten flights left in the
sample, no unimpeded taxi time can be calculated.

Secondly, the FAA Aviation Policy and Planning Office (APO) has their own method to estimate the
unimpeded taxi time [20]. This method is mainly based on a linear relationship between the aircraft on
the ground and the taxi time. The first step in this method is to obtain the queue length for each flight in
the data set. Next, all flights with a taxi time in the upper 25% are removed from the data set, such that
extreme values do not influence the result. Then a linear regression for each subgroup, determined
by airport, air carrier and season, is run, where the taxi-out time is a function of the number of aircraft
taxiing out. The unimpeded taxi-out time is found by setting the number of aircraft taxiing out equal to
0. The APO method does not include other contributing factors, such as runway configuration, gate
location or weather conditions.

In literature there are many more methods that are used to determine the unimpeded taxi-out time.
One of those methods is the 20th percentile method (P20), where a cumulative distribution of taxi-out
times for each group of flights, grouped by airline, season and runway configuration, is made. The 20th
percentile of the distribution is taken as the unimpeded taxi-out time [20].

More simple methods include looking at the average taxi-out time in dull periods of the day, some-
times specified per gate-runway combination. The definition of ’dull periods of the day’ is vague, but
this method is often used in research due to a limited amount of data availability. Since the papers
described in this chapter all have their own method to determine the unimpeded taxi-out time, these
methods they are explained more thoroughly in section 2.1.2 and 2.1.3, where the complete departure
models are explained.

2.1.2. Analytical models
The first analytical model is created by Hebert in 1997 [6]. This paper models the departure process at
LaGuardia Airport. The model is based on data collected during a single week in June 1994, of which
only two days are found appropriate to use. During these two days, significant weather disruptions are
experienced, which led to substantial delays.

The departure process is modelled by dividing it in a travel time and queuing time. The travel time is
estimated by taking the average taxi-out time in quiet periods of the day, since it is assumed that there
is no queue when little aircraft take off. Also, any delay caused by interactions in the taxiway system
is assumed to be insignificant. The service demand time is modelled by a non-homogeneous Poisson
process, since the amount of push-backs vary throughout the day. The intensity function of the Poisson
process is different for every hour and equals the mean number of push-backs in that hour.

To model the runway service time, three different models are tested. The first model is an exponen-
tial model, in which all service times are represented by independent and identically distributed (i.i.d.)
random variables with an exponential distribution. The model shows a reasonable fit on both days,
although it is clear that the service rate varies during the day, since the roll-out time is overestimated
in some parts of the day and underestimated in other parts.

The second model is an Erlang-2 model, in which all service times are represented by i.i.d. Erlang-2
random variables. Each service time can be seen as the sum of 2 exponentially distributed stages with
mean completion rates 2𝜇, given that the mean service rate equals 𝜇. When comparing the Erlang-2
model to the exponential model, the Erlang-2 model shows a better estimation of the expected roll-out
time.
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The third model is an Erlang model with service absence. In the analysis of times between take-off,
it can be seen that usually the time between two consecutive aircraft taking-off is one, two or three
minutes. However, in some cases there are between four and ten minutes between two aircraft. This
indicates a server absence, in which the runway is not available due to arrivals or other external factors.
With probability 𝑝, in this case 𝑝 ≈ 0.2, a server absence is experienced. Although this method seems
to better represent reality, the results do not indicate an improvement compared to the Erlang-2 model.
This can be explained by the fact that during the day a constant probability of runway availability is
used, while this is highly dependent on the amount of arrivals and other factors interfering with the
departure runway.

This paper does not provide a real validation of the model, since the model is built and tested on the
same two days of data. Also, it uses a runway service rate which is derived from data from the same
day. Normally, this information is not known at the start of the day. The paper does show an interesting
way in dealing with runway availability. If the probability of absence is not held constant during the day,
but for example made dependent on the amount of expected arrivals, this could be a suitable model to
be used.

More recent and well-known researchers in the area are Simaiakis, Pyrgiotis and Balakrishnan as they
published multiple articles involving research to the airport departure processes. They investigated
both analytic models [17] [16] and models based on simulation [15]. The latest model [16] is the most
detailed version. This model divides the departure process in two modules: the travel time and the
queue, as can be seen in figure 2.1. The travel time consists of an unimpeded taxi time and a linear
term to account for the extra travel time due to the interactions between departing aircraft on the ramp
and taxiways. This term increases as the number of departing aircraft increases. The unimpeded taxi
time is determined by creating a distribution for each airline and runway configuration. This distribution
consists of data points where less than five aircraft are in the taxiway system, such that the interactions
are minimal. A log-normal distribution is fitted through the empirical distributions. The total travel time
is the sum of the expected value of the unimpeded taxi time distribution and the linear term which
accounts for interactions.

Figure 2.1: Departure process model as defined by Simaiakis[16]

The input of the queue is deterministic, as the expected travel time is added to the actual push-back
time. The service rate of the queue is modelled with a time-dependent Erlang distribution with param-
eters 𝑘 and 𝑘𝜇. For every 15-minute interval, an empirical distribution is determined by looking at the
route availability and arrival throughput by means of a regression tree. From this empirical distribution,
the parameters 𝑘 and 𝑘𝜇 are estimated to obtain the Erlang distribution. By using a regression tree,
this model includes interactions with the arrival flow in a simplified manner. The final take-off time is
calculated by adding the expected travel time and the expected queue time to the actual push-back
time.

The results of this model are compared to a deterministic model using data of the year 2011 at
Newark International Airport. Both in high and low congestion, the deterministic model underestimates
the mean taxi-out time compared to actual data. The stochastic model shows better results, especially
in low congestion modes. In the deterministic model, average taxi-out times are underestimated by
more than one minute, while the stochastic model is on average half a minute off.

Next to that, the predictive ability of the model is also tested by estimating the taxi-out times in the
years 2007 and 2010, while the model parameters are identified using data from 2011. When looking
at the average taxi-out time as function of the number of aircraft taxiing out, the model predicts the year
2010 as good as the year 2011. It is also possible to analyse a single day instead of yearly averages.
This analysis shows that on days with a continuously high demand, the taxi-out time is more difficult to
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predict. Although the throughput is estimated quite accurately, each error propagates to every taxi-out
time afterwards, since the queue is never empty. On days that there is a low demand, or occasionally
high demand, the model shows excellent results compared to actual data. The year 2007 shows larger
deviations from actual data, since in 2007 no information on route availability is known, which means
that the distributions are less accurate.

This model gives a solid basis on how to discretise the departure process in smaller pieces, espe-
cially when no time stamps between push-back and take-off are known. However, since it does not
include uncertainty in the push-back schedule, the predictive properties of the proposed model are only
realistic in a short time horizon (roughly 15 minutes). To determine the confidence interval in take-off
time one or two days in advance, the uncertainty in push-back must be included.

Simaiakis also developed an earlier version of this analytic model in [17]. This earlier version also splits
the taxi-out time in three terms: the unimpeded taxi time, the interactions in the taxiway system and
the departure queue. The difference between the two papers lies in the model assumptions. In [17],
the unimpeded taxi time is estimated by plotting the taxi-out time against the take-off queue length,
applying linear regression and taking the Y-intercept (take-off queue equals zero) as unimpeded taxi-
out time. Only data points when the queue is smaller than eight aircraft is used in the regression. This
method is different from the more recent paper of Simaiakis [16], where the unimpeded taxi-out time is
determined from distributions obtained in low-traffic situations.

Furthermore, the main difference between the two papers can be found in the departure demand
rate. While the most recent paper assumes a deterministic flow, the earlier version assumes a depar-
ture demand rate that can be modelled as a non-stationary Poisson process, as the inter-arrival times
at the runway are assumed to be random. Both papers use an Erlang distribution to model the service
rate of the runway queue, although the earlier version is much simpler, since it does not include a re-
gression tree with information based on the amount of arrivals.

All analytic models provide a way to model the departure process with push-back time as given. The
models from Simaiakis [16] [17] introduce a more detailed estimation of the travel time by splitting it in
an unimpeded taxi time and added time due to interactions in the taxiway system. The first model [6]
focuses mainly on the service rate of the departure queue. Although both model focus on a different
aspect of the departure process, they can both be useful in model building.

2.1.3. Simulation models
Next to analytic models, there are also many models that use simulation to analyse the departure
process. The first one is the Master thesis of Shumsky on the prediction of aircraft take-off times [14].
Since this thesis aims to predict take-off times, the delay at push-back is also included in this model,
as can be seen in figure 2.2. The gate departure delay and the taxi-out times are seen as independent
variables and therefore two separate models are created.

Figure 2.2: Timeline of the departure process as defined by Shumsky [14]

The first model tries to predict gate departure delay. This thesis describes two different ways to estimate
the push-back delay. The first method is to analyse the influence of weather and runway configuration
on push-back delay. It concludes that, although they are statistically relevant factors, the largest part
of the push-back delay is not explained by these two factors. The second method is based on delay
propagation in aircraft schedules. By simply looking at the arrival time of the previous flight and the
minimum turnaround time, a prediction for the push-back delay can be made. This information is
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especially relevant for flights with large delays (over 30 minutes), since these delays are not random.
Therefore they should not be included in the push-back distribution. However, this would limit the
time horizon of the simulation to one to three hours before departure, since this information cannot be
determined in an earlier phase. The output of the gate departure delay model is deterministic, therefore
it does not include stochastic uncertainty.

The second part develops an aircraft flow model in which a deterministic flow is simulated from gate
to the departure runway and into the air. The rate of flow onto the taxiway system is determined by the
amount of push-backs in a fixed time period. The travel time to the queue is a fixed amount of time,
which is determined from historical data. The service rate of the runway is limited by the airport capacity
and modelled by a cumulative exponential capacity estimate. The model is simulated on Boston Logan
International Airport and models all active runways as a single server with capacity equal to the total
capacity of all runways.

According to Shumsky [14] the assumption of a deterministic process leads to a model which can be
updated as real-time data arrives. To verify the model several empirical tests are performed to compare
the forecasted amount of push-backs with the actual amount of push-backs in a ten-minute period. The
forecast is produced 30 min in advance. The results of this analysis is that given perfectly accurate
predictions of push-back times, it is possible to predict the number of aircraft on the airfield in the next
ten minutes with a root-mean-square error (RMSE) of 1.4 aircraft. The RMSE for a one-hour prediction
is 2.2 aircraft. Data of March and August 1991 is used from Boston Logan International Airport.

Although this model is quite extensive, the stochastic nature of the departure process is not cap-
tured by this model. It includes a possibility to update input when real-time information is available, but
this does not mean that the uncertainty can be ignored. Also, the model does not simulate interactions
between arriving and departing aircraft.

Next, a paper from Pujet, Delcaire and Feron [12] is discussed that models the departure process at
Boston Logan International Airport from terminal to take-off as an input-output system, as shown in
figure 2.3. Since there is no data available on push-back requests or push-back clearances, this model
also takes the actual push-back time as input. Therefore only the last two blocks in figure 2.3 are
included in the model. The time between push-back and take-off is split in a travel time and a queue
time.

Figure 2.3: Structure of the departure process model as defined by Pujet [12]

The travel time is estimated from data in off-peak hours, when the number of aircraft in the taxiway
system is very low. The distribution for the travel time is created for every runway configuration and
airline pair by fitting a Gaussian distribution through the actual data. It is important to note that the
travel time estimated by this distribution includes the take-off roll and the initial climb until the ACARS
take-off message is sent.

When adding the travel time to the actual push-back time, the amount of arrivals in the departure
queue in time period 𝑡 can be determined. The queue is simulated by a simple balance equation of
aircraft arriving to and leaving the queue. The take-off rate is determined in a similar way as suggested
in [6]. The inter-departure times of periods when there are many aircraft in the taxiway system are
analysed, since it is assumed that the queue is never empty in those periods. Then the server absence
concept is used to simulate runway availability. This means that in each period of time, the runway is
available with probability 𝑝. The probability 𝑝 and the capacity 𝑐 are chosen such that the probability
distribution matches the histogram of actual data.

A computer simulation is used to compare the model outputs with actual data. One of the factors
that is verified is the taxi-out time. It can be concluded that as the amount of traffic increases, the mean
taxi-out time increases along with its variance. The model provides a good fit when light and medium
traffic is observed, but when heavy traffic is observed the fit of the model is not as good. This can also
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be explained by the fact that situations with heavy traffic occurs much less often than situations with
light or medium traffic.

This model is also validated using departure demand data from 1997. The model still provides
reasonable good estimates of taxi-out times in most runway configurations. However, in some configu-
rations themodel overestimates the runway capacity and therefore underestimates the average taxi-out
time. This is explained by the fact that these configurations are not used very often and most-likely only
in bad weather situations, where the runway capacity is lower in general.

This paper shows that a simple simulation can provide many insights in the departure process, but
in order to be more useful, the model must become more detailed. One of the things that can be ap-
proved is the fact that the taxi-out time includes the runway occupancy time and initial climb. When
more detailed data is available, the output of this model can be improved.

Andersson, Carr, Feron and Hall [1] use the model from Pujet [12] to develop a model of the entire
ground operations at an airport. The arrival process, the turnaround process and the departure process
are combined in one model. The three processes are linked, but can be seen as three different models.
The departure process is again modelled by splitting the travel time and the queue time. The difference
with [12] is in several assumptions.

First of all, the unimpeded taxi time is determined by looking at the number of aircraft that take-
off while the aircraft is taxiing out, instead of looking at the amount of aircraft in the taxiway system
at time 𝑡. In this way, the data from aircraft that experience long taxi-out times due to reasons other
than surrounding traffic are not used in the distribution of unimpeded taxi times, since the amount of
aircraft that take-off while this aircraft is taxiing out is high. The distributions of unimpeded taxi times
are approximated by fitting Gaussian or log normal distributions through the empirical results.

Secondly, the runway queue service rate is modelled by Poisson distributions for each level of de-
parture congestion. As the level of congestion increases, the rate of the fitted Poisson distribution
increases until a maximum throughput. Also, different distributions are obtained for each runway con-
figuration and good and bad weather conditions. Compared to the model of [12], the runway service
rate distribution does not include server absence, which was a clear identification of runway availability.
However, since the Poisson distributions are fitted through actual data, these distributions also contain
information about runway availability.

The departure processmodel is calibrated at Hartsfield-Jackson Atlanta International Airport at 1998
and at Dallas/Fort Worth International Airport at 1997. At both airports, the calibrated queuing model
matches very well to the experimental data. A validation with data from a different period has not been
performed.

Before developing its analytic models, Simaiakis also developed amodel based on simulation [15]. This
model is essentially equal to the analytic models explained in section 2.1.2, expect from the runway
queue service rate. Instead of assuming an Erlang distribution, the service time is assumed to be a
random variable with three possible outcomes. When analysing the inter-departure times at Boston
Logan International Airport in 2007 in a histogram, it can be seen that in most cases there is a one- or
two-minute separation between two successive aircraft. This are the first two possible outcomes of the
random variable. The third outcome is the next increment such that the sum of the probabilities equals
one. In the case of Boston Logan International Airport, the outcomes equal one, two and five minutes
between two departures, where the probability of the first outcome is much higher than the probability
of the second and third outcome.

This paper also explains in detail how the ramp and taxiway interactions are modelled. Since there
are no specific operating conditions in which the interactions in the taxiway system are the dominant
factor, it is first assumed that the model only includes an unimpeded taxi-out time and a queue time.
When comparing the results of this model with the actual data, it can be seen that in medium traffic
situations, the model differs from actual data. This is explained by the fact that the model overestimates
the rate at which aircraft arrive at the runway, which results in a lower taxi-out time. A linear term 𝛼𝑅(𝑡)
is used to counteract this phenomenon, where 𝑅(𝑡) is the number of aircraft that are currently in the
taxiway system, but did not arrive at the queue yet and 𝛼 is a parameter that depends on the runway
configuration. 𝛼 is chosen such that the fit between the actual and modelled number of aircraft on the
ground is optimal.

This model is validated using data from Boston Logan International Airport in 2008, while model
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parameters are established with data from 2007. The models predicts the taxi-out time in two out of
three runway configurations as well for 2008 as for 2007. In one runway configuration, the average
taxi-out time in medium and heavy traffic is overestimated. There is no explanation given for this.

All papers based on simulation provide a different way to discretise the airport departure process.
Shumsky [14] also includes gate departure delay, but cannot address stochastic uncertainty in his
model. This model should be used for short-term analysis, since there is a possibility to update with
real-time information. Pujet [12] and Andersson [1] both split the process into a travel time and a queue
time, in where the travel time and runway queue service rate are stochastic variables. Simaiakis [15]
assumes a deterministic flow entering the runway queue and a stochastic runway service rate.

2.2. Models based on statistical analysis
This section provides two types of models that estimate the taxi-out time. These models do not model
all the small pieces of the departure process, as they analyse the duration of the complete taxi process.
The first type of model tries to estimate the taxi-out time by using statistical analysis and finding out
which factors influence the taxi-out time. The second type of models use machine learning to determine
the taxi-out time, which is a more advanced and complex method.

2.2.1. Factors influencing the taxi-out time
The first paper that thoroughly analyses the influence of several factors is [7]. This paper finds that
the main factor influencing the taxi-out time is the runway configuration. The runway configuration
determines the flow of aircraft at the airport surface. The taxi-out time varies for different runway con-
figurations since there is a variation in interaction between arriving and departing aircraft, there is a
variation in distance between gate and active runway and there can be a difference in departure and
arrival capacity between several configurations. This is also the reason that many papers in section 2.1
determine a queuing model for a particular runway configuration. Idris [7] clearly shows that at Boston
Logan International Airport the difference in average taxi-out time between several runway configura-
tions is large. He shows that both the capacity of a runway configuration and the distance between
terminal and runway are explanatory factors.

The specific gate location also has an influence in the variability of taxi-out times. In many cases
gate information is not known and therefore airline information is used, since airlines tend to use the
same gates or group of gates. Idris et al. [7] perform a linear regression analysis to determine the
correlation between airline and taxi-out time in a specific runway configuration, which resulted in a Rኼ-
value of 0.02. This indicates that the distance is a positive factor, but it does not explain a significant
amount of variability in taxi times.

Furthermore, the influence of weather and downstream restrictions is analysed in [7]. The weather
is analysed by using Visual Flight Rule (VFR) and Instrument Flight Rule (IFR) information, however,
this paper did not find a strong correlation between this information and the taxi-out time. Downstream
restrictions do affect duration of the taxi-out time and its variability. Usually, these restrictions are
imposed due to weather related factors.

Idris et al. [7] conclude that, within a runway configuration, the departure demand and queue size
is the most important factor that causes long taxi-out times. The paper shows that the average taxi-out
time increases when the number of aircraft that are on the airport surface at push-back increases. The
Rኼ-value of the regression analysis between these two variables is 0.1927, which does not indicate a
strong relation. However, Idris et al. mention that aircraft are able to pass each other in the taxiway
system, which can explain the low Rኼ-value. Since the runway queue is found to have the largest
influence, the paper develops a simple analytic queuing model that predicts the take-off time based on
the number of aircraft that are present on the airport surface. Although it is called a queuing model, it
cannot be compared with actual queuing models explained in section 2.1. This model estimates the
taxi-out time from a regression plot of taxi time and take-off queue size. The queue size is determined
from the number of aircraft on the surface. This model is tested for flights in August 1998, in which it
predicted 66% taxi-out times within five minutes of the actual value. However, better results are found
in actual queuing models explained in section 2.1.

Interestingly, Idris et al. [7] conclude that the amount of arrivals are of low influence on the taxi-out
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time. The number of arrivals has a low correlation, a Rኼ-value less than 0.02, with the taxi-out time.
This is opposite to the findings of Clewlow et al. [3] that the number of arrivals are in fact significantly
correlated with taxi-out times. Next to the number of arriving aircraft, this paper finds that the number
of departing aircraft, the runway configuration, weather and originating terminal are key variables that
affect the taxi-out time. Although it should be noted that the influence of arriving aircraft is much larger
when the runway configuration is a mixed-mode operation.

Since this paper uses the same data set as [7], the findings from that paper can be verified. Clewlow
et al. [3] discovers that the definition of the number of arrivals can be of great importance. When using
the definition that the number of arrivals equals all aircraft that are taxiing in when aircraft 𝑖 is pushed
back from the gate, the Rኼ-value indeed equals 0.02. By using this definition, all arrivals that occur after
push-back but before take-off of aircraft 𝑖 are not taken into account. A different definition proposed in
this paper is the number of aircraft that landed and arrived at their gate while aircraft 𝑖 was taxiing out. If
this definition is used in a regression model, for Boston Logan International Airport the Rኼ-value equals
0.6773 and for John F. Kennedy International Airport it equals 0.7470. Although using this definition, the
number of arrivals is difficult to calculate, since an assumption about the taxi-in time would be needed.

This paper also analyses which definition of the number of departures has the highest influence
on the taxi-out time. If the number of departures is defined as the number of take-offs that take place
between push-back of aircraft 𝑖 and take-off of aircraft 𝑖, Rኼ-values of 0.6380 and 0.7599 are found for
BOS and JFK respectively. A downside of this definition is that it assumes knowledge of the order in
which aircraft take-off. For example, when an aircraft has an earlier push-back time than aircraft 𝑖, but
has a later take-off time, this aircraft is not assumed to interfere with aircraft 𝑖. However, knowledge of
its actual take-off time is not known in advance.

Lastly, another paper that identifies main influential factors in taxi time estimations is written by
Ravizza [13]. This paper uses multiple linear regression to identify the most relevant factors affecting
both taxi-in and taxi-out times. Interesting about this paper is the fact that it uses two European airports:
Stockholm-Arlanda Airport and Zurich Airport. This is in contrast to most other papers, which focus on
American airports. The multiple linear regression is based on data of an entire day’s operation, 7th of
September 2010 at Stockholm and 19th of October 2007 at Zurich.

This paper focuses on correctly predicting the average taxi speed, from which the taxi time can be
derived. The first factor that is analysed is the influence of the distance that an aircraft was taxiing. In
order to calculate the distance, the authors modelled the airport layout as a graph, where the shortest
path is assumed to be the distance travelled. From the analysis, it is concluded that, in general, the
average taxi speed is higher for aircraft that had a longer taxi distance. Next, the influence of the total
amount of turning that an aircraft has to perform is analysed, since aircraft will have to slow down to
make a turn. This factor also significantly improved the forecast of the average speed. Lastly, the
amount of traffic is also found to be of great importance, which is found in [7] and [3] as well. Around
13% of the variability is not explained by the model. This model stands out from other models, since it
uses detailed information on the airport lay-out.

2.2.2. Machine learning
Machine learning is different from statistical analysis, since these models are not only analysing the
historical data, but also detecting patterns that can be used in predictions for the future. There are
several papers that use machine learning to estimate the taxi-out time, as explained in this section.

The first paper to be discussed is the paper from Ravizza et al. [18], which follows from the paper
discussed in the previous section. The research done in [18] tests different statistical regression meth-
ods and machine learning techniques to predict taxi times more accurately. Methods that are tested
include multiple linear regression, least median squared linear regression, support vector regression,
M5 model trees and two different fuzzy rule-based systems. Fuzzy rule-based systems are used to
combine human knowledge with mathematical models, since if-then statements are used.

The comparison between the different models is made by using several metrics, such as the root
mean-squared error, mean-absolute error, relative errors and prediction accuracy. The prediction ac-
curacy indicates what percentage of flights are predicted within a fixed time-span. Conclusions drawn
from this research state that the fuzzy rule-based models provide the best results compared to other
methods.
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Figure 2.4: Functional block diagram of Markov Decision Process combined with reinforcement learning [11]

Another interesting paper written by Balakrishna et al. [11], where the taxi-out time is predicted using
reinforcement learning (RL) algorithms. The paper states that the decision making process for depar-
tures and arrivals, performed by air traffic controllers, can be seen as a stochastic control problem.
Uncertainties in the process arise due to congestion, weather and the probabilistic nature of the arrival
and departure demands. Furthermore, the airport system is modelled as a discrete-time Markov chain.
Together, the system state space and the Markov chain form a Markov Decision Process (MDP), where
actions and rewards are added to the regular Markov chain.

In this case, the actions are the predicted taxi-out values and the reward equals the absolute error
between actual and predicted taxi-out time. The state variables for taxi-time prediction are found after
analysing data and literature. These variables are: (1) the runway queue length, (2) the number of
departing aircraft that are taxiing out at the same time, (3) the number of arrival aircraft in the taxiway
system, (4) the average taxi-out time of the last 30 minutes and (5) the time of day. The fourth variable
incorporates a change in taxi-out time due to changing weather, runway configuration, etc. These
changes are applicable to all aircraft taxiing out, therefore the taxi-out time of previous aircraft is a
good indication.

The model block diagram, found in figure 2.4, shows clearly the learning process where the goal is
to optimise the utility reward function. The model is trained using three months of data, after which it
simulates one week.

It is concluded that the RL method is a suitable approach to model the airport departure process
in the near future. The benefit of using this method compared to other, more simple methods, is the
fact that this model is able to capture the trend in taxi-out times by looking at actual data from the last
30 minutes. Especially in airports where there is a huge uncertainty, this can be beneficial, since it is
difficult to establish a trend without including recent data.

Finally, the paper of Herrema et al. [4] compares four different machine learning techniques to predict
the taxi-out time at Charles de Gaulle airport. The neural networks, regression tree, reinforcement
learning and multilayer perceptron methods are tested and compared based on the root-mean-squared
error (RMSE) metric. The regression tree method and the reinforcement learning method performed
equally well when looking at the RMSE, but the computational time for the regression tree is smaller.
Therefore, the regression tree method is found to be the best option.

2.3. Research questions
This section provides the research questions that followed from the literature review. Themain question
is: “How to model the airport departure process under the influence of uncertainty?”. This question can
be divided into several sub questions, which are explained below.
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Representation
The first sub question is related to the representation of the departure process. As found in literature,
there are several ways to split the process into several pieces. The departure process can be modelled
much more specific than current models, since they only used two timestamps, push-back and take-
off, and had to make assumptions about everything in between. With more detailed data available for
Vienna Airport, it should be possible tomake a clear representation of the departure process. Therefore,
the first sub question is: “How to represent the departure process, taking into account the push-back,
travel time and queue time?”.

Simulation
The simulation of the departure process is the largest part of the thesis and therefore this question is
divided into several smaller questions. The sub question related to this subject is: “How to simulate
the departure process?”. To answer this question, further knowledge on the moment of arrival in the
runway queue and how to model the runway queue is needed. Therefore, the following set of questions
has to be answered:

• How to determine the moment of arrival in the runway process?

– What is the distribution of the push-back time?
– How to determine the unimpeded taxi time?
– What is the relation between the amount of traffic in the taxiway system and the extra travel
time until the departure queue?

• How to model the runway queue?

– What is the service time of the queue?
– How to determine the runway availability (in a mixed-mode operation)?

Analysis
After the simulation, several key performance indicators can be analysed, but focus is put on the ex-
pected take-off time. The sub question related to this is: “What is the confidence interval of the expected
take-off time?”.

Validation
The final sub question is related to the validation of the proposed model. The model is built for the
case study at Vienna Airport, therefore the question is: “How to validate the model using a case study
at Vienna Airport?”.



3
Model

This chapter describes a model to simulate the airport departure process at Vienna International Air-
port, which is the main airport of Austria. The airport consists of two runways, runway 11/29 and runway
16/34, as can be seen in figure 3.1. There are multiple runway configurations possible, but the configu-
ration departing flights on runway 29 and mixed-mode operations on runway 34 is used most frequently
in peak hours 1. For this reason, the model is created for this runway configuration.

Figure 3.1: Lay-out of Vienna International Airport 2

The model is created in two steps. As a first step, the model concentrates on runway 29, which is
only used by departing aircraft. This model can be used to simulate aircraft departures from a single
runway. Section 3.2 explains how this model is created and what input is needed.

The second step is to extend the first model to be able to simulate multiple runways and mixed-
mode operations. This is done by adding runway 34 in the model, which is used by departures and
arrivals. This results in a model with two runways, of which one is used in segregated mode and one
is used in mixed-mode. This step is described in section 3.3.

Before describing the theoretical model, the model assumptions are given in section 3.1. These
assumptions are applicable to both model types.

1https://ext.eurocontrol.int/airport_corner_public/LOWW
2Adjusted from https://acukwik.com/Airport-Info/LOWW
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3.1. Assumptions
Several assumptions are made to create a mathematical model. These assumptions are listed below:

1. The model simulates the departure process from off-block time until take-off time, therefore the
uncertainty of gate departure time is not included in the model.

2. The departure process is divided into parts, which are added together to obtain the estimated total
duration of the departure process. All parts are assumed to be independent from each other.

3. The service time of the queue and the runway occupancy time are modelled as independent
random variables.

4. The model assumes independent service times in the simulation of the queue.

The first assumption is made in order to define the research area. By only investigating the process
between actual off-block time and take-off time, factors such as gate delays due to passengers, bag-
gage and other external factors do not influence the model. Those factors are hard to analyse, because
there is no or very limited data available on the processes that occur before the aircraft leaves the gate.
This also means that the actual off-block time (AOBT) can be taken as input for the model. The AOBT
is registered for each flight and therefore available in this research.

Assumption 2 states that every part of the departure process is independent from each other. This
means that for example an aircraft with a slow push-back process does not automatically have a slow
taxi process as well. It can only influence the time an aircraft arrives in the runway queue and therefore
its waiting time in the queue.

The third assumption involves the service time and the runway occupancy time. In reality, these two
random variables are linked, since a long runway occupancy time leads to a longer service time. The
service time can be seen as the sum of the departure runway occupancy time and the additional sepa-
ration time between to aircraft. It is impossible to determine the stochastic distribution for the additional
separation time between aircraft, therefore it is decided to use two separate distributions for service
time and runway occupancy time, as these variables can be determined by analysing the data.

The last assumption states that the service times in the queue are independent. In reality, the service
time can depend on the flight directions of two consecutive flights and the aircraft type.

The flight direction is important in determining the service time, since aircraft have to respect the
ICAO separation minima. For two consecutive aircraft that will fly in diverging directions, these minima
are easier to satisfy than for aircraft that will continue to fly in the same direction. Therefore, the service
time between two consecutive aircraft that will fly in diverging directions is smaller.

Also, the aircraft type can lead to a different service time, since heavy aircraft generate wake vortex
turbulence that prevents light and medium aircraft to follow directly, which results in a larger service
time between heavy and medium or light aircraft.

Although it is known that these factors influence the service time, they are not taken into account
in the case study. The direction of flight is difficult to asses from the data, thus not considered as an
input to the model. Also, the available data proved that 92% of the departing aircraft is categorised as
medium weight, 6% as heavy weight and 2% as light weight. This means that extra service time due
to wake vortex turbulence does not occur often and therefore has a small influence in the simulation.

3.2. Segregated operations on a single runway
This section described the model that is used for segregated operations on a single runway. The model
is created to simulate the aircraft departures from runway 29 at Vienna Airport. Section 3.2.1 discusses
the representation of the model. An overview of the required input is given in section 3.2.2.

3.2.1. Representation of the departure process
The departure process can be divided into several parts, being push-back, taxi, queue and take-off.
The structure of the model is graphically displayed in figure 3.2. Here, the taxi phase is divided in an
unimpeded taxi-out time and an additional taxi-out time. The duration of each of the stages is found by
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drawing a random value from a distribution, expect the queue duration, which is found by using queue
theory. An explanation of each phase is given below.

Figure 3.2: Representation of the departure process with a single runway

Push-back
The duration of push-back is defined as the process between actual off-block time (AOBT) and the
moment that the aircraft starts taxiing to the runway. The push-back is characterised by the backwards
motion from the gate and the aircraft is pushed by a push-back truck. The AOBT is a timestamp that
is recorded by the ACARS system (Aircraft Communication Addressing and Reporting System). The
AOBT is seen as the beginning of the departure process.

There are two different kind of parking spots for aircraft at Vienna Airport. The first one is located
next to a gate and has a passenger loading bridge connected to the gate. The second type is a parking
spot on the apron, which is not connected to a gate. In the first case, a push-back is always necessary
before the aircraft can start its taxi-out process. However, when a parking spot is not connected to a
gate, it might be possible for the aircraft to start the taxi-out process without push-back. This depends
on the location of the parking spot, since in some parking spots the aircraft faces a wall and thus also
needs a push-back. Using the ICAO map of the airport, see appendix A, and satellite images, it is
determined which parking spots require a push-back.

In the simulation, the push-back duration, 𝐷ፏፁ, is modelled as a random variable with a distribution
based on historical data. Every flight in the data is analysed to extract the push-back duration. Together,
these durations form the distribution that is used as input to the simulation.

Unimpeded taxi-out time
The taxi process is divided in an unimpeded taxi-out time and an additional taxi-out time. The unim-
peded taxi-out time is defined as the time that is needed to reach the runway when there are no inter-
ruptions on in the taxi system. The stage of unimpeded taxi-out time starts directly after the push-back
process.

The duration of unimpeded taxi-out time, 𝐷፮ፓፗፎፓ, depends on the distance between the gate and
the runway [7]. This distance is taken into account when creating the distribution of unimpeded taxi-out
time, since the distribution is determined for each combination of runway and group of gates. A group
of gates is defined as several gates that are close to each other and prove to have similar unimpeded
taxi-out times.

Additional taxi-out time
The additional taxi-out time is defined as any duration that the aircraft is interrupted during the taxi-out
process. These interruptions are mainly caused by other traffic in the taxi system and bad weather [7].
For example, de-icing an aircraft is seen as additional taxi-out time, since the aircraft is interrupted
during the taxi-out phase.

In the simulation, the additional taxi-out time, 𝐷ፚፓፗፎፓ, is determined by drawing a random value
from a distribution that is created by analysing historical data. Since Vienna airport is a relatively simple
airport that is not too busy, it is expected that in many cases there is no additional taxi-out time.
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Runway modelling - Queue waiting time
The queue waiting time is defined as the time that an aircraft has to wait in the runway queue, because
previous aircraft are still occupying the runway. The waiting time, 𝑊, for a runway that only serves
departing flights is determined by queuing theory. In this case, a 𝐺/𝐺/1 queue is used, since the input
of the queue is random, the service time is modelled by a general distribution and there is only one
server. The queue is served on a first-in-first-out (FIFO) basis.

The waiting time depends on the demand and the service time of the queue. The demand is related
to the departure schedule and determines the incoming flow of aircraft. The service time is of great
importance to the queue waiting time, as it controls how fast the aircraft can leave the queue. The
service time is modelled as a distribution based on historical data.

To determine the service time distribution, the duration between two consecutive take-offs is anal-
ysed. According to [16], this is a good indication to determine the service time. All the flights in the data
sample are sorted based on actual take-off time (ATOT) and the difference in ATOT is determined. This
method can only be used when it is certain that the two consecutive aircraft take-off immediately after
each other. Otherwise, the time between take-offs is much larger than the service time, because there
was simply not enough demand at the runway. Therefore, the service time is defined as difference in
ATOT between consecutive aircraft, given that the following aircraft has been waiting in queue.

The input of the queue module can be calculated using equation 3.1, where 𝑇queue entry,፧ equals the time
that aircraft 𝑛 enters the runway queue and AOBT is the actual off-block time. The random variables
𝐷PB,፧, 𝐷uTXOT,፧ and 𝐷aTXOT,፧ equal the duration of the push-back process, the unimpeded taxi-out time
and the additional taxi-out time, respectively.

𝑇queue entry,፧ = AOBT+ 𝐷PB,፧ + 𝐷uTXOT,፧ + 𝐷aTXOT,፧ (3.1)

Next, the waiting time of the (𝑛 + 1)፭፡ aircraft, 𝑊፧ዄኻ, is recursively calculated using the Lindley equa-
tion [9] given by equation 3.2. The initial waiting time is zero, 𝑊ኻ = 0, since the first aircraft never has
to wait.

𝑊፧ዄኻ = max (0,𝑊፧ + 𝑈፧) (3.2)

𝑈፧ is defined as in equation 3.3.

𝑈፧ = 𝑆፧ − 𝑇፧ (3.3)

𝑇፧ is the time between the 𝑛፭፡ and the (𝑛+1)፭፡ aircraft arriving in the queue and 𝑆፧ is the service time
between the 𝑛፭፡ and the (𝑛 + 1)፭፡ aircraft. The service time is determined by randomly drawing from
the service time distribution. 𝑇፧ is computed using equation 3.4.

𝑇፧ = 𝑇queue entry,፧ − 𝑇queue entry,፧ዄኻ (3.4)

The runway entry time, 𝑇runway entry,፧ is determined by equation 3.5.

𝑇runway entry,፧ = 𝑇queue entry,፧ +𝑊፧ (3.5)

Lastly, the take-off time, 𝑇𝑂𝑇, is calculated by adding the random variable 𝐷DROT,፧, the runway occu-
pancy time (DROT), to the runway entry time as seen in equation 3.6

𝑇𝑂𝑇፧ = 𝑇runway entry,፧ + 𝐷DROT,፧ (3.6)

Take-off procedure
The final phase of the departure process is the take-off procedure. The take-off procedure includes
line-up and take-off roll. The departure runway occupancy time (DROT) is the duration that an aircraft
spends on the runway. This is measured by taking the difference between the runway entry time and the
actual take-off time. The distribution for DROT is created for each ICAO weight category, since heavy
aircraft generally needmore time to take-off. The distribution for DROT is created by analysing historical
data. Currently there are three weight categories, light (L), medium (M) and heavy (H), determined by
the maximum take-off weight.



3.3. Mixed-mode operations and multiple runways 17

The distribution for departure runway occupancy time is determined for every ICAO weight cate-
gory. For each flight in the data sample, the weight category is known. It is chosen to make separate
distributions based on weight category, because heavy aircraft generally need more time to take-off.

3.2.2. Required input
The required input for the departure process model is described in this section. The input is divided in
two types of input, variables that should be included in the traffic sample and distributions of the random
variables that are used in the model.

Table 3.1 summarises the required input for the model that simulates segregated operations on a
single runway. The traffic sample is used as input for the simulation and should contain at least the
actual off-block time, the runway from where the aircraft will take-off, the gate and the ICAO weight cat-
egory. The actual off-block time is used as starting point of the departure process. It is also necessary
to know to which runway the aircraft will taxi, since the aircraft has to enter the queue for that runway.
Next to that, the gate information is necessary to determine if a push-back is required, since this is not
necessary at all gates. Finally, the ICAO weight category is needed to determine which distribution to
use to simulate the departure runway occupancy time.

The distributions that are required are push-back, unimpeded taxi-out time, additional taxi-out time,
service time and departure runway occupancy time. As an extra requirement, the unimpeded taxi-out
time requires a distribution for each gate-runway combination. To be more exact, for each group of
gates and runway combination, since adjacent gates are assumed to have similar taxi-out times. The
distribution for departure runway occupancy time is specified for each ICAO weight category, since the
time spend on the runway relates to the weight class of the aircraft.

Table 3.1: Required input for the model that simulates segregated operations on a single runway

Data type Variable Extra requirements

Traffic sample

AOBT
Runway
Gate
ICAO weight category

Distributions

Push-back
Unimpeded taxi-out time specified for each gate-runway combination
Additional taxi-out time
Service time
Departure runway occupancy time specified for each ICAO weight category

3.3. Mixed-mode operations and multiple runways
This section explains how the model from section 3.2 can be extended to multiple runways and mixed-
mode operations. The model is created to simulate the aircraft departures from runway 29 and runway
34 at Vienna Airport. The model for two runways is visualised in figure 3.3. Compared to the single
runway, segregated operations model, there are two differences. First of all, the taxi system is now
shared between flights departing from both runways. Next to that, there are also arriving flights in the
taxi system. The second difference is that runway 34 is added, which is the runway that is used for
mixed-mode operations. The model extensions needed to model these two differences are explained
in this section.

Section 3.3.1 discusses how the shared taxi system is modelled. Afterwards, two methods to sim-
ulate mixed-mode operations are explained in section 3.3.2. Finally, an overview of the required input
is given in section 3.3.3.

3.3.1. Shared taxi system
Figure 3.3 shows that the first part of the model remains the same as for a single runway model. The
push-back process, the unimpeded taxi-out time and the additional taxi-out time take place in the taxi
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Figure 3.3: Representation of the departure process with multiple runways

system. However, the taxi system is now shared between flights that depart from runway 29 and flights
that depart from runway 34.

The push-back duration and the unimpeded taxi-out time are determined in the same way as in the
model for segregated operations on a single runway, as the push-back process and the unimpeded
taxi-out time are not influenced by other aircraft. The additional taxi-out time does change, since this
a way to model the interactions between all flights in the system. The additional taxi-out time should
increase when the system becomes more complex. This is the part of the taxi-out time that represents
any extra taxi-out time due to interactions with other aircraft.

For every 15 minutes, it is determined how many aircraft are present in the taxi system. This is
done by adding the number of departures with an actual off-block time in those 15 minutes and the
number of arrivals with an actual time of arrival in the 15-minute time period. This is an estimate of the
actual number of aircraft in the system, as the duration aircraft spend in the taxi system is not taken
into account.

Figures 3.4 and 3.5 show that there is a trend visible between the additional taxi-out time and the
number of aircraft in the system. It can be seen that the CDF moves to the down-right corner for
increasing number of aircraft in the system. This shift indicates a higher average additional taxi-out
time and less flights that do not encounter any additional taxi-out time. This relation is visible for flights
departing from both runways, but there appears to be a stronger relations for flights departing at runway
34. This can be explained by the graphical lay-out of the airport, see appendix A, where flights taxiing
to runway 34 have to pass the entry of runway 29.

It is decided to model the additional taxi-out time based on the number of aircraft in the system. For
the six groups displayed in figures 3.4 and 3.5 a distribution is created.

3.3.2. Mixed-mode operations
When aircraft leave the shared taxi system, the model splits into two directions. The first flow of aircraft
takes off at runway 29, while the second flow of aircraft departs from runway 34. This means that
there are two separate queues, one for each runway. For Vienna Airport, segregated operations are
simulated on the first runway, as runway 29 is used for departures only. This part is modelled as
explained in section 3.2. Mixed-mode operations are modelled on the second runway, since runway
34 is used by arriving and departing aircraft simultaneously.

The model for mixed-mode operations is created by extending the model for segregated operations.
The waiting time for segregated operations is defined in equation 3.2, where the waiting time depends
on the waiting time of the previous aircraft and the service time between two departing aircraft. For
mixed-mode operations, the waiting time does not only depend on the previous aircraft, it also depends
on the runway availability. Therefore, this equation needs to be adjusted. Equations 3.1 and 3.3-3.6,
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Figure 3.4: CDF of additional taxi-out time for increasing num-
ber of aircraft in the system for flights departing at R29
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Figure 3.5: CDF of additional taxi-out time for increasing num-
ber of aircraft in the system for flights departing at R34

given in section 3.2.1 are still valid in the model for mixed-mode operations.
The calculation of the waiting time, given by equation 3.2, has to be extended to incorporate waiting

time due to an unavailable runway. This is because in mixed-mode operations, the runway does not
only serve departures, it also serves arrivals. This means that the runway is not always available for
aircraft that are in front of the departure queue. This server absence can be modelled in two different
ways. Firstly, it is possible to use the information on arriving flights to determine when the runway
is available. The second option is to obtain a probability when the runway is available by analysing
historic data. Both options are discussed below.

Model 1: Modelling runway availability using information on arriving flights
This section explains how to model mixed-mode operations using the arrival schedule. When this infor-
mation is available, this method probably gives a better estimate on runway availability than historical
data. The method states that a departure is allowed to enter the runway until the moment that the ar-
riving aircraft is at the required separation. The separation is measured from the runway threshold, the
beginning of the runway, to the aircraft. For simplicity, the required separation is set to 2 minutes. The
value of 2 minutes is often used by EUROCONTROL in capacity studies at various European airports.

As long as the arriving aircraft is more than 2 minutes from the runway threshold, the departing
aircraft can enter the runway. This means that there is a timeframe measured from the moment when
the arriving aircraft is 2 minutes from the threshold until the moment that the aircraft touches down,
where a departure cannot enter the runway.

The waiting time for departing aircraft consists of two components, the queue waiting time,𝑊ፐ, and the
runway waiting time,𝑊ፑ, as defined in equation 3.7.

𝑊፧ = 𝑊ፐ,፧ +𝑊ፑ,፧ (3.7)

In this equation,𝑊ፐ,፧ is computed using the Lindley equation given by equation 3.2. This waiting time
is used to determine the moment when the departing aircraft leaves the queue and is ready to enter
the runway, as seen in equation 3.8.

𝑇queue exit,፧ = 𝑇queue entry,፧ +𝑊ፐ,፧ (3.8)

Next, the queue exit time, 𝑇queue exit,፧, is compared with the arrival schedule to find the arriving flight
after which there could be a possibility to enter the runway. This is the flight that is less than 2 minutes
from the runway threshold at the time of queue exit. The next arrival is more than two minutes from the
runway threshold at the queue exit time. This can be defined mathematically by equation 3.9, where
𝑇2minፚᑞ and 𝑇2minፚᑞᎼᎳ equal the times that arrivals 𝑚 and (𝑚 + 1) are exactly 2 minutes from the runway
threshold.
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𝑇2minፚᑞ ≤ 𝑇queue exit,፧ < 𝑇2minፚᑞᎼᎳ (3.9)

The mathematical definition of 𝑇2minፚᑞ and 𝑇2minፚᑞᎼᎳ is given in equation 3.10 and 3.11. Here, 𝑆፧ is the arrival
schedule that is known from live information.

𝑇2minፚᑞ = max
፦∈ፒᑒ

{𝑇2minፚ (𝑚)|𝑇2minፚ (𝑚) ≤ 𝑇queue exit,፧} (3.10)

𝑇2minፚᑞᎼᎳ = min
፦∈ፒᑒ

{𝑇2minፚ (𝑚)|𝑇2minፚ (𝑚) > 𝑇queue exit,፧} (3.11)

The next step is to analyse whether it is possible for the departing aircraft 𝑛 to enter the runway between
arriving aircraft 𝑚 and (𝑚 + 1). This is done by comparing the time that aircraft 𝑚 has landed with the
time that aircraft (𝑚+1) is exactly 2 minutes from the runway threshold. The time that an aircraft lands
is registered in the A-SMGCS system as Actual Time of Arrival (ATA).

When the ATA of arriving aircraft 𝑚 is smaller than the time that aircraft (𝑚 + 1) is 2 minutes from
the runway threshold, the departing aircraft is allowed to enter the runway. In that case, the runway
entry time for departing aircraft 𝑛 is given by equation 3.12. The waiting time due to an unavailable
runway is given by equation 3.13.

𝑇runway entry,፧ = max (𝑇ATA,፦ , 𝑇queue exit,፧) (3.12)

𝑊ፑᑟ = 𝑇runway entry,፧ − 𝑇queue exit,፧ (3.13)

When aircraft (𝑚 + 1) is closer than 2 minutes from the runway threshold at the time that aircraft 𝑚
leaves the runway, there is no possibility for a departure. In that case, the next possibility to depart is
after aircraft (𝑚 + 1). This process continues until aircraft 𝑛 can depart. Figure 3.6 summarises this
process by means of a flowchart.

The take-off time is determined by adding every phase of the departure process to the AOBT, as
done in equation 3.14. The waiting time, 𝑊፧, consists of queue waiting time, 𝑊ፐ,፧ and runway waiting
time,𝑊ፑ,፧.

𝑇𝑂𝑇፧ = AOBT+ 𝐷PB,፧ + 𝐷uTXOT,፧ + 𝐷aTXOT,፧ +𝑊፧ + 𝐷DROT,፧ (3.14)

Figure 3.6: Flowchart on how to determine the runway waiting time,ፖᑉᑟ
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Model 2: Modelling runway availability by analysing historical data
It is also possible to model the runway availability by analysing historic data. For every aircraft that
arrives at the runway entry, there is a chance that the runway is not available, a server absence. This
can be defined as a conditional probability given by equation 3.15. This conditional probability can be
determined from historic data.

𝑃 (𝐴|𝐶) = 𝑃 (Runway is not available|Departing aircraft arrives at runway entry point) (3.15)

The time an aircraft has to wait before the runway becomes available, the runway waiting time 𝑅, is
modelled as a random variable. The runway waiting time is defined by any duration that the aircraft
is waiting at the runway entrance, while there is no other departure on the runway. It is assumed that
the aircraft is then waiting for an arrival. The distribution is obtained from historic data. A benefit of
analysing the historic waiting time of departing aircraft is that it is not necessary to include information
on arriving aircraft in the model.

The waiting time,𝑊፧ዄኻ, is found by extending equation 3.2 as defined in equation 3.16, where 𝑅፧ equals
the runway waiting time and 𝑃 (𝐴|𝐶) equals the probability of a server absence, given that the aircraft
is at the runway entry. In this case,𝑊ኻ is not equal to zero, it is equal to 𝑃 (𝐴|𝐶) ⋅ 𝑅ኻ.

𝑊፧ዄኻ = 𝑃 (𝐴|𝐶) ⋅ 𝑅፧ +max (0,𝑊፧ + 𝑈፧) (3.16)

The take-off time is again determined by adding every phase of the departure process to the AOBT, as
done in equation 3.17. The waiting time,𝑊፧, is defined as in equation 3.16.

𝑇𝑂𝑇፧ = AOBT+ 𝐷PB,፧ + 𝐷uTXOT,፧ + 𝐷aTXOT,፧ +𝑊፧ + 𝐷DROT,፧ (3.17)

3.3.3. Required input
The input that is required for both type of mixed-mode operations models is discussed in this section.
Table 3.2 gives an overview of the required input for model 1. It can be seen that next to a traffic sample
for departures, a traffic sample for arrivals is necessary. The arrivals schedule needs at least the time
that the aircraft is at the runway threshold and the actual time of arrival as input. The input is used to
determine when runway 34 is available for departures.

Additional distributions that are required for mixed-mode operations model 1 are also stated in
table 3.2. The distributions for push-back, unimpeded taxi-out time and service time are determined in
the same way as for the model that simulates segregated operations on a single runway. The additional
taxi-out time is used to model runway interactions and is created for increasing number of aircraft in
the system.

Table 3.2: Required input for mixed-mode operations model 1

Data type Variable Extra requirements

Traffic sample
departures

AOBT
Runway
Gate
ICAO weight category

Traffic sample
arrivals

ATA
Time at runway threshold

Distributions

Push-back
Unimpeded taxi-out time for each gate-runway combination
Additional taxi-out time for increasing number of aircraft in the system
Service time
Departure runway occupancy time for each ICAO weight category
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Table 3.3 summarises the input that is required for mixed-mode operations model 2. This model does
not require an arrival schedule. Compared to the model that simulates segregated operations on a
single runway, it only requires an additional distribution of runway waiting time. Next to the distribution,
this model also requires the probability that a runway is available, given that the departing aircraft has
arrived at the runway entry. Furthermore, to model interactions in the shared taxi system, an additional
taxi-out time distribution is required for increasing number of aircraft in the system.

Table 3.3: Required input for mixed-mode operations model 2

Data type Variable Extra requirements

Traffic sample

AOBT
Runway
Gate
ICAO weight category

Distributions

Push-back
Unimpeded taxi-out time for each gate-runway combination
Additional taxi-out time for increasing number of aircraft in the system
Service time
Departure runway occupancy time for each ICAO weight category
Runway waiting time

Probability Probability runway availability



4
Case study: Vienna Airport

The theoretical model from chapter 3 is applied to a case study. This case study is performed at Vienna
International Airport, which is the main airport of Austria. This airport consists of two runways, being
runway 11/29 and runway 16/34, as can be seen in figure 4.1. There are multiple runway configurations
possible, but the configuration with segregated mode (departures only) on runway 29 and mixed-mode
(both arrivals and departures) on runway 34 is used most frequently in peak hours 1. For this reason,
the case study only focuses on this runway configuration (D29M34).

Figure 4.1: Lay-out of Vienna International Airport 2

This chapter first elaborates on the data availability in section 4.1, as this is the main reason for choos-
ing Vienna Airport. Next, a thorough analysis of the data is performed in section 4.2. This section
explains the data preparation and analyses the flight profiles. The resulting distributions that are used
1https://ext.eurocontrol.int/airport_corner_public/LOWW
2Adjusted from https://acukwik.com/Airport-Info/LOWW

23
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for segregated operations on a single runway are determined in section 4.3. The distributions that
are used when modelling multiple runways and mixed-mode operations are described in section 4.4.
Finally, the process of outlier removal is explained in section 4.5.

4.1. Data availability
Vienna International Airport is chosen as case study due to the large data availability. Section 4.1.1
shows some statistics on the available data, while section 4.1.2 explains what data is available and
from what source this data is extracted.

4.1.1. Statistics on the data
This research uses data that is provided by Eurocontrol as part of the European research project ‘Safe-
Clouds’. Austrocontrol, the ANSP at Vienna Airport is one of the participating stakeholders in that
project. The data consists of six months, from 1st of July until 31st of December, in 2015. The data
includes all flights departing from and arriving at runway 29 and runway 34. Data from the other two
runways is not available. In total, the data sample contains roughly 80,000 flights.

Table 4.1 shows the total number of flights in the data sample. It can be seen that the total sample
contains 58% departures and 42% arrivals. Normally, the number of incoming and outgoing flights
should be equal. However, the data sample only contains flights from runway 29 and runway 34. The
other two runways are not available in the data. Especially runway 16 is used often for arriving aircraft
in combination with departing flights at runway 29. The airport dynamics are different if runway 16 is
used instead of runway 34, therefore it is important to filter flights that arrive or take-off while the airport
is in D29M34 configuration.

The number of flights in configuration D29M34 is also stated in table 4.1. It can be seen roughly two-
third of the flights in the data sample belong to runway configuration D29M34, thus it can be concluded
that this configuration is indeed used often. Furthermore, the number of arrivals and departures are
almost equal when considering this runway configuration, which means that the inbound and outbound
flow is balanced.

Table 4.1: Percentage of departures and arrivals for all flights and for flights in configuration D29M34

All flights Configuration D29M34
Number Percentage Number Percentage

Departures 46670 58% 27453 52%
Arrivals 33945 42% 25823 48%
Total 80615 100% 53276 100%

The number of flights divided per runway is given in table 4.2. The flights in this table are performed
when the airport was in runway configuration D29M34. It can be seen that 77% of the flights depart
from runway 29, while the other 23% departs from runway 34. This 23% depart from a runway in
mixed-mode configuration. Almost all arriving flights are, as required by the configuration, landing on
runway 34.

For themodel that simulates segregated operations on a single runway, runway 29 at Vienna Airport,
there are 21138 flights available as input for the distributions. For mixed-mode operations, additional
distributions are created from 6315 departing flights.

Table 4.2: Number of flights per runway in configuration D29M34

Departures Arrivals
Number Percentage Number Percentage

Runway 29 21138 77% 84 0.3%
Runway 34 6315 23% 25739 99.7%
Total 27453 100% 25823 100%

Other important statistics are found in table 4.3 and are determined by calculating the number of days
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and number of hours that configuration D29M34 is in use. This gives an idea about the number of
hours per day that this configuration is used. The airport is open 24 hours per day. Out of six months
of data, 120 days used the D29M34 configuration for at least one hours. As the total number of hours
where the configuration is used equals 1280, the average duration per day that the configuration is
used, equals 10 hours and 40 minutes. This average holds if it is known that the configuration is used
during that day.

Table 4.3: Number of days and hours that configuration D29M34 is in use

Configuration Number of days Number of hours
D29M34 120 1280
Other 64 3136
Total 184 4416

4.1.2. Explanation of the available data
Table 4.4 presents an overview of the available data. The first category of data is general flight infor-
mation. For each flight, this consists of the flight date, call sign, aircraft type and ICAO weight category.
The flight date and call sign are used to merge all data sets.

Table 4.4: Available data for Vienna International Airport

Category Variable Description

Flight information

Flight date Date of flight
Call sign Call sign of the flight
Aircraft type ICAO code for aircraft type

ICAO weight category
Weight category according to ICAO standards.
Three categories specified: Heavy, Medium, Light

Radar track data

Time
Time of day [hh:mm:ss]. For each flight the time
consists of a vector with an entry for every second.

Latitude
Vector with a recorded latitude in degrees for every
second

Longitude
Vector with a recorded longitude in degrees for every
second

Flight level
Vector with a recorded flight level (=100ft) for every
second

Ground speed
Vector with a recorded groundspeed in kts for every
second

On runway Boolean
Vector with a 0/1 indicating when the aircraft is on
the runway

A-SMGCS

Time Time of day [hh:mm:ss] when the milestone occurs

Milestone
Milestone events recorded by the A-SMGCS system,
such as AOBT, ATOT, ATA, AABT.

Gate / Runway
Shows gate when milestone equals AOBT or AABT.
Shows runway when milestone equals ATOT and ATA.

The second group of data is obtained from radar information. After adding this source of data, the
complete flight profile for every flight is known, since the latitude, longitude, groundspeed and flight
level are measured every second. The flight profile is measured from gate location until 30 NM out
of the airport, or in the opposite direction, from 30 NM out until the gate location, for arriving flights.
Figure 4.2 shows an example flight profile and ground speed curve, which can be created for all flights
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using the available data. As this model only focuses on the departure process, the profile is only drawn
until the end of the runway. The runway Boolean that is available in the data indicates when the aircraft
is on the runway.
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(b) Ground speed.

Figure 4.2: Departure flight profile and ground speed of flight NLY170F departing from runway 29 - Vienna airport, 18th August
2015.

Finally, the last group of data is obtained from Advanced Surface Movement Guidance and Control
Systems (A-SMGCS) information. This source adds important information about the Actual Off Block
Time (AOBT), the Actual Take Off Time (ATOT), the Actual Time of Arrival (ATA) and the Actual On
Block Time (AABT). This information is needed to determine the start of the airport departure process.
It is also used to compare the estimated take-off time with the actual take-off time.

4.2. Data analysis
The data analysis is done in two steps, which are explained in the following sections. Section 4.2.1
explains the data preparations that are needed for data analysis, which is explained in section 4.2.2.

4.2.1. Data preparation
The data preparation part merges the different data sources together and determines important infor-
mation about the flights or group of flights. The flowchart depicted in figure 4.3 shows the process of
data preparation.

The first step in the process consist of combining the general flight information with the radar track data.
This step has to be performed for every movement type and runway combination, resulting in four traffic
files (departing and arriving flights for runways 29 and 34). Combining the data sources is done based
on date, call sign and aircraft type. This step also includes basic calculations to determine the runway
entry time and the distance until runway entry, using the ‘on-runway’ variable, as these variables are
needed in further analysis.

The following two steps combine all four traffic files and add important timestamps from the A-SMGCS
data. For departing flights, the Actual Off Block Time and the Actual Take Off Time are added, as these
two timestamps mark the beginning and end of the departure process. Since for departing flights this
data source includes the actual gate information, this information is also included in the traffic files. For
arriving flights, the Actual Time of Arrival and Actual On Block Time are added.

Next, for departing flights the geographical location of the start of the process, at AOBT, is determined
and compared with the location of the gate obtained from the A-SMGCS date. The coordinates for all
the gates at Vienna International Airport are obtained via Google Maps and are therefore subjected
to small measurement errors. Inspection of the data shows that the start of the flight profile from the
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Figure 4.3: Flowchart of data preparation

radar track data does not always coincide with the known departure gate. This may be explained by
the fact that a pilot did not turn on the transponder when leaving the gate. Other explanations, such as
inaccuracies in the A-SMGCS data, are also possible.

To ensure that only flights with the right gate information are included in the data sample, flights
where the distance between the geographical location of the start of the profile and the location of the
gate is more than 200 meters are not taken into account when analysing the data. A non-coinciding
gate location occurs at roughly 2.5% of the flights. Although these flights are not taken into account
when analysing the data, they remain in the data sample, since they should be included in the model
when simulating a traffic sample.

The final step in data preparation is the determination of the runway configuration. Since the model is
only applicable to a single runway configuration, it is important to only filter the operations that occurred
in a specific runway configuration. As explained in the beginning of this chapter, for Vienna International
Airport the most frequently used runway configuration in peak hours is D29M34. There is no data
available on when the airport was using this configuration in 2015, thus it must be determined from the
available data.

This can be done by calculating the amount of flights departing and arriving per hour for each runway.
An example is shown in table 4.5. This example shows the number of flights arriving and departing on
each runway per hour during a part of the 2nd of September 2015. To determine whether the airport is
operating in runway configuration D29M34, there are several conditions to satisfy:
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1. The number of departing aircraft from runway 29 should be larger than 2

2. The number or arriving aircraft on runway 29 should be smaller or equal to 2

3. The number of arriving aircraft on runway 34 should be larger than 2

The first and the third requirements are most important to determine the runway configuration. The
second condition is implemented to prevent having too much aircraft landing on runway 29, while the
configuration requires only departing aircraft at runway 29. It does however allow one or two aircraft to
land on runway 29, since such a small number of aircraft will not have a large influence on the runway
operations.

Table 4.5: Table to determine runway configuration per hour

Time begin RWY DEP29 ARR29 DEP34 ARR34 Total Configuration D29M34
02-Sep-2015 16:00:00 14 0 0 30 44 1
02-Sep-2015 17:00:00 22 0 0 29 51 1
02-Sep-2015 18:00:00 29 1 10 16 56 1
02-Sep-2015 19:00:00 10 24 0 0 34 0
02-Sep-2015 20:00:00 18 15 0 0 33 0

The output of the data preparation is a traffic schedule with important timestamps, information on the
gate location and information about the runway configuration. The traffic schedule consist of all flights
departing and arriving from runway 29 and runway 34.

4.2.2. Flight profile analysis
This section provides the analysis of the flight profiles in order to create distribution of each state of the
departure process. This analysis is done separately for runway 29 and 34. However, since the analysis
is almost equal for both runways, the method is only explained once. Figure 4.4 shows the flowchart
that represents this process.

The first three steps are to initialise the data for the analysis. It is important that only flights that are
departing in configuration D29M34 are taken into account. Next, the flights are sorted based on actual
take-off time, since calculations made later in the model require knowledge about the previous flight.

After the initialisation, the model iteratively determines every state that a flight encounters during
the departure process. Figure 4.2 shows the flight profile and ground speed for a random flight. Using
this information, it is determined which phases of the departure process the flight encounters, and the
duration the flight spends in each phase. It can be seen that the ground speed is a good indicator
to determine the duration of each phase of the departure process, as the push-back process and the
unimpeded taxi-out time can be clearly distinguished in the profile.

Waiting at the gate
The first state that a flight encounters in the departure process is waiting at the gate, which ends at
actual off-block time. This state is not considered to be a part of the departure process and therefore
not further analysed.

Push-back
The push-back duration is found from the historical data by calculating the difference between the time
between AOBT and the moment that the groundspeed exceeds 7 kts for more than 10 consecutive
seconds, as at that moment it can be assumed that the aircraft has started taxiing to the runway. The
threshold of 7 kts is chosen, because the threshold should be higher than the typical groundspeed
during push-back and lower than a typical taxi speed. Analysing data revealed that a typical taxi speed
at Vienna Airport is 15 kts. Therefore, a threshold of 7 kts should distinguish the phase of push-back
from the phase of taxiing.

The push-back duration is found by analysing the time between AOBT and the moment that the
groundspeed exceeds 7 kts for more than 10 consecutive seconds, as at that moment it can be as-
sumed that the aircraft has started taxiing to the runway. The threshold of 7 kts is chosen, because the
threshold should be higher than the typical ground speed during push-back and lower than a typical
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Figure 4.4: Flowchart of flight profile analysis

taxi speed. As a push-back is usually performed with two wing walkers, who check for clearance, thus
a typical groundspeed equals 3-4 kts, as this equals a fast-pace walking speed. When looking at the
ground speed in figure 4.2a, it can also be seen that the speed during push-back does not exceed 7
kts. At the same time, the graph of the ground speed shows that, for this flight, the average taxi speed
equals 15 kts. Therefore, a threshold of 7 kts should distinguish the phase of push-back from the phase
of taxiing.

Taxi to runway entry
The next phase of the departure process is taxiing to the runway entry, this phase consists of unimpeded
taxi-out time, additional taxi-out time and waiting time in the queue. For mixed-mode operations, a
fourth stage takes place, which is the runway waiting time.

When the groundspeed is higher than the threshold value of 7 kts, it is assumed that the aircraft is
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taxiing unimpeded (without interruptions) to the runway entry. To obtain the unimpeded taxi-out time,
every second that the groundspeed is higher than 7kts is added.

Furthermore, when the aircraft is interrupted during its taxi process, the duration of this interruption
is considered as additional taxi-out time. An interruption occurs when the groundspeed is reduced
below 7 kts. Since Vienna airport is a relatively simple airport that is not often in saturation, thus in
many cases there is no additional taxi-out time.

Finally, when (1) the groundspeed is lower than 7 kts, (2) the aircraft is within 300 meters of entering
the runway and (3) the previous aircraft is departing on the runway or also waiting in the queue, the
aircraft is waiting in queue. In this case, this duration is not considered as additional taxi-out time,
since an aircraft can only be in one state at the time. The requirement of 300 meters is chosen after
geographical analysis of the airport, mainly focused on the entry to runway 29 and the fact that at
Vienna airport the queue normally is quite short, because it is not very busy. The third requirement is
to make sure that the aircraft is actually waiting in the departure queue and not waiting anything else.

However, for mixed-mode operations the runway waiting time is determined by searching for flights
where the aircraft was waiting at the runway entrance. In this case, the aircraft is not waiting for the
previous aircraft, it is waiting for an arrival. Therefore, this stage occurs when (1) the ground speed is
lower than 7 kts, (2) the aircraft is within 300 meters of entering the runway and (3) the aircraft is not
waiting for other departing aircraft.

Take-off procedure
The final phase of the departure process is the take-off procedure, or departure runway occupancy
time (DROT). The DROT is calculated by subtracting the time of runway entry from the actual take-off
time (ATOT). Anything that happens after ATOT is considered as climb, but this phase is not part of the
departure process and therefore not further analysed.

4.3. Distributions for segregated operations
After analysing each flight profile separately and calculating the duration of each state, it is possible
to create a distribution for each phase of the departure process. As explained in section 3.2, distribu-
tion for push-back, unimpeded taxi-out time, additional taxi-out time and runway occupancy time are
needed as input to the model. Next to these distributions, a distribution for the service time is needed
to model the runway queue.

Each empirical distribution is fitted with a parametric distribution that is assumed to be the best fit, which
is decided based on visual analysis. The distributions that are used for fitting is the normal distribution,
the exponential distribution and the gamma distribution.

Literature also suggests an Erlang distribution to describe the service time of the runway queue,
which is a particular case of the gamma distribution. The benefit of using an Erlang distribution is
its applicability in analytic models, since the shape parameter, 𝑘, is a positive integer. However, the
gamma distribution will give a better fit than an Erlang distribution, because the shape parameter can
have any positive real value. This model is not analytic, therefore the gamma distribution is preferred
over the Erlang distribution.

The exponential distribution is also a particular case of the gamma distribution, but has the memo-
ryless property as benefit. This means that the waiting time until a certain event does not depend on
how much time has elapsed already. Due to this property, the exponential distribution can be a useful
distribution to use in the model.

When none of the parametric distributions result in a good fit, the kernel distribution is an option.
The kernel distribution is a non-parametric representation of the probability density function of a random
variable, which can be used to describe an empirical distribution without making assumption about the
distribution of the data. A kernel distribution is defined by a smoothing function and a bandwidth value,
which control the smoothness of the resulting density curve.

To fit a distribution to the data, the fitdist() function from MATLAB® is used. Each of the proposed
distributions can be fitted using fitdist(). This function finds the best fit for each distribution using
the maximum likelihood estimation. There is one exception, the normal distribution, where the maxi-
mum likelihood estimation is not used. The estimated value of the sigma parameter equals the square

fitdist()
fitdist()
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root of the unbiased estimate of the variance.

The goodness-of-fit is tested using a one-sample Kolmogorov-Smirnov test, kstest() in MATLAB®.
The Kolmogorov-Smirnov test measures the maximum vertical distance, 𝐷, between the empirical CDF
and the parametric CDF and compares this distance to a critical value. A visual representation of the
Kolmogorov-Smirnov test can be seen in figure 4.5.

Figure 4.5: Kolmogorov-Smirnov test [19]

The test returns a test decision for the null hypothesis that the empirical comes from a parametric
distribution, against the alternative that it does not come from such a distribution. The result h is 1 if
the test rejects the null hypothesis at the 5% significance level, or 0 otherwise. Note that the algorithm
of kstest() does not actually compare the distance, 𝐷, to the critical value, since the critical value is
also an estimate. Instead, it compares the 𝑝-value to the significance level 𝛼. 𝑝 is the probability, given
the null hypothesis, of observing a test statistic as extreme as, or more extreme than, the observed
value. Small values of 𝑝 question the validity of the null hypothesis. Thus, when the 𝑝-value is lower
than the significance level, the null hypothesis is rejected.

4.3.1. Data-driven parameter estimation for push-back
The first distribution to be determined is the duration of push-back, 𝐷ፏፁ. This distribution is created
by combining the obtained push-back duration from all flights that are analysed. The distribution is
determined using flights that departed from a push-back gate, as explained in section 4.2.2. Flights
where the gate location deviated more than 200 meters from the actual start location are not included
in the distribution. In this case, the pilot probably turned on the transponder too late and the aircraft is
already taxiing.

The push-back process is assumed to be a process that is normally distributed. The histogram with
a distribution fit and cumulative distribution function (CDF) for the empirical distribution and the normal
fit is found in figures 4.6 and 4.7.

The Kolmogorov-Smirnov test rejects the null hypothesis, thus it can be concluded that the push-
back distribution is not a normal distribution. Since the normal distribution does not accurately describe
the push-back process, it is possible to use a Kernel probability distribution instead. Figures 4.8 and
4.9 show the kernel fit compared with the empirical data. The result of the Kolmogorov-Smirnov test
with a 5% significance level states that the kernel fit and the empirical data are equal.

4.3.2. Data-driven parameter estimation for unimpeded taxi-out time
Next, the distribution for unimpeded taxi-out time, 𝐷፮ፓፗፎፓ is created. The unimpeded taxi-out time
depends on the distance between the gate and the runway [7]. Hence, the unimpeded taxi-out time
should be calculated for each combination of gate and runway. On the other side, it is important to
have enough data points to create a distribution. When taking these two requirements into account,
it is best to make a distribution of the unimpeded taxi-out time for a group of gates. A group of gates

kstest()
kstest()
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Figure 4.6: Histogram of push-back duration with a normal dis-
tribution
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Figure 4.7: CDF of push-back duration with a normal distribu-
tion
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Figure 4.8: Histogram of push-back duration with a kernel dis-
tribution
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Figure 4.9: CDF of push-back duration with a kernel distribution

is defined as several gates that are close to each other and prove to have similar unimpeded taxi-out
times. An analysis of the median unimpeded taxi-out time is performed to decide which gates should
be combined in a gate group. The table containing the median unimpeded taxi-out time for each gate is
found in appendix B. This appendix also contains two airport maps in which the gate groups are defined.
The gates are divided in 13 groups that each have their own distribution for unimpeded taxi-out time.
A 14th group is created from flights that have no gate information.

The empirical distribution for unimpeded taxi-out time is fitted with a normal distribution, as can be
seen in figure 4.10. Figure 4.11 shows the CDF for both the empirical and fitted distribution. These
figures are made for gate group C1, which consists of seven adjacent gates on the West Pier of the
airport. The unimpeded taxi-out time distributions for all gate groups is found in appendix C.

When visually comparing the empirical and normal distribution, the normal distribution seems to be a
good fit. This is not only the case for gate group C1, but also the gate groups that is found in appendix C.
The goodness of fit is again determined using the Kolmogorov-Smirnov test with a 5% significance level.
The results for all gate groups is found in table 4.6, which shows that for nine groups the Kolmogorov-
Smirnov test concludes that the sample belongs to the normal distribution. Although the test results for
the other five groups suggest that those distributions are not normal, it is decided to still use a normal
fit for all gate groups.
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Figure 4.10: Histogram of unimpeded taxi-out time - Group C1
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Figure 4.11: CDF of unimpeded taxi-out time - Group C1

Table 4.6: Results of Kolmogorov-Smirnov test for each group of gates

Gate group KS-test result Gate group KS-test result
AB h = 1 F1 h = 1
C1 h = 0 F2 h = 1
C2 h = 0 F3 h = 0
D1 h = 0 GAW h = 0
D2 h = 0 H h = 0
E1 h = 1 K h = 0
E2 h = 1 none h = 0

4.3.3. Data-driven parameter estimation for additional taxi-out time
Furthermore, the distribution for additional taxi-out time is determined. Many flights departing from
Vienna airport, do not encounter additional taxi-out time, since they are not interrupted during the taxi
process. Therefore, the percentage of flights that have no additional taxi-out time is first determined.
For the available data sample this percentage equals 33.1% of the flights. For the percentage of flights
that do encounter an additional taxi-out time, a distribution is created. This distribution has a shapemost
similar to an exponential distribution, which is why this distribution is chosen as fit. Figures 4.12 and
4.13 show the empirical distribution and exponential fit for the additional taxi-out time. The percentage
that have no additional taxi-out time and the distribution can be combined as in equation 4.1, where
the random variable 𝐷aTXOT represents the duration of the additional taxi-out time of a flight. The rate
parameter of the exponential distribution, given by 𝜆, equals 36.

𝐷aTXOT = {
0 with 𝑝 = 𝑝No aTXOT
𝑒𝑥𝑝(𝜆) with 𝑝 = 1 − 𝑝No aTXOT

(4.1)

According to the Kolmogorov-Smirnov test with a 5% significance level, the empirical distribution cannot
be modelled as an exponential distribution, since the test rejects the null hypothesis. As an alternative
the kernel distribution can be used, as is done for the push-back distribution. Figures 4.14 and 4.15
show the empirical distribution of the additional taxi-out time in combination with a kernel distribution.
Although the CDF of the kernel distribution is a perfect fit, the histogram in figure 4.14 indicates that
the kernel distribution does not accurately represent the empirical distribution. When looking at low
values for the additional taxi-out time, the exponential fit is a more realistic fit, as the additional taxi-out
time cannot contain negative values. Therefore, it is decided to model the additional taxi-out time as
an exponential distribution with 𝜆 equal to 36.
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Figure 4.12: Histogram of additional taxi-out time and an expo-
nential fit
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Figure 4.13: CDF of additional taxi-out time and exponential fit
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Figure 4.14: Histogram of additional taxi-out time and kernel fit
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Figure 4.15: CDF of additional taxi-out time and kernel fit

4.3.4. Data-driven parameter estimation for departure runway occupancy time
The distribution for departure runway occupancy time is determined for every ICAO weight category.
Currently there are three weight categories, light (L), medium (M) and heavy (H), determined by the
maximum take-off weight. For each flight in the data sample, the weight category is known. It is chosen
to make separate distributions based on weight category, because heavy aircraft generally need more
time to take-off. Figures 4.16 and 4.17 show the histogram and CDF of the departure runway occupancy
time for medium aircraft, since more than 90% of the flights that depart from Vienna Airport are medium
weight aircraft. The distribution that is chosen as fit is the gamma distribution, because it outperforms
the normal and exponential distribution when comparing the distributions visually.
The distributions for all three weight categories are found in figures D.1 until D.6 in appendix D. When
looking at figure D.5 in the appendix, it can be seen that the histogram for light aircraft does not follow
the same shape of distribution as medium and heavy aircraft. It actually consists of two separate dis-
tributions. This may be explained due to the fact that light aircraft can enter the runway halfway, since
they do not need the entire runway to take-off. The departure runway occupancy time will therefore be
different, as this probably is a rolling take-off, which takes less time than a normal take-off where the
aircraft first has to wait for clearance on the runway. In a rolling take-off, the clearance is already given
before the aircraft enters the runway. The exact reason for the occurrence of two different distributions
for light aircraft is not investigated, since only 2% of the flights consists of light aircraft. Therefore, the
distribution of light aircraft only has a small influence in the total simulation.
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Figure 4.16: Histogram of departure runway occupancy time
for medium aircraft. Empirical distribution with a gamma fit.
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Figure 4.17: CDF of departure runway occupancy time for
medium aircraft. Empirical data and a gamma fit.

The Kolmogorov-Smirnov test with a 5% significance level states that the empirical distribution for
medium aircraft is not equal to the gamma distribution that is fitted through the data. This is also the
case for light and heavy aircraft. Again, the alternative option is to fit the non-parametric distribution,
the kernel distribution, through the data. The distributions for medium aircraft with a kernel fit are
shown in figures 4.18 and 4.19. The distributions with a kernel fit for all weight categories are found
in figures D.7 until D.12 in appendix D. For modelling purposes, the gamma distribution does not have
a benefit over the kernel distribution and since the kernel estimation shows a better fit, it is decided to
use this distribution in the model.
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Figure 4.18: Histogram of departure runway occupancy time
for medium aircraft. Empirical distribution with a kernel fit.
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Figure 4.19: CDF of departure runway occupancy time for
medium aircraft. Empirical data and kernel distribution.

4.3.5. Data-driven parameter estimation for service time
The service time between two aircraft is of great importance to the queue waiting time, as it controls
how fast the aircraft can leave the queue. To determine the service time, the duration between two
consecutive take-offs is analysed. According to Simaiakis[16], this is a good indication to determine
the service time. All the flights in the data sample are sorted based on actual take-off time (ATOT)
and the difference in ATOT is determined. This method can only be used when it is certain that the
two consecutive aircraft take-off immediately after each other. Otherwise, the time between take-offs
is much larger than the service time, because there was simply not enough demand at the runway.
Therefore, the service time is defined as difference in ATOT between consecutive aircraft, given that
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the following aircraft has been waiting in queue.
The resulting distribution is found in figure 4.20. The service time is fitted with a gamma distribution,

since it is found in chapter 2 that it is common to use a gamma or Erlang distribution. As explained
before, the Erlang distribution is a special case of the gamma distribution and thus the gamma distribu-
tion will result in a better fit. The cumulative distribution function of the empirical data and the gamma
distribution is shown in figure 4.21.
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Figure 4.20: Histogram of service time
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Figure 4.21: CDF of service time

The Kolmogorov-Smirnov test with a 5% significance level rejects the null hypothesis that the em-
pirical distribution is equal to the gamma distribution. However, it is common to model the service time
as a gamma distribution and a visual comparison of the CDF shows that the empirical distribution is
very similar to the gamma distribution. It is also possible that the empirical data is not perfect, since it
is determined from the data by using some assumptions. Therefore, it is decided to use the gamma
distribution as input to the simulation model.

4.4. Distributions formultiple runways andmixed-mode operations
This section describes the distributions that are needed when extending the model to facilitate mixed-
mode operations on the second runway. When modelling two runways, there is a shared taxi system
that is used by flights from both runways. The distributions that are needed to model the shared taxi
system are push-back, unimpeded taxi-out time and additional taxi-out time. Furthermore, the multi-
ple runways model also requires a distribution for departure runway occupancy time for the second
runways. Section 4.4.1 explains how the interactions in the taxi system are modelled and what distri-
butions are used as input to the simulation. Section 4.4.2 provides the distributions that are needed
when modelling mixed-mode operations.

4.4.1. Data-driven parameter estimation for distributions in shared taxi system
As explained in section 3.3, the interactions between aircraft are modelled by analysing the additional
taxi-out time. This part of the taxi-out time should increase when the system becomes more complex.
Figures 4.22 and 4.23 show that there is a trend visible between the additional taxi-out time and the
number of aircraft in the system. It can be seen that the percentage of flights that do not encounter
any additional taxi-out time decreases when the number of aircraft in the system increases. Also, the
mean additional taxi-out time of flights with an additional taxi-out time increases as the system becomes
busier. These relations are visible for flights departing from both runways, but there appears to be a
stronger relation for flights departing at runway 34. This can be explained by the graphical lay-out of
the airport, see appendix A, where flights taxiing to runway 34 have to pass the entry of runway 29.
It is decided to model the additional taxi-out time based on the number of aircraft in the system. For the
six groups displayed in figures 4.22 and 4.23 a distribution is created in the same way as explained in
section 4.3.3. First, the percentage of flights without an additional taxi-out time is determined, then the
distribution of additional taxi-out time of the other flights is fitted with an exponential distribution. The
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Figure 4.22: Relation between the number of aircraft in the sys-
tem and the additional taxi-out time for flights departing at R29
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Figure 4.23: Relation between the number of aircraft in the sys-
tem and the additional taxi-out time for flights departing at R34

probability that a flight does not encounter additional taxi-out time is displayed in table 4.7.
The probability that a flight does not encounter additional taxi-out time varies quite a lot for flights

departing from runway 29 and flights departing from runway 34. Also figure 4.22 indicates that the re-
lation is stronger for aircraft taxiing to runway 34. Therefore, it is decided to separate the probabilities
and the distributions per runway. The distributions, with the exponential fit, are found in figures E.1
until E.24 in appendix E. These distributions are used as input to the model when both runways are
simulated.

Table 4.7: Probability that a flight does not encounter additional taxi-out time for increasing number of aircraft in the system

Number of aircraft
Probability that a flight does not encounter additional taxi-out time
Departing from runway 29 Departing from runway 34

0-4 0.362 0.597
5-8 0.346 0.511
9-12 0.336 0.451
13-16 0.336 0.397
14-20 0.296 0.297
21-24 0.201 0.246

When looking back to the representation of the departure process for multiple runways in figure 3.3,
it can be seen that push-back and unimpeded taxi-out time also take place in the shared taxi system.
It is expected that the push-back process for aircraft that depart at runway 29 is comparable with the
push-back process for aircraft that depart at runway 34, since the departure runway does not influence
the push-back duration. Also, it is expected that the unimpeded taxi-out time distributions for aircraft
departing at both runways show a similar shape, with an offset for flights departing at runway 34, since
these flights need to travel a longer distance before they reach the runway. A Kolmogorov-Smirnov
test is executed to test these expectations.

Figure 4.24 shows cumulative distribution functions of the push-back duration for flights departing
from runway 29 and flights departing from runway 34. Visually, both distribution functions are almost
equal. The result of the Kolmogorov-Smirnov test with a 5% significance level states that the null
hypothesis is not rejected, therefore the distributions are equal to each other. The data of both distri-
butions is added together, after which the Kernel distribution is fitted through the data. The resulting
distribution and CDF are shown in figures E.25 and E.26 in appendix E.

Figure 4.25 shows the cumulative distribution functions of the unimpeded taxi-out time for flights
departing from runway 29 and runway 34. This figure is created from all available data, so there is no
distinction between gate groups, because the goal is to check for a similar shape. The distributions for
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all gate groups in section 4.3.2 aremodelled by a normal distribution, which is the typical S-shape visible
in figure 4.25. As expected, there is an offset visible between the two cumulative distribution functions.
The offset equals roughly 3.5 minutes, which means that the unimpeded travel time to runway 34 is
on average 3.5 minutes longer. It is concluded that the unimpeded taxi-out time for flights departing at
runway 34 should also be modelled by a normal distribution.

Appendix E shows the distributions for each group of gates for R34 flights. These distributions,
shown by figures E.27 until E.54, are used as input to the simulation. Table 4.8 states the test results
of the Kolmogorov-Smirnov test with a significance level of 5%. The results show that the normal
distribution is indeed a good fit for the unimpeded taxi-out time.
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Figure 4.24: CDF of push-back duration for flights departing at
runway 29 and runway 34
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Figure 4.25: CDF of unimpeded taxi-out time for flights depart-
ing at runway 29 and runway 34

Table 4.8: Results of Kolmogorov-Smirnov test for each group of gates for flights departing from runway 34

Gate group KS-test result Gate group KS-test result
AB h = 0 F1 h = 0
C1 h = 0 F2 h = 1
C2 h = 0 F3 h = 0
D1 h = 0 GAW h = 0
D2 h = 0 H h = 0
E1 h = 0 K h = 0
E2 h = 0 none h = 0

Finally, the representation of the departure process in figure 3.3 shows that the distribution of the depar-
ture runway occupancy time is needed for both runways. To check whether it is possible to combine the
DROT distributions from runway 29 and runway 34, a two-sample Kolmogorov-Smirnov test with a 5%
significance level is performed. The test states that for all three weight categories the null hypothesis
is rejected. This means that the take-off procedures at both runways are slightly different and should
be modelled by different distributions. The CDF comparison is given in figure 4.26.

The distributions of the departure runway occupancy time for runway 34 are modelled similar to
the distribution for runway 29, as explained in section 4.3.4. The distributions are fitted with a Kernel
distribution. The CDF of each of the distributions is presented in figures E.55 until E.60 in appendix E.

4.4.2. Data-driven parameter estimation for distributions required for modelling
mixed-mode operations

When modelling mixed-mode operations using the second model, a distribution of the runway waiting
time is required. This section describes this distribution is obtained from the data. The runway waiting
time is determined by analysing historic data to determine the runway waiting behaviour. First, the
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Figure 4.26: CDF of departure runway occupancy time for flights departing at runway 29 and runway 34 for each weight category

probability that aircraft have to wait, given that they are not waiting in queue, is determined. Next, the
duration of the runway waiting time is determined and used to create a distribution.

The probability that an aircraft has to wait at runway entry is determined by analysing the flight
profile. When an aircraft meets all the requirements to be in queue, given in section 4.2.2, except the
previous aircraft is not in service or waiting in queue, it is assumed that the aircraft is waiting at the
runway entry for an arriving aircraft. Using the definition from section 4.2.2, this means that aircraft is
waiting for runway entry when the groundspeed is lower than 7 kts, the aircraft is within 300 meters of
entering the runway and the aircraft is not waiting for previous departures. The available data proves
that the probability equals 0.76. This means that roughly 75% of the flights do not encounter runway
waiting time.

The distribution for runway waiting time is given in figure 4.27. It is chosen to use an exponential
fit, since other parametric and non-parametric distributions include negative values in the fit. Since the
waiting time is always equal or larger than zero, the exponential distribution is the best option. Even
though the Kolmogorov-Smirnov test rejects this distribution. This distribution is used as input when
mixed-mode operations are modelled without using information on arrivals.
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Figure 4.27: Histogram of runway waiting time for departing
flights that are ready at runway entry 34

0 20 40 60 80 100 120 140 160

Runway waiting time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
D

F Empirical CDF

Exponential CDF

Figure 4.28: CDF of runway waiting time for departing flights
that are ready at runway entry 34

4.5. Outlier removal
In sections 4.3 and 4.4 it is defined how the data is grouped in order to obtain the distributions needed
in the model. For each group of data, outliers are removed from the empirical distribution before it is
fitted with a parametric or non-parametric distribution. This is also visualised in the flowchart depicted
in figure 4.4. This section explains the method of outlier removal and gives the amount of outliers that
are removed in the process.
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Outliers are removed from the data by using the function isoutlier() from MATLAB®. The method
for detecting outliers is to identify all elements that deviate more than three standard deviations from
the mean. The standard deviation, 𝑆, is given by equation 4.2, where 𝐴 is a vector of 𝑁 observations.
The mean of 𝐴, 𝜇, is defined in equation 4.3.

𝑆 = √ 1
𝑁 − 1

ፍ

∑
።ኻ
(𝐴። − 𝜇)

ኼ (4.2)

𝜇 = 1
𝑁

ፍ

∑
።ኻ
𝐴። (4.3)

The results of the outlier removal process for the distributions used in the segregated operations model
are given in table F.1 in appendix F. The method of outlier detection is especially useful for data that
is normally distributed, because three standard deviations from the mean includes 99.7% of the data
sample. For a standard normal distribution, the outlier removal method should therefore delete 0.3%
of the data. It can be seen in table F.1 that for unimpeded taxi-out time, which is modelled by a normal
distribution, between 0 and 2% of the data is removed. For data that is not normally distributed this
method is less suited. However, when analysing the percentages of push-back, additional taxi-out time,
departure runway occupancy time and service time, it can be seen that this method does not remove
more than 2% of the data.

Table F.2 in appendix F shows the amount of outliers that is removed from data that is used in the
mixed-mode operations model. The table includes additional data, specified by ‘R34’, and data that is
used instead of data used in the segregated model, specified by ‘R29’. The data used for the push-back
distribution is merged for both runways.

isoutlier()


5
Results

This section presents and analyses the results of the case study at Vienna Airport. The distributions
that are determined in chapter 4 are used as input in the theoretical model from chapter 3. The model
simulates seven days. Six of those seven days are chosen randomly from the data sample, while the
seventh day is the busiest day of the sample. During these days, the configuration D29M34 is used for
at least 7 hours. This indicates that the airport is using this configuration for at least half of the daytime
period. The days that are simulated are given in table 5.1. This table also presents the average hourly
throughput, determined by dividing the total amount of flights, arrivals and departures, by the number of
hours that the D29M34 configuration is in use. It can be seen that the 18th of September is the busiest
day on average.

Table 5.1: Random days for simulation with their average hourly throughput (arrivals and departures)

Date Average hourly throughput
18-08-2015 41.6
18-09-2015 48.1
28-09-2015 44.2
04-11-2015 38.8
09-11-2015 38.6
27-11-2015 41.7
10-12-2015 40.7

A Monte Carlo simulation with 10,000 simulations is used to determine the results presented in this
chapter. Section 5.1 presents the results for segregated operations on a single runway. Section 5.2
gives the results for mixed-mode operations and multiple runways. Finally, the results of the two run-
ways combined are presented in section 5.3.

5.1. Segregated operations on a single runway
This section presents the result of the segregated operations model discussed in section 3.2. For the
case study at Vienna Airport, this means that only departing flights from runway 29 are simulated. Over
seven days there are 1152 flights that depart from runway 29.

5.1.1. Flight specific information
The first result that is obtained from the simulation is flight specific information. This information is useful
for air traffic controllers who would like know with how much certainty they can estimate the take-off
time. Figure 5.1 shows a histogram of the duration of the departure process for a flight departing at
the 18th of September from runway 29. The take-off time is determined by adding the flight departure
duration to the actual off-block time.

The expected duration of the departure process is given by the mean value in table 5.2. This table
also shows the lower and upper limits of the confidence interval. The confidence interval states that
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Figure 5.1: Probability density function of the duration of the departure process of a flight departing from runway 29 at the 18th
of September

with 95% confidence, the expected value lies between 8 minutes and 15 seconds and 8 minutes and 19
seconds. The confidence interval depends on the standard deviation and the number of simulations,
as stated in equation 5.1. In this equation, 𝑋 is the mean value, 𝑠 is the standard deviation and 𝑛 equals
the number of simulations.

𝐶𝐼 = 𝑋 ± 1.96 𝑠
√𝑛

(5.1)

Table 5.2: Mean, confidence interval and standard deviation of duration of departure process

Metric Duration [hh:mm:ss]
Mean 00:08:17
Lower limit confidence interval 00:08:15
Upper limit confidence interval 00:08:19
Standard deviation 00:01:28

The standard deviation is a good way to give an indication about the spread of the distribution. For
normal distributions, two standard deviations from the mean states that 95% of the distribution is in-
cluded. For this flight, it would mean that in 95% of the cases, the duration of the departure process
lies between 00:05:19 and 00:11:11. However, note that this only holds if the distribution is normal.

5.1.2. Comparison with actual data
The comparison with actual data is made to see how well the model can predict the duration of the de-
parture process. Figures 5.2 and 5.3 show the probability density function and cumulative distribution
function of the total flight departure duration. The distribution with the actual duration is found by com-
puting the process duration for each flight. The distribution with the estimated duration is determined
by combining all simulation results for all flights. For 10,000 simulations and 1152 flights, this adds up
to 11.5 million data points, which are used to create the PDF and CDF.

It can be seen that the actual and estimated distributions are similar, although the simulation slightly
overestimates the actual duration. Since this overestimation is constant throughout the results, it is
most-likely related to an assumption. One of the assumptions that could result in overestimation is
related to the service time. As explained in section 4.3.5, the service time is determined by the time
between two take-offs, given that the following aircraft was waiting in queue. If this assumption results
in an overestimation of the service time, it will automatically result in a higher queue waiting time. This
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Figure 5.2: PDF of actual and simulated duration of departure
process
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Figure 5.3: CDF actual and simulated duration of departure
process

can be checked by plotting the cumulative distribution function of the queue waiting time.
Figure 5.4 shows the CDF for actual and simulated queue duration. The graph immediately shows

that the percentage of flights that have no waiting time is roughly 15% lower in the simulation, compared
with actual data. Therefore, the average waiting time for in simulation is higher than in the actual data.
This graph shows that the queue waiting time is indeed overestimated in the simulation, which can be
explained by an overestimation of the service time. Since there is no other distribution involved in the
queue module, this is the most-likely cause of the difference between actual data and the simulation.
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Figure 5.4: CDF actual and simulated queue duration

Next to comparing the entire distribution of the simulation with the distribution of the actual data, it is
possible to compare the expected process duration with the actual process duration. This comparison
is made per flight and results in an error. For a single flight, this error is usually quite large, but the
average error shows how well the model is performing. Table 5.3 states the mean error, the mean
absolute error and the root mean square error for the duration of the entire departure process and the
waiting time in the queue.

It can be seen that the simulation overestimates the actual duration by 0.55 minutes. This is in line
with the overestimation displayed in figures 5.2 and 5.3. Furthermore, the mean absolute error shows
that the simulation is on average 1.57 minutes off, either due to a lower estimate or due to a higher
estimate.
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Table 5.3: Error between the estimated duration and the actual duration of the flight departure from gate to take-off - runway 29,
segregated operations, 7 days.

ME MAE RMSE
Departure duration from gate to take-off (min) 0.55 1.57 2.08
Waiting time in the queue (min) 0.41 0.76 1.19

Figure 5.5 shows the cumulative error of the take-off time. The S-shape indicates that the error is
normally distributed. Errors smaller than -2 minutes and larger than 4 minutes do not occur often. The
cumulative error is located more to the right, with respect to zero, which indicates that the simulation
overestimates the actual take-off time.
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Figure 5.5: CDF of error between estimated and actual take-off time, runway 29

Figure 5.6 shows the departure actual and estimated departure throughput per 15 minutes on 18th of
September. 18th of September is the busiest day in the data sample, since the average hourly through-
put (both arrivals and departures) is highest on this day. From 4:00AM until 7:00PM, the D29M34
configuration is used. It can be seen that the model estimation and the observed number of departures
per 15 minutes match well.
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Figure 5.6: Actual and estimated number of departures per 15 min, 18th Sept 2015.

Figure 5.7 shows the actual and estimated mean duration of the departure process per 15 minutes on
the 18th of September. The actual and estimated values are in line with each other, although sometimes
differences of a couple of minutes exist. This is explained by the fact that in quiet periods, where only
one or two aircraft depart, the average is also only based on one or two flights. This can result in large
deviations in the graph.
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Figure 5.7: Actual and estimated mean flight departure duration per 15 min, 18th Sept 2015.

5.2. Mixed-mode operations
This section presents the results of the two models for mixed-mode operations discussed in section 3.3.
The first model uses the arrival schedule to determine the runway availability. The second model uses
historical data to determine the runway availability. For the case study at Vienna Airport, runway 34 is
used for mixed-mode operations. Over seven days there are 462 flights that depart from runway 34.

5.2.1. Flight specific information
Figures 5.8 and 5.9 show the probability density function of a randomly chosen flight that departs from
runway 34. These figures depict the difference between both models. The histogram of the first model
has a gap around 14 minutes. This gap is created due to an unavailable runway, based on the arrival
schedule. This means that when the aircraft would arrive at the runway just after the runway became
unavailable, it has to wait for a few minutes. The largest part of the simulations could depart before the
arrival blocked the runway, but as soon as the travel time would be a bit too long, the total duration of
the departure process would immediately increase by a few minutes.

The histogram of the second model, depicted in figure 5.9 shows a regular distribution. Since
the waiting time depends on historically available data, the probability of encountering an unavailable
runway is equal for every simulation. This results in a smooth distribution.

Figure 5.8: Probability density function of the departure pro-
cess duration of a flight departing from runway 34 at the 4th of
November. Simulation results of model 1.

Figure 5.9: Probability density function of the departure pro-
cess duration of a flight departing from runway 34 at the 4th of
November. Simulation results of model 2.

5.2.2. Comparison with actual data
Figures 5.10 and 5.11 show the probability density functions for both models. It can be seen that there
is little difference in PDF between the two models. Both models overestimate the actual duration, as
was the case for the segregated model as well. Since the same service time distribution is used in all
model, this is still a probable reason.
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Figure 5.10: PDF of actual and simulated duration of departure
process with mixed-mode model 1
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Figure 5.11: PDF actual and simulated duration of departure
process with mixed-mode model 2

When comparing the two probability density functions, the distribution of the secondmodel is a bit closer
to the actual data. This is also suggested by the calculated errors, stated in table 5.4. The secondmodel
has a mean error of 0.70 minutes, while the first model has a mean error of 1.13 minutes. Also the
MAE and RMSE are lower for the stochastic model.

Table 5.4: Error between estimated and actual flight duration of the departure process and waiting time in the queue, respectively
- runway 34, mixed-mode operations, 7 days.

Departure durations (min) Waiting time in queue (min)
ME MAE RMSE ME MAE RMSE

Model 1 1.13 2.23 2.91 0.57 1.15 1.70
Model 2 0.70 2.07 2.68 0.14 0.98 1.28

Figures 5.12 and 5.13 show the cumulative error between the estimated and the actual take-off time
for model 1 and 2, respectively. Compared to model 2, model 1 has more positive errors, since 5%
of the errors is larger than 10 minutes. Both cumulative errors are located to the right of zero, which
indicates overestimation of the model.
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Figure 5.12: CDF of error between estimated and actual take-
off time - runway 34, mixed-mode model 1.
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Figure 5.13: CDF of error between estimated and actual take-
off time - runway 34, mixed-mode model 2.
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Figure 5.14 shows the actual and estimated number of departures per 15minutes on the 18th of Septem-
ber 2015. It can be seen that runway 34 is not used constantly throughout the day. This runway is used
for departures during an outbound peak on the airport, where there are more departing flights than ar-
riving flights. In these periods, runway 34 is also used for departures, since the capacity of runway 29
is not sufficient.

Furthermore, figure 5.14 shows that the actual and estimated number of departures are similar.
Both models estimate the actual number of departure well, with a maximum difference of two aircraft.
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Figure 5.14: Actual and estimated number of departures per 15 min, 18th Sept 2015 - runway 34.

Figure 5.15 shows the actual and estimated mean flight departure duration. The actual data clearly
contains an outlier, since a flight departure duration of 40 minutes is not realistic. Furthermore, for the
periods when there are no aircraft departing, there is also no average to be shown, which explains the
gaps in the graph.

When comparing model 1 and 2, it can be seen that model 1 usually provides higher estimates than
model 2. Model 2 is closer to the actual mean departure duration compared to model 1.
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Figure 5.15: Actual and estimated mean flight departure duration per 15 min, 18th Sept 2015 - runway 34.

5.3. Both runways combined
This section presents the results of both runways combined. These results are determined by combin-
ing the simulation results for flights to runway 29 and runway 34. In the simulation of runway 34, the
second model is used, since this model provided better results. In total, there are 1614 flights departing
over the 7 days simulated.

Table 5.5 shows the error between the estimated and actual duration of the flight departure and the
queue waiting time for the two runway system. The mean error for the flight duration is 0.59, which is
only slightly higher than the mean error for runway 29, stated in table 5.3. This is explained by the fact
that roughly 75% of the departing flights take-off from runway 29, thus the combined results are closer
to the results for runway 29.

Figures 5.16 and 5.17 shows the PDF and CDF of the actual and estimated flight departure duration
for both runways combined. The actual and estimated graphs are similar, with a small overestimation.
The PDF has a gradually decreasing left side of the curve, which is the influence of the flights departing
from runway 34. These flights have, on average, a 3 minute longer taxi time than flights departing from
runway 29.
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Table 5.5: Error between the estimated duration and the actual duration of the flight departure from gate to take-off - 7 days, both
runways combined, mixed-mode operations model 2.

ME MAE RMSE
Departure duration from gate to take-off (min) 0.59 1.69 2.23
Waiting time in the queue (min) 0.35 0.81 1.21
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Figure 5.16: PDF of actual and simulated duration of departure
process - 7 days, both runways combined.

0 2 4 6 8 10 12 14 16 18 20

Flight departure duration [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Actual

Estimated

Figure 5.17: CDF actual and simulated duration of departure
process - 7 days, both runways combined.

Figures 5.18 and 5.19 show the actual and estimated number of departures and mean flight departure
duration per 15 minutes, respectively, In both graphs, it can be seen that the actual and estimated curve
are similar, except for the outlier in the actual data in figure 5.19.
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Figure 5.18: Actual and estimated number of departures per 15 min, 18th Sept 2015 - both runways combined.

04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00

Time [hh:mm] Sep 18, 2015   

0

5

10

15

20

25

M
e

a
n

 d
u

ra
ti
o

n
 o

f

d
e

p
a

rt
u

re
 p

ro
c
e

s
s
 [

m
in

] Actual

Estimated

Figure 5.19: Actual and estimated mean flight departure duration per 15 min, 18th Sept 2015 - both runways combined.



6
Verification and Validation

This chapter discusses the methods used to verify and validate the model. Section 6.1 explains the
verification process, while the validation process is explained in section 6.2.

6.1. Verification
This section gives an overview of the methods that are used to verify the model. Verification means
checking whether the written code is solving the problem in the right way. This includes both code
verification and computation verification of part of the model, followed by a test of the entire model.

The model consists of several steps, being the data preparation, data analysis and the simulation.
These three steps are verified by analysing the input and output of each step to make sure there are
no programming mistakes and that every step provides the expected output. For each step, there is a
list of verification tasks listed below. These verification tasks are performed while programming, thus
each step in the model is verified.

1. Data preparation

(a) Input: check if the input data is available, correct and complete.
(b) Combine data sources: check for NaN values after combining the three data sources. When

NaN values occur, remove flight from sample.
(c) Determine gate location: check flights where the start of the profile does not coincide with

the gate location (> 200m). Verify with flight profile plot if aircraft is indeed already in the taxi
system.

(d) Determine runway configuration: visually inspect the runway configuration table to see how
often the configuration changes. Decide if rules need to be adjusted.

(e) Output: check if the output file consists of all necessary data.

2. Data analysis

(a) Input: check if the input data is available, correct and complete.
(b) Determine state for each second in flight profile: check if every second of the flight profile

has a state.
(c) Calculate duration of each state: check per state if the outcome makes sense. For example,

unimpeded taxi-out time cannot equal zero, the push-back duration should be around 3-5
minutes. Look for extremes and, if necessary, visually check the flight profile to see what
happened.

(d) Create distribution: check if the amount of data in the distribution equals the amount of
flights.

(e) Remove outliers: check what percentage of the data is removed.
(f) Output: check if the output file consists of all necessary data.
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3. Simulation

(a) Input: visually inspect the distributions that are used as input in the simulation.
(b) Travel time module: check if the travel time consists of random variables that are drawn from

the right distribution.
(c) Moment of arrival in the queue: check if the flights are sorted based on moment of arrival in

the queue.
(d) Queue: check if the right method is applied and if the method works as it should do.
(e) Queue probabilities: check if the probabilities used in the queue equal 1.
(f) Output: check if the output of the simulation is as expected.

The complete model can be verified by increasing the traffic sample. In this way, it is tested if the model
performs as it should do. More flights should result in an increase in queue time, since the demand on
the runway increases. The total duration of the departure process should also increase if the demand
increases. Figures 6.1 and 6.2 show the PDF and CDF of the departure process duration for increasing
traffic samples. As expected, a 10% and 20% increase in flights results in a higher process duration.
With this results, the model is considered verified.
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Figure 6.1: PDF of departure process duration for increasing
traffic samples

0 5 10 15 20 25

Duration of departure process [min]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F Normal traffic sample

10% increase

20% increase

Figure 6.2: CDF of departure process duration for increasing
traffic samples

6.2. Validation
The model is validated by comparing the model results to actual data. This is done to see how well
the model performs compared to actual data. In chapter 5, the comparison with actual data is already
made. Here it is established that the simulation result is similar to the actual data, which means that
the model is validated.

However, to show that the model is not adjusted in order to obtain perfect results, the simulation is
also performed for seven new days. The days that are simulated for validation purposes are: 17 Jul, 5
Aug, 22 Aug, 18 Sept, 23 Sept, 12 Oct and 21 Nov.

Table 6.1 shows the mean error, mean absolute error and the root mean square error for the vali-
dation data. It can be seen that the errors are of the same order of magnitude as in table 5.3 and 5.4.
Since the model results and the simulation results are similar for these seven random days, and for the
seven random days simulated in chapter 5, the model is considered to be validated.
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Table 6.1: Error between estimated and actual flight duration of the departure process and waiting time in the queue, respectively.
Validation data based on 7 different days.

Duration departure (min) Waiting time in queue (min)
ME MAE RMSE ME MAE RMSE

Runway 29 0.28 1.53 2.02 0.35 0.79 1.22
Runway 34 (Model 1) 1.44 2.23 2.93 1.02 1.43 2.20
Runway 34 (Model 2) 0.80 1.99 2.46 0.26 1.06 1.39

The probability density function and cumulative distribution function that are created for flights departing
from runway 29 during the days used for validation are given in figures 6.3 and 6.4. The PDF for both
models simulating runway 34 are depicted in figure 6.5 and 6.6. It can be seen that the actual data and
the simulation results are almost equal, which means that the model performs as expected.
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Figure 6.3: PDF of actual and estimated departure process du-
ration using validation data, runway 29
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Figure 6.4: CDF of actual and estimated departure process du-
ration using validation data, runway 29
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Figure 6.5: PDF of actual and estimated departure process du-
ration using validation data, runway 34, model 1
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Figure 6.6: PDF of actual and estimated departure process du-
ration using validation data, runway 34, model 2.





7
Conclusion and Recommendations

This chapter states the conclusions that are drawn from the results in section 7.1. Furthermore, sec-
tion 7.2 provides recommendations for further research.

7.1. Conclusions
The main research question of this research “How to model the airport departure process under the
influence of uncertainty?” is answered by providing amodel that simulates the airport departure process
at Vienna Airport.

It is concluded that the model for segregated operations on a single runway can estimate the du-
ration of the departure process for each flight, including confidence interval and standard deviation.
For runway 29 at Vienna Airport, using data of July until December 2015, the expected take-off time is
predicted with a mean absolute error or 1.5 minutes. The duration of the departure process is overes-
timated with 0.5 minutes compared to the actual data, which makes the model conservative. However,
the distribution of the simulation and the actual data prove to have a similar shape, which shows that
the characteristics of the departure process are captured in the model.

Formixed-mode operations, there are two types ofmodels developed, a deterministic and a stochas-
tic model. Both types of models are suitable to predict the take-off time, however, the stochastic model
provides a better estimate for the duration of the departure process. Using the stochastic model, the
duration is predicted with a mean absolute error of 2 minutes. The simulation slightly overestimates the
actual distribution with 0.7 minutes, while the deterministic model overestimates the actual distribution
with roughly 1 minute.

The main research question is divided into several sub questions. The first sub question is related
to the representation of a departure process. The question “How to represent the departure process,
taking into account the push-back, travel time and queue time?” is answered by the theoretical model
that is created in chapter 3. The departure process is divided into a push-back duration, unimpeded
and additional taxi-out time, waiting time and departure runway occupancy time. Each of the phases is
represented by a distribution obtained from historical data, except the waiting time, which is determined
using queue theory.

The second group of questions is related to simulating the departure process. The most important
questions to answer are “How to determine the moment of arrival in the runway process?” and “How
to model the runway queue?”. The moment of arrival in the queue is found by adding the push-back
duration, the unimpeded taxi-out time and the additional taxi-out time to the actual off-block time. The
push-back duration is found from historical data, where the ground speed is used to determine when
the push-back process ended. The unimpeded taxi-out time is defined as the nominal duration to travel
to the runway entry, given that the aircraft is not interrupted. The additional taxi-out time is the duration
that an aircraft is interrupted while taxiing. The additional taxi-out time increases for increasing number
of aircraft in the system.

The runway queue is modelled by a G/G/1 queue, since the input is random, the service time is
modelled by a gamma distribution and the queue has one server, which is based on the first-in-first-
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54 7. Conclusion and Recommendations

out principle. The queue model provides the queue waiting time for each flight. For aircraft departing
from a runway in mixed-mode operations, an additional runway waiting time is calculated based on the
runway availability.

The question “How to determine the runway availability (in a mixed-mode operation)?” is answered
developing two different models. The first model is deterministic and uses live information from the
arrivals schedule to determine when the runway is available. It states that a departure can enter the
runway, as long as the arriving aircraft is more than 2 minutes from the runway threshold. The second
model uses historical data to determine if the runway is available.

7.2. Recommendations
This section provides recommendations for further research. The results in chapter 5 showed that the
model is capable of estimating the flight departure duration, although the model is conservative, since
it overestimates the actual duration. As explained in the analysis of the results, a possible reason for
overestimation is the service time assumption.

Therefore, the first recommendation is to perform a thorough analysis of the service time, since it is
expected that a better estimation of the service time will improve the results. This research assumes
independent service times, while the service time depends on the type of aircraft (both leader and
follower). Also, the model has a service time that is not related to the departure runway occupancy time
of the leading aircraft. In reality, the DROT is related to the service time, together with the separation
requirements.

In addition to that, the model results may be improved by adding the influence of external factors to
the model. For example, weather related effects and seasonal effects should be analysed to determine
if it has potential to improve the model estimation.

Another recommendation is to test this model at a different airport, preferably a busier airport. Since
Vienna Airport is quite small and it is not saturated often, there are no large queues in front of the runway.
At airports that have problems with queue forming, the queue module can be tested more extensively.

Furthermore, the model should be extended to all possible configurations before it can be used
in daily operations. It is not necessary to change the model completely, as only the input distributions
should be changed. These distributions should be created with historical data from flights in that specific
configuration.

Finally, the model can be extended by adding the processes upstream from the departure process.
To be able to create an estimate of the take-off time well in advance, the turn-around process should
be included in the model. Also, the taxi-in procedure can be added to the model.
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B
Definition of gate groups

Table B.1: Median of unimpeded taxi-out time for each gate

Gate Median unimpeded
taxi-out time Gate Median unimpeded

taxi-out time Gate Median unimpeded
taxi-out time

(null) 331 C40 238 F33 223
A91 377 C41 229 F36 237
A92 374 C42 234.5 F37 200
A93 368.5 D21 259 F41 223.5
A94 334 D22 274 F42 213.5
A95 374 D23 287.5 F43 261
A96 343 D24 224.5 F44 296
A97 333 D25 227.5 F45 215.5
A98 314 D26 269.5 F46 212
A99 323 D27 243 F49 200
AUA 328 D28 245.5 F50 210
B51 393 D29 235 F51 203.5
B52 399 E41 202.5 F53 230.5
B53 286 E42 205 F55 194
B61 254 E43 205 F57 203
B62 338 E44 198 F59 186
B63 404 E45 188 GAE 263
B71 285 E46 181.5 GAW 372
B72 356 E47 181 H03 270
B73 296 E48 155 H41 254
B74 266.5 E49 148 H42 249
B75 244 E50 145 H43 250
B81 288.5 E51 145 H44 228
B82 296.5 E52 136 H45 221
B83 308 F01 266 H46 228
B84 305 F03 272 H47 305
B85 285 F04 264 H48 230
B91 306 F05 296 H49 231
B92 285 F08 263 H50 221
B93 294 F09 260 K41 278
B94 291.5 F11 258 K42 280.5
B95 291 F12 269 K43 265
B96 285 F13 288.5 K44 260
C31 270 F16 254 K45 302
C32 272.5 F17 253 K46 238
C33 264.5 F21 226.5 K47 289
C34 263.5 F22 238 K48 194
C35 248 F23 263 K49 186.5
C36 251 F26 248 K50 276
C37 250 F27 225 K51 242
C38 234 F31 205
C39 226 F32 240.5
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Distributions of unimpeded taxi-out time

per gate group
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Figure C.1: Histogram of unimpeded taxi-out time - Group AB
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Figure C.2: CDF of unimpeded taxi-out time - Group AB
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Figure C.3: Histogram of unimpeded taxi-out time - Group C1
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Figure C.4: CDF of unimpeded taxi-out time - Group C1
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Figure C.5: Histogram of unimpeded taxi-out time - Group C2
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Figure C.6: CDF of unimpeded taxi-out time - Group C2
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Figure C.7: Histogram of unimpeded taxi-out time - Group D1

100 150 200 250 300 350 400

Unimpeded taxi-out time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F Empirical CDF

Normal CDF

Figure C.8: CDF of unimpeded taxi-out time - Group D1
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Figure C.9: Histogram of unimpeded taxi-out time - Group D2
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Figure C.10: CDF of unimpeded taxi-out time - Group D2
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Figure C.11: Histogram of unimpeded taxi-out time - Group E1
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Figure C.12: CDF of unimpeded taxi-out time - Group E1
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Figure C.13: Histogram of unimpeded taxi-out time - Group E2
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Figure C.14: CDF of unimpeded taxi-out time - Group E2
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Figure C.15: Histogram of unimpeded taxi-out time - Group F1
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Figure C.16: CDF of unimpeded taxi-out time - Group F1
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Figure C.17: Histogram of unimpeded taxi-out time - Group F2

50 100 150 200 250 300 350

Unimpeded taxi-out time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F Empirical CDF

Normal CDF

Figure C.18: CDF of unimpeded taxi-out time - Group F2
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Figure C.19: Histogram of unimpeded taxi-out time - Group F3
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Figure C.20: CDF of unimpeded taxi-out time - Group F3
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Figure C.21: Histogram of unimpeded taxi-out time - Group
GAW
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Figure C.22: CDF of unimpeded taxi-out time - Group GAW
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Figure C.23: Histogram of unimpeded taxi-out time - Group H
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Figure C.24: CDF of unimpeded taxi-out time - Group H
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Figure C.25: Histogram of unimpeded taxi-out time - Group K
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Figure C.26: CDF of unimpeded taxi-out time - Group K
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Figure C.27: Histogram of unimpeded taxi-out time - Group
none
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Figure C.28: CDF of unimpeded taxi-out time - Group none
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Figure D.1: Histogram of departure runway occupancy time for
heavy aircraft
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Figure D.2: CDF of departure runway occupancy time for heavy
aircraft
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Figure D.3: Histogram of departure runway occupancy time for
medium aircraft
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Figure D.4: CDF of departure runway occupancy time for
medium aircraft
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Figure D.5: Histogram of departure runway occupancy time for
light aircraft
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Figure D.6: CDF of departure runway occupancy time for light
aircraft
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Figure D.7: Histogram of departure runway occupancy time for
heavy aircraft. Empirical distribution with a kernel fit.
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Figure D.8: CDF of departure runway occupancy time for heavy
aircraft. Empirical data and kernel distribution.
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Figure D.9: Histogram of departure runway occupancy time for
medium aircraft. Empirical distribution with a kernel fit.
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Figure D.10: CDF of departure runway occupancy time for
medium aircraft. Empirical data and kernel distribution.
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Figure D.11: Histogram of departure runway occupancy time
for light aircraft. Empirical distribution with a kernel fit.
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Figure D.12: CDF of departure runway occupancy time for light
aircraft. Empirical data and kernel distribution.
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Figure E.1: Histogram of additional taxi-out time when 0-4 air-
craft are in the system. Flights departing from R29.
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Figure E.2: CDF of additional taxi-out time when 0-4 aircraft
are in the system. Flights departing from R29.
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Figure E.3: Histogram of additional taxi-out time when 5-8 air-
craft are in the system. Flights departing from R29.
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Figure E.4: CDF of additional taxi-out time when 5-8 aircraft
are in the system. Flights departing from R29.
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Figure E.5: Histogram of additional taxi-out time when 9-12 air-
craft are in the system. Flights departing from R29.
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Figure E.6: CDF of additional taxi-out time when 9-12 aircraft
are in the system. Flights departing from R29.
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Figure E.7: Histogram of additional taxi-out time when 13-16
aircraft are in the system. Flights departing from R29.
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Figure E.8: CDF of additional taxi-out time when 13-16 aircraft
are in the system. Flights departing from R29.
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Figure E.9: Histogram of additional taxi-out time when 17-20
aircraft are in the system. Flights departing from R29.
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Figure E.10: CDF of additional taxi-out time when 17-20 aircraft
are in the system. Flights departing from R29.
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Figure E.11: Histogram of additional taxi-out time when 21-24
aircraft are in the system. Flights departing from R29.
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Figure E.12: CDF of additional taxi-out time when 21-24 aircraft
are in the system. Flights departing from R29.
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Figure E.13: Histogram of additional taxi-out time when 0-4 air-
craft are in the system. Flights departing from R34.
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Figure E.14: CDF of additional taxi-out time when 0-4 aircraft
are in the system. Flights departing from R34.
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Figure E.15: Histogram of additional taxi-out time when 5-8 air-
craft are in the system. Flights departing from R34.
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Figure E.16: CDF of additional taxi-out time when 5-8 aircraft
are in the system. Flights departing from R34.
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Figure E.17: Histogram of additional taxi-out time when 9-12
aircraft are in the system. Flights departing from R34.
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Figure E.18: CDF of additional taxi-out time when 9-12 aircraft
are in the system. Flights departing from R34.
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Figure E.19: Histogram of additional taxi-out time when 13-16
aircraft are in the system. Flights departing from R34.

0 50 100 150 200 250 300 350 400

Additional taxi-out time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F Empirical CDF

Exponential CDF

Figure E.20: CDF of additional taxi-out time when 13-16 aircraft
are in the system. Flights departing from R34.
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Figure E.21: Histogram of additional taxi-out time when 17-20
aircraft are in the system. Flights departing from R34.
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Figure E.22: CDF of additional taxi-out time when 14-20 aircraft
are in the system. Flights departing from R34.
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Figure E.23: Histogram of additional taxi-out time when 21-24
aircraft are in the system. Flights departing from R34.
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Figure E.24: CDF of additional taxi-out time when 21-24 aircraft
are in the system. Flights departing from R34.
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Figure E.25: Histogram of push-back duration with a kernel fit.
Combined data from multiple runways.
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Figure E.26: CDF of push-back duration with a kernel fit. Com-
bined data from multiple runways.

300 350 400 450 500 550 600 650 700 750

Unimpeded taxi-out time [s]

0

5

10

15

20

25

30

35

40

45

50

F
re

q
u

e
n

c
y
 [

-]

Empirical distribution

Normal distribution

Figure E.27: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group AB
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Figure E.28: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group AB
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Figure E.29: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group C1
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Figure E.30: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group C1
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Figure E.31: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group C2
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Figure E.32: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group C2
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Figure E.33: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group D1
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Figure E.34: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group D1
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Figure E.35: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group D2
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Figure E.36: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group D2
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Figure E.37: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group E1
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Figure E.38: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group E1
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Figure E.39: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group E2
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Figure E.40: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group E2
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Figure E.41: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group F1
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Figure E.42: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group F1
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Figure E.43: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group F2
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Figure E.44: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group F2
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Figure E.45: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group F3
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Figure E.46: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group F3
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Figure E.47: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group GAW
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Figure E.48: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group GAW

250 300 350 400 450 500 550 600

Unimpeded taxi-out time [s]

0

5

10

15

20

25

30

35

40

45

F
re

q
u
e
n
c
y
 [
-]

Empirical distribution

Normal distribution

Figure E.49: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group H
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Figure E.50: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group H

300 350 400 450 500 550 600

Unimpeded taxi-out time [s]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

F
re

q
u
e
n
c
y
 [
-]

Empirical distribution

Normal distribution

Figure E.51: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group K
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Figure E.52: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group K
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Figure E.53: Histogram of unimpeded taxi-out time for flights
departing at R34 - Group none
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Figure E.54: CDF of unimpeded taxi-out time for flights depart-
ing at R34 - Group none
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Figure E.55: Histogram of departure runway occupancy time
for flights departing at R34 - Light aircraft
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Figure E.56: CDF of departure runway occupancy time for
flights departing at R34 - Light aircraft
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Figure E.57: Histogram of departure runway occupancy time
for flights departing at R34 - Medium aircraft
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Figure E.58: CDF of departure runway occupancy time for
flights departing at R34 - Medium aircraft
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Figure E.59: Histogram of departure runway occupancy time
for flights departing at R34 - Heavy aircraft
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Figure E.60: CDF of departure runway occupancy time for
flights departing at R34 - Heavy aircraft





F
Outlier removal

Table F.1: Outlier removal for segregated operations model

Distribution Specification Flights Outliers Percentage
Push-back 12435 78 0.63%

Unimpeded taxi-out time

AB 2234 5 0.22%
C1 2207 11 0.50%
C2 1351 4 0.30%
D1 980 13 1.33%
D2 988 17 1.72%
E1 2100 10 0.48%
E2 810 10 1.23%
F1 3431 27 0.79%
F2 2602 31 1.19%
F3 1090 6 0.55%
GAW 867 5 0.58%
H 988 4 0.40%
K 255 1 0.39%
none 694 4 0.58%

Additional taxi-out time 21139 112 0.53%

Departure runway occupancy time
H 1052 21 2.00%
M 19536 377 1.93%
L 531 2 0.38%

Service time 7783 8 0.10%
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Table F.2: Outlier removal for mixed-mode operations model

Distribution Specification Flights Outliers Percentage
Push-back 16075 104 0.65%

Unimpeded taxi-out time R34

AB 563 1 0.18%
C1 360 3 0.83%
C2 331 0 0.00%
D1 233 0 0.00%
D2 203 1 0.49%
E1 687 3 0.44%
E2 371 2 0.54%
F1 1079 3 0.28%
F2 1043 5 0.48%
F3 563 3 0.53%
GAW 104 1 0.96%
H 506 2 0.40%
K 27 0 0.00%
none 92 1 1.09%

Additional taxi-out time R29

0-4 456 11 2.41%
5-8 3487 43 1.23%
9-12 7788 25 0.32%
13-16 6676 59 0.88%
17-20 2542 40 1.57%
21-24 190 1 0.53%

Additional taxi-out time R34

0-4 78 1 1.28%
5-8 833 9 1.08%
9-12 1962 13 0.66%
13-16 2172 21 0.97%
17-20 1144 21 1.84%
21-24 126 4 3.17%

Departure runway occupancy time R34
H 555 9 1.62%
M 5711 104 1.82%
L 46 1 2.17%

Runway waiting time R34 6315 186 2.95%
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