Automatic isobath generalisation for navigational charts

Willem van Opstal Martijn Meijers Ravi Peters

(1st mentor) (2nd mentor)

TUDelft

July 9th 2020

1

Contents

- Introduction
- Generalisation approaches
- Methodology
 - An integrated approach
 - Triangle region graph
 - Generalisation process
- Experiments
- Conclusions

Isobath generalisation

- Omitting details
- Making a readable chart
- Cartographic constraints
 - Morphology
 - Legibility
 - Functional
 - Topology

ŤUDelft

Seabed shape Readability Safety

Topology

Isobath generalisation

- Currently done manually
 - Complex decisions
 - Cartographers insight
 - Different purposes, in different areas
 - Liability
- Automation brings:
 - Economic benefits
 - Safety benefits

Problem statement

- Incompatible constraints
 - Chart scales and purposes
 - Smoother lines
 - Increasing line separation >

>

Masking safe waters

ŤUDelft

Relation with data is destroyed

Research objectives

- An automated generalisation process
- Integrate *all* constraints
- Not to over-generalize
- Apply operators locally, where needed

Contents

- Introduction
- Generalisation approaches
- Methodology
 - An integrated approach
 - Triangle region graph
 - Generalisation process
- Experiments
- Conclusion

Line-based generalisation

- First extracts lines
- Alters the lines, and only the lines
- Multi-agent system
 - Makes choices, based on requirements for the lines
 - Rules and operators
- Complex
- No connection with survey data

Surface-based generalisation

- Generalises an intermediate surface
- Extracts isobaths at the end, only once
- Navigational surface
- Smooth surface > smooth isobaths
- Only move upwards > safe
- When is it good enough?

Before

Voronoi surface-based (VSBA)

- Generates a smooth surface
 - And thus smooth isobaths
- Laplace interpolation
 - Smooth, local, anisotropic, parameterindependent, linked to surface
- Iterative approach
 - Smoothing, densification
- When is it good enough?

Before

After

Contents

- Introduction
- Generalisation approaches
- Methodology
 - An integrated approach
 - Triangle region graph
 - Generalisation process
- Experiments
- Conclusion

Line- and surface based

Information locations

Information locations

An integrated approach

Surface vs. line

- Relatively simple concept
- Limited user-defined parameters
- Safe is always up, not left ór right
- Isobaths safe and topological correct
- Starting from a surface, we can always use lines afterwardsS-100

An integrated approach

Region graph

- Establish relations between isobaths
 - Not the triangulation
- Based on inter-isobath area
- Isobaths implicitly defined: edges

Triangle region graph (TRG)

- Extension of the region graph
 - Inspired by the interval tree
 - Includes the triangulation as regions
- Links together:
 - Isobaths
 - Inter-isobaths areas
 - Triangulation

(e.g. separation)

(depth areas > ENCs)

(survey data)

TRG Generation

- Directly from the triangulation
 - not the isobaths
- Isobath values as input
 - > inter-isobath regions

ŤUDelft

Triangle intervals

- Triangle intersects either:
 - One interval

Triangle intervals

- Triangle intersects either:
 - One interval
 - Or multiple

ŤUDelft

Triangle intervals

- Triangle intersects either:
 - One interval

ŤUDelft

- Or multiple > it contains an isobath!

5-10

10-15

15-25

30-40 13

5-10

25-30

48

TRG for isobath generalisation

Relates

Delft

- Isobaths to isobaths
- Isobaths to triangulation
- > isobaths to survey data
- Efficient isobath extraction
- Depth areas implicitly defined

An integrated approach

Generalisation process

- Generalise where legibility is not good enough
- Legibility minimally met > morphology good as possible
- Safety and topology satisfied by definition
- Quantify with metrics
- Isolate conflicts
- Apply operator and maintain surface

Plotted lines may not visually overlap

Plotted lines may not visually overlap

- Plotted lines may not visually overlap
- Isobaths are large enough to contain at least one symbol

TUDelft

- Plotted lines may not visually overlap
- Isobaths are large enough to contain at least one symbol
- Irrelevant pits should be removed
- Channels or saddles irrelevant for navigation should be aggregated

- Plotted lines may not visually overlap
- Isobaths are large enough to contain at least one symbol
- Irrelevant pits should be removed
- Channels or saddles irrelevant for navigation should be aggregated
- Isobaths should be smooth

Generalisation process

- Generalise where legibility is not good enough
- Legibility minimally met > morphology good as possible
- Safety and topology satisfied by definition
- Quantify with metrics
- Isolate conflicts
- Apply operator and maintain surface

Generalisation process

- Generalise where legibility is not good enough
- Legibility minimally met > morphology good as possible
- Safety and topology satisfied by definition
- Quantify with metrics
- Isolate conflicts
- Apply operator and maintain surface

Generalisation operators

- Smoothing
 - Smoothens the overall surface
 - Only upwards (safe)
 - One vertex at a time

Before

ŤUDelft

After

66

Generalisation operators

- Smoothing
 - Smoothens the overall surface
 - Only upwards (safe)
 - One vertex at a time
- Densification
 - Inserts new vertices in the TIN
 - Decreases the discretization error
 - Effectively smoothens a line

Generalisation operators

- Smoothing
 - Smoothens the overall surface
 - Only upwards (safe)
 - One vertex at a time
- Densification
 - Inserts new vertices in the TIN
 - Decreases the discretization error
 - Effectively smoothens a line
- Displacement

JDelft

- Pushes vertices upwards
- To a fixed value

Before

Before

Contents

- Introduction
- Generalisation approaches
- Methodology
 - An integrated approach
 - Triangle region graph
 - Generalisation process
- Experiments
- Conclusion

Smoothing effects

Changed vertices, targeted smoothing

50x large thresholds (black)100x small thresholds (green)

76

Original approach: smoothing every vertex

ŤUDelft

New approach: not smoothing the boundary

ŤUDelft

Use cases

- Official ENC isobaths
 - 1:120k
 - 1:700k
 - 1:1500k

- 1:120k
- Original TIN
- Official ENC

- 1:120k
- Original TINOfficial ENC
- 250x Smoothing

- 1:120k
- Original TIN
- Official ENC
- 250x Smoothing
- 250x Targeted smoothing

- 1:120k
- Original TIN
- Official ENC
- 250x Smoothing
- 250x Targeted smoothing
- 1000x Smoothing

- 1:700k
- Original TIN
- Official ENC

- 1:700k
- Original TINOfficial ENC
- 250x Smoothing 120k

- 1:700k
- Original TIN
- Official ENC
- 250x Smoothing 120k
- 250x Smoothing + aggregation

- 1:700k
- Original TIN
- Official ENC
- 250x Smoothing 120k
- 250x Smoothing + aggregation

Original TIN

Margate Road

Official ENC

• 1:100k

Margate Road

Original TIN

- Margate Road
 - 1:100k

- Original TIN
- TRGA Generated

TRGA Generated

- TRGA Generated
- VSBA

- TRGA Generated
- VSBA

Contents

- Introduction
- Generalisation approaches
- Methodology
 - An integrated approach
 - Triangle region graph
 - Generalisation process
- Experiments
- Conclusions

Triangle region graph

- Linking mechanism
 - Survey data triangulation isobaths cartography
 - Triangles accounting for certain terrain features
 - Relations between isobaths: the terrain
- Always safe, also horizontally
- Integration of depth areas, soundings and isobaths
- Feature classification needs more information
 - Containment (directed graph)
 - Separate feature trees
- Maintenance efficiency

ŤUDelft

Triangle region graph

- Linking mechanism
 - Survey data triangulation isobaths cartography
 - Triangles accounting for certain terrain features
 - Relations between isobaths: the terrain
- Always safe, also horizontally
- Integration of depth areas, soundings and isobaths
- Feature classification needs more information
 - Containment (directed graph)
 - Separate feature trees
- Maintenance efficiency

Triangle region graph

- Linking mechanism
 - Survey data triangulation isobaths cartography
 - Triangles accounting for certain terrain features
 - Relations between isobaths: the terrain
- Always safe, also horizontally
- Integration of depth areas, soundings and isobaths
- Feature classification needs more information
 - Containment (directed graph)
 - Separate feature trees
- Maintenance efficiency

Cartographic constraints

- It really is difficult to quantify legibility
 - Especially smoothness of a line
- Isolation of conflicts ok
- Metrics are not always solvable
 - Wrong metrics, wrong legibility requirements, wrong operators ?
- Spur/gully is too simple
- Affected by scale, density and thresholds

Cartographic constraints

- It really is difficult to quantify legibility
 - Especially smoothness of a line
- Isolation of conflicts ok
- Metrics are not always solvable
 - Wrong metrics, wrong legibility requirements, wrong operators ?
- Spur/gully is too simple
- Affected by scale, density and thresholds

Cartographic constraints

- It really is difficult to quantify legibility
 - Especially smoothness of a line
- Isolation of conflicts ok
- Metrics are not always solvable
 - Wrong metrics, wrong legibility requirements, wrong operators ?
- Spur/gully is too simple
- Affected by scale, density and thresholds

Generalisation process

- Integrated approach
- Slightly improved existing operators
- More parameters, but also more control
- Performs well at large scales
 - Maintains more morphology
 - Only generalises where needed
- Less at small scales
- Not smoothen beyond smooth
- Ideally more directly on the surface

Generalisation process

- Integrated approach
- Slightly improved existing operators
- More parameters, but also more control
- Performs well at large scales
 - Maintains more morphology
 - Only generalises where needed
- Less at small scales
- Not smoothen beyond smooth
- Ideally more directly on the surface

Generalisation process

- Integrated approach
- Slightly improved existing operators
- More parameters, but also more control
- Performs well at large scales
 - Maintains more morphology
 - Only generalises where needed
- Less at small scales
- Not smoothen beyond smooth
- Ideally more directly on the surface

Conclusions

- To what extent can we locally steer generalisation operators to account for cartographic constraints, in a surface-based isobath generalisation method?
 - Through TRG we can integrate cartography within the surface
 - Conceptual framework of integration and evaluation has potential
 - also for other depth information
 - We can target generalisation operators to maintain morphology
 - Especially effective on large scales
 - We cannot yet generalise beyond *smooth*
 - Benefit from the development of more complex metrics & operators

Conclusions

- To what extent can we locally steer generalisation operators to account for cartographic constraints, in a surface-based isobath generalisation method?
 - Through TRG we can integrate cartography within the surface
 - Conceptual framework of integration and evaluation has potential
 - also for other depth information
 - We can target generalisation operators to maintain morphology
 - Especially effective on large scales
 - We cannot yet generalise beyond *smooth*
 - Benefit from the development of more complex metrics & operators

Limitations and future work

- Additional operators: beyond smoothness
- Survey attributes: link is there, now the usage
- Feature classification: allow more complex metrics?
- Boundary problems and breaklines
- Integrate all IHO depth information
- Simplify isobaths, vertices
- Other evaluation models: human interaction, pursue morph. ...
- Computational efficiency ...
- Gridded bathymetry ...

Thank you!

Willem van Opstal Martijn Meijers Ravi Peters

(1st mentor) (2nd mentor)

July 9th 2020