
Delft University of Technology
Faculty of Electral Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

ON THE CAP SET PROBLEM
upper bounds on maximal cardinalities of caps

in dimensions seven to ten

A thesis submitted to the
Delft Institute of Applied Mathematics

as partial fulfillment of the requirements

for the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

Nina D. Versluis

Delft, The Netherlands
July 2017

Copyright c© 2017 by Nina D. Versluis. All rights reserved.

BSc thesis APPLIED MATHEMATICS

ON THE CAP SET PROBLEM
upper bounds on maximal cardinalities of caps

in dimensions seven to ten

Nina D. Versluis

Delft University of Technology

Supervisor

Dr. D. C. Gijswijt

Other committee members

Drs. E. M. van Elderen Dr. J. A. M. de Groot

July, 2017 Delft

Contents

Preface vi

List of Symbols vii

Abstract viii

1 Introduction 1
1.1 The Card Game SET . 1
1.2 Geometrical Interpretation of SET . 2
1.3 Thesis Structure . 3

2 About Affine Geometry 4

3 Lower Bounds on Maximal Caps 6

4 Maximal Caps in Low Dimensions 8

5 Method 1: Counting Hyperplanes 11
5.1 Method . 11
5.2 Maximal 3-Cap and 4-Cap . 11
5.3 Implementation . 16
5.4 4-Marked Hyperplanes . 17
5.5 Results . 20

6 Method 2: Fourier Transform 21
6.1 Proof of Theorem 5 . 21
6.2 Application . 25

7 Considering the Methods 26
7.1 A Review on Degenerated Quartets . 26
7.2 Uy and Hyperplane Triples . 28

8 Conclusion 32

9 Discussion 33

A Code Method 1 34
A.1 Python Code . 34
A.2 Matlab Code . 36
A.3 Code 4-Marked . 38
A.4 Figures 4-Marked . 41

B Code Method 2 43

References 44

v

Preface

This is my bachelor’s thesis. It is the result of my bachelor project on the cap set problem.
This project is the completion of my bachelor program Applied Mathematics at Delft
University of Technology, which I started in 2014.

From start to finish, I was glad with my choice of project. I knew I wanted a project
in the field of optimization. To choose between the projects offered within the field was
hard, but my love for games led me to the cap set problem, of which the card game SET
is a practical (and fun!) example. I was lucky to be assigned to my project of choice, since
not all of my fellow students got the same chance.

I want to thank my supervisor Dion for the weekly meetings, the input and the
feedback. Furthermore, I want to thank Joost and Emiel for taking place in my assessment
committee. Finally, I want to thank my friends and family for their support and interest,
although they did not always understand what I was working on. A special thanks goes
to Pim, who helped out with the visuals.

Nina Versluis
Delft, July 2017

vi

List of Symbols

d dimension

Fdq d-dimensional affine space over the field Fq
cap set of points that contains no lines

d-cap cap in Fd3
F field

PG(d, 3) d-dimensional projective space over F3

H hyperplane

νc |A ∩Hc|, with A ⊂ Fd3 and Hc a hyperplane

(ν0, ν1, ν2) hyperplane triple

(H, {x1, ..., xn} ⊂ H ∩A) n-marked hyperplane

xν0ν1ν2 variable that represents the number of
times a (ν0, ν1, ν2)-triple can occur

t number of degenerated quartets

Cd(q) maximal cardinality of a cap in Fdq
cd(q) ratio Cd

qd

A(n, δ, w) maximum size of binary code with word length n,
minimum distance δ, constant weight w

ζ primitive third root of unity (e
2
3
πi)

Uy
∑

a∈A ζ
a·y

u vector whose entries correspond to |Uy|, y 6= 0

S
∑

y∈Fd
3\{0}

∑
a1,a2,a3∈A ζ

(
∑3

i=1 ai)·y

T
∑

y∈Fd
3

∑
a,b,c,d∈A ζ

(a+b−c−d)·y

vii

Abstract

This thesis concerns the cap set problem in affine geometry. The problem is illustrated
by the card game SET and its geometrical interpretation in ternary affine space. The
maximal cardinality of a cap is known for the dimension one to six. For the four lowest
dimensions, a maximal cap is constructed and the optimality of its size proven. From
there, two recursive methods by Davis and Maclagan [7] and Bierbrauer and Edel [3] are
described and applied to obtain upper bounds for the maximal size of caps in dimensions
seven to ten. The best found upper bounds are 291, 771, 2070 and 5619, respectively.

viii

1 Introduction

The cap set problem, the main focus of this thesis, is introduced through a practical
example: the card game SET. At first, the course of the game is explained. Secondly, the
rules of the game are translated into geometrical statements. Finally, the structure of this
thesis is given.

1.1 The Card Game SET

In 1974, the card game SET was invented by Marsha Falco, a population geneticist [13].
The SET cards show figures which differ in four characteristics: number, shading, colour
and shape. Every characteristic has three possible appearances, which are written down
in Table 1. Hence, the number of cards is

3 · 3 · 3 · 3 = 34 = 81.

Characteristic First Possibility Second Possibility Third Possibility

Number One Two Three

Shading Empty Spotted Solid

Colour Green Purple Red

Shape Rectangle Oval Wave

Table 1: Possibilities per characteristic.

In order to play the game, the ground rule must be known.

Rule (SET). Three cards form a SET if each of the four characteristics is identical or
totally different.

Figure 1: Two triples of SET cards.

The cards in the first triple in Figure 1 differ from each other in each characteristic.
Hence, they form a SET. The second triple does not form a SET because the cards are
not identical or totally different in the characteristic shape: two of the cards display ovals,
the other waves.

A game of SET starts by dealing twelve cards face-up, whereafter players start searching
for a SET. The first player to find a SET removes the cards, and three new cards are
dealt. The game ends when no SETs can be found while all the cards have been dealt.
The winner is the player with the most SETs.

1

It can occur that there is no SET among the first twelve cards. Then three additional
cards are dealt. This can be repeated until a SET can be found. This additional rule
raises the following question.

Question. How many cards must be dealt to guarantee the presence of a SET?

In 1971, three years before the invention of the game, Pellegrino already answered this
question [12]. Clearly, this was in a different context. That is, in the context of affine
geometry.

1.2 Geometrical Interpretation of SET

The characteristics of SET cards can be seen as four different dimensions. Since each
characteristic has three possibilities, each dimension has three elements. They correspond
as shown in Table 2. Therefore, consider the four-dimensional space over the field of three
elements: F4

3.

Dimension 0 - First Element 1 - Second Element 2 - Third Element

1 - Number One Two Three

2 - Shading Empty Spotted Full

3 - Colour Green Purple Red

4 - Shape Rectangle Oval Wave

Table 2: Translation to geometry.

If F4
3 describes the entire deck, then every point y = (y1, y2, y3, y4) ∈ F4

3 corresponds
to a unique card. For example, the cards in the first triple of Figure 1 correspond to
(0, 1, 1, 2), (1, 0, 2, 1) and (2, 2, 0, 0), respectively.

The geometrical interpretation of the SET rule reads as follows. In F4
3 three points are a

SET if they are collinear, which is equivalent to adding up to (0, 0, 0, 0) modulo 3. This
definition can be applied on the first triple of Figure 1 of which it is already known that
they form a SET. Indeed, (0, 1, 1, 2) + (1, 0, 2, 1) + (2, 2, 0, 0) = (0, 0, 0, 0).

The collinearity of three points can be generalized to apply in any dimension. In
general, three points a, b, c ∈ Fd3 are collinear if and only if a+ b+ c = 0.

Definition 1 (d-cap). A d-cap is a subset of Fd3 in which no three points are collinear.

By introducing the term d-cap, the previously raised question can be reformulated and
generalized to the following question.

Question. What is the maximal cardinality of a d-cap?

This question is also known as the cap set problem. As Table 3 shows, exact values of the
maximal cardinality of a d-cap, Cd, are only known for dimension one to six [7].

Dimension 1 2 3 4 5 6 7

Maximal cardinality d-cap 2 4 9 20 45 112 ?

Table 3: Known maximal cardinalities of d-caps.

2

1.3 Thesis Structure

In the following chapters the geometrical intepretation of the cap set problem in affine
space will be considered. After an introduction to affine geometry and lower bounds, some
proofs of known maximal cardinalities of caps in small dimensons are given. Furthermore,
two recursive methods to obtain upper bounds on maximal capsizes in any dimension are
described, extended, applied on dimensions seven to ten and compared.

3

2 About Affine Geometry

An affine space is nothing more than a vector space
whose origin we try to forget about,

by adding translations to the linear maps.
([1], page 32)

As became clear in Chapter 1, the cap set problem is defined in affine geometry. Therefore,
it is important to understand the basics of affine geometry. In this chapter, the outlines of
affine space and its geometry are introduced. It is assumed that the general definitions of
(linear) algebra are known. The following formulations of definitions and remarks follow
from [1, 7, 14].

Definition 2 (Affine subspace). Let L be a linear subspace of vector space V and p ∈ V .
The translation of L by p, i.e. L+ p = {v + p | v ∈ L}, is an affine subspace.

Remarks. .
Affine subspaces are also called flats.
Every vector space is an affine space, but not all affine spaces are vector spaces.
Fd3 is an affine space.
The affine subspaces of dimension zero are points, those of dimension one are lines and
those of dimension two are planes.

Definition 3 (Affine hyperplane). An affine hyperplane of a d-dimensional affine space is
a (d− 1)-dimensional affine subspace.

Remarks. .
An affine hyperplane that contains the origin is a linear hyperplane.
An affine hyperplane of Fd3 has the form {x ∈ Fd3 | x · y = c}, for y ∈ Fd3\{0} fixed and
c ∈ F3.

Definition 4 (Dimension). The dimension of an affine space is the number of vectors in
the basis of the corresponding vector space.

Definition 5 (Parallel subspaces). Affine subspaces of the same dimension are parallel if
they are translations of the same linear subspace.

Remark. Fd3 can be decomposed in three parallel affine hyperplanes, i.e.
Fd3 = {x ∈ Fd3 | x · y = 0} ∪ {x ∈ Fd3 | x · y = 1} ∪ {x ∈ Fd3 | x · y = 2}, for y ∈ Fd3\{0} fixed.

Definition 6 (Affine independence). The points x1, x2, ..., xk in a affine space are affinely
independent if

∑k
i=1 cixi = 0 with

∑k
i=1 ci = 0 implies c1 = c2 = . . . = ck = 0.

Remark. Three points in Fd3 are collinear if they are affinely dependent. It follows that
a+ b+ c = 0, what agrees with the statement in Chapter 1.

Definition 7 (Affine transformation). An affine transformation is a bijection from an
affine space to itself that preserves lines.

Remarks. .
The dot product defined on Fd3 and translations are affine transformations.
An affine transformation preserves (hyper)planes and caps.

The following proposition on hyperplanes and lower dimensional subspaces will be applied
in the hyperplane counting method in Chapter 5.

4

Proposition 1. The number of hyperplanes containing a fixed k-dimensional subspace in
Fd3 is equal to

3d−k − 1

2
.

Proof. Let S be a k-dimensional subspace of Fd3 which contains the origin. Then the
natural map Fd3 → Fd3/S ∼= Fd−k3 gives a bijection between hyperplanes of Fd3 containing
S and hyperplanes of Fd−k3 containing the origin. With the hyperplanes containing the
origin, they can be seen as linear subspaces of a vector space.

The hyperplanes of of Fd−k3 that contain the origin are determined by nonzero normal
vector, of which there are 3d−k−1. Since there are two nonzero normal vectors determining
each hyperplane, there are 3d−k−1

2 hyperplanes containing the origin.
Note that if the fixed subspace does not contain the origin, it can be translated.

5

3 Lower Bounds on Maximal Caps

This chapter concerns the lower bound on the maximal cardinality of a cap in Fd3.
Remember from Table 3 in Chapter 1 that for dimensions one to six the exact cardinalities
of the maximal caps are known. Hence, for these dimensions the best known lower bound
is equal to Cd. With this, the focus lies on establishing lower bounds for maximal capsizes
in dimension seven to ten.

Two theorems will introduce constructions to obtain a cap in a dimension by using
known caps in lower dimensions. Theorem 1 states a simplified version of the general
product construction theorem first stated by Mukhopadhyay in [11] and reformulated by
Edel and Bierbrauer [8, 2]. Theorem 2, the doubling construction, is a special case of the
general product construction. Note that Theorem 2 does not follow from Theorem 1.

Theorem 1 (Product construction). Let A ⊂ Fd13 and B ⊂ Fd23 be caps. Then there is a
cap in Fd1+d23 of size |A||B|.

The best lower bounds found with the product construction are displayed in Table 5 on
page 6. To obtain the results, the known values of Cd for d = 1, . . . , 6 are used.

The doubling construction, as well as the general product construction theorem, relies
besides affine spaces also on projective spaces. The definition by Cameron should give an
idea of projective spaces [6].

Definition 8 (Projective space). A projective space PG(d, q) is defined by a (d +
1)-dimensional vector space V over the field Fq. The points, lines, planes, etc. are the
subspaces of V of dimension one, two, three, etc.

Theorem 2 (Doubling construction). Let A ⊂ PG(d, q). Then there is a cap in Fd+1
3 of

size 2|A|.

To obtain results with the doubling construction, capsizes in projective spaces need to be
known. The best known lower bounds on the maximal cardinality of a cap in PG(d, 3)
are given in Table 4. These results are obtained from [9]. The outcome of the doubling
construction based on the results in Table 4 are listed in Table 5.

Dimension 1 2 3 4 5 6 7 8 9 10

Lower bound 2 4 10 20 56 112 248 532 1120 2744

Table 4: Lower bounds on maximal capsizes in PG(d, 3).

Dimension 2 3 4 5 6 7 8 9 10

Product construction 4 8 18 40 90 224 448 1008 2240

Doubling construction 4 8 20 40 112 224 496 1064 2240

Table 5: Lower bounds on Cd by product and doubling construction.

6

Clearly, the doubling construction yields better lower bounds than the product construction.
This is mainly the case because there is more known about caps in PG(d, 3) than about
caps in Fd3. Therefore, the doubling construction is in general the best construction
method for caps.

However, there is a better lower bound known for the maximum size of a 7-cap. In 1994,
Calderbank and Fishburn constructed a 7-cap of size 236 [5]. The construction follows from
a more involvied generalization of the general product construction [8]. Unfortunately, this
new bound does not lead to an improvement on the other lower bounds.

Table 6 summarizes the best known lower bounds on Cd, including the equalities with
Cd for the dimensions one to six.

Dimension 1 2 3 4 5 6 7 8 9 10

Lower bound 2 4 9 20 45 112 236 496 1064 2240

Table 6: Best known lower bounds on Cd.

7

4 Maximal Caps in Low Dimensions

As Table 3 in Chapter 1 shows, only for the dimensions one to six the exact value of the
maximal cardinality of a cap is known. This is mainly because there are no patterns in
either the construction of maximal caps or in the proofs. In this chapter the maximal caps
in dimensions one, two and three willl be constructed and their optimality will be proven.

For the construction of the maximal caps, remember the SET cards from Chapter 1.
The number of characteristics of the cards correspond to the dimension. Hence, leaving
out one characteristic yields a representation of the three-dimensional F3

3, leaving out two
characteristics F2

3 and leaving out three F3.

Figure 2: F3 in SET cards.

First, consider the three points in F3 as SET cards. In the representation in Figure 2, the
characteristics number, shading and colour are fixed at one, empty and green, respectively.
Hence, the only variable charactistic is shape. From the SET rule it is clear that the
three cards form a SET. By definition, two cards cannot be a SET. Hence, the maximal
cardinality of a 1-cap is two.

For the two-dimensional and three-dimensional caps both the construction and the
proof are more involved. First, a maximal 3-cap and 4-cap are obtained. Then, to complete
the proofs of Propositions 3 and 5, it is showed that no larger caps exist.

In Figure 3 F2
3 is represented by SET cards. The characteristics number and shading

are fixed on one and empty. Figures 4 and 5 show the same 2-cap of size four. With either
the SET rule for the cards or the geometrical SET rule it can be checked that these cards
form a cap.

Figure 3: F2
3 in SET cards. Figure 4: 2-cap of four cards,

schematically.

Figure 5: 2-cap of
four cards.

8

In Figure 6 F3
3 is represented by SET cards. The characteristics number is fixed on one.

Figures 7 and 8 show the same 3-cap of size nine. Again with the SET rule, it can be
verified that the set of cards is indeed a cap.

Figure 6: F3
3 in SET cards.

Figure 7: 3-cap of nine cards, schematically.

Figure 8: 3-cap of nine cards.

9

Now the caps of maximal size are constructed, it suffices to show that there exist no larger
caps. Hence, the following proofs on the maximal size of 3-caps and 4-caps follow by
contradiction on the assumption that a larger cap does exist. The contradiction is derived
from the pigeonhole principle.

Proposition 2 (Pigeonhole principle). If n objects are distributed over m places with
n > m, then there is a place receiving at least two objects.

Proposition 3. A maximal 2-cap has size four.

Proof. In Figure 5 a 2-cap of size four is shown. The proof proceeds by condradiction.
Assume there is a 2-cap A with five points: x1, x2, x3, x4 and x5.

The plane F2
3 can be decomposed as a union of three horizontal lines as in Figure 9.

Since A is cap, each line contains at most two points. This means that two lines contain
two points each and one line one point, say x5. Let H be the line containing x5.

Figure 9: F2
3 as union of horizontal

lines.
Figure 10: The four lines through x5.

x5 lies on exactly four lines in the plane: the horizontal line H, the vertical line L1 and
two diagonal lines L2 and L3. These lines cover each point in F2

3 not equal x5 exactly
once, as Figure 10 shows. Hence, the four points x1, x2, x3 and x4 all lie on these lines.
Since H only contains x5, the four points are distrubuted over the other three lines L1, L2

and L3. By the pigeonhole principle, two of the four points lie on one of the three lines.
Since this line also contains x5, it now contains three points. Hence, they form a SET.
This means that A is not a cap and hence, there exists no 2-cap of size five.

Proposition 4. A maximal 3-cap has size nine.

Proof. In Figure 8 a 3-cap of size nine is shown. The proof proceeds by contradiction.
Assume there is a 3-cap A that contains ten points.

F3
3 can be decomposed as a union of three parallel planes. The intersection of a plane

and a 3-cap is a 2-cap. By Proposition 3, it contains at most four points. Therefore, there
are either two planes containing four and one plane containing two points or one plane
containing four and two planes containing three points. Let H be the plane containing
the least number of points. Then there are at least seven points not contained in H.

Let a and b be two points in H. Then there are three other planes in F3
3 containing a

and b, say P1, P2 and P3. H,P1, P2 and P3 cover each point in F3
3 not on the line through a

and b exactly once. By the pigeonhole principle, at least one of the planes Pi must contain
three of the seven points not contained in H. Hence, Pi contains five points. Therefore,
A is not a cap by Proposition 3. Hence, there exists no 3-cap of size ten.

10

5 Method 1: Counting Hyperplanes

In [7] Davis and Maclagan describe a method to determine whether a set of points in Fd3
could be be cap or not. This method relies on counting arguments concerning hyperplanes.
Before elaborating on this method, some new terms are introduced.

Definition 9 (Hyperplane triple). A hyperplane triple (ν0, ν1, ν2) is a decomposition of
a cap A ⊂ Fd3 over three parallel hyperplanes of Fd3, H0, H1 and H2, where νc = |A ∩Hc|,
for c ∈ F3.

Definition 10 (n-Marked hyperplanes). An n-marked hyperplane is a pair of the form
(H, {x1, ..., xn} ⊂ H ∩A}, with H a hyperplane and A a cap.

5.1 Method

To verify whether a set of points, A, in Fd3 are a cap or not the space is divided into three
parallel hyperplanes of dimension d− 1 : H0, H1 and H2. Note that ∪c∈F3Hc = Fd3. Based
on the data available on the maximal cardinality of a cap in Fd−13 , the possible hyperplane
triples are listed. For every possible hyperplane triple, there is a variable xν0ν1ν2 , which
represents the number of (ν0, ν1, ν2) hyperplane triples.

Next, an equation in the variables xν0ν1ν2 is obtained by counting the number of ways
to decompose Fd3 as the union of three parallel planes. Additional equations are obtained
by counting arguments on 2-marked and 3-marked hyperplanes. From these three (two
in the two-dimensional case) equations solutions can be found. If there is a solution in
which all xν0ν1ν2 are nonnegative integers, then there might be a cap in Fd3 of size |A|. If
there is no such solution, there exists no cap of size |A|.

The method is applied in the proofs of Propositions 5 and 6 in Section 5.2. In dimensions
three and four the exact value of the maximal d-cap is obtained. As will become clear in
Section 5.3, this method gives only upper bounds for higher dimensions.

5.2 Maximal 3-Cap and 4-Cap

Remember that the SET cards are a visualization of F4
3. In Chapter 4 F3

3 was constructed
with SET cards by leaving out the variations on number, see Figure 6 on page 9 . Also, a
3-cap consisting of twenty points was constructed, both schematically and in SET cards,
see Figures 7 and 8 on page 9. The same constructions for F4

3 are visible in Figures 11, 12
and 13 on pages 12, 13 and 14.

To proof the maximal cardinalities of 3-caps and 4-caps are nine and twenty,
respectively, the hyperplane counting method will be used. Since a 3-cap of size nine
and a 4-cap of size twenty are constructed, it suffices to show there exists no 3-cap
containing ten points and no 4-cap containing twenty-one points. Hence, the proofs follow
by contradiction.

11

Figure 11: F4
3 in SET cards.

12

Figure 12: 4-cap of twenty points, schematically.

13

Figure 13: 4-cap of twenty cards.

Proposition 5. A maximal 3-cap has nine points.

Proof. A 3-cap of size nine has been constructed in Figure 8. The proof proceeds by
contradiction. Assume there exists a 3-cap A with ten points.

The three dimensional F3
3 can be decomposed as a union of three parallel planes. Since

a maximal 2-cap has 4 points, there are only two possible hyperplane triples: (4, 4, 2) and
(4, 3, 3). Let x442 be the number of (4, 4, 2) hyperplane triples and x433 the number of
(4, 3, 3) hyperplane triples.

The number of ways to decompose F3
3 as the union of three planes can be obtained in

two ways. On one hand, there are x4442 +x433 ways. On the other hand, there is a unique
line through the origin of F3

3 perpendicular to each set of three parallel planes. These lines
can be counted as follows. Each line through the origin is determined by a pair of nonzero
points a and −a, of which there are 33−1

2 = 26
2 = 13. This corresponds to Proposition 1.

with k = 1. Hence,
x442 + x433 = 13. (5.1)

To obtain a second equation for x442 and x433, 2-marked (hyper)planes are introduced.
By Proposition 1 in Chapter 2, there are four planes that contain a fixed pair of distinct
points and hence, 4

(
10
2

)
= 180 2-marked planes. On the other hand, for each (4, 4, 2)

hyperplane triple the number of 2-marked planes is
(
4
2

)
+
(
4
2

)
+
(
2
2

)
= 13 and for each

(4, 3, 3) hyperplane triple
(
4
2

)
+
(
3
2

)
+
(
3
2

)
= 12. Hence,

13x442 + 12x433 = 180. (5.2)

Equations (5.1) and (5.2) resolve in a unique solution: x442 = 24 and x433 = −11. Since
x433 is negative, it contradicts the definition of x433. Hence, there is no 3-cap with ten
points.

14

Proposition 6. A maximal 4-cap has twenty points.

Proof. A 4-cap of size twenty has been constructed in Figure (12 or 13). The proof
proceeds by contradiction. Assume there is a cap A ⊂ F4

3 with twenty-one points.
The four-dimensional F4

3 can be decomposed as the union of three parallel three-
dimensional hyperplanes. Let xijk be the number of (i, j, k) hyperplane triples of A.
Since the maximal cardinality of a 3-cap is nine by Proposition 5,

(i, j, k) ∈ {(9, 9, 3), (9, 8, 4), (9, 7, 5), (9, 6, 6), (8, 8, 5), (8, 7, 6), (7, 7, 7)}.

The number of possible decompositions of F4
3 as the union of three parallel hyperplanes

equals both
∑

(i,j,k) xijk and the number of lines through the origin of F4
3, which is equal

to 34−1
2 = 40. Hence, ∑

(i,j,k)

xijk = 40 (5.3)

A second equation can be obtained by counting 2-marked hyperplanes. By Proposition 1,
the number of hyperplanes containing a fixed pair of distinct points, or a line, equals
34−1−1

2 = 13. Hence, there are 13
(
21
2

)
= 2730 2-marked hyperplanes.

In the same way as in the proof of Proposition5, the number of 2-marked hyperplanes
equals [(

9

2

)
+

(
9

2

)
+

(
3

2

)]
x993 + · · ·+

[(
7

2

)
+

(
7

2

)
+

(
7

2

)]
x777.

Computing the coefficients gives the following equation.

75x993 + 70x984 + 67x975 + 66x966 + 66x885 + 64x876 + 63x777 = 2730. (5.4)

By counting 3-marked hyperplanes, a third equation can be obtained. Note that three
points in a cap cannot be collinear. Hence, the three points span a plane. By Proposition 1,
the number of hyperplanes containing a fixed plane equals 34−2−1

2 = 4. Hence, there are

4
(
21
3

)
= 5320 3-marked hyperplanes. Following the count of 2-marked hyperplanes yields

169x993 + 144x984 + 129x975 + 124x966 + 122x885 + 111x876 + 105x777 = 5320. (5.5)

Three equations have been obtained for seven variables, which in principle yields infinitely
many solutions. Fortunately, the requirement that the variables are nonnegative integers
suffices for this proof. Adding 693 times Equation (5.3) to three times Equation (5.5) and
then subtracting six times Equation (5.4), yields

5x984 + 8x975 + 9x966 + 3x885 + 2x876 = 0.

The only nonnegative solution of this equation is x984 = x975 = x975 = x966 = x876 = 0.
Subtracting 63 times Equation (5.3) from Equation (5.4) yields

12x993 + 7x984 + 4x97 + 3x996 + 3x88 + x876 = 210.

This combines to 12x993 = 210, which gives a non-integer solution. Hence, there is no
4-cap with twenty-one points.

15

5.3 Implementation

After applying the hyperplane counting method on three-dimensional and four-dimensional
caps, the method will be extended to higher dimensions.

In theory, there already are infinitely many solutions in the four-dimensional case.
Hence, it is no surprise that this method does not yield exact answers for dimension five
and higher. However, upper bounds on the maximal cardinality of d-caps can be obtained.

Since the number of possible hyperplane triples and therewith the number of variables
increase drastically in higher dimensions, the method is implemented as a mixed integer
linear program (MILP) in both Python1 and MATLAB2. Whereas MATLAB has its own
MILP solver, intlinprog, Python requires an external solver such as Gurobi3.

The implementation of the method is divided over a few files. Figure 14 shows a
diagram of the different code files with a short description and their interaction. All the
code is included in Appendices A.1 and A.2.

Figure 14: Diagram of code files.

The ILP grows fast and therewith the running time already exceeds the capacity of a
personal computer by dimension nine. Therefore, the ILP for dimensions nine and ten are
solved on the NEOS Server4, which offers the Gurobi solver for MILP’s as MPS files.

On the other hand, the LP is considered. This results in programs small enough to
run without an external server.

The results of the different implementations are shown in Table 7. In all cases the best
known upper bound of the maximal capsize in the previous dimension is used. That is,
either the known maximal cardinality of a cap or the bound obtained with the ILP.

1https://www.python.org/
2https://www.mathworks.com/products/matlab.html
3http://www.gurobi.com/
4https://neos-server.org/

16

https:// www.python.org/
https://www.mathworks.com/products/matlab.html
http://www.gurobi.com/
https://neos- server.org/

Dimension 1 2 3 4 5 6 7 8 9 10

Known max cap 2 4 9 20 45 112 - - - -

Python - ILP - 4 9 20 48 114 291 771 2070 5619

Python - LP - 4 9 21 48 114 292 771 2070 5619

MATLAB - ILP - 4 9 20 48 114 291 771 2070 -

MATLAB - LP - 4 9 21 48 114 292 771 2070 5619

Table 7: Results of implementation of Method 1.

As Table 7 shows, the Python and MATLAB programs lead to the same upper bounds,
as expected. Furthermore, the ILP and the LP yield results that barely differ. Since there
is no difference in the dimensions eight, nine and ten, the integer constraints do not seem
to pay for higher dimensions.

5.4 4-Marked Hyperplanes

A possibility to improve the hyperplane counting method is adding a constraint based
on 4-marked hyperplanes. With the 3-marked hyperplanes it was clear that three points
define a plane, because three points can not lie on a line in a cap.

However, four points can determine either a three-dimensional subspace or a two-
dimensional subspace, a plane. Therefore, the constraint based on 4-marked hyperplanes
requires an extra variable, depending on the number of possibilities that four points, a
quartet, are degenerated.

Definition 11 (Degenerated quartet). A quartet of points is degenerated if the points
define a two-dimensional subspace instead of a three-dimensional subspace.

Remark. The four points in a degenerated quartet are affinely dependent.

Let t be the number of degenerated quartets in a cap A ⊂ Fd3. With this, t is a nonnegative
integer smaller or equal to the number of possible quartets in A:

0 ≤ t ≤
(
|A|
4

)
.

Both the upper and lower bounds on t will be improved in this section.

For the upper bound on t, the binary constant weight codes are consider. In general,
A(n, δ, w) is the maximum size of a binary code with word length n, minimum distance d
and weight w. To compare with degenerated quartets, the mimimum distance and weight
have to be fixed on four. The weight is four because quartets of points are considered. The
minimum distance is four because two quartets can have at most two points in commom
(with three points in common there would lie five points in a plane, which contradicts
being a cap) and hence the symmetric difference is four, six or eight. Therefore, A(n, 4, 4)
with n the size of the (presumed) cap (|A|) is considered. From [4] the following theorem
on A(n, 4, 4) is obtained.

Theorem 3. Let A(n, 4, 4) be the maximum size of a binary constant weight code with
word length n, minimum distance 4 and weight 4. Then

24A(n, 4, 4) =

n(n− 1)(n− 2) if n ≡ 2 or 4 mod 6,

n(n− 1)(n− 3) if n ≡ 1 or 3 mod 6,

n(n2 − 3n− 6) if n ≡ 0 mod 6.

17

In 2006 the case n ≡ 5 mod 6 was solved, see [10]. Combining Theorem 3 with [10] for
the specific cases of |A| = 47 and |A| = 113 yields the values of A(|A|, 4, 4) displayed in
Table 8.

Dimension 4 4 5 5 5 5 6 6 6

Capsize 21 20 48 47 46 45 114 113 112

Upper bound 315 285 4308 3959 3795 3465 60078 57997 56980

Dimension 7 7 8 9 10

Capsize 291 290 771 2070 5619

Upper bound 1026745 1012680 18997440 369036495 7388120142

Table 8: Upper bounds on t by dimension and capsize.

The improvement of the lower bounds is based on an explicit search for optimal values of t.
The used code, small extensions on the code of Section 5.3, can be found in Appendix A.3.
Below, only the results for dimenson seven are illustrated.

The graph in Figure 15 describes the relation between the number of degenerated
quartets and the upper bound on the maximal size of a 7-cap. In the graph two horizontal
lines are marked: y = 112 and y = 236. The first line indicates the absolute lower bound
of the function, since 112 is the maximal size of a 6-cap. The second line indicates the
best known lower bound on the maximal size of a 7-cap [5]. This means that the graph,
and hence the upper bound on the maximal size of a 7-cap, cannot be lower than 236.
The two vertical lines, t = 185000 and t = 451260 indicate the bounds on the number
of degenerated quartets to satisfy this condition. Taking a close look at the graph, see
Figure 16, results in excluding of the values 44708 to 448492 from the possible numbers
of degenerated quartets. Hence, 185000 ≤ t ≤ 44707 or 448493 ≤ t ≤ 451260.

Figure 15: Upper bounds on C7 for varying t.

18

Figure 16: Close-up upper bounds on C7 for varying t.

The maximum upper bound, 291, is only reached when 448493 ≤ t ≤ 451260. This bound
is one less than the upper bound obtained by the LP and herewith equal to the result of
the ILP.

Equivalent steps for dimensions four to nine lead to the results in Table 9. The graphs
for dimensions four, five, six and eight are included in Appendix A.4. Both the jumps in
the graph and the equivalence of the maximum upper bound with the result of the ILP
are consistent with the results in these dimensions.

For the bounds on the number of degenerated quartets there is looked into both the
values for which the maximum upper bound on the maximum size of a d-cap is obtained
and which values are possible on acccount of the lower bounds on the maximum size of a
d-cap established in Chapter 3. Since the values for which the maximum upper bound is
obtained (1) are included in the possible values based on the lower bounds as an isolated
interval, only the other interval is written down as case (2). Note that for dimension four
there is no second interval since the lower bound on C4 is equal to the obtained maximum
upper bounds. Furthermore, for dimension nine the program takes too much time to
calculate the bounds of the second interval.

Dimension 4 5 6 7 8 9

Maximal upper bound 20 48 114 291 771 2070

Lower bound t (1) 206 2710 30533 448493 7462603 129107939

Upper bound t 227 2809 30871 451260 7465547 129170830

Lower bound t (2) - 1980 28261 185000 1181270 ?

Upper bound t (2) - 2651 30142 44707 7440062 ?

Table 9: Maximal upper bounds on Cd and corresponding bounds on t.

19

The explicit search to lower bounds have not only improved the lower bounds on the
maximal size of a d-cap, but also the upper bound. Hence, the upper bounds on t in
Table 9 can be compared to the upper bounds in Table 8, obtained with expressions for
A(n, 4, 4). The difference between the bounds rows rapidly to the advantage of the explicit
search. However, practically all values of A(n, 4, 4) are known, while the better upper
bounds require an extensive search which becomes impracticable for higher dimensions.

5.5 Results

In Table 10 the results of the hyperplane counting method are aggregated. The upper
bounds on the maximal size of a d-cap obtained with the ILP, LP and the addition of the
constraint based on 4-marked hyperplanes are stated to compare to each other and to the
known maximal capsizes for the dimensions one to six.

Dimension 1 2 3 4 5 6 7 8 9 10

Known max cap 2 4 9 20 45 112 - - - -

Upper bound - ILP - 4 9 20 48 114 291 771 2070 5619

Upper bound - LP - 4 9 21 48 114 292 771 2070 5619

Upper bound - 4-marked - - - 20 48 114 291 771 2070 -

Table 10: Upper bounds by ILP, LP and 4-marked hyerplanes.

The difference between the results of the three variants of the method are minimal.
Especially for the higher dimension, while the difference in running time increases rapidly
because the ILP grows the fastest. Nevertheless, the LP and the program that includes the
4-marked hyperplane constraint also grow too much to be extendable to higher dimensions.

20

6 Method 2: Fourier Transform

In [3] Bierbrauer and Edel describe a method to obtain upper bounds for the density of
caps in the d-dimensional space over the field with q elements. This density is expressed
as the following ratio:

cd(q) =
Cd(q)

|Fdq |
=
Cd(q)

qd
,

with cd(q) the density and Cd(q) the maximal cardinality of a cap in Fdq .
This method is based on the Fourier transform, as will become clear in Section 6.1.

The main result is the following theorem.

Theorem 4. Let q > 2 be a prime power. If d ≥ 3, then

cd(q) ≤
q−d + cd−1(q)

1 + cd−1(q)
.

Since the focus of this thesis lies on the specific case q = 3, Theorem 4 is reformulated to
describe this case:

Theorem 5. If d ≥ 2, then

cd ≤
3−d + cd−1
1 + cd−1

.

Remark 5.1. Theorem 4 does not hold in F2
q for all q, but it does for q = 3.

In the following section, the proof of Theorem 5 will be given. This proof follows the proof
of Theorem 4 by Bierbrauer and Edel, but will elaborate it for the case q = 3.

Subsequently, Theorem 5 will be applied to the dimensions two to ten to obtain upper
bounds for the maximal cardinality of d-caps.

6.1 Proof of Theorem 5

Let d ≥ 2 and A ⊂ Fd3 a cap. Let x · y be the dot product defined on Fd3. Let ζ be a
complex primitive 3rd root of unity and consider the complex number Uy =

∑
a∈A ζ

a·y.
Define the real vector u of length 3d − 1 whose entries correspond to |Uy|, for y 6= 0.

Lemma 1. Let y ∈ Fd3\{0}. Then

|Uy| ≤ 3Cd−1 − |A| = 3dcd−1 − |A|.

Proof. Let νc = |{a ∈ A | a · y = c}|, for c ∈ F3. The set {v ∈ Fd3 | v · y = c} forms a
(d− 1)-dimensional affine hyperplane of Fd3. Hence, νc ≤ Cd−1. Using the definition of Uy
it follows that

|Uy| = |
∑
a∈A

ζa·y| = |
∑
c∈F3

νcζ
c|. (6.1)

Since
∑

c∈F3
ζc = 0,

∑
c∈F3

Cd−1ζ
c = 0. Hence,

|
∑
c∈F3

νcζ
c| = |

∑
c∈F3

−νcζc| = |
∑
c∈F3

(Cd−1 − νc)ζc|. (6.2)

Combing Equations (6.1) and (6.2) with the triangle inequality yields

|Uy| = |
∑
c∈F3

(Cd−1 − νc)ζc| ≤
∑
c∈F3

|Cd−1 − νc||ζc|. (6.3)

21

Because |ζc| = 1 and νc ≤ Cd−1, it follows that∑
c∈F3

|Cd−1 − νc||ζc| =
∑
c∈F3

|Cd−1 − νc| =
∑
c∈F3

Cd−1 − νc. (6.4)

Hence, by Equations (6.3) and (6.4),

|Uy| ≤
∑
c∈F3

Cd−1 − νc = 3Cd−1 − |A|.

Lemma 2. ||u||2 = |A|(3d − |A|).

Proof. Using that U0 =
∑

a∈A ζ
a·0 = |A| and the definition of the norm of a complex

vector, it follows that

||u||2 =
∑

y∈Fd
3\{0}

UyUy

=
∑
y∈Fd

3

UyUy − U0U0

=
∑
y∈Fd

3

UyUy − |A|2

=
∑
y∈Fd

3

(
∑
a∈A

ζa·y)(
∑
a∈A

ζa·y)− |A|2

=
∑
y∈Fd

3

(
∑
a∈A

ζa·y)(
∑
a∈A

ζ−a·y)− |A|2

=
∑
y∈Fd

3

∑
a,b∈A

ζ(a−b)·y − |A|2. (6.5)

If a− b 6= 0, then ∑
y∈Fd

3

ζ(a−b)·y =
∑
y∈Fd

3

ζ(a−b)·(y+ej) =
∑
y∈Fd

3

ζ(a−b)·yζ(a−b)·ej , (6.6)

with ej a standard unit vector and j a coordinate in which a−b is nonzero. Then ζ(a−b)·ej 6=
1. Hence, Equation (6.6) can only be true when both sides equal zero. Therefore,∑

y∈Fd
3

ζ(a−b)·y = 0. (6.7)

If a− b = 0, then ∑
y∈Fd

3

ζ(a−b)·y = |Fd3| = 3d. (6.8)

If a− b = 0, then a = b. Combining this with Equations (6.7) and (6.8) yields∑
y∈Fd

3

∑
a,b∈A

ζ(a−b)·y =
∑
a,b∈A

∑
y∈Fd

3

ζ(a−b)·y =
∑
a∈A

3d = |A|3d. (6.9)

Combining Equations (6.5) and (6.9) yields the desired result:

||u||2 = |A|3d − |A|2 = |A|(3d − |A|).

22

For the following steps in the proof, another complex number is considered. Keeping in
mind that A is a cap and hence a1 + a2 + a3 = 0 implies a1 = a2 = a3 ∀a1, a2, a3 ∈ Fd3,
the complex number S is defined as follows.

S =
∑

y∈Fd
3\{0}

∑
a1,a2,a3∈A

ζ(
∑3

i=1 ai)·y.

Lemma 3. |S| ≤
∑

y∈Fd
3\{0}

|Uy|3.

Proof. Using the definition of S, the triangle inequality and the definition of Uy, it follows
that

|S| = |
∑

y∈Fd
3\{0}

∑
a1,a2,a3∈A

ζ(
∑3

i=1 ai)·y|

≤
∑

y∈Fd
3\{0}

|
∑

a1,a2,a3∈A
ζ(

∑3
i=1 ai)·y|

=
∑

y∈Fd
3\{0}

|
∑
a1∈A

ζa1·y
∑
a2∈A

ζa2·y
∑
a3∈A

ζa3·y|

=
∑

y∈Fd
3\{0}

|
∑
a1∈A

ζa1·y| |
∑
a2∈A

ζa2·y| |
∑
a3∈A

ζa3·y|

=
∑

y∈Fd
3\{0}

|Uy|3.

The definiton of Uy is closely related to the number of lines a subset of Fd3 of a certain size
contains. This is explained in Proposition 7.

Proposition 7. Let B ⊂ Fd3 that contains l lines. Then

|B|+ 6l =
1

3d

∑
y∈Fd

3

(Uy)
3.

Proof. Using the definition of Uy, it follows that∑
y∈Fd

3

(Uy)
3 =

∑
y∈Fd

3

(
∑
a∈A

ζa·y)3

=
∑
y∈Fd

3

(
∑
a1∈A

ζa1·y
∑
a2∈A

ζa2·y
∑
a3∈A

ζa3·y)

=
∑
y∈Fd

3

∑
a1,a2,a3∈A

ζ
∑3

i=1 ai·y. (6.10)

From the proof of Lemma 2 it is clear that
∑

y∈Fd
3
ζ(

∑3
i=1 ai)·y = 0 whenever

∑3
i=1 ai 6= 0.

Hence, assume
∑3

i=1 ai = 0. Then either a1 = a2 = a3 or a1, a2 and a3 lie on a line. If
a1 = a2 = a3, then ∑

y∈Fd
3

ζ
∑3

i=1 ai·y =
∑
y∈Fd

3

ζ0·y = 3d,

for a total contribution of |A|3d.

23

If a1, a2 and a3 define a line, then that line is counted six (3!) times because of the possible
ordenings. Hence, ∑

y∈Fd
3

ζ
∑3

i=1 ai·y = 3d,

obtaining a contribution of 3d6l.
Combining the results of the different cases with Equation 6.10 yields∑

y∈Fd
3

(Uy)
3 = 3d(|A|+ 6l).

Hence,
1

3d

∑
y∈Fd

3

(Uy)
3 = |A|+ 6l.

Lemma 4. S = |A|(3d − |A|2).

Proof. A is a cap and therefore contains no lines. With this, the proof follows from
Proposition 7. In the rewriting, the definitions of Uy and S are used.

|A| = 1

3d

∑
y∈F

(Uy)
3

=
1

3d

∑
y∈Fd

3\{0}

(Uy)
3 +

1

3d
(U0)

3

=
1

3d

∑
y∈Fd

3\{0}

(
∑
a∈A

ζa·y)3 +
1

3d
|A|3

=
1

3d

∑
y∈Fd

3\{0}

∑
a1,a2,a3∈A

ζ
∑3

i=1 ai·y +
1

3d
|A|3

=
1

3d
S +

1

3d
|A|3.

Hence,
S = |A|3d − |A|3 = |A|(3d − |A|2).

To obtain the statement of Theorem 5 all lemmas proven above will be used.
Applying Lemma 1 on the first uy in the result of Lemma 3 yields

|S| =
∑

y∈Fd
3\{0}

|Uy|3 ≤ (3dcd−1 − |A|)
∑

y∈Fd
3\{0}

|Uy|2 (6.11)

Applying the definition of the norm of a real vector and Lemma 2 to Equation (6.11) yields

|S| ≤ (3dcd−1 − |A|)||u||2 = (3dcd−1 − |A|)|A|(3d − |A|). (6.12)

Let |A| be Cd. Then Equation (6.12) gives

|S| ≤ (3dcd−1 − Cd)Cd(3d − Cd)
= (3dcd−1 − 3dcd)3

dcd(3
d − 3dcd)

= 33dcd(cd−1 − cd−1cd − cd + c2d). (6.13)

24

{0, 1}d ⊂ Fd3 is a cap. Hence,

Cd ≥ |{0, 1}d| = 2d >
√

3
d

=
√

3d.

With |A| equal to Cd, Lemma 4 yields

S = Cd(3
d − C2

d) < 0.

Hence,
|S| = −S = −Cd(3d − C2

d) = −3dcd(3
d − 32dc2d) = −32dcd − 33dc3d. (6.14)

Combining Equations (6.13) and (6.14) yields

33dcd(cd−1 − cd−1cd − cd + c2d) ≥ −32dcd − 33dc3d.

Dividing by −33dcd and further rewriting yields

cd(1 + cd−1) ≤ 3−d + cd−1.

Hence, the final result is obtained:

cd ≤
3−d + cd−1
1 + cd−1

.

6.2 Application

To obtain upper bounds for the maximal cardinality of caps in Fd3, Theorem 5 needs to be
reinterpreted for Cd instead of cd. Since cd = Cd

3d
, the rewriting is easilly done. It results

in Corollary 5.1.

Corollary 5.1. If d ≥ 2, then

Cd ≤
1 + 3Cd−1

1 + 3−d+1Cd−1
.

Now, an upper bound for the maximal cardinality of caps can be obtained for specific
dimensions. The Python code used to obtain the results is included in Appendix B.

Table 11 displays three kinds of upper bounds, obtained in three different ways,
depending on the value of Cd−1: (1) only obtained by Corollary 5.1 itself, (2) obtained
by the known maximal size for the first six dimensions and the therewith obtained results
and (3) obtained by the best known upper bound, i.e. the known maximal size or the
bound obtained by the ILP in Section 5.3.

Dimension 1 2 3 4 5 6 7 8 9 10

Known max cap 2 4 9 20 45 112 - - - -

Upper bound (1) - 4 9 21 50 125 320 838 2230 6010

Upper bound (2) - 4 9 21 48 114 292 773 2075 5632

Upper bound (3) - 4 9 21 48 114 292 771 2070 5619

Table 11: Results of Corollary 5.1 in lower dimensions, depending on the values of Cd−1.

There are two main observations based on the results. Firstly, they show that a small
difference in the upper bound on a cap in a certain dimension causes a larger difference in
the following dimension. This difference increases rapidly in higher dimensions. Secondly,
the results that uses the best known upper bound are equal to the results from the LP in
Section 5.3, which uses the same upper bounds for Cd−1.

25

7 Considering the Methods

In this chapter the two methods from Chapters 5 and 6 will be compared and connected
in a couple of different ways. First, there will be looked back at the degenerated quartets
from the 4-marked hyperplanes of Section 5.4 with the knowledge from the proofs in
Section 6.1. Subsequently, the complex number Uy and vector u from Section 6.1 willl be
associated with the hyperplane triples and the solution from the ILP from Chapter 5.

7.1 A Review on Degenerated Quartets

In Section 5.4 upper and lower bounds on the number of degenerated quartets in Fd3 were
established. The bounds followed from an explicit search for individual dimensions. With
the techniques from the proofs in Section 6.1, a general formula for the lower bound on
the number of degenerated quartets can be constructed. The result is Proposition 8.

Proposition 8. Let t be the number of degenerated quartets and A ⊂ Fd3 a cap. Then

t ≥
⌈

3−d|A|4 − 4|A|2 + 3|A|
8

⌉
.

Proof. Let a, b, c, d ∈ A. Define

T =
∑
y∈Fd

3

∑
a,b,c,d∈A

ζ(a+b−c−d)·y.

On one hand,∑
y∈Fd

3

∑
a,b,c,d∈A

ζ(a+b−c−d)·y =
∑
y∈Fd

3

∑
a∈A

ζa·y
∑
b∈A

ζb·y
∑
c∈A

ζ−c·y
∑
d∈A

ζ−d·y

=
∑
y∈Fd

3

UyUyUyUy

=
∑

y∈Fd
3\{0}

U2
yUy

2
+ U0U0U0U0

= ||u2||2 + |A|4.

||u2||2 ≥ 0. Hence,
T ≥ |A|4. (7.1)

On the other hand, it follows in the same way as in the proof of Lemma 2 that∑
y∈Fd

3
ζ(a+b−c−d)·y = 0 whenever a+ b− c− d 6= 0. Since

∑
y∈Fd

3

∑
a,b,c,d∈A ζ

(a+b−c−d)·y =∑
a,b,c,d∈A

∑
y∈Fd

3
ζ(a+b−c−d)·y, this means

∑
y∈Fd

3

∑
a,b,c,d∈A ζ

(a+b−c−d)·y = 0. Therefore,
assume a+ b− c− d = 0.

To fulfill the condition a + b − c − d = 0, there are four possible types of quartets:
all equal, two pairs of equal points, one pair of equal points or all distinct.

If the four points are equal, i.e. a = b = c = d, then∑
a=b=c=d∈A

ζ(a+b−c−d)·y =
∑
a∈A

1 = |A|.

26

If there are two pairs of equal points, i.e. a = c and b = d or a = d and b = c (if a = b
and c = d, then a = b = c = d), then∑

a=c 6=b=d,∈A
ζ(a+b−c−d)·y =

∑
a,b 6=a∈A

1 = |A|(|A| − 1).

Since the other possibilitie to pair up the points yields the same result, the total
contribution of this case is 2|A|(|A| − 1).

If there is only one pair of equal points, i.e. a = b 6= c 6= d 6= a or c = d 6= a 6= b 6=
c (a = c implies b = d and a = d implies b = c), then∑

a=b 6=c 6=d 6=a∈A
ζ(a+b−c−d)·y =

∑
a,c6=a∈A

1 = |A|(|A| − 1),

because d is determined by a, b and c. Again, because of the two possibilities to have one
equal pair, the total contribution sum equals 2|A|(|A| − 1).

The last case is when the four points are distinct, i.e. |{a, b, c, d}| = 4. In this case,
the connection with t is made. Since the points are dinstinct and satisfy the condition
a+ b− c− d = 0, it follows that (b− a)− (c− a)− (d− a) = (b− a)− (c− a)− (b− c) = 0.
This means that the three vectors (b − a), (c − a) and (d − a) are linearly dependent
and hence, lie in a plane. As these vector determine the four points, they also lie in a
plane. Therefore, the points are a degenerated quartet. The ordering of the points in
a degenerated quartet does not matter. Hence, all degenerated quartets correspond to
twenty-four ordered quartets.

Now, it will be shown that not all orderings of each degenerated quartets are counted
in T . Assume x1, x2, x3 and x4 are a degenerated quartet. Let x1 and x2 form a set with
y1, and x3 and x4 with y2. From x1 + x2 + y1 = 0 and x3 + x4 + y2 = 0 it follows that
x1 + x2 − x3 − x4 = 0 if and only if y1 = y2. Hence, x1 + x2 − x3 − x4 = 0 if and only
if the line through x1 and x2 and the line through x3 and x4 intersect. A degenerated
quartet forms a maximal 2-cap. Since there is only one type of maximal 2-cap under affine
transformations [7], it suffices to check for one case what part of the ordenings are counted.

Figure 17: Possible pairs of lines through points of degenerated quartet.

Figure 17 shows that only one of the three combinations intersects. Therefore, only a
third of the ordenings of a degenerated quartet is counted. Concluding, the case that the
four points are distinct, yields ∑

a,b,c,d,∈A
ζ(a+b−c−d)·y =

24t

3
= 8t.

27

Adding up the obtained results for the different cases, yields∑
a,b,c,d,∈A

ζ(a+b−c−d)·y = |A|+ 4|A|(|A| − 1) + 8t.

Hence,

T =
∑
y∈Fd

3

∑
a,b,c,d,∈A

ζ(a+b−c−d)·y = 3d(|A|+ 4|A|(|A| − 1) + 8t). (7.2)

Combining Equations 7.1 and 7.2, yields

3d(|A|+ 4|A|(|A| − 1) + 8t) ≥ |A|4.

Together with the requirement on t being an integer this yields

t ≥
⌈

3−d|A|4 − 4|A|2 + 3|A|
8

⌉
.

In Table 12 the lower bounds on t obtained by Proposition 8 are shown for dimensions
four to ten. The lower bound does not only depend on the dimension, but also on the size
of the (presumed) cap.

Dimension 4 4 5 5 5 5 6 6 6

Capsize 21 20 48 47 46 45 114 113 112

Lower bound 297 245 2725 2505 2295 2104 22505 21616 20751

Dimension 7 7 8 9 10

Capsize 291 290 771 2070 5619

Lower bound 372999 367627 6435277 114458743 2094463997

Table 12: Lower bounds on t by Proposition 8.

Now the results of Proposition 8 are established, they can be compared to the results
from Section 5.4. In Section 5.4 there are two kinds of lower bounds on the number of
degenerated quartets: one lower bound specifically for the maximal upper bound on the
maximal size of a d-cap and one for the possible number of degenerated quartets based on
the best known lower bounds.

In general, the more specific lower bounds from Section 5.4 are higher and the more
general lower bouonds lower than the lower bounds from Proposiiton 8. Remarkably, for
dimension four all possible number of degenerated quartets according to the result of the
explicit search lie below the lower bound obtained from Proposition 5.4.

7.2 Uy and Hyperplane Triples

In this section the complex number Uy from the primitive root of unity method from
Chapter 6 is associated with the hyperplane triples from the hyperplane counting method
from Chapter 5. First, the data they represent is compared. This leads to the expressions
from Proposition 9. In Proposition 10 the connection is strengthened with regard to the
vector u. Finally, it is shown that a solution of the ILP from Chapter 5 defines a vector
u.

28

Proposition 9. The complex number Uy encodes the same data as the ordered hyperplane
triple (ν0, ν1, ν2) associated to y. In particular,

Uy = ν0 + ν1ζ + ν2ζ
2

and

ν0 =
2

3
Re(Uy) +

1

3
|A|,

ν1 =
1

3
(|A| − Re(Uy)) +

1√
3

Im(Uy),

ν2 =
1

3
(|A| − Re(Uy))−

1√
3

Im(Uy).

Proof. It follows from the definitions of Uy and νc that

Uy =
∑
a∈A

ζa·y =
∑
c∈F3

νcζ
c = ν0 + ν1ζ + ν2ζ

2.

Since
Uy = ν0 + ν1ζ + ν2ζ2 = ν0 + ν1ζ

2 + ν2ζ,

Uy + Uy = 2ν0 + (ν1 + ν2)(ζ + ζ2) = 2ν0 − ν1 − ν2 (7.3)

and

Uy − Uy = ν1(ζ − ζ2) + ν2(ζ
2 − ζ) = (ν1 − ν2)(ζ − ζ2). (7.4)

Adding ν0 + ν1 + ν2 to Equation (7.3) yields

3ν0 = Uy + Uy + ν0 + ν1 + ν2.

Since Uy + Uy = 2 Re(Uy) and ν0 + ν1ν2 = |A|,

ν0 =
2

3
Re(Uy) +

1

3
|A|.

From ν0 + ν1 + ν2 = |A| it follows that

ν1 + ν2 = |A| − 2

3
Re(Uy) +

1

3
|A| = 2

3
|A|+ 2

3
Re(Uy). (7.5)

Equation (7.4) yields

ν1 − ν2 =
Uy − Uy
ζ − ζ2

.

Since, Uy − Uy = 2i Im(Uy) and ζ + ζ2 = ζ + ζ = 2i Im(ζ),

ν1 − ν2 =
2i Im(Uy)

2i Im(ζ)
=

Im(Uy)
1
2

√
3

=
2√
3

Im(Uy). (7.6)

Adding Equations (7.5) and (7.6) yields

2ν0 =
2

3
|A|+ 2

3
Re(Uy) +

2√
3

Im(Uy).

29

Hence,

ν0 =
1

3
(|A|+ Re(Uy)) +

1√
3

Im(Uy).

Substracting Equation (7.6) from Equation (7.5) yields in the same way

ν2 =
1

3
(|A|+ Re(Uy))−

1√
3

Im(Uy).

Proposition 10. All six possible orderings of a hyperplane triple (ν0, ν1, ν2) yield the same
value of |Uy|.

Proof. By the definition of the norm of a complex number,

|Uy| =
√

Re(Uy)2 + Im(Uy)2. (7.7)

An expression of Re(Uy) in terms of ν0, ν1 and ν2 can be obtained from Proposition 9.
Rewriting the expressions for ν0, ν1 and ν2 yields

Re(Uy) =
3

2
ν0 −

1

2
|A|, (7.8)

Re(Uy) = |A|+
√

3 Im(Uy)− 3ν1 (7.9)

and

Re(Uy) = |A| −
√

3 Im(Uy)− 3ν2. (7.10)

Adding four times Equation (7.8) and one time Equation (7.9) to Equation (7.10) yields

6 Re(Uy) = 6ν0 − 3(ν1 + ν2).

Hence,

Re(Uy) = ν0 −
1

2
(ν1 + ν2). (7.11)

In the same way an expression for Im(Uy) can be obtained. Rewriting the expression
yields

Im(Uy) =
√

3ν1 −
1√
3
|A|+ 1√

3
Re(Uy) (7.12)

and

Im(Uy) = −
√

3ν2 +
1√
3
|A| − 1√

3
Re(Uy). (7.13)

Adding Equations (7.12) and (7.13) yields

2 Im(Uy) =
√

3(ν1 − ν2).

Hence,

Im(Uy) =

√
3

2
(ν1 + ν2). (7.14)

30

Combining Equations (7.7), (7.11) and (7.14) yields

|Uy| =

√
(ν0 −

1

2
(ν1 + ν2)2 + (

√
3

2
(ν1 − ν2))2

=

√
ν20 − ν0(ν1 − ν2) +

1

4
(ν1 + ν2)2 +

3

4
(ν1 − ν2)2

=

√
ν20 − ν0(ν1 − ν2) +

1

4
(ν1 + ν2)2 −

1

4
(ν1 − ν2)2 + (ν1 − ν2)2

=
√
ν20 − ν0ν1 − ν0ν2 + ν1ν2 + (ν1 − ν2)2

=
√

(ν0 − ν1)(ν0 − ν2) + (ν1 − ν2)2.

It can be concluded that (ν0 − ν1)(ν0 − νc) + (ν1 − ν2)2 = Re(Uy)2 + Im(Uy)
2. With the

equalities for ν0, ν1 and ν2 from Proposition 9 both (ν2 − ν1)(ν2 − ν0) + (ν1 − ν0)2 and
(ν1 − ν0)(ν1 − ν2) + (ν0 − ν2)2 can also be rewritten to Re(Uy)2 + Im(Uy)

2. Hence,

|Uy| =
√

(ν0 − ν1)(ν0 − ν2) + (ν1 − ν2)2

=
√

(ν1 − ν2)(ν0 − ν2) + (ν0 − ν1)2

=
√

(ν1 − ν0)(ν1 − ν2) + (ν0 − ν2)2

.

This means that the order in which ν0, ν1 and ν2 appear in the hyperplane triple does not
matter for the value of |Uy|.

With the knowledge of Proposition 10 a link between the ILP from the hyperplane counting
method and the vector u from the Fourier transform method can be established.

Remember that a solution of the ILP is a list of integers which represent the number
of times a certain (unordered) hyperplane triple can occur. By the first constraint of the

ILP, the integers add up to 3d−1
2 .

On the other hand, remember that u is a vector of length 3d − 1 whose entries are
|Uy|, paramatrized by y ∈ Fd3\{0}. From Proposition 10 it follows that the entries in u are
determined by the possible hyperplane triples. Hence, each hyperplane triple (ν0, ν1, ν3)
determines xν0ν1ν2 entries of u. Those entries will have the value of |Uy| corresponding to
the hyperplane triple (ν0, ν1, ν3) according to the proof of Proposition 10. In this manner
3d−1
2 entries of u are determined. To obtain the other half of the entries it suffices to

realise that with y and −y the same case is considered. Hence, each integer in the solution
of the ILP determines twice as many entries. Herewith, u is fully determined.

31

8 Conclusion

Since the maximal cardianality of a cap in Fd3 is only known for the dimensions one to six,
the point of focus in this thesis was to establish upper bounds for the maximal cardinality
of d-caps for the dimension seven to ten.

The two recursive methods that are described and applied follow from the articles
by Davis and Maclagan [7] and Bierbrauer and Edel [3]. The first method, based on
the counting of hyperplanes and hyperplane triples, is both simplified and extended.
Therefore, there are three kinds of results obtained from this method. The second method
is based on the Fourier transform. It leads to a direct expression for the upper bound
on Cd, the maximal cardinality of a cap in Fd3. The results of the two methods from
Chapters 5 and 6 are summarized in Table 13 below.

Dimension 1 2 3 4 5 6 7 8 9 10

Known value Cd 2 4 9 20 45 112 - - - -

Lower bound 2 4 9 20 45 112 236 496 1064 2240

Upper bound - ILP - 4 9 20 48 114 291 771 2070 5619

Upper bound - LP - 4 9 21 48 114 292 771 2070 5619

Upper bound - 4-marked - - - 20 48 114 291 771 2070 -

Upper bound - method 2 - 4 9 21 48 114 292 771 2070 5619

Best upper bound - 4 9 20 45 112 291 771 2070 5619

Table 13: Lower and upper bounds on Cd by methods 1 and 2.

The different kinds of results from the first method are similar to each other. In the
higher dimensions there is no difference at all. Therefore, the benefits of leaving the integer
constraints out, which results in a faster program, outweigh the chance on a sharper bound.

The possible difference in results between the LP and the ILP can be retrieved by
adding extra constraints based on the n-marked hyperplanes. This is done by adding the
constraint based on 4-marked hyperplanes for the dimensions four to nine in Section 5.4.
Even without determining the exact number of degenerated quartets, the obtained results
were equivalent to the results from the ILP.

The results obtained with the second method using the best known upper bound on
Cd−1 are equal to the results from the LP of the first method. The second method has
the preference since the results follow from an inequality only depending on Cd and the
current dimension.

To conclude, the results on the upper bounds on the maximal cardinality of d-caps are
compared with the lower bounds from Chapter 3. Since the exact value of Cd is known
for dimension one to six, the best known upper and lower bounds both equal Cd. For the
higher dimension, the difference between the lower and the upper bound grows rapidly.
Whereas in dimension seven the difference is roughly a fifth of the upper bound, it is
three-fifths in dimension ten.

32

9 Discussion

While there are little differences in the results obtained form the different methods
described in this thesis, the approaches seem to lie further apart. For example, the
running time of the corresponding programs or the required preparation.

The solution of the ILP contains only a small amount of nonzero values. This might
suggest that the ILP can be simplified by reducing the number of variables without losing
the accuracy. In the LP this is less relevant because there are more nonzero values in the
solution.

The possible difference in results between the LP and the ILP can be retrieved
by adding extra constraints based on the n-marked hyperplanes. In Section 5.4, a
start has been made by adding the constraint based on 4-marked hyperplanes. Even
without determining the exact number of degenerated quartets, the obtained results were
equivalent to the results from the ILP.

When the exact number of degenerated quartets in a dimension is known, the
bound could even be better. Adding a constraint based on 5-marked hyperplanes (and
subsequently 6-marked and higher marked hyperplanes) may also lead to lower upper
bounds. Similarly to the constraint for 4-marked hyperplanes, it would only depend on
the number of quintets that span a three-dimensional space instead of a four-dimensional
space since the maximal number of points from a cap in a plane is four.

At first sight, the two methods do not seem to use the same information because of
the different approaches. However, the preparation of the inequality of the second method
involves information and requirements similar to the assumptions and constraints in the
hyperplane counting method.

In this thesis only a small step in linking the two methods together has been taken.
Since the links between the hyperplane triples and Uy and the solution of the ILP and the
vector u are only established to a certain extent, it would be interesting to develop them
further. Moreover, a more general connection between the solutions of the (I)LP and the
vector u including the constraints within the methods could be established.

Overall, it is clear that the upper bounds, as well as the lower bounds, should be a
lot more improved before they can give a genuine idea of the value of Cd.

33

A Code Method 1

A.1 Python Code

from math import factorial

def choose(n,k):

"""Calculates the value of n choose k."""

if k <= 0 or k > n:

return 0

return int(factorial(n)/(factorial(n-k)*factorial(k)))

def HT(capsize, prevmaxcap):

"""Lists all possiblie hyperplane triples for sets of sze capsize based

on the maximum capsize in the previous dimension (prevmaxcap)."""

A = []

p = prevmaxcap

while p > (capsize -1)/3:

q = prevmaxcap

while q > (capsize - 4)/3:

r = capsize - p - q

z = [p,q,r]

z.sort(reverse = True)

if r >=0 and r <= q and z not in A:

A.append(z)

q -= 1

p -= 1

return A

def NH(dim, k):

"""Calculates the number of hyperplanes containing a k-dimensional subspace

of F_3^dim."""

return (3**(dim - k) - 1)/2

from choose import choose

from hyperplanetriples import HT, NH

from gurobipy import *

def capcheck(dim, capsize, prevmaxcap):

"""Checks with an (I)LP whether the set of size capsize has a nonnegative

(integer) solution."""

hts = HT(capsize, prevmaxcap)

k = []

34

l = []

m = []

r = 0

s = 0

u = 0

for i in range(len(hts)):

r = choose(hts[i][0],1) + choose(hts[i][1],1) + choose(hts[i][2],1)

s = choose(hts[i][0],2) + choose(hts[i][1],2) + choose(hts[i][2],2)

u = choose(hts[i][0],3) + choose(hts[i][1],3) + choose(hts[i][2],3)

k.append(r)

l.append(s)

m.append(u)

A = [k, l, m]

b = [int(NH(dim, 1-1)*choose(capsize,1)), int(NH(dim, 2-1)*choose(capsize,2)),

int(NH(dim, 3-1)*choose(capsize,3))]

M = Model("capcheck")

x = M.addVars(range(len(hts)), lb = 0, ub = GRB.INFINITY, vtype = GRB.INTEGER,

name = "x") #ILP

x = M.addVars(range(len(hts)), lb = 0, ub = GRB.INFINITY, vtype = GRB.CONTINUOUS,

name = "x") #LP

f = 0

g = 0

h = 0

for i in range(len(hts)):

f += k[i]*x[i]

g += l[i]*x[i]

h += m[i]*x[i]

M.addConstr(f == b[0])

M.addConstr(g == b[1])

M.addConstr(h == b[2])

M.optimize()

if M.status != GRB.INFEASIBLE:

return M.getAttr("x")

else:

return []

from capcheck import capcheck

def findmaxcap (dim, capsize, prevmaxcap):

"""Finds the highest number smaller than or equal to capsize that yields

a nonnegative (integer) solution in capcheck."""

while capsize > prevmaxcap:

35

cc = capcheck(dim, capsize, prevmaxcap)

if len(cc) == 0:

capsize -= 1

else:

break

return capsize

A.2 Matlab Code

function [res] = choose(n,k)

%CHOOSE Calculates the value of n choose k.

if k > n || k < 1

res = 0;

else

res = nchoosek (n,k);

end

end

function [res] = HT(capsize, prevmaxcap)

%HT Lists all possible hyperplane triples for sets

%of size capsize based on the maximum capsize in

%the previous dimension (prevmaxcap).

n = 0;

p = prevmaxcap;

while p > (capsize -1)/3

q = prevmaxcap;

while q > (capsize - 4)/3

r = capsize - p - q;

z = sort([p,q,r], ’descend’);

if r >= 0 && r <= q %&& in(A, z) == 0

n = n+1;

end

q = q - 1;

end

p = p - 1;

end

res = {};

m = 1;

p = prevmaxcap;

while p > (capsize -1)/3

q = prevmaxcap;

while q > (capsize - 4)/3

r = capsize - p - q;

z = sort([p,q,r], ’descend’);

if r >= 0 && r <= q && ~(any(cellfun(@(x) isequal(x, z), res)))

res{m} = z;

m = m + 1;

36

end

q = q - 1;

end

p = p - 1;

end

end

function [res] = NH(dim, k)

%NH Calculates the number of hyperplanes containing

%a k-dimensional subspace of F_3^dim.

res = (3^(dim-k) -1)/2;

end

function [res] = capcheck(dim, capsize, prevmaxcap)

%CAPCHECK Checks with an (I)LP whether the set of

%size capsize has a nonnegative (integer) solution.

hts = HT(capsize, prevmaxcap);

v = size(hts);

lhts = v(2); %number of hyperplane triples

k = ones(1,lhts);

l = zeros(1,lhts);

m = zeros(1,lhts);

for i = 1:lhts

s = 0;

t = 0;

for j = 1:3

s = s + choose(hts{i}(j),2);

t = t + choose(hts{i}(j),3);

end

l(i) = s;

m(i) = t;

end

f = ones(1, lhts);

intcon = [1:lhts]; %ILP

intcon = []; %LP

A = [];

b = [];

Aeq = [k; l; m];

beq = [NH(dim, 1-1), NH(dim, 2-1)*choose(capsize,2), NH(dim, 3-1)*choose(capsize,3)];

lb = zeros(1, lhts);

ub = Inf(1, lhts);

res = intlinprog(f,intcon,A,b,Aeq, beq, lb, ub);

end

function [res] = findmaxcap(dim, capsize, prevmaxcap)

%FINDMAXCAP Finds the highest number smaller than or

%equal to capsize that yields a nonnegative

%(integer) solution in capcheck.

37

while capsize > prevmaxcap

cc = capcheck(dim, capsize, prevmaxcap);

v = size(cc);

if v(1) == 0

capsize = capsize - 1;

else

break

end

end

res = capsize;

end

A.3 Code 4-Marked

from choose import choose

from hyperplanetriples import HT, NH

from gurobipy import *

def capcheck4m(dim, capsize, prevmaxcap, t):

"""... """

hts = HT(capsize, prevmaxcap) #list of possible hyperplane triples

k = []

l = []

m = []

n = []

r = 0

s = 0

u = 0

v = 0

for i in range(len(hts)):

r = choose(hts[i][0],1) + choose(hts[i][1],1) + choose(hts[i][2],1)

s = choose(hts[i][0],2) + choose(hts[i][1],2) + choose(hts[i][2],2)

u = choose(hts[i][0],3) + choose(hts[i][1],3) + choose(hts[i][2],3)

v = choose(hts[i][0],4) + choose(hts[i][1],4) + choose(hts[i][2],4)

k.append(r)

l.append(s)

m.append(u)

n.append(v)

A = [k, l, m, n]

b = [int(NH(dim, 1-1)*choose(capsize,1)), int(NH(dim, 2-1)*choose(capsize,2)),

int(NH(dim, 3-1)*choose(capsize,3)), int(NH(dim, 4-1)*(choose(capsize,4)-t)

+ NH(dim, 3-1)*t)]

M = Model("capcheck4m")

x = M.addVars(range(len(hts)), lb = 0, ub = GRB.INFINITY, vtype = GRB.CONTINUOUS,

name = "x")

38

f = 0

g = 0

h = 0

j = 0

for i in range(len(hts)):

f += k[i]*x[i]

g += l[i]*x[i]

h += m[i]*x[i]

j += n[i]*x[i]

M.addConstr(f == b[0])

M.addConstr(g == b[1])

M.addConstr(h == b[2])

M.addConstr(j == b[3])

M.optimize()

if M.status != GRB.INFEASIBLE:

return M.getAttr("x")

else:

return []

from __future__ import division

from capcheck4marked import capcheck4m

from choose import choose

import math

def findmaxcap4m (dim, capsize, prevmaxcap, t):

"""..."""

while capsize > prevmaxcap:

cc = capcheck4m(dim, capsize, prevmaxcap, t)

if len(cc) == 0:

capsize -= 1

else:

break

return capsize

import matplotlib.pyplot as plt

t1 = [0, 500, 1500, 5000, 7579, 7580, 10000, 20000, 24497, 35000, 44000,

46000, 50000, 96000, 150000, 185000, 200000, 248497, 350000, 400000,

410000, 420000, 430000, 440000, 447107]

t2 = [447108, 447150, 448000, 448492]

t3 = [448493, 451260]

t4 = [451261, 500000, 513372, 610000, 690029, 770058, 898401, 1026745]

y1 = [112, 112, 112, 112, 112, 113, 120, 141, 153, 161, 170, 171, 174,

203, 225, 236, 240, 253, 274, 283, 284, 286, 288, 289, 290]

39

y2 = [112, 112, 112, 112]

y3 = [291, 291]

y4 = [112, 112, 112, 112, 112, 112, 112, 112]

a = [0, 1026745]

b = [236, 236]

c = [112, 112]

plt.xlabel(’number of degenerated quartets (t)’)

plt.ylabel(’upper bound on maximal size 7-cap (y)’)

plt.plot(a, c, ’y’, linestyle = ’--’, label = ’y = 112’)

plt.plot(a, b, ’g’, linestyle = ’--’, label = ’y = 236’)

plt.axvline(185000, color = ’m’, linestyle = ’--’, label = ’t = 185000’) #full plot

plt.axvline(451260, color = ’r’, linestyle = ’--’, label = ’t = 451260’) #full plot

plt.axvline(447107, ymin = .06, ymax = 0.95, color = ’b’, linestyle = ’--’,

label = ’t = 44707’) #zoom plot

plt.axvline(448493, ymin = .06, ymax = 0.955, color = ’b’, linestyle = ’--’,

label = ’t = 448493’) #zoom plot

plt.axvline(451260, ymin = .06, ymax = 0.955, color = ’b’, linestyle = ’--’,

label = ’t = 451260’) #zoom plot

plt.axvline(447107, ymin = .06, ymax = 0.95, color = ’b’, linestyle = ’--’) #full plot

plt.axvline(448493, ymin = .06, ymax = 0.955, color = ’b’, linestyle = ’--’)#full plot

plt.axvline(451260, ymin = .06, ymax = 0.955, color = ’b’, linestyle = ’--’)#full plot

plt.plot(t1,y1,’b’, t2, y2, ’b’, t3, y3, ’b’, t4, y4, ’b’)

plt.axis([0, 1026745, 100, 300]) #full plot

plt.axis([444000, 454000, 100, 300]) #zoom plot

plt.legend(fontsize = 11.5)

plt.show()

40

A.4 Figures 4-Marked

Figure 18: Upper bounds on C4 for varying t.

Figure 19: Upper bounds on C5 for varying t.

41

Figure 20: Upper bounds on C6 for varying t.

Figure 21: Upper bounds on C8 for varying t.

42

B Code Method 2

from __future__ import division

import math

def corollary2_1(dim, prevmaxcap):

"""Obtains an upper bound for C_d by Corollary 2.1."""

ub = math.floor((1 + 3*prevmaxcap)/(1 + 3**(-dim +1)*prevmaxcap))

print int(ub)

43

References

[1] M. Berger. Geometry I. Springer Science & Business Media, 1987.

[2] J. Bierbrauer. Introduction to coding theory. CRC Press, 2016.

[3] J. Bierbrauer and Y. Edel. Bounds on affine caps. Journal of Combinatorial Designs,
10(2):111–115, 2002.

[4] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith. A new table of
constant weight codes. IEEE Transactions on Information Theory, 36(6):1334–1380,
1990.

[5] A. R. Calderbank and P. C. Fishburn. Maximal three-independent subsets of {0, 1,
2}n. Designs, Codes and Cryptography, 4(4):203–211, 1994.

[6] P. J. Cameron. Projective and polar spaces, volume 13. University of London, Queen
Mary and Westfield College, 1992.

[7] B. L. Davis and D. Maclagan. The card game SET. The Mathematical Intelligencer,
25(3):33–40, 2003.

[8] Y. Edel. Extensions of generalized product caps. Designs, Codes and Cryptography,
31(1):5–14, 2004.

[9] Y. Edel and J. Bierbrauer. Large caps in small spaces. Designs, Codes and
Cryptography, 23(2):197–212, 2001.

[10] L. Ji. Asymptotic determination of the last packing number of quadruples. Designs,
Codes and Cryptography, 38(1):83–95, 2006.

[11] A. C. Mukhopadhyay. Lower bounds on mt(r, s). Journal of Combinatorial Theory,
Series A, 25(1):1–13, 1978.

[12] G. Pellegrino. Sul massimo ordine delle calotte in S4, 3. [The maximal order of the
spherical cap in S4,3]. Le Matematiche, 25(10):149–157, 1970.

[13] SET Enterprises. Founder & Inventor: Marsha J. Falco. http://www.setgame.com/
founder-inventor. Acessed: 17 May 2017.

[14] E. Snapper and R. J. Troyer. Metric affine geometry. Academic Press, 1971.

44

http://www.setgame.com/founder-inventor
http://www.setgame.com/founder-inventor

	Preface
	List of Symbols
	Abstract
	Introduction
	The Card Game SET
	Geometrical Interpretation of SET
	Thesis Structure

	About Affine Geometry
	Lower Bounds on Maximal Caps
	Maximal Caps in Low Dimensions
	Method 1: Counting Hyperplanes
	Method
	Maximal 3-Cap and 4-Cap
	Implementation
	4-Marked Hyperplanes
	Results

	Method 2: Fourier Transform
	Proof of Theorem 5
	Application

	Considering the Methods
	A Review on Degenerated Quartets
	Uy and Hyperplane Triples

	Conclusion
	Discussion
	Code Method 1
	Python Code
	Matlab Code
	Code 4-Marked
	Figures 4-Marked

	Code Method 2
	References

