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Abstract

Image inpainting is a problem that has been well studied over the last decades. In contrast, for 3D
reconstructions such as neural radiance fields (NeRFs), work in this area is still limited. Most existing
3D inpainting methods follow a similar approach: they perform image inpainting on the training images
and use the inpainted images for further training of the 3D model. Due to inconsistencies in the differ-
ent inpaintings of the images, the 3D inpainting often becomes blurry. With the advent of 3D Gaussian
Splatting (3DGS), we identify a new opportunity for 3D inpainting. As 3DGS is more explicit in na-
ture than NeRF, we can manipulate the 3D Gaussians directly rather than relying on image inpainting.
Based on that key idea, we propose a method that works similar to the PatchMatch image inpaint-
ing algorithm. We first construct a nearest-neighbour field (NNF) by searching for nearest-neighbour
patches throughout the scene that look similar to the area we want to inpaint. After constructing the
NNF we copy the contents of the nearest-neighbour patches to the inpainting region and blend them
together to obtain the inpainting result. In our experiments we found that our method performs well
in terms of texture synthesis but struggles with structure synthesis, similar to the original PatchMatch
algorithm. In cases where only texture synthesis is required to inpaint the area our method is able to
provide good results, although in some cases pre-processing of the scene is necessary, as we found
that better quality inputs (e.g. the scene itself, the surface mesh underlying the scene, and precise
masks) drastically improve the results of our method. Moreover, some parameters of the algorithm are
highly scene-dependent and by tailoring them to the scene we can further enhance the performance of
the algorithm. Besides introducing a 3D inpainting method that directly manipulates the scene contents,
our work offers valuable new insights into 3DGS editing in general.
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1
Introduction

In image editing we often encounter situations where missing information needs to be filled in. For
example, to remove objects or artefacts from photos we need to complete the image after removing
certain pixels. Moreover, in contexts such as art conservation or medical imaging we often have to
deal with incomplete data. We refer to this problem as image inpainting, which has been well-studied
over the last few decades. The problem definition is simple: given an image and a mask, how do we
fill in the masked pixels in the masked image such that we get a plausible result? An example of this
is shown in Fig. 1.1.

With the advent of neural radiance fields (NeRFs) [Mildenhall et al. 2021], the problem arose of how to
perform similar inpainting tasks for these 3D reconstructions, often referred to in the literature as multi-
view inpainting. The most common technique to perform such a multi-view inpainting is to render the
scene from different viewpoints (often the training viewpoints from the dataset for sake of simplicity) and
inpaint the rendered images using some image inpainting method. The inpainted images are then used
to further train the NeRF. However, this approach poses one major limitation: since image inpainting
can produce a wide range of plausible results, there is no way to guarantee that the inpainted images
from different viewpoints will be coherent in their inpainted regions, hence this method cannot achieve
true multi-view consistency. The easiest way to mitigate this issue is to use a perceptual loss term

(a) Original image (b) Inpainting mask (c) Inpainted image

Figure 1.1: Example of image inpainting by Ogawa and Haseyama [2013].
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(a) Original (b) Inpainting with blurry artefact

Figure 1.2: Example of blurry artefact of multi-view inpainting produced by the method of Yin et al. [2023]. (a) One of the
original training images and (b) a render after performing multi-view inpainting to remove the box.

when training the NeRF based on the inpainted images. By not purely averaging over the pixel values
but instead capturing some more high-level features, this tries to ensure that even if the images do
not contain similar content, some of the structures will still be preserved to generate a more realistic
output. In practice, however, this often still results in blurry artefacts in the scene due to averaging of
the inpainted images, as shown in Fig. 1.2.

Moreover, the black-box nature of NeRFs makes it difficult to perform inpainting directly in the 3D space,
rather than through training images. However, the more explicit nature of the recently emerged 3D
Gaussian Splatting (3DGS) [Kerbl et al. 2023] offers new opportunities to perform multi-view inpainting
by manipulating the 3D content directly. Other works have explored inpainting of 3DGS scenes using
similar techniques as for NeRFs, thus suffering from the same limitations instead of leveraging the
explicit nature of the 3D Gaussians. In this work, we aim to utilise the 3D Gaussians to generate
higher-resolution textures in the inpainting areas and hereby avoid the blurry artefacts produced by the
current state-of-the-art.

In order to achieve this, we port a traditional image inpainting algorithm to the 3D setting, as these
methods method rely on direct manipulation of pixel content in contrast to more modern methods that
use deep learning. Moreover, with traditional methods we can understand what the algorithm does
and apply the same concepts in 3D space. Although learning-based methods for images have been
around for some time now and provide high-quality results, deep learning in 3D is still at an early stage,
with current methods focusing mostly on classification, segmentation, and completion tasks for point
clouds. Works such as by X. Yu; Tang, et al. [2022] and Ma et al. [2022] offer impressive results by
leveraging transformers and multi-layer perceptrons respectively. However, due to the more complex
nature of 3DGS compared to a simple point cloud we do not consider these methods suitable for 3D
Gaussians at this time and we decided to use a traditional non-learning-based method in our research.

The algorithm we choose to port to 3D is the classic PatchMatch [Barnes; Shechtman; Finkelstein, et
al. 2009] algorithm. Similar to PatchMatch, we construct a nearest-neighbour field (NNF) that matches
parts inside the inpainting area to similar parts elsewhere in the scene. The NNF is then used to copy
Gaussians from other parts of the scene to areas inside the inpainting mask. Lastly, we perform optimi-
sation to ensure that the inpainted area looks as much as possible as a weighted blend of the patches
where the inserted Gaussians are copied from, since copying the Gaussians without this optimisation
results in artefacts.

To summarise, our work provides the following contributions:

• An analysis of different inpainting techniques and their applicability to 3DGS.
• An inpainting method for 3DGS scenes that directly manipulates the 3D Gaussians rather than
relying on image inpainting.

• An evaluation of our proposed 3D inpainting method, showcasing the strengths and weaknesses
of the algorithm.



2
Related work

This chapter briefly discusses existing inpainting methods for images and 3D reconstructions. For 3D
inpainting we distinguish between multi-view inpainting methods based on 2D image inpainting and
true 3D inpainting methods where the 3D content is manipulated directly.

2.1. 3D representations
For the 3D inpainting task there are different 3D representations that one might consider. More tradi-
tionally, point clouds and voxels are common 3D representations, both of which can be captured using
specialised equipment. Rather than using specialised equipment, one can also use a set of images
to create a 3D reconstruction. This process generally consists of two steps: applying Structure from
Motion (SfM) to extract camera positions from the images and then applying multi-view stereo (MVS)
techniques to extract a representation of the 3D shape. SfM was first introduced by Longuet-Higgins
[1981], presenting a direct method to compute the relative orientation of two views when at least eight
pairs of corresponding points between the views are given. Currently, COLMAP [Schonberger and
Frahm 2016] is the SfM technique commonly used in academia as it is one of the most robust open-
source ones out there. The first to introduce the concept of MVS were Seitz and Dyer [1999], seeking
to reconstruct a dense 3D model from multiple images taken from different viewpoints. It is common
to use an MVS pipeline to extract a mesh from the sparse SfM point cloud. COLMAP provides an
open-source library integrating both SfM and MVS into a single pipeline, which also enables the output
of a mesh. Moreover, the last few years 3D reconstruction methods aiming to achieve photorealistic
novel view synthesis have gained traction, the most prominent ones being NeRFs [Mildenhall et al.
2021] and 3DGS [Kerbl et al. 2023]. These methods take a set of training images as input and often
use COLMAP to estimate the camera parameters of those images in order to train a photorealistic 3D
model of the scene. Instead of using meshes or points clouds for the 3D model, these methods intro-
duce new 3D representations based on storing the information in a neural network (NeRF) or modelling
3D Gaussians to fit the contents of the scene (3DGS).

2.2. Image inpainting methods
Many different overviews exist of the field of image inpainting [Jam et al. 2021; Barcelos et al. 2024;
Qin et al. 2021; H. Xiang et al. 2023]. This section discusses the most relevant inpainting approaches
we identified based on these literature reviews and their applicability to 3DGS.

Image inpainting techniques can be split into two categories: traditional and deep learning-based tech-
niques, both of which are discussed in more detail in this section.

2.2.1. Traditional techniques
Themost important categories we identified within traditional techniques are diffusion-based and exemplar-
based, each of which is discussed below.

3
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Diffusion-based methods These methods work based on diffusion of information to reconstruct the
missing region. Bertalmio et al. [2000] first introduced this, using anisotropic diffusion to propagate
information along the isophotes (level lines where the light intensity is the same). They use partial
differential equations (PDEs) for the diffusion process, propagating information from surrounding areas
into the void. Other works build on this foundation by adjusting the PDEs to enhance the diffusion pro-
cess [Richard and Chang 2001; Tschumperlé 2006]. More recently, Sridevi and Srinivas Kumar [2019]
proposed the use of fractional-order nonlinear diffusion models, attaining a good trade-off between
edge preservation and smoothness.

Diffusion-based methods generally work well for smaller gaps and struggle with larger missing regions.
In the context of 3DGS we sometimes encounter large areas with artefacts, therefore these methods
are probably not the most suitable.

Exemplar-based methods These methods iteratively search for patches or pixels in the image re-
sembling the damaged region. Efros and Leung [1999] pioneered work in this direction by proposing
a method using Markov random field modelling to fill in the missing region pixel by pixel. Their method
is able to replicate textural patterns, though it struggles with more complex structures. Later, Crim-
inisi et al. [2004] proposed a method that works patch by patch rather than pixel per pixel, which in
turn inspired many other works. Their approach prioritises patches inside the inpainting area by using
heuristics such as the number of neighbouring pixels already filled in. The algorithm proceeds to find
the most similar patch outside the inpainting area for the patch with the highest priority. Empty pixels
inside the highest-priority patch are then filled in by copying the contents of the similar patch. This pro-
cess is repeated patch by patch, gradually completing the image. Instead of filling in the hole patch by
patch, Barnes; Shechtman; Finkelstein, et al. [2009] propose PatchMatch, which uses a randomised
search algorithm to match all patches inside the inpainting area to a similar patch outside the inpaint-
ing area simultaneously. Pixels inside the inpainting area are then filled in by a process called “patch
voting”, which combines the similar patches of neighbouring pixels instead of filling in the pixels patch
by patch.

The replication of patches ensures the maintenance of structural and textural coherence in these
exemplar-based methods, though the iterative approach can be computationally expensive. Given
their higher-quality results and intuitive approach, they could be suitable for 3D Gaussians as well,
copying Gaussians from other parts of the scene to the inpainting area. Since current multi-view in-
painting techniques are not fast enough to work in real-time either, as discussed later in this chapter,
the drawback of the iterative approach being more expensive does not necessarily pose a problem.

Comparing two of the most influential exemplar-based methods, PatchMatch [Barnes; Shechtman;
Finkelstein, et al. 2009] is generally more efficient, scalable, and versatile than the method proposed by
Criminisi et al. [2004]. However, the strength of PatchMatch lies more in texture synthesis than structure
synthesis, while the method from Criminisi et al. is generally better at preserving structure. Since none
of the two methods clearly outperforms the other in all scenarios, we deem both good candidates for
adaptation to 3DGS. In the end, a hybrid approach between the two might work better than each of
the methods separately. However, simply adapting one of the methods should provide insight into the
applicability of these methods to 3DGS in general. Because the higher efficiency of PatchMatch might
be beneficial with the additional overhead posed by working on 3D Gaussians instead of pixels, we
pick PatchMatch as the best choice for our work.

2.2.2. Deep learning-based techniques
Deep learning-based techniques can be divided into four categories: convolutional neural networks-
based, generative adversarial networks-based, transformer-based, and diffusion-based methods. As
their naming indicates, the methods differ in the type of network architecture they use. It should be
noted that all latter categories often make use of convolutional neural networks as well, as part of their
broader architecture.

Convolutional neural networks-based methods The first work to use a convolutional neural net-
work (CNN) for the task of image inpainting is proposed by Jain and Seung [2008]. In their work they
train a CNN with over 15,000 parameters using backpropagation to learn to remove Gaussian noise
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from images. Xie et al. [2012] improve on this by combining sparse encoding and deep networks pre-
trained with denoising auto-encoder. Their method is able to solve more challenging tasks, such as
removing superimposed text from an image rather than only Gaussian noise. One of the most promi-
nent more recent methods in this category is the work by H. Liu et al. [2020]. They use a mutual
encoder-decoder CNN for joint recovery of structure and texture, rather than recovering both in two
separate stages as done by Ren et al. [2019]. Because the recent trend in deep learning-based meth-
ods has been to use networks that fall into either of the next three categories instead of purely using
CNNs, the work by H. Liu et al. [2020] is still one of the most relevant works in this category today.

Generative adversarial networks-based methods Pathak et al. [2016] first introduced generative
adversarial networks (GANs) to image inpainting, by having a “context encoder” generator network
that generates the inpainting and a discriminator network that ensures the inpainting looks realistic and
coherent. They show that using this adversarial approach enhances the visual quality of the inpaintings.
Work by J. Yu et al. [2019] shows how a different type of convolution can be used in the generator
network to further improve results. They introduce the concept of gated convolutions, which are able
to dynamically determine the importance of features. The gating mechanism is learned together with
the rest of the network and during inpainting the gates ensure that relevant features are emphasised
while irrelevant ones are suppressed. One of the most prominent recent works using GANs for image
inpainting is EdgeConnect [Nazeri et al. 2019], where they split the inpainting problem into two separate
problems: structure prediction and image completion. Their model first predicts the structure of the
missing region in the form of an edge map, which is then used to guide the inpainting process. Both
stages use their own GAN. Another method using a different type of convolution and one of the most
prominent recent works in image inpainting is LaMa [Suvorov et al. 2022], which employs fast Fourier
convolutions. Because of the use of the frequency domain it excels at inpainting periodic structures.
While not strictly operating as a standard GAN that uses a discriminator network to judge the entire
output at once, LaMa uses a patch-based adversarial loss as part of the total loss function. Therefore,
we still consider it to be a GAN-based method.

Transformer-based methods J. Yu et al. [2018] pioneered the use of contextual attention for im-
age inpainting. Although their work does not use a transformer network, it inspired many other works
leveraging the attention mechanism for inpainting and eventually the use of transformers [Quan et al.
2024]. Wan et al. [2021] and Y. Yu et al. [2021] both employ a transformer network, generating multiple
plausible inpainting results. The latter achieves superior performance by proposing a novel bidirec-
tional and autoregressive transformer. In contrast, Zheng et al. [2022] focus on improving the fidelity
of a single inpainting rather than generating multiple outputs. They achieve this by first generating a
coarse inpainting using a transformer network and then propose a refinement network using a novel
attention-aware layer to turn the coarse inpainting into a higher-quality output.

Diffusion-based methods Not to be confused with the traditional diffusion-based methods, these
diffusionmodels form a class of generative AI. Sohl-Dickstein et al. [2015] already applied early diffusion
models to inpainting, however, diffusion models for image generation as we know them today were first
introduced by Ho et al. [2020], improving on the theoretical foundation from Sohl-Dickstein et al. [2015]
to make the models more practical. The most prominent work using diffusion models specifically for
image inpainting is RePaint [Lugmayr et al. 2022], proposing several improvements to make the model
perform better on this specific task. Moreover, themost renowned diffusionmodel for image synthesis is
currently Stable Diffusion [Rombach et al. 2022], which introduced latent diffusion models and focuses
on a broader set of tasks than inpainting exclusively.

When considering the applicability of deep learning to 3DGS, we have to note that deep learning de-
pends on a vast amount of training data being available to train the network. As images are easy to
capture and many image datasets already exist, this enabled researchers to train these deep learning
models for image inpainting. However, we face numerous issues when we think about applying deep
learning methods to 3DGS. It is not immediately clear how to feed a 3DGS scene to a neural network.
The scenes are not as structured as images, since they do not follow a regular grid structure similar
to the pixels of an image. With the number of 3D Gaussians in a scene typically ranging from 1-5 mil-
lion [Kerbl et al. 2023] and each Gaussian having numerous different properties, the scenes are also



2.3. Multi-view inpainting methods 6

made up of a lot more data than the small images that networks are generally trained on. Moreover,
capturing an image is easy, but capturing a 3DGS requires capturing multiple images and training the
scene for a non-negligible amount of time, with varying results in terms of scene quality. Therefore,
it is cumbersome to generate a vast collection of scenes, especially one vast enough to train a deep
learning network with. Taking all of the above into account it comes as no surprise that big datasets of
3DGS scenes do not exist yet.

If one were to research application of deep learning methods on 3DGS scenes, it would make sense
to focus on a very specific topic of interest that makes it easy to acquire many scenes to train the
network with. After showing that the general approach works for this specific topic, one could extend
the network by feeding it a wider range of data after acquiring more varying scenes. However, taking
current limitations into account, we look back to traditional methods instead for application to 3DGS.

2.3. Multi-view inpainting methods
For multi-view inpainting we can distinguish between methods for NeRFs and 3DGS. However, state-
of-the-art methods for both follow essentially the same approach [Mirzaei; Aumentado-Armstrong; Der-
panis, et al. 2023; Yin et al. 2023; J. Wang et al. 2024; Ye et al. 2023; J. Huang and H. Yu 2023]: given
images and image masks, they employ an image inpainting algorithm and use the inpainted images
to further train the scene, resulting in an inpainted 3D scene. The major problem with this approach is
that the 2D image inpaintings can be wildly inconsistent, introducing artefacts to the 3D scene when
training on the inpainted images. To improve consistency and appearance of the geometry inside the
masked region, some of the methods implement depth supervision by inpainting the depth maps as
well and/or use a perceptual loss metric during training. Notably, the image inpainting method most
commonly used for similar purposes and also the one used in all of these methods is LaMa [Suvorov
et al. 2022]. Moreover, the perceptual loss metric usually employed is LPIPS [Zhang et al. 2018].

Since these methods all follow a very similar approach, they all suffer from the same limitation as well.
The depth supervision and perceptual loss help mitigate the issue of inconsistently inpainted images,
however, the state-of-the-art methods are still prone to blurry artefacts. Mirzaei; Aumentado-Armstrong;
Brubaker, et al. [2023] try to overcome this limitation by using only a single inpainted reference view and
monocular depth estimators to back-project the inpainted view to the correct 3D positions. However,
their method still faces limitations: it falls back to a diffuse prior in the case of isolated masked regions
lacking surrounding context and exact depth alignment remains difficult.

Contemporary with our work, others have introduced diffusion priors to guide the inpainting process.
While technically not researching inpainting techniques but instead aiming to improve NeRF training
to reduce floaters, some of the first papers to use diffusion priors in this context were DiffusioNeRF
[Wynn and Turmukhambetov 2023] and Nerfbusters [Warburg et al. 2023]. Introducing this technique
to multi-view inpainting was done by Inpaint3D [Prabhu et al. 2023], MVIP-NeRF [Chen et al. 2024], and
MALD-NeRF [Lin et al. 2024] for NeRFs, while RefFusion [Mirzaei; De Lutio, et al. 2024] and InFusion
[Z. Liu et al. 2024] did the same for 3DGS. Without going into detail, the key idea of these methods is
that since the images generated by the diffusion model depend on some initial noise (the diffusion prior),
we can tweak this noise in a smart way to obtain more view-consistent inpaintings. With the exception
of Inpaint3D, all of these diffusion-based inpainting methods use latent diffusion models [Rombach et al.
2022]. The methods deliver very high-quality results with detailed 3D-consistent inpaintings.

NeRFiller [Weber et al. 2024] also uses diffusion, but rather than using the diffusion prior they identify
a useful phenomenon in diffusion models: denoising images tiled in a grid results in more consistent
multi-view inpaintings than inpainting them independently. However, while the technique encourages
more consistent image inpaintings, this is not guaranteed.

Taking another approach, M. Wang et al. [2024] aim to enhance consistency using uncertainty estima-
tion. When training the inpainted NeRF, the uncertainty affects the weights used in the loss function.
Uncertainty estimation has been used in other methods related to NeRFs, but this is the first work to
use it for NeRF inpainting. However, their work still has its limitations, being dependent on LaMa image
inpainting and showing flaws in handling shadows.
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2.4. True 3D inpainting methods
In the context of NeRFs and 3DGS, virtually no work has been published on true 3D inpainting methods
that explicitly work on the 3D contents of the scene. Therefore, we look to the related fields of point
cloud completion and voxel inpainting.

Hoppe et al. [1992] were the first to propose a systematic method for surface reconstruction of unor-
ganised point clouds and with this they laid the foundation for many other works in this direction. Their
method uses a signed distance field to represent the surface. Pauly et al. [2005] detect geometric
patterns from the point cloud and match these against an example database for shape completion. H.
Huang et al. [2013] propose a method that aims to detect and preserve important edge structures.

An interesting work on point cloud completion inspired by traditional image inpainting techniques is 3D-
PatchMatch, introduced by Cai et al. [2015]. Their work draws inspiration from the algorithms presented
by Barnes; Shechtman; Finkelstein, et al. [2009] and Criminisi et al. [2004]. In their method a nearest-
neighbour field is constructed over all the boundary patches, after which they are prioritised using a
prioritisation function similar to Criminisi et al. Based on their priority the boundary patches are filled in
patch by patch and the boundary is updated. The process continues until the entire hole is filled in. In
contrast, our work does not use boundary patches, but fills in the entire hole at once, more similar to
the original PatchMatch algorithm. Moreover, because the 3D Gaussians are inherently different from
simple points, their method is not directly applicable to 3DGS. For example, the Gaussians can cover
larger areas of the scene, requiring a different inpainting approach. In the context of 3DGS we also
have to consider view dependence, which Cai et al. did not need to take into account for point clouds.

In contrast to these traditional methods, more recent methods for point cloud completion generally use a
deep learning-based approach. Laying the groundwork for deep learning on point clouds, PointNet [Qi
et al. 2017] introduced a network for 3D classification and segmentation. Yuan et al. [2018] were the first
to propose a network specifically for point cloud completion. More recently, approaches using geometry-
aware transformer networks were introduced by PoinTr [X. Yu; Rao, et al. 2021] and SnowflakeNet [P.
Xiang et al. 2021]. Most of these deep learning-based techniques directly take the point cloud as input,
instead of working on images as we saw for multi-view inpainting.

Given some of the adequate results achieved with these methods, it seems likely that in the future
deep learning will be possible on 3DGS scenes as well. However, the current limitations (e.g. lack of
datasets and large number of properties/points) still pose too big a challenge.

Lastly, an approach that especially finds its use in the medical imaging field is voxel inpainting. Also in
this field methods such as the one by Torrado-Carvajal et al. [2021] exist that are based on traditional
inpainting algorithms while others such as Kang et al. [2021] and Wei et al. [2023] use deep learning.



3
Preliminaries

This chapter provides a more detailed background on two papers: the original PatchMatch paper
[Barnes; Shechtman; Finkelstein, et al. 2009] and the original 3D Gaussian Splatting paper [Kerbl
et al. 2023]. It is important to have a grasp of these papers in order to better understand our work,
which builds on concepts introduced by these papers. This chapter aims to cover only the relevant
concepts of these papers in relation to our work. For more details the reader is referred to the original
papers.

3.1. PatchMatch
Barnes, Connelly; Shechtman, Eli; Finkelstein, Adam, and Goldman, Dan B [2009]. “PatchMatch:
A randomized correspondence algorithm for structural image editing”. In: ACM Trans. Graph. 28.3,
p. 24

The original PatchMatch paper describes an algorithm that can be used for an array of image editing
tasks, one of which being image inpainting. The key idea of the algorithm is that given two imagesA and
B, for every patch in A we can find a similar patch in B. This concept is called a nearest-neighbour field
(NNF) and the paper shows how it can be used to perform various image editing tasks. A schematic
illustration of the NNF is shown in Fig. 3.1.

Figure 3.1: Schematic
illustration of NNF [Barnes;
Shechtman; Finkelstein,

et al. 2009].

More formally, the NNF is defined as a function f : A → R2, which maps
every patch coordinate (e.g. the pixel at the centre of a patch) in image A to
a 2D offset. For any patch coordinate a in image A, its nearest neighbour b
in image B is given by b = a + f(a). The mapping minimises some patch
distance metric D(a, b) and the patches are of a fixed size, N×N , where N is
a parameter of the algorithm.

NNF construction The naive approach to construct such an NNF is using
brute force search. However, this is very expensive. Therefore, the paper
introduces a novel approach to efficiently compute an approximate NNF. The
algorithm has three main components, illustrated in Fig. 3.3. The NNF is ini-
tially filled with random offsets and then updated iteratively. During an iteration
of the algorithm, all possible patches in A are visited in scan order (from left to
right, top to bottom). Every patch undergoes propagation and random search,
each trying to improve the nearest neighbour of the patch. That is, to find a
patch in B that is more similar than the best one we found so far, according
to our distance metric D. When visiting a patch we perform both propagation
and random search before moving on to the next patch.

For propagation we consider the patches located one pixel up or left, e.g. the
adjacent patches we have already visited in this iteration. The underlying as-

8



3.1. PatchMatch 9

Figure 3.2: Illustration of convergence of the approximate NNF algorithm from Barnes; Shechtman; Finkelstein, et al. [2009].
”(a) The top image is reconstructed using only patches from the bottom image. (b) above: the reconstruction by the patch

“voting” ..., below: a random initial offset field, with magnitude visualized as saturation and angle visualized as hue. (c) 1/4 of
the way through the first iteration, high-quality offsets have been propagated in the region above the current scan line (denoted
with the horizontal bar). (d) 3/4 of the way through the first iteration. (e) First iteration complete. (f) Two iterations. (g) After 5
iterations, almost all patches have stopped changing. The tiny orange flowers only find good correspondences in the later

iterations.” [Barnes; Shechtman; Finkelstein, et al. 2009]

sumption is that the offsets are likely to be the same. We try both two offsets and update the NNF
accordingly. To ensure that information is propagated in both direction we visit patches in reverse scan
order during even iterations.

After propagation we perform random search. The idea is to improve the nearest neighbour by testing
a series of random candidates at a decreasing distance from our current best match. We start with
some large search window and keep halving the search window until we reach a window of below 1
pixel.

The algorithm finds an approximate solution in only a small number of iterations. An example of this is
shown in Fig. 3.2.

Inpainting We will now discuss how this approximate NNF algorithm can be used to perform image
inpainting given an image A and a mask M . Instead of finding the correspondences between two
images A and B, we construct an NNF that maps every patch inside the masked area of A to its
nearest-neighbour patch outside the masked area. Once we have this NNF, we perform “patch voting”
to blend the nearest-neighbour patches together inside the masked area. Intuitively, for every patch
inside the inpainting mask we copy the pixel contents of its nearest-neighbour patch and paste it at
the patch location inside the mask. Because the patches overlap we take the average of the pasted
pixel values at every pixel in order to construct a new image. Instead of simply taking the average
value we can also take a weighted average based on the patch distances given by our NNF. This lets
us prioritise patches for which a better match was found. Fig. 3.5 shows an example of the image

Figure 3.3: Phases of NNF construction [Barnes; Shechtman;
Finkelstein, et al. 2009]. Figure 3.4: Pyramid of the multi-scale approach

[Lee et al. 2018].
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(a) Original (b) Masked

(c) Result without multi-scale (d) Result with multi-scale

Figure 3.5: Example of image inpainting using the PatchMatch algorithm, taken from Lee et al. [2018]. (a) The original image,
(b) the masked image and an example that shows how a patch inside the inpainting mask is matched to a patch outside the
mask, (c) the inpainted image after performing “patch voting” without the multi-scale approach, and (d) the inpainted image

using the multi-scale approach.

inpainting process. It should be noted that the entire PatchMatch algorithm works in an expectation
maximisation (EM) fashion, where the result is iteratively improved. In every EM iteration we first
construct an NNF and then use that to construct a new image by means of patch voting. This process
iteratively minimises the summed distance of the patches.

The approach described so far still faces two major issues: the inpainting hole is initially empty so it is
not trivial to find nearest-neighbour patches and the result contains blurry artefacts due to incoherent
nearest-neighbour patches. To avoid these issues a multi-scale “gradual scaling” process is employed
where we start with a low resolution copy of the image and gradually resize it. After every scaling, we
perform a few EM iterations until we reach the full resolution. As Fig. 3.4 shows, at the coarsest level a
patch covers a very large part of the inpainting hole. Intuitively, because a patch at the coarsest level is
so large, every patch inside the inpainting mask will also contain something outside the mask, giving us
an indication of what to look for when searching for its nearest neighbour. This solves the first issue with
our simpler approach. At the same time, by incorporating more of the global information of the image
we ensure that the algorithm does not get stuck in local minima and we end up with more coherent
nearest-neighbour patches, which solves the second issue as well. Fig. 3.6 shows the intermediate
result of the multi-scale approach at every resolution. By comparing Fig. 3.5c and 3.5d it becomes
clear that the multi-scale approach produces sharper textures than the approach without.

The pseudocode of the complete algorithm is presented in Alg. 1.
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Figure 3.6: Intermediate results of PatchMatch inpainting with multi-scale approach [Philippeau 2010].

Algorithm 1 PatchMatch pseudocode.
for l = 1, ..., L do ▷ For every resolution, starting at the coarsest level

for i = 1, ..., NEM do ▷ Perform NEM EM iterations
for j = 1, ..., NNNF do ▷ Construct NNF in NNNF iterations

for every patch in (reverse) scan order do
propagation()
random_search()

end for
end for
patch_voting() ▷ Use NNF to fill hole

end for
end for

3.2. 3D Gaussian Splatting
Kerbl, Bernhard; Kopanas, Georgios; Leimkühler, Thomas, and Drettakis, George [2023]. “3D Gaus-
sian Splatting for Real-Time Radiance Field Rendering”. In: ACM Trans. Graph. 42.4, pp. 139–1

3D Gaussian Splatting is a 3D reconstruction method, taking a set of images and camera positions
and constructing a 3D model based on this input allowing it to render the scene from new viewpoints,
a process known as novel view synthesis. Another prominent 3D reconstruction method that has been
around for a few years are neural radiance fields (NeRFs) [Mildenhall et al. 2021], which essentially try
to capture all the scene information in a neural network. With NeRFs, views are rendered through a
process called ray marching, shooting a ray from every pixel into the scene and sampling it at certain
intervals to see what is visible in the scene. In contrast, with 3DGS no neural network is involved.
Moreover, rather than ray marching 3DGS is more like rasterisation, rendering new views by projecting
3D Gaussians onto the camera view. One can imagine these 3D Gaussians as blobs sitting in space,
as depicted in Fig. 3.7. The entire scene is made up of them and they each have a position (mean),
covariance matrix (scaling and rotation), opacity, and colour. The colour is defined using spherical
harmonics, allowing for view-dependent colours. It is important to note that this idea is not entirely novel,
as similar 2D splatting methods have been around for years. However, the paper leverages modern
GPUs and fast GPU sorting algorithms to apply these concepts in 3D and achieve real-time rendering.
Besides introducing 3D Gaussians as a novel high-quality 3D representation, the main contributions of
the paper are an optimisation method to construct high-quality representations of captured scenes and
a fast, differentiable rendering approach for the GPU.

The proposed optimisation method requires one additional input besides the images and camera posi-
tions, namely a point cloud resembling the scene. Fortunately, the Structure-from-Motion (SfM) tech-
nique often used to extract camera positions from a set of images also produces a sparse point cloud.
This point cloud is used to initialise the Gaussians based on the points’ positions and colours. After
initialisation of the scene, the images and camera positions are used to train the model in an iterative
fashion. In every iteration we take a camera and its corresponding ground-truth image and we render
the scene from the camera. After rendering we can compute the loss against the ground-truth image
and backpropagate the gradients in order to update the properties of the Gaussians. Moreover, we
also use the gradients to decide if Gaussians need to be cloned or split to better fit the contents of the
scene, as shown by the schematic illustration in Fig. 3.8. Lastly, Gaussians with a very low opacity
(e.g. that are essentially transparent) are pruned from the scene. The entire optimisation pipeline is
depicted in Fig. 3.9.

To allow fast training and rendering, the paper proposes a differentiable tile rasteriser. The rasteriser
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Figure 3.7: 3DGS scene with the 3D Gaussians rendered as
ellipsoids [Ebert 2023].

Figure 3.8: Adaptive densification scheme of 3D Gaussian
optimisation [Kerbl et al. 2023].

Figure 3.9: Optimisation method of 3D Gaussian Splatting scenes [Kerbl et al. 2023].

needs to be differentiable in order to support the gradient calculation necessary for training and the
tiles serve as an acceleration structure to limit the Gaussians considered per pixel. The rasteriser first
divides the screen into 16×16 tiles and then the Gaussians are culled against the view frustum and
each tile. Each Gaussian is instantiated for every tile it overlaps and using a single fast GPU radix
sort all instances are sorted by their view space depth and tile ID. Gaussians are not further sorted
per pixel and their blending order is determined only by this initial sorting. Therefore, in some cases
the α-blending is approximate. However, in practice this rarely affects the output noticeably while it
greatly enhances performance. After sorting, for every pixel the list of Gaussians belonging to its tile
is traversed in front-to-back order such that early termination can be used once an accumulated target
saturation α for the pixel is reached.



4
Method

This chapter gives an in-depth explanation of our proposed method for inpainting 3DGS scenes. The
method is inspired by PatchMatch [Barnes; Shechtman; Finkelstein, et al. 2009] and applies this algo-
rithm in the context of 3DGS rather than images.

4.1. Overview
Our method takes the following inputs: a set of 3D Gaussians G representing the 3DGS scene, a
surface mesh S underlying the scene, an inpainting maskMI marking the part of the scene to inpaint,
and a global mask MG marking the part of the scene to restrict the nearest-neighbour search to. The
output of our method is a modified set of Gaussians G′, where the region defined by the inpainting
mask is inpainted. A mask is defined as a functionM : R3 → {0, 1} which takes a value of 1 if the input
is inside the mask and 0 otherwise. In practice this means that the masks can be specified in any way
that allows us to determine if a 3D point is inside the mask, e.g. if M(p) = 1 for some point p. For
example, we can use a 3D shape as mask or image masks with their corresponding camera positions.

Since obtaining a surface mesh underlying the scene is not a trivial task, we use the method from
SuGaR [Guédon and Lepetit 2024] to extract a mesh from the scene. Their algorithm first trains the
scene based on a set of training images while using a regularisation term encouraging the Gaussians
to be more surface-aligned. After performing a fixed number of training iterations, they use Poisson
surface reconstruction [Kazhdan et al. 2006] to extract a mesh from the Gaussians.

Similarly to PatchMatch, our method starts by constructing an NNF over the scene. We first sample
points along the surface S to discretise the search space for nearest-neighbour pairs and then match
each point inside the inpainting mask to its nearest neighbour outside the mask. After constructing the
NNF, we use this mapping to fill the inpainting hole by copying Gaussians from every nearest neighbour
to the corresponding point inside the inpainting mask. We then perform optimisation to ensure that the
copied Gaussians fit together well and blend in better with the rest of the scene at the border of the
inpainting region. The process of constructing the NNF and inpainting the masked area is repeated
multiple times at different resolutions to obtain the final result. The rest of this chapter will provide an
in-depth explanation of all these steps.

4.2. Nearest-neighbour search
Analogous to PatchMatch, we aim to define an NNF to find similar patches efficiently. This section will
highlight the key differences between our method and the original PatchMatch algorithm. The general
algorithm remains the same as described by the pseudocode in Alg. 1.

4.2.1. Domain
Remember that originally the NNF is defined as a function f : A→ R2 of offsets over all possible patch
coordinates (locations of patch centres) in image A. It is not immediately clear how this translates to

13
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the 3DGS context, since the Gaussians are unstructured and thus do not follow a regular grid structure
like the pixels of an image. Therefore, we propose a different domain in the context of 3DGS. The two
main requirements for the domain are that it is discrete and that patches are approximately uniformly
spaced out. This can be seen as a relaxation of the regular grid structure: clearly the two requirements
hold for a regular grid, but the grid imposes more constraints on the topology. Since the Gaussians
usually represent a surface, we obtain a domain satisfying the two conditions by sampling points along
the surface S. This process consists of two steps:

1. Masking: we remove the vertices from S that are inside the inpainting mask MI and perform
Poisson surface reconstruction to fill the hole we created. We end up with two separate surface
meshes Sin, S0, inside and outside the inpainting mask respectively. We then define the surface
mesh Sout as S0 limited to the vertices inside the global maskMG. Moreover, to mask the actual
contents of the 3DGS scene we remove any Gaussians with a mean inside of MI to obtain the
masked set of Gaussians G0 = {g ∈ G|MI(µg) = 0}, where µg denotes the mean (e.g. position)
of g.

2. Point sampling: after obtaining Sin, Sout we use Poisson disc sampling as described by Yuksel
[2015] to sample points along the surfaces, since this method should give us approximately evenly
spaced out points. The method uses a greedy sample elimination algorithm to pick a subset of
the desired size with Poisson disc property. We sample points on Sin and Sout separately, such
that we get two sets of points Pin, Pout respectively. An example of this is shown in Fig. 4.1. We
introduce a parameter γ for the desired average number of Gaussians per point and use that to
compute the number of points to sample on the surface. Let A0, Ain be the surface area of S0, Sin

respectively. With the point density ρ = |G0|
A0γ

, we define the number of points to sample on Sin to
be Kin = ⌊ρAin⌋ = |Pin| and similarly for Kout.

We will refer to the combined set of points as P = Pin ∪ Pout. Furthermore, we modify the NNF
definition to be f : Pin → R3, such that every point in the inpainting region is associated with a 3D
offset and we define a function Snap(x) : R3 → P = argminp∈P ∥p− x∥ which gives us the point
p ∈ P with the smallest Euclidean distance to a 3D coordinate x. Snapin and Snapout are defined
similarly over Pin, Pout respectively. For a point p ∈ Pin, its nearest neighbour q ∈ Pout is then given
by Snapout(p+ f(p)).

4.2.2. Patches
Now that we have our patch coordinates P , we will discuss how patches can be compared in order to
determine the nearest-neighbour patches. In the image context, a patch is simply the N×N patch of
pixels around the patch coordinate. In order to fill in missing parts of the surface, our goal is to ensure
that the surface looks similar when we compare patches. Since the Gaussians are view- and order-
dependent, the easiest way to determine what the surface actually looks like is to render it to an image.

Figure 4.1: Example of points sets Pin (yellow), Pout (blue) sampled on the surfaces Sin, Sout respectively.
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surface

dcam
s

θ p
np

Figure 4.2: Illustration of the relationship between the camera distance
dcam and field of view θ to render an area of size s in world space around

point p ∈ P with surface normal np.

Figure 4.3: Example of a 5×5 patch at the
red point p ∈ P .

As we are only interested in a small part of the surface when examining a patch, we only render the
part of the surface around the patch coordinate p ∈ P . We use the patch renders to compare patches
similarly to the pixel patches in PatchMatch using some distance metric D. In our experiments, we use
the mean squared pixel-wise ∆E colour difference [Sharma et al. 2005] as distance metric.

To render the patch at p, we render an image looking at p from its normal direction np and assuming
an up-vector u = (0 1 0) T . As illustrated in Fig. 4.2, we set the camera distance dcam according to the
desired field of view θ and the size s of the area around p that we want to render: tan( θ2 ) =

s
2 · d

−1
cam.

In the image context, one pixel is always the distance between two adjacent patch coordinates. We
define a “pixel size” spx in world space similarly by taking the mean of the distances from every p ∈ Pin

to its k closest adjacent points in Pin, where k is a parameter of the algorithm. In our experiments we
use k = 4, analogous to the image context where each pixel has four adjacent pixels. Following this
analogy, these k points are also the ones we will use for propagation later. Using the world space “pixel
size”, we then define s = N · spx. Fig. 4.3 shows an example of a 5×5 patch around a point p, where
the side of the square is equal to s.

Moreover, in our experiments we set θ = 1◦, such that the perspective projection approximates an
orthogonal projection. We wish to use an orthogonal projection as not to let perspective distort the
view. However, as the standard 3DGS implementation only provides a perspective projection, we use
this approximation. The 3DGS implementation also does not support frustum culling. Therefore, we
restrict the Gaussians for rendering to {g ∈ G′|

∥∥µg − c
∥∥ > znear}, where G′ denotes the current state

of the scene (including intermediate inpainting results), c the camera position, and znear = dcam − s
2 .

In the case of rendering a patch at p ∈ Pout, we mask any pixels that do not directly correspond to Sout,
allowing us to penalise patches close to the inpainting border or the edge of the scene. We achieve
this by rendering the depth buffers Zin, Zout of Sin, Sout respectively, and mask any pixels for which
Zin > Zout. When computing the pixel-wise distances according to the distance metric D, we set the
distance to a masked pixel to the maximum possible distance allowed by the metric.

Lastly, the original 3DGS implementation is sensitive to aliasing, producing artefacts especially when
rendering at low resolutions. Because of this, if we were to render a patch of size N to an N×N image,
the resulting image would be a poor representation of the actual scene contents, as N is typically a
low value. To alleviate this issue, we introduce a parameter ϕ ∈ Z+ and obtain the patch rendering
resolution R = N · ϕ. In our experiments we used ϕ = 2, meaning that for patch size N = 5 we would
render a patch as a 10×10 image.

4.2.3. Iteration
The two main operations to construct the NNF are propagation and random search. As in PatchMatch,
the operations are interleaved at the patch level, meaning that when visiting a point we first perform
propagation and consecutively random search before moving onto the next point. We will now discuss
both operations in more detail. To simplify updating the NNF we define an operator which returns
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the offset p − q if q is an improvement over the current nearest neighbour of p, or the current value
otherwise:

Updatef (p, q) =

(
argmin

x∈{q,p+f(p)}
D(p,x)

)
− p

This allows us to easily test a candidate point and update the NNF accordingly.

Propagation
We visit points in order of ascending x-coordinate to ensure we sweep over all points in one direction.
Moreover, in even iterations we visit points in reverse order to propagate information both ways. For
every point p ∈ Pin, we consider its k closest adjacent points in Pin for propagation (e.g. the same
points as for determining spx). Of those k adjacent points, we only take the ones we already visited
during this iteration. For every visited adjacent point a, we obtain the point q = Snapout(p+ f(a)), e.g.
the point outside the inpainting mask closest to the offset point p + f(a). For each candidate point
q, we attempt to improve the NNF by setting f(p) ← Updatef (p, q). After testing all candidates for
propagation, we move on to random search.

Random search
We attempt to find a better nearest neighbour for p by testing a series of random candidates surrounding
its current nearest neighbour q̂ = p + f(p). The random candidates are chosen at an exponentially
decreasing distance from q̂. We define a search radius ri = wαi, where w is a large maximum search
radius and α a fixed ratio between search radii. We choose w to be the maximum Euclidean distance
between any two points p, q ∈ Pout and α = 0.5. For every search radius ri, we pick a random
point qi ∈ Pout within a distance of ri from q̂. Again, we attempt to improve the NNF by setting
f(p) ← Updatef (p, qi). We test candidates for i = 0, 1, 2, ... until there are no other points than q̂
itself within a distance of ri from q̂, after which we move on to propagation for the next point p ∈ Pin.

Lastly, after performing half of the iterations to construct the NNF we try to merge with a prior NNF if
available. This ensures that as we go through multiple EM iterations we propagate information across
iterations and lower the chances of getting stuck in local minima. Merging the current NNF f with
a prior NNF g is done as follows: for every p ∈ Pin,f , we find the point p̂ = Snapin,g(p). Let q =
Snapout,f (p+ g(p̂)), then we try to improve the NNF by setting f(p)← Updatef (p, q).

4.3. Inpainting
After constructing the NNF, we fill the inpainting hole by copying patches of Gaussians. For every point
p ∈ Pin and its nearest neighbour q ∈ Pout, we copy the Gaussians from q to p in order to obtain the
modified set of Gaussians G′ = G0 ∪ G∗, with G∗ the copied Gaussians. More specifically, we copy
the Gaussians inside a cube with centre q and side 2spx, where one of the axes of the cube is the
normal vector nq and one is given by nq×u

∥nq×u∥ , with u our assumed up-vector. Notably, this is different
from the image version of PatchMatch, where we copy the entire patch contents. Whereas the pixel
values in the image context can be accumulated when overlapping patches, this is more difficult with
the 3D Gaussians and by copying the entire patch contents we would massively increase the density
of the Gaussians in the inpainting region. We also found that using side s = Nspx (e.g. the entire
patch contents) caused the Gaussians not to be aligned to the surface while side spx caused gaps
in the inpainting hole after copying Gaussians. Therefore, side 2spx offers a balanced alternative, as
demonstrated by the comparison in Fig. 4.4. To account for differences in orientation between the
surface normals np and nq, we first rotate the Gaussians around q before translating them by p − q.
This rotation is given by rotating from nq to np under our assumed up-vector u. Mathematically, it
is expressed as R = WV −1, where W =

(
w1 w2 w3

)
given w1 = np, w2 = w1×u

∥w1×u∥ , and
w3 = w1 ×w2. V is defined similarly for nq instead of np.

Simply copying the patches of Gaussians causes artefacts, for example because the underlying sur-
faces from the different patches do not exactly line up or because overlapping patches get intertwined
and become noisy. To overcome this problem, we propose an optimisation phase similar to the stan-
dard training of a 3DGS scene. For every point p ∈ Pin and its nearest neighbour q ∈ Pout, we render
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(a) Side spx (b) Side 2spx (c) Side Nspx

Figure 4.4: Comparison of different cube sizes for copying Gaussians. A larger cube means we copy more Gaussians per
patch from the area outside the mask to inside the mask. The top row shows renders of the scene immediately after copying

the Gaussians. The bottom row shows renders from a top view after optimisation.

the patch at q to an R×R image Iq, which we use as a ground-truth training image for the patch at
p. Then we render the patch at p to an R×R image Ip and compute the L1 loss between Ip and Iq,
in order to calculate the gradients of the Gaussians we inserted into the inpainting hole. Moreover, to
prioritise patches for which we found better neighbours, we multiply the L1 loss by the squared patch
similarity S(p, q) = 1−D(p, q) under the assumption that D ∈ [0, 1]. As we do not want the new Gaus-
sians to affect the area outside the inpainting area, for every point p ∈ Pin we also perform the same
operation for some point outside but close to the inpainting maskMI . We refer to one full sweep of all
Kin points in Pin and theKin chosen points from Pout as one optimisation iteration. In our experiments
we perform 25 optimisation iterations during the optimisation phase. To ensure stable convergence of
the optimisation, we average the gradients of the Gaussians after an iteration and only then perform
backpropagation to modify the Gaussians. As shown in Fig. 4.5, without this gradient accumulation our
optimisation actually achieves the opposite of our desired effect: the solution starts diverging instead
of converging and the quality of the inpainted region deteriorates. We also zero out the gradients of
the Gaussians in G0 such that they are not affected. Similar to the standard 3DGS training, we den-
sify and prune Gaussians every 10 iterations. Finally, for the last EM iteration we render patches at a
higher resolution during the optimisation phase in order to ensure that we do not introduce artefacts by
overlooking details. To achieve this, we use a resolution of 8R instead of R for the last iteration.

4.4. Multi-scale approach
For the same reasons as in the image context (e.g. to take global information into account and to have
an initial inpainting guess) it makes sense to employ a multi-scale approach in the 3D setting. We
downsample our representation of the scene by sampling fewer points along the surface. We obtain
the number of levels in the hierarchy L = ⌊log4Kin⌋, such that every coarser level corresponds to a
4 times decrease in the number of points, analogous to downsampling an image to half its resolution
and getting 4 times less pixels. By this definition, the coarsest level contains 4 to 15 points inside the
inpainting maskMI . We extend our definition ofKin (and similarlyKout) as follows: Kin,l = ⌊4−lρAin⌋
for level l ∈ [0..L].

Moreover, when inpainting the coarser levels we do not copy the Gaussians as described before. This
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(a) Without gradient accumulation, before optimisation (b) Without gradient accumulation, after optimisation

(c) With gradient accumulation, before optimisation (d) With gradient accumulation, after optimisation

Figure 4.5: Effect of gradient accumulation during the optimisation phase. Note that the images before optimisation are
different from each other because the gradient accumulation affected the intermediate inpainting results during previous

iterations.

would introduce unintended details to the finer level, e.g. details that were not visible when rendered
at the lower resolution but become visible when rendering at a higher resolution. Instead we perform
inpainting rendering the nearest-neighbour patches and inserting Gaussians into the inpainting area
based on the pixel values from those renders. For instance, given a point p ∈ Pin,l and its nearest
neighbour q ∈ Pout,l for some l > 0, we render the patch at q to an image Iq. For all except the last
EM iteration of the level, Iq has a resolution of R×R. In the last EM iteration of the level, the resolution
is doubled to 2R×2R, as a way of upsampling to the next finer level and introducing more detail in
the inpainting region. After rendering Iq we insert ψ2 Gaussians per pixel, where ψ is a parameter
of the algorithm. We found that sometimes only inserting a single Gaussian per pixel restricted the
optimisation phase and inserting multiple Gaussians offered the algorithm a degree of freedom when
blending overlapping patches together. Therefore, we used ψ = 2 in our experiments. All Gaussians
inserted for a patch are grid-wise aligned on the tangent plane at p and the ψ2 Gaussians corresponding
to a pixel are each assigned the colour of the pixel and a position that matches the pixel. Every Gaussian
has the same scaling parameters, such that each group of ψ2 Gaussians corresponding to a pixel
effectively covers that pixel projected into world space. Lastly, we remove any new Gaussians outside
the inpainting mask, such that we do not unintentionally alter the content outside the inpainting area.
Table 4.1 provides a summary of the different dimensions in world space and rendering resolutions
used throughout the algorithm.
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Table 4.1: Summary of the different dimensions in world space and rendering resolutions used throughout the algorithm.

World space Rendering resolution

Compute NNF error (Nspx)× (Nspx) R×R

Insert Gaussians (coarser levels) (Nspx)× (Nspx) R×R

Copy Gaussians (finest level) (2spx)× (2spx)× (2spx) n/a

Optimisation (Nspx)× (Nspx)
R×R, if not last EM iteration of the level

2R× 2R, if last EM iteration of coarser level
8R× 8R, if last EM iteration of finest level



5
Results

This chapter discusses all the experiments we ran in order to evaluate the effectiveness of our proposed
method. We study how the algorithm performs in various different settings and provide educational
examples such as a comparison with image PatchMatch and use of a ground-truth mesh underlying
the scene to gain more insight into the behaviour and limitations of the method.

5.1. Implementation
We implemented our method in Python, making use of PyTorch and the vanilla 3DGS code provided
by Kerbl et al. [2023]. The versions we used are Python 3.9, PyTorch 2.2.0, and CUDA 11.8. All our
experiments are run on the DAIC HPC cluster from TU Delft, using an A40 GPU with 48GB VRAM. For
most scenes, significantly less resources can be used to run the algorithm. However, we found that
some parts of our code are not optimised for minimum memory usage and caused an out-of-memory
error for large scenes. To run our experiments on those scenes we simply moved some data from the
GPU to the CPU and used more RAM. In our experiments, by default we performed 2 EM iterations
per level of the multi-scale hierarchy with 25 NNF iterations. Moreover, in all experiments except an
ablation experiment for the patch size we used a patch size of N = 3. The complete source code is
available at: https://github.com/adriaanpardoel/gs-patchmatch.

5.2. Datasets
For a quantitative evaluation of our method we used the SPIn-NeRF [Mirzaei; Aumentado-Armstrong;
Derpanis, et al. 2023] dataset, which consists of forward-facing scenes and includes image masks and
ground-truth images where the object to be inpainted is removed. For qualitative evaluation we used
six scenes (bicycle, bonsai, garden, kitchen, room, stump) from the Mip-NeRF 360 [Barron et al. 2022]
dataset, which contains 360-degree scenes. We also used the bear statue scene from the Instruct-
NeRF2NeRF [Haque et al. 2023] dataset and the Lego scene from the synthetic NeRF [Mildenhall et
al. 2021] Blender dataset. Lastly we used meshes from Sketchfab1 and Poly Haven2 to analyse our
algorithm in a more synthetic scenario. All datasets used except the SPIn-NeRF dataset do not contain
inpainting masks, therefore, we defined our own masks for those scenes.

5.3. Quantitative results
This section presents our quantitative results on the SPIn-NeRF dataset. It is good to be aware, how-
ever, that even though the dataset contains “ground-truth” images where they removed the object in
real life, there is not a single best solution, as many plausible inpaintings exist. Moreover, different
metrics are used to compare images in order to evaluate the inpainting result, but it is debatable in how
far these metrics truly represent the quality of the inpainting. Keeping this in mind, we still think it is
valuable to give a quantitative evaluation for a quick first comparison to other methods.

1https://sketchfab.com/
2https://polyhaven.com/
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Table 5.1: Comparison of LPIPS scores for SPIn-NeRF and our method. The result for SPIn-NeRF is taken from the original
paper.

Method LPIPS↓
SPIn-NeRF 0.4662

Ours 0.5088

Table 5.2: Quantitative evaluation of our method compared to Point’n Move. The results for Point’n Move are taken from the
original paper.

Metric Method 2 3 4 7 10 12 book trash mean

PSNR↑ Point’n Move 18.48 18.04 20.88 21.40 19.75 16.62 22.28 21.18 19.83
Ours 17.80 13.85 18.71 18.20 17.95 13.30 21.62 22.46 17.99

FID↓ Point’n Move 53.60 36.39 51.78 22.48 21.67 26.23 81.68 28.84 40.33
Ours 86.31 172.86 98.43 143.00 69.24 64.97 101.70 49.28 98.22

LPIPS↓ Point’n Move 0.4544 0.2217 0.3229 0.2858 0.2264 0.3352 0.2147 0.2301 0.2864
Ours 0.2619 0.2622 0.2763 0.2686 0.2225 0.3305 0.1828 0.1751 0.2475

For our results we ran the algorithm on the SPIn-NeRF dataset with the number of Gaussians per point
γ = 250. With these parameters we found that the algorithm was able to generate plausible inpaintings
to a certain extent. Moreover, we did not use any global mask for these scenes, as the meshes we
extracted from the scenes contain relatively little noise. The results are visualised in Fig. 5.13.

Possible baselines to consider for comparison are the methods discussed in Chapter 2 as the current
state-of-the-art: SPIn-NeRF [Mirzaei; Aumentado-Armstrong; Derpanis, et al. 2023], OR-NeRF [Yin et
al. 2023], GaussianEditor [J. Wang et al. 2024], Gaussian Grouping [Ye et al. 2023], and Point’n Move
[J. Huang and H. Yu 2023]. We carefully inspected each paper to enable a fair comparison, ensuring
we retrieve our metrics in the same manner as the paper we compare to.

SPIn-NeRF provides the FID and LPIPS scores of their inpainting algorithm on their own dataset. To
give a quantitative comparison to their results, we compute the LPIPS score in the same manner by
cropping the images to the bounding box of the provided inpainting mask and extending each side
by 10% in every direction. However, they do not precisely describe how their FID score is calculated,
therefore we do not consider this in our comparison. The LPIPS scores of our method compared to
SPIn-NeRF are presented in Table 5.1. We see that based on the LPIPS score SPIn-NeRF outperforms
our method.

OR-NeRF features a quantitative comparison to SPIn-NeRF, however, their reported numbers differ
from the ones reported in SPIn-NeRF, indicating they computed the metrics in a different manner. Un-
fortunately, the paper does not explicitly mention how their metrics were calculated, therefore we cannot
make a fair comparison to their numbers.

Interestingly, Point’n Move contains a quantitative comparison of their method against SPIn-NeRF and
OR-NeRF, based on the numbers reported in the OR-NeRF supplement. On closer examination, it
seems likely that they used yet another manner of computing the metrics, based on the much lower
LPIPS numbers reported compared to the other methods. The paper mentions that they use the entire
images for calculation of the metrics, therefore we compute our metrics similarly to compare our method
with Point’n Move. This way, even though their comparison to the other methods might not be a fair
one, we can still make a fair comparison of our method with theirs. These results are presented in
Table 5.2. It should be noted that scene 1 and 9 from the SPIn-NeRF dataset are excluded from their
results. We see that Point’n Move outperforms our method in terms of PSNR and FID, while ours
outperforms theirs in terms of LPIPS. Our hypothesis is that since our inpainting is more noisy and
the Point’n Move inpainting more “smooth” and averaged out, the peak pixel-wise error of our method
is likely higher, resulting in the inferior PSNR score. As for the inferior FID score, we expect this is
because the inpaintings generated by Point’n Move result in more realistic images, while our patch-
based approach results in more discrepancies caused by a lack of structure in the inpainted area. In
contrast, since our method copies other parts of the scene directly and replicates the texture relatively
well, we likely obtain a good LPIPS score when comparing the entire images, as the inpainted region
looks similar to other parts of the image.
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While GaussianEditor and Gaussian Grouping also perform inpainting, their focus lies more on other
editing tasks. Therefore, the papers do not provide quantitative results for the inpainting process, hence
we do not provide a comparison to their methods here.

5.4. Qualitative results
This section contains our qualitative results. We do not only consider the final inpainting results but
also the intermediate results of different parts of the algorithm in order to see how each part performs
in practice.

First of all, the section features a qualitative comparison to numerous state-of-the-art methods based
on our results on the SPIn-NeRF dataset. Moreover, in order to test our method on different datasets
we also performed inpainting on the Mip-NeRF 360 dataset using custommasks defined by 3D spheres,
as the dataset does not provide inpainting masks and the spheres are easy to define. Fig. 5.14 shows
the original scene contents and the inpainting masks we defined, each designed to remove an object
from the scene (e.g. the bicycle and the bench, the bonsai tree, the table and the patio, the Lego,
the slippers, and the tree stump). For the global masks, we used the same spheres as the inpainting
masks, except with a larger radius (2-4 times larger, varying per scene). This limits the inpainting to
content from its direct surroundings and disregards all the noise farther away in the scene. The figure
also contains the results of our inpainting with the number of Gaussians per point γ = 25. Later in this
section we discuss how the patch size N and the number of Gaussians per point γ affect the results.

The last experiments in this section explore ways to improve the overall inpainting results of the algo-
rithm, such as preprocessing the mesh extracted from the scene. To this end, we use different scenes
for those experiments that specifically allow us to test certain scenarios.

5.4.1. Comparison to state-of-the-art
Fig. 5.1 shows how our method performs compared to numerous state-of-the-art methods. A quick look
at these results shows that our methods is not quite on par with the current state-of-the-art and offers
less visually pleasing inpainting results. The rest of this chapter will dissect the algorithm to analyse
which parts perform well and which cause the relatively poor results compared to other methods.

5.4.2. Surface extraction
Since our method relies on SuGaR for surface extraction of the scene, the results of the SuGaR mesh
extraction heavily affect the surface meshes produced by the first part of the algorithm. As can be
seen in Fig. 5.2a, SuGaR can reconstruct detailed parts of the scene quite well but struggles with
generating a smooth surface for the surrounding area. We observe that, probably also due to the
shape of the Gaussians, the surface often becomes “blobby”. While this does not have to be a problem
for our algorithm it does make it harder to find good nearest neighbours, as more patches will be
considered that do not represent any meaningful part of the scene. In Fig. 5.2c we see that using
Poisson reconstruction to fill the inpainting hole gives good results: the hole is filled and we end up

Original Ground truth SPIn-NeRF OR-NeRF Point’n Move Ours

Figure 5.1: Comparison of our method to different state-of-the-art methods. Except for our own results, images are taken from
the Point’n Move paper [J. Huang and H. Yu 2023].
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(a) SuGaR (b) Masked (c) With Poisson reconstruction (d) Globally masked

Figure 5.2: Results of the surface extraction phase for the Mip-NeRF 360 kitchen scene. (a) The SuGaR mesh, (b) after
removing the vertices inside the inpainting mask with the goal to remove the Lego from the scene, (c) after filling the hole with

Poisson surface reconstruction, and (d) after removing vertices outside the global mask.

(a) Without global mask (b) With global mask

Figure 5.3: Effect of the global mask on the inpainting result for the Mip-NeRF 360 kitchen scene (with the number of
Gaussians per point γ = 40). To show the effect better, we only performed 10 NNF iterations instead of the default 25.

with a smooth surface representation of the inpainting area. To get rid of the noise introduced by the
SuGaR mesh and guide the nearest-neighbour search, it can be useful to define a global mask such
that the algorithm will find better nearest neighbours faster. This results in a shorter execution time, as
we can generally use less NNF iterations to achieve similar-quality inpainting results, but also enhances
inpainting quality by excluding poor candidates from the nearest-neighbour search. Fig. 5.2d shows
how a global mask is applied to the mesh. In this example we used spheres for the inpainting mask
and the global mask, as we did in all of our experiments on the Mip-NeRF 360 scenes. The effect of
the global mask on the inpainting result is shown in Fig. 5.3, clearly demonstrating a large difference.

5.4.3. Nearest-neighbour field
As the nearest-neighbour pairs in Fig. 5.4 demonstrate, the algorithm is able to find similar patches
in the scene well. The patch renders within a pair generally look very similar and we can even see
that some of the pairs feature structural elements that are well matched. This is exactly how we would
expect the algorithm to behave.

Moreover, Fig. 5.5a shows that the algorithm is able to find coherent nearest neighbours to a certain
degree, e.g. groups of nearby patches inside the inpainting mask are mapped to groups of nearby
patches outside the mask. Fig. 5.5b substantiates this by showing that the directions of the mapping
are clustered quite consistently.

Looking closely at the arrows in Fig. 5.5a, we also observe that sometimes multiple patches inside the
mask are mapped to the same target patch. This can cause artefacts in the inpainting result where a
patch is clearly repeated multiple times.
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Figure 5.4: R×R renders of NNF patches during inpainting of the Mip-NeRF 360 kitchen scene (N = 3, ϕ = 2, R = 6). Each
pair of images consists of a patch inside the inpainting mask and its nearest-neighbour patch outside the mask. To make the
figure more compact, we show only half of the actual patches of this NNF. The patches are ordered by hue. The three pairs at

the top are magnified for ease of inspection.

(a) (b)

Figure 5.5: Results of an NNF construction during inpainting of the Mip-NeRF 360 kitchen scene. The colours of the arrows
represent their 2D direction as viewed in the images. (a) The mapping given by the NNF and (b) a vector field representation of

the NNF.



5.4. Qualitative results 25

5.4.4. Optimisation phase
Fig. 5.6 shows the inpainting results in the last iteration before and after the optimisation phase. As
we can see, the optimisation does not have a huge impact on the structure and texture synthesis of the
algorithm, but rather changes the overall appearance of the inpainted region slightly to make patches
blend better together. On closer inspection of the NNF before and after optimisation, as depicted in Fig.
5.7, we see that the algorithm ensures that in some cases the patches inside the inpainting region look
more similar to their nearest neighbour after optimisation, while in other cases they look more blurred
in order to improve the blending with other patches.

(a) Before (b) After

Figure 5.6: Inpainting results in the last iteration before and after optimisation.

Figure 5.7: 8R×8R renders of NNF patches during inpainting of the Mip-NeRF 360 kitchen scene, before and after the
optimisation phase (N = 3, ϕ = 2, R = 6). Each triplet consists of (from left to right): a patch at p ∈ Pin before optimisation,

the same patch after optimisation, and the patch at its nearest neighbour q ∈ Pout. To make the figure more compact, we show
only one third of the actual patches of this NNF. The patches are ordered by hue of the nearest-neighbour patch. The triplets in

the top row are magnified for ease of inspection.
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5.4.5. Ablations
To study the effect of different parameters of our algorithm, we ran numerous ablations. Specifically,
we experimented with the number of Gaussians per point γ and the patch size N .

Number of Gaussians per point
We found that a good setting for the number of Gaussians per point γ is highly scene-dependent. To
study the effect of the parameter, we ran an ablation experiment on the Mip-NeRF 360 dataset keeping
all other parameters constant while varying the number of Gaussians per point γ ∈ {25, 50, 100}. This
value affects the number of points sampled in the finest level of the hierarchy, thereby also affecting
the number of levels in the hierarchy and the number of points in each level. The inpainting results for
the different values of γ are shown in Fig. 5.15.

From the results we see that for larger values of γ the algorithm struggles more with generating a
plausible structure. This is likely because larger patches of Gaussians are copied per point, and as
patches contain their own structures they fit together less well. This effect is clearly visible in the room
scene, where parts of the legs of a chair are unintentionally copied due to the larger patches for copying.

Moreover, the garden scene shows how γ affects the texture synthesis. For smaller values of γ we
see that the inpainted texture contains more small repetitions, while for larger values we get fewer
repetitions, although the repeated areas are larger. Depending on the texture to be inpainted, the
parameter can be adjusted to generate the desired results.

Patch size
To study the effect of the patch size N , we ran an ablation experiment on the Mip-NeRF 360 dataset
keeping all other parameters constant, with the number of Gaussians per point set to γ = 25, while
varying the patch size N ∈ {3, 5, 7}. This change in N affects the NNF search, the inserted Gaussians
at coarser levels of the hierarchy, and the optimisation loss. It does not influence the window size for
copying Gaussians in the finest level of the hierarchy. The inpainting results for the different patch sizes
are shown in Fig. 5.16.

Although in some instances a larger patch size can provide better results, such as for the room scene,
we see that often in the early stages of the algorithm it causes too much global information to be taken
into account. We see that in some scenes, such as the bicycle and kitchen scenes, the border of the
inpainting area becomes more defined and clearly stands out. In contrast, for the room scene we see
that with the small patch size too little global information is taken into account and at the coarsest level
the patches at the centre of the inpainting area do not extend beyond that area. As the algorithm has
no information about what to put there, the patch is mostly black and gets matched with some dark
patch outside the inpainting area, resulting in the arbitrary inpainting result we see in the render.

From these ablations we conclude that there needs to be a balance between the number of Gaussians
per point γ and the patch size N to result in the desired inpainting result. As good values for these
parameters vary highly per scene, one needs to try different settings to obtain a good inpainting.

5.4.6. Depth
While we deal with mostly flat inpainting regions given the masks we defined for the Mip-NeRF 360
dataset, our results on the SPIn-NeRF dataset contain some more 3D inpainting regions. Looking at
the depth maps in Fig. 5.13, we see that the performance of our method in this regard highly varies per
scene. The largest factors affecting this are probably the quality of the SuGaR mesh and the Poisson
reconstruction of the inpainting hole. We observe that the SuGaR mesh often contains some noise,
resulting in artefacts in the inpainting. An example of this is visible in the depth map the scene with the
tree (second row), where the dark red noise is caused by a floater in the mesh. In other scenes we see
that our method struggles with the object removal based on the provided inpainting masks from the
dataset, resulting in artefacts that can be seen in the depth maps of the scenes with the stone bench
(first row) and the camping chair (third row from the bottom), where remainders of the removed object
are still visible. For some scenes, such as the one with the book (second row from the bottom), we
also see smooth depth maps that mostly meet our expectations.
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5.4.7. Image PatchMatch comparison
Since our algorithm is based on the image PatchMatch algorithm, it also suffers from similar limitations.
To analyse the similarities and differences between the two we compare them by inpainting one of
the views in 2D using an open-source PatchMatch implementation3, as shown in Fig. 5.8. We can
see that the algorithms, despite giving quite a different-looking output, suffer from similar issues. As
known about PatchMatch and Fig. 5.8c verifies, we see that the algorithm performs well for texture
synthesis but performs poorly for structure synthesis. For both our algorithm and image PatchMatch
we see that parts of the placemats are extended and look similar to the rest of the placemat, but both
algorithms struggle to complete the borders of the placemats. Since we expect the 3D inpainting task
to be more difficult than image inpainting, it is not a big surprise that our algorithm struggles to complete
these types of scenes well. The major difference that we see between the image version and the 3D
version is that the image version is able to synthesise more coherent areas, whereas our algorithm
shows clearer signs of overlapping patches and looks more “messy”. In the image version, although
the structure of the placemats is still not replicated well, there is a more coherent texture in the middle.

For a more complete analysis, we also ran the image PatchMatch algorithm on test views from the SPIn-
NeRF dataset. These results are shown in Fig. 5.9. It should be noted that the output heavily depends
on the chosen patch size and we only show the best result in the figure. Moreover, we found that a
good choice for the patch size widely varies between different scenes. While the inpainted images
generally look better than our 3D inpainting results, we again see that for most scenes the PatchMatch
algorithm struggles with completing structures well. Since the quality of the output greatly depends on
the parameters of the algorithm, it might be the case that our algorithm is also able to deliver better
results when tweaking the parameters for each scene individually.

(a) Image (b) Mask (c) PatchMatch (d) Ours

Figure 5.8: Comparison of our method with PatchMatch image inpainting. (a) The image used to inpaint with PatchMatch, (b)
the mask used to inpaint with PatchMatch, (c) the PatchMatch image inpainting result (with patch size 3), and (d) our 3D

inpainting result (with the number of Gaussians per point γ = 25).

Figure 5.9: Results of PatchMatch image inpainting on the SPIn-NeRF dataset. For every scene we tried patch sizes 3, 5, 7, 9,
11, 13, 15, 17, and 19. We manually selected the output image we deemed most realistic.

3https://github.com/mauwii/PyPatchMatch

https://github.com/mauwii/PyPatchMatch
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5.4.8. Scene preprocessing
In previous experiments we saw that the surface mesh extracted from a scene heavily influences the
performance of our algorithm. Therefore, we explore in how far preprocessing of the scene can improve
the output. We ran this experiment on the bear statue scene from the Instruct-NeRF2NeRF [Haque
et al. 2023] dataset, which clearly highlights the effect that preprocessing can have. For this scene
we defined quite precise masks using 3D boxes. As for the preprocessing of the scene, we manually
perform the following three steps using the SuperSplat4 editor for the 3D Gaussians and MeshLab5 for
the surface mesh:

1. We remove noise from the 3D Gaussian representation.
2. We remove noise from the mesh.
3. We apply Laplacian smoothing to the mesh.

As shown in Fig. 5.10, preprocessing the scene can dramatically improve the results of our algorithm.
In the experiment for the scene without preprocessing we set the number of Gaussians per point γ = 50
while for the preprocessed scene we chose γ = 600. The large difference in the setting for γ is because
during the preprocessing we trimmed the mesh much more than the Gaussians, resulting in a higher
average number of Gaussians per surface area.

Preprocessing step 1 and 2 are essentially equivalent to applying a more precise global mask to the
scene. Moreover, step 1 is necessary in this case because the trained 3D Gaussians contain inaccu-
racies: some Gaussians that show up as part of the bear statue are actually placed elsewhere in 3D
space. Because of that, when we run our algorithm without preprocessing, we see that our inpainting
mask still leaves parts of the statue in place. Step 3 is performed to ensure that our surface better
represents the actual contents of the scene and the surface normals are more accurate, which is nec-
essary to render patches from their correct direction. The surface extracted by SuGaR is often noisy
and uneven, although we often expect a more flat, smooth output. Since all preprocessing steps taken
essentially boil down to removing inaccuracies from the 3D Gaussians and the surface mesh, we argue
that as code for 3DGS training and surface extraction improves, the performance of our algorithm will
automatically improve with it.

(a) Mesh representation (b) 3DGS representation (c) Mask (projected) (d) Inpainting result (e) Depth map

Figure 5.10: Results of our algorithm with and without preprocessing of the scene. The top row is without preprocessing
(γ = 50), the bottom row with preprocessing (γ = 600).

4https://playcanvas.com/products/supersplat
5https://www.meshlab.net/

https://playcanvas.com/products/supersplat
https://www.meshlab.net/
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5.4.9. Ground-truth mesh
As we saw in previous experiments, the results of our algorithm are heavily impacted by the mesh
extracted by SuGaR. To gauge howmuch this affects the algorithmwe created two 3DGS scenes based
on meshes, such that we already have a ground-truth mesh and do not need to run SuGaR. In order
to train 3DGS scenes based on the meshes, we used the open-source Blender add-on BlenderNeRF6.
We obtained two different meshes to perform experiments on: St. Luke’s United Church in Belledune
(created by Air Digital Photogrammetry under CC Attribution licence) from Sketchfab7 and Coast Rocks
03 (created by Rico Cilliers and Rob Tuytel under CC0 licence) from Poly Haven8.

Fig. 5.11 shows the results we were able to obtain on these scenes. For St. Luke’s United Church
in Belledune we set γ = 75 and for Coast Rocks 03 we set γ = 100. As one can see, our algorithm
performs far better on these scenes than on most of the standard datasets we saw before. Notably,
these results were produced without need of a global mask. The high quality of the mesh thus clearly
makes a difference. Moreover, as the Gaussians were trained using the mesh, the Gaussians are
more regularised (e.g. surface-aligned). This ensures that less noise is introduced when we copy
Gaussians from elsewhere in the scene. We conclude that our patch-based algorithm performs best
when the Gaussians are well aligned to the surface and the surface is approximated well by a mesh.

(a) Original scene (b) Mask (projected) (c) Masked scene (d) Inpainting result (e) Depth map

Figure 5.11: Results of our algorithm on scenes based on ground-truth meshes.

5.4.10. 3D texture synthesis
Lastly, we consider the ability of the algorithm to inpaint 3D textures. Our idea was that the Poisson
reconstruction will provide a smooth surface to tell the algorithm which area needs to be inpainted and
by copying groups of Gaussians from elsewhere in the scene we will preserve the 3D texture that the
Gaussians represent.

As can be seen in the bottom row of Fig. 5.11, the inpainted region contains rocks similar to the other
parts of the scene. This shows that our algorithm is capable of synthesising 3D texture rather well,
although this case is still limited in the sense that it is based on one of the cases with a ground-truth
mesh underlying the scene. Therefore, we conduct one more experiment, namely on the Lego scene
from the synthetic NeRF [Mildenhall et al. 2021] Blender dataset. Although this is a synthetic scene, we
do not use a ground-truth mesh but instead rely on SuGaR to extract the mesh from the scene, in line
with our proposed method. We chose this scene as the regularity of the Lego bricks forms a challenging
case. In contrast, the structure of the rocks we discussed before is not as regular, generally making it
an easier case for inpainting, since the inpainting region is allowed to contain more randomness. The
results on the Lego scene are shown in Fig. 5.12. We ran the experiments with γ = 1100. As can
be seen in Fig. 5.12c, the algorithm struggles completing the surface well. However, by setting all the
vertex normals of the extracted mesh to the vector pointing up from the Lego plane, we ensure that the
surface is completed more flatly and the Gaussians are copied in their expected orientation. As shown
in Fig. 5.12d, this gives better results and the 3D texture of the Lego bricks is replicated well.

6https://github.com/maximeraafat/BlenderNeRF
7https://sketchfab.com/3d-models/st-lukes-united-church-in-belledune-8eae8eb9425b44cfb2287b016056e745
8https://polyhaven.com/a/coast_rocks_03

https://github.com/maximeraafat/BlenderNeRF
https://sketchfab.com/3d-models/st-lukes-united-church-in-belledune-8eae8eb9425b44cfb2287b016056e745
https://polyhaven.com/a/coast_rocks_03
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(a) Original (b) Masked (c) Result without preprocessing

(d) Result with preprocessing (e) Depth map (f) Edges

Figure 5.12: Results of our algorithm on the Lego scene from the synthetic NeRF [Mildenhall et al. 2021] Blender dataset (with
the number of Gaussians per point γ = 1100).
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(a) Original (b) Mask (c) Ground truth (d) Ours (e) Ground-truth depth
map

(f) Ours depth map

Figure 5.13: Results on SPIn-NeRF dataset with the number of Gaussians per point γ = 250. (a) The original 3DGS scene
rendered from one of the test views, (b) projection of the 3D inpainting mask generated by SPIn-NeRF’s multi-view

segmentation, (c) the ground-truth image with the object physically removed from the scene, (d) our inpainting result, (e) a
depth map of the ground truth, and (f) a depth map of our inpainted scene.
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(a) Original scene (b) Inpainting mask (projected) (c) Masked scene (d) Inpainted scene

Figure 5.14: Our results on the Mip-NeRF 360 dataset. (a) The original scene, (b) a projection of the spherical mask we
defined inside the scene, (c) the masked scene, and (d) our inpainting result with the number of Gaussians per point γ = 25.
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γ = 25 γ = 50 γ = 100

Figure 5.15: Comparison of results for different values of the number of Gaussians per point γ.
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N = 3 N = 5 N = 7

Figure 5.16: Comparison of results for different values of the patch size N (with the number of Gaussians per point γ = 25).



6
Discussion

This chapter gives an overview of how we arrived at our final method through different experiments
and discusses the limitations of the method. Moreover, we identify several opportunities for future
work, including patch rotation and combinations with other methods.

6.1. Process
This section highlights some of the different approaches we experimented with to perform 3D inpainting.

6.1.1. 2D prototype
In order to determine whether a patch-based algorithm for 3DGS inpainting could work, we first created
a 2D prototype based on an open-source 2D Gaussians splatting implementation1. Instead of training
a 3D scene based on multiple viewpoints, the 2D version is trained on a single image and the 2D
Gaussians are fitted to resemble the training image. For the 2D prototype, we used an open-source
PatchMatch implementation2 to construct an NNF based on a masked image and then use the NNF
to copy patches of Gaussians to the inpainting area. The results of our 2D prototype are shown in Fig.
6.1. While the implementation applies the same principles as 3DGS, the blending order of overlapping
Gaussians is undefined since there is no depth in the 2D setting. In the 2D implementation the colour
values of overlapping Gaussians are simply added together to compute the final pixel colour. As can
be seen in Fig. 6.1d, this results in artefacts, making some parts of the inpainted area appear brighter
than they should. Since these artefacts are caused by a known limitation of the 2D Gaussian splatting
implementation which is not present in the 3D version, we saw potential for a patch-based inpainting
algorithm to provide solid results in the 3D setting.

(a) Original (b) Masked (c) PatchMatch result (d) 2D prototype result

Figure 6.1: 2D prototype performing patch-based inpainting of a 2D Gaussian splatting “scene”.

1https://github.com/OutofAi/2D-Gaussian-Splatting
2https://github.com/mauwii/PyPatchMatch
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(a) Original 3D scene

(b) Cropped

Figure 6.2: “2D” 3DGS scene.

6.1.2. Voxel-based approach
After creating a promising 2D prototype we moved onto a slightly more 3D setting, such that we could
evaluate the feasibility of a patch-based inpainting algorithm with the actual 3DGS code. We created
a “2D” 3DGS model by cutting a canvas painting out of an actual 3D scene of an art studio3, as shown
in Fig. 6.2. Technically this painting is a 3D scene, however, since it is mostly flat and we always look
at it from the same direction, this simplifies some of the challenges we face in the 3D context, such as
normal estimation.

We initially opted for a voxel-based approach in our algorithm, as this is the most natural translation
from 2D to 3D, allowing us to apply PatchMatch in the exact same way as the original algorithm only
with an extra dimension. For the painting scene this meant we could use an N×N×1 voxel grid and we
could render all (patches of) voxels from the same direction, e.g. the direction looking at the painting.
Most details of the voxel-based algorithm are similar to our final method:

• Patches are rendered to images such that they can be compared pixel-wise in order to construct
the NNF (the difference here being that as we move to actual 3D voxel patches, we render every
voxel to a 1×1 image to get a voxel colour value).

• After construction of the NNF, Gaussians are copied and then optimised by performing train-
ing iterations based on patch renders inside the inpainting mask and their ground-truth nearest-
neighbour patch renders.

• A multi-scale approach is enabled by inserting Gaussians inside the inpainting mask with their
colours based on the pixel values of the nearest-neighbour patch renders.

Fig. 6.3 shows how our voxel-based algorithm is able to remove a person from the painting. Looking
closely at the results we see that the algorithm generates a plausible inpainting and that the optimisation
phase ensures a more natural blend between the copied Gaussians and their surroundings.

When we moved on to actual 3D scenes with our voxel-based approach we encountered numerous
challenges. For testing our algorithm we first created a simple scene in Blender consisting of a textured
cube. It was immediately noticeable that running the algorithm on the 3D voxel grid (e.g. N×N×N
voxels) drastically slowed down the execution, making it difficult to test and debug our code. Therefore,
we first profiled the code and found that one of the main bottlenecks was determining which Gaussians
to render for a given voxel. We implemented numerous optimisations such as a vectorised box-ellipsoid
intersection algorithm and an octree acceleration structure to make this process faster and reduce the
bottleneck. In our experiments on the textured cube scene we were able to speed up execution time
of the algorithm by about 90% with these improvements, allowing us to actually test and debug the
algorithm within reasonable time. When carefully inspecting the workings of the algorithm step by step,
the larger issue with the voxel-based approach became apparent: inside the cube (e.g. behind the
surface), some “random” Gaussians are present, resulting in voxel values that are not particularly well-
defined. These values result in oddities once we start comparing 3D voxel patches and eventually
cause poor nearest-neighbour matches. Since 3DGS scenes often represent surfaces, we expected
that this issue would occur for most other scenes as well. Therefore, we considered an approach based

3https://poly.cam/capture/17b53e95-96bf-42a3-9a20-b4eb06fb0a84
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Original Masked 16×16 resolution 32×32 resolution

64×64 resolution 128×128 resolution Result after copying Gaussians Result after optimisation

Figure 6.3: Inpainting process for removal of a person from the “2D” 3DGS painting scene. Zoom in to see the magnified
inpainting area at the bottom-right of the plots of the original and the results.

on surface extraction to be more reliable than the voxel-based approach. This idea resulted in the final
method presented in Chapter 4.

6.2. Limitations and future work
From our results we see that generally the NNF is quite well constructed and the algorithm is able to
identify similar-looking parts of the scene. One of the biggest limitations in the patch matching is that
we always assume the same up-vector, restricting the search space for nearest-neighbour candidates.
A possible improvement would be to allow rotation of patches, such that we could also identify matches
when they are oriented differently throughout the scene. This might also help to ensure that patches
align better when copying Gaussians based on the NNF. Similar to the generalised PatchMatch al-
gorithm by Barnes; Shechtman; Goldman, et al. [2010], the NNF search space could be extended to
include not only an offset but also a rotation. The propagation and random search of our algorithm
could be extended in a similar way as theirs in order to support the rotation.

Moreover, as our method heavily depends on SuGaR for mesh extraction, it also suffers from the same
limitations. Although SuGaR is able to extract high-quality meshes for some 3DGS scenes, it is not
guaranteed that themeshes will be of good quality and it often requires the user to tweak the parameters
of the algorithm to get better results. During our experiments we saw that the meshes often contain
a lot of noise, making the use of a global mask in our method a necessity rather than an optional
improvement. We also saw that for scenes based on meshes the algorithm performed far better, even
without a global mask. To improve our results on other scenes, better mesh extraction algorithms for
3DGS are needed. Alternatively, the user can use the SuGaR mesh as a starting point and manually
refine the mesh to achieve better results with our method.

Furthermore, since we rely on Poisson reconstruction to fill the hole in the mesh, our method has a
limited capacity to recognise bigger structures in the scene. The Poisson reconstruction often produces
a rather smooth surface, making it harder to inpaint parts of scenes with sharper edges well. Despite
struggling with these larger 3D structures, the algorithm is capable of inpainting non-planar details.

Moreover, as seen in the results, similar to PatchMatch the algorithm performs decently for texture
synthesis but struggles with structure synthesis. This problem could be mitigated by using an inpainting
prior before running our algorithm, such that the structure of the inpainting is guided mostly by the prior.
One of the previously mentioned methods that use LaMa image inpainting to inpaint 3DGS scenes [J.
Wang et al. 2024; Ye et al. 2023; J. Huang and H. Yu 2023] could be employed first as the inpainting
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prior, after which some of the blurry artefacts could be fixed by our method, providing a better texture.

Lastly, it would be interesting to see if our previously discussed voxel-based approach could perform
better when combined with SuGaR’s hybrid representation combining a triangle mesh with 3D Gaus-
sians. In the hybrid representation Gaussians are placed strictly inside triangles of the refined mesh,
e.g. on the extracted surface. Since this should ensure that no “random” Gaussians are present be-
hind the surface, which greatly hindered our voxel-based approach, it could be an opportunity for this
approach to provide improved results.



7
Conclusion

In our work we have shown that a patch-based algorithm for 3D inpainting is feasible. However, similar
to the PatchMatch image inpainting algorithm that our method is inspired by, it struggles with more
advanced structural inpainting tasks, even though it is able to replicate textures relatively well.

The main problem that we identified with multi-view inpainting based on image inpainting from differ-
ent viewpoints was that the inpaintings could be wildly different, resulting in blurry artefacts within the
inpainted region. We aimed to avoid this problem by taking an entirely different approach to multi-view
inpainting, operating directly on the 3D content of the scene. While our method succeeds in causing
less blurry artefacts, it often introduces different artefacts, due to the inherent limitations of patch-based
inpainting methods. Recent methods based on diffusion priors try to solve the problem in a different
way by guiding the image inpaintings to be more consistent across viewpoints. Generally, these meth-
ods heavily reduce the blurry artefacts without introducing other types of artefacts and are therefore
likely to be a more reliable alternative for multi-view inpainting.

Nevertheless, our work offers new insights into the direction of inpainting 3DGS scenes. For example,
through our experiments we discovered the different challenges and opportunities of a voxel-based
inpainting approach and a surface-based approach. These findings provide a deeper understanding of
3DGS editing in general.
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