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Abstract

This research is carried out in collaboration with Vattenfall, to investigate the performance of a 76-
turbine onshore wind farm. Since the start of operation, the wind farm has not been reaching P50
production estimates. Over the first five years of operation, the average gap between Annual Energy
Production (AEP) and long-term AEP P50 estimates has been substantial. This thesis gives insights
into the physical causes of this apparent underperformance. Conventional 10 minutes averaged data
as well as data with a higher resolution, named high-frequency data, has been available for this pur-
pose. Therefore, the research question to be answered is: “Can the underlying physical causes for
the underperformance of the Pen y Cymoedd wind farm be found by the use of 10 minutes averaged
and/or high-frequency data?”.

Answers to this research question were found by following a set-up analysis procedure, partially based
on IEC (International Electrotechnical Commission) standards and with an added purpose for high-
frequency data. This analysis was carried out for 14 turbines divided over 3 turbine clusters, with
each turbine cluster accompanied by a MET mast, performing independent site measurements. Firstly,
raw turbine data was filtered to only contain unwaked sectors and normal operational data. This is data
where the turbine should not be hindered by other turbines, and should not be limited in its power output.
After this filtering step, the turbine data was correlated to independent MET mast measurements at the
site, situated close to the investigated turbines. Next to the data preparation, theoretical behaviour
of the site-specific turbines was estimated. This theoretical expected behaviour, together with the
processed data sets, were input to the analysis. This analysis consisted of two in parallel carried
out analyses: a Cloud analysis and an Overall & Directional performance analysis. Within the cloud
analysis, deviating turbine state curve behaviour1 was selected and analysed. The overall & directional
analysis investigated the overall turbine performance, and the performance of 18 different wind direction
sectors per turbine.

This set-up methodology and analysis led to the following findings: on average, after data filtering,
wind turbines perform 95% compared to the performance numbers the manufacturer delivers. There
is a big difference in performance between the two turbine types at the site. Overall, the turbulence
intensity (TI) class A eastern cluster turbines are performing better than the TI class B western and
central cluster turbines. From the directional performance analysis, bad performance (>-5% compared
to the warranted performance) was seen for sectors with a complex orography, as well as for sectors
with few elevation deviation or forestry. The selected clouds from 10 minutes averaged data as well as
from high-frequency data showed losses of potential power in regions such as the cut-in wind speed
and storm control region, but also in the more critical partial load region, where the turbine should be
performing at maximum power coefficient. Within these critical regions, potential performance losses
of 10%-14% compared to the cloud energy production were found. In short, the clouds revealed the
performance improvement potential of the 14 investigated turbines. The high-frequency data gave
additional unique insights, only visible in higher resolution: it was concluded that there are periods
of curtailments in the data after the filtering process, influencing potential performance calculations.
Moreover, pitching to feathering position throughout the whole wind speed spectrum was observed.
Furthermore, high pitching values during storm control and extreme torque for high wind speeds were
visible in high resolution data. These events had a minor influence on turbine AEP than selected 10
minutes averaged clouds, but showed big potential to be improved.

1The six state curves are described in figure 2.11
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To answer the main research question, causes for underperformance can be mapped by the success-
fully set-up analysis using 10 minutes averaged and high-frequency data sets. High-frequency data
shows high-resolution turbine behaviour not visible in 10 minutes averaged data, and clarifies averaged
behaviour visible in 10 minutes averaged data. Underperformance compared to long term P50 estim-
ates partially originates from turbine behaviour. High TI at the site, a complex orography, and potential
conservative turbine settings have a big influence on turbine performance. The underperformance has
the potential to be improved according to the cloud analysis.

Recommendations are based on improving data quality for future post construction analyses. Wind
directional and wind speed data was partially available at the turbines and MET masts. Moreover,
defective logging was discovered for those parameters. Non-natural offsets between wind directional
data sets were observed. Furthermore, recommendations were made on the implementation of HF
standard deviation filtering and on machine learning for underperformance detection.



Contents

Preface i

Summary ii

Nomenclature xiv

1 Introduction 1

2 Literature Review 3

2.1 Wind turbine fault detection using a linear model . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Previous HF works on PYC wind farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Use of HF data in research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 HF data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3.2 WTG HF data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.3 Modelling with HF data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Causes for gap between theory and operation . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Onshore site conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 IEC standards regarding obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 WTG dynamics and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Site-influence on onshore WTG performance . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Turbine cluster analysis requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Methodology 26

3.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Free sectors estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.3 Data correlation and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.4 Constructing turbine state curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.5 Overall & Directional performance analysis . . . . . . . . . . . . . . . . . . . . . 35

3.1.6 Cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Software and tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Used software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Site analysis 41

4.1 Turbines at the site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Site conditions and turbine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

iv



Contents v

4.2.1 Western Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Central Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Eastern Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Wind farm performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Data gathering 51

5.1 Data gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Pre-filtered data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Post-filtered data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Limitation of data: lack of wind directional measurements . . . . . . . . . . . . . . . . . 55

6 Results western cluster 57

6.1 Wind resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.1 Influence of site on turbine performance D05 . . . . . . . . . . . . . . . . . . . . 60

6.2 Correlations MET mast and turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Overall & directional performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Overall turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.2 Directional turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4.1 Results 10 minutes averaged cloud analysis . . . . . . . . . . . . . . . . . . . . 68

6.4.2 Results HF cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Results eastern cluster 80

7.1 Wind resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.1.1 Influence of site on turbine performance L06 . . . . . . . . . . . . . . . . . . . . 82

7.2 Correlations MET mast and turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Overall & directional performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.1 Overall turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.2 Directional turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.4.1 Results 10 minutes averaged cloud analysis . . . . . . . . . . . . . . . . . . . . 87

7.4.2 Results HF cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8 Results central cluster 98

8.1 Wind resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.1.1 Influence of site on turbine performance H05 . . . . . . . . . . . . . . . . . . . . 100

8.2 Correlations MET mast and turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Overall & directional performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3.1 Overall turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.3.2 Directional turbine performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



Contents vi

8.4 Cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.4.1 Results 10 minutes averaged cloud analysis . . . . . . . . . . . . . . . . . . . . 106

8.4.2 Results HF cloud analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9 Conclusion 111

10 Discussion 113

11 Recommendations 115

11.1 Data quality & availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11.2 Improving curtailment filtering procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3 Filtering on standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.4 Use machine learning for outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.5 Revise wind resource analysis at site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A Defective wind vane measurements at MET masts 119

B Correlations turbines western cluster 120

B.1 MET-D05 correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

B.2 D04-D03 correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.3 D03-D01 correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.4 Correlations wind direction - nacelle direction . . . . . . . . . . . . . . . . . . . . . . . . 121

C Algorithm step detection for correcting offset turbine D04 122

D Machine learning for detecting outliers on D05 operational active power data 123

E Example of cloud analysis tool output 124

F Code 127

F.1 Script for filtering raw turbine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

F.2 Two examples of functions from master filtering script . . . . . . . . . . . . . . . . . . . 129

F.3 Example of function from analysis script . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

F.4 Turbine class as input to Cloud analysis tool . . . . . . . . . . . . . . . . . . . . . . . . . 131

G Google Earth site analysis examples 134



List of Figures

2.1 FDI Residual-based approach Habibi et al. (2019) . . . . . . . . . . . . . . . . . . . . . 4

2.2 Random Forest Algorithm Gonzalez et al. (2017) . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Overview of technical wind turbine losses Mortensen (2012) . . . . . . . . . . . . . . . . 8

2.4 Visual representation of wind turbine losses Lee and Fields (2021) . . . . . . . . . . . . 9

2.5 Visual representation of turbine performance subcategory data Lee and Fields (2021) . 9

2.6 Power coefficient for varying tip speed ratio and pitch angles (Lio, 2018). . . . . . . . . 16

2.7 General regions of the wind turbine power curve (Sohoni et al., 2016). . . . . . . . . . . 17

2.8 Rotor speed - Torque relation (van Wingerden, 2021). . . . . . . . . . . . . . . . . . . . 18

2.9 Active power, rotor speed and pitching during storm control (Markou & Larsen, 2009). . 20

2.10 Ramping effects on power curve (Antinio Notaristefano, 2021). . . . . . . . . . . . . . . 21

2.11 Different state curves of a variable wind speed pitch-controlled wind turbine. . . . . . . . 22

2.12 Example of a power-to-power visualisation of a reference turbine and a test turbine . . . 25

3.1 Schematic overview of the methodology workflow. . . . . . . . . . . . . . . . . . . . . . 27

3.2 Filtering process for turbine data (left) and MET mast data (right) . . . . . . . . . . . . . 30

3.3 Post-processing steps before analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Description of correlation checks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Datashader visualisation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 PYC wind farm with the three selected clusters. . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Height profile of western cluster (Openwind) . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Free sectors of the MET mast and turbines of the western cluster. . . . . . . . . . . . . 45

4.4 Height profile of central cluster (Openwind) . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Free sectors of the MET mast and turbines of the central cluster. . . . . . . . . . . . . . 47

4.6 Height profile of eastern cluster (Openwind) . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Free sectors of the MET mast and turbines of the eastern cluster. . . . . . . . . . . . . . 49

5.1 MET 10 minutes averaged data sampling frequency . . . . . . . . . . . . . . . . . . . . 52

5.2 MET HF data sampling frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 D05 10 minutes averaged data sampling frequency . . . . . . . . . . . . . . . . . . . . . 53

5.4 D05 HF data sampling frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Filtered out data in a period of curtailment. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 Filtered out data in a period of curtailment. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Multiple MET mast measurement heights. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



List of Figures viii

5.8 Wind direction - nacelle direction correlation turbine D05 . . . . . . . . . . . . . . . . . . 56

6.1 Wind rose western cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Wind speed histogram western cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.3 10 minutes averaged MET mast wind speed veer correlation. . . . . . . . . . . . . . . . 58

6.4 10 minutes averaged MET mast wind direction veer correlation. . . . . . . . . . . . . . . 58

6.5 10 minutes averaged MET mast wind speed shear correlation. . . . . . . . . . . . . . . 59

6.6 10 minutes averaged MET mast wind direction shear correlation. . . . . . . . . . . . . . 59

6.7 2020 average wind shear profile at the MET mast . . . . . . . . . . . . . . . . . . . . . . 59

6.8 10 minutes averaged MET mast wind speed TI correlation. . . . . . . . . . . . . . . . . 60

6.9 10 minutes averaged MET mast wind direction TI correlation. . . . . . . . . . . . . . . . 60

6.10 Influence of veer on D05 active power signal. . . . . . . . . . . . . . . . . . . . . . . . . 61

6.11 Influence of shear on D05 active power signal. . . . . . . . . . . . . . . . . . . . . . . . 61

6.12 10 minutes averaged wind speed correlation of D05 and D04 . . . . . . . . . . . . . . . 62

6.13 10 minutes averaged wind direction correlation of D05 and D04 . . . . . . . . . . . . . . 62

6.14 10 minutes averaged nacelle direction correlation of D05 and D04 . . . . . . . . . . . . 62

6.15 Total power curve turbine D05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.16 Total power curve turbine D04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.17 Total power curve turbine D03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.18 Total power curve turbine D01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.19 Binned power curves turbine D05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.20 Binned power curves turbine D04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.21 Binned power curves turbine D03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.22 Binned power curves turbine D01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.23 Relative power gain/loss per wind direction bin for turbine D05 . . . . . . . . . . . . . . 66

6.24 Relative power gain/loss per wind direction bin for turbine D04 . . . . . . . . . . . . . . 66

6.25 Relative power gain/loss per wind direction bin for turbine D03 . . . . . . . . . . . . . . 67

6.26 Relative power gain/loss per wind direction bin for turbine D01 . . . . . . . . . . . . . . 67

6.27 Compared 10 minutes averaged data of western cluster turbines. Data is binned by the
MOB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.28 Wind speed, TI degradation turbines western cluster . . . . . . . . . . . . . . . . . . . . 70

6.29 Pitching between 3-5 m/s (cloud D05-10-794). . . . . . . . . . . . . . . . . . . . . . . . 71

6.30 RPM below torque curve (cloud D05-10-794). . . . . . . . . . . . . . . . . . . . . . . . . 71

6.31 Torque behaviour above optimal-cp region. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.32 Scattering below the power curve (cloud D01-10-174). . . . . . . . . . . . . . . . . . . . 72

6.33 Aggressive pitching (cloud D01-10-174). . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.34 Time series of power output during curtailed period of cloud D01-10-174. . . . . . . . . 72

6.35 HF power curve scatter plots of the western cluster turbines. . . . . . . . . . . . . . . . 74



List of Figures ix

6.36 Time series of power output during curtailed period of cloud D05-HF-099. . . . . . . . . 74

6.37 Time series of power output during two-hour period of cloud D05-HF-936. . . . . . . . . 74

6.38 Time series of pitching during two-hour period of cloud D05-HF-936. . . . . . . . . . . . 75

6.39 4 hour active power close up of 11-day period cloud D05-HF-882. . . . . . . . . . . . . . 75

6.40 4 hour pitching close up of 11 day period cloud D05-HF-882. . . . . . . . . . . . . . . . 75

6.41 4 hour TI close up of 11 day period cloud D05-HF-882. . . . . . . . . . . . . . . . . . . . 75

6.42 Pitching >30° at turbine D05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.43 Active power output for pitching >30° at turbine D05. . . . . . . . . . . . . . . . . . . . . 76

6.44 TI distribution of cloud D05-HF-022. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.45 Cloud selection of pitching above cut-in wind speed. . . . . . . . . . . . . . . . . . . . . 77

6.46 Active power output for pitching above cut-in wind speed. . . . . . . . . . . . . . . . . . 77

6.47 Cloud D04-HF-981: time series of wind speeds. . . . . . . . . . . . . . . . . . . . . . . 78

6.48 Cloud D04-HF-981: time series of pitching. . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.49 Time series of wind speed ramping up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.50 Time series of rotor speed response to wind speed ramp ups. . . . . . . . . . . . . . . . 79

6.51 Time series of pitching response to rotor speed increase. . . . . . . . . . . . . . . . . . 79

7.1 Wind rose eastern cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Wind speed histogram eastern cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 10 minutes averaged MET mast wind speed veer correlation. . . . . . . . . . . . . . . . 81

7.4 10 minutes averaged MET mast wind direction veer correlation. . . . . . . . . . . . . . . 81

7.5 10 minutes averaged MET mast wind speed shear correlation. . . . . . . . . . . . . . . 81

7.6 10 minutes averaged MET mast wind direction shear correlation. . . . . . . . . . . . . . 81

7.7 10 minutes averaged MET mast wind speed TI correlation. . . . . . . . . . . . . . . . . 82

7.8 10 minutes averaged MET mast wind direction TI correlation. . . . . . . . . . . . . . . . 82

7.9 Influence of veer on L06 active power signal. . . . . . . . . . . . . . . . . . . . . . . . . 82

7.10 Influence of shear on L06 active power signal. . . . . . . . . . . . . . . . . . . . . . . . 82

7.11 Total power curve turbine L06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.12 Total power curve turbine L05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.13 Binned power curves turbine L06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.14 Binned power curves turbine L05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.15 Relative power gain/loss per wind direction bin for turbine L06 . . . . . . . . . . . . . . . 86

7.16 Relative power gain/loss per wind direction bin for turbine L05 . . . . . . . . . . . . . . . 86

7.17 Compared 10 minutes averaged data of eastern cluster turbines. Data is binned by the
MOB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.18 High wind speed power control active power output. . . . . . . . . . . . . . . . . . . . . 89

7.19 High wind speed power control pitching behaviour. . . . . . . . . . . . . . . . . . . . . . 89

7.20 Time series of power output during high wind speed control. . . . . . . . . . . . . . . . . 90



List of Figures x

7.21 Wind speed - TI relation cloud L06-10-150. In blue: TI class A turbulence relation. . . . 90

7.22 Rotor speed - pitching relation turbine D05. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.23 Rotor speed - pitching relation turbine L06. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.24 Rotor speed - torque relation turbine D05. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.25 Rotor speed - torque relation turbine L06. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.26 Optimal-cp region of turbine D05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.27 Optimal-cp region of turbine L06. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.28 Power curve with second line of power production. . . . . . . . . . . . . . . . . . . . . . 93

7.29 Wind speed - rotor speed relation with second line of rotor speed. . . . . . . . . . . . . . 93

7.30 Wind speed - TI relation cloud L05-10-248. In blue: TI class B turbulence relation. . . . 93

7.31 High wind speed power control active power output. . . . . . . . . . . . . . . . . . . . . 95

7.32 Pitching and Active power distributions for cloud L06-HF-627. . . . . . . . . . . . . . . . 95

7.33 Cloud L06-HF-632: extreme pitching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.34 Cloud L06-HF-632: decrease of rotor speeds. . . . . . . . . . . . . . . . . . . . . . . . . 96

7.35 Cloud L06-HF-632: example of power signal around selected data. . . . . . . . . . . . . 96

7.36 Selected high-torque cloud for high pitching. . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.37 Wind speed and pitching distributions for cloud L06-HF-678. . . . . . . . . . . . . . . . . 97

8.1 Wind rose central cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 Wind speed histogram central cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 10 minutes averaged MET02 wind speed veer correlation. . . . . . . . . . . . . . . . . . 99

8.4 10 minutes averaged MET02 wind direction veer correlation. . . . . . . . . . . . . . . . 99

8.5 10 minutes averaged MET02 wind speed shear correlation. . . . . . . . . . . . . . . . . 99

8.6 10 minutes averaged MET02 wind direction shear correlation. . . . . . . . . . . . . . . . 99

8.7 10 minutes averaged MET02 wind speed TI correlation. . . . . . . . . . . . . . . . . . . 100

8.8 10 minutes averaged MET02 wind direction TI correlation. . . . . . . . . . . . . . . . . . 100

8.9 Influence of veer on H05 active power signal. . . . . . . . . . . . . . . . . . . . . . . . . 100

8.10 Influence of shear on H05 active power signal. . . . . . . . . . . . . . . . . . . . . . . . 100

8.11 Wind speed correlation of MET02 and turbine H05. . . . . . . . . . . . . . . . . . . . . . 103

8.12 Wind speed correlation of turbines H05 and H06. . . . . . . . . . . . . . . . . . . . . . . 103

8.13 Binned power curve of turbine H05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8.14 Binned power curves turbine H05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.15 Relative power gain/loss per wind direction bin for turbine H05. . . . . . . . . . . . . . . 105

8.16 Compared 10 minutes averaged data of central cluster turbines. Data is binned by the
MOB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.17 2200 kW curtailments cloud H05-HF-473. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.18 1700 kW curtailments cloud H05-HF-082. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.19 500 kW curtailments cloud H05-HF-511. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



List of Figures xi

A.1 The origin of wrong wind vane and wind direction measurements/calculations at the MET
mast. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B.1 10 minutes averaged wind speed correlation of MET and D05 . . . . . . . . . . . . . . . 120

B.2 10 minutes averaged wind direction correlation of MET and D05 . . . . . . . . . . . . . 120

B.3 10 minutes averaged wind speed correlation of D04 and D03 . . . . . . . . . . . . . . . 121

B.4 10 minutes averaged wind direction correlation of D04 and D03 . . . . . . . . . . . . . . 121

B.5 10 minutes averaged nacelle direction correlation of D04 and D03 . . . . . . . . . . . . 121

B.6 10 minutes averaged wind speed correlation of D03 and D01 . . . . . . . . . . . . . . . 121

B.7 10 minutes averaged wind direction correlation of D03 and D01 . . . . . . . . . . . . . . 121

B.8 10 minutes averaged nacelle direction correlation of D03 and D01 . . . . . . . . . . . . 121

B.9 Wind direction - nacelle direction correlation turbine D04 . . . . . . . . . . . . . . . . . . 121

B.10Wind direction - nacelle direction correlation turbine D03 . . . . . . . . . . . . . . . . . . 121

B.11 Wind direction - nacelle direction correlation turbine D01 . . . . . . . . . . . . . . . . . . 121

C.1 Output step detection algorithm turbine D04 before correction. . . . . . . . . . . . . . . 122

C.2 Output step detection algorithm after correction. . . . . . . . . . . . . . . . . . . . . . . 122

D.1 Outlier scores for 10 minute power curve data for turbine D05. . . . . . . . . . . . . . . 123

D.2 Included and excluded points after applying model. . . . . . . . . . . . . . . . . . . . . . 123

E.1 Histograms output from cloud analysis tool. . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.2 Scatter plots output from cloud analysis tool. . . . . . . . . . . . . . . . . . . . . . . . . 125

E.3 Time series output from cloud analysis tool. . . . . . . . . . . . . . . . . . . . . . . . . . 126

G.1 Western cluster bad performing sectors in Google Earth (‘Google Earth’, n.d.). . . . . . 134

G.2 Western cluster bad performing sectors in Google Earth (‘Google Earth’, n.d.). . . . . . 135

G.3 Eastern cluster bad performing sector in Google Earth (‘Google Earth’, n.d.). . . . . . . 135



List of Tables

2.1 Correlations investigated in research by T.Kaniewski . . . . . . . . . . . . . . . . . . . . 5

2.2 Filters applied to Horn Rev I Wind Turbine . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Properties able to investigate by using HF data sets (Wilkinson, 2016). . . . . . . . . . . 6

2.4 TI class specific constants Øistad, 2015 . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Roughness lengths for different terrains. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Standard shear factor values for different terrains (Ray et al., 2006) . . . . . . . . . . . 12

2.7 Horizontal wind speed influenced by an object, represented as a percentage from the
initial wind speed upfront of the object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 IEC obstacle requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.9 Magnitude of investigated properties in Murphy et al. (2020) . . . . . . . . . . . . . . . . 23

2.10 Magnitude of investigated properties in Sanchez Gomez and Lundquist (2020) . . . . . 24

2.11 Magnitude of investigated properties in Stival et al. (2017) . . . . . . . . . . . . . . . . . 24

2.12 Magnitude of investigated properties in Vahidzadeh and Markfort (2019) . . . . . . . . . 24

2.13 Parameters needed for turbine cluster analysis (Albers, 2014) . . . . . . . . . . . . . . . 25

3.1 Python packages and corresponding logos. . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Possible corrections carried out to data sets after filtering. . . . . . . . . . . . . . . . . . 32

3.3 Tabular overview of cloud turbine analyses. . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Properties of respectively SWT-3.0-113 and SWT-3.0-108 . . . . . . . . . . . . . . . . . 41

4.2 Design boundary conditions turbine SWT-3.0-113 . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Design boundary conditions turbine SWT-3.0-108 . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Distances between selected turbines from western cluster . . . . . . . . . . . . . . . . . 44

4.5 Distances between selected turbines from central cluster . . . . . . . . . . . . . . . . . 46

4.6 Distances between selected turbines from eastern cluster . . . . . . . . . . . . . . . . . 48

5.1 Must-have tags and their availability in the Wind Web Portal (WWP) and Azure database. 51

5.2 MET mast tags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Data tags after renaming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Properties of wind direction - nacelle direction correlations for turbines of the western
cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Overview of correlations for the western cluster. . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Expected slopes for wind speed correlations western cluster. . . . . . . . . . . . . . . . 62

6.3 Overview of corrections carried out on correlations western cluster. . . . . . . . . . . . . 62

xii



List of Tables xiii

6.4 Efficiencies compared to WPC for turbines western cluster . . . . . . . . . . . . . . . . 64

6.5 Worst performing unwaked sectors turbines western cluster. . . . . . . . . . . . . . . . . 67

6.6 10 minutes averaged clouds analysed western cluster. . . . . . . . . . . . . . . . . . . . 68

6.7 Data collection of selected 10 minutes averaged clouds western cluster. . . . . . . . . . 68

6.8 HF clouds analysed western cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.9 Data collection of selected HF clouds western cluster. . . . . . . . . . . . . . . . . . . . 73

7.1 Overview of correlations for the eastern cluster. . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Expected slopes for wind speed correlations eastern cluster. . . . . . . . . . . . . . . . 83

7.3 Efficiencies compared to WPC for turbines eastern cluster . . . . . . . . . . . . . . . . . 84

7.4 Worst performing unwaked sectors turbines eastern cluster. . . . . . . . . . . . . . . . . 86

7.5 10 minutes averaged clouds analysed eastern cluster. . . . . . . . . . . . . . . . . . . . 87

7.6 Data collection of selected clouds eastern cluster . . . . . . . . . . . . . . . . . . . . . . 87

7.7 HF clouds analysed eastern cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.8 Data collection of selected clouds eastern cluster . . . . . . . . . . . . . . . . . . . . . . 94

8.1 Overview of corrections carried out on correlations central cluster . . . . . . . . . . . . . 101

8.2 Overview of correlations for the central cluster. . . . . . . . . . . . . . . . . . . . . . . . 102

8.3 Expected slopes for wind speed correlations central cluster. . . . . . . . . . . . . . . . . 102

8.4 Efficiencies compared to WPC for turbines central cluster. . . . . . . . . . . . . . . . . . 104

8.5 Worst performing unwaked sectors turbines central cluster. . . . . . . . . . . . . . . . . 105

8.6 10 minutes averaged clouds analysed central cluster. . . . . . . . . . . . . . . . . . . . 106

8.7 Data collection of selected clouds central cluster. . . . . . . . . . . . . . . . . . . . . . . 106

8.8 HF clouds analysed central cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.9 Data collection of selected clouds central cluster. . . . . . . . . . . . . . . . . . . . . . . 109



Nomenclature

Abbreviations
Abbreviation Definition

ABL Atmospheric Boundary Layer
ADW Azure Data Warehouse
AEP Annual Energy Production
ANN Artificial Neural Network
CF Capacity Factor
DWG Deutsche Wind Guard
FDI Fault Detection Isolation
HF High-Frequency
HSS High Speed Shaft
IEC International Electrotechnical Commission
KNN k-Nearest Neighbour
LOF Local Outlier Factor
LPP Lost Potential Power
LPPC Lost Potential Power as a fraction of cloud power production
LPPT Lost Potential Power as a fraction of annual power production
LSS Low Speed Shaft
MCP Measure Correlate Predict
MOB Method of Bins
NBM Normal Behaviour Model
NWD Nominal Wind Distribution
OEM Original Equipment Manufacturer
OP Operation Point
OPC Operational Power Curve
O&M Operations & Maintenance
PCA Post-Construction Analysis
PLU Production, Losses and Uncertainty
PYC Pen Y Cymoedd
RMSE Root Mean Squared Error
RPM Rotations Per Minute
SCADA Supervisory Control and Data Acquisition
TI Turbulence Intensity
WF Wind Farm
WPC Warranted Power Curve
WRA Wind Resource Analysis
WT Wind Turbine
WTG Wind Turbine Generator
WWP Wind Web Portal

xiv



List of Tables xv

Symbols
Symbol Definition Unit

A Area [m2]
a Scale factor [-]
cP Power coefficient [-]
cQ Torque coefficient [-]
cT Thrust coefficient [-]
D Diameter [m]
D Distance [m]
f Frequency [Hz]
H Height [m]
I TI constant [-]
k Shape factor [-]
k Wake decay coefficient [-]
l Length of object [m]
P Power [W]
Q Torque [Nm]
R Radius [m]
r Gearbox ratio [-]
s Dimensionless distance [-]
T Temperature [°C]
t Time [s]
U Wind speed [m/s]
u Friction velocity [m/s]
v Wind speed [m/s]
z Elevation [m]

α Shear factor [-]
β Wind directional veer [°/m]
η Efficiency [-]
θ Wind direction [°]
θ Pitching angle [°]
κ Von Kármán’s constant [-]
λ Tip speed ratio [-]
ρ Density [kg/m3]
σ Standard deviation [-]
Ω Rotor speed [rad/s]
ω Rotor speed [m/s]



1
Introduction

The process of developing a wind farm includes detailed predictions of wind farm yield, with site specific
conditions such as site orography and wind properties as inputs. Onshore wind farm yield, in contrast
to offshore wind farm yield, is highly influenced by site conditions, which brings challenges when estim-
ation and prediction performance for a certain wind farm layout. The Pen Y Cymoedd (PYC) wind farm
is situated in the southern part of Wales, and was constructed in a rough landscape with high elevation
differences. This brings challenges when estimating wind farm yield in the design phase of the project.
Long-term yield and site condition estimations were made, representing the average of multiple years
the farm would be in operation. Annual Energy Production (AEP) numbers of this wind farm do not
match the predictions done years before construction, which make PYC one of the underperforming
assets of Vattenfall.

The wind industry’s interest on high-frequency data has gradually been increasing. The common prac-
tice for analysing wind turbine performance in the wind energy sector still relies on 10 minutes averaged
Supervisory Control and Data Acquisition (SCADA) data, whereas using high-frequency (HF) data is
started to be seen as another opportunity for turbine Post-construction analysis (PCA). There are world-
wide published studies, consultant reports and white papers demonstrating that performance issues
and anomalies which are not visible in 10 minutes averaged SCADA data can be detected, analysed
and reported once the data resolution is increased. For the PYC wind farm, this high-resolution data is
available.

The main aim of this thesis is to understand the physical meaning behind the underperformance of
the PYC wind farm by the use of 10 minutes averaged data and HF data. To achieve this, three sub-
goals are defined. The first goal is developing a structured approach to investigate different aspects
of turbine performance, with using 10 minutes averaged data as well as HF data. The second goal is
to investigate the added value of HF data sets fort this wind farm performance analysis. The final sub
goal is to gain insights in the physical causes of the PYC wind farm. An output of this work would be
an overview of recommendations for the operations and maintenance (O&M) strategy.

The scope of this thesis is 14 turbines and MET masts, in normal operational conditions. Moreover, the
research is focussed on unwaked sectors for all investigated turbines andMETmasts. The turbines and
MET mast are divided over 3 turbine clusters. One limitation of this study pertains to the unavailability
of unaffected site condition measurements at the turbines within the examined turbine clusters. These
unaffected measurements are only available at the MET masts. The analysis is set up to cope with this
limitation.

This thesis contributes to the understanding in using high-frequency data for wind farm post-construction
analysis. It gives additional insights in the added value of this data. Moreover, the thesis provides a
structured methodology which can be optimised and repeated in future research to wind farm perform-
ance by using high-frequency data sets.
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This thesis starts with a literature review of recent studies on high-frequency (HF) data, turbine under-
performance and onshore site conditions (chapter 2). This is done to obtain a sufficient background
in these topics before doing research in the field of high-frequency data sets and post-construction
analyses for onshore wind farms. Also, in this chapter, some IEC guidelines useful for this work are
discussed. Secondly, the methodology of this work will be explained in chapter 3. This chapter contains
the overall workflow of the thesis, as well as a more in-depth look into the cloud analysis that will be
performed among three turbine clusters. In chapter 4, the site is investigated. Geometric properties of
the turbine clusters are summarized. Also, unwaked sectors are estimated for all turbines to be invest-
igated. In the next chapter, chapter 5, properties of the retrieved data are shown. On top of that, the
filtering process prior to the analysis is listed and visualised. Chapters 6 and 7 contain results from the
analysis carried out on the two clusters of the wind farm. This includes site conditions per cluster, as
well as results showing turbine performance for the full spectrum of site conditions. Finally, conclusions
and recommendations are given in chapter 9.



2
Literature Review

In this chapter, the collected information from the literature review is summarized. This literature review
is carried out prior to the data analysis that will be carried out on the PYC wind farm. A literature study
has been done on subject which serve as background for the research. Different papers have been
studied and an overview of those can be found in the bibliography. In addition, a report about HF data
analysis on the PYC wind farm was studied. This report is the result of a research done before this
thesis.

2.1. Wind turbine fault detection using a linear model
Wind turbine behaviour is a strongly nonlinear. To make the prediction of wind turbine performance bet-
ter computable and understandable, nonlinear models have been linearised around different operation
points (OP). A linearised model of wind turbine behaviour is shown below Habibi et al. (2019):

ẋ = Ax+Bu+ Fafa + RVr (2.1)

Where:

ẋ = Estimated values (derivatives of x)
x = Vector with rotor speed, generator speed, pitching and torque values
u = Vector with torque and reference pitching values
fa = Vector with offsets of multiple parameters
A,B, Fa = Matrices with components to link known values to predicted values
Vr = Effective wind speed

Where the bold terms are all variables describing the wind turbine behaviour, structured in vectors. The
explanation of those vectors is elaborated in Habibi et al. (2019). In addition, there is a measurement
model, describing measured parameters as a function of theoretical parameters.

y = Cx+ Fsfs + D (2.2)

Where:

y = Rotor speed, generator speed, pitching and torque measurements
x = Vector with rotor speed, generator speed, pitching and torque values
fs = Measurement bias vector
D = Measurement noise vector
C,Fs = Matrices with components to link known values to measured values

3



2.2. Previous HF works on PYC wind farm 4

A very common way of detecting abnormal behaviour is Fault Detection Isolation (FDI), with a residual-
based approach. A general schematic overview of how a model can be used to detect faults is shown
below:

Figure 2.1: FDI Residual-based approach Habibi et al. (2019)

This approach is based on a method which compares a model to wind turbine output. This can be
described mathematically as:

d = ym − yw (2.3)

Where:

d = Residual vector
ym = Model output
yw = Turbine output

If the residual vector exceeds a certain pre-set threshold, a fault can be assumed.

2.2. Previous HF works on PYC wind farm
The essence of this thesis is to understand the underperformance on a more wind farm wide approach.
A preliminary research on this topic was done by a fellow student, T. Kaniewski (Kaniewski, 2022).
This research was carried out on turbine level. In the report, the first correlations between different
parameters measured by the SCADA instruments are plotted. Possible reasons for underperforming
were addressed by analyzation of those plots. Additionally, the high-frequency data is compared to the
more commonly used 10 minutes averaged data. This to get better insights in the differences between
data from different sampling frequencies.

One of the worst performing turbines (the LO1 turbine) and one of the best performing turbines (the
LO65 turbine) were pointed out for analysis. Firstly, MET mast data was analysed to understand wind
behaviour, turbulence and other parameters without interference of turbines. Consequently, this MET
mast data was compared to the LO1 turbine. Correlation plots between the LO1 turbine and the met
mast were made regarding wind direction and wind speed. The next step in this research was the
comparison between the LO1 and LO6 turbine. At this stage, two different turbines were analysed
side-by-side. Active power and wind speed correlation plots were made between the two turbines.
Also, turbulence intensity and torque behaviour was visualised to make a first comparison between the
turbines regarding these parameters.

An overview of the visualisations made by T.Kaniewski are given below. A backslash in the table, a
relation between two different turbines or a met mast and a turbine, was investigated.
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Table 2.1: Correlations investigated in research by T.Kaniewski

X Y Turbines
1 Active power Active power L01/L06
2 Wind speed Active power L01, L06
3 Wind speed Wind speed MET, MET/L06, L01/L06
4 Wind direction Wind direction MET, MET/L06
5 Wind speed TI MET, L01, L06
6 Wind speed Torque L01
7 Wind direction TI MET, L01, L06
8 Wind speed Pitch L01, L06
9 RPM Active power L01, L06

Recommendations of the work from T. Kaniewski will be regarded in this thesis. For more information
about the research done, consult the report High-Frequency SCADA Data for Performance Analysis of
Multiple Wind Turbines in Complex Terrain Kaniewski (2022).

2.3. Use of HF data in research
2.3.1. HF data filtering
In a paper about machine learning techniques, John Thomas Lyons makes use of filters to clear data
from outliers Lyons and Göçmen (2021). This is done to create a data set that can be used to build
a model for analysing future data sets. The techniques described by J.T. Lyons in the paper will be
shortly discussed below and can be of use for the research on PYC wind farm.

When filtering data, it is important that there is a balance between filtering data, and preserving a
detailed sample size. When filtering, outliers can be removed to create a normal behaving dataset, but
when over removing points this can cause an unreliably small data set Lyons and Göçmen (2021). For
the filtering process for the HF data from Horns Rev I wind farm, two methods have been used. Firstly,
the data has been filtered by the use of pre-defined operational maxima and minima of the wind turbine.
Secondly, to filter out still existing abnormal behaviour, a detection algorithm called the Local Outlier
Factor (LOF) is used. This factor is used to calculate a percentile of outliers to be further removed. By
combining these two techniques, a power curve of one of the turbines was filtered successfully. This
approach can be applied to more than only power curve data. Filtering requirements will change, but
the approach will be the same. An overview of the power curve filters is given in the table below:

Step Filter name Filter Type Filter conditions
1 Curtailments Operational ActivePowerSP <Prated

2 Cut In Operational Wind speed <minimum
Active Power <minimum

3 Cut Out Operational Wind speed >maximum
4 Rated Operational Active power >Prated

5 LOF Machine Learning Detection n-neighbours
contamination

6 LOF Machine Learning Detection n-neighbours
contamination

Table 2.2: Filters applied to Horn Rev I Wind Turbine

In a report on HF data analysis by E. Gonzalez et al., a way of filtering is discussed that can be done
preliminary to the filtering steps as discussed above. SCADA data can flag abnormal events at different
components. This flagging can be used as a first filter to the HF data Gonzalez et al. (2017).
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2.3.2. WTG HF data analysis
In Antinio Notaristefano (2021), the added value of HF data is investigated. In that specific research,
turbine dynamics with a smaller resolution than 10 minutes are investigated: upwards and downward
ramps in wind speed, as well as turbine yawing. Wind speed ramping and yawing response can not
be observed in 10 minutes averaged data, but do have influence on turbine performance and power
curves Antinio Notaristefano (2021). In power curves, these events are visualised by scattering around
the average operational power curve (OPC). When imposing limitations on the standard deviations
regarding wind speed and wind direction, ramping of wind speeds and high-frequent changes in wind
direction are (partially) filtered out. As a result, the power curve scattering decreases.

In a report written by M. Wilkinson, another analysis was performed on the potential use of HF data
sets (Wilkinson, 2016). According to Wilkinson (2016), HF data sets can potentially give insights in the
following turbine control and dynamics:

Table 2.3: Properties able to investigate by using HF data sets (Wilkinson, 2016).

Property Lowest frequency [Hz]
1 Speed control 1
2 Yawing strategy 0.2
3 Start/stop policies 0.2
4 Tower/foundation dynamics 1
5 Effects of TI on power -

In the report, multiple examples of analyses carried out on above properties are briefly discussed.
Regarding yawing manoeuvring of the turbine, wind speed dependent yaw thresholds are possible to
detect when looking at HF yawing time series. Tower and foundation dynamics also occur at higher
frequencies than a frequency belonging to a sampling time of 10 minutes. The first mode of tower
frequency in the order of magnitude of 1 Hz.

In Gonzalez et al. (2019), HF data is used to model normal behaviour. This is explained in the next
subsection. Before creating these Normal Behaviour Models (NBM’s), the HF data has to be pre-
processed and filtered (Gonzalez et al., 2019). In the pre-processing phase, Alarm data is gathered
and divided per component, to prepare it as input for the filtering process. As a second step, the
turbine data is filtered. This is done by using power output data, as well as wind speed data measured
at the nacelle. As the nacelle wind speed measurements contain uncertainties, other parameters are
used, in combination with wind speed measurements, to ensure a more robust filtering process. Other
parameters used for this purpose are pitching of the blades, as well as rotational speed of the rotor
(Gonzalez et al., 2019). In the paper Gonzalez et al. (2019), the above prescribed filtering steps are
used to create normal behaviour data for the NBM. However, the filtering process above can also be
used to detect abnormal behaviour (or underperformance) as a final aim, without producing a NBM
afterwards.

2.3.3. Modelling with HF data sets
As described in the previous subchapter, in phase two of the paper by E. Gonzalez et al., filtered HF
data is used to do a performance analysis on the wind farm (WF). These analysis techniques can be
used to map the performance of multiple wind turbines in the farm, and to compare wind turbines to
others.

Before discussing some fundamental techniques to produce a Normal Behaviour Model, it should be
noted that doing calculations on a filtered data set with many SCADA data tags, can be very time-
consuming Lyons and Göçmen (2021). Therefore, one should only be using the essential data that is
needed for the analysis. A selection is based on:

• A number of selected turbines
• A number of SCADA tags considered and used in the analysis

Making an accurate data selection is done to minimise computational time for further analysis and
modelling. Below, the fundamental data modelling approaches as introduced at the beginning of this
paragraph are discussed.
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1. Method of Bins (MOB)
The Method of Bins is a method in which the operational wind speed spectrum is divided into
multiple bins. For each bin, a mean power output and standard deviation is calculated by using
the data within that bin. The standard deviation represented the uncertainty of the performance
prediction of the bin.

A different approach to the Method of Bins is the translated data approach. The first steps of the
process is equivalent. To create the reference power curve, first, wind speeds are divided into
bins and consequently the average power output of each bin is calculated. The average value of
two consecutive bins, Pi,i+1, is used for calculating the residual. Afterwards, all data points of two
consecutive bins are linearly translated towards the centre of the two bins Cambron et al. (2016).
These translated values are compared to Pi,i+1 to calculate the residual Cambron et al. (2016):

Ri,i+1 = Pi,i+1 − Ptrans (2.4)

Where:

Ri,i+1 = Residual of a translated point and the average of two wind speed bins
Pi,i+1 = Average power output of two wind speed bins
Ptrans = Power output of the translated data point

By translating the measured data points, a normal distribution between two bins is guaranteed.
2. k-Nearest Neighbours

This algorithm uses a dataset to estimate other points within the reach of the dataset. Within
a pre-set range, points around the unknown value are collected. The chosen range often re-
lies heavily on the Root Mean Squared Error (RMSE). This average of n selected data points
(X(1), Y(1)), ..., (X(n), Y(n)) within the region ||X(1) − x|| ≤ ... ≤ ||X(n) − x|| is the estimate of the
unknown value.

3. Random Forests
By bagging, multiple datasets can be acquired from one dataset. This is done by randomly picking
and replacing a value from the original dataset. From these multiple datasets, multiple decision
trees are produced. This is done by choosing a decision node based on optimal entropy distri-
bution. A parameter x with unknown value y can be run through all decision trees. The average
outcome from all decision trees is the estimation of value y. An overview of this algorithm is
shown below:

Figure 2.2: Random Forest Algorithm Gonzalez et al. (2017)

These performancemodelling techniques can be used to see if the actual performance is deviating from
the model made. If this is the case, this can result in a diagnosis of under or overperformance. Analysis
of how the turbines should perform is already done. Results from this analysis can be compared to
the data collected by the turbines. However, in a further part of the thesis, to better understand and
analyse the performance of a turbine, these models might be of use.
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2.4. Causes for gap between theory and operation
Before starting an analysis on performance, it is good to get better insights in the possible causes
of discrepancy in the first place. An overview of possible causes can help to understand the under
performing behaviour of the farm. Therefore, in this paragraph, the most important causes for this
research are listed below Tücer (2016).

• Data. For wind farm analysis, data sets are used. These data sets contain information about
the site conditions of the farm. This concerns information about the wind, as well as information
about the topography of the site.

Data about the wind itself is collected at a certain sampling time. Data is an approximation of
reality, but does not fully represent the wind conditions on site. The sampling, but as well the way
data is calibrated, may cause differences between theory and operation. Op top of that, the way
data is processed and validated can have influence on signs of underperformance.

Elevations as well as roughness are included in the topography of a site. Also, obstacles can be
considered part of the topology of a site. All these parameters influence the wind properties at
the site.

• Long term correlation. Because of the variability of wind resource on an annual scale, wind
resource data sets are correlated with long term reference data. This long term reference data
set is best to stem from a nearby source. By the use of this correlation, future wind data can be
predicted, and annual variance is taken into account less in the modelling. This process is called
Measure-correlate-predict (MCP) Beltrán et al. (2010).

• Modelling on wind farm performance is done in different ways. Regression analysis, but also
pre-developed software is used to model wind farm performance such as WindPro or WindSim
Tücer (2016). As a simplified version of real conditions, models can cause discrepancy.

• Measurements. The sensor type as well as the positioning can influence measurement outcomes
Tücer (2016). For example, there can be differences in wind speed measurement depending on
the kind of anemometer used Tücer (2016). However, IEC standards are prescribed to minimise
the variance coming from measurements.

• Technical problems and power curve deviation. This thesis will predominantly focus on the dis-
crepancy coming from underperformance due to technical issues, and thus power curve deviation.

• Losses. Losses can come from different origins. A physical phenomenon that causes losses are
wake effects, which effects can be wrongly estimated. An overview of other loss mechanisms is
given below Mortensen (2012):

Figure 2.3: Overview of technical wind turbine losses Mortensen (2012)

To give a different overview of discrepancy, J.C.Y. Lee investigated loss mechanisms as well as uncer-
tainty for Wind Resource Analysis (WRA) in wind farms. In an article published by EAWE, Lee firstly
visualised loss categories in the bottom figure Lee and Fields (2021). These are the categories as pro-
posed by the IEC 61400-15 standard. For example, the category “generic power curve adjustment” is



2.4. Causes for gap between theory and operation 9

the subcategory which stands for the difference between the advertised power curve and actual power
performance in standard test conditions (STC).

Figure 2.4: Visual representation of wind turbine losses Lee and Fields (2021)

Using these categories, in the same article, causes for energy loss were further investigated and visu-
alised per subcategory. This was done by gathering information from multiple reports in which wind
resource at different farms was analysed. The literature review results from the turbine performance
category are shown in the figure below. An orange dot represents an observed loss, and a blue dot
represents an estimated loss. The numbers on the right of the figure show the number of data points
for observations as well as estimations. On the horizontal axis is the fraction of lost Annual Energy
Production (AEP) given as a percentage Lee and Fields (2021).

Figure 2.5: Visual representation of turbine performance subcategory data Lee and Fields (2021)

In addition to all categories and subcategories from IEC, Lee proposed two more categories Lee and
Fields (2021). Firstly, the First few years of operation losses. A wind farm which is in its first opera-
tional years often does not produce at maximum capacity. Secondly, the blockage effect. Blockage
effect is the slowdown of wind speed upwind of the farm.

Besides losses, uncertainties are also discussed in the paper. As the main goal of this thesis will be
to contribute to the understanding of underperformance, and therefore losses, uncertainties will not
be further elaborated on in this literature review. If information regarding WRA uncertainties will be
needed, Lee and Fields (2021) will be consulted.
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2.5. Onshore site conditions
The complex terrain of the PYC wind farm makes it important to have a good understanding of the
fundamentals of wind farm site conditions. Due to different elevations and forestry around the wind
turbines, performance is greatly influenced by the site conditions.

Turbulence Intensity (TI)

Turbulence Intensity is a measure of variation of wind speed over time. For a chosen time interval, TI
can be calculated by the fraction of wind speed standard deviation over the mean wind speedmeasured
in that interval. A common time interval to choose is 10 minutes averaged data.

TI =
σu

U10
(2.5)

Where:

σu = Wind speed standard deviation
U10 = Average 10 minute wind speed

IEC have developed three standard TI classes to classify turbulence intensity on different sites. Three
TI curves are representing the TI behaviour for classes A, B and C. The wind speed standard deviation
for calculating TI is mathematically described as follows by IEC (Øistad, 2015):

σ1 = Iref (0.75Vhub + 5.6) (2.6)

Where:

σ1 = Wind speed standard deviation
Iref = TI class specific constant
Vhub = Wind speed at hub height
b = Empirical constant

Table 2.4: TI class specific constants Øistad, 2015

Iref [-]
Class A+ 0.18
Class A 0.16
Class B 0.14
Class C 0.12

Wind shear

Wind velocity increases with increasing height. This phenomenon is described by height profiles. These
height profiles consist of two parts: a logarithmic and an exponential part. Themathematical description
of the wind profile is given below.

U(z) =
u∗

κ
∗ ln(z − zh

z0
) (2.7)

Where:

U(z) = Wind speed at height z
u∗ = Friction velocity
κ = Von Kármán’s constant
z = Height
zh = Zero-plane displacement
z0 = Roughness length
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The above equation can be rewritten so that the wind speed at height z2 is given as a function of the
wind speed at height z1 (Holmes, 2007):

U(z2) = U(z1) ∗
ln( z2−zh

z0
)

ln( z1−zh
z0

)
(2.8)

Where:

U(z2) = Wind speed at height z2
U(z1) = Wind speed at height z1
z2 = Height level 2
z1 = Height level 1

Multiple roughness lengths for different terrains are given in the table below (Burton et al., 2011):
Table 2.5: Roughness lengths for different terrains.

Terrain type Roughness length [m]
Flat terrain, ice 0.00001 - 0.00003
Calm sea 0.0002 - 0.0003
Sand 0.0002 - 0.001
Mown grass 0.001 - 0.01
Low grass 0.01 - 0.04
Fallow field 0.02 - 0.03
High grass 0.04 - 0.1
Forest / Woodland 0.1 - 1
Built-up area 1 - 2
City 1 - 4

The magnitude of the wind speed change over height is described by the shear factor parameter α. In
a simplified manner, the wind shear is calculated by the gradient of horizontal wind velocity over height,
on a logarithmic scale.

α =
ln( v2v1 )
ln(h2

h1
)

(2.9)

Where:

α = Wind shear coefficient
v = velocity
h = height

According to IEC standards, as an average value, and α value of 0.2 can be taken. For extreme weather
conditions with a return period of once every 50 years, a shear factor of 0.11 is used for modelling wind
shear profiles (IEC, 2019).

In a different research on onshore wind shear (Ray et al., 2006), standard power law coefficients were
given for different terrains. An overview of those is listed below:
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Table 2.6: Standard shear factor values for different terrains (Ray et al., 2006)

Terrain Description Power law exponent, α
Smooth, hard ground, lake or ocean 0.10
Short grass on untilled ground 0.14
Level country with foot-high grass, occasional tree 0.16
Tall row crops, hedges, a few trees 0.20
Many trees and occasional buildings 0.22 - 0.24
Wooded country, small towns and suburbs 0.28 - 0.30
Urban areas with tall buildings 0.4

Wind directional veer

Besides the variation of wind speed over height, wind direction can vary with height as well. This is
known as directional veer. Veer can be described as the change of wind direction per unit length:

βbulk =
θtop − θbottom
ztop − zbottom

(2.10)

Where:

θ = Wind direction
z = height

Horizontal wind speed variation

Horizontal influences from surroundings on the wind flow are encountered when the wind is disturbed
by obstacles. In front of an obstacle, wind can stagnate while downstream of an obstacle a wake occurs
slowing down the wind. A brief overview is given in the table below.

Distance from object Fraction of initial wind speed
-4H 80-90%
5H 25-50%
8H 50-70%
10H 50-70%
15H 70-80%
20H 100%

Table 2.7: Horizontal wind speed influenced by an object, represented as a percentage from the initial wind speed upfront of
the object.

Besides site specific objects like forests and housing, wind turbines itself also influence the wind flow.
Downstream of the turbine, this influence is described as wakes. To describe and understand those
wakes, multiple models have been developed. A basic model describing the wind velocity as well as
the geometry of the wake is the Jensen Model. The wind speed at a certain distance behind the turbine
can be calculated as follows:

1− Uw

U
=

1−
√
1− cT

(1 + 2ks)2
(2.11)

Where:

Uw = Waked wind speed
U = Undisturbed wind speed
cT = Thrust coefficient
k = Wake decay coefficient
s = Dimensionless distance
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The dimensionless distance s is calculated as follows:

s =
x

D
(2.12)

Where:

x = Distance behind the turbine
D = Rotor diameter

Wind speeds, when consequently measured at a site, can be collected into wind speed bins. When
the measurements are carried out on a long term, and all measurements are collected in the bins, a
histogram can be constructed. For wind speeds, this histogram corresponds to a Weibull distribution.
With the created histogram, a Weibull distribution can be fitted. The general description of such a
Weibull distribution is mathematically described as follows:

f(U) =
k

a

(
U

a

)k−1

e−(
U
a )

k

(2.13)

Where:

k = Shape parameter
a = Scale parameter

The shape and scale factors can be found when fitting the Weibull to the site-specific nominal wind
distribution (NWD).

2.5.1. IEC standards regarding obstacles
In the IEC standards, there is information given about in- and excluding sectors due to obstacles. In
these standards, it is described how to calculate disturbed sectors for obstacles and operating wind
turbines. Table 2.8 below shows different object dimensions and according affected sectors. Below,
the table is further explained.

Table 2.8: IEC obstacle requirements

Distance Sector Maximum obstacle height from ter-
rain surface

< 2L 360° <1/3 (H - 0,5 D)
≥ 2L and <4L Preliminary measurement sector <2/3 (H - 0,5D)
≥ 4L and <8L Preliminary measurement sector <(H - 0,5D)
≥ 8L and <16L Preliminary measurement sector <4/3 (H - 0,5D)
≥ 2L and <16L Clearly outside preliminary measure-

ment sector by 40° or more
No limit to height

If an obstacle is in accordance with a certain distance and sector (columns one and two), and it exceeds
the height limit as stated in the third column, the object has to be taken into account as a disturbing
obstacle. When taken into account, the equivalent diameter De of the object should be calculated
accordingly:

De =
2lhlw
lh + lw

(2.14)

Where:

De = Diameter
lh = Object height
lw = Object width
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This diameter De, together with the distance to the source, is then used to make an estimation of
affected sectors by the obstacle:

θobject = 1, 3arctan(2, 5
De

L
+ 0, 15) + 10 (2.15)

Where:

θobject = Size of sector to exclude
De = Equivalent object diameter
L = Object distance to source

For wind turbines, the rotor diameter as well as the distance from the turbine to the source is used
to approximate the sector influenced by the turbine. When applied to wind turbines, equation 2.15 is
changes to:

θturbine = 1, 3arctan(2, 5
D

L
+ 0, 15) + 10 (2.16)

Where:

θturbine = Size of sector to exclude
D = Rotor diameter
L = Turbine distance to source

2.6. WTG dynamics and control
In this subchapter, relevant wind turbine dynamics and control theory for this research are discussed.
Used theory from books, articles and papers are summarised.

Aerodynamics

The aerodynamic behaviour of the wind turbine rotor blades are described by the (cp, λ) - curve. This
curve shows the relation between the power coefficient (cp) and the tip speed ratio λ. The curve is rotor
blade specific and determined from blade element momentum theory (Zaaijer & Viré, 2021). This (cp, λ)
- curve is zero for a tip speed ratio of zero, (as no power is produced when the rotor is in stationary
conditions), and at the maximum tip speed ratio value of the turbine. The curve has a turbine-specific
maximum at which it is controlled to operate between cut-in and rater wind speed. The definition of the
power coefficient and tip speed ratio is given below:

cp =
P

1
2ρU

3πR2
(2.17)

Where:

cp = Power coefficient
P = Possible power generated by blade
ρ = Air density
U = Wind speed
R = Rotor radius

λ =
ΩR

U
(2.18)

Where:

λ = Tip speed ratio
Ω = Rotor speed
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This (cp, λ) - curve can be translated towards a wind speed specific (Q,Ω) curve. This curve has the
same shape for different wind speed values, but is scaled differently (Hau, 2013).

The behaviour of the blade upstream of the drive train, is transmitted through the LSS (Low Speed
Shaft), and gearbox towards the HSS (High Speed Shaft). At this HSS, the torque and rotational speed
behaviour from the blades should match the torque and rotational speed behaviour from the generator-
side of the drive train. This is either done by setting the desired torque at the generator, or by setting
the desired rotational speed of the generator (Zaaijer & Viré, 2021).

Partial load control

Between cut-in and cut-out wind speed, there exist two different stages of operation: partial load and
full load. For both operational conditions, there are different controls. At partial load, the control is set
to maximise power output and therefore the power coefficient cp. This is done by keeping the torque
coefficient constant. This comes down to keeping the torque at the HSS (QHSS) proportional to the
rotational speed at the HSS (ΩHSS) squared, with the proportionality constant kopt (Zaaijer & Viré,
2021). This accounts for the HSS as well as for the rotor itself. It may include an additional torque
control loop to damp drive-train torsion mode and resonant loads.(Novaes Menezes et al., 2018). A
mathematical definition of this control mechanism is shown below.

QHSS =
1
2ρcP,maxηgearboxπR

5

r3gearboxλ
3
design

ω2
HSS (2.19)

Where:

QHSS = Torque at the high speed shaft
ωHSS = Rotational speed at the high speed shaft
cP,max = Maximum power coefficient
ηgearbox = Gearbox efficiency
rgearbox = Gearbox ratio
λdesign = Tip speed ratio for maximum power coefficient

Apart from equation 2.19, there is another characteristic relation active in partial load. As the tip speed
ratio is kept at its design value λdesign, the rotor speed and wind speed are linearly related in the partial
load region. This can mathematically be described as follows:

Ω = U(
λdesign

R
) (2.20)

Full load control

During full load control, the turbine is not controlled to maximise the power coefficient, but to maintain
at rated power. The power generated by a rotor blade is described by rewriting equation 2.17 towards:

P =
1

2
ρcPU

3A (2.21)

Where:

P = Possible power generated by blade
A = Rotor swept area

To keep the power constant, the power coefficient and the wind speed cubed should be inversely pro-
portional. This decrease in power coefficient is obtained by pitching the blades of the turbine. Besides
decreasing the power captured by the rotor, pitching to vane (pitching towards the apparent wind direc-
tion) had the effect of reducing loads on the turbine. The pitching of the blades is controlled by tracking
the rotor speed, and correcting for deviations from the reference rotational speed by pitching of the
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blades. Keeping the rotational speed at a desired value also keeps the torque at the HSS at a desired
pre-defined rated control value.

Ωref =
Prated

Qrated(ηgeneratorηconverter)
(2.22)

Where:

Ωref = Reference rotational speed for control
Prated = Turbine rated power
Qrated = Set torque value
ηgenerator = Generator efficiency
ηconverter = Converter efficiency

From the above theory it can be concluded that during full load control the torque and rotational speed
are predefined for turbine control and used as reference (Zaaijer & Viré, 2021). In full load, an additional
control objective is mechanical load reduction. Reducing loads can be needed due to the high wind
speeds that can damage the WT structure in the long run (Novaes Menezes et al., 2018).

To better understand the two different control modes of the turbines, the figure below is presented. This
figure contains the aerodynamic behaviour of the NREL 5 MW reference turbine. The turbines at PYC
wind farm are another type, consisting of other blades, but the general aerodynamic properties are
similar.

Figure 2.6: Power coefficient for varying tip speed ratio and pitch angles (Lio, 2018).

As can be seen in the figure, optimal Cp is obtained when no pitching is applied to the blades. A desired
tip speed ratio λ is strived for when below rated wind speed. This maximum tip speed ratio is obtained
by setting the torque by the control mechanism from equation 2.19. In full load control, the rotor speed
has reached its maximum value. This means for every incoming wind speed above rated wind speed,
there is a matching tip speed ratio λ. Therefore, the pitch angle θ has to be changed in order to control
the Cp value to the desired value, as the tip speed ratio is no control variable above rated wind speed
(Lio, 2018).

The above described control strategies are parts of the power and torque curves. These two charac-
teristic wind turbine curves are described below.
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Power curve

The wind turbine power output for different wind speeds is represented by the power curve. A wind
turbine power curve can be described by four regions, of which two are between cut-in and cut-out wind
speed. In these two regions (region 2 and 3) the turbine is in partial and full load respectively. These
two conditions are explained above. A mathematical description of the power curve is given below:

P (t) =


0 for v(t) < vci

Pr
v3(t)−v3

ci

v3
r−v3

ci
for vci < v(t) < vr

Pr for vr < v(t) < vco
0 for v(t) > vco

(2.23)

Where:

P (t) = Power output
Pr = Rated wind speed
v(t) = Wind speed at the turbine rotor
vci = Cut-in wind speed
vco = Cut-out wind speed

The different power curve regions can be described as follows (Novaes Menezes et al., 2018):

• Regions 1 and 4
The wind turbine is out of operation, commanded by the supervisory control.

• Region 2
The partial load region of the turbine, as explained above.

• Region 2.5
The rated speed should be maintained constant, and the torque should be slightly increased until
its rated value, ensuring a smooth transition between Regions 2 and 3.

• Region 3
The full load region of the turbine, as explained above.

A visual representation of the power curve and its different regions is given below. Region 2.5 is not
visible in the power curve itself, as within this region no wind speed or active power changes occur.

Figure 2.7: General regions of the wind turbine power curve (Sohoni et al., 2016).

When comparing the turbine power curve to the operational data, it is of importance to correct wind
speeds measured for the air density deviation from the site compared to the reference air density used
by the manufacturer. This has is important to compensate for differences in energy content of the
incoming wind (Carullo et al., 2021). In the equation below, the correction step is explained mathemat-
ically:
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vcor = vexp

(
ρair
ρref

)1/3

(2.24)

Where:

vcor = Corrected wind speed
vexp = Measured wind speed at site
ρair = Air density at site
ρref = Reference air density

Torque curve

The torque behaviour is described by a characteristic relation with rotor speed. The relation is made
up of different regions, just as for the power curve. The regions are discussed below.

• Region 0-A
In this region, no power is produced, and no torque is generated. The turbine is being curtailed,
or is in idling conditions below cut-in wind speed.

• Region A-B
Transition region from cut-in rotor speed towards optimal-cp torque control. The turbine starts
producing power and torque is being built up towards the optimal torque-rotor speed relation (as
was described by equation 2.19).

• Region B-C
Optimal-cp torque control as described by equation 2.19.

• Region C-D
Transition region between full load control and optimal-cp control. When maximum rotor speed is
reached (point C), the torque increases, and behaviour starts deviating from equation 2.19 again.
Torque builds up towards its maximum value (point D). This point coincides with rater power, and
covers the whole rated region of the power curve. In practice, line C-D has a slope, just like in
region A-B.

A visual representation of the torque curve is given below in figure 2.8. The black quadratic relation
is the optimal-cp curve. The black dashed lines are torque relations for different wind speeds. The
optimal-cp curve is a collection of all the optima from the torque relations at individual wind speeds.

Figure 2.8: Rotor speed - Torque relation (van Wingerden, 2021).
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Derated power control

When turbine power output is being reduced and turbine behaviour is not corresponding with the opera-
tional power curve and torque curve any more, the turbine is within derated conditions (Lio et al., 2018).
Within derated conditions, wind turbine power output, Pderated, is regulated to a value lower than rated
power, independent of wind speeds.

For this research, normal turbine operation is investigated. Curtailments are filtered out of the data.
Therefore, in the first place, derated conditions are no part of the analysis performed in this thesis.
However, derated turbine conditions can still be present in post-filtered data, when curtailments are not
logged correctly within the raw data. It is important to understand these occurrences when present in
the post-filtered data. For that reason, derated conditions are discussed.

The derated wind speed is the minimum wind speed needed for producing the derated power output.
The derated rotor speed is the rotor speed reached when the wind turbine reaches derated power at
derated wind speed. Both can be derived from the power curve within the partial load region (Lio et al.,
2018).

Uderated =
Pderated

1
2ρπr

2Cp,maxη
(2.25)

Where:

Uderated = Derated wind speed
Pderated = Derated power
Cp,max = Maximum power coefficient
η = Generator efficiency

ωderated =
vderatedλdesign

R
(2.26)

Where:

ωderated = Derated rotor speed

When wind speeds are above vderated, the turbine can set rotor speed at an arbitrary value, the set point
rotor speed ωsp. This can be explained by the fact that, above vderated, the desired power coefficient
can be obtained by any point on the corresponding isoline (figure 2.6)1. The fact that rotor speed can
be set at any arbitrary value within derated conditions, results in multiple derated control strategies.
The chosen strategy is often related to the thrust coefficient CT , which is tip speed ratio, loads and
pitch angle dependent. For a given power coefficient, there is a range of thrust coefficients a turbine
can operate in (Lio et al., 2018).

The most widely used derating strategy within the wind industry is the maximum rotor speed strategy,
where the set point rotor speed is equal to the rated rotor speed. This is because a high rotor speed
causes more kinetic energy, which can provide a higher possible inertia response to the grid when not
in balance.

This is also the derating strategy applied at the PYC wind farm. Other derating strategies are constant
tip speed ratio control, constant rotor speed control (ωsp = ωderated) or constant pitch control.

Storm control

Turbines can be equipped with a control algorithm that enlarges the wind speed range the turbine is
able to operate in. Where a wind turbine without this additional control is limited to its cut-out wind
speed, a turbine with storm control is able to exceed this cut-out wind speed. It produces less power
inversely proportional to the increasing wind speed. This also accounts for the rotor speed. Below,

1This in contrast to full load or partial load control, where the turbine is controlled to maintain a tip speed ratio or rotor speed
value.
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three diagrams are describing the development of active power, rotor speed and pitching when wind
speed exceeds cut-out.

Figure 2.9: Active power, rotor speed and pitching during storm control (Markou & Larsen, 2009).

Ramping behaviour

Ramping behaviour of a wind turbine is of big importance for the variation of power production through
time. It represents the turbine power output response to positive or negative wind speed fluctuations
in the measurements performed by the turbine. Below, three different ramping properties are defined.
These are ramping magnitude, duration and ramping change rate respectively. A change in power is
considered a ramp if the properties are exceeding a pre-defined threshold (Ahn & Hur, 2022). The
ramping magnitude is given as follows:

|P(t+∆t) − P(t)| > Pval (2.27)

Where:

P(t+∆t) = Power output after ramp
P(t) = Power output before ramp
Pval = Threshold

The ramping change rate is the change of power output over time, as defined below.

|P(t+∆t) − P(t)|
∆t

> PTval (2.28)

Where:

∆t = Ramp duration
PTval = Threshold

As a threshold for duration of a ramp, often a period of 4 hours is used. Regarding up- and down
ramping, respectively 20% and 15% are used.

Ramping behaviour of wind and power output of a turbine are of relevance for understanding scattering
around average turbine behaviour, and especially power curves. When wind speeds ramp up or down
for a long enough time period, a turbine reacts and an increase in power output is the result. Between
a wind speed increase and a turbine response, a delay exists due to rotor inertia. This delay is visible
as scattering in the power curve. When wind speed ramps up and a turbine has not responded yet,
this results in scattering below the power curve (Marked as (B) in the figure below). When wind speed
ramps down, this results in scattering above the power curve (Marked as (A) in the figure below) (Antinio
Notaristefano, 2021).
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Figure 2.10: Ramping effects on power curve (Antinio Notaristefano, 2021).

Especially in the high-frequency domain of this performance analysis, this scattering will have big in-
fluence on the power curve. In the 10 minutes averaged domain, scattering will also be present, but
less dominant. This because ramping behaviour is averaged together with more wind speed stationary
data. This is also shown in figure 2.10. The red data points represent averaged data, while the grey
data points represent HF data.

Pitching

Pitching behaviour for different wind speeds can be derived from the turbine behaviour during partial
and full load conditions, as described earlier in this chapter. With wind speeds below cut-in, a turbine is
not in operating conditions. At wind speeds close to zero, the turbine is in feathered position: the blades
are pitched into the wind by applying a pitching angle close to 90 degrees. When wind speeds are close
to cut-in wind speed, pitching is applied to gain momentum and get the turbine close to cut-in rotational
speed. During partial load, the power output is maximised by controlling the torque to maximise the
power coefficient. In this region, no pitching is applied, as pitching reduces the aerodynamic properties
of the blades and therefore the cp-value. Above rated wind speed, the power is stabilised at its rated
value by controlling the rotor speed. This is done by active pitching of the blades. By pitching in this
region, the power coefficient is decreased to its desired value to obtain rated power wind speeds above
rated. Figure 2.6 shows how pitching results in a decrease in power coefficient.

Wind turbine state curves

The above described turbine control and dynamics can be summarised into so-called wind turbine state
curves. These state curves show the theoretical behaviour of a variable wind speed pitch-controlled
wind turbine during normal operational conditions for multiple relations. Below, the most widely used
state curves are shown. These were described in (Sun et al., 2019), as well as in the course Wind
Turbine Design at TU Delft (van Wingerden, 2021).

Added to the five state curves described in (Sun et al., 2019), is the expected relation of torque and
pitching (figure 2.11e. When pitching is set to a non-zero value, either the torque is controlled at its
maximum value, or no torque is experienced due to no production below the cut-in wind speed region
(the two horizontal regions). In between, there is a vertical region of no applied pitching and torque build
up to its maximum value. Two of the six state curves are the power curve and torque curve. These
were described in detail earlier in this section.
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(a) State curve of wind speed - active power. (b) State curve of rotor speed - torque.

(c) State curve of wind speed - pitching. (d) State curve of rotor speed - pitching.

(e) State curve of pitching - torque. (f) State curve of wind speed - rotor speed.

Figure 2.11: Different state curves of a variable wind speed pitch-controlled wind turbine.

Where:

Unrtd = Wind speed at which maximum rotor speed is reached
Qmax = Torque level at rated power
ωrtd = Rated rotor speed
ωin = Rotor speed at cut-in wind speed
θoff = Feathered pitching value
θ1 = Pitching at cut-out wind speed
θ2 = Pitching below cut-in wind speed
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2.7. Site-influence on onshore WTG performance
In this subsection, an overview of relevant research on the site-influence on WTG’s is given. This
overview will be a reference for the work in this thesis. When investigating site conditions at the PYC
wind farm, only conclusions can be drawn when compared to similar research from other onshore wind
farms.

In Murphy et al. (2020), the influence of wind speed shear as well as directional veer on wind turbine
performance is given. The paper is investigating a wind farm in North America. Multiple parameters
defining wind shear and wind veer in different ways are correlated with power under- or over perform-
ance.

One of the parameters analysed in this research is∆REWS (Rotor Equivalent Wind Speed). This para-
meter is the difference between the integrated momentum through the rotor sector (which includes wind
shear variation), measured hub height wind speed. When negative, the integrated rotor momentum is
underestimated by the nacelle, and when positive it is overestimated by the nacelle. Another∆REWSθ

takes into account the different wind directions flowing into the rotor disk as well. A high∆REWS value
generally goes together with high shear values (Murphy et al., 2020).

Besides these ∆REWS values, also shear and veer as described in respectively equation 2.9 and
equation 2.10 are tested for over- and underperformance (Murphy et al., 2020). These two parameters
will also be used in this thesis.

The paper concluded that high∆REWS values cause higher power production. A gain of between 3%
and 4% is seen as maximum power increase. This occurs between 3 m/s and 13 m/s. Vice versa, low
∆REWS values causes significant production losses (up to 2% of rated power). Regarding wind shear
(α), there is no clear correlation between shear and power production. A counterintuitive result was
obtained for wind speeds larger than 8 m/s: high shear resulted in lower power production. This can
be the result of complicated wind profiles due to the complex terrain. The latter was also concluded
by Vanderweijde and Lundquist Vanderwende and Lundquist (2012). The conclusions for directional
veer were that positive veer values (veering) caused power production to increase, while negative veer
(backing) caused a decrease in power production.

Magnitudes for the different parameters from this research were the following:
Table 2.9: Magnitude of investigated properties in Murphy et al. (2020)

Unit Min Max Mean
Shear factor - -0.2 1 0.15
Directional veer degrees/m -0.5 0.5 0
∆REWS m/s -2 2 0

In another research on the influence of site conditions on turbine performance by Gomez and Lundquist
(Sanchez Gomez & Lundquist, 2020), directional veer and wind speed shear were investigated as
well. It was found that under- and over performance was separated by a relation between shear and
veer. Underneath this line, the turbine was predominantly over performing. In this research, over
performance meant performing better than the mean power output for the concerning wind speed bin.

β =
2

3
α− 0.1 (2.29)

Where:

α = Shear factor
β = Veer

Power law values between 0 and 0.33 have shown in past research that this leads to underperformance
(Antoniou et al., 2009) (Bardal et al., 2015). In the research of Gomez and Lundquist it was found
that combinations of shear and veer below the correlation of equation 2.29, for the wind shear region
between 0 and 0.33 the turbines seemed to over perform.
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In accordance with the linear boundary from equation 2.29, The turbines investigated seemed to over
perform for high shear values in combination with low directional veer, while under performing for high
directional veer values in combination with low shear. Even for shear values higher than 0.7 the turbines
were performing better than average performance.

Magnitudes for the different parameters from this research were the following:
Table 2.10: Magnitude of investigated properties in Sanchez Gomez and Lundquist (2020)

Unit Min Max Mean
Shear factor - -0.3 0.8 -
Directional veer degrees/m -0.1 0.6 -

In a research done by Stival et al. (2017), the influence of wind speed shear and TI was investigated.
From this research, it was concluded that high TI values cause a turbine to under perform for higher
wind speed regions, and over perform for moderate wind speed regions. TI reached high values (of
more than 0.1) only for moderate wind speeds. Overall, it was concluded, high values of TI can cause a
turbine to perform less than situations of low TI. Wind shear caused the investigated turbines to slightly
under perform when compared to moderate shear circumstances. The latter was also concluded by
Bardal, L. M. et al. (Bardal et al., 2015).

Magnitudes for the different parameters from this research were the following:
Table 2.11: Magnitude of investigated properties in Stival et al. (2017)

Unit Min Max Mean
TI - 0 > 0.15 -
Shear factor degrees/m < 0 > 0.4 -

Finally, in a research done by Vihidzadeh and Markfort (Vahidzadeh & Markfort, 2019), power curve
models based on high-frequency data including TI, wind shear and wind veer were compared to the
standard 10 minutes averaged power curve. Results from the research were that all models including
the above-mentioned parameters predicted the WTG power output better than the conventional power
curve. Measurements used in this research were obtained at a flat site with trees and buildings. An
overview of those measurements is given in the table below.

Table 2.12: Magnitude of investigated properties in Vahidzadeh and Markfort (2019)

Unit Min Max Mean
Shear factor - -0.1 1.1 0.3
Directional veer m 0 24 -
TI - 0 0.45 -
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2.8. Turbine cluster analysis requirements
A consultant closely related to Vattenfall did a description of ways how to compare two neighbouring
wind turbines regarding performance. In this section, useful analysis tools from this report are dis-
cussed. Parts of the analysis can be of use when setting up the methodology for this thesis.

According to this consulting firm, a number of parameters are needed for comparing two turbines within
a turbine cluster. A list of those parameters is given below. Something that stands out is that no wind
speed measurements are required within this method. This is an advantage as wind speed measure-
ments at the turbine are affected by rotor movements.

Table 2.13: Parameters needed for turbine cluster analysis (Albers, 2014)

Parameter Required
Active power X
Nacelle direction X
Status operational/idle X
Rotor speed X
Pitching angle
Air temperature
Wind speed

Two steps as proposed by the consultant which are of potential relevance for this thesis are given
below:

• Wind directional filtering
Highly manipulated by other turbines need to be excluded from a performance analysis. Amethod
for excluding this contaminated data per turbine given by the consultant is based on the ratio
between the wind speeds measured at the two compared turbines. This ratio is calculated for all
wind direction sectors. The directional sectors at which this ratio crosses a certain threshold are
deleted from the data sets (Albers, 2014).

• Power-to-power relation analysis
For different directional bins, the power of the two investigated turbines are plotted against each
other. This can be done by dividing the total power range into different bins. By default, 5 bins
can be generated. By creating these power-to-power relations for different wind speed bins, a
first model is created for comparing the performance of the two turbines. This power-to-power
relation does not contain any time-dependency and is therefore a good tool for comparison of two
turbines which are not experiencing exactly the same winds. The goal of this analysis is to detect
and highlight less performing timestamps of one turbine compared to another (Albers, 2014).

Figure 2.12: Example of a power-to-power visualisation of a reference turbine and a test turbine
Albers (2014)



3
Methodology

In this chapter, the methodology of this research is explained. The different steps are elaborated on,
and the different tools used are described. In the figures, the programming packages, tools and data
formats used are displayed as symbols. The symbols and the corresponding packages/tools are given
in the table below. This table also serves as a legend for the flow charts including these symbols.

Important parts of coding written for executing the set-up methodology, as described further on in this
chapter, can be found in appendix F.

Table 3.1: Python packages and corresponding logos.

Logo Type

Spyder Python package/tool

Jupyter Notebook Python package/tool

Bokeh Python package/tool

Datashader Python package/tool

Pandas Python package/tool

Excel (.csv) File format

Pickle (.pkl) File format

The aim of this methodology is gaining insights in the underperformance of the PYC wind farm. To
work towards this aim, multiple processes are carried out. An overview of the total methodology of this
research is given in figure 3.1 below. The multiple processes of the methodology are visualised as
the white boxes. The blue parallelograms are representing data streams which is input/output to the
different processes. Each of the processes is described in more detail in the sections below.

26
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3.1. Workflow

Figure 3.1: Schematic overview of the methodology workflow.
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3.1.1. Filtering
Main data filtering

As can be seen in figure 3.1, the turbine data will be filtered to ensure all data used for analysis will
be data without containing moments of malfunctioning. This is done by using alarm and curtailment
signals from the turbines. The whole filtration process is described step-by-step below:

1. Loading in raw 10 minutes averaged data.
The raw 10 minutes averaged data is loaded in for the MET mast as well as for selected turbines.
The files loaded in are significantly smaller than the HF data loaded in.

2. Loading in high-frequency data sets.
This data has a significantly higher resolution than the 10 minutes averaged data. Therefore, it
takes more computational power and time to load in and manipulate this data. The HF data sets
are the bottleneck of the filtering process.

3. Loading in curtailment and alarm data.
Part of the data filtering concerns filtering out timestamps where the turbine is curtailed, or where
an alarm is logged. Curtailment data gives information about periods in time that a turbine or
park’s power output is reduced. As the power output is limited by a control mechanism during
these periods, this data shall not be used for further analysis. Alarm data gives information about
when possible faults on a turbine occur. These timestamps are discarded from the turbine data
as well.

4. Reshaping 10 minute and HF data.
All csv data files (10 min and HF) are loaded into python as Pandas DataFrames. This data
structure is convenient for data analysis, because of the wide possibilities of the Panda’s API
(‘API reference — pandas 1.5.3 documentation’ (n.d.)). Both 10 minutes averaged and HF data
time columns are changed into pandas DateTime objects, to let python understand this column
are dates. Moreover, the HF data set structure is changed to the format of time in the index, and
the different SCADA tags as column names. By doing so, the HF data is structured in the same
way as the 10 minutes averaged data.

5. Filtering data from alarms and curtailments.
Alarms and curtailments as loaded in at step 1 of the filtering processed are filtered out of the
turbine data by filtering out timestamps that contain curtailments and/or alarms. For the HF data
sets, a buffer of 30 minutes is applied on both sides of the filtered out timestamps to have a more
complete curtailment filtering procedure1.

6. Filtering timestamps without logged wind speeds.
Timestamps without a wind speed measurement logged are filtered out, as wind speed is a crucial
parameter for the analyses to be carried out. This is step is more important for the HF data sets.

7. Filtering of icing periods.
Low temperatures (below and around zero degrees) can cause water on the measurement equip-
ment to freeze. This freezing can disturb the measurements carried out by the equipment, by
blocking movements from the equipment. As a result, during moments of freezing, the wind dir-
ectional data can be stuck at a certain level, while the anemometer 2 is not rotating and logging
wind speed values of 0m/s. When a combination of these two phenomena occurs, the timestamps
are filtered out of the data.

8. Filtering of frozen logging.
Frozen logging is a phenomenon where all parameters are measured correctly, but are not logged
properly. This results in non-changing data over time, over the whole range of parameters. When
frozen logging is noticed, the timestamps are deleted from the data.

9. Velocity filtering for MET mast and turbine data.
Velocity filtering is done to make sure the data sets only contain operational data. Data below
cut-in wind speed and above cut-out wind speed is therefore filtered out.

1The 30-minutes buffer has been chosen after an iterative process of applying buffers to the raw data sets. The effect of the
applied buffer is used for the decision for increasing/decreasing the buffer size.

2Wind speed meter.
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10. Calculating yaw misalignment.
The difference between wind direction and nacelle direction can be useful for showing misalign-
ment between nacelle and wind direction. It is calculated by subtracting both tags from each
other, and adding the results in an additional column.

11. TI calculations.
HF data can be used to calculate Turbulence Intensity. The standard deviation of the HF signal
of each 10-minute period is divided by the 10 minutes averaged wind speed of that period. The
calculated turbulence intensities are saved as a new column within the 10 minutes averaged data
sets.

12. Torque calculations.
Torque is a measure of the loads on a turbine. It is a parameter that can be easily computed by
dividing the active power output of the turbine by the rotational speed. This can be done for both
the 10 minutes averaged and HF data sets.

13. Veer calculations (MET mast).
Wind directional veer 3 can only be calculated at the MET mast. At the MET mast, wind direc-
tions and wind speeds are measured at multiple heights. For the veer calculation, the difference
between the hub height and lowest tip height wind direction is calculated, and divided by the el-
evation difference between the two levels (0.5D). This gives the wind directional veer in degrees
per meter (see equation 2.10).

14. Shear calculations (MET mast).
By using the same measurement levels as for the veer calculation, wind shear can be calculated
at the MET mast. This is done by using equation 2.9.

15. Wind speed air density correction.
To compare velocity measurements at the site with wind speed-included data provided by the
manufacturer (e.g. power curve data), the downloaded wind speed data needs to be corrected
towards the same air density as used in the technical turbine documentation of the manufacturer
(1.183 kg/m3). For correcting the wind speeds, the location-specific air densities are needed
(equation 2.24). To calculate those, the average temperature and elevation at the location are
needed4. The air density corrected wind speeds are saved in an additional column for both the
10 minutes averaged and HF data sets.

16. Saving DataFrames.
After the 10 minutes averaged and HF DataFrames have been filtered by all steps above, they are
saved as csv files again in the right cluster folder. The above process resulted in data sets with
additional columns (torque, shear, veer, TI), and fewer rows (as a result of the filtering process).

A visualisation of the filtering and calculation steps are shown in the figure below. The left column
contains steps performed on turbine data, and the right contains steps performed on the MET mast.
The blue and grey rows represent filtering steps, and calculations performed on the data, respectively.
Because of wind directional and wind speed data being available for multiple altitudes, directional veer
and wind shear could be calculated with the MET mast data.

3Wind direction changes over a vertical distance
4It would be more accurate to correct the data for every 10 minutes. For the scope of this work, enough accuracy is obtained

when correcting the data as a whole with the average yearly temperature.
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Figure 3.2: Filtering process for turbine data (left) and MET mast data (right)

Further details and pieces of code of the filtering process can be found in appendix F. For the purpose
of this thesis and for other similar cloud analyses, the layout of the filtering process has been changed.
The filtering code is applicable for any string containing of a MET mast and multiple turbines to be
analysed. Besides the layout, also the way of coding is changed in certain functions, to speed up the
code. A function for calculating the turbulence intensity (TI) was re-coded with the @njit package. This
package makes it possible to do simple calculations more efficiently than standard Python. As a result,
it is possible to run the filtering script for a string of turbines combined with a MET mast, within a time
period of 1-2 hours.

Post-filtering

After the collected data sets have been filtered according to the steps of figure 3.2, the data sets are
further processed before starting analysing the data. This post-processing does not include deleting
rows of data as is done in the filtering process, but is mainly meant for manipulating the data to make it
reliable and easy-to-use. Below, the different steps from this post-processing are described. Moreover,
in figure 3.3 an overview of this process is given.

1. Renaming data.
The data loaded in is named the same as the tags visible in section 5.1.1. To make the data
usable for analysis, more appropriate names are chosen for data selection and plotting more
downstream in the process. The turbine-specific first part of the names is deleted, and names
representing the parameter of that specific tag are chosen.
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2. Creating raw data set.
In the analysis, deviating behaviour of one turbine compared to the other turbines in that string
is selected. When further analysing a cloud, it can be valuable to understand how that cloud
of points would behave in the not-processed raw data of that turbine. Therefore, of the turbine
closest to the MET mast, a raw data set is loaded in and saved. The tags of this data set are also
renamed, as described in the previous step.

3. Resampling HF data for correlations.
10 minutes averaged data is used for correlating the data sets of two turbines (or a MET mast and
a turbine). When a correlation with a reliable data set is strong, the other 10 minutes averaged
data set of the correlation can be trusted and analysed. To be able to trust the HF data sets of the
different turbines as well, the HF data per turbine is resampled to a sampling rate of once every
10 minutes, and correlated to the corresponding 10 minutes averaged data set. It is expected that
this correlation is very strong, as the definition of 10 minute data is averaged higher resolution
data. When these correlations do not show surprising results, the HF data can be trusted if their
corresponding 10 minutes averaged data sets can be trusted.

4. Create data sets for comparisons.
When correlating the data of two neighbouring turbines, it is convenient to work with one data set
including the data of the two turbines. For this purpose, data sets of two neighbouring turbines
are combined.

5. Correlating 10 min and HF data.
The resampled HF data of a turbine is correlated against the corresponding 10 minutes averaged
data set of that turbine. Expected is that correlations between the two data sets are very strong,
as explained above.

6. Correlating wind speed, wind direction and nacelle direction.
After renaming and combining data sets, these are used for correlations. Correlations for three
parameters are checked: wind speed, wind direction and nacelle direction. When correlations
turn out reliable (a slope between 0.95 and 1.05), the tested data set can be trusted and used for
the analysis. Nacelle directions are correlated, as the wind direction parameter is only available
for the last third of 2020. Nacelle direction measurements can be used as an alternative.

7. Correlating active power output.
Active power output data of two neighbouring turbines is checked to confirm turbines are not
weirdly aligned. In data, an offset in directional data of one turbine can be visible with respect
to a neighbouring turbine. This can be the results of misalignment between turbines. To check
if this offset is caused by wrong data logging or by actual misalignment, active power outputs
are correlated. When the two active power signals follow each other, it is concluded the offset is
caused by wrong data logging.

8. Wind direction / nacelle direction offset correction.
When a constant wind direction and/or nacelle direction offset is observed, this means that for
every wind/nacelle direction, there is the same offset between the directional measurements of
neighbouring turbines. This is no natural behaviour, and is caused by wrong data logging. There-
fore, the data is corrected for the found offset. This is done for a found offset of greater than 10
degrees, because a smaller offset can also be caused by general data scattering. These offsets
should not be corrected.

9. Jump correction.
Directional data measured on the nacelle of a turbine can show shifts in a specific moment in time.
At this moment, the directional data undergoes a jump. From this jump onwards, data is logged
with an offset compared to the data before the jump. This can be caused by for example frost to
the wind vanes at the turbines or MET mast. A detection code was written for investigating the
occurrence of these internal jumps, as well as the moment in time. When detected, data from
this timestamp on is counter corrected to match the average direction before the timestamp. In
appendix C, an example of the output of the code for the correction of an internal jump is given.
In the table below, the two correction mechanisms are summarised:
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Table 3.2: Possible corrections carried out to data sets after filtering.

Step Operation Involved tags Applied when

8. Correct for directional offset com-
pared to neighbouring turbine

Nacelle direction
Wind direction Offset > 10°

9. Correct for sudden offset change in
time series (internally)

Nacelle direction
Wind direction Detected by code

10. Export data sets as pickle files for analysis.
The data was loaded in as csv files. To make the data easily importable for further analysis, the
data sets are saved at pickle files. Pickle files save the data type and structure of Python objects.
When loading in pickle files into new Python projects, the data type and structure is imported
correctly and no manipulation has to be done to the imported data before being able to use it.

Figure 3.3: Post-processing steps before analysis.

3.1.2. Free sectors estimation
Besides data filtering, free sectors are calculated prior to the analysis. As the scope of this research is
the investigation of unwaked sectors, the waked sectors shall be excluded from the data prior to analysis.
To do this, latitude and longitude coordinates of the PYC turbines are collected from WWP. Moreover,
coordinates of neighbouring smaller farms (also consisting of 3 MW turbines) are estimated by the use
of Google Earth (‘Google Earth’, n.d.). Moreover, of all turbines the rotor diameters are collected, as
these are of importance in the selections of turbines to include for the free sector estimates.

A turbine is considered as influential to another turbine when closer than 20D to the turbine in question.
Wake expansion is modelled by a relation as provided by IEC. This relation is described in equation 2.16.
When a turbine is closer than the threshold of 20D, the distance from the turbine to the investigated
turbine is inserted into equation 2.16, together with the rotor diameter of the turbine. This gives the
sector which is influenced. When subtracting all disturbed sectors for all turbines closer than 20D,
what is left are the unwaked sectors for a specific turbine. This procedure is repeated for each of the
14 investigated turbines. Results are shown in chapter 4.
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3.1.3. Data correlation and validation
Correlating measurement data of the MET mast and neighbouring turbines is of great importance for
carrying out an analysis using data measured at the turbines. When one wants to use the measure-
ments further up the turbine cluster, these should be calibrated with measurements more upstream of
the turbine cluster analysed. When a reliable correlation can be found between a MET mast and a
turbine (or a turbine and a turbine), measurements of the tested turbine can be used for comparisons
of the specific turbine. A correlation is tested on slope (α) and the fit to a first order polynomial (R2).A
correlation is considered reliable if it meets the following two conditions:

1. R2 > 0.7
A coefficient of determination (R2) of greater than 0.7 is typically regarded as being sufficient for
data modelling and forecasting in terms of regression analysis.

2. 0.95αexpected < αexpected < 1.05αexpected

The expected slope α depends on the height differences between the two correlated turbines.
When heights are comparable, the expected slope of the linear fit to the wind speed data is 1. A
5% deviation is accepted regarding wind speed correlations.

The procedure and sequence of the correlations is shown in the figure below. Important note: correla-
tions are checked with unwaked data, to make sure wakes are not disturbing correlation results.

Figure 3.4: Description of correlation checks.

3.1.4. Constructing turbine state curves
Within this analysis, groups of turbines are investigated with relatively small inter-turbine distances.
Because of this, behaviour between turbines can be compared by looking at the difference in state
curve relations between the different cluster turbines (state curve relations are explained in section 2.6).
To make the analysis not only reliable on measured behaviour, theoretical state curves are constructed
for both of the turbines existing at PYC wind farm. These state curve relations are based on turbine
properties. Below, the procedure for the estimation of those curves is discussed.

Power curve (Wind speed - Active power relation)

The theoretical power curve consists is a non-rated and a rated part. The non-rated part follows the
power relation of equation 2.21. Input tot this relation are the rotor swept area, air density (reference
value used by the manufacturer and power coefficient. The power coefficient was calculated from
a point on the WPC in the constant-λ part of the power curve: in this part, the power coefficient is
theoretically constant and at its maximum. The power coefficient can then be calculated accordingly:

cP =
P

1
2ρU

3A
(3.1)

At the point where the turbine reaches nominal power, the partial load region switches to a full load
region with a constant power output of 3 MW.

The above described theoretical state curve is not that relevant: as a WPC is provided by the manufac-
turer, it is more relevant to use this power curve as reference. For completeness, the theoretical power
curve as described above is still included in the state curve comparisons within chapters 6, 7 and 8.

Rotor speed - Wind speed relation

The rotor speed - wind speed relation based on two principles. Up and until Unrtd, the rotor speed is
linearly related to wind speed by the tip speed ratio λ (equation 2.20). From Unrtd onwards, the rotor
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speed is constant at its maximum value. Both Unrtd and λ are extracted from the wind speed - rotor
speed relation itself, as no information about these parameters is known for the PYC turbines. The λ
is also input for the torque curve.

Torque curve (Rotor speed - Torque relation)

The torque curve consists of three regions, as explained by 2.8: In theory, one would expect sharp
regions between the three different regions. Regions A-B and C-D are described as vertical segments
within state curves. Especially the quadratic part of the torque curve tells a lot about optimal turbine
performance. This relation is directly derived from the optimal power curve of the turbine (equation
2.21). Inputs to this equation are site air density, power coefficient, design tip speed ratio and rotor
radius. The design tip speed ratio is estimated from the slope of the wind speed-rotor speed data (in
the partial load region).

Pitching - Torque relation

The theoretical pitching - torque behaviour is based on three basic principles:

1. At zero torque, a wind turbine is not producing power. This happens when the turbine is in idling
conditions, or the turbine being pitched to get the turbine up to speed. In short, pitching can range
from 0 until 90 degrees (θoff ).

2. Between 0 and Qmax, the turbine blades are not pitched in the ideal case. The control is within
the optimal-cp region. Torque control is used to keep the turbine at optimal-cp. For this turbine,
Qmax is calculated as follows:

Qmax = Prated/(ωmax ∗ 2π/60) (3.2)

3. At Qmax, the turbine is producing at nominal power. The turbine blades are pitch controlled up to
values of θ1 to keep the turbine at maximum rotor speed. For this turbine, θ1 is 23 degrees.

Rotor speed - Pitching relation

The rotor speed - pitching relation is based on three rotor speed regions:

1. Before cut-in rotor speed, the pitching is controlled to 1 (or in the case of PYC 2) pitching values.
This is done to get the rotor up to speed for production from cut-in wind speed onwards. In the
case of PYC, these two values are 10 and 30 degrees.

2. Between cut-in and rated rotor speed, no pitching is expected to be seen: within this region, the
turbine is partial load, where the turbine is torque-controlled to operate at optimal-cP

3. At rated rotor speed, the turbine is experiencing wind speeds between rated and cut-out wind
speed. Therefore, pitching values are expected between 0 and the pitching angle for full load
control just below cut-out wind speed. For the PYC turbines, this pitching angle is around 23
degrees. Unfortunately, there is no pitching data available from the turbines. Therefore, this
maximum pitching value can not be compared to theoretical behaviour.

Pitching curve (Wind speed - Pitching relation)

As discussed above, there is no expected theoretical pitching behaviour to be discussed, as there is
no pitching information available from the Siemens turbines at the site. Although there is no theoretical
reference for this relation, the pitching curve is still a relation that is of value for this thesis performance
analysis.

The above described curves are described mathematically in table 3.3.
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3.1.5. Overall & Directional performance analysis
One of the two analyses carried out is the overall & directional performance analysis. This analysis is
carried out in parallel to the cloud analysis. The aim of the analysis is to gain insights in the variation
of turbine performance over wind directions, as well as in the total performance figures.

For both the overall and the directional turbine performance analyses, 10 minutes averaged data is
used. Another important note is that only air density corrected wind speeds are used, as these wind
speeds are corresponding to the environmental conditions of the warranted power curve as described
in section 3.1.1.

The performance estimates made in this analysis are based on power curves. Active power output
(kW) is used for this purpose, as production [kWh] estimates are made for the long term. Moreover,
active power is wind speed dependent and therefore a good input for potential power. Therefore, to
get an estimation of wind turbine performance, the binned operational power curves of the year 2020
are compared to the warranted power curve as provided by the manufacturer. Binning of the active
power data is done by means of MOB, where the active power signals within each wind speed bin
are averaged. Moreover, the standard deviation for each bin is calculated. When appending these
averaged active power values for every bin, the operational power curves can be constructed.

Overall performance calculations

For the overall performance calculations, two methods are used. The first performance calculation is
based on comparing these binned operational power curves (OPC) to the warranted power curves by
using equation 3.3.

ηpower,1 =
OPC ·NWD ∗ 24 ∗ 366
WPC ·NWD ∗ 24 ∗ 366

(3.3)

Where:

OPC = Operational power curve
WPC = Warranted power curve
NWD = Nominal wind distribution

The second method used to calculate overall performance of the turbines is by using the potential
power signals from the turbines. Potential power signals are logged with the same sampling time as
the active power signals (10 min). The potential power signal resembles the potential power output for
a certain moment in time. The signal is based on neighbouring turbine data, as well as nacelle wind
speed measured at the turbine. Results from both calculations are shown in table 6.4 5.

ηpower,2 =
(
∑n

t=1 Pactive,t) ∗ 1
6

(
∑n

t=1 Ppotential,t) ∗ 1
6

(3.4)

Where:

Pactive,t = Active power signal on timestamp t
Ppotential,t = Potential power signal on timestamp t

The output of both calculations is a fractional performance number between 0 and 1.

Directional performance calculations

To understand the turbine performance per wind direction sector, the data is divided into 18 equal
20 degrees wind direction sectors. For each sector, the active power data is then again binned and
averaged as described in the section above.

5It is expected that both estimates of performance are close to each other, as the calculation in the denominator of equation
3.3 is one of the estimates used for calculating the potential power signal.
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With the operational power curves (OPC) of the turbines, the performance per directional bin can be
calculated by comparing the weighed OPC to the weighed WPC. The power curves are weighed by
the normal wind speed distribution at the specific cluster. 6

ηi = (
OPCi ·NWDi

WPC ·NWDi
∗ 100− 100) (3.5)

Where:

ηi = Percentage of power gain/loss compared to total power output for sector i
OPCi = Operational power curve for sector i
NWDi = Normal wind speed distribution (over wind directions) for sector i

When calculating performance gains and/or losses compared to total power output of a turbine, an
option is to take into account the relative power production for each specific wind direction. This relative
production is multiplied by the ratio of operational power curve and warranted power curve, for which
the wind speed distribution is accounted for. This gives the loss in a specific sector relative to the total
production of a turbine. Within this research, the focus will be on equation 3.5 instead of equation
3.6, as equation 3.5 gives more information about the unweighted over-or underperformance of a wind
direction sector.

ηi,rel = ηi ∗ Prel,i (3.6)

Where:

ηi,tot = Percentage of power gain/loss compared to total power output of turbine
ηi = Percentage of power gain/loss compared to total power output for sector i
Prel,i = Fractional power production of sector i

Prel,i is calculated as follows:

Prel,i =
Pi∑n
i=1 Pi

(3.7)

Where:

Pi = Power production of sector i

The output of equation 3.5 is a performance gain/loss percentage compared to WPC. This is done for
visualising purposes. Figures showing an overview of performance for every wind sector per turbine
are given in the results chapters.

Site influence

For sectors with a negative mismatch compared to the WPC of bigger than 5%, the site conditions are
further investigated. The descriptions of the site for these worst performing sectors give an insight in
the influence of the site to the performance of the selected turbines.

6Important note at equation 3.5: in the numerator of the equation, the cross product of (pre-calculated) operational power
curve and nominal wind distribution is defined. Using the sum of active power signals in the numerator will lead to the same
efficiency outcome, as the OPC is calculated from those same active power signals.
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3.1.6. Cloud analysis
After filtering and correlating, the data sets (10minutes averaged and HF) are input to the cloud analysis
to investigate turbine behaviour7. Moreover, the theoretical state curves as described in figure 2.11
are inputs. For all six state curve relations, the turbine data is plotted against the theoretical expected
turbine state curve behaviour of section 3.1.4. From these state curve relations, clouds can be selected
to further analyse and understand deviating turbine behaviour. This is done for HF data as well as for
10 minutes averaged data.

10 minutes averaged data clouds are selected for one of two reasons:

1. Turbine behaviour deviating from theoretical turbine state curves
When 10 minutes averaged or HF scattering is differing from the turbine-specific state curves as
described in section 3.1.4, this is reason for analysing this cloud in more detail.

2. Deviating turbine state curve behaviour compared to other turbines from the cluster
When the 10 minutes averaged data of one turbine does not match the behaviour of the other
turbines within that cluster, this can cause differences in performance between that turbine and
the others. Therefore, it is worth analysing that particular deviating data cloud in more detail.

HF data clouds are selected for the following two motives:

1. Differences in HF turbine behaviour compared to 10 minutes averaged turbine behaviour
Apart from wider scattering, more differences can be put to the light in HF data compared to 10
minutes averaged data. Understanding these differences can be done by selecting HF clouds.

2. Deviating turbine state curve behaviour compared to other turbines from the cluster
When the HF data of one turbine does not match the behaviour of the other turbines within that
cluster, this can cause differences in performance between that turbine and the others. Therefore,
it is worth analysing that particular deviating data cloud in more detail.

Important note on HF cloud selection: Scattering within HF relations can be of two types. The first
type is caused by wind speed up- and down ramping. The turbine control system does not respond
directly to these fluctuations in wind speed. This delay in response is visible in HF data sets, because
of the short sampling time of measurements. The second type of scattering is caused by actual turbine
behaviour, deviating from the expected behaviour. Understanding which type of scattering is observed
is important in judging the significance of selected clouds.

The selection of clouds from the state curve relations can be done in three ways using the Bokeh
interface. More about the functionalities of Bokeh is given in section 3.2.

• BoxSelectTool
This tool makes it possible to select an area from a plot by a left and right boundary for the x-axis,
as well as for the y-axis. A square selection is the result (‘Plot tools’, n.d.).

• PolySelectTool
By using this selected, it is possible to create a polygon with an arbitrary number of sides, de-
pending on the number of corners selected. This selection tool is slower than the BoxSelectTool,
but still usable for HF data sets (‘Plot tools’, n.d.).

• LassoSelectTool
The lasso selection tool brings the opportunity to create a custom shape to select. It collects the co-
ordinates of the points the cursor moves when selecting the cloud. The collection of these points
provide the boundaries of the selected cloud. This is the cloud selection method demanding most
computational power, as the created selection criterium is most complex. It is too computationally
slow for HF data sets (‘Plot tools’, n.d.).

After selecting a data cloud from a scatter plot, the following (interactive) outputs are generated by the
tool. Every output contains the full turbine data set in grey, with the selected cloud data highlighted in
blue.

7Parallel to the overall & directional performance analysis.
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1. Histograms of: wind speed, nacelle direction, active power, pitching, rotor speed, generator
speed, torque, temperature, yaw misalignment and TI.

2. Turbine data shown within the six state curve relations of figure 2.11. For every relation, the
turbine data is plotted together with the expected theoretical behaviour (section 3.1.4).

3. Yaw misalignment and TI plots.
4. Time series of: wind speed, nacelle direction, active power, pitching, rotor speed, generator

speed, torque, temperature, yaw misalignment and TI.
5. Performance data of the selected cloud including the following parameters:

• Cloud number of points [-]
• Cloud share in total number of data set points [%]
• Cloud energy production [kWh]
• Cloud share in annual energy production [%]
• Cloud lost potential power (LPP) [kWh]
• Lost potential power share in annual energy production (LPPT) [%]
• Lost potential power share in cloud energy production (LPPC) [%]

The potential energy loss of a selected cloud is calculated as follows:

Epot,loss = (WPC ·NWDcloud) ∗ tcloud − Eout,cloud (3.8)

Where:

Epot,loss = Cloud potential energy lost
tcloud = Total summed up duration of cloud
Eout,cloud = Cloud energy production
NWDcloud = Cloud normal wind speed distribution

Besides these cloud performance calculations, the cloud is saved after selection. By saving a cloud,
the data is stored in an Excel file, collecting all clouds selected within the analysis. Moreover, a pickle
file of the cloud is saved. This pickle file can be loaded into the python tool in a later stage for further
analysis of the cloud. This gives the tool better reproducing properties. In appendix E, an example of
the outputs of the cloud analysis tool is given.

To create structure when selecting multiple clouds, a unique tag marks each selected cloud. This
tagging system gives structure when labelling and discussing visualisations of clouds. The tagging can
be comprehended as follows: [turbine]-[data type]-[tag ID]. The first part of the cloud tag is the code of
the turbine from which the cloud is selected. The data type is either 10 or HF8. The tag ID is a unique
three-integer code. The data type ’10d’ resembles the use of raw, unfiltered data. This unfiltered data
is used to clarify clouds selected from the filtered data.

For this cloud analysis, Datashader, Holoviews and Bokeh were combined to create a powerful high-
frequency (and 10 minutes averaged) data analysis tool in Jupyter Notebook. More information about
the advantages and applications of those packaged is given in the section below. The tool makes fast
visualisation possible, and produces interactive plots in which data clouds can be selected and further
investigated.

A tabular overview of the analyses carried out is represented below. This table includes the expected
characteristics and behaviour per analysis 9.These characteristics are based on the turbine control
theory discussed in section 2.6.

8resembling 10 minutes averaged and high-frequency data, respectively.
9Note that this expected turbine behaviour only accounts for normal operational conditions, which is the scope of this thesis
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Table 3.3: Tabular overview of cloud turbine analyses.



3.2. Software and tools 40

The results from the analyses are discussed in chapters 6, 7 and 8. The expected theoretical behaviour
for each of the state curve relations described in section 3.1.4 and table 3.3 guides as a reference when
analysing the scatter plots of the different state curve relations.

3.2. Software and tools
In this section, the software used for this research is discussed. The main applications of the used
software are processing the obtained raw data from the Azure Data Warehouse (ADW), as well as
performing multiple analyses on the processed data. Finally, the tool is described that was built with
the described software and python libraries.

3.2.1. Used software
For the purposes as mentioned above, the programming language Python© is used within two Python-
compliant interfaces: Spyder and Jupyter Notebook. Spyder is used for heavy computational code,
such as the filtering of high-frequency data sets. These specific pieces of code include lots of paramet-
ers which change continuously throughout the code. The Spyder interface is suited for this purpose,
as it includes a window with an overview of all parameters, as well as a separate console window, in
which outputs of the code are displayed.

For a part of the cloud analyses, which consists of dynamic programming and visualisation, Jupyter
Notebook is used. This interface gives fewer options compared to the Spyder interface. However, it is
suitable for dynamic visualisations, which are a key part of the cloud analysis. For these visualisations,
a combination of Python libraries Bokeh and Datashader is used. Both are part of the Holoviews library.
Bokeh is a library making dynamic visualisations possible, whereas Datashader is the right tool for big
data visualisations.

The Holoviews library is built to make data processing as well as visualising easier and faster, by com-
bining different python libraries effectively. It makes raw data and its visualization equally accessible
at all times. The essence of Holoviews is to describe your data within a small amount of information,
and to give minimal additional information to customise visualisations. Besides the coding efficiency,
Holoviews makes combining different python packages possible. One of those combinations is Bokeh
together with Datashader, as already introduced above.

As high-frequency data sets consist of (way) more information compared to 10 minutes averaged data,
it can be a challenge to extract all useful information from visualisations. Another challenge is to do this
effectively. Both challenges are solved by Bokeh and Datashader respectively. The dynamic interface
Bokeh makes it possible to look at data sets from different perspectives and at different scales. These
dynamic properties are particularly useful when analysing data sets of the size used within this research.

In figure 3.5, the Datashader algorithm is described. Datashader rasterizes data before plotting. After
a raster is created, the data to be visualised is divided into the pre-defined raster. The amount of points
within each area of the raster is represented by a shade 10. The fact that Datashader produces plots
with a resolution of a pre-defined raster while not plotting every single data point separately, makes
plotting more efficient and easy to work with.

Figure 3.5: Datashader visualisation algorithm

Essential pieces of code used within this research are listed in appendix F.

10The shade pattern can be created manually, or can be imported from the Holoviews database.
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Site analysis

For the cloud analysis that will be carried out as described above, multiple turbines are selected from
the total wind farm (consisting of 76WTGs). The choice for the turbines is based on their location within
the farm and site conditions. In this chapter, the turbine type, as well as the site conditions and turbine
selection will be covered.

4.1. Turbines at the site
The Pen Y Cymoedd wind farm has two different turbine types installed. Both are Siemens turbines,
with a different rotor diameter. Both turbines have a rated power of 3 MW. The properties of both
turbines are tabulated below. These properties will be of use when analysing the data.

Power
Rated power 3 MW
Cut-in wind speed 4 m/s
Rated wind speed 12.5 m/s
Cut-out wind speed 25 m/s
Rotor
Diameter 113 m
Swept area 10000 m2
Max. rotor speed 15.5 RPM
Max. tip speed 92 m/s
Gear box
Type Direct drive
Generator
Voltage 690 V
Frequency 50/60 Hz

Power
Rated power 3 MW
Cut-in wind speed 3 m/s
Rated wind speed 12 m/s
Cut-out wind speed 25 m/s
Rotor
Diameter 108 m
Swept area 9144 m2
Max. rotor speed 16 RPM
Max. tip speed 90 m/s
Gear box
Type Direct drive
Generator
Voltage 690 V
Frequency 50/60 Hz

Table 4.1: Properties of respectively SWT-3.0-113 and SWT-3.0-108

Moreover, site specific power curves were provided by the manufacturer. These power curves show
how the turbines should perform regarding the conditions of the site where the turbines are placed.
These curves are used as a reference for turbine performance. For all clusters, the site specific power
curves are different as the site conditions at both clusters are unique. Another reason for this difference
is the placement of SWT-3.0-113 at the western cluster, and SWT-3.0-108 at the eastern cluster. Both
turbines have different properties regarding power output over the wind speed spectrum. For confid-
entiality reasons, the site specific power curves are not shown within this thesis. However, they were
used as input to the performance modelling.

The design boundary conditions applicable on turbines SWT-3.0-113 and SWT-3.0-113 respectively are
shown in the two tables below. When parameters are outside the design values of the table, application

41
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of the turbinesmight be possible, but additional information about the site is needed to draw conclusions
on normal operation of the turbines.

Table 4.2: Design boundary conditions turbine SWT-3.0-113

Subject Issue Unit Value

Wind, operation

IEC class - IIB
Mean wind speed m/s 8.5
Weibull scale parameter (A) m/s 9.6
Weibull shape parameter (k) - 2
Wind shear exponent - 0.20
TI at 15 m/s - 0.14
Standard deviation of wind direction Deg 7.5
Maximum flow inclination Deg 8

Wind, extreme
Maximum hub height wind speed m/s 42.5
Maximum 3 s hub height gust wind speed m/s 59.5
Maximum hub height power law index - 0.11

Trees If within 500 m, maximum height of 1/3(H - D/2)

Table 4.3: Design boundary conditions turbine SWT-3.0-108

Subject Issue Unit Value

Wind, operation

IEC class - 1A
Mean wind speed m/s 10
Weibull scale parameter (A) m/s 11.3
Weibull shape parameter (k) - 2
Wind shear exponent - 0.20
TI at 15 m/s - 0.16
Standard deviation of wind direction Deg 7.5
Maximum flow inclination Deg 8

Wind, extreme
Maximum hub height wind speed m/s 50
Maximum 3 s hub height gust wind speed m/s 70
Maximum hub height power law index - 0.11

Trees If within 500 m, maximum height of 1/3(H - D/2)

Besides the turbine properties given in table 4.1, there is one turbine specific control feature to be
discussed. The turbine control is equipped with a control algorithm, making it possible to operate at
higher wind speeds. This is done by pitching the turbine blades for power reduction, and operating the
turbine at a decreased rotor speed. This mechanism has influence on the power curve, as for wind
speeds higher than 20 m/s a deviation from rated power should be observed, as well as more extreme
pitching and lower rotor speeds.

4.2. Site conditions and turbine selection
One important reason for the selection of all clusters is their position compared to the MET mast. What
can be said for all clusters, is that there is one turbine relatively close to the MET mast. The other
chosen turbines are relatively close to the reference turbine. As the turbines from the selected cluster
are relatively close to each other, the turbine behaviour and performance van be better compared.

Below, an overview of the full site of PYC is given. The three selected turbine clusters are encircled.
An individual description of each cluster is given in sections 4.2.1 until 4.2.3.
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Figure 4.1: PYC wind farm with the three selected clusters.
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4.2.1. Western Cluster
The selected turbines and MET mast in the western cluster are presented below. As can be seen, one
turbine is particularly close to the MET mast at a distance of 2.2D. Also, all turbines including MET mast
are within the same contour lines (between 360 and 370 meters), showing the heights of the MET mast
and turbines are comparable.

Figure 4.2: Height profile of western cluster (Openwind)

Turbine Height [m] Distance [-]
MET01 D01 D03 D04 D05

MET01 361 0 10.2D 6.8D 5.9D 2.2D
D01 369 10.2D 0 3.6D 6.8D 8.1D
D03 370 6.8D 3.6D 0 3.6D 4.8D
D04 370 5.9D 6.8D 3.6D 0 4.6D
D05 364.6 2.2D 8.1D 4.8D 4.6D 0

Table 4.4: Distances between selected turbines from western cluster

A range of free sectors for the MET mast and turbines of the western cluster are given in the polar
plots below. The green sectors in the images represent approximations of free sectors. The plots are
generated by a Python code which uses the latitude and longitude coordinates of turbines as inputs, as
well as a threshold regarding the distance for taking into account wakes of neighbouring turbines. For
filtering out any influence by wakes, a threshold of 20D (20 times rotor diameter) is used. The wakes
of a turbine within this distance are taken into account in the free sector model. Wake expansion is
modelled using equation 2.16.

The wind directions shown in the diagrams below will therefore be used for the performed unwaked
sector analysis The small unwaked sectors (narrow green areas) that can be seen in some polar plots
will not be taken into account, as these areas are too sensitive for wakes in a complex terrain as PYC.
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(a) Free sectors turbine MET01. (b) Free sectors turbine D05.

(c) Free sectors turbine D04. (d) Free sectors turbine D03.

(e) Free sectors turbine D01.

Figure 4.3: Free sectors of the MET mast and turbines of the western cluster.
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4.2.2. Central Cluster

Figure 4.4: Height profile of central cluster (Openwind)

Turbine Height [m] Distance [-]
MET02 H02 H04 H05 H06 H07

MET02 463 0 7.8D 6.7D 2.0D 7.3D 8.4D
H02 511.7 7.8D 0 3.3D 6.8D 9.2D 7.4D
H04 520 6.7D 3.3D 0 5.0D 6.0D 4.1D
H05 471.2 2.0D 6.8D 5.0D 0 5.4D 6.3D
H06 488.3 7.3D 9.2D 6.0D 5.4D 0 3.1D
H07 510 8.4D 7.4D 4.1D 6.3D 3.1D 0

Table 4.5: Distances between selected turbines from central cluster
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(a) Free sectors turbine MET02. (b) Free sectors turbine H05.

(c) Free sectors turbine H06. (d) Free sectors turbine H07.

(e) Free sectors turbine H04. (f) Free sectors turbine H02.

Figure 4.5: Free sectors of the MET mast and turbines of the central cluster.
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4.2.3. Eastern Cluster
For the eastern cluster, five turbines and one MET mast were selected. As also accounts for the other
cluster, one turbine is relatively close to the MET mast: at 2.0D. The turbines are close in elevation,
but there are bigger differences compared to the western cluster. Especially turbine L01, which is one
of the worst performing turbines, is situated lower compared to the rest of the eastern string.

Figure 4.6: Height profile of eastern cluster (Openwind)

Turbine Height [m] Distance [-]
MET03 L01 L03 L04 L05 L06

MET03 504 0 17.8D 8.3D 10.8D 4.7D 2.0D
L01 449.3 17.8D 0 10.4D 7.1D 14.3D 17.5D
L03 496.1 8.3D 10.4D 0 3.6D 3.9D 7.4D
L04 504.3 10.8D 7.1D 3.6D 0 7.2D 10.4D
L05 503.2 4.7D 14.3D 3.9D 7.2D 0 3.5D
L06 500 2.0D 17.5D 7.4D 10.4D 3.5D 0

Table 4.6: Distances between selected turbines from eastern cluster

The free sectors for the MET mast and the five turbines from the eastern cluster is given below. As can
be seen, the further up the string, the less unwaked sectors a turbine experiences. This is due to the
turbine cluster north-west of the eastern string. There are relatively more sectors affected by wakes in
this eastern string compared to the western string. This is due to the relatively remote location of the
western string compared to the rest of PYC.
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(a) Free sectors turbine MET03. (b) Free sectors turbine L06.

(c) Free sectors turbine L05. (d) Free sectors turbine L03.

(e) Free sectors turbine L04. (f) Free sectors turbine L01.

Figure 4.7: Free sectors of the MET mast and turbines of the eastern cluster.
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4.3. Wind farm performance
To get insights into wind farm energy production compared to its capacity, the capacity factor can be
calculated. This is the ratio of energy production over a period, and the production if the farm had been
producing at rated power for that full period (van Wingerden, 2021).

For the five year of operation, this capacity factor can be calculated as follows:

CF =
AEP

365 ∗ 24 ∗ nturbines ∗ Prated
(4.1)

Where:

CF = Capacity Factor
AEP = Annual Energy Production
nturbines = Number of turbines
Prated = Rated power

Using an average AEP of 631 kWh, 76 turbines and a rated power of 3000 kW, a capacity factor of 32%
is calculated. This 32% represents all five years of operation. The year 20201 has a capacity factor
of 35%. On average, the UK reached capacity factors of 35% that year. Only Norway reached higher
onshore capacity factors (37%) (IEA, 2020). Capacity factors give information about the harvested
power compared to the theoretical maximum. It does not give an insight into turbine performance.
However, what can be said is that PYC is in line with average UK capacity factors for the year 2020.
Important note is that site location has big influence on capacity factors: a higher located site reaches
more favourable capacity factors. PYC is a relatively high site compared to other UK wind farms.

1The investigated year within this thesis.



5
Data gathering

This part of the report describes the process of data gathering and filtering. The chapter starts with
a description of the initially collected pre-filtered data, and consequently elaborates on the filtering
process for this data set, which is needed to work with the data properly.

5.1. Data gathering
To perform the data analysis on the PYC wind farm, data has to be gathered from the Azure database.
This database contains all 10 minutes averaged as well as HF data used by Vattenfall for a wind re-
source analyses. The data is saved in a structured way by IEC tags. These tags have been analysed
by a previous intern, Luuk Schouten (Schouten, 2021). He made an overview of the IEC tags and defin-
itions, and described which tags are needed for performing a PCA (principal component analysis). His
documentation will be used for the selection of the needed IEC tags to collect from the Azure database.
According to Schouten (2021), must-needed tags for a performance analysis are the tags listed in table
5.1 below.

Parameter Name in WPDC / SCADA tag WWP Azure Description Unit
Active Power WTUR11.W.mag X X X X Active Power kW
Wind Speed WMET11.HorWdSpd.mag X X X X Horizontal Wind Speed m/s
Wind Direction WMET11.HorWdDir.mag X X X X Horizontal Wind direction, absolute °
Nacelle Direction WNAC11.Dir.mag X X X X Nacelle Direction °

Pitch Angle

WROT11.BlPthAngVal.mag X X Pitch angle at all blades °
WROT11.BlPthAngVal1.mag X X Pitch angle for blade A °
WROT11.BlPthAngVal2.mag X X Pitch angle for blade B °
WROT11.BlPthAngVal3.mag X X Pitch angle for blade C °

Temperature WMET11.EnvTmp.mag X X X X Temperature of environment °C

RPM WGEN11.RotSpd.mag X X X X Rotational Speed Generator rpm
WROT11.RotSpd.mag X X X X Rotational Speed Rotor rpm

Table 5.1: Must-have tags and their availability in the Wind Web Portal (WWP) and Azure database.

In addition to those tags that are used for turbines, there are tags that contain MET mast data. An
overview of the tags for each MET mast are given below:
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Parameter Name in WPDC / SCADA tag Description Unit
Humidity MMET0X.EnvHum.mag MET X Humidity %
Pressure MMET0X.EnvPres.mag MET X Pressure mBar

Temperature MMET0X.EnvTmp.mag MET X Temperature °C

Wind Direction

MMET0X.HorWdDirHub5.mag MET X Wind Direction Hub - 5m (83.725 m) °
MMET0X.HorWdDirMWay.mag MET X Wind Direction Midway (59.75 m) °
MMET0X.HorWdDirRot.mag MET X Wind Direction Hub (88 m) °
MMET0X.HorWdDirTipLow.mag MET X Wind Direction Tip-Low (35.5 m) °

Wind Speed

MMET0X.HorWdSpdHub2.mag MET X Wind Speed Hub - 2,5m (85.2 m) m/s
MMET0X.HorWdSpdHub5.mag MET X Wind Speed Hub - 5 m (83.725 m) m/s
MMET0X.HorWdSpdMWay.mag MET X Wind Speed Midway (59.75 m) m/s
MMET0X.HorWdSpdRot.mag MET X Wind Speed Hub (88 m) m/s
MMET0X.HorWdSpdTipLow.mag MET X Wind Speed Tip-Low (31.5) m/s

Table 5.2: MET mast tags.

Apart from the tags describing the measured site conditions at the turbine, information is needed about
the curtailment data and alarms recorded on the MET mast and turbines. This information is also
logged and collected in different tags. Furthermore, an overview of alarms can be downloaded from
the Wind Power Data Center (WPDC) database.

5.1.1. Pre-filtered data
Before filtering and processing the collected data, it is important to comprehend the size and properties
of the data. Per cluster, there is data collected for the MET mast as well as for the turbines. This data
is HF data (Sampling time < 10 minutes) and 10 minutes averaged data. To visualise the size of the
different tags collected, average sampling frequencies for multiple data sets are shown below.

Figure 5.1: MET 10 minutes averaged data
sampling frequency

Figure 5.2: MET HF data sampling frequency

For the MET mast, the 10 minutes averaged collected data fulfils the expectations regarding sampling
frequency. An average sampling frequency of 0.0017 Hz matches a sampling time of 10 minutes. For
the high-frequency data, sampling frequencies and therefore sizes of the different tags are of the same
order of magnitude. The HF data collected for the MET mast is collected at a rate around one sample
every two seconds (Figure 5.2).
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Figure 5.3: D05 10 minutes averaged data sampling
frequency

Figure 5.4: D05 HF data sampling
frequency

Above, an example of collected HF and 10 minutes averaged data for the turbines is shown. As a
reference, the DO5 turbine is chosen. The patterns for this turbine are the same as for the other turbines
of the eastern string. For the 10 minutes averaged data of the turbines, the sampling frequencies are
the expected value, except for the wind direction tag. This is because from the data it can be seen that
turbine wind direction measurements are only collected from 02-09-2020 onwards. This limits wind
directional analyses that can be performed at the PYC wind farm.

For the HF data collected at the turbines, a wide spread in sampling frequencies is seen. Wind speed
and active power output are measured at an average frequency of around one sample every two
seconds. Also, pitch data is collected at a relatively high rate. One sample is collected every 10
seconds on average.

5.2. Post-filtered data
Below, filtering checks were carried out on turbines from the western cluster. The post-filtered data was
checked for periods of curtailments, and the presence of data within these periods. If data is filtered
out correctly, no data is available for periods of curtailment. This is visible in the figures below.

Figure 5.5: Filtered out data in a period of
curtailment.

Figure 5.6: Filtered out data in a period of
curtailment.

In the table below, an overview is given of the different parameters logged by the SCADA system,
as well as the calculated parameters during the filtering process. Moreover, the naming given to these
parameters during the renaming process is shown in the table. This naming is used during the analysis.
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Table 5.3: Data tags after renaming.

Parameter Tag name Unit Availability
MET Turbine

Air humidity Humidity g/m3 X
Air pressure Pressure hPa X
Air temperature Temperature °C X X
Wind direction at hub height Wind direction hub ° X X
Wind direction 5m below hub height Wind direction hub -5m ° X
Wind direction at blade midway height Wind direction midway ° X
Wind direction at lowest blade tip height Wind direction tip low ° X
Wind speed at hub height Wind speed hub m/s X X
Wind speed 2m below hub height Wind speed hub -2m m/s X
Wind speed 5m below hub height Wind speed hub -5m m/s X
Wind speed at blade midway height Wind speed midway m/s X
Wind speed at lowest blade tip height Wind speed tip low m/s X
Corrected wind speed at hub height Wind speed hub (c) m/s X X
Time Time y-m-d h:m:s X X
Wind directional veer Veer °/m X
Wind shear Shear - X
Turbulence intensity TI - X X
Active power output signal Active power kW X
Pitching of blade 1 Pitching blade 1 ° X
Pitching of blade 2 Pitching blade 2 ° X
Pitching of blade 3 Pitching blade 3 ° X
Power lost due to curtailment Curtailments kW X
Power lost due to alarm Alarms kW X
Rotational speed of generator Generator speed RPM X
Rotational speed of rotor Rotor speed RPM X
Direction of the turbine nacelle Nacelle direction ° X
Misalignment nacelle and wind direction Yaw misalignment ° X

As can be seen in the table, wind speed and wind directional measurements are collected at multiple
heights. To understand the naming of the different height levels, figure 5.7 below shows the different
measurement heights (projected on the turbine) including the naming. Please note that the measure-
ments at those different heights are measured at the MET mast only. At the turbines, wind speed and
wind direction is only measured at hub height level. In figure 5.7, the heights Hub -2m and Hub -5m are
not drawn to scale. This is done to make these 2 measurement levels visible in the figure. In reality,
these measurement heights are respectively 2 meters and 5 meters below hub height.
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Figure 5.7: Multiple MET mast measurement heights.

5.3. Limitation of data: lack of wind directional measurements
As can be seen in figure 5.3, the wind direction parameter is sampled at a lower annual average fre-
quency than the other parameters. This is because this parameter is only collected from the 2nd of
September 2020 onwards. This means directional data is only available for three months of the ana-
lysed year. As wind directional data is of immense importance for a wind site analysis, it would influence
the quality of this work if directional analyses could only be carried out for the last quarter of the year.

Therefore, the correlation of nacelle direction and wind direction was investigated 1. When nacelle
direction and wind direction are showing a steady correlation, the nacelle consequently follows the
direction from the wind. If this is the case, the nacelle direction can be assumed to represent the wind
direction in a precise enough way. To have directional data available for the whole year of 2020, the
nacelle direction will serve as wind directional data 2.

In the figure below, nacelle direction and wind direction are correlated for 10 minute data for turbine
D05. Correlations of the other correlations are represented in appendix B.4. Other turbines from the
western cluster show the same strong correlation.

1This was done after filtering the data (section 3.1.1, as solely filtered data is used during the cloud analysis
2Within the scope of this thesis, using nacelle direction as a representative of wind direction is precise enough. When one

is investigating directional influences on turbine performance on the scale of single degrees, this assumption can cause wrong
results. This work is based upon wind direction bins of 10 degrees minimum
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Figure 5.8: Wind direction - nacelle direction correlation turbine D05

Properties of the correlation above, and other correlations from the western cluster, are given in the
table below:

Table 5.4: Properties of wind direction - nacelle direction correlations for turbines of the western cluster.

Slope Intercept R2 score
D05 1.00 0 1.00
D04 1.00 0 1.00
D03 1.00 0 1.00
D01 1.00 0 1.00

The perfect linear correlation with maximum r-squared values confirm the assumption that nacelle dir-
ection can be a good representative for the wind direction at the western cluster. In the cloud analysis,
nacelle direction will therefore be used to represent the wind direction.



6
Results western cluster

Within this chapter of the report, the results are discussed of the analyses performed on the filtered
data of the western cluster. The approach of this analysis is described earlier this report in chapter
3. At first, the processed MET mast data is used to understand the site conditions at the western
cluster. Secondly, correlations of wind speed and wind directional data are checked in a side-by-side
approach to validate the data. At last, a performance analysis is performed on the validated turbine
data, including a cloud analysis.

6.1. Wind resource
Firstly, the MET mast is used to understand the site influence on the incoming wind at the eastern
cluster. In addition, the MET mast is used to calibrate the reference turbine closest to the mast. This
is done in the next section. Although each turbine experiences other specific site conditions, the MET
mast gives a good general perception of these conditions. Moreover, it is the only location within the
cluster where veer and shear are measured. The wind speed and wind directional distributions are set
up by respectively a wind rose and a Weibull fitted histogram. On top of that, veer shear and TI are
investigated. In chapter 7, where MET mast data of the eastern cluster is analysed, the site behaviour
of the western cluster will be used as a comparison.

Figure 6.1: Wind rose western cluster Figure 6.2: Wind speed histogram western cluster

In the figures above, the wind speed and wind direction distributions of the western cluster are presen-
ted. As can be seen in figure 6.1, the prevailing wind direction is a W / S-W wind. Occurrence of wind
from other directions is more evenly spread. The north-eastern direction is less occurring. Regarding
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wind speed, the distribution follows a standard Weibull distribution, with the 5-6 m/s bin as prevailing
wind direction bin. The Weibull distribution of the year 2020 is less spread than the pre-defined turbine
design conditions by the manufacturer. The mean wind speed of the collected data is also lower than
the design mean wind speed.

Next to wind speed and direction, wind veer is analysed at the METmast. Wind veer is a parameter that
can only be calculated at the MET mast, as the MET mast has wind vanes placed at multiple heights.
High veer tells a rotor experiences a wide spread in wind directions over the length of the blade. This
can increase loads on the blade. Moreover, turbine performance can be negatively affected by high
veer. As the turbine only measures the incoming wind direction at hub height, high veer can cause
this not being a representative wind direction for the full rotor swept area. Within this thesis, the wind
veer is calculated by the difference of measured wind direction per meter length of the rotor [°/m]. The
difference in directional measurements between hub height and lowest tip height is divided by the height
difference between those installed wind vanes (56.6 m).

When analysing the wind veer measurements, it was discovered the wind vanes record the wind dir-
ection wrongly when the wind speeds are coming from the north when compared to the neighbouring
turbine D05. Wind vanes placed on turbine D05 do not show this behaviour. As the wind vane data
from the MET mast is used for calculating veer, the veer data contains errors as well when wind is com-
ing from the northern direction. Therefore, for analysing veer, the MET data is filtered for the northern
wind direction ± 60°. A graph visualising these errors can be found in Appendix A.

Below, wind veer is plotted against wind direction and wind speed. Wind Veer at the MET mast location
reaches high values, while following an expected downwards trend for increasing wind speeds. The
wind veer shows a symmetric profile, but not around the horizontal axis: it runs towards a veer of 0.25
°/m, whereas it is expected to run towards 0 °/m for high wind speeds, as the wind directional profile
over height is more neutral for high wind speeds. A wind veer of 0.25 °/m means a directional difference
of more than 25 degrees over the full rotor span of the turbine. This had a big influence on the inflow
angle of the wind on the turbine, and can have a substantial effect on power production. Looking at
figure 6.4, it can be seen the extreme values of veer are mostly measured at a wind direction of 150
degrees. This occurs for wind speeds below cut-in wind speed. From cut-in wind speed, the more
extreme veer cases are a minor part of power production.

In the diagrams below, red-coloured sectors are present in the plots including wind directions (e.g.
figure 6.4). Those red sectors represent the waked sectors the MET mast experiences. The data itself
is represented by the scatter plots. The dark blue lines are the binned averaged lines of the data.

Figure 6.3: 10 minutes averaged MET mast wind
speed veer correlation.

Figure 6.4: 10 minutes averaged MET mast wind
direction veer correlation.
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The wind shear at the western cluster is represented by the shear factor. This shear factor is calculated
in the same manner as is shown by equation 2.9. At the MET mast, negative shear occurs at a wind
direction of ±50 degrees. This could correspond with wind coming from turbine D03. At 150 degrees
inflow angle, high shear is detected. Also, the average shear from this wind direction is higher than
compared to the other unwaked METmast sectors. On average, a wind shear factor of 0.5 is measured
at the site. This is a high value for a land covered in forestry. According to table 2.6, the shear factor
at a wooded landscape is expected to be around 0.3.

Figure 6.5: 10 minutes averaged MET mast wind
speed shear correlation.

Figure 6.6: 10 minutes averaged MET mast wind
direction shear correlation.

To understand the reliability of wind speed measurements at the lowest tip height and hub height, a
wind shear profile is fitted to the five wind speed measurement heights. If the other measurements at
independent height confirm the shear behaviour from figures 6.5 and 6.6, the shear factor values found
can be trusted. A Python curve solver from the SciPy package is used to solve the power law to the
average wind speeds measured at the five heights described by table 5.2. In the figure below, results
from this fit are shown.

Figure 6.7: 2020 average wind shear profile at the MET mast
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From this fitted curve, an average wind shear factor (α) of 0.47 was found. The average wind speeds
at other mounted heights match the fitted profile. Only the two other wind speed measurements around
the hub (-5 m and -2 m) are a little off the expected trend. However, the measurements are confirming
the magnitude of wind speed values measured at hub height.

Turbulence intensity measurements at the site are plotted against IEC standard TI classes A, B and
C in the left figure below. Moreover, the design turbulence intensity at 15 m/s (TI15) is plotted by the
intersection of the grey dotted lines. The SWT-3.0-113 turbines at the western cluster are IEC TI class
B turbines, which means the TI should not exceed the orange curve from figure 6.8. As can be seen
from the blue average line, this on average is the case up and until 15 m/s.

Figure 6.8: 10 minutes averaged MET mast wind
speed TI correlation.

Figure 6.9: 10 minutes averaged MET mast wind
direction TI correlation.

The influence of shear, veer and TI on turbine performance will be further investigated in the next
sections. The neighbouring turbine of theMETmast will be used to understand veer and shear influence
on turbines, as this turbine is within the most comparable condition of the MET masts. TI is analysed
at every turbine individually, as this property is measurable at every turbine.

6.1.1. Influence of site on turbine performance D05
There are three parameters possible to extract at the MET mast which describe the site conditions
apart from wind speed and direction. Those parameters are shear, veer and TI as discussed in the
previous section. MET mast measurements can be used for performance analyses on turbines with
a distance of 2-4D to the MET mast (IEC, 2019). For the western cluster, turbine D05 is within these
limits. As wind veer and shear are not measured at other turbines, it is valuable to see how veer and
shear (measured at the MET mast) influence performance of turbine D05.

To do that, according to IEC, only the undisturbed sectors may be taken into account. This concerns the
unwaked sectors of the MET mast as well as the neighbouring turbine (IEC, 2019). In the visualisations
below, the disturbed sectors have been filtered out of the combined MET mast and turbine data set.

Below, power production efficiency is plotted for different veer and shear bins measured at the MET
mast. Only the veer and shear bins contributing tomore than 5%of the data are included. This efficiency
is calculated according to equation 3.3. It resembles the performance compared to warranted power
curve behaviour. By doing this, it is possible to visualise influence from veer and shear on turbine
performance.
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Figure 6.10: Influence of veer on D05 active
power signal.

Figure 6.11: Influence of shear on D05 active
power signal.

From figures 6.10 and 6.11, it is observed an increase in directional veer and wind shear are both
positively effecting turbine performance. For this western cluster, shear reaches relatively high values
compared to the other clusters. The same accounts for wind veer.

Remarkable from these findings is the positive effect of wind veer to turbine performance. As veer is
measure for wind directional variation over height, high veer means parts of the rotor have a larger
misalignment with wind direction. The diagrams above give an indication that the high veer and shear
values at the western cluster do not have a negative effect on turbine performance.

6.2. Correlations MET mast and turbines
Below, properties of the correlations between the western cluster’s MET mast and turbines are given.

Using equation 2.8, the expected slopes of the wind speed correlation between a reference turbine and
test turbine can be estimated. The fraction on the right side of the equation is equal to the slope between
two wind speeds at different heights. For calculating the expected slope, two heights of the turbines
in question are needed. Moreover, a roughness length of 0.1-1 was assumed (table 2.5). When the
wind speed slope is close to the expected slope within a 5% margin, the data of the tested turbine is
assumed to be reliable. The expected slopes are listed in the bottom row of table 6.2.

Table 6.1: Overview of correlations for the western cluster.

Correlation Intercept Property MET-D05 D05-D04 D04-D03 D03-D01
Wind speed No Slope 1 0.97 0.99 0.97

No R2 score 0.93 0.87 0.84 0.87
Wind dir No Slope 1.03 0.97 0.98 1.33

No R2 score 1.00 1.00 1.00 1.00
Yes Slope 1.02 0.99 1.00 0.99
Yes Intercept 1.50 -5.6 -4.8 -5.2
Yes R2 score 1.00 1.00 1.00 1.00

Nac dir No Slope - 0.97 0.98 1.33
No R2 score - 1.00 1.00 1.00
Yes Slope - 0.99 1.00 0.99
Yes Intercept - -5.6 -5.3 -5.3
Yes R2 score - 1.00 1.00 1.00
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Table 6.2: Expected slopes for wind speed correlations western cluster.

MET-D05 D05-D04 D04-D03 D03-D01
Height difference [m] 3.6 5.4 0 -1
Expected slope (α = 0.1) 1 1 1 1
Expected slope (α = 1) 1 1.01 1 1
Average 1 1.01 1 1
Accepted slopes (5% deviation) 0.95-1.05 0.96-1.06 0.95-1.05 0.95-1.05

Per property, two correlations were done: one with, and one without intercept (as shown in the second
column of table 6.1.

This table contains results after correcting the data for incorrect offsets between turbines, and within
turbine data. Before correcting for these false offsets, the data was not usable as data more down-
stream or the turbine cluster could not be trusted. Two errors were corrected to come to the properties
as shown in table 6.1. The corrections carried out are summarised in the table below. Explanations
about the thresholds chosen for the corrections can be read in section 3.1.3.

Table 6.3: Overview of corrections carried out on correlations western cluster.

Operation Applied on turbine Properties Size of offset

1 Correct for offset >10 degrees
compared to neighbouring turbine D04 Nacelle direction

Wind direction 86.5 degrees

2 Correct for sudden offset change
in time series D01 Nacelle direction

Wind direction 22.5 degrees

To visualise the data shown in table 6.1, the three properties correlated between turbine D05 and D04
are shown in the figures below. Correlation plots for wind speed, wind direction and nacelle direction
for the other turbine pairs of the western cluster are shown in appendix B.

Figure 6.12: 10 minutes
averaged wind speed correlation

of D05 and D04

Figure 6.13: 10 minutes
averaged wind direction

correlation of D05 and D04

Figure 6.14: 10 minutes
averaged nacelle direction
correlation of D05 and D04

From tables 6.1 and 6.2, it can be concluded for all turbines the wind speed correlations are within the
expected margins and can be used for further analysis.
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6.3. Overall & directional performance analysis
In this section, the results from the performance analysis are shown. This analysis is carried out in
parallel to the cloud analysis (described in the next section). The methods to come to the results
presented in this section are represented in chapter 3.

6.3.1. Overall turbine performance
Below, the binned power curves of the western cluster turbines are displayed for the full wind direction
spectrum. In blue, the power curve for the full wind direction spectrum is shown. In yellow, the power
curve for only unwaked sectors is given. These power curves are inputs to equations 3.3 and 3.4 as
described in the methodology (chapter 3).

Figure 6.15: Total power curve turbine D05 Figure 6.16: Total power curve turbine D04

Figure 6.17: Total power curve turbine D03 Figure 6.18: Total power curve turbine D01

Looking at the total power curve figures, it can be seen the operational power curve (again, with curtail-
ments, alarms and other defects filtered out) is reaching less power than the warranted power curve
for the total wind speed spectrum, except for the knee of the power curve. This is the case as well
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for the power curve, where wake effected sectors are not taken into account (blue curve). The small,
almost negligible, difference between the blue and yellow curve can be explained by the fact that the
prevailing wind directions are not affected by wakes. Below, the overall performance numbers of the
western cluster turbines are presented. This is the output of the equations 3.3 and 3.4.

Table 6.4: Efficiencies compared to WPC for turbines western cluster

Based on D05 D04 D03 D01
ηpower,1 Warranted power curve 0.95 0.95 0.95 0.94
ηpower,2 Potential power signal 0.95 0.95 0.94 0.94

From this table it can be seen that based on the two performance indicators ηpower,1 and ηpower,2, the
turbines are performing relatively similar. D01 shows the lowest performance of the four turbines of the
western cluster, differing 1% from the better performing turbines from this cluster.

6.3.2. Directional turbine performance
For every turbine, two graphs are plotted with each 9 of the 18 wind direction sectors. These opera-
tional power curves per wind direction sector are used to calculate the turbine performance per wind
directional sector.

Figure 6.19: Binned power curves turbine D05
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Figure 6.20: Binned power curves turbine D04

Figure 6.21: Binned power curves turbine D03
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Figure 6.22: Binned power curves turbine D01

From the figures above, it can be seen there is a wide spread in turbine performance for the different
wind directions, especially for the rated part of the power curve. This accounts for all four turbines from
the western cluster. From the ankle to the knee of the power curve, differences between the different
sectors are smaller. Below, the results from equation 3.5 for every 20 degrees directional sector is
given. In red, the wake-affected sectors is given, as also illustrated in chapter 4. As this thesis focuses
on unwaked sectors, the red sectors will not be further discussed.

Figure 6.23: Relative power gain/loss per wind
direction bin for turbine D05

Figure 6.24: Relative power gain/loss per wind
direction bin for turbine D04
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Figure 6.25: Relative power gain/loss per wind
direction bin for turbine D03

Figure 6.26: Relative power gain/loss per wind
direction bin for turbine D01

An overview of the worst-performing unwaked sectors per turbine are presented in the table below.
The descriptions of the sectors with a higher loss than 5% compared to WPC tell that the bad perform-
ing sectors for the gross part originate from sectors influenced by valleys or elevation run-ups in the
orography. 3 out of 10 investigated sectors correspond to relatively flat terrain.

The site at the worst-performing sectors was further investigated using Google Earth (‘Google Earth’,
n.d.). By projecting the sectors on the Google 3D model, it was possible to get insights into the site.
Two examples of the Google Earth sector analysis are presented in appendix G.

Table 6.5: Worst performing unwaked sectors turbines western cluster.

Turbine Sectors (unwaked) [°] Performance
gain/loss [%]

Site description

D05 300-320 -13 Left of valley. Trees at 200 m.
280-300 -7 Valley run up towards turbine. Trees at

140 m.
260-280 -7 Right of valley. Trees at 200 m.

D04 120-140 -10 Relatively flat between valleys. 700 m
of forest towards turbine.

160-180 -10 Valley run up towards turbine. Trees at
60 m.

80-100 -8 Slope run up towards turbine. Trees at
60 m.

D03 280-300 -8 Relatively flat. Trees at 200 m.
80-100 -6 Slope run up towards turbine. Trees at

380 m.
100-120 -4 -

D01 100-120 -10 Valley run up (same as D03). Forestry
at 90 m.

260-280 -6 Slowly elevating. Trees at 250 m.
120-140 -4 -
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6.4. Cloud analysis
In this section, the cloud selections leading to conclusions regarding turbine performance of the western
cluster are shown, including outputs of the cloud selection tool. First, the 10 minutes averaged cloud
analysis results are discussed. Afterwards, the HF cloud analysis. The methods and tools used to get
to the results of this chapter can be found in section 3.1.6 of the methodology chapter.

6.4.1. Results 10 minutes averaged cloud analysis
In this section, the results from the 10 minutes averaged data cloud analysis are discussed. The tables
below contain information of all clouds selected, leading to results. Moreover, the state curves with
binned 10 minutes averaged data of all cluster turbines are given. As explained in section 3.1.6, these
state curve relations are inputs for the cloud selections.

Table 6.6: 10 minutes averaged clouds analysed western cluster.

Cloud tag X Y Turbine/
Cluster

Description

D01-10-174 Wind speed hub Active power Turbine Scattering below power curve
D05-10d-662 Wind speed hub Active power Cluster Unfiltered scattering below

power curve
D05-10-760 Wind speed hub Pitch Cluster Pitching between 3 and 5 m/s
D05-10d-138 Wind speed hub Pitch Cluster Unfiltered low-wind speed pitch-

ing behaviour
D05-10-096 Rotor speed Torque Cluster 14 RPM: no clear vertical line
D05-10-794 Rotor speed Torque Cluster 6-8 RPM: below optimal torque

control curve
D05-10-990 Rotor speed Torque Cluster Performance optimal-cp region

Table 6.7: Data collection of selected 10 minutes averaged clouds western cluster.

Data points Production LPP
Cloud tag % kWh % kWh % LPPT1 % LPPC2

D01-10-174 476 1.54 155346 2.64 60020 1.02 38.64
D05-10d-662 2158 4.09 292481 2.98 590788 6.02 201.99
D05-10-760 877 2.46 -339 0 13923 0.18 -
D05-10d-138 5515 10.46 -17163 0 54931 0.56 -
D05-10-096 13302 44.23 5620741 78.06 104162 1.45 1.85
D05-10-794 5738 16.08 71638 0.9 80199 1.01 111.95
D05-10-990 6101 20.29 829259 11.52 114721 1.59 13.83

1LPPT: Lost Potential Power as a fraction of annual power production
2LPPC: Lost Potential Power as a fraction of cloud power production
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(a)Western cluster wind speed - active power average comparisons. (b)Western cluster rotor speed - torque average comparisons.

(c)Western cluster wind speed - pitching average comparisons. (d)Western cluster rotor speed - pitching average comparisons.

(e)Western cluster pitching - torque average comparisons. (f)Western cluster wind speed - rotor speed average comparisons.

Figure 6.27: Compared 10 minutes averaged data of western cluster turbines. Data is binned by the MOB.
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Figure 6.28: Wind speed, TI degradation turbines western cluster

As discussed in section 3.1.6, a comparison is made between the averaged binned state curves of the
turbines and the theoretical expected turbine state curves. Observations from these comparisons are
input for the cloud selection tool. From the overview of binned 10 minutes averaged state curves in
figure 6.27, small deviations between especially turbine D01 and the other turbines can be observed.
Turbine D01 seems to underperform compared to its neighbouring turbine in the rated region of the
power curve, and seems to pitch more aggressively compared to the other turbines from the cluster.

Moreover, big differences between the TI variation over wind speed between the four turbines were
observed (figure 6.28). This did not result in direct performance differences between the different
turbines of the western cluster.

The following section examines low wind speed pitching behaviour, as well as torque behaviour within
the transition region from optimal-cp to full load. Additionally, the variation in turbine D01 performance
in comparison to its neighbouring turbines is analysed. For the cluster-wide turbine behaviour, turbine
D05 is used as it is closest to the MET mast.

Pitching at low wind speeds

At first, pitching behaviour below 5 m/s was investigated by selecting cloud D05-10-760. As the cut-in
wind speed of SWT-3.0-113 turbines ranges from 3-5 m/s, the data was filtered with a minimum wind
speed threshold of 3 m/s to include the cut-in region in the filtered data. Below 5 m/s the rotor speed
is regulated between 6 and 8 RPM. Pitching in this low wind speed region is set at values of 10 and 30
degrees to control the rotor speed at a favourable rate prior to wind speeds increasing above 5 m/s.

As the rotor speed is very low / close to zero, the turbine experiences high angles of attack. By increas-
ing pitching, the angle of attack is reduced to positively affect the aerodynamic properties of the blades.
This can help in decreasing the duration of an idling period (Ebert & Wood, 1997). From the wind speed
- rotor speed scatter plot of cloud D05-10-760 (figure 6.30), it was noticed for 6-8 RPM the rotor speed
is not linearly related to the wind speed 3. As the turbine is getting up to speed in this RPM region
and is not producing at optimal power coefficient, it is expected not to show linear behaviour for this
rotor speed region 4. The low wind speed / rotor speed behaviour of cloud D05-10-794 makes 16.08%
of total D05 filtered data, and production numbers can potentially be improved 1% (LPPT5) within this
region.

From this analysed pitching behaviour, the added value of HF data became clear, as it gave insights
into the control of the turbine (pitching at 10 and 30 degrees), where the 10 minutes averaged data did

3At the left of figure 6.30, figure 6.29 is shown. This figure shows the pitching behaviour corresponding to the selected cloud
D05-10-794 in the torque curve.

4The selection of cloud D05-10-760 corresponded to the selected cloud D05-10-794. This cloud was selected to investigate
the rotor speed behaviour from 6-8 RPM from the wind speed-rotor speed plots.

5LPPC: Lost Potential Power as a fraction of cloud power production
LPPT: Lost Potential Power as a fraction of annual power production
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not show this behaviour. Moreover, the relative bad performance of this region was exposed with an
LPPC value of over 100%, meaning the cloud underperforms 50% compared to WPC.

Figure 6.29: Pitching between 3-5 m/s (cloud
D05-10-794).

Figure 6.30: RPM below torque curve (cloud
D05-10-794).

Figure 6.31: Torque behaviour above optimal-cp region.

Torque curve: transition region between
optimal-cp and full load region

In addition, the torque development for high ro-
tor speed regions was investigated with selec-
ted cloud D05-10-096 (figure 6.31). This se-
lected region, deviating from the Q ∼ ω2

rotor

curve, is a transition region between optimal tur-
bine performance in partial load, and the full
load region. This region corresponds to power
curve data which is deviating from the optimal-
cp power curve (figure 2.11a). As the selected
region contains two controller strategies, the se-
lected cloud is built up of two sub clouds: one
torque-controlled transition region, and one pitch-
controlled full load region. The selected region is
44.23% of total data, and is showing behaviour
not matching the WPC. The LPPC value of this
cloud is 1.85%, meaning the energy production
within this cloud is 1.85% less than warranted be-
haviour would deliver. A big contributor to this -1.85% is the region where the turbine blades are already
pitching before rated rotor speeds are reached. Theoretically, this is not expected this to happen, as
the turbine is still in the optimal-cp region below rated rotor speed. This region has a LPPC value of
6%.

The deviating behaviour with an LPPT of 1.85% is a major part of underperformance of the western
cluster turbines. Moreover, it is interesting to see this is originating from a cloud with the size of almost
half of the data, all not matching the theoretical torque curve behaviour.

Other clouds analysed and shown in table 6.6 are selected from raw data. These raw clouds had the
purpose of clarifying the filtered cloud behaviour. Therefore, these clouds will not be discussed further
on in this thesis, as they did not lead to extra conclusions and did not light out other behaviour. They
were included in tables 6.6 and 6.7 for completeness.
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Turbine D01: scattering below power curve

To understand the deviating behaviour of turbine D01 within the state curve relations of figures 6.27a
and 6.27c, scattering below the power curve of turbine D01 was selected as a cloud using the cloud
selection tool produced for this analysis (D01-10-174). This scattering below the power curve corres-
ponded to more aggressive pitching in the pitching data, which made the binned pitching curve of figure
2.11c deviate from the other turbines. The cloud originated from a time period of 11 days, where the
turbine was curtailed to power values of around 500 and 1200 kW, while keeping rotor speed maximum
for quickest inertia response to grid imbalances (Lio, 2018). It was concluded this cloud is curtailed
data, which is not logged as curtailed data. It belonged to a small 3% of power production of the year
2020 for turbine D01, where 1% of potential power was lost. Note: the fact this cloud is not flagged as
curtailments, can lead to misleading performance calculations when including this data.

Figure 6.32: Scattering below the power curve
(cloud D01-10-174).

Figure 6.33: Aggressive pitching (cloud
D01-10-174).

In the figure below, a zoomed in active power signal of the selected cloud is given. It shows fluctuation
of active power which occurs for a number of hours. For this time period, wind speeds were above
rated and there was no clear reason for the turbine to produce below rated power. As this behaviour is
a part of the filtered data, it is important to get understanding in the fact that this curtailed behaviour is
not flagged as curtailments in the 10 minutes averaged curtailment tag. This is passed on to the OEM.
The difference from this cloud compared to the others, it that the data originates from a single period.
The other clouds from this section is turbine behaviour, caused by the turbine controller. The selected
cloud D01-10-174 does not give information about turbine performance.

Figure 6.34: Time series of power output during curtailed period of cloud D01-10-174.
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6.4.2. Results HF cloud analysis
HF clouds are selected for reasons as explained in section 3.1.6. In the tables below, an overview of
the selected clouds is given, together with relevant cloud information and data.

In this section, reasons for selecting the tabulated clouds as well as results obtained from the multiple
cloud analyses are addressed. Differences between HF power curves, HF pitching behaviour and rotor
speed behaviour will be discussed.

Table 6.8: HF clouds analysed western cluster.

Cloud tag X Y Turbine/
Cluster

Description

D05-HF-407 Wind speed hub Active power Cluster General scattering below HF
power curves

D05-HF-936 Wind speed hub Active power Turbine Curtailment cloud around 1700
kW

D05-HF-099 Wind speed hub Active power Cluster Curtailments down to 2200 kW
D05-HF-022 Wind speed hub Pitch Turbine Pitching above 30 degrees
D05-HF-392 Wind speed hub Pitch Cluster Pitching behaviour below 7 m/s
D04-HF-981 Rotor speed Pitch Cluster Pitching around 10 deg above 5

m/s wind speeds
D05-HF-949 Wind speed hub Pitch Cluster Pitching values up to 30 degrees

at non-rated rotor speeds
D01-HF-882 Wind speed hub Active power Turbine Curtailment down to 500 kW.
D05-HF-954 Rotor speed Torque Cluster Rotor speed higher than max-

imum of 14 RPM.

Table 6.9: Data collection of selected HF clouds western cluster.

Data points Production LPP
Cloud tag Points % kWh % kWh % LPPT6 % LPPC7

D05-HF-407 16025 0.13 12397 0.16 7971 0.11 64.3
D05-HF-936 4375 0.03 2495 0.03 1818 0.02 72.85
D05-HF-099 8834 0.07 8727 0.12 2248 0.03 25.76
D05-HF-022 504 0 15 0 352 0 2269.34
D05-HF-392 198321 1.55 1180 0.02 9347 0.12 791.92
D04-HF-981 4120 0.04 1552 0.03 -754 -0.01 -48.57
D05-HF-949 3007 0.02 2486 0.03 1062 0.01 42.74
D01-HF-882 19428 0.17 6025 0.11 11748 0.21 194.97
D05-HF-954 327629 3 430298 6.27 -23914 -0.35 -5.56

Differences in HF power curves between turbines

One of the observations looking at the 10 minutes averaged state curves was apparent underperform-
ance in the rated region of turbine D01 compared to the other turbines of the cluster. This was caused
by scattering below the power curve of D01, which was not flagged as curtailment. When looking at the
HF wind speed - active power behaviour of the four western cluster turbines, clear scattering can be
observed at all four turbines. For all turbines, curtailments until 2200 kW can be observed (cloud D05-
HF-099), as well as curtailments down to 1700 kW (D05-HF-936). Only for turbine D01, curtailments
get down to 600 kW (D01-HF-882). To give an insight in the scattering behaviour of the four turbines,
an overview of the different power curve scattering is given below. The colouring in the plots is used
to show the number of points within a Datashader raster point8.

6LPPT: Lost Potential Power as a fraction of annual power production
7LPPC: Lost Potential Power as a fraction of cloud power production
8More information about Datashader is given in section 3.1.6
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(a) HF power curve turbine
D05

(b) HF power curve turbine
D04

(c) HF power curve turbine
D03

(d) HF power curve turbine
D01

Figure 6.35: HF power curve scatter plots of the western cluster turbines.

1. Curtailments 2200 kW.
These curtailments occur at moments where wind speeds do not ramp down or up. Active power
output is fluctuating around 3000 kW. At certain moments in time, power drops down to 2200 kW.
This happens for periods of multiple seconds to minutes. Below, an example of a drop to 2200
kW is shown that lasts for 30-40 seconds.

Figure 6.36: Time series of power output during curtailed period of cloud D05-HF-099.

2. Curtailments 1600 kW.
This cloud of scattering is very clear visible for turbines D05, D03 and D01. Part of the cloud can
be explained by small peaks of wind speed data during a period of below rated average wind
speed. This can also be explained as more extreme type 1 scattering.

The major part of the selected cloud consists of data belonging to a time period of two hours,
where the turbine has been curtailed to 1600 kW. This can be seen from the pitching behaviour
as well. Moreover, RPM is kept at maximum in this period, which was also seen in the 10 minutes
averaged scattering below the D01 power curve. Below, the power output and pitching for the
two-hour period described are shown. The contribution of data outside this two-hour period is
negligible, as two hours of HF data consists of more data than the cloud contains.

Figure 6.37: Time series of power output during two-hour period of cloud D05-HF-936.
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Figure 6.38: Time series of pitching during two-hour period of cloud D05-HF-936.

3. Curtailments 600 kW.
This curtailment level only occurred at turbine D01. The cloud selected to investigate this beha-
viour is cloud D01-HF-882. This cloud consists of scattering below 1600 kW down to 600 kW.
It corresponds to the scattering below the 10 minutes averaged power curve of D01. This was
a period of 11 days in which the turbine was curtailed down to 600 kW. Rotor speed was at its
rated value during this period. Other points within this cloud are single data points where during
a period of expected behaviour the wind speed ramped up or down significantly, leading to some
scattering deviating more extremely from the power curve than the general HF scattering. Below,
a close up of 4 hours of this 11 days period is shown. The time series below clearly show the
oscillating power output in combination with high pitching.

Figure 6.39: 4 hour active power close up of 11-day period cloud D05-HF-882.

Figure 6.40: 4 hour pitching close up of 11 day period cloud D05-HF-882.

Figure 6.41: 4 hour TI close up of 11 day period cloud D05-HF-882.

A HF cloud like the 1600 kW curtailment cloud D05-HF-936 shows the strengths, and at the same
time the weakness, of the HF data. In HF data, behaviour lasting for a short duration is visible. Short
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deviations from expected performance are therefore possible to detect and analyse. On the other hand,
these short time periods have a big influence on the scatter plots, but do not contribute substantially to
the yearly performance of the turbine.

When comparing figure 6.39 to figure 6.32, the value of HF data for understanding turbine behaviour
can be seen. In the HF active power time series of the 11 day period, the levels of curtailment are better
visible, as well as the power recovery after curtailment.

Just like for the 10minutes averaged power curve scattering, the selected clouds do not give information
about turbine underperformance, but give insights in the wrong logging of curtailed data. For the HF
data, a buffer of 30 minutes was applied to each filtered curtailment period to not include curtailments in
HF filtered data. Even with this buffer, curtailments are part of the filtered data. Cumulatively, it makes
up less than 0.3% of total 2020 data.

Pitching > 30°

Another parameter for which there was unexpected behaviour, observed within the HF data, is pitching.
For a filtered data set, one would expect pitching not to exceed the pitching applied near cut out wind
speed to keep the turbine at Prated. However, different behaviour is observed. Scattering from 30
degrees of pitching up to feathering position is present for the whole wind speed range of turbine D05.
Turbine D04 shows less of this same scattering. Turbine D03 and D01 have fewer data occurring in
the 30-90 pitching range. D01 still has some pitching above 30 degrees, occurring from 15-20 m/s.

To understand this high pitching still visible in the HF data sets, the scattering above 30 degrees of
pitching for turbine D05 was selected as a cloud (D05-HF-022). This because for turbine D05 there is
most data available in this region. Below, respectively, the pitching and power curves with the selected
cloud is given.

Figure 6.42: Pitching >30° at turbine D05. Figure 6.43: Active power output for pitching >30°
at turbine D05.

Figure 6.44: TI distribution of cloud D05-HF-022.

This pitching behaviour corresponds to handful mo-
ments in time where turbines are not producing power.
One example is a moment right after a filtered out
period. Important to note, as said before, is the mar-
gin applied to any curtailment filtering action: Right
and left of each filtered out period, 30 minutes extra
were extracted from the data. Therefore, to still see
this pitching behaviour at the edge of filtered out peri-
ods, is unexpected. Another instance of this pitching
to feathering that was found, was for a moment of high
TI. This caused the control system to pitch the turbine
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blades into the wind to reduce loads.

The pitching behaviour selected is negligible when looking at its contribution to the total data set and
power production, as can be seen from the data in table 6.9. Rounded off, it does not contribute to
2020 data (0%).

Pitching < 5 m/s wind speeds

The pitching behaviour in the cut-in region was selected from the 10 minutes averaged data by cloud
D05-10-794. This cut-in region is observed in more detail in the HF spectrum by cloud D05-HF-392.
From the HF data, it is possible to see what happens to the turbine behaviour for the two distinct
pitching settings of 10 and 30 degrees. At a pitching setting of 10 degrees, the turbine rotor speed is
regulated at 5 RPM. When the pitching is increased to 30 degrees, the rotor speed is minimised to 0
RPM. These two pitching settings are only used for wind speeds between 3 and 5 m/s. Pitch in this
region is increased to decrease the high angle of attack, as also explained in section 6.4.1.

Lost potential of this selected HF cloud is 0.12% of the annual power output. As it is the cut-in region of
the turbine, it is expected to not instantaneously perform at maximum power coefficient, as the turbine
needs time to get up to speed. However, as also shown by cloud D05-10-794, the turbine does under
perform heavily in this region compared to WPC.

10° pitching above cut-in wind speed

As can be seen for all turbines, within HF data, pitching unexpectedly still occurs above the cut-in wind
speed of 5 m/s. At turbines D05 and D04, this is denser scattering than for turbines D03 and D01. To
analyse this unexpected pitching behaviour, cloud D04-HF-981 is selected. the cloud boundaries are
chosen with the attempt to avoid selecting general HF scattering originating from the right curved part
of the pitching relation. Below, the selected cloud is shown within the pitching and power curve.

Figure 6.45: Cloud selection of pitching above
cut-in wind speed.

Figure 6.46: Active power output for pitching
above cut-in wind speed.

In figure 6.46, the cloud selected contains both zero active power data, and active power data close
to rated power. This, while the selected wind speed range is above cut-in and 4 m/s below rated wind
speed.
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Figure 6.47: Cloud D04-HF-981: time series of wind speeds.

Figure 6.48: Cloud D04-HF-981: time series of pitching.

Within the time series of figure 6.47 above, two different wind speed conditions are shown (in grey).
Both include data of the cloud D04-HF-981 (blue dots). The left part of the grey time series is a period
of low average wind speed, between 3 and 5 m/s. The right part of the grey time series contains above
rated average wind speed data9. In both situations, the pitching behaves as shown within other clouds
(figure 6.48). For low wind speeds, pitching is regulated between 0, 10 or 30 degrees. For the above-
rated wind speeds, pitching reaches values up and until 20 degrees to keep the rotor speed at the
desired level.

Although for both situations the mean wind speeds are respectively below 5 m/s and above rated, there
exist wind speed measurements with a deviation from the mean. For those deviations, the pitching
strategy is not changed, as it are singular occurrences. Some of those singular occurrences are shown
by the blue dots within the two figures 6.47 and 6.48, and are part of the cloud D04-HF-981. For this
reason, pitching can be seen in the HF pitching curve for values of between cut-in and rated wind speed
(cloud D04-HF-981).

The selection of this cloud shows a downside of HF data. Due to the turbine (correctly) not responding
to a single wind speed up/down ramp causing a temporary deviation from the average wind speed,
pitching is seen in the wind speed region between cut in and rated wind speed. This turbine robust
control in combination with volatility of the wind cause scattering in unexpected parts of state curves,
making the HF plots less clear to read and analyse.

High rotor speed

From the six theoretical state curve relations of figure 2.11, three contain rotor speed on one of the
axes. The HF rotor speed signal is a discrete signal. It is logged with resolution of 0.5 RPM. This
discrete logging makes cloud selection more difficult, as a scatter plot is a combination of vertical lines.
Density is more difficult to extract from the plot. Moreover, this discrete signal does not represent the
rotor speed in the most realistic way, as rotor speed is a continuous parameter.

Despite the downsides of the rotor speed signals, useful information was still extracted from the state
curves, including rotor speed. Cloud D05-HF-954 was selected to understand occurrences of rotor
speed exceeding the maximum turbine rotor speed. This cloud originates from wind speed ramp ups,
which temporarily increases the rotor speed. The turbine responds by increasing pitching and driving
the rotor speed back to its desired value of 14 RPM.

9In between the two described conditions, wind speed is lower than 3 m/s. Data below 3 m/s has been filtered out during the
filtering process, as these are no conditions within which the PYC turbines are operational.
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Figure 6.49: Time series of wind speed ramping up.

Figure 6.50: Time series of rotor speed response to wind speed ramp ups.

Figure 6.51: Time series of pitching response to rotor speed increase.

This increase in rotor speeds results in a temporary increase in active power. This behaviour does
not negatively affect the turbine production. However, if wind speed ramps at these high wind speeds
occur frequently, it can have a long term effect on the lifetime of the turbines. Rotor speeds above rated
make up 3% of the total data.



7
Results eastern cluster

For the eastern cluster, the same procedures were followed as for the western cluster. In this chapter,
the deviations in the results compared to the other clusters are discussed.

7.1. Wind resource
To comprehend the site conditions not influences by turbine rotor movements or wake effects, MET
mast data is used, as was also done for the western cluster. The conditions for the eastern cluster
are compared with the site specific conditions at the western cluster, as differences in site conditions
are important to understand when analysing turbine performance. The distributions and correlations
studied at the western MET mast were reproduced for the eastern cluster.

Below, the wind speed and wind directional distributions of the eastern cluster are given. For fitting a
Weibull distribution, the curve-fit class from Scipy was used, as the Weibull fitting function gave a local
optimum as a solution, which did not match the shape of the wind speed distribution. 1

Figure 7.1: Wind rose eastern cluster Figure 7.2: Wind speed histogram eastern cluster

Just as for the western cluster, other wind characteristics of the site were investigated: directional veer,
wind shear and turbulence intensity.

Characteristic wind veer relations are visualised below. For the same reasons are described in 6.1, the
northerly direction ± 60 degrees are filtered out. Differences that can be spotted from the western cluster
is the veer at high wind speeds: for the western cluster the veer runs towards 0.25 °/m, whereas for

1The found shape parameter k was smaller than 1, which gives an exponential distribution.

80
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the eastern cluster it runs more to around 0.06°/m. This difference of approximately 0.2 °/m between
the western and eastern high-speed veer measurements is also the difference between the mean
veer of both clusters. The average spread and development of standard deviation over wind speed is
comparable between both clusters.

Figure 7.3: 10 minutes averaged MET mast wind
speed veer correlation.

Figure 7.4: 10 minutes averaged MET mast wind
direction veer correlation.

When comparing wind shear measured at the western and eastern cluster, the wind shear development
with wind speed and the spread are comparable. However, on average, the western cluster measures
higher wind shear than the eastern cluster. The difference in wind shear factor on average is 0.2. Just
like the wind directional veer, the shear is more extreme for the western cluster.

Figure 7.5: 10 minutes averaged MET mast wind
speed shear correlation.

Figure 7.6: 10 minutes averaged MET mast wind
direction shear correlation.

At last, the TI experienced by the MET mast. For both clusters, extreme TI values are experiences
within the waked sectors of the MET mast. This behaviour is measured for low wind speeds. Whereas
for the eastern cluster the TI is more stable for the unwaked sectors, for the western cluster higher
values of TI are measured around a sector of 200-230 degrees.
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Figure 7.7: 10 minutes averaged MET mast wind
speed TI correlation.

Figure 7.8: 10 minutes averaged MET mast wind
direction TI correlation.

7.1.1. Influence of site on turbine performance L06
The effect of wind directional veer and wind shear on the turbine performance of the closest MET mast
is examined by comparing measurements from MET02 and turbine L06. The distance from turbine L06
to the MET mast is 2D, and therefore within the 2-4D margin. At the eastern cluster, average veer and
shear values are lower when compared to the western cluster.

Figure 7.9: Influence of veer on L06 active power
signal.

Figure 7.10: Influence of shear on L06 active
power signal.

Image 7.9 and 7.10 show different relations compared to the western cluster. Wind veer and shear
both have a negative, but very small, influence on power production. For the western cluster, when
comparing the same veer and shear bins, both parameters had a positive effect on power production.

From the above figures, it can be concluded the veer and shear measured at the eastern cluster com-
pared to the western cluster do not have an influence on the efficiency numbers of tables 7.3. In fact,
from comparing figures 6.10 and 6.11 with figures 7.9 and 7.10, it can be concluded the lower veer and
shear at the eastern cluster compared to the western cluster has a negative effect on production of the
eastern cluster.

An important note is that these conclusions are based on the active power signal of one turbine, and
veer/shear measurements of one MET mast. Influence of these parameters further on in the turbine
clusters is not possible to determine.
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7.2. Correlations MET mast and turbines
The correlations regarding wind speed and direction between the MET mast and turbines of the east-
ern cluster showed different results. Wind direction as well as nacelle direction correlations seemed as
reliable for the eastern cluster as for the western cluster. Wind speed correlations, however, showed re-
lations deviating from a slope of 1. This was expected, as the height differences between the individual
turbines of the eastern cluster are larger compared to the relatively flat western cluster. According to
equation 2.8, wind speeds at different heights are related with a slope deviating from 1, depending on
the height difference.

As can be seen in the table below, correlations with intercepts were introduced for the wind speed
correlations, on top of the correlations without intercept. This was added compared to table 6.1 as
wind speed correlations were less strong, and introducing an intercept could potentially give answers
regarding those deviating correlations.

Using equation 2.8, the expected slopes of the wind speed correlations between different cluster units
can be estimated. For these estimations, a roughness length of 0.1-1 was assumed (table 2.5). When
the eventual slope is within the margin at the bottom of table 7.2, is assumed trustable. From turbine
L03 onwards, the wind speed correlations do not meet the pre-set margins. Therefore, only turbine
L06 and L05 will be further analysed.

Table 7.1: Overview of correlations for the eastern cluster.

Correlation Intercept Property MET-L06 L06-L05 L05-L03 L03-L04 L04-L01
Wind speed No Slope 0.99 0.96 0.91 1.07 0.88

No R2 score 0.99 0.95 0.91 0.94 0.86
Yes Slope 1 0.94 0.84 1.04 0.87
Yes Intercept -0.03 0.22 0.8 0.31 0.1
Yes R2 score 0.99 0.95 0.92 0.94 0.86

Wind dir No Slope 0.98 1 0.97 1 0.99
No R2 score 1 1 1 1 1
Yes Slope 1.01 1 1 0.99 0.97
Yes Intercept -6.28 1.34 -7.79 1.3 4.57
Yes R2 score 1 1 1 1 1

Nac dir No Slope - 1 0.97 1 0.99
No R2 score - 1 1 1 0.99
Yes Slope - 1 1 0.99 0.98
Yes Intercept - 1.15 -7.77 1.31 4.02
Yes R2 - 1 1 1 1

Table 7.2: Expected slopes for wind speed correlations eastern cluster.

MET-L06 L06-L05 L05-L03 L03-L04 L04-D01
Height difference [m] -4 3.2 -7.1 8.2 -55
Expected slope (α = 0.1) 0.99 1 0.99 1.01 0.86
Expected slope (α = 1) 0.99 1.01 0.98 1.02 0.79
Average 0.99 1 0.98 1.02 0.82
Accepted slopes (5% deviation) 0.95-1.05 0.96-1.06 0.95-1.05 0.97-1.07 0.78-0.87
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7.3. Overall & directional performance analysis
In this section, the results from the performance analysis are shown. This analysis is carried out in
parallel to the cloud analysis (described in the next section). The methods to come to the results
presented in this section are represented in chapter 3.

7.3.1. Overall turbine performance
Below, the binned power curves of the eastern cluster turbines are displayed for the full wind direction
spectrum. In blue, the power curve for the full wind direction spectrum is shown. In yellow, the power
curve for only unwaked sectors is given. These power curves are inputs to equations 3.3 and 3.4 as
described in the methodology (chapter 3). Results from those calculations are given in table 7.3.

Figure 7.11: Total power curve turbine L06 Figure 7.12: Total power curve turbine L05

Table 7.3: Efficiencies compared to WPC for turbines eastern cluster

Based on L06 L05
ηpower,1 Warranted power curve 0.98 0.96
ηpower,2 Potential power signal 0.97 0.96

7.3.2. Directional turbine performance
In this section, the turbine performance per directional sector is calculated and visualised. The wind
direction spectrum is divided into bins of 20 degrees for this purpose. Below, the power curves for the
18 directional sectors are displayed.
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Figure 7.13: Binned power curves turbine L06

Figure 7.14: Binned power curves turbine L05

For each power curve per sector, the performance compared to the warranted power curve can be
calculated by using equation 3.5. This relative performance per sector is given by a percentage in the
diagrams below.
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Figure 7.15: Relative power gain/loss per wind
direction bin for turbine L06

Figure 7.16: Relative power gain/loss per wind
direction bin for turbine L05

The three worst-performing unwaked sectors from the figure above are extracted and tabulated in the
figure below. The sectors with a negative mismatch to WPC of more than 5% are selected for further
site investigation, resulting in a short site description in the last column of the table. For the eastern
cluster, only one sector performs worse than 5% compared to WPC. This is a sector with the ridge of
a hill in direction towards the turbine. This sector is also shown in figure G.3 in appendix G.

Table 7.4: Worst performing unwaked sectors turbines eastern cluster.

Turbine Sectors (unwaked) [°] Performance
gain/loss [%]

Site description

L06 160-180 -6 Ridge in length direction towards the
turbine. Dense trees at 600 m.

180-200 -2 -
200-220 -2 -

L05 220-240 -3 -
260-280 -2 -
240-260 -2 -

7.4. Cloud analysis
In this section, the cloud selections leading to conclusions regarding turbine performance of the eastern
cluster are shown, including outputs of the cloud selection tool. First, the 10 minutes averaged cloud
analysis results are discussed. Afterwards, the HF cloud analysis. The methods and tools used to get
to the results of this chapter can be found in section 3.1.6 of the methodology chapter.

Looking at the total performance compared to WPC (table 7.3), the turbines from the eastern cluster
show better performance than the turbines from the western cluster. The relation of the HF and 10
minutes averaged scatter data to this performance difference are put to the light.

In this chapter, only the results deviating from the other clusters are discussed. The tables may
present more clouds than discussed in the section. The clouds not discussed were selected, but did
not show deviating behaviour from other clusters during the analysis.



7.4. Cloud analysis 87

7.4.1. Results 10 minutes averaged cloud analysis
In this section, the results from the 10 minutes averaged data cloud analysis are discussed. The tables
below contain information of all clouds selected, leading to results. Moreover, the state curves with
binned 10 minutes averaged data of all cluster turbines are given. As explained in section 3.1.6, these
state curve relations are inputs for the cloud selections.

Table 7.5: 10 minutes averaged clouds analysed eastern cluster.

Cloud tag X Y Turbine/
Cluster

Description

L06-10-657 Wind speed hub Active power Cluster Scattering below PC for wind
speeds higher than 20 m/s

L06-10-365 Wind speed hub Active power Cluster Scattering below PC
L06-10-211 Wind speed hub Pitch Cluster Pitching at low wind speeds
L06-10-648 Rotor speed Torque Cluster Between 6-8 RPM torque not

torque-rotor speed relation
L06-10-350 Rotor speed Torque Cluster Sharper transition region com-

pared to western cluster
L05-10-248 Wind speed hub Rotor speed Turbine Second line of pitch/power-

/RPM.
L06-10-275 Wind speed hub Pitch Cluster Scattering above pitching curve.
L06-10-150 Wind speed hub Active power Cluster High wind ride through
L06-10-588 Rotor speed Torque Cluster Behaviour in optimal-cP region

Table 7.6: Data collection of selected clouds eastern cluster

Data points Production LPP
Cloud tag Points % kWh % kWh % LPPT2 % LPPC3

L06-10-657 257 0.96 110821 1.47 15660 0.21 14.13
L06-10-365 164 0.61 60240 0.8 17258 0.23 28.65
L06-10-211 669 2.5 5504 0.07 3600 0.05 65.42
L06-10-648 1916 7.17 22960 0.3 12542 0.17 54.62
L06-10-350 13390 50.1 6040601 80.23 -10119 -0.13 -0.17
L05-10-248 256 1.32 118608 2.25 7359 0.14 6.2
L06-10-275 125 0.47 36546 0.49 23641 0.31 64.69
L06-10-150 224 0.84 104866 1.39 5318 0.07 5.07
L06-10-588 4167 15.59 421845 5.6 41994 0.56 9.95

2LPPT: Lost Potential Power as a fraction of annual power production
3LPPC: Lost Potential Power as a fraction of cloud power production
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(a) Eastern cluster wind speed - active power average comparisons. (b) Eastern cluster rotor speed - torque average comparisons.

(c) Eastern cluster wind speed - pitching average comparisons. (d) Eastern cluster rotor speed - pitching average comparisons.

(e) Eastern cluster pitching - torque average comparisons. (f) Eastern cluster wind speed - rotor speed average comparisons.

Figure 7.17: Compared 10 minutes averaged data of eastern cluster turbines. Data is binned by the MOB.
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As discussed in section 3.1.6, a comparison is made between the averaged binned state curves of
the turbines and the theoretical expected turbine state curves. Observations from these comparisons
are input for the cloud selection tool. From the overview of binned 10 minutes averaged state curves
in figure 7.17, the storm control is well visible in the power curve of figure 7.17a. Moreover, higher
average pitching behaviour is observed at turbine L06 compared to turbine L05. Also, the optimal-cp
region of the torque state curve (figure 7.17b) shows a slight different fit to theoretical behaviour than
the western cluster turbines. The binned power curves in figure 7.17a show an underperformance of
turbine L05 compared to L06 in the rated region of the power curve4.

Therefore, in the below section, the following observations are discussed: high wind speed power
control, stability of the rotor speed - torque transition region, performance of the optimal-cp region and
second lines of pitching/RPM.

High wind speed power control

As the wind speed distribution of the eastern cluster has a longer right tail compared to the western
cluster (figure 7.2), the eastern turbines are experiencing higher wind speeds. The eastern turbines
are exposed to wind speeds ranging from 20 to 25 m/s. For the western cluster, 10 minutes averaged
wind speed of 20 m/s or more was a rarer event. From 20 m/s, the turbine control is switched to a
mechanism which makes production possible at those high wind speeds (explained further at section
4.1). This behaviour is also included in the WPC of the turbine. Above 20 m/s, the active power
decreases. This can be seen in the averaged active power state curves (figure 7.17) and in the scatter
plot below (figure 7.18).

Figure 7.18: High wind speed power control
active power output.

Figure 7.19: High wind speed power control
pitching behaviour.

To see what the active power output signal of this high wind speed control looks like, the HF data for the
specific timestamps of cloud L06-10-150 is consulted. In the figure below, this power output is shown
with respect to power outputs of rated wind speeds below 20 m/s (in grey).

4This is also visible in the binned power curves of figure 7.11 and 7.14
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Figure 7.20: Time series of power output during high wind speed control.

Figure 7.21: Wind speed - TI relation cloud L06-10-150. In
blue: TI class A turbulence relation.

The above rated wind speed turbine control (right
side of the time series, grey) is showing a rel-
atively stable active power signal around 3000
kW. Small fluctuations are visible due to the wind
speed up and down ramping. On the left side of
the time series (in blue), the active power output
for storm control is shown. This active power out-
put is fluctuating more, most likely to cope with
higher loads that come together with high wind
speeds.

In table 7.5, the statistics of the selected cloud
L06-10-150 are given. The high wind speed con-
trol cloud has a LPPC value of 5%, meaning the
storm control is performing 5% under the WPC
behaviour. The lost amount of power production
does not contribute much to the annual power
production that year (0.07%).

The 5% underperformance compared to WPC
can be partially explained by a minor amount of
data exceeding the turbine TI class A conditions
(figure 7.21). The cloud is shown in dark blue.
The maximum TI class A turbulence conditions is
given in light blue.

Rotor speed - torque region in transition region between optimal-cp and full load

As discussed above, the turbines of the eastern cluster are exposed to higher wind speeds compared to
the western cluster. Nevertheless, the 10 minutes averaged rotor speed signal exceeds the maximum
rotor speed less compared to the western cluster. Below, a comparison between the wind speed - rotor
speed relations is given. For the comparison, the two turbines closest to the MET mast were used.
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Figure 7.22: Rotor speed - pitching relation
turbine D05.

Figure 7.23: Rotor speed - pitching relation
turbine L06.

For the western string turbines, it can be observed that where maximum rotor speed is reached (Unrtd,
the right bottom of the scatter plot) the rotor speed has a relatively high standard deviation and can
increase up to 15 RPM. This was also visible in the HF data.

When looking at figure 7.23, this behaviour is not seen for the eastern cluster. The wind speed - ro-
tor speed relation fits the pre-calculated state curve better and consists of less scattering around the
maximum rotor speed.

This same difference in rotor speed behaviour also shows differences in the rotor speed - torque relation
for both clusters. For the western cluster, the rotor speed - torque relation did not show the expected
behaviour from the point Unrtd onwards. Unrtd is the point from which the rotor speed - torque relation
is not following the Q ∝ ω2 trend any more. The eastern cluster fits the expected behaviour better, with
a more stable rotor speed for high wind speeds. The expected behaviour is a transition region evolving
in a vertical line of constant rotor speed (see light blue line). Below, for both the western and eastern
reference turbine, the rotor speed - torque relations are given. In dark blue are the two selected clouds
which resemble the data from Unrtd onwards.

Figure 7.24: Rotor speed - torque relation turbine
D05.

Figure 7.25: Rotor speed - torque relation turbine
L06.

When comparing the two selected clouds, they consist of a comparable amount of data points (±13000).
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For the western cloud, there is a 1.85% power loss compared to annual production, whereas for the
eastern cluster the cloud is performing slightly better thanWPC. This western cluster power loss can be
caused by the torque and pitch control, which seems not to match the theoretical rotor speed - torque
state curve.

Although the eastern cluster experiences higher wind speeds, TI values measured at the eastern MET
mast are less extreme compared to the western cluster. Moreover, as discussed before, the western
cluster are TI class B turbines, where the eastern cluster are class A turbines. A combination of these
two can be an explanation of the difference in rotor speed control and turbine performance in this
transition region between optimal-cp and full load.

Torque curve: performance optimal-cp region

When comparing the torque curve scatter plots of the western and eastern clusters (7.17b and 6.27b)
it is concluded there is a difference in the fit to the maximum power coefficient part of the theoretical
torque curve (dotted green line) for the SWT-3.0-113 turbines compared to the SWT-3.0-108 turbines.
For turbine D05, the data is slightly below the expected theoretical behaviour. Looking at the eastern
cluster fit to the torque curve in this region, it shows a better fit to this map cp region.

Figure 7.26: Optimal-cp region of turbine D05. Figure 7.27: Optimal-cp region of turbine L06.

When looking at the calculated performance parameters for each cloud, it is seen that the optimal-cp
region of turbine D05 has a LPPC of 14%, while turbine L06 of the eastern cluster had an LPPC of
10%. The difference in fit to the theoretical state curve is thus expressed within the performance of this
area of the torque curve. This optimal-cp region is an essential part of turbine performance. The fact
that these regions are performing worse compared to overall turbine performance, is enough incentive
to start a discussion with the OEM.

Second line of pitch, RPM and power

Another difference that is seen within most of the state curve scatter plots of turbine L05 is a cloud of
data on which more extreme pitching is applied. This is visible in three ways:

1. A lower horizontal line within the rated region of the power curve.
2. A second line of pitching higher than the average pitching curve for wind speeds above Unrtd.
3. Rotor speed measurements lower than the maximum rotor speed within the rated wind speed

region.

The cloud selected for investigating this is cloud L05-10-248. The cloud is 256 data points (1.32% of
total data), and the potential production lost is less than 0.15% of annual power production. Below, the
power curve and wind speed - rotor speed relation with the selected cloud are given.
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Figure 7.28: Power curve with second line of
power production.

Figure 7.29: Wind speed - rotor speed relation
with second line of rotor speed.

Figure 7.30: Wind speed - TI relation cloud L05-10-248. In
blue: TI class B turbulence relation.

This cloud explains the relative underperform-
ance of turbine L05 compared to L06 in the rated
region of the power curve, as was observed from
the binned state curve relations (figure 7.17a).
Reasons for this derated behaviour can poten-
tially be caused by TI exceeding turbulence class
A thresholds. In figure 7.30, the TI values of the
cloud L05-10-248 are shown. Half of the cloud
data is exceeding turbulence class A conditions.

Moreover, this cloud selection reveals the impact
of extreme site conditions on production of TI
class A turbines. These losses are unavoidable
and part of the rough site.
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7.4.2. Results HF cloud analysis
Below, an overview of the selected clouds are given in tables 7.7 and 7.6. The results from these clouds
showing different behaviour compared to the other clusters are discussed. Scattering below the power
curves, extreme pitching and torque variation for high wind speeds are reviewed in this section.

Table 7.7: HF clouds analysed eastern cluster.

Cloud tag X Y Turbine/
Cluster

Description

L06-HF-627 Wind speed hub Active power Cluster General scattering below PC
L06-HF-632 Wind speed hub Pitch Cluster Scattering above pitching curve
L06-HF-678 Pitching Torque Cluster High torque for high wind speeds

and pitching
L06-HF-552 Pitching Torque Cluster Low torque for high wind speeds

and pitching
L06-HF-742 Rotor speed Pitch Cluster Pitching values up to 30 degrees

at non-rated rotor speeds
L06-HF-137 Wind speed hub Pitch Cluster Pitching behaviour below 7 m/s

Table 7.8: Data collection of selected clouds eastern cluster

Data points Production LPP
Cloud tag Points % kWh % kWh % LPPT5 % LPPC6

L06-HF-627 19629 0.2 17179 0.24 7394 0.1 43.04
L06-HF-632 4792 0.05 3961 0.06 3357 0.05 84.74
L06-HF-678 9077 0.09 10784 0.15 -72 0 -0.66
L06-HF-552 11904 0.12 12200 0.17 2488 0.03 20.39
L06-HF-742 7965 0.08 7850 0.11 2998 0.04 38.19
L06-HF-137 63206 0.65 12 0 2399 0.03 20809.53

Different scattering below power curve

Below the power curve of the eastern turbine clusters, a different scattering can be seen compared
to the western cluster HF power curve scattering (figure 6.35). For this eastern cluster, the scattering
is also dense for high wind speeds, whereas for the western cluster, the scattering density decreased
for increasing wind speeds. To investigate this scattering below the power curve of eastern cluster
turbines, cloud L06-HF-552 was selected. Scattering up to 20 m/s was selected to keep the scattering
separated at 20 m/s. By doing so, it was easier to investigate the influence of wind speeds higher than
20 m/s on the selected cloud.

The reason for the different looking scattering is the cause: For the eastern cluster, the majority of
the scattering (below a wind speed of 20 m/s) are data points where wind speeds have ramped down
from the high wind speed control region. This was observed from when zooming in to samples of the
selected cloud L06-HF-552. The active power signal does not respond or responds later to those wind
speed ramps. Therefore, scattering is visible. For example, the HF time series shown in figure 7.20 is a
part of cloud L06-HF-627. As can be seen from the active power distribution, there is a high occurrence
of active power signals around 1600 kW. This can be explained by the time series of figure 7.20. This
is an example of the storm control active power output signal. One of the derated power levels of the
storm control is around 1600 kW.

5LPPT: Lost Potential Power as a fraction of annual power production
6LPPC: Lost Potential Power as a fraction of cloud power production
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Figure 7.31: High wind speed power control active
power output.

(a) Active power distribution of cloud L06-HF-627.

(b) Pitching distribution of cloud L06-HF-627.

Figure 7.32: Pitching and Active power
distributions for cloud L06-HF-627.

Cloud L06-HF-627 is a minor part of the total HF data set (0.2% of total data points). The potential
power lost makes up only 0.1% of annual power production. This cloud shows how HF data should
be dealt with carefully when analysing. At the first sight, the turbine seems to be produce below rated
for a significant amount of data points. However, the eastern cluster scattering below the power curve
does not cause any underperformance, as it originates from unavoidable wind speed down ramping.

Extreme pitching during storm control

The extreme scattering above the pitching curve is collected within cloud L06-HF-632. This pitching
behaviour originates from data close to cut-out wind speed. At cut-out wind speed, the turbine is
curtailed to prevent the turbine from suffering from the extreme wind conditions. Close to these cut-out
wind speeds, the PYC turbines are in storm control mode. The turbine exceeds the pitching thresholds
for keeping the turbine at rated power (blue data in figure 7.33), to derate the turbine to an operational
condition with lower loads.

In figure 7.34, the rotor speed response to this high pitching is represented. Rotor speeds are de-
creased to make the turbine cope with the loads at high wind speeds. For comparison: during curtail-
ments due to grid limitations, rotor speeds are not decreased to have a high inertia response to the
grid.



7.4. Cloud analysis 96

Figure 7.33: Cloud L06-HF-632: extreme pitching. Figure 7.34: Cloud L06-HF-632: decrease of rotor
speeds.

In the time series below, segments of data are filtered out. These are the sections where no grey data
can be seen. This is due to turbine curtailments during high average wind speed periods. The extreme
pitching cloud occurs at moments of high average wind speeds, close to cut-out. The data of cloud
L06-HF-632 is shown as the circled dark blue data. The pitching selected is only 0.05% of total data
points, and potential losses are the same percentage of annual power production.

Figure 7.35: Cloud L06-HF-632: example of power signal around selected data.

This HF cloud shows the exact pitching strategy for storm control. When looking at the same timestamps
in the 10 minutes averaged data, an averaged out behaviour is observed, showing pitching marginally
deviating from the pitching curve. The HF resolution makes it possible to strictly select the pitching
behaviour in storm control, without including non-storm control data. This has a big effect on the LPPC
value: a 84% lost power potential as a fraction of cloud production is observed, whereas the 10 minute
averaged cloud showed a LPPC of 5%. Cloud L06-HF-632 therefore shows the potential of more strictly
selecting instances of underperformance.

Torque variation for high wind speeds

During high wind speed control, rotor speed is not controlled at its maximum value of 15.5 RPM, but is
used as a variable together with the active power signal as explained in section 2.6.

As both rotor speed and active power are variable above 20 m/s wind speeds, resulting in torque
also becoming a varying parameter. Clouds L06-HF-678 and L06-HF-552 were selected to analyse
respectively high and low torque behaviour at high wind speeds and pitching. Each cloud is 0.1% of
total data.

In the HF data, this wide variation in torque becomes visible. Cloud L06-HF-678 represents the high
torque, exceeding the general HF scattering. Below, the high-torque cloud that deviates from the gen-
eral torque scattering is displayed (figure 7.36), together with distributions of some key properties in
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figure 7.37.

Cloud L06-HF-678 originates from the active power exceeding Prated. Moreover, rotor speeds dropping
below wrated for wind speeds in the full load region7. The low-torque data for high wind speeds is from
data where the active power has dropped to values around 2500 kW as a result of the high wind speed
control, and for rotor speeds exceeding wrated. The high torque is problematic for turbine lifetime.
Moreover, it is an incentive for applying storm control, or for complete shut down of the turbine.

Figure 7.36: Selected high-torque cloud for high
pitching.

(a)Wind speed distribution of cloud L06-HF-678.

(b) Rotor speed distribution of cloud L06-HF-678.

Figure 7.37: Wind speed and pitching
distributions for cloud L06-HF-678.

This 0.1% high-torque contribution is visible in HF data, where hidden in 10 minutes averaged data.
It is valuable to understand this HF high-torque phenomenon when implementing turbine control im-
provements, such as a better responsive rotor speed control.

7The lower rotor speeds are shown by the highest peak in figure 7.37b.



8
Results central cluster

In this chapter, deviations in the central cluster results compared to the eastern and western cluster are
discussed.

8.1. Wind resource
Central cluster site conditions are compared to the eastern and western cluster site conditions to un-
derstand differences. The site conditions can be related to performance differences.

Below, the wind speed and wind directional distributions of the central cluster are given. Just as for the
eastern cluster, Scipy was used to fit a Weibull function to the data. As can be seen from the Weibull
distribution, average wind speeds are low compared to the more extreme eastern cluster. Wind speeds
of the central cluster are comparable to the wind speeds measured at the central cluster.

Figure 8.1: Wind rose central cluster Figure 8.2: Wind speed histogram central cluster

Regarding wind veer at the central cluster site, again the northerly direction ± 60 degrees was filtered
out. For all investigated MET masts at the site, the northerly wind directional data is corrupt. The
wind speed-veer relation at the central cluster does not contain an offset, where for the western and
eastern cluster an offset of 0.25 °/m and respectively 0.06°/m was observed. As can be seen in figure
8.4, average wind speed is above zero for wind directions effected by neighbouring turbines. For the
unwaked sectors, wind veer shows stable results.

98
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Figure 8.3: 10 minutes averaged MET02 wind
speed veer correlation.

Figure 8.4: 10 minutes averaged MET02 wind
direction veer correlation.

Where wind directional veer shows less extreme values for the central cluster, wind shear is more
extreme. These extreme wind shear occurrences result in average wind shear values of 0.5. This is
comparable to the shear measured at the western cluster, and higher than the shear measured at the
eastern cluster (on average 0.3).

Figure 8.5: 10 minutes averaged MET02 wind
speed shear correlation.

Figure 8.6: 10 minutes averaged MET02 wind
direction shear correlation.

When comparing TI measured at MET02 to the measurements at the other two clusters, the central
cluster experiences higher TI values than the western and eastern cluster. This is also expressed in
the average TI over wind speed: Up and until a wind speed of 15 m/s the average TI is close to 0.18
whereas for the western and eastern cluster it decreases below 0.15 from 7 m/s onwards. Just as for
the western and eastern cluster, the highest TI occurs within the waked MET mast sectors.
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Figure 8.7: 10 minutes averaged MET02 wind
speed TI correlation.

Figure 8.8: 10 minutes averaged MET02 wind
direction TI correlation.

8.1.1. Influence of site on turbine performance H05
The effect of wind directional veer and wind shear on the turbine performance of the closest MET mast
is examined by comparing measurements from MET03 and turbine H05. The distance from turbine
H05 to the MET mast is 2D, and therefore within the 2-4D margin. At the central cluster, average veer
values are lowest compared to the other two clusters. Average shear values are comparable to the
western cluster. However, the shear does have a higher standard deviation for all wind speed bins,
resulting in more extreme shear measurements at the central cluster1.

Figure 8.9: Influence of veer on H05 active power
signal.

Figure 8.10: Influence of shear on H05 active
power signal.

The same observations are done as for the western cluster regarding wind shear: an increase in shear
positively affects the turbine performance. As for wind veer, there is a slight negative influence of 2%
for the 0.1-0.2 °/m veer bin compared to the 0.0-0.1 °/m bin. However, this bin is of far less influence
to power production compared to the two lower veer bins.

To conclude, the (extremely) high shear measurements are of positive effect on the turbine performance
estimates. This was also concluded for the western cluster. Regarding veer, a negligible negative effect
was noticed for veer above 0.1 °/m.

1This is observed from comparing figures 6.5 and 7.5
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An important note is that these conclusions are based on the active power signal of one turbine, and
veer/shear measurements of one MET mast. Influence of these parameters further on in the turbine
clusters is not possible to determine.

8.2. Correlations MET mast and turbines
After the first iteration of the side-by-side correlation process, it became clear the directional data of
all turbines was offsetted for all turbines of the central cluster. This phenomenon was also observed
for turbine D04 of the western cluster (table 6.3). The difference from the western cluster, is the fact
that this offset occurs at all turbines. This makes the western cluster data set more uncertain, as more
manipulations were carried out prior to the analysis of this cluster.

As the wind speed correlations only consider free sector data, and wind directional data is needed to
select on these criteria, having good calibrated wind directional data is important for wind direction as
well as wind speed correlations.

Another change, applied to the selected central cluster data, is the elimination of turbine H07 from the
5 selected turbines. This turbine was eliminated because the free sectors of the turbine did only match
a minor part of the free sectors of the consecutive turbine. This harms the reliability of the correlations.
Moreover, exclusion of this turbine does not have a negative influence on the inter-turbine distances of
the 4 remaining turbines. In the table below, an overview of the corrections carried out is given:

Table 8.1: Overview of corrections carried out on correlations central cluster

Operation Applied to turbine Properties Size of offset

1 Correct offset >10 degrees
compared to neighbouring turbine H05 Nacelle direction

Wind direction 55.4

2 Correct offset >10 degrees
compared to neighbouring turbine H06 Nacelle direction

Wind direction 14.7

3 Correct offset >10 degrees
compared to neighbouring turbine H07 Nacelle direction

Wind direction 23.6

4 Correct offset >10 degrees
compared to neighbouring turbine H04 Nacelle direction

Wind direction -10.6

5 Correct offset >10 degrees
compared to neighbouring turbine H02 Nacelle direction

Wind direction 8.4

The correlations from this table were applied because of unnatural offsets between the directional
measurements of the turbines. The size and presence of the offsets at every single turbine of this
cluster is a reason for discussing the offsets with the O&M (Operations & Maintenance) team on site.
After correcting the data as described by table 8.1, results of the side-by-side correlations of the turbines
are given after the corrections listed in table 8.1 were carried out. The bottom table consists of expected
ranges of slopes, based upon 2.8, a roughness length of 0.1-1 (table 2.5), and a 5% deviation.
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Table 8.2: Overview of correlations for the central cluster.

Correlation Intercept Property MET-H05 H05-H06 H06-H04 H04-H02
Wind speed No Slope 1.05 1.06 0.98 1.22

No R2 score 0.93 0.71 0.93 0.75
Yes Slope 1.04 0.98 1.02 0.98
Yes Intercept 0.14 0.77 -0.42 1.56
Yes R2 score 0.93 0.71 0.93 0.8

Wind dir No Slope 0.99 0.97 1 1.01
No R2 score 0.97 0.99 0.99 1
Yes Slope 0.97 0.99 0.98 1.01
Yes Intercept 0.95 -3.7 3.16 0.18
Yes R2 score 0.97 0.99 1 1

Nac dir No Slope - 0.97 1 1.01
No R2 score - 0.99 0.99 1
Yes Slope - 1 0.98 1
Yes Intercept - -5.74 3.2 0.87
Yes R2 - 0.99 1 1

Table 8.3: Expected slopes for wind speed correlations central cluster.

MET-H05 H05-H06 H06-H04 H04-H02
Height difference [m] 8.2 17.1 31.7 -8.3
Expected slope (z0 = 0.1) 1.01 1.03 1.05 0.99
Expected slope (z0 = 1) 1.02 1.04 1.07 0.98
Average 1.02 1.03 1.06 0.98
Accepted slopes (5% deviation) 0.97-1.07 0.98-1.08 1.01-1.11 0.93-1.03

The correlations of table 8.2, combined with the expectations of table 8.3 and the visualisation of the
multiple wind speed and wind direction correlations, are used to validate themultiple turbine data sets of
the central cluster. The MET mast and turbine H05 are correlating as expected: The slope is within the
limits of table 8.3, and R2 values are well above the limit of 0.7. Wind speed correlations of turbine H05
and H06 are showing different results. The slope of this wind speed correlation is within the expected
regions. However, R2 values are just above the 0.7 limit. This can be explained by the occurrence of
two clouds, both having a different average slope. Below, both the wind speed correlations of MET-H05
and H05-H06 are shown.
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Figure 8.11: Wind speed correlation of MET02
and turbine H05.

Figure 8.12: Wind speed correlation of turbines
H05 and H06.

Because of the inconsistent wind speed behaviour of turbine H06 compared to turbine H05, the data
of turbine H06 can not be trusted. Wind speed measurements seem to differ substantially for different
orientations of turbine H06. As turbine H04 is a neighbouring turbine of H05 as well, the wind speed
correlation between H05 and H04 was checked as well. The correlation showed the same behaviour
as the correlation of figure 8.12. The steeply correlated data has a slope of >1.4. This high slope can
not be explained by the height difference between H05 and its neighbouring turbines. Because of the
observed behaviour, turbines H06 and H04 can not be used for further analysis. As turbine H02 is to
be validated by turbine H04, also turbine H02 is not used within the analysis of the central cluster. As
a result, for the central cluster, only turbine H05 is investigated.

8.3. Overall & directional performance analysis
As discussed above, turbine H05 will be analysed as the only turbine from the central cluster. Please
see the above section for reasoning. In this section, the results from the performance analysis are
shown. This analysis is carried out in parallel to the cloud analysis (described in the next section). The
methods to come to the results presented in this section are represented in chapter 3.

8.3.1. Overall turbine performance

Figure 8.13: Binned power curve of turbine H05.

The power output is shown as a binned power
curve, compared to the warranted power curve
of the central cluster site. The turbine is per-
forming below WPC for the non-rated part of the
power curve, as well as for the rated part. In the
transition region from non-rated to rated (knee of
the power curve) the turbine is performing close
to WPC. The relatively bad performance in the
rated part of the power curve coincides with tur-
bine D05, D01 and L05. The underperformance
in the non-rated part of the power curves was ob-
served at the western cluster turbines.

As was also seen for the other cluster turbines,
the difference between unwaked and waked
power curves is small: this is because the pre-
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vailing wind directions are often the unwaked sectors. Therefore, waked sectors make up a minor part
of the turbine data.

Table 8.4: Efficiencies compared to WPC for turbines central cluster.

Based on H05
ηpower,1 Warranted power curve 0.93
ηpower,2 Potential power signal 0.94

8.3.2. Directional turbine performance
For turbine H05, two graphs are plotted with each 9 of the 18 wind direction sectors. These opera-
tional power curves per wind direction sector are used to calculate the turbine performance per wind
directional sector.

Figure 8.14: Binned power curves turbine H05

For each power curve per sector, the performance compared to the warranted power curve can be
calculated by using equation 3.5. This relative performance per sector is given by a percentage in the
diagrams below.
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Figure 8.15: Relative power gain/loss per wind direction bin for turbine H05.

The sectors with a negativemismatch toWPC of more than 5% are selected for further site investigation,
resulting in a short site description in the last column of the table. The three worst performing sectors of
turbine H05 are from relatively flat terrain with no forestry. A rough valley is at the edge of the 280-200
degrees sector. The orography of the three tabulated sectors of this central cluster is less extreme than
orography at sectors from tables 6.5 and 7.4.

Table 8.5: Worst performing unwaked sectors turbines central cluster.

Turbine Sectors (unwaked) [°] Performance
gain/loss [%]

Site description

H05 240-260 -15 Forestry at 340 m. MET mast at 230 m.
260-280 -14 No forestry. Slowly elevating.
280-300 -10 No forestry. Side of valley towards tur-

bine.
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8.4. Cloud analysis
In this section, the cloud selections leading to conclusions regarding turbine performance of the central
cluster are shown, including outputs of the cloud selection tool. First, the 10 minutes averaged cloud
analysis results are discussed. Afterwards, the HF cloud analysis. The methods and tools used to get
to the results of this chapter can be found in section 3.1.6 of the methodology chapter.

8.4.1. Results 10 minutes averaged cloud analysis
In this section, the results from the 10 minutes averaged cloud analysis of the central cluster are dis-
cussed. The different findings compared to the eastern and western cluster are discussed. In the tables
below, an overview is given of the selected clouds. Below the tables in figure 8.16, the state curves of
turbine H05 are shown. Deviation of turbine behaviour from these theoretical state curves were input
to the selection of clouds.

In this section, two regions of the torque curve are compared between the different clusters. Moreover,
pitching for low wind speeds and scattering below the power curve are discussed.

Table 8.6: 10 minutes averaged clouds analysed central cluster.

Cloud tag X Y Turbine/
Cluster

Description

H05-10-355 Wind speed hub Active power Turbine Scattering below power curve
H05-10-144 Wind speed hub Pitch Turbine Pitching between 3 and 5 m/s
H05-10-466 Rotor speed Torque Turbine 6-8 RPM: below optimal torque

control curve
H05-10-118 Rotor speed Torque Turbine Transition region from optimal-cp

to maximum rotor speed
H05-10-352 Wind speed hub Pitch Turbine Scattering above pitching curve
H05-10-572 Rotor speed Torque Turbine Performance optimal-cp region

Table 8.7: Data collection of selected clouds central cluster.

Data points Production LPP
Cloud tag Points % kWh % kWh % LPPT2 % LPPC3

H05-10-355 675 2.28 266803 4.1 45742 0.7 17.14
H05-10-144 620 2.09 1920 0.03 8507 0.13 443.09
H05-10-466 4833 16.32 68054 1.04 59789 0.92 87.86
H05-10-118 12148 41.03 4949955 75.99 165632 2.54 3.35
H05-10-352 174 0.59 49712 0.76 29996 0.46 60.34
H05-10-572 6086 20.55 836083 12.83 139305 2.14 16.66

2LPPT: Lost Potential Power as a fraction of annual power production
3LPPC: Lost Potential Power as a fraction of cloud power production
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(a) Central cluster wind speed - active power average comparisons. (b) Central cluster rotor speed - torque average comparisons.

(c) Central cluster wind speed - pitching average comparisons. (d) Central cluster rotor speed - pitching average comparisons.

(e) Central cluster pitching - torque average comparisons. (f) Central cluster wind speed - rotor speed average comparisons.

Figure 8.16: Compared 10 minutes averaged data of central cluster turbines. Data is binned by the MOB.

When investigating the state curve relations of central cluster turbine H05, it was concluded there is
no visual differing behaviour compared to the western cluster. Turbine H05 matched the state curves
behaviour of the turbines in that string. One cause for this is the fact that both clusters contain the same
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SWT-3.0-113 TI class B turbines. To understand the differences that can not visually be seen, the same
clouds as were selected for turbine D05 are selected for the central cluster turbine H05. Differences in
performance calculations of those clouds is given below.

Torque curve: Transition from optimal-cp region to rated power

In the transition region from optimal-cp to rated power (vertical part of the theoretical torque curve in e.g.
figure 8.16f), the western cluster turbines underperformed compared to WPC. 2.54% of total annual
production is the amount of LPP for this area of the torque curve (cloud H05-10-118). For the western
cluster, this relative lost potential was 1.85%. There is a potential difference of 0.6% lost power in this
region between the two turbines. More interesting is that this underperformance also detected for the
eastern cluster, apart from the western cluster.

It is expected to see losses in this area of the torque curve, as this area makes up the majority of annual
turbine data, and the western and central cluster are overall underperforming turbines. However, it is
interesting to see those losses in this area for the SWT-3.0-113 turbines and not for the SWT-3.0-108
turbines.

Torque curve: performance maximum cp region

The western cluster is, as described in chapter 6, losing a power potential of 14% compared to the
production of the cloud. For the eastern cluster, this lost potential is 16% compared to cloud power
production (cloud H05-10-572). Also, in this region of the torque curve, the western cluster is performing
slightly better than the central cluster. The most important finding is the underperformance occurring
at both of the western and central turbine clusters.

Pitching curve: pitching at low wind speeds

Both clouds H05-10-466 and H05-10-144, although separately selected, represent the pitching beha-
viour at low wind speeds (below 7 m/s). The selected wind speed region of this cloud is a part of the
WPC provided by the original equipment manufacturer (OEM). This caused an LPPT value of 1% for
the western cluster turbine D05. For the central cluster, LPPT values in this region are comparable.

Scattering below power curve

LPP below the power curve of turbine H05 is less than this was for turbine D01. Within the western
cluster, turbine D01 was selected for power curve scattering as it was most visible for that turbine. LPPT
was 1%. For turbine H05, LPPT due to scattering below the power curve was 0.7%.

In general, turbine H05 performs worse than the western cluster turbines. Clouds selected within crucial
parts of turbine behaviour confirmed this observation when compared to similar western cluster clouds.

8.4.2. Results HF cloud analysis
HF clouds are selected for reasons as explained in section 3.1.6. In the tables below, an overview of
the selected clouds is given, together with relevant cloud information and data.

In this section, reasons for selecting the tabulated clouds as well as results obtained from the multiple
cloud analyses are addressed. No unique HF turbine behaviour was observed for the central cluster
compared to the western cluster turbines. Therefore, the same approach as for the central cluster
10 minutes averaged cloud analysis is chosen: differences in performance statistics of comparable
relevant HF clouds will be discussed. These are power curve scattering clouds, and rotor speed HF
clouds exceeding the limit of 14 RPM.
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Table 8.8: HF clouds analysed central cluster.

Cloud tag X Y Turbine/
Cluster

Description

H05-HF-473 Wind speed hub Active power Cluster Curtailments down to 2200 kW
H05-HF-082 Wind speed hub Active power Cluster Curtailments cloud around 1700

kW
H05-HF-511 Wind speed hub Active power Cluster Curtailments down to 500 kW
H05-HF-813 Wind speed hub Pitch Cluster Pitching behaviour below 7 m/s
H05-HF-804 Rotor speed Pitch Cluster Pitching at non-rated rotor

speeds
H05-HF-530 Rotor speed Torque Cluster Rotor speed above maximum of

14 RPM

Table 8.9: Data collection of selected clouds central cluster.

Data points Production LPP
Cloud tag Points % kWh % kWh % LPPT4 % LPPC5

H05-HF-473 11220 0.11 10754 0.17 2864 0.05 26.63
H05-HF-082 5352 0.05 3120 0.05 2196 0.04 70.38
H05-HF-511 4829 0.05 1784 0.03 3525 0.06 197.64
H05-HF-813 118886 1.16 2099 0.03 4986 0.08 237.58
H05-HF-804 4048 0.04 3555 0.06 1531 0.02 43.08
H05-HF-530 284780 2.77 385818 6.2 -22009 -0.35 -5.7

Scattering below the power curve

Figure 8.17: 2200 kW
curtailments cloud H05-HF-473.

Figure 8.18: 1700 kW
curtailments cloud H05-HF-082.

Figure 8.19: 500 kW
curtailments cloud H05-HF-511.

Just as for the western cluster turbines, curtailments were observed at three different levels in HF data.
By looking at the time series of the selected clouds, it was concluded the curtailments at each level had
the same causes as the corresponding curtailments of the western cluster.

4LPPT: Lost Potential Power as a fraction of annual power production
5LPPC: Lost Potential Power as a fraction of cloud power production
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1. Curtailments 2200 kW.
These curtailments have a LPPT value of 0.05%. This is 0.02% more than similar curtailments of
the western cluster turbines.

2. Curtailments 1700 kW.
The curtailment cloud visible at 1700 kW (figure 8.18) have a LPPT of 0.04%. This is again 0.02%
more compared to the similar western cluster cloud selected for turbine D05.

3. Curtailments 500 kW.
This cloud was only visible for turbine D01 of the western cluster. LPPT of that cloud is 0.21%
(one of the larger HF cloud LPPT values found in this research). For turbine H05, this cloud has
a LPPT value of 0.06%.

An important takeaway from these comparisons is that contributions of HF curtailment clouds to total
data are comparable for western and central cluster. The 0.02% difference can be within the uncertain-
ties of the manual selection process. Only for turbine D01, more curtailments down to 500 kW were
observed (0.15% difference).

Rotor speeds exceeding maximum

From the 10 minutes averaged data, it is concluded both western and central cluster are exceeding
maximum rotor speed limits set by the OEM. For both clusters, HF clouds of this rotor speed limit
exceeding data were selected.

For both clusters, turbines are not underperforming in this region. The turbinesmeet theWPC.moreover,
occurrence of these high rotor speeds are comparable. Annually, rotor speeds exceed 14 RPM for
around 3% of time for both clusters.
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Conclusion

In this chapter, the findings of the research aimed at exploring the potential causes of underperformance
at the Pen y Cymoedd (PYC) wind farm are presented. The research question, “Can the underlying
physical causes for the underperformance of the Pen y Cymoedd wind farm be found by the use of 10
minutes average and/or High-Frequency data?” was addressed through a comprehensive analysis of
data collected from both 10 minutes average and high-frequency data sources. The results of this ana-
lysis are discussed and evaluated, ultimately providing insights into the effectiveness of using different
data sources for identifying physical causes of underperformance in wind farms. Results are discussed
by answering the goals from the three main sub questions as described in the introduction. At the end
of this chapter, the main research question is answered.

The structured approach set up for performing an analysis including 10 minutes averaged and HF data,
consists of different processes: At first, unwaked sectors for the investigated turbines are estimated.
Unwaked sector wind turbine data is the input for the filtering and correlation & validation process. Cor-
relations and validations are carried out to be able to use data measured at the turbines independently.
The filtered and validated data, together with free sector data and turbine specific theoretical state
curves, are input to the cloud analysis. This cloud analysis gives insights into the turbine performance
in the 10 minutes averaged spectrum and high-frequency spectrum. Parallel to this cloud analysis, an
overall & directional analysis is carried out to investigate the worst performing wind direction sectors of
each of the selected turbines. The output of these two parallel carried out analyses is an understanding
of turbine underperformance, with an introduction to the influence of the site.

Selected high-frequency clouds revealed the added value from high-frequency data sets for the un-
derstanding of wind turbine performance. Specific processes which are not highlighted in 10 minutes
averaged data are highlighted in high-frequency data. High torque experienced during storm control at
the eastern cluster turbines as well as derated power control at multiple power levels are examples of
turbine behaviour which emerged in high-frequency data sets, while being hidden in 10 minutes aver-
aged data sets. Secondly, high-frequency data can clarify processes which are partially visible in 10
minutes averaged data. Cut-in wind speed pitching control is an example of a high-resolution process
which could only be understood by looking at data at a sampling rate of multiple seconds.
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The contribution of high-frequency clouds to turbine underperformance was observed by analysing
Lost Potential Power (LPP) of selected high-frequency data clouds. As high-frequency clouds are
often minor parts of existing (less visible) 10 minuted averaged clouds, the LPPT1 of high-frequency
clouds is smaller than that of 10 minutes averaged clouds. However, contributions of up to 0.21% LPPT
for HF clouds still show the influence of HF clouds to annual production. Moreover, of the selected HF
clouds, high LPPC2 values were reached (of over 100%3). This shows that the selected data has the
potential of gaining production improvements. These high LPPC values are the result of the possibility
to more critically select instances of underperformance within high resolution data.

Insights into the physical causes of PYC underperformance were gained by the cloud analysis in com-
bination with the overall & directional performance analysis. To start with, turbine performance deviated
between the selected clusters: the SWT-3.0-113 turbines (western and central cluster) perform worse
than the investigated SWT-3.0-108 turbines (eastern cluster). This can partially be explained by more
conservative settings of the SWT-1.0-113 turbine compared to the SWT-3.0-108 turbine. Apart from the
differences between SWT-3.0-113 and SWT-3.0-108 performance, performance improvements of mul-
tiple percentages can potentially be won for all investigated turbines. Within the cut-in region and within
storm control conditions, potential for performance improvement was observed. Moreover, Within more
critical regions, such as the optimal power coefficient region of the torque curve, potential performance
losses of 10%-14% compared to the cloud energy production were found. When performance can be
improved in these regions, this has a big influence on annual energy production (AEP)4. On average,
turbine performance was 95% of the Warranted Power Curve (WPC) potential production for the year
2020. This is substantially less than the gap between long-term P50 AEP estimates and average an-
nual energy production. This means the wind resource modelling of the site possibly over-estimated
the potential wind energy at the site.

Regarding insights in the site influence on turbine performance, high variety in turbine performance
between different (unwaked) sectors was observed. Worst-performing sectors of -16% compared to
WPC behaviour were found. Moreover, high turbulence intensity (TI) caused SWT-3.0-113 turbines to
be curtailed, having negative influence on the performance of the these turbines. This occurred more
at the SWT-3.0-113 turbines, as these are TI class B turbines compared to the TI class A SWT-3.0-108
turbines. High shear at the western cluster had a slight positive influence on turbine performance. Veer
did not show big influences on turbine performance for all clusters.

To answer the research question “Can the underlying physical causes for the underperformance of
the Pen y Cymoedd wind farm be found by the use of 10 minutes averaged and/or high-frequency
data?”, it can be concluded that an approach with 10 minutes averaged and high-frequency data as
inputs successfully gave insights in the underperformance of the Pen Y Cymoedd wind farm. Site
influences as well as turbine behaviour and control mechanisms are compared in 10 minutes averaged
resolution as well as in high-frequency resolution. Moreover, turbine behaviour and control can be
compared with manufacturer information and theoretical expected behaviour. The total analysis gives
better understand individual turbine and wind farm broad underperformance causes.

1LPPT: Lost Potential Power as a fraction of annual power production
2LPPC: Lost Potential Power as a fraction of cloud power production
3Meaning that potential power output of a selected cloud can be doubled.
4A broad overview of the potential points of improvements are given in the results chapters of the different clusters.
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Discussion

Within this research, 14 turbines are included in a performance analysis. After filtering and correlations
and possible validations of all data sets, eventually 7 turbines are investigated in the cloud analysis
and overall & directional performance analysis. This because not all turbine data could be correlated
correctly to a reference data set. The conclusions of this research are strictly accountable for the
turbines of this wind farm. For investigating turbines of other wind farms, the analysis steps have to be
reproduced to expectedly come to a different set of results.

Results show extreme site conditions. Veer ranges to values up to 0.5 °/m, whereas average wind shear
factors of around 0.5 are not uncommon for the central cluster turbines. In short, both parameters reach
extreme values at the MET masts. Such high average values were not found in other research and
theory. According to table 2.6, urban areas experience wind shear factors of 0.4. Wind veer values are
high, but are found in research performed at other complex sites.

With the results from the cloud analysis regarding turbine performance, it was shown HF data has the
potential to play a role in future more critical turbine performance analysis. Moreover, it was shown
that for the 14 investigated turbines, turbine underperformance can partially be responsible for the
gap between production estimates, and AEP’s of the operational years. Moreover, the results show
that a difference in TI class can have a significant effect on turbine controls when in limiting conditions.
Finally, by collecting results from this analysis for three separate clusters, it was shown themethodology
is reproducible and can be applied to multiple turbine configurations.

Limitations of this research are mainly originating from the correlation process that is an unavoidable
part of the research. Turbine data is validated by MET mast data, as the majority of the investigated tur-
bines are not within a 4D distance from the MET mast. Therefore, MET mast data is the reference data
in this research, and are assumed to be reliable as stand-alone measurements. Veer and shear meas-
urements are only collected at the MET mast, and have to be assumed as reliable. The impossibility
to check those measurements is a limitation of this research.

The fact turbine data is used for performance analysis is another limitation of this research. To be
able to trust turbine wind speed and wind directional data, it has been correlated to a turbine-specific
reference data set. This makes the turbine data usable. However, in contrast to METmast data, turbine
data is still influenced by rotor movements, adding an uncertainty to the wind speed measurements.

Moreover, the python tool created is based on manual selection of abnormal behaviour. This manual
selection is a limitation on the research, as it is not as consistent as amachine learning approach, where
abnormal behaviour is selected automatically by a trained model. This makes clouds comparisons
between turbines not one to one, as there can be slight differences between clouds selection thresholds.
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The last point regarding limitations is the filtering process. Performing a full IEC compliant filtering
process was not the scope of this thesis as this is very time-consuming, and not an innovating procedure.
However, due to this hybrid filtering process, site specific influences have not been filtered out of the
data. This makes the site influence an extra variable in the turbine performance analysis that can not
be excluded from the final results.

The implications of this research can be conversations with the OEM of the investigated turbines regard-
ing turbine performance and possible improvements on the turbines. Another effect of this thesis is a
better understanding of HF data and the usage and processing of this data. This better understanding
can lead to an increase in usage of HF data for PCA work.
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Recommendations

In this chapter, recommendations are given for measurement campaigns as well as for follow-up re-
search.

11.1. Data quality & availability
When loading in the downloaded data sets prior to filtering and correction, not all pre-selected tags
contained data. To start with, wind direction data (measured at the turbines) was only partially available
for the 10 minutes averaged turbine data. Only from September 2020 on, 10 minutes averaged wind
direction data was available. HF wind direction data was not available throughout the whole year. As
wind direction is an important parameter for the understanding of site influence to turbine performance,
it is interesting to check the availability of HF and 10 minutes averaged wind direction signals.1

When 10 minutes averaged wind directional data was available, the data was not logged correctly
for many turbines. The data consisted of a non-natural offset compared to the directional data of the
reference turbine/MET mast. For example, this was the case for all turbines of the central cluster.
These offsets were detected and corrected by the post-filtering code and did not cause problems in
further analysis. Although this was the case, it is important to automatically flag these offsets, as these
should not be part of the wind directional data tags. Flagging and correcting these tags automatically
prior to the processing decreases sensitivity to errors, and saved time more downstream of the data
processing.

On top of that, wind speed data was corrupted as multiple anemometer heights for the central cluster at
the MET mast. For this research this did not result in bottlenecks as wind speed data at the MET mast
is available at two height for all three MET masts. Two heights are of importance to validate the wind
speed measurements, and to be able to correlate turbine wind speed measurements to the MET mast
wind speed measurements. As the wind speed measurements for the central cluster were partially
corrupted, checking these wind speed signals frequently can be of big value for PCA work.

More data that showed unexpected behaviour was the wind directional data measured at the METmast.
From the wind speed roses at the beginning of the results chapter, it is visible that no data is logged
from the northerly wind direction. This is the result of wrong averaging of wind speed measurements,
alternating between very small and very large angles. As this behaviour is detected for all MET masts,
this is a systematic problem that might be solved by the same solution for all MET masts.

1Wind direction signals are moreover of use for yaw misalignment studies and the filtering of waked sectors from the raw data
sets.
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Regarding HF data, rotor and generator speed signals are logged as discrete signals2, while these are
continuous signals. As this signal is discrete, it is difficult to analyse state curve relations, including
a rotor or generator speed signal. When visualising a state curve relation as a scatter plot, an image
appears consisting out of horizontal and vertical lines. As this is difficult to interpret, few clouds were
selected, including rotor or generator speed in the HF spectrum. This is unfortunate, as relations
including rotor/generator speed are often wind speed independent and can give valuable insights to
turbine behaviour.

11.2. Improving curtailment filtering procedure
When filtering the raw data sets from MET masts and turbine, curtailments and alarms were one of the
filtering criteria. As the scope of this research was normal operational data, curtailments and alarms
have to be filtered out. Nevertheless, after the filtering process, curtailments were still clearly visible
in the HF turbine data. When curtailments are hidden in data which is used for calculating turbine
performance, wrong performance estimations can be the effect. For next iterations of the performance
analysis as described in this research, it can of value to investigate more resources giving information
about turbine curtailments. This might lead to better curtailments filtering and more accurate perform-
ance analysis.

11.3. Filtering on standard deviation
As was also proposed in (Antinio Notaristefano, 2021), when using high resolution data, standard devi-
ation filtering can decrease the scattering of high-frequency scatter plots. So-called stationarity condi-
tions are applied to the data, limiting wind speed and wind direction standard deviation over a certain
time delta. As a result, only stationary conditions can be studied. The wind speed and direction ramps
have been filtered out, which makes non-representative clouds like L06-HF-627 be deleted from the
data. Moreover, this may highlight important stationary behaviour. Applying these filters in a parallel
analysis can be of value when analysing HF data sets.

11.4. Use machine learning for outlier detection
In this research, a python cloud selection tool was engineered to detect abnormal turbine performance
manually. By the selection of clouds, it is possible to investigate a number of abnormal data points
in various turbine relations and time series. Moreover, performance statistics of the cloud as well as
parameter histograms are produced. With a machine learning approach, this manual selection could
potentially be replaced by an automised detection algorithm. This reduces time as well as repetitiveness
of the analysis. A try-out by applying the k-nearest neighbours approach to a PYC power curve is shown
in appendix D. For applying this to multiple turbines and wind farm conditions, a model has to be trained
with different site conditions. The set-up theoretical state curves for this research can be a useful input
for machine learning training purposes. A research paper describing other approaches using machine
learning for underperformance detection is given by (Lyons & Göçmen, 2021).

11.5. Revise wind resource analysis at site
The performance of the 14, and eventually 7, investigated wind turbines was 5% less than WPC, which
is a substantially smaller gap than the gap between P50 production estimates and average annual
energy production of the past 5 operational years. This difference can potentially be explained by too
optimistic site conditions assessments that were performed by Vattenfall and third parties. Revising
these models and calculations can be of importance for understanding the unexplained gap. Important
note is that the 5% underperformance is based on 1 year data for 7 turbines, and does not represent the
whole operational period for all turbines. Before revising any site assessment models, it is of importance
to analyse the performance of other PYC turbines (where possible), to validate the 5% performance
loss found for the 7 investigated turbines.

2A signal with a step size of 0.5.
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A
Defective wind vane measurements at

MET masts

By the figure below, the cause of the defective northerly wind direction measurements and veer cal-
culations is explained. When high resolution wind vane measurements at the turbine alternate from 0
to 360, the wind vanes of the MET mast (blue and yellow dots) show random values between 0 and
360. These values are not representing the wind direction well. The values do not represent the wind
direction correctly, because the averaged wind direction of an array with values close to 0 and 360
degrees is not calculated properly at the MET mast. As wind veer is calculated from these defective
directional measurements, wind veer is not reliable as well these wind directions.

To not be hindered by this defective logging, METmast data is filtered for turbine wind directions coming
from the (true) north, ± 50° when investigating wind veer at the site.

Figure A.1: The origin of wrong wind vane and wind direction measurements/calculations at the MET mast.
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B
Correlations turbines western cluster

In section 6.2, the correlations between the MET mast and neighbouring turbine D05 were shown to
give a visual representation of their correlations. In this appendix, visualisations of the other western
cluster correlations are given for completeness. For the other clusters, the correlations will be described
by slopes, intersections and R2-values in tables.

B.1. MET-D05 correlations

Figure B.1: 10 minutes averaged wind speed
correlation of MET and D05

Figure B.2: 10 minutes averaged wind direction
correlation of MET and D05
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B.2. D04-D03 correlations 121

B.2. D04-D03 correlations

Figure B.3: 10 minutes
averaged wind speed correlation

of D04 and D03

Figure B.4: 10 minutes
averaged wind direction

correlation of D04 and D03

Figure B.5: 10 minutes
averaged nacelle direction
correlation of D04 and D03

B.3. D03-D01 correlations

Figure B.6: 10 minutes
averaged wind speed correlation

of D03 and D01

Figure B.7: 10 minutes
averaged wind direction

correlation of D03 and D01

Figure B.8: 10 minutes
averaged nacelle direction
correlation of D03 and D01

B.4. Correlations wind direction - nacelle direction

Figure B.9: Wind direction -
nacelle direction correlation

turbine D04

Figure B.10: Wind direction -
nacelle direction correlation

turbine D03

Figure B.11: Wind direction -
nacelle direction correlation

turbine D01



C
Algorithm step detection for
correcting offset turbine D04

The effect of the jump detection algorithm applied in section 6.2 is shown in figures C.1 and C.2. The
algorithm used for detecting the step is the Chambolle denoising algorithm from the Scikit API (‘Module:
restauration’, n.d.). The wind direction difference between turbines D04 and D05 for the full year 2020,
including jump, is shown on the left. On the right, the data has been corrected from the detected step
(blue vertical line) onwards.

Figure C.1: Output step detection algorithm
turbine D04 before correction.

Figure C.2: Output step detection algorithm after
correction.
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D
Machine learning for detecting

outliers on D05 operational active
power data

Not part of the report, but of the recommendations (section 11.4) is the topic of using machine learning
for detecting underperformance. Literature consulted for this purpose can be found in chapter 2. Out of
curiosity about the applicability of machine learning, the Local Outlier Factor algorithm was applied on
the operational power curve data of turbine D05. This algorithm is based on the k-nearest neighbours
algorithm. A first training in detecting outliers from an operational power curve of turbine D05 was
carried out. To get to the outliers of the figure below, an iterative process was executed to get to the
optimal number of neighbours, leading to the best outlier detection results.

In the figures below, on the left, the red circles represent the outlier score from the algorithm. On the
right, the detected outliers with a score above a certain threshold are shown in black. This try-out is a
first and quick iteration of the total process. It does not show any usable results.

Figure D.1: Outlier scores for 10 minute power
curve data for turbine D05.

Figure D.2: Included and excluded points after
applying model.
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E
Example of cloud analysis tool output

In the images below, an example of the Cloud analysis tool outputs is given. The cloud analysis tool is
described in section 3.1.6. In the plots, the cloud is represented by blue(/yellow), and the total annual
2020 data is represented by gray. The time series and state curve relations are dynamic plots1. The
histograms are not. It is possible to choose between density colouring of the cloud, or represent the
cloud by a dark blue colour.

Figure E.1: Histograms output from cloud analysis tool.

1Zooming inside an image is possible. All images containing the same data change accordingly.
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Figure E.2: Scatter plots output from cloud analysis tool.
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Figure E.3: Time series output from cloud analysis tool.



F
Code

As can be seen in figure 3.1, Python is the programming language used for writing the programming
model for carrying out all steps of the methodology. This is done by a combination of the Spyder
interface, and Jupyter Notebook interface. Below, important pieces of code are highlighted, as the full
code is too large to fit into the appendix.

F.1. Script for filtering raw turbine data
This code filters raw 10 minutes averaged and HF turbine data as described by the 16 steps in chapter
3.1. It imports created functions from a master script to complete all filtering steps.

1 start = time.time()
2

3 data_10_turb = pd.read_csv(filename+"\\"+raw_data_name)
4

5 data_HF_1=pd.read_csv(filename+"\\UPY"+wtgID+"_HF.csv")
6 data_HF_1[['Timestamp']] = data_HF_1[['Timestamp']].apply(pd.to_datetime)
7 data_HF_1['Timestamp'] = data_HF_1['Timestamp'].dt.round('S')
8 data_HF_1['Timestamp'] = data_HF_1['Timestamp'].dt.tz_localize(None)
9

10 print('loading turbine '+wtgID+' HF data completed')
11

12 col=list(filter(lambda k: wtgID in k, data_10_turb.columns.tolist())) # from all columns,
filter out the ones not equal to the turbine chosen.

13 col.append('time') #time column added
14 data_10_turb.rename(columns = {'Unnamed: 0':'time'}, inplace = True)
15 data_10_1 = data_10_turb[col]
16 data_10_1.time = pd.to_datetime(data_10_1.time)
17 data_10_1.time=data_10_1.time.dt.tz_localize(None)
18

19 data_HF_1 = pd.pivot_table(data_HF_1,index='Timestamp', columns='Tag',values='Value')
20 data_HF_1 = data_HF_1.ffill()
21 data_HF_1['dT'] = data_HF_1.index.to_series().diff()
22 data_HF_1['dT'] = data_HF_1['dT'].dt.total_seconds()
23 data_HF_1['dT'][:-1] = data_HF_1['dT'][1:]
24 data_10_1 = TI_2(data_HF_1, 'WMET01_HorWdSpd_mag' , data_10_1, wtgID )
25

26 del data_10_turb
27

28 data_10_1 = power_curve_correction(data_10_1, wtgID, rho_wp, 'UPY'+wtgID+'-WindSpeed') #
function from master file

29

30 data_10_1_clean = filterig_a(data_10_1, allarms_raw, 'UPY'+wtgID)
31 data_10_1_clean = data_10_1_clean.loc[(data_10_1_clean['UPY'+wtgID+'-PY-CurtailLossTotal'] ==

0)] #changed
32 data_10_1_clean = data_10_1_clean.loc[(data_10_1_clean['UPY'+wtgID+'-PY-FaultLossTotal'] ==

0)] #changed
33 data_10_1_clean = data_10_1_clean.dropna(axis = 0, how = 'any', subset=['UPY'+wtgID+'-

WindSpeed'])

127



F.1. Script for filtering raw turbine data 128

34 data_10_1_clean = data_10_1_clean[(data_10_1_clean['UPY'+wtgID+'-PitchRef_BladeAAvg'] < 90) |
(np.isnan(data_10_1_clean['UPY'+wtgID+'-PitchRef_BladeAAvg']))]

35

36 data_10_1_clean = filter_icing(data_10_1_clean)
37 data_10_1_clean = frozen_logging(data_10_1_clean)
38

39 data_10_1_clean.loc[:, wtgID+'_Dir_diff'] = wdir_diff(data_10_1_clean['UPY'+wtgID+'-
WindDirAvg'],data_10_1_clean['UPY'+wtgID+'-NacelleDirection'])

40

41 data_HF_1_clean = filterig_HF_a(data_HF_1, allarms_raw, 'UPY'+wtgID,30)
42 data_HF_1_clean = filtering_c2(data_HF_1_clean,data_10_1,wtgID,30)
43 data_HF_1_clean = filtering_a2(data_HF_1_clean,data_10_1,wtgID,30)
44 data_HF_1_clean = data_HF_1_clean[(data_HF_1_clean['WROT01_BlPthAngTgt_mag'] < 90) | (np.

isnan(data_HF_1_clean['WROT01_BlPthAngTgt_mag']))]
45

46 data_HF_1_clean = filter_icing(data_HF_1_clean)
47 data_HF_1_clean = frozen_logging(data_HF_1_clean)
48

49 del data_HF_1
50

51 data_HF_1_clean = power_curve_correction(data_HF_1_clean, wtgID, rho_wp, '
WMET01_HorWdSpd_mag')

52

53 data_10_1_clean['Torque'] = toruqe_calc(data_10_1_clean, 'UPY'+wtgID+'-RotorRPM', 'UPY'+wtgID
+'-ActivePower')

54 data_HF_1_clean['Torque'] = toruqe_calc(data_HF_1_clean, 'WROT01_RotSpd_mag', 'WTUR01_W_mag')
55

56 data_HF_1_clean = data_HF_1_clean.reset_index()
57

58 data_HF_1_clean_vel = velocity_filter(data_HF_1_clean, "WMET01_HorWdSpd_mag", cut_in =3 ,
cut_off=25)

59 data_10_1_clean_vel = velocity_filter(data_10_1_clean, "UPY" + wtgID + "-WindSpeed", cut_in
=3 , cut_off=25)

60

61 del data_HF_1_clean
62

63 data_HF_1_clean_vel.to_csv(filename_save+'\\'+wtgID[:-2]+'\\data_ff30_HF_'+wtgID+'_clean_vel.
csv')

64 data_10_1_clean_vel.to_csv(filename_save+'\\'+wtgID[:-2]+'\\data_10_'+wtgID+'_clean_vel.csv')
65

66 # data_10_1_clean_vel.to_parquet(filename_save+'\\'+wtgID[:-2]+'\\data_10_1_clean_vel_parquet
')

67

68 del data_HF_1_clean_vel
69

70 end = time.time()
71

72 print('Time for filtering turbine '+wtgID+' = ',(end-start)/60,' minutes')
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F.2. Two examples of functions from master filtering script
The two functions below were written to calculate TI efficiently from HF data, and detect icing periods,
respectively. The functions correspond to step 11 and 7 of the 16 filtering steps in chapter 3. The @njit
decorator tries to perform calculations in an non-python mode, which increases computational speeds.

1 def TI(data, tag_hf,data_10, tag_10, wtg_id):
2 dataHF = data.copy()
3 data10 = data_10.copy()
4

5 #creating timestamps out of datetime series for @njit
6 dataHFtime = [time.mktime(t.timetuple()) for t in dataHF.index]
7 dataHFtime = np.array(dataHFtime)
8 data10time = [time.mktime(t.timetuple()) for t in data10.time]
9 data10time = np.array(data10time)
10 dataHF_tag = dataHF[tag_hf].to_numpy()
11

12 @njit
13 def selecting():
14 std_total = np.zeros(len(data10time))
15 x = 1
16 for i in range(len(data10time)): #for testing
17 # for i in range(len(data10time)):
18 coll = ((dataHFtime >= data10time[i]) & (dataHFtime <= data10time[i+1]) )
19 collection = dataHF_tag[coll]
20 collection = collection[collection >0]
21 if len(collection) == 0:
22 std = 0
23 else:
24 std = collection.std()
25 print(std)
26 std_total[x] = std
27 x = x+1
28 print(str(i+1)+' out of '+str(len(data10time)))
29 return std_total
30 std_total = selecting()
31 data10['TI_'+wtg_id] = std_total/data10[tag_10]
32 data10['TI_'+wtg_id] = np.where(data10['TI_'+wtg_id]==0, np.nan, data10['TI_'+wtg_id]) #

change all 0's in nan
33 return data10

1 def filter_icing(dataset):
2 dir_cols = np.array([col for col in dataset.columns if any(x in col for x in ['WindDir','

direction','WdDir'])])
3 spd_cols = np.array([col for col in dataset.columns if any(x in col for x in ['Speed','

WdSpd'])])
4 #print(dir_cols)
5 for i in range(len(dir_cols)):
6 dataset['diff_'+str(i)] = abs(dataset[dir_cols[i]].diff())
7 diff_cols = np.array([col for col in dataset.columns if any(x in col for x in ['diff_'])

])
8 boolean_diff = dataset[diff_cols] == 0
9 boolean_spd = dataset[spd_cols] == 0
10 boolean_diff = np.array(boolean_diff.any(axis='columns'))
11 boolean_spd = np.array(boolean_spd.any(axis='columns'))
12 boolean_diff = ~boolean_diff
13 boolean_spd = ~boolean_spd
14 dataset = dataset[np.array(boolean_diff) & np.array(boolean_spd)]
15 dataset = dataset.drop(diff_cols, axis=1)
16 return dataset
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F.3. Example of function from analysis script
Figures 6.23 - 6.26 are the outputs of the function performance_sectors() for the western cluster tur-
bines. This function is part of the analysis script of this thesis.

1

2 def performance_sectors(data_turb, turbine, WPC, mean_data, dirbinsbinary, reference):
3

4 PPI1 = [] #second method for calculating PPI based on OPC
5 PPI2 = [] #second method for calculating PPI based on Active power signal (same outcome)
6

7 dhist, dbins = np.histogram(data_turb["Wind direction hub"], bins=int(360/binsize), range
=(0,360), density=True)

8 dhist = dhist*binsize
9

10 phist = []
11 for i in DirBins:
12 data = data_turb[(data_turb["Nacelle direction"]>=i) & (data_turb["Nacelle direction"

]<i+binsize)]
13 power = np.sum(data['Active power']*(1/6))
14 phist.append(power)
15 phist_rel = phist/(np.sum(data_turb['Active power']*(1/6)))
16

17 for count, j in enumerate(DirBins):
18

19 #first calculation of power production per sector (based on OPC)
20 v_hist, v_bins = np.histogram(data_turb["Wind speed hub (c)"][(data_turb["Nacelle 

direction"]>j) & (data_turb["Nacelle direction"]<j+binsize)], bins=30, range
=(-0.5,29.5), density=True)

21 prod1 = mean_data[count,:]@v_hist[3:26]
22 warr1 = WPC@v_hist[3:26]
23 rel_perf1 = (prod1/warr1)*100 - 100
24 PPI1.append(rel_perf1)
25

26 #second calculation of power production per sector (based on active power)
27 data_sect = data_turb[(data_turb["Nacelle direction"]>j) & (data_turb["Nacelle 

direction"]<j+binsize)]
28 prod2 = np.sum(data_sect['Active power'] *(1/6) )
29 warr2 = (WPC@v_hist[3:26]) * len(data_sect) * (1/6)
30 rel_perf2 = (prod2/warr2)*100 - 100
31 PPI2.append(rel_perf2)
32

33 PPI_tot = PPI1*phist_rel
34

35 #make array compatible for wake sector plotting
36 plt.figure()
37 plt.grid()
38 plt.bar(Dir_array, PPI1)
39 plt.bar(Dir_array, np.array(dirbinsbinary)*max(abs(np.array(PPI1))), alpha=0.2, color='r'

)
40 plt.bar(Dir_array, np.array(dirbinsbinary)*-1*max(abs(np.array(PPI1))), alpha=0.2, color=

'r')
41 plt.axhline(0, color='black', linestyle='--', linewidth=1)
42 plt.xticks(rotation = 90)
43 plt.title('Performance of directional bins with respect to WPC turbine '+turbine)
44 plt.xlabel('Wind direction [°]')
45 plt.ylabel('Power gain/loss [%]')
46 plt.legend(['Net zero', 'Power gain/loss', 'Wakes'], loc='upper right')
47

48 return PPI1, PPI_tot
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F.4. Turbine class as input to Cloud analysis tool
The code below is a class describing the turbine, and it’s key properties, including theoretical state
curve behaviour. These curves are created for a static plotting interface (Matplotlib) as well as for a
dynamic plotting interface (Bokeh).

1 class Turbine:
2 def __init__(self, P_rated, x_p, y_p, A, rho_design, D,
3 U_rated, Urotor_rated, U_cut_out,TSR_real):
4 #Get x_p and y_p from partial load region of the power curve (around 8 m/s).
5 #TSR_real: not calculated from rated wind speed, as there is no max. power production

in that point.
6

7 self.P_rated = P_rated #[W]
8 self.A = A #[m2]
9 self.rho_design = rho_design #[kg/m3]
10 self.R = D/2
11 self.U_rated = U_rated #[m/s]
12 self.W_rated_rpm = Urotor_rated #[RPM]
13 self.W_rated_rad = self.W_rated_rpm * (2*np.pi/60) #[rad/s]
14 self.TSR = self.W_rated_rad * self.R / self.U_rated #[-]
15 self.cp = y_p * 1000/ (0.5 * self.rho_design * self.A * (x_p**3)) #[-]
16 self.U_co = U_cut_out #[m/s]
17 self.Torque_rated = self.P_rated / (self.W_rated_rad * 1000)
18 #calculate theoretical rated power point.
19 self.U_switch = (self.P_rated/(0.5*self.rho_design*self.A*self.cp))**(1/3)
20 #Values maching with rated region in plots
21 self.TSR_real = TSR_real #TSR according to plots in rated region
22 self.corr_fact = (0.6*2*np.pi/60)
23 #Rated wind speed according to TSR_real
24 self.U_rated_real = (self.W_rated_rad + self.corr_fact) * self.R / TSR_real
25 #STATIC
26

27 def plot_U_Power(self):
28

29 x1 = np.linspace(3,self.U_switch ,1000)
30 x2 = np.arange(self.U_switch ,25.1,0.1)
31 x = np.concatenate((x1,x2))
32

33 y1 = 0.5 * self.cp * self.A * self.rho_design * (x1**3)
34 y2 = np.zeros(len(x2)) + self.P_rated
35

36 y1 = y1/1000 #[kW]
37 y2 = y2/1000 #[kW]
38 y = np.concatenate((y1,y2))
39

40 plt.plot(x,y, 'g', label='Theory state curve')
41

42 # e = self.P_rated/1000*0.04
43 # plt.fill_between(x, y-e, y+e, alpha=0.2, facecolor='g', edgecolor='g',
44 # linewidth=2, linestyle='dashed', antialiased=True)
45

46 def plot_W_Torque(self):
47 k_opt = 0.5 * self.rho_design * self.cp * np.pi * (self.R**5) / (self.TSR_real**3)
48 W_range = np.arange(0,self.W_rated_rpm+2,0.1) #[RPM]
49 Torque1 = k_opt * ((W_range*2*np.pi/60)**2) /1000 #[kNm]
50 plt.plot(W_range, Torque1, 'g' ,linestyle='dashed')
51

52 # plot behaviour at Wmin and Wmax
53 p1 = k_opt * ((6*2*np.pi/60)**2) /1000
54 p2 = k_opt * ((self.W_rated_rpm*2*np.pi/60)**2) /1000
55 plt.plot([6,6],[0,p1], 'g')
56 plt.plot([self.W_rated_rpm,self.W_rated_rpm],[p2,self.Torque_rated], 'g', label='

Theory state curve')
57

58 def plot_U_Torque(self):
59 U_range = np.linspace(3,self.U_switch ,1000) #[m/s]
60 factor = 0.5 * self.rho_design * self.cp * np.pi * (self.R**3) / (self.TSR_real)
61 Torque2 = factor * (U_range**2) /1000
62 plt.plot(U_range, Torque2, 'g', label='Theory state curve')
63
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64 def plot_W_Pitch(self):
65 x = [6,self.W_rated_rpm,self.W_rated_rpm]
66 y = [-2,-2,20]
67 plt.plot(x,y, 'g', label='Theory state curve')
68

69 def plot_Pitch_Torque(self):
70 x = [10,-2,-2,20]
71 y = [0,0,self.Torque_rated,self.Torque_rated]
72 plt.plot(x,y, 'g', label='Theory state curve')
73

74 def plot_Torque_Pitch(self):
75 x = [0,0,self.Torque_rated,self.Torque_rated]
76 y = [10,-2,-2,20]
77 plt.plot(x,y, 'g', label='Theory state curve')
78

79 def plot_U_W(self):
80 x1 = np.linspace(3,self.U_rated_real ,1000)
81 x2 = np.arange(self.U_rated_real,self.U_co+0.1,0.1)
82 x = np.concatenate((x1,x2))
83

84 y1 = x1*(self.TSR_real/self.R)*(60/(2*np.pi))
85 y1 = y1 - 0.6 #correct for offset
86 y2 = np.zeros(len(x2)) + self.W_rated_rpm
87 y = np.concatenate((y1,y2))
88

89 plt.plot(x,y, 'g', label='Theory state curve')
90

91 #DYNAMIC
92

93 def plot_U_Power_dyn(self):
94

95 x1 = np.linspace(3,self.U_switch ,1000)
96 x2 = np.arange(self.U_switch ,25.1,0.1)
97 xA = np.concatenate((x1,x2))
98

99 y1 = 0.5 * self.cp * self.A * self.rho_design * (x1**3)
100 y2 = np.zeros(len(x2)) + self.P_rated
101

102 y1 = y1/1000 #[kW]
103 y2 = y2/1000 #[kW]
104 yA = np.concatenate((y1,y2))
105

106 points = [(i, j) for i,j in zip(xA,yA)]
107 plotA = hv.Curve(points)
108

109 return plotA
110

111 def plot_W_Torque_dyn(self):
112 k_opt = 0.5 * self.rho_design * self.cp * np.pi * (self.R**5) / (self.TSR_real**3)
113 W_range = np.arange(0,self.W_rated_rpm+2,0.1) #[RPM]
114 Torque1 = k_opt * ((W_range*2*np.pi/60)**2) /1000 #[kNm]
115

116 points1 = [(i,j) for i,j in zip(W_range,Torque1)]
117 plot1 = hv.Curve(points1).opts(line_dash='dashed', color='deepskyblue')
118

119 # plot behaviour at Wmin and Wmax
120 p1 = k_opt * ((6*2*np.pi/60)**2) /1000
121 p2 = k_opt * ((self.W_rated_rpm*2*np.pi/60)**2) /1000
122

123 points2 = [(6,0), (6,p1)]
124 plot2 = hv.Curve(points2).opts(color='deepskyblue')
125 points3 = [(self.W_rated_rpm,p2), (self.W_rated_rpm,self.Torque_rated)]
126 plot3 = hv.Curve(points3).opts(color='deepskyblue')
127

128 plotB = plot1 * plot2 * plot3
129

130 del plot1,plot2,plot3
131 return plotB
132

133 def plot_U_Torque_dyn(self):
134 U_range = np.linspace(3,self.U_switch ,1000) #[m/s]
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135 factor = 0.5 * self.rho_design * self.cp * np.pi * (self.R**3) / (self.TSR_real)
136 Torque2 = factor * (U_range**2) /1000
137

138 points = [(i,j) for i,j in zip(U_range,Torque2)]
139 plotC = hv.Points(points)
140

141 return plotC
142

143 def plot_W_Pitch_dyn(self):
144 xD = [6,self.W_rated_rpm,self.W_rated_rpm]
145 yD = [-2,-2,20]
146

147 points = [(i,j) for i,j in zip(xD,yD)]
148 plotD = hv.Curve(points)
149

150 return plotD
151

152 def plot_Pitch_Torque_dyn(self):
153 xE = [10,-2,-2,20]
154 yE = [0,0,self.Torque_rated,self.Torque_rated]
155

156 points = [(i,j) for i,j in zip(xE,yE)]
157 plotE = hv.Curve(points)
158

159 return plotE
160

161 def plot_U_W_dyn(self):
162 x1 = np.linspace(3,self.U_rated_real ,1000)
163 x2 = np.arange(self.U_rated_real,self.U_co+0.1,0.1)
164 xF = np.concatenate((x1,x2))
165

166 y1 = x1*(self.TSR_real/self.R)*(60/(2*np.pi))
167 y1 = y1 - 0.6 #correct for offset
168 y2 = np.zeros(len(x2)) + self.W_rated_rpm
169 yF = np.concatenate((y1,y2))
170

171 points = [(i,j) for i,j in zip(xF,yF)]
172 plotF = hv.Curve(points)
173

174 return plotF



G
Google Earth site analysis examples

Below, two screenshots are provided of the site analysis performed in Google Earth. This results from
this site analysis are discussed in sections 6.3.2, 7.3.2 and 8.3.2.The projected yellow areas are the
worst-performing sectors, as given in table 6.5. Yellow landmarks are Vattenfall turbines, whereas the
red marks are external turbines close to the PYC site.

Figure G.1: Western cluster bad performing sectors in Google Earth (‘Google Earth’, n.d.).
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Figure G.2: Western cluster bad performing sectors in Google Earth (‘Google Earth’, n.d.).

Figure G.3: Eastern cluster bad performing sector in Google Earth (‘Google Earth’, n.d.).
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