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Summary

The use of a single set of outriggers equipped with oil viscous dampers increases the

damping ratio of tall buildings in about 6–10%, depending on the loading conditions.

However, could this ratio be further increased by the addition of another set of out-

riggers? Should this additional set include dampers too? To answer these questions,

several double damped outrigger configurations for tall buildings are investigated

and compared with an optimally designed single damped outrigger, located at eleva-

tion 0.7 of the total building's height (h). Using free vibration, double outrigger config-

urations increasing damping up to a ratio equal to the single‐based optimal are

identified. Next, selected configurations are subjected to several levels of eight

ground motions to compare their capability for avoiding damage under critical excita-

tions. Last, a simplified economic analysis highlights the advantages of each optimal

configuration in terms of cost savings. The results show that, within the boundaries

of this study, combining a damped outrigger at 0.5h with a conventional outrigger

at 0.7h is more effective in reducing hysteretic energy ratios and economically viable

if compared with a single damped outrigger solution. Moreover, double damped

outrigger configurations for tall buildings exhibit broader display of optimal combina-

tions, which offer flexibility of design to the high‐rise architecture.

KEYWORDS

cost savings, damped outrigger, energy dissipation, strong earthquakes, tall buildings, viscous

damper
1 | INTRODUCTION

Outrigger systems consist of a series of cantilever truss beams or shear walls connecting the building core with the perimeter columns. As result,

the axial forces acting at the end of the outriggers help the reduction of the total deflection of tall buildings, by increasing the restoring moment.

Dampers have been introduced between the perimeter columns and the outriggers resulting in an increase in the overall damping of the

building.[1] A few implementations of this system, called damped outrigger, have been reported elsewhere.[2–4] Both practice and research have

shown that an optimal outrigger location and damping coefficient of the dampers largely influence the increase of the damping ratio.[1,3–8] Under

an optimal configuration, damped outriggers are meant to absorb the excessive earthquake energy that would otherwise cause damage in the

structure. Nevertheless, under large or severe earthquake‐induced motion, some plastic hinges or failures may be produced in the host structure

before the dampers are able to dissipate the total input energy.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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Despite the need of an assessment of the building response by which the damage potential can be quantified, most of the extensive studies

on damped outriggers for seismic control of tall buildings focus on the reduction of the response in terms of peak values.[5,6,8–11] Only few studies

consider the combined influence of the intensity, frequency content, and duration of these large earthquakes in the control performance of the

damped outriggers. Energy‐based design methods have the potential to address both the effect of the duration of the earthquakes and the hys-

teretic behaviour of structure.[12] As addressed by Uang and Bertero,[13] an energy‐based design method is based on the premise that the energy

demand during an earthquake can be predicted as the energy supplied by the structure can be therefore defined. Consequently, a correct design

implies that the energy supply is larger than the energy demand. On the other hand, the application of damped outriggers for reducing the build-

ing's seismic response lies on the assumption that dampers will absorb the total earthquake energy, as the rest of the structure remains elastic

during the seismic event. Nevertheless, under large or severe earthquake‐induced motion, some plastic hinges or failures may be produced in

the structure before the dampers are able to dissipate the total input energy. Hysteretic behaviour of the host structure, then, needs to be eval-

uated along the dampers' performance in order to determine how the earthquake input energy is distributed through all the components.

This article provides an analytical framework to comparatively assess the distribution of seismic energy in tall buildings equipped with viscous

damped outriggers, that is, with outriggers that have one or more viscous damper installed between their ends and the perimeter columns.

Because previous research developed by the authors showed that the energy dissipation capacity of a single set of outrigger will not prevent dam-

age under strong earthquakes,[14] a subsequent question was whether adding another set of outriggers would enhance such performance. In other

words, if a single damped outrigger structure is designed to reach an optimal damping ratio, could this damping ratio still be increased by the addi-

tion of another set of outriggers? Should this additional set of outriggers be equipped with dampers too? In order to investigate the benefit of an

extra set of damped outriggers, a comparative study is presented, wherein several double set of outrigger configurations for tall buildings are

investigated and compared with an optimally designed single damped outrigger, located at elevation 0.7 of the total building's height (h). First,

using free vibration analyses, those double outrigger configurations increasing damping up to a ratio equal or larger than that of the optimal single

outrigger are identified. Second, all these hereafter optimal configurations are subjected to small, moderate, strong, and severe earthquake levels

of eight ground motions to critically compare the capability of such configurations for dissipating seismic energy and thus avoiding extended dam-

age under critical excitations.

Finally, because practice has shown that with the addition of supplemental damping, construction costs are reduced,[4] a simplified economic

analysis is applied to investigate possible advantages of each optimal configuration in terms of steel reinforcement savings versus damper cost, as

a consequence of the reduction in overturning moment (OTM) and base shear. The results show that, within the boundaries of this study, com-

bining a damped outrigger at 0.5h with a conventional outrigger at 0.7h is both more effective in reduce hysteretic energy ratios under strong

earthquakes and economically viable if compared with a single damped outrigger solution.
2 | METHODOLOGY

2.1 | Analytical models and non‐linear time‐history analyses

The analytical models used in this study are based on the existing Shangri‐La building in Manila, Philippines, as described in Willford and Smith.[4]

Although the actual 60‐storey Shangri‐La building features wall‐type or deep beam outriggers, a truss girder model for the outrigger configuration

is proposed in this study as it enables a more efficient use of the space for functional purposes. The 2D models described here consider only two

and four outriggers per side, each pair modelled as a single 7‐m‐high outrigger, as displayed in Figure 1. In the models, both building plan and
FIGURE 1 Analytical outrigger building models: (a) single damped, (b) double damped, (c) double fixed, (d) combined damped and fixed, and (e)
combined fixed and damped
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distribution of resistant elements are symmetrical so the lateral stiffness in two orthogonal directions is assumed equal. Nodal masses were added

to account for the load of secondary structural components, such as slabs and steel frames. The core is an 18 m × 18 m reinforced concrete tube,

with a constant thickness of 0.75 m. The finite element (FE) model of the core is modelled as a Bernoulli–Euler cantilever beam type that is dom-

inated by bending deformation. The area of the reinforced concrete perimeter columns is 1.30 m2.

Both core and outrigger were modelled using non‐linear settings, as they are expected to be the major sources of hysteretic energy dissipa-

tion. The analytical model described here, therefore, considers the use of general non‐linear material models throughout almost the whole FE

model as specified by Diana‐FEA software (2016).[15] The total strain crack model is used to define the non‐linear behaviour of the concrete, based

on a bi‐linear stress–strain relationship as defined in Eurocode 2.[16] Both the influence of the lateral confinement and the lateral influence of

cracking in the reduction of strength after cracking are considered. The reduction of the Poisson effect after cracking is also considered because

such effect ceases to exist when the material cracks. Maximum longitudinal reinforcement was provided only over the lower section of the build-

ing (six floors) and decreased towards the upper levels. This distribution was defined following the capacity flexural strength design envelope as

proposed by Boivin and Paultre,[17] with a minimum reinforcement[18] ratio = 0.25%. In the case of steel, the plasticity model of Von Mises and an

ideal elasto‐plastic model are considered for its constitutive behaviour, that is, strain hardening effect is not taken into account. This is considered

as a post‐yield reserve of ductility. Properties of the steel are derived from Eurocode 3.[19] More details on the non‐linear settings of these FE

models in Diana‐FEA can be found elsewhere.[14]

Finally, because the dampers used in this study are velocity‐dependant, the benefit of the increased damping they provided is only included

when considering dynamic loading. Therefore, time‐history response analysis in Diana‐FEA is used for accounting the influence of the supplemen-

tal damping in the response reduction.
2.2 | Optimal increase of inherent damping ratio (ζ) through free vibration analyses

In order to set a valid comparative framework, all models present configurations that are optimal from the perspective of increasing the inherent

damping ratio (ζ) of the bare structure, that is, 2%. Sensitivity analyses were conducted on several configurations where both outrigger locations

(λ) and dampers' damping coefficient (Cd) were systematically modified in order to obtain significant increases of ζ. A logarithmic decrement tech-

nique, under free vibration, was used to determine such optimal ζ.

For simplicity, λ is defined as multiplicand of the total height H, ranging between 0.1 and 1.0 at intervals of 0.1. The variation of Cd, nonethe-

less, is less straightforward and requires performing sensitivity analyses before defining a range of feasible values. For example, in the case of a

single damped outrigger, values smaller than 1.5E + 03 kN‐s/m have no influence, and the building behaves as a cantilever beam, that is, without

the contribution of the outriggers; values larger than 1.5E + 06 kN‐s/m dynamically stiffen the damper, and the building behaves similarly to one

equipped with conventional (or undamped) outriggers. Although the optimal value for a single damped outrigger is about 9.8E + 04 kN‐s/m, the

variation in the response does not linearly follow the variation at regular intervals, departing from this optimal Cd. It was found that a range

between 2.4E + 04 and 6.72E + 5, using intervals of 7.2E + 04 kN‐s/m, produces substantial variations in the building's response without

incrementing the number of computational simulations. Evidently, this range is the same for all the studied models.

2.3 | Energy balance equations

The equation governing the dynamic response of a multi‐degree of freedom, such as a tall building, can take the form

M€x þ C _x þ Kx ¼ −MΓ€xg; (1)

where M and K are the diagonal lumped mass and stiffness matrices, respectively; C is the damping matrix computed considering Rayleigh

damping; x is the column vector of relative displacements of the node mass with respect to ground; €xg is the one‐dimensional ground acceleration;

and Γ is the influence vector that accounts for the effect of ground excitation on a specific degree of freedom of the structure. If Equation (1) is

multiplied by the transpose of the relative velocity vector _xt and integrated over the entire duration of the ground motion (0‐t), the equation of

motion can be expressed in terms of the energy balance equation as follows:

∫
t

0 _x
TM€xdtþ ∫

t

0 _x
TC _xdtþ ∫

t

0 _x
TΛCd _xd

κdtþ ∫
t

0 _x
TKxdt ¼ −∫

t

0 _x
TMΓ€xgdt; (2)

where Λ is the location matrix of the dampers, associated to the outrigger location λ; Cd is the damping coefficient of the viscous dampers; _xd is the

velocity across the damper; and κ is the exponent value that controls the linear/non‐linear behaviour of the damper. In this case, κ = 1.

All terms in Equation (2) can be written separately as

EK ¼ ∫
t

0 _x
TM€x dt ¼ 1

2
_xTM _x ; ED ¼ ∫

t

0 _x
TC _x dt ; Edampers ¼ ∫

t

0 _x
TΛCd _xd

κ dt EA ¼ ∫
t

0 _x
TKx dt ; EI ¼ −∫

t

0 _x
TMΓ€xg dt; (3)

where EK, ED, Edampers, EA, and EI are the kinetic, (inherent) damping, dampers (supplemental damping), absorbed, and input energies, respectively.

Moreover, because the structure absorbs energy by a combination of elastic and inelastic mechanisms, EA can also be defined as
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EA ¼ ES þ EH ; ES ¼ 1
2
_xTKx ; EH ¼ ∫fs x − xyield

� �
dxþ ∫Mb θ − θyield

� �
dθ; (4)

where ES and EH are the elastic strain and hysteretic energies, respectively; f s is the restoring force; Mb is the bending moment; and θ is the asso-

ciated angle of rotation. Due to the assumption of a Bernoulli beam in the modelling of the core and the outrigger frame, stresses and strains

derived from shear forces are not considered in the derivation of EH.

Finally, replacing Equations (3) and (4) in Equation (2), the energy balance equation for a multi‐degree‐of‐freedom system is given by

EK þ ED þ Edampers þ ES þ EH ¼ EI: (5)

Although the exponent κ in Equations (2)–(3) can be varied[3] between 0.15 and 2, in all the analysis in this study κ = 1, implying that the

damping forces provided by the damper will be linearly proportional to the velocity. The use of κ~ = 2 implies high forces at lower velocities,

whereas the opposite occurs when lower values of κ are used. Under strong earthquake motions, the use of a lower exponent might lead to

the insensitivity of the dampers to low velocities, whereas the use of a linear exponent might lead to excessive damping forces, if compared with

the wind damping.[3] The reason for κ = 1 is that comparatively excessive damping forces may help understand the role of the outrigger's bending

and shear stiffness in the distribution of seismic energy in the building structure. If, as a result of this assumption, the damping forces are indeed

excessive, the use of a relief valve may help to avoid their negative effects over the outrigger structure.
2.4 | Assessment of the distribution of seismic energy in a tall building

In an energy‐based design of buildings, the first five terms in Equation (5) considered the energy capacity of the structure, whereas the right‐hand‐

side term considered the energy demand. From a seismic design perspective, it is obvious that the capacity of the structure should be larger than

the response demand, that is, energy capacity > energy demand. For a non‐linear system subjected to ground motions, strain and kinetic energies

are relatively small, and at the end of the response, both EK and ES become zero. Hence, they are not affected by the duration of strong motion,[12]

and it is valid to assume that, by the end of the motion, EI is mostly defined by the combined effect of damping energies (ED + Edampers) and hys-

teretic energy (EH) dissipation. On the other hand, maximum damping and hysteretic energies show the energy dissipation capacity that can be

used to enhance the design and limit the structural damage. Therefore, insights on how these energies are related may be more significant for

the assessment of the seismic energy distribution in the damped outriggers, than spotting single‐based performances. These relationships can

be expressed by (a) the ratio of hysteretic‐to‐input energy, defined as the hysteresis energy ratio EH/EI; (b) the ratio of damping‐to‐input energy,

defined as the inherent viscous damping energy ratio ED/EI; and (c) the ratio of dampers‐to‐input energy, defined as the supplemental damping

ratio Edampers/EI. Whereas EH/EI = 1 implies that the total change in input energy is dissipated by extended damage and/or failure of the structure,

a value of zero implies no structural damage.[20] Furthermore, EH/EI = 0 implies elastic behaviour in all the elements of the structure, during the

entire ground motion. Because this latter case is highly unlikely under strong and severe earthquake levels, the purpose of the following studies

is to determine which outrigger configurations extend the threshold where energy dissipation due to hysteresis can be fully replaced by energy

dissipated through the action of viscous dampers. Finally, in this study, all energies are computed using relative coordinates as the authors believe

that the use of relative energy terms instead of absolute ones is more meaningful for engineering applications. For an extended discussion on the

subject, the reader is referred to Morales‐Beltran.[21]
2.5 | Earthquake levels

Eight earthquake records were used in the analysis. These records were scaled down/up based on peak ground velocity rather than on peak

ground acceleration. This is because a velocity‐based assessment framework is considered to be more meaningful for structures whose expected

improved performance relies on the addition of velocity‐dependent devices. The elastic threshold was set at velocity amplitudes around 0.9 m/s.

Ground velocity amplitudes up to 0.5, 1.0, 1.5 m/s, and beyond were classified as small, moderate, strong, and severe earthquakes, respectively

(Table 1). Strong levels of five ground motions that induced damage in the structures are displayed in Figure 2; there, alongside the plot of the

accelerations, the input energy spectrum relative to each ground motion is also displayed. These spectra allow a comparison among the levels

of input energy that is introduced to a single‐degree‐of‐freedom system, with mass = 1 kN, inherent damping ratio (ζ) = 2%, and fundamental

period T ranging between 0.1 and 7 s and subjected to different ground motions. In Figure 3, severe levels of other two ground motions that

induced damage in the structure are displayed. Strong levels of these two records (Northridge and El Maule) did not cause damage to the struc-

ture. In Figure 4, severe level of the Michoacan earthquake is displayed. Note that this earthquake did not produce any damage to the structures

at all. The damage threshold of the structures seems to be associated with the high levels of input energy introduced by the first period of vibra-

tion (Izmit‐Kocaeli), by both the first and second periods (El Centro‐270 and New Zealand), or by the second period alone (Kobe, El Centro‐180,

Northridge, and El Maule). These earthquake records were downloaded via the Strong‐motion Virtual Data Center (CESMD).[22]



FIGURE 2 Five (out of eight) scaled ground motion records used in this study. Displayed accelerations, corresponding to strong earthquake level,
caused damage to the single damped outrigger structure

TABLE 1 Selected ground motions and factors chosen to scale them to the four earthquake levels used in this study

No. Event/Station/Component PGA (g) PGV (m/s) PGA/PGV

Factors to scale earthquakes to

Small Moderate Strong Severe

1 Izmit‐Kocaeli, Yarimca, 90 0.230 0.91 2.54 0.50 1.00 1.50 2.50

2 Michoacan, SCT1, N90W 0.158 0.57 2.76 0.80 1.60 2.50 4.00

3 El Centro, no.117, 270 0.210 0.37 5.69 1.25 2.50 4.00 6.70

4 El Maule, Concepcion, Long. 0.393 0.68 5.81 0.70 1.40 2.20 3.60

5 Northridge, Newhall–County Fire, 90 0.580 0.75 7.75 0.65 1.25 2.00 3.30

6 New Zealand, Greendale, N55W 0.738 0.95 7.81 0.50 1.00 1.50 2.50

7 Kobe, KJMA, 90 0.600 0.74 8.07 0.65 1.25 2.00 3.30

8 El Centro, no.117, 180 0.342 0.33 10.22 1.40 2.80 4.40 7.00

Note. PGA: peak ground acceleration; PGV: peak ground velocity.
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3 | OPTIMAL DAMPING RATIO (Ζ ) UNDER FEE VIBRATION

All the optimal inherent damping ratios described hereafter are in absolute values, that is, the original damping ratio = 2% is included in these opti-

mal ratios. Hence, an optimized ζ = 8% represents a gain of 6% in damping.
3.1 | Single damped outrigger

Optimized ζ = 8% is obtained when the single damped outrigger is at λ = 0.7–0.8 and Cd = 9.60E + 04 kN‐s/m (Figure 5).



FIGURE 3 Two (out of eight) scaled ground motion records used in this study. Displayed accelerations, corresponding to severe earthquake
level, caused damage to the single damped outrigger structure

FIGURE 4 One of the eight scaled ground motion record used in this study. Displayed accelerations, corresponding to severe earthquake level,
did not cause damage to any of the outrigger structures

FIGURE 5 Optimal ζ in absolute values under a single damped outrigger configuration
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3.2 | Double damped outriggers

Optimized ζ = 8.8% is obtained when the first set of damped outriggers (Outrigger 1) is at λ = 0.5 and the second one (Outrigger 2) at λ = 0.7–0.8

(Figure 6). The optimal Cd distribution at Outrigger 1 was first evaluated (although not showed here for the sake of brevity), resulting in a larger ζ

obtained when Cd = 1.68E + 05 kN‐s/m, and hence, this value is assumed optimal for the study of the Cd distribution at Outrigger 2. The optimized

ζ = 8.8% is obtained when Cd values at Outrigger 2 are 3.84E + 05 (Cd6) and 4.56E + 05 (Cd7) kN‐s/m, for λ = 0.8 and 0.7, respectively. Because it

is assumed that a lower Cd implies the use of either fewer or more economical devices, the optimal double damped outriggers structure attaches

the second set of outriggers at λ = 0.8.

3.3 | Double fixed outriggers

Compared with ζ = 2% given by the cantilevered core wall, the use of two sets of fixed outriggers is decreasing the damping to 1.4–1.8%, depend-

ing on the combination of outriggers' locations (Figure 7). In this context, the optimized ζ = 1.8% is obtained when the first set of fixed outriggers



FIGURE 6 Optimal ζ (absolute values) under a double damped outrigger configuration (Cd outrigger 1 = 1.68E + 05 kN‐s/m) and Cd distribution
at Outrigger 2 according to optimal λ combinations

FIGURE 7 Optimal ζ (absolute values) under a double fixed outrigger configuration
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(Outrigger 1) is at λ = 0.8 and the second one (Outrigger 2) at λ = 0.9. The result shows that the optimum positions for the two fixed outriggers are

very close to each other. This basically indicates that a single fixed outrigger would be enough and possibly more economical than implementing

two fixed outriggers in the structure.

3.4 | Combined damped and fixed outriggers

Optimized ζ = 8.6% is obtained when the lower set of damped outriggers is at λ1 = 0.5 and the second set of fixed outriggers is at λ2 = 0.7

(Figure 8). Cd of the dampers attached to Outrigger 1 is 1.68E + 05 kN‐s/m.

3.5 | Combined fixed and damped outriggers

Optimized ζ = 6.2% is obtained when the lower set of fixed outriggers is at λ1 = 0.1 and the second set of damped outriggers is at λ2 = 0.7, which is

slightly better than that at 0.6 (Figure 9). Cd of the dampers attached to Outrigger 2 is 9.60E + 04 kN‐s/m. This result is comparable with Figure 5

in which the structure involves only one damped outrigger and hence, leading to the thought that the configuration of a fixed and a damped out-

rigger is not economical.

4 | ENERGY DISSIPATION UNDER STRONG EARTHQUAKES

Due to space constraints, only optimal configurations—based on increased ζ—were further studied. Hereafter, single damped, double damped, and

combined damped and fixed outriggers refer to a single damped outrigger at λ = 0.7, to a set of double damped outriggers at λ = 0.5 and 0.8, and to

a combined damped outrigger (λ = 0.5) plus a fixed outrigger (λ = 0.7), respectively.



FIGURE 8 Optimal ζ (absolute values) under a combined damped (λ1) and fixed outrigger (λ2) configuration and Cd distribution according to
optimal λ combinations

FIGURE 9 Optimal ζ (absolute values) under a combined fixed (λ1) and damped outrigger (λ2) configuration and Cd distribution according to
optimal λ combinations
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In order to generate a valid parameter for comparison, the scattered data produced by the energy‐based assessment of the structures sub-

jected to each earthquake record were fitted into a trend line using the function polyfit and polyval in Matlab.[23]

4.1 | Single damped outriggers

Despite the variations displayed by the individual plots—corresponding to each earthquake—the trend lines of ED/EI and Edampers/EI are almost

equal for the severe and strong levels of the selected ground motions (Figure 10). Hysteretic energy distribution presents, nevertheless, a small

increase (from 0.14 to 0.19) under severe levels due to the additional non‐linear performance of the structure under El Maule and Northridge

earthquakes. Michoacan earthquake did not produce structural damage.

The reason why in average ED > Edampers is related with the number and types of earthquake records selected for the study. For example, if

only the records of Izmit‐Kocaeli, Michoacan, and El Centro‐270 had been considered, the figure would display a trend where Edampers > ED, by a

large extent. If the records of El Centro‐180, Kobe, and Northridge are considered, the plot would show again a trend ED > Edampers but, this time,

exhibiting a larger difference. The specific reason why under some earthquakes ED > Edampers is because of their very low peak ground accelera-

tion/peak ground velocity ratio (Table 1), which implies that the larger the velocity and the smaller the acceleration of an earthquake, the better

the performance of the dampers. The only exception to this “rule” is the New Zealand record, whose influence seems to be rather associated with

the “pulses‐like” ground motion.

On the other hand, the reason why it takes longer for Edampers to reach a constant value seems to be associated with the fact that the source

of ED is the core. Whereas dissipation of energy by the core begins with the ground motion (at instant t = 1), the actions of dampers only begin

when the building response has reached some rotation at the level of the damped outriggers, which occurs later on.

4.2 | Double damped outriggers

When increasing the ground motion from strong to severe levels (Figure 11), the use of a double set of damped outriggers does not present

significant differences in the average energy dissipation due to structural damping (~45%), dampers (~40%), and hysteresis (~13%). However, if



FIGURE 10 Energy dissipation ratios of the single damped outrigger under strong (upper row) and severe (lower row) levels of the selected eight
earthquakes
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compared with the average energy dissipated by the single damped outrigger, it can be noticed a decrease from 0.19 to 0.13 in the hysteretic

energy dissipation and an increase from 0.30 to 0.40 in the dampers energy dissipation. Whereas the increase in the energy dissipated by the

action of the viscous dampers may be explained by the extra number of dampers, the reduction in the average hysteretic energy is derived from

the individual reduction in the hysteretic energy ratio of the structure under each earthquake. In this sense, notorious is the fact that under severe

levels of El Maule and Northridge earthquakes, EH/EI is very small if compared with similar response of the single configuration. In simple words,

under severe levels of certain earthquakes, the double damped outrigger reduces the damage to a minimum.
4.3 | Combined damped and fixed outriggers

In similar fashion with the previous two configurations, when the level of ground motions increases from strong to severe, the combined damped

and fixed outriggers configuration does not present significant variations in the energy dissipation ratios (Figure 12). If compared with the single

configuration, nevertheless, there is a reduction in the average energy dissipation due to hysteresis from 0.19 to 0.15, in the case of the severe

level. As in the double damped case, this reduction can be attributed to the small contribution of the hysteretic energy of the structure when sub-

jected to severe level of El Maule and Northridge earthquakes.



FIGURE 11 Energy dissipation ratios of the double damped outrigger under strong (upper row) and severe (lower row) levels of the selected
eight earthquakes
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5 | DECREASE IN STRUCTURAL RESPONSE

5.1 | Peak interstorey drift

The interstorey drift was normalized by the target drift = hs/555, where hs = storey height. Values larger than 1.0 are assumed to likely produce

damage in the structure. The displayed trend line in Figure 13 is the average of the peak interstorey drift of the structures subjected to the four

different earthquake levels. Despite small variations in the plots, there are no significant differences between single, double, and combined config-

urations in terms of reducing drifts. Moreover, the locations of these maxima values—except for two specific cases—are always among the five

upper floors, that is, between the 55th and 60th floor. The two exceptions are the single and combined configurations, under the severe level

of Michoacan earthquake, whose peak interstorey drifts occur at the 53rd and 54th floor, respectively.
5.2 | Peak accelerations

Despite some individual variations (e.g., severe level of Northridge case), the average peak accelerations remain fairly invariable for all the studied

cases (Figure 14). Equally steady is the location of the peak acceleration at the building's roof, except for the strong and severe levels of Kobe

earthquake, under which the peak acceleration takes place at the 32nd floor.



FIGURE 12 Energy dissipation ratios of the combined damped and fixed outrigger under strong (upper row) and severe (lower row) levels of the

selected eight earthquakes

FIGURE 13 Normalized peak interstorey drifts of the studied outrigger configurations
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5.3 | Peak base shear

The peak base shear plots resulting from the different configurations subjected to all levels of the selected ground motions are displayed in

Figure 15. Peak base shear was normalized by the total seismic mass (W) of each configuration: 8.05E + 04, 8.10E + 04, and 8.08E + 04 tons



FIGURE 14 Peak accelerations (m/s2) of the studied outrigger configurations

FIGURE 15 Normalized peak base shear (V/W) of the studied outrigger structures subjected to four earthquake levels of all ground motions
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for single, double, and combined outriggers, respectively. Despite the individual variations, the trend lines in each plot of Figure 15 do not reveal

substantial variation between the different configurations evaluated.
5.4 | Stresses and OTM

Although peaks of OTM and stresses might not occur at the same instant of the time‐history of an earthquake, plots addressing the relationship

between these peaks were elaborated to study their mutual influence in the non‐linear structural response. Peak OTMs were normalized by the

maximum OTM produced by a ground motion (Kobe earthquake in all cases); maximum stresses were normalized by the yielding stress; thus,

σ/σyield = 1 represents the inelastic threshold. From the plots displayed in Figure 16, it can be noticed that (a) there is no substantial difference

between the response trend lines (average) of each configuration, and (b) inelastic responses are triggered when peak OTMs are ~60% of the

maximum OTM, for all the evaluated configurations.

In addition, all the non‐linear responses induced in the single, double, and combined configurations by the strong and severe level of the

selected earthquakes were provoked by the overpass of the core's tensile strength, that is, by yielding of the longitudinal reinforcement. As

expected, all non‐linearities—for all the cases—took place in the plastic hinge region of the core, that is, between the first and sixth floor.

Because all damage was induced in the core, the response of all outrigger frames—for all models—remained elastic, regardless of the level and

the ground motion applied (Figure 17), indicating that no damage was produced in the outrigger. However, compared with the single damped out-

rigger, there is a clear decrease in the stress levels of the outrigger frame in both double and combined configurations. Because all the outrigger

frames are modelled with I steel profiles, this decrease in the stress levels may convey cost‐saving designs of double and combined configurations,

due to the associated reduction in the required size of the steel profiles. Finally, when ratio Mθ/Mθ‐max is ~0.6 (inelastic threshold of the core), in

the double configuration, there is a change in slope of the trend line, indicating that some of the stress is reduced due to the core's damage.

In the case of the perimeter columns (Figure 18), there is a substantial increase in the stress levels when two sets of damped outriggers are

used. At the same time, there is no difference between stress levels of the columns between the single and combined configurations. This phe-

nomenon can be explained by the dynamic stiffness provided by the addition of several viscous dampers in the double configuration, which

increases the axial forces over the perimeter columns, whose sections remained the same for all configurations, and hence, axial stress levels

are larger than those resulting from configurations where there is only one set of damped outriggers, that is, single and combined configurations.



FIGURE 16 Normalized core stress (σ/σyield) to normalized overturning moment (Mθ/Mθ‐max) of the single (upper row), double (middle row), and
combined (lower row) outrigger configurations subjected to four earthquake levels of all ground motions
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6 | SIMPLIFIED ECONOMIC EVALUATION

Practical relevance of the current work was studied by conducting a simple economic evaluation of the analytical models, which possess altered

number of outriggers and viscous damper configurations. The alternative hypothesis was, using outriggers combined with oil viscous dampers

causes a significant reduction in the amount of required reinforcement steel at the building core, which in turn will also cause a decrease in rein-

forcement steel costs. Nevertheless, the additional costs incurred through introduction of oil viscous dampers to the structural system must be

addressed as well. Therefore, in this simplified approach, the current work solely considered the trade‐off between the material costs of reinforce-

ment steel at the building core against the costs of viscous dampers. Acknowledging such costs as the number of workers, the social security con-

tributions and earthquake losses through life cycle of the building were not taken into account.

To determine the cost of reinforcement steel required in each alternative, first, the base shear and OTM envelopes were determined by modal

analysis. The five predominant modes, equivalent to 90% of the seismic mass in horizontal direction (Table 2), were combined using square root of

sum of squares method, in order to obtain the modal storey shear and OTM envelopes of each configuration (Figure 19). Second, the ratio (%) of

reinforcement steel to the vertical and horizontal sections of the building core was calculated according to the capacity flexural strength design



FIGURE 17 Normalized outrigger stress (σ/σyield) to normalized overturning moment (Mθ/Mθ‐max) of the studied outrigger configurations
subjected to four earthquake levels of all ground motions

FIGURE 18 Normalized column stress (σ/σyield) to normalized overturning moment (Mθ/Mθ‐max) of the studied outrigger configurations subjected
to four earthquake levels of all ground motions

TABLE 2 Effective modal mass participation in X direction

Mode 1 2 4 5 7

T (s) Single 5.26 0.84 0.30 0.17 0.16
Double 5.27 0.85 0.31 0.20 0.16
Combined 5.26 0.84 0.30 0.16 0.12

Effective mass‐X (kN) Single 4.98E + 04 1.51E + 04 5.02E + 03 1.99E‐01 2.63E + 03
Double 4.98E + 04 1.53E + 04 5.09E + 03 5.25E + 01 2.55E + 03
Combined 4.97E + 04 1.53E + 04 5.07E + 03 2.57E + 03 1.75E − 02

Cumulative (%) Single 62 80 86 86 90
Double 62 80 87 87 90
Combined 62 80 87 90 90
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envelope, for a nonconservative case, as proposed by Boivin and Paultre.[17] In accordance with Eurocode,[16] the calculated vertical reinforcement

ratios below the threshold level were replaced with the minimum reinforcement ratio requirement of 0.25%. Next, using these values and simple

geometry, the total volume of reinforcement steel for each alternative was calculated. Multiplying these values with the density of the reinforce-

ment steel provided the total weight in tons. In this work, market price of reinforcement steel per ton was assumed as $600.



FIGURE 19 Square root of sum of square modal storey shear and overturning moment (OTM) envelopes for the three configurations of
outriggers
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Gidaris and Taflanidis[24] provided an empirical cost estimation model for oil viscous dampers based on maximum force capacity Fud,j, as

$96.88(Fud,j)
0.607. In the current work, two different commercially available oil viscous damper types were used based on the required damping

coefficient. Maximum force capacity of selected dampers is 2,000 kN, and therefore, the cost of one damper is estimated as $9,771.46.
6.1 | Results of economic evaluation

The current work considered three alternatives of outriggers with oil viscous dampers. The calculated values are compared then to the results

obtained from the alternative using conventional outriggers, called conventional, whose reinforcement demand was computed using a conservative

approach. For each alternative, computed horizontal and vertical steel reinforcement values as required solely in the building core are outlined in

Tables 3 and 4, respectively.

As previously defined, the terms conventional, single, double, and combined correspond to structural design alternatives that possess conven-

tional outriggers, a single set of outriggers with dampers, two sets of outriggers with dampers, and two outriggers where one is fixed and one has

dampers, respectively. In line with the provided definitions, the required number of dampers employed in single, double, and combined alternatives

were computed as 8, 40, and 8, respectively (Table 5). These dampers are commercially available in seven sizes ranging from 1.25E + 04 to

8.75E + 04 kN. Hence, except for the case of the upper outrigger in the double alternative, one damper per outrigger is enough to provide the

required supplemental damping. Two dampers were not yet enough for the upper outrigger in the double alternative (1.92E + 05/2 > 8.75E + 04,

i.e., demand > supply); thus, four dampers were necessary to provide the required damping. Recall that, market price of reinforcement steel per ton

was assumed as $600, and the cost of one viscous damper was estimated as $9,771.46. The results of comparative cost analysis among structural

design alternatives considered in this work are given in Table 6.

The results suggest provision of the single outrigger system with dampers to the structural design of the hypothetical building core under the

identical design loads caused 23% reduction in the reinforcement steel costs. The cost reduction became more significant at the level of 40% and

38% when double outrigger configurations were considered. Nevertheless, due to the high number of required dampers in the design alternative
TABLE 3 Required horizontal reinforcement steel values in the building core

No. storey

Required reinforcement steel ratios Required reinforcement steel weight (kg)

Conventional Single Double Combined Conventional Single Double Combined

1–6 0.50% 0.26% 0.19% 0.20% 44,510 22,699 16,994 17,686

7–12 0.44% 0.22% 0.17% 0.17% 39,168 19,862 14,870 15,476

13–18 0.37% 0.19% 0.14% 0.15% 32,937 17,025 12,746 13,265

19–24 0.31% 0.16% 0.12% 0.12% 27,596 14,188 10,621 11,054

25–30 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

31–36 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

37–42 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

43–48 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

49–54 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

55–60 0.25% 0.13% 0.10% 0.10% 22,255 11,350 8,497 8,843

Total weight (tons) 277.74 141.87 106.21 110.54



TABLE 4 Required vertical reinforcement steel values in the building core

No. Storey

Required reinforcement steel ratios Required reinforcement steel weight (kg)

Conventional Single Double Combined Conventional Single Double Combined

1–6 1.00% 0.93% 0.70% 0.73% 85,310 79,472 59,499 61,922

7–12 0.85% 0.84% 0.63% 0.65% 72,513 71,525 53,549 55,730

13–18 0.76% 0.75% 0.56% 0.58% 64,836 63,578 47,599 49,538

19–24 0.65% 0.65% 0.49% 0.51% 55,451 55,631 41,649 43,345

25–30 0.56% 0.56% 0.42% 0.44% 47,774 47,683 35,699 37,153

31–36 0.51% 0.41% 0.31% 0.32% 43,508 35,195 26,349 27,423

37–42 0.46% 0.32% 0.25% 0.25% 39,243 27,248 21,327 21,230

43–48 0.37% 0.25% 0.25% 0.25% 31,565 21,327 21,327 21,327

49–54 0.25% 0.25% 0.25% 0.25% 21,327 21,327 21,327 21,327

55–60 0.25% 0.25% 0.25% 0.25% 21,327 21,327 21,327 21,327

Total weight (tons) 482.85 444.31 349.65 360.32

TABLE 5 Supply of dampers according to the required damping coefficients (Cd′s)

Damping coefficient (kN) No. dampers

Required at damping pointa Type Supplied per damper Per outrigger Per set of outriggers

Single 4.80E + 04 B4 5.00E + 04 1 8

Double Lower 8.40E + 04 B7 8.75E + 04 1 8

Upper 1.92E + 05 B4 5.00E + 04 4 32

Combined 8.40E + 04 B7 8.75E + 04 1 8

aEquals to the optimal Cd divided by two, as two outriggers were modelled as one.

TABLE 6 Comparative cost analysis among structural design alternatives

Design
alternative

Total reinforcement
cost

Change compared with
conventional model (%)

Cost of
dampers Total cost

Change compared with
conventional model (%)

Conventional $456,356 — — $456,356 —

Single $351,712 −23% $78,172 $429,883 −06%

Double $273,521 −40% $390,858 $664,380 +46%

Combined $282,519 −38% $78,172 $360,690 −21%
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double, it is economically nonviable, as the total costs, defined as the sum of reinforcement steel cost and dampers cost, were 46% higher than the

conventional design. One can deduce that high number of required dampers and their associated costs surpass the economic gains obtained from

the reinforcement steel savings. Single and combined alternatives, on the other hand, presented an opposite figure. A relatively lower number of

dampers required in the design of these alternatives kept the required dampers costs at the reasonable levels. Therefore, in these alternatives, the

economic benefits obtained from reduction in the required reinforcement steel amount exceeded the economic losses caused by inclusion of

dampers in the structural design. In particular, design alternative combined demonstrated a significant decrease in the total construction cost at

the level of 21% when compared with conventional design and therefore proposed the most viable option, economically speaking. It should be

noted, nonetheless, that the placement of the outrigger in the building was not considered in the cost analysis. Had it been so, the single outrigger

structure might have presented advantages, from an economic perspective, over multiple outrigger structures.
7 | DISCUSSION

7.1 | Optimal configurations for increasing the inherent damping ratio ζ

In terms of ζ, only a double set of damped outriggers and the combined damped and fixed outriggers (attaching viscous dampers in the lower set of

outriggers) displays larger increase than that of the single damped outrigger. Optimized ζ of the former two are 8.8% and 8.6%, respectively, which

is in practical terms, almost the same but with the double damped outrigger requiring more dampers. Nevertheless, from an economical point of

view, the use of combined damped and fixed outriggers is not only equally optimal but cheaper than its counterpart using a double set of damped

outriggers.
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In addition, it should be noticed that whereas a single damped outrigger exhibits optimal ζ only at λ = 0.7–0.8, both double and combined

outrigger configurations exhibit broader display of optimal combinations (Figures 6 and 8), which offer flexibility of design to the high‐rise archi-

tecture and distributions of building systems. It is worth to notice that the use of multiple outriggers is desired in tall buildings[3] and that their final

locations depend on both the availability of space, say mechanical floors, and the influence of the outrigger members' size.[25]
7.2 | Optimal configurations for reducing the hysteretic energy

From the average ratios ED, Edampers, and EH to EI of the three studied configurations in Table 7, it is clear that both double damped and combined

damped and fixed outriggers are reducing the hysteretic energy ratio (EH/EI) and hence becoming more effective in reducing structural damage

under strong earthquake motions. However, as mentioned before, the double damped configuration requires the use of more dampers, and hence,

it is assumed to be comparatively more expensive. The combined damped and fixed configuration, compared with the single damped one, is effec-

tively reducing the hysteretic energy and maintaining the levels of energy dissipated by both inherent damping and viscous dampers.

Although a single set of conventional outriggers without dampers (conventional) was not included among the initial studied configurations, it

was added for framing a valid performance bound. Thus, by observing the column EH/EI in Table 7, it can be noticed that the reduction in the hys-

teretic energy due to the addition of supplemental damping is not significant. For instance, no change and a decrease from 0.23 to 0.14 under

strong and severe motion, respectively, are the results of comparing the cases of the conventional and double damped configurations. This rela-

tively small decrease in EH/EI may be explained by two observations: (a) As indicated by a previous study of the authors,[14] the dampers' damping

coefficient (Cd) and the outrigger's location (λ) are the parameters that most influence the tall building's response. Because these two parameters

have been already optimized in each of the studied configurations, further improvements, beyond each optimal, are unlikely to take place; (b) as

suggested by columns ED/EI and Edampers/EI, most of the energy dissipated by the dampers seems to be partially subtracted from that dissipated

from the inherent structural damping.

Finally, the fact that the rows of energy dissipation ratios for the single, double, and combined configurations add up to 100% (column Sum,

Table 7) indicates that these configurations are effective for reducing the building's response by the end of the ground motion. To the contrary,

the conventional outrigger will continue vibrating beyond the end of the ground motion, and thus, part of the input energy will be dissipated as

strain elastic energy.
7.3 | Optimal configurations for reducing the overall structural response

Interstorey drift can be reduced by adding outriggers, and it has been suggested that the effect of two sets of outriggers is, in this regard, better

than one.[11] However, according to the results tabulated in Table 8, this is not necessarily the case when using damped outriggers. Whereas both

double and combined outrigger solutions slightly reduce the maxima interstorey drifts when compared with the single configuration, the decrease

is comparatively very small. This may be explained by the comparatively large influence of the outrigger location in the reduction of the interstorey

drift; because there is no substantial difference in the location of the outriggers between both configurations, the interstorey drift is not affected

largely. This seems to suggest that configurations with optimal ζ might not be further optimized for interstorey drifts reductions.

The almost non‐existent variation among the peak acceleration response of all the configurations can also be explained by the difficulty of a

further optimization after a damping ratio‐based optimized design. Moreover, neither the addition of an extra set of outriggers nor viscous

dampers will modify the seismic mass of the building substantially. Hence, there is no variation in the peak values of acceleration (Table 9). The

fact that under the severe level of the Kobe ground motion, the system will experience its peak acceleration around half way of the height seems

to indicate that—when subjected to this earthquake—the second mode shape has a larger influence in the response of the building. This
TABLE 7 Peak energy dissipation ratios (trend line‐based), for each configuration under all earthquake levels

ED/EI Edampers/EI EH/EI Sum

Conventional Small 0.93 — 0 0.93
Moderate 0.93 — 0.01 0.94
Strong 0.82 — 0.10 0.92
Severe 0.72 — 0.23 0.95

Single Small 0.61 0.39 0 1.00
Moderate 0.61 0.39 0 1.00
Strong 0.52 0.33 0.14 0.99
Severe 0.50 0.31 0.19 1.00

Double Small 0.52 0.48 0 1.00
Moderate 0.52 0.48 0 1.00
Strong 0.47 0.42 0.10 0.99
Severe 0.45 0.41 0.14 1.00

Combined Small 0.59 0.41 0 1.00
Moderate 0.59 0.41 0 1.00
Strong 0.53 0.34 0.12 0.99
Severe 0.51 0.33 0.15 0.99



TABLE 8 Average normalized peak interstorey drifts

Small Moderate Strong Severe

Conventional 0.34 0.68 1.06 1.62

Single 0.32 0.64 0.97 1.50

Double 0.31 0.62 0.94 1.46

Combined 0.32 0.63 0.95 1.49

TABLE 9 Average peak accelerations (m/s2)

Small Moderate Strong Severe

Conventional 0.88 1.74 2.60 3.84

Single 0.87 1.71 2.60 3.83

Double 0.85 1.68 2.56 3.80

Combined 0.86 1.70 2.59 3.79
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observation is supported by the findings in Sun et al.[26] In their experimental study on seismic resonant behaviour of core‐outrigger structure, the

authors observed that large accelerations on the upper and middle floors resulted from the second‐period resonant ground motion.

The same steady trend is observed in the results of normalized base shear in Table 10, wherein variations are fairly minimal. However, if the

large variation of the average values for each earthquakes is considered (as displayed in Figures 13 and 15 for interstorey drifts and base shear,

respectively), it seems that earthquake characteristics have a larger influence than outrigger configurations in the response of tall buildings.

From previous studies,[14] it is clear that under optimal design conditions, the addition of viscous dampers reduces both the OTM and overall

stresses in the core, outriggers, and perimeter columns.

As it can be seen inTable 11, all damage produced by strong and severe earthquake levels, in the three studied configurations, is concentrated

in the core. Due to the stress reduction in the outrigger's frame elements of the double and combined configurations, higher levels of axial stress

appear in the perimeter columns. Moreover, by helping reduce the overall stress, the use of viscous dampers prevents the extension of damage as

the ground motion grows larger, if compared with the response of the conventional outrigger. As mentioned before, inelastic responses are

triggered when peak OTMs are ~60% of the maximum OTM, for all the evaluated configurations (Table 12).

As mentioned before, the fact that all the studied configurations have been optimized according to dampers' damping coefficient (Cd) and

outrigger's location (λ), further improvements, beyond each optimal, are highly unlikely. This would explain the apparent uniformity in the response

and the fact that from these results, it is not possible to conclude which configuration seems to be the optimal to reduce the overall structural

response.
TABLE 10 Average normalized peak base shear

Small Moderate Strong Severe

Conventional 0.18 0.36 0.52 0.69

Single 0.17 0.35 0.50 0.68

Double 0.17 0.34 0.52 0.70

Combined 0.17 0.34 0.51 0.67

TABLE 11 Average normalized peak stresses

Small Moderate Strong Severe

Core Conventional 0.37 0.74 1.02 1.00
Single 0.34 0.68 0.97 1.00
Double 0.33 0.66 0.98 1.02
Combined 0.32 0.65 0.97 1.01

Outrigger Conventional 0.14 0.24 0.33 0.55
Single 0.14 0.17 0.26 0.36
Double 0.09 0.12 0.16 0.18
Combined 0.08 0.10 0.13 0.17

Column Conventional 0.12 0.21 0.31 0.49
Single 0.13 0.18 0.24 0.34
Double 0.16 0.21 0.28 0.38
Combined 0.15 0.19 0.25 0.32



TABLE 12 Average normalized peak overturning moment

Small Moderate Strong Severe

Conventional 0.23 0.46 0.64 0.83

Single 0.22 0.43 0.61 0.81

Double 0.21 0.42 0.60 0.80

Combined 0.21 0.42 0.61 0.81
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8 | CONCLUSIONS

Although most of the conclusions obtained are only applicable to the specific cases described in this paper, general observations can be derived

from the numerical studies presented herein:

• Among the studied outrigger configurations, only a double set of damped outriggers and the combined damped and fixed outriggers (attaching

viscous dampers in the lower set of outriggers) display larger increase of ζ than the 8% of the single damped outrigger. Optimized ζ of the

former two are 8.8% and 8.6%, respectively.

• A double set of outriggers including dampers only in the upper set will result in a lower damping ratio than that obtained with a damped out-

rigger alone. In simple words, attaching a conventional outrigger below the damped outrigger will decrease the structure's damping capability.

• Whereas a single damped outrigger exhibits optimal ζ only at λ = 0.7–0.8, both double and combined damped and fixed outriggers exhibit

broader display of optimal combinations, which offer flexibility of design to the high‐rise architecture and distributions of building systems.

• Both double damped and combined damped and fixed outriggers are reducing the hysteretic energy ratio (EH/EI). The double damped outrig-

ger is more effective for reducing the damage in the structure when subjected to strong and severe earthquake levels.

• The fact that all the studied configurations have been already optimized according to dampers' damping coefficient (Cd) and outrigger's

location (λ), further improvements, beyond each optimal, are highly unlikely to take place. This would explain the observed lack of major

improvements in the response of double and combined damped and fixed outriggers compared with a single damped outrigger system.

• Given the Cd values involved in these optimal designs, and assuming the building costs mostly influenced by the amount of reinforcement steel

and viscous dampers, the extra costs due to the double damped are about 50% more expensive than the single damped solution. To the

contrary, the additional costs due to the combined damped and fixed solutions are about 16% cheaper than the single damped solution.

• It should be noted, nonetheless, that the placement of the outrigger in the building was not considered in the cost analysis. Had it been so, the

single outrigger structure might have presented advantages, from an economic perspective, over multiple outrigger structures.
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