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ARTICLE INFO ABSTRACT

Keywords: Illicit supply chains for products like counterfeit Personal Protective Equipment (PPE) are characterized by

Mlicit sparse data and great uncertainty about the operational and logistical structure, making criminal activities

Supply chain ) largely invisible to law enforcement and challenging to intervene in. Simulation is a way to get insight into the
:tmcmgaltuncertamty behavior of complex systems, using calibration to tune model parameters to match its real-world counterpart.
SE:ZSIZﬁEna Calibration methods for simulation models of illicit supply chains should work with sparse data, while also

tuning the structure of the simulation model. Thus, this study addresses the question: “To what extent can
various model calibration techniques reconstruct the underlying structure of an illicit supply chain when varying the
degree of data sparseness?” We evaluate the quality-of-fit of a reference technique, Powell’s Method, and three
model calibration techniques that have shown promise for sparse data: Approximate Bayesian Computing,
Bayesian Optimization, and Genetic Algorithms. For this, we use a simulation model of a stylized counterfeit
PPE supply chain as ground truth. We extract data from this ground truth and systematically vary its sparseness.
We parameterize structural uncertainty using System Entity Structure. The results demonstrate that Bayesian
Optimization and Genetic Algorithms are suitable for reconstructing the underlying structure of an illicit supply
chain for a varying degree of data sparseness. Both techniques identify a diverse set of optimal solutions that
fit with the sparse data. For a comprehensive understanding of illicit supply chain structures, we propose to
combine the results of the two techniques. Future research should focus on developing a combined algorithm
and incorporating solution diversity.

1. Introduction

During the COVID-19 pandemic, there has been a major increase
in demand for Personal Protective Equipment (PPE) like face masks,
gloves, and glasses [1]. PPE can be divided into two categories: med-
ical and non-medical. Medical PPE is certified and typically comes
with a higher price and profit margin, making it an interesting target
for fraudulent organizations [2]. A significant number of fraudulent
PPE manufacturers entered the market during the initial stages of
COVID-19, trying to sell non-certified PPE as certified PPE [3]. Law
enforcement detected and seized over 58 million counterfeit 3M res-
pirators since the pandemic’s beginning (as of May 2022), yet this
only represents a fraction of the total [4]. Detecting counterfeit PPE
has been challenging as little historical data on COVID-19 is available,
and fraudulent organizations obfuscate their data as much as possible.
Consequently, criminal activities and the related logistics operations
remain largely invisible [5]. Therefore, identifying counterfeit PPE and
effectively intervening in this largely invisible supply chain is difficult
for law enforcement.
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The counterfeit PPE supply chain is just one example of an illicit
supply chain in which law enforcement faces challenges for intervening
and stopping criminal activities [6]. Often, only sparse information and
data is available of any illicit supply chain. This results in uncertainties
regarding the operational and logistical working of the illicit supply
chain (e.g., processing times, travel times), as well as the overall
structural composition of the supply chain (e.g., how many actors are
involved, which sequence of supply chain activities is used, where
the actors are located) [7,8]. More information on the supply chain
can be gathered using the experiences of law enforcement, asking for
information from criminals, open-source data, and theories on legal
supply chains [9]. Information collection is difficult in the context of
illicit supply chains; for example, data on police operations is often
incident-based, criminals either withhold information, or data is still
insufficient for understanding the complete logistics operations of the
criminals [10].

Especially in the case of illicit supply chains, the operational and
logistical structure, including geographical boundaries, is often not
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known to law enforcement [8]. This structure is crucial for iden-
tifying opportunities to disrupt such a supply chain. Criminals use
various modi operandi, routes, communication channels, and business
models, impacting the flow of goods and, hence, the structure and
geographical context of the supply chain [10,11]. Also, criminals often
take advantage of legal supply chains to mask their illicit activities,
i.e., piggybacking, which could make the illicit supply chain even more
invisible [12,13]. This wide variety of possibilities for carrying out
criminal activities and their invisibility complicate the efforts of law
enforcement to uncover details about illicit supply chains, including the
identities and details of particular persons, the actual operational and
logistical structure, methods, and modes. Complex supply chains char-
acterized by sparse data and structural uncertainty make it challenging
to stop crime.

Simulation can help to get insight into complex systems, understand
behavior and relations, and explore future scenarios using comput-
ers [14,15]. This paper focuses on the use of discrete event simulation
models for understanding illicit supply chains [16,17]. Simulation mod-
els require data to mimic the behavior of the real world, either for
the parameters of components of the model, such as processing times,
or for defining the structure of the components in the model, such as
the network of the supply chain. For this, model calibration is used
as it is the process of tuning and estimating the model parameters
with observed data of the system to improve the similarity between
the model and the system [18-20].

In the case of simulating illicit supply chains, model calibration
should be able to handle sparse observed data [8,10,21]. Three dimen-
sions of data sparseness are defined: (1) noise, (2) bias, and (3) missing
values [22]. A number of studies have investigated the calibration of
simulation models in the context of data sparseness while assuming
that the structure of the model is known and fixed [5,23,24]. However,
it has not yet been investigated how simulation model calibration
techniques perform in the case of sparse data combined with structural
uncertainty. Assessing the performance of model calibration techniques
in the case of sparse data for studying illicit supply chains is further
complicated by how structural uncertainty is modeled. Many interde-
pendencies exist among various actors in a supply chain, making it
difficult to view actors as independent components in a simulation
model, unlike parameters [25]. Since model calibration mostly focuses
on tuning the model parameters and not the model structure, tun-
ing both simultaneously is far more challenging than just tuning the
parameters [26,27].

This study assesses the extent to which model calibration techniques
can accurately reconstruct the underlying structure of the supply chain
with a varying degree of data sparseness. First, we review related work
on the modeling and simulation of illicit supply chains, and model
calibration and its challenges when data is sparse. Next, we evaluate
the quality-of-fit of a set of model calibration techniques for accurately
reconstructing the structure of the illicit supply chain. For this, we use
a stylized ground truth simulation model of a counterfeit PPE supply
chain based on real-world data. We extract data from this simulation
model, systematically vary the degree of data sparseness, and assess to
which extent the selected model calibration techniques can reconstruct
the structure of the supply chain.

More explicitly, our study aims to address the question: “To what
extent can various model calibration techniques reconstruct the underlying
structure of an illicit supply chain when varying the degree of data sparse-
ness?”. Accordingly, this paper lays the foundation for modeling (illicit)
supply chains characterized by structural uncertainty and sparse data,
to get insights into their operations and hence, allow law enforcement
agencies to effectively intervene to stop crime.

Our paper is structured as follows. Section 2 presents the related
work on modeling and simulation for illicit supply chains. Section 3
discusses the current state-of-the-art literature on model calibration
and its challenges when dealing with sparse data. Section 4 describes
the design of experiments, the simulation model of the case study,
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and the configuration of the selected model calibration techniques.
Section 5 shows the quality-of-fit for reconstructing the structure of the
illicit supply chain using the simulation model calibration approach.
Section 6 discusses our results. Section 7 concludes our work and
provides directions for further research.

2. Modeling and simulation for illicit supply chains

This section describes the current state-of-the-art literature on mod-
eling and simulation of illicit supply chains. First, related work on
illicit supply chains using simulation is examined. Second, structural
uncertainty in illicit supply chain simulation models is described.

2.1. Related work

Simulation is a vital computational approach for understanding the
behavior of illicit supply chains, and for exploring further scenarios
like the effect of interventions [5,10,17]. Anzoom et al. [10] present
a literature review of illicit supply chain network research focusing on
operational research, management science, and industrial engineering.
Most studies focus on network design, optimization, or social science
theories. Their review reveals that only a few simulation studies of
illicit supply chains have been conducted.

Some of these studies simulate the criminal network by focusing
on the business model, the roles, and how the network evolves over
time, drawing on social science theories. Duijn et al. [11] simulates a
criminal cannabis cultivation network to understand the dynamics of
resilience in this network as a consequence of disruptions. The authors
primarily focus on the dynamics between different roles of actors within
the network, and not on the logistical operations. van der Zwet et al.
[28] design an agent-based model for emergent opponent behavior,
which is present in organized crime groups that, for example, traffic
illicit products.

Other simulation studies focus on replicating the supply and de-
mand in the illicit supply chain to evaluate the effect of disruption
strategies in the drug market [29,30]. More recent studies focus on
developing more detailed simulation models to understand disruption
strategies in a specific supply chain. For instance, Dray et al. [31]
develop an agent-based model for interaction between individuals and
the supply in the heroin market. Kovari and Pruyt [32] create a system
dynamic simulation model of human trafficking for evaluating the
effect of policy interventions in the Netherlands. Kretschmann and
Miinsterberg [33] present a discrete event simulation model for testing
one specific detection method at the border.

Specifically on trafficking, Magliocca et al. [9] develop a spatial
agent-based simulation model of cocaine traffickers to the United States
via Central America based on qualitative data such as theoretical
perspectives, media reports, empirical studies, and field research. Their
model produces realistic patterns of cocaine trafficking in space and
time in response to interventions. Jensen and Dignum [34] model the
illegal cocaine trafficking supply chain based on legal supply chain
theories. The authors investigate the difference between the legal and
illegal supply chain with a focus on trust. They indicate that more work
on the simulation model itself has to be done to enhance its accuracy
when representing illegal supply chains. Gonzélez Ordiano et al. [35]
identify potential geographical hotspots in the illicit supply chain us-
ing a variable state resolution Markov Chain, assuming three scales
of connectivity (e.g., countries, regions, continents). Their approach
consists of two steps: (1) to create a series of Markov Chain models
that describe the network in different state spaces, and (2) to select the
model that describes the network best. Benatia et al. [36] evaluates
frequent pattern mining for tracing counterfeit products in a supply
chain, specifically cosmetics, using a multi-agent simulation model.

In the most recent studies, simulation and optimization models are
coupled to analyze interventions in illicit supply chains. Magliocca et al.
[17] introduce coupled agent-based and spatial optimization models
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for examining the deployment of interventions and the correlated
adaptive response of the drug network over time. Their results show
that increasing interventions lead to diversifying of the routes and
dispersing of the illicit shipment volumes, making it more difficult to
seize illicit products. Hashemi et al. [3] use a simulation—optimization
framework to model counterfeiters’ behavior and analyze different
disruption strategies. They use a scenario tree structure to model the
uncertainties in the simulation and optimize the supply chain opera-
tions of the criminals on maximizing profit and minimizing risk. van
Schilt et al. [5] test the performance of various optimization techniques
for accurately calibrating the parameters of a discrete event simulation
model of an illicit supply chain when increasing the degree of data
sparseness. Their results show that the simulation model calibration of
parameters successfully works in situations with sparse data. They note
that an interesting further direction of research is to investigate the
performance for finding the underlying structure of the supply chain.

Unlike most previous research that typically uses a single simula-
tion model structure with uncertain parameters, we address structural
uncertainty. Our study uses a similar simulation model calibration
approach as van Schilt et al. [5], but it focuses on finding the most
representative structure of the real-world supply chain instead of just
finding the most likely parameters’ values for an assumed structure.
Compared to previous studies using a simulation-optimization ap-
proach, we focus on calibrating the underlying structure of the supply
chain rather than optimizing interventions.

2.2. Structural uncertainty in illicit supply chain simulations

Building a simulation model for an illicit supply chain requires
knowledge to ensure it aligns with the system, e.g., the real-world illicit
supply chain under study. Certain aspects of such an illicit supply chain
remain uncertain, while others are observable. For an illicit supply
chain, the knowledge that is required to design a simulation model is
often deeply uncertain, meaning that there is no clear consensus on
the conceptual model of the system, the probability distributions, or
the desirability of outcomes of the model [8,37,38].

We can distinguish two types of uncertainty in illicit supply chain
simulation models that have to match the system’s counterpart: (1)
parametric uncertainty, i.e., uncertainty in (initial) values of the
model’s parameters or conditions, and (2) structural uncertainty, i.e.,
uncertainty in the structure of the model [39-41]. Parametric un-
certainty describes the uncertainty in initial values of the model for
capturing an initial state and behavior that matches its real-world
counterpart. For example, uncertainty about the parameters used to
choose a route based on maximizing profit of a fraudulent actor like
the cost of transport, or on minimizing risk like the parameter of the
risk of getting caught. Structural uncertainty describes uncertainty in
the modeling equations, structure, or behavior of the model [25]. For
example, uncertainty about the number of fraudulent actors and their
relation in a supply chain, and how these actors choose a route.

In the field of logistics, research has been performed on exploring
parametric uncertainty but not on structural uncertainty [27,42,43].
Especially in the case of illicit supply chains, the structure is often
uncertain [5]. Therefore, the innovative contribution of this research is
addressing structural uncertainty for simulation models related to illicit
supply chains.

3. Model calibration and the challenges with sparse data

This section describes the current state-of-the-art literature on
model calibration and its challenges in the case of sparse data. First,
related work on model calibration with sparse data is discussed. Sec-
ond, an overview of model calibration techniques that seem suitable
for dealing with sparseness is presented. Third, a modeling approach
for structural uncertainty regarding calibration is described.
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3.1. Related work

Few studies have investigated the calibration of simulation models
in the context of data sparseness. Liu et al. [23] are one of the
first to explicitly address the calibration of a simulation model under
data sparseness. They propose a simulation-optimization approach to
calibrate an agent-based simulation model with sparse data automat-
ically using an emergency department as a case study. The problem
is formulated as a series of local minimum search problems. Subse-
quently, De Santis et al. [44] focus on the calibration of a discrete
event simulation model under data sparseness. Observable values from
a real-world system are used to determine the parameter values of
the simulation model, for example, the time interval between known
time stamps. de Groot and Hiibl [24] use calibration as a form of
validation, and in their case, the sparseness of data makes validating the
simulation model challenging. Consequently, they manually fine-tune
the parameters and dynamics of the model to enhance validity. Hao
et al. [45] uses evolutionary neural networks to build more accurate
surrogate simulation models with limited data. van Schilt et al. [5]
compare various calibration techniques for simulation models when
increasing the degree of data sparseness. They calibrate the parameters
of a discrete event simulation model on a counterfeit PPE supply chain.

In line with this, our study compares the performance of various
calibration techniques for data sparseness rather than selecting one.
We assume that a single calibration technique is most probably not
able to deal with all types of sparse data. The novelty of our work is
that we apply the simulation model calibration approach to identify
the underlying structure of the simulation model, as opposed to only
focusing on the parameters.

3.2. Model calibration techniques for sparse data

Calibration of simulation models involves finding parameter values
by comparing the model’s output with real data until a “good” match
is achieved, meaning that the model data closely matches the observed
data over a given time interval [18-20]. As model calibration aims to
minimize the difference between the model data and the observed data,
optimization techniques are commonly used for this purpose [23,46].
We distinguish four families of calibration techniques that are inter-
esting when dealing with sparse data: (1) Deterministic mathematical
solvers, (2) Evolutionary algorithms, (3) Bayesian inference, and (4)
Data assimilation.

Fig. 1 shows an overview of the families, the techniques, and the
algorithms that can be applied for model calibration in the case of
sparse data. Note that this is a non-exhaustive overview.

Deterministic mathematical solvers calibrate models through deter-
ministic mathematical optimization that guarantees to discover (local
or global) optimal solutions [47]. A commonly used deterministic
algorithm for calibrating simulation models is Powell’s Method [23].
Powell’s Method is a gradient-free minimization algorithm using a
repeated line search introduced by Powell [48]. Due to its fast search
speed, this method is preferred for calibrating discrete event sim-
ulation models that are typically characterized by a rugged high-
dimensional fitness landscape [49]. Another example of a deterministic
mathematical solver for model calibration is the Nelder-Mead Simplex
algorithm [50]. Moreover, the Branch-and-Bound algorithm is also
commonly used for optimizing linear or mixed-integer programs [51,
52].

Evolutionary algorithms calibrate a model through population-
based, also called, “survival-of-the-fittest”, techniques. One of the
oldest and well-known evolutionary algorithms are Genetic Algorithms
(GA) [53]. GA are widely applied in the field of model calibration,
especially in high-dimensional problems where data is often sparse [54—
56]. Classic GA are based on Darwin’s theory of natural selection.
The main idea is that the fittest individuals are more likely to sur-
vive, and thus contribute more to the next generation [57]. A classic
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Fig. 1. Overview of model calibration families and techniques for sparse data.

and popular algorithm is Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [58,59]. Based on NSGA-II, e-NSGA-II was introduced
that merges NSGA-II with a e-search algorithm to define the search
precision for more efficiency, reliability, and more ease of use [60].
For more complex and multi-objective problems, BORG is a suitable
algorithm [61]. BORG is an extension of e-NSGA-II with adaptive
operator selection, meaning that it adapts to the most appropriate
operator based on the performance [62].

Bayesian inference uses Bayes’ theorem to calibrate models. Model
calibration is a core application of Bayesian data analysis [63]. Approx-
imate Bayesian Computing (ABC) is one of most suitable techniques
for handling sparse data and uncertainties due to its likelihood-free
nature [64]. ABC is a technique for estimating the posterior distribution
of model parameters using Bayesian statistics. There are three sampling
methods for ABC: (1) rejection sampling, (2) Markov Chain Monte
Carlo sampling, and (3) sequential Monte Carlo sampling [63]. An
algorithm for ABC is the Differential Evolution Markov Chain algorithm
that combines an evolutionary algorithm with Markov Chain Monte
Carlo sampling [65]. Another algorithm for ABC with Markov Chain
Monte Carlo sampling is Adaptive Metropolis [66]. This algorithm
updates the Gaussian distribution for sampling using the information
gathered so far in the process. Sadegh and Vrugt [67] introduce a multi-
chain approximate Bayesian computation with Markov Chain Monte
Carlo Sampling algorithm, also called Differential Evolution Adaptive
Metropolis (DREAM). This sampling method is based on a multi-chain
Markov Chain method that uses differential evolution for population
evolution with a Metropolis selection rule. Additionally, subspace sam-
pling is applied to enhance search efficiency. It is shown that DREAM
is one of the most efficient sampling algorithms for ABC [67].

Another technique in the family of Bayesian inference is Bayesian
Optimization (BO). Bayesian optimization techniques are among the
few techniques in the field of machine learning that are able to handle
small data sets [68]. BO is a technique that uses Bayes’ theorem to
search for the optimum by constructing the posterior distribution.
This can either be defined by Gaussian Processes, also referred to
as Kriging, or by using the Parzen-Tree Estimator [69]. It balances
between exploration and exploitation of the solution space based on
a Maximum Probability of Improvement, an Expected Improvement, or
an Upper Confidence Bound function. The most acquisition function for
exploration is Expected Improvement [70,71].

The last family of methods is data assimilation that calibrates mod-
els by dynamically incorporating observed data into the model. This is
a promising technique for calibrating with sparse data when estimating
unobservable states in a running simulation model [72,73]. There are
three approaches for data assimilation for discrete event simulation
models: (1) variational approach, (2) sequential approach, and (3)
particle filtering [74]. The variational approach chooses a time interval
and treats the data within that interval in the same manner to produce
estimates of the state variables of the system. The sequential approach
assimilates data sequentially over time with the goal to correct the
estimated state when a new observation becomes available. It only up-
dates the specific state for the specific time that an observation becomes
available. Particle filtering follows the steps of the sequential approach
but aims to estimate the conditional distribution of all states up to a
user-defined time given all available measurements. A commonly used
algorithm for particle filtering is the bootstrap filter algorithm [74].

In this research, we use a deterministic mathematical solver using
Powell’s Method algorithm as a reference, given it is one of the most
commonly used model calibration techniques. Moreover, we compare
three model calibration techniques that are most promising in the
case of sparse data: (1) a Genetic Algorithm (GA) using the e-NSGA-
II algorithm, (2) Approximate Bayesian Computation (ABC) using the
DREAM algorithm, and (3) Bayesian Optimization (BO) using Gaussian
Processes with the Expected Improvement function. Our study excludes
the family of data assimilation techniques since the focus is not on
calibrating real-time (running) simulation models.

3.3. Modeling structural uncertainty for calibration

Evaluating model calibration techniques’ performance in the case of
sparse data is further complicated by how structural uncertainty is mod-
eled. Uncertainty in the structure of a discrete event simulation model
is often implemented by parametrization [25]. A fully comprehensive
model is built, incorporating all potential components and links within
specific search ranges. Binary parameters are then utilized to determine
the inclusion or exclusion of each component and/or link in the model.
Researchers can randomize the values of the binary parameters to
include uncertainty in their model runs, or can calibrate these binary
parameters to find a structure close to the real world [25]. However,
three primary drawbacks are encountered in our study when using
this implementation: (1) designing a fully comprehensive simulation
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model is time-consuming and memory heavy, (2) performing model
runs or calibrating the model is computationally heavy because of
the many decision variables, and (3) designing for interdependencies
between the components and links (e.g., no links between suppliers and
manufacturers is not realistic in a supply chain) causes many additional
modeling rules or optimization constraints [75]. These three drawbacks
make it difficult to capture the structural uncertainty in a supply chain
simulation model easily.

Another way to include uncertainty in the structure of the sim-
ulation model for experiments is model composability [75,76]. This
means that multiple distinct system configurations are created by cou-
pling components of the system (e.g., different actors in a supply
chain and transport modes in various ways). A system configuration
defines the structure of the components in a system and the associated
parameters [75]. To describe these components of the system in a
simulation model, a referential ontology is used. Referential ontologies,
such as Extensible Markup Language, Unified Modeling Language, and
System Entity Structure (SES), support the development of models by
describing real-world entities [77,78]. In this study, we focus on the
ontology framework of SES as it is a powerful framework specifically
designed for modeling and (discrete event) simulation [77,79].

Zeigler [80] introduces SES for composing multiple system con-
figurations (e.g., various supply chain structures) for simulation. SES
defines a set of system configurations, helpful for generating a set of
simulation models for a family of systems. It is represented by a tree
structure including entity nodes, descriptive nodes, and attributes [75].
Entity nodes describe an object of the system, e.g., an actor in the
supply chain. Descriptive nodes describe the composition among at
least two entities using aspect nodes. An aspect node describes the
composition of an entity, either physical or non-physical. For example,
a PPE manufacturer consists of a production facility, supply inventory,
and manufactured product inventory like respirators. A multi-aspect
node describes the composition of an entity consisting of many enti-
ties of the same type. For example, the set of respirators consists of
(many) identical respirators. A specialization node describes the entity’s
categorization. For example, the respirator can either be certified or
not.

The process of deriving a single configuration (e.g., a specific supply
chain) of the SES is called pruning. For each single configuration, a
specific structure and parametrization is defined. Given the increasing
complexity of systems such as a supply chain and many possible system
configurations, it is preferred to conduct pruning automatically [81].
Automated pruning for a specific system requires knowledge on the
degrees of freedom to ensure valid system configurations and thus,
valid simulation models [75]. Each entity and descriptive node has
specific rules for composing a valid system. For example, in the case
of a supply chain, at least one type of each actor in the SES has to be

present in a system configuration. All knowledge and rules necessary
for automatic pruning have to be known at the beginning of the pruning
process, using scripts or a set of constraints [82-84].

The novelty of this study is that we focus on structural uncertainty
for calibration simulation models, instead of most research that only
focuses on parametric uncertainty. This study uses SES to examine
structural uncertainty in simulation models. This allows us to calibrate
a supply chain simulation model using a set of system configurations
efficiently based on a theoretical ontology. More explicitly, the contri-
bution of this study is to evaluate the quality-of-fit of various model
calibration techniques for identifying the structure of a supply chain
with sparse data.

4. Methods

In this research, we examine to which extent a set of model calibra-
tion techniques can correctly match the structure of a simulation model
for a varying degree of data sparseness. First, the design of experiments
using a ground truth simulation is explained. Second, the configuration
of the selected model calibration techniques is presented. Third, the
formalization and parametrization of the simulation model as a case
study is described. Last, the formalization of the stylized system entity
structure is presented.

4.1. Design of experiments using the ground truth

This section presents the design of experiments for our study. First,
the ground truth set-up is presented. Second, the quality-of-fit is dis-
cussed. Last, the experiments are described.

4.1.1. Ground truth set-up

A ground truth set-up is used to evaluate the performance of the
selected model calibration techniques over various degrees of data
sparseness. One stylized simulation model acts as a ground truth to
produce the observed data of the system, and data is extracted from
this model. This set-up allows us to measure the calibration’s closeness
to the “true” values, which is challenging with real data that inherently
has some degree of sparseness [85].

Fig. 2 shows the method used for evaluating the model calibration
techniques. In this research, we calibrate using the graphs representing
the supply chain model to identify the underlying structure. More
specifically, we focus on a directed acyclic graph that consists of
vertices and edges, i.e., g = (V, E). Vertices represent the actors in the
supply chain, meaning the type and number of actors. Edges represent
the connectivity between these actors in the supply chain.

First, we define a ground truth simulation model based on the
directed ground truth graph, g° with vertices, V°, and edges, E°.
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The output of the ground truth simulation model is the ground truth
data, not including any sparseness. Next, we add data sparseness with
a degree of x% to the ground truth data. A degree of x% means
that x% of the original data elements have noise, are biased, or are
missing values. For example, 10% of the ground truth data elements
are transformed into missing values. It is randomly determined which
x% of data elements are sparse over the entire data set. We adopt the
detailed implementation of randomly assigning sparseness to data on
noise, bias, and missing values from van Schilt et al. [22]. This results
in sparse observed data.

When the sparse data is defined, the simulation model calibration
process starts. We have a large set of plausible graph configurations
of the supply chain under study, with many dependencies between
the vertices and edges in such a graph. Thus, we use SES to define
a set of plausible graph configurations of the supply chain, G. Each
graph in this set, g € G, is a randomly generated directed acyclic
graph with vertices and edges, (V, E). A large set of graphs of plausible
supply chains is created using SES as input for the model calibration
techniques to select candidate solutions. In our study, we use a set
of 40.000 randomly generated graphs, balancing between an adequate
size for exploration and computational efficiency.

The model calibration technique essentially selects a candidate
graph, g = (V,E) € G. The simulation model is run for 5 unique
replications based on this candidate graph, resulting in simulation model
data as output. Next, the distance between the simulation model data
and the sparse observed data is calculated using a distance metric. Based
on the resulting distance, the model calibration technique selects a
new candidate graph. The process repeats and stops when a stopping
criterion is reached, e.g., the number of iterations or a certain number
of solutions close to the ground truth. The solution is the graph, g* =
(V*, E*), that best describes the structure of the ground truth model
according to the calibration technique.

4.1.2. Quality-of-fit

While model calibration aims to minimize the distance between the
simulated and sparse observed output data, it does not guarantee that
the graph of the calibrated simulation model will be close to that of
the ground truth. Therefore, we assess the quality-of-fit of the solution
graph and the ground truth graph. Assessing the similarity of graphs
is complex, making it challenging and computationally expensive to
determine a single metric for evaluating the quality-of-fit [86]. Thus,
we compare the graphs using various feature-based distances of (1)
the number of vertices, (2) the number of edges, and (3) average
betweenness centrality, i.e., the average fraction of all shortest paths
that pass through a vertex. Additionally, a commonly used similarity
measure is the graph edit distance [87]. The graph edit distance defines
the cheapest set of graph edit operations (e.g., node insertion, edge
deletion) needed to transform one graph to the other graph [88].
For computational reasons, we use an approximated greedy graph
edit distance of Riesen et al. [89] by transposing this problem to an
assignment problem. The python library GMatch4py' is used.

4.1.3. Experiments

The steps in Fig. 2 outline a single experiment for evaluating the
quality-of-fit of a model calibration technique, given a certain degree of
data sparseness. We systematically increase the degree of data sparse-
ness added to the ground truth data with steps of 10%. Thus, we evaluate
for 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%. Additionally, the
model calibration techniques are examined for 0% of data sparseness,
i.e., ground truth data, as a base case. Following the results of the
individual dimensions, we analyze a set of experiments in which we
combine the dimensions of data sparseness to study the interaction
effects.

1 https://github.com/jacquesfize/GMatch4py
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Each experiment is conducted with 6 seeds to account for the impact
of stochasticity on the simulation model calibration outcome. Each seed
produces a set of results that are presented individually. For each seed,
we first transform x% of the data set with sparseness, and then we use
this as input for all the model calibration techniques. This means that
the exact same observations were transformed in the data set and are
provided to the different techniques for simulation model calibration.

4.2. Configuration of the model calibration techniques

Recalling the selected model calibration techniques for this research
in Section 3.2, Powell’s Method is considered as a reference technique,
while ABC, BO, and GA are identified as suitable options for dealing
with sparse data.

A distance metric for the model calibration techniques needs to
be defined to minimize the difference between the simulation model
data and observed data. Common metrics like mean square error,
Kolmogorov-Smirnov, or Euclidean distance are often used, but they
may not adapt well to specific problems [90,91]. Our study requires
a metric that considers stochastic models and sparse observed data
in complex, high-dimensional systems. According to Mirkes et al.
[92], classic metrics like L1 and L2 are effective for complex, high-
dimensional data tasks. Therefore, we use the Manhattan (L1) distance,
measuring the sum of absolute differences between data points across
all dimensions after normalization.

For calculating the quality-of-fit for the selected model calibration
techniques, we compare the ground truth graph, g° = (V°, E°), with
the graph of the optimal solution, g* = (V*, E*). The result of Powell’s
Method, GA, and BO is a single optimal solution of the decision
variable; in this case, the value of the graph’s index. In contrast,
ABC produces an approximate posterior distribution of the indexes of
graphs. To obtain one optimal solution of a graph from this resulting
posterior distribution, we select the graph’s index with the highest
frequency, i.e., the mode, for that specific distribution. Thus, the most
often accepted graph, obtained by this index value, serves as the
optimal solution for ABC.

For each technique, a stopping criterion for finding the optimal
solution is defined. The stopping criteria for these experiments are
based on an empirical analysis on the convergence of the model cal-
ibration techniques over 6 seeds. For the reference technique, Powell’s
Method, we limit the number of function evaluations to 1500 and the
number of iterations to 100. For ABC, we use 15.000 draws as the
stopping criterion. The analysis shows that there is convergence of ABC
determined by the Gelman-Rubin statistics at 15.000 draws for most of
the 6 seeds [93]. For BO, we use 3750 iterations as a stopping criterion.
We use 100 initial points. With this number of iterations, the number
of improvements remained constant for every seed. For GA, we use
10.000 function evaluations as a stopping criterion. The analysis shows
that with 10.000 function evaluations, the number of improvements is
stable across all seeds.

4.3. Formalization of ground truth simulation model

The case study used for the ground truth simulation model is a
stylized counterfeit PPE supply chain. Fig. 3 visualizes the structure
of the ground truth counterfeit PPE supply chain simulation model
from China to the northeast USA as a graph. The symbols in the figure
represent the main actors (vertices of the graph) in the supply chain,
and arrows represent the transportation flows (edges of the graph).

The supply chain starts at the supplier of raw materials, placed
in Guangdong, China, who supplies products for PPE such as fabrics.
These products are transported overland to one of the two manufactur-
ers in the same area. These manufacturers produce counterfeit PPE in
the factory, pack them in boxes, and consolidate them into batches for
transportation. Each batch contains a specific quantity of counterfeit
PPE, such as 2000 boxes with 20 PPE units per box, resulting in a total
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Fig. 3. Stylized supply chain of counterfeit PPE.

of 20,000 PPE units per batch. Next, a batch of finished counterfeit PPE
is transported from the manufacturers’ location via a truck to the con-
solidation warehouse close to the border of Hong Kong. Batches from
several manufacturers are stored here. We identified two strategies for
handling these batches: (1) wait until an order arrives; then the specific
order is picked and shipped to the customer, or (2) wait until the stock
reaches the level required to directly fill one container. In the ground
truth model, we assume that batches are handled based on random
order arrivals with an average interarrival time of 1.2 days. When the
orders are picked in the warehouse, they are transported overland by
truck to the export seaport or airport in Hong Kong, depending on the
mode of transport. For transportation overseas, the batch is loaded into
a 40 ft container and transported by a small container ship to the transit
port. Upon arrival at the transit port, the small container ship unloads
the container carrying counterfeit PPE. At the same port, the container
is loaded onto a larger container ship for overseas transport. Depending
on the destination port, the route that the container follows is either (1)
from Hong Kong to New York, USA via Singapore, or (2) from Hong
Kong to Boston, USA via Shanghai, China. For transportation via air,
the batch is loaded into the cargo hold of an international airplane
using pallets. The destination of this batch is either New York, USA
(airport JFK) or Boston, USA (airport BOS). In both cases, there is a
transit at Amsterdam Schiphol Airport (AMS), where the batch is moved
from one airplane to another. Arriving at the import port, the batch in
a container or pallet is unloaded at one of these ports, and waits for
inland transport to one of the two (illegal) wholesales distributor in the
area of New York, USA or Boston, USA. Here, the batch of counterfeit
PPE is equally divided into smaller batches for the two distributors
they serve. Small trucks directly transport these smaller batches to
distributors in New Hampshire, Connecticut, and New Jersey. Next, the
distributors transport the batch to hospitals in Portsmouth, Providence,
New Haven, and Philadelphia. When the counterfeit PPE arrive at the
hospital, the products are used for medical reasons without knowing
that they are counterfeit.

Table 1 shows the input parameters for the actors and the links used
in the ground truth simulation model.

In the simulation model, most uncertainties such as delays of trans-
port modalities and speed of transport modalities follow triangular
distributions inspired by real-world data of a fashion retailer and expert
interviews [4,72]. Table 2 shows parametrization of the speed and
the delays of the transport modalities for the simulation model of this
study.

Time series data is extracted from the simulation model of this
specific system configuration as ground truth data. The time series data
entails data on when a quantity of PPE arrives at an actor, including the
location and the type of actor. For example, a batch with a quantity of
20.000 PPE arrives at the export airport in Hong Kong on day 3. Data

of the time series is summed per day, and is aggregated over the actor
types that are represented in the SES (see Fig. 4). Multiple replications
are combined using the mean value per day per actor type. A simulation
time of 52 weeks with 5 unique replications is used. The simulation
model has been developed with the library pydsol-core and pydsol-model
in Python in combination with networkx. The library pydsol is a Python
implementation of the Distributed Simulation Object Library (DSOL),
originally implemented in Java [94].

4.4. Formalization of stylized structural uncertainty

In our research, we use a stylized SES to incorporate structural
uncertainty for designing the set of plausible simulation models. All
configurations of the simulation models result from the SES, including
the ground truth model which is one specific configuration. Fig. 4
presents the SES of the counterfeit PPE supply chain simulation model.
The tree starts with a supply chain with multiple actors, shown by
the physical multi-aspect node. A discrete event simulation model of
a supply chain has the following model elements: source (i.e., creating
entities), server (i.e., processing entities), sink (i.e., destroying entities),
and links to connect these elements [14]. A supplier acts as a source in
the simulation model, as the supply chain starts here. The sink describes
the end of the supply chain with the type (export) customer. There are
multiple types of servers, as indicated by the specialization node. Any
actor that processes entities, in this case PPE products, is a server. There
are three types of ports described in the SES of the stylized supply chain
case: import port, transit port, and export port. Moreover, a supply
chain has links to connect the actors. This SES includes two links: a
sea link based on the travel time overseas, and a link for land and air
transport based on the distance.

For composing system configurations from the SES, specifying rules
and constraints have to be set. One important rule for our case is to
have at least one representative of each actor type in the supply chain
that is arranged in a specific sequence and interconnected through
links. For example, a supplier has to be connected to a manufacturer,
who in his turn has to be connected with a warehouse consolidator.
This determines the incoming and outgoing degrees of each actor. Also,
counterfeit PPE is commonly shipped across borders using routes that
align with the legal supply chains. Hence, the travel time and transit
time of international transport overseas (i.e., sea links) is based on
open-source data of the shipping schedules given by MSC, Maersk,
HMM, and Evergreen. Through the distinct shipping alliances that these
four companies are part of, we gain a comprehensive understanding
of the schedules of the leading shipping firms. A distribution is fitted
for the travel time of each leg for the seaports (port-to-port) and the
scheduled processing times at the transit ports based on four months
of schedules in 2023 and 2024. The airport network is based on
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Table 1
Input parameters of actors and links for the simulation model of the stylized counterfeit PPE supply chain.
Actors Links
Input Parameter Distribution Value Unit Name Value Unit
Interarrival time of Exponential 10 days Supplier to manufacturer 1 50 km
product at supplier
Time at manufacturer Gamma 1.5, 0.8 days Supplier to manufacturer 2 80 km
Time at warehouse Triangular 0.5,1,1 days Manufacturer 1 to warehouse 140 km
consolidator consolidator
Time to pickup at Triangular 05,1,2 days Manufacturer 2 to warehouse 75 km
warehouse consolidator consolidator
Probability of counterfeit 0.5 Warehouse consolidator to 45 km
PPE in container at export sea port
warehouse consolidator
Time at sea ports Triangular 0.5, 1,2 days Warehouse consolidator to 60 km
export air port
Time at air ports Triangular 05,1,1 days Export sea port to transit sea 2.8 days
port Shanghai
Waiting time at yard for Uniform 0.5, 3 days Export sea port to transit sea 9 days
transport at import sea port Singapore
port
Probability of counterfeit 0.5 Transit sea port Shanghai to 42.5 days
PPE extracted at import import sea port Boston
sea port
Waiting time at yard for Uniform 0.5, 1 days Transit sea port Singapore to 26 days
transport at import air port import sea port New York
Probability of counterfeit 0.5 Export air port to transit air 9274 km
PPE extracted at import air port Amsterdam
port
Time at warehouse Triangular 1,22 days Transit air port Amsterdam to 5547, 5847 km
distributor import air port Boston and
New York
Time at distributor Exponential 0.2 days Import sea and air port Boston 15, 20 km
to warehouse distributor
Boston
Time at hospital Exponential 0.1 days Import sea and air port New 80, 72 km
York to warehouse distributor
New York
Warehouse distributor Boston 105, 150 km
to distributor New Hampshire,
Connecticut
Warehouse distributor New 175, 150 km
York to distributor
Connecticut, New Jersey
Distributor New Hampshire to 15 km
hospital Portsmouth
Distributor Connecticut to 140, 60 km
hospital Providence, New
Haven
Distributor New Jersey to 50 km

hospital Philadelphia

Table 2

Input parameters of speed and delay of the transport modalities for the simulation model of the stylized counterfeit PPE supply chain.

Transport modalities

Input parameter Distribution Value Unit Input parameter Distribution Value Unit
Speed of small truck Triangular 0, 100, 120 km/h Delay of small truck Triangular 0, 0.2, 0.5 days
Speed of large truck Triangular 0, 80, 120 km/h Delay of large truck Triangular 0, 0.5, 1 days
Speed of train Triangular 25, 40, 75 km/h Delay of train Triangular 0, 0.3, 0.5 days
Speed of feeder Triangular 10, 18, 25 knots Delay of feeder Triangular 0, 4, 16 days
Speed of vessel Triangular 10, 18, 25 knots Delay of vessel Triangular 0,7, 16 days
Speed of airplane Uniform 740, 930 km/h Delay of airplane Triangular 0,1, 4 hours

an open-source flight route database from 2017. The travel distance
between the airports is calculated using the Haversine distance between
two airports [95]. The distance for links over land relies on expert
interviews. For this, we use the information from open-source data to
identify the real-world locations of ports, and from there, we determine
the positions of other actors based on expert information. For example,

the warehouse locations are often driving distance from the ports. See
Appendix A for more details on the specifying rules and distances.
For our study, we randomly generate a set of graphs using the
stylized SES. First, the number of vertices is randomly determined using
the SES, relying on the actor type and the corresponding constraint
on the number of vertices per type. Second, the edges are randomly
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Fig. 4. System entity structure of the counterfeit PPE supply chain simulation model.

defined based on the connectivity between the vertices, i.e., the amount
of incoming and outgoing degrees. Third, we use the open-source data
on ports to determine the international routes and their travel time.
The generated export and import ports are randomly assigned to real-
world locations. Given the edges between the export and import ports,
plausible real-world routes between these ports are identified. Fourth,
the travel distance between the other vertices are defined, e.g., between
suppliers and manufacturers. The distance per edge is chosen using a
Uniform distribution of the minimum and maximum distance between
actors. Last, the graphs are sorted on their average betweenness central-
ity, i.e., the fraction to which a vertex lies on the shortest path between
other vertices averaged over all vertices. In terms of illicit networks,
the betweenness centrality of an actor determines the centrality of an
actor in the network, e.g., an actor with a high betweenness centrality
often has a broker position [96,97]. We use the average betweenness
centrality of the graph as a descriptor since it is shown to be the most
effective topology for planning interventions [8,98].

5. Results

We discuss the results of the model calibration techniques when
varying the degree of data sparseness, both individually per dimension
and in combination. The results are presented in a scatter plot where
each point represents the optimal solution arising from the model
calibration technique for one unique seed.

5.1. Analysis of the individual data sparseness dimensions

This section presents the analysis of the various metrics for quality-
of-fit for the four selected model calibration techniques when increasing
the degree of the data sparseness dimensions individually. We discuss
the metric of graph edit distance, the ranking of the average between-
ness centrality, and the number of vertices and edges. For more results
on the average betweenness centrality and the Manhattan distance, see
Appendix B.

5.1.1. Graph edit distance

The graph edit distance measures the difference between the ground
truth graph and the optimal graph chosen by the model calibration
technique based on graph edit operations [88]. A graph edit distance of
zero indicates that the optimal graph and the ground truth are identical.
Hence, the lower the graph edit distance, the higher the quality-of-fit.
Fig. 5 shows the graph edit distance of the optimal solutions of the
model calibration techniques for six unique seeds per percentage of
missing values, noise, and bias.

Powell’s Method demonstrates consistency in finding optimal so-
lutions for missing values, noise, and bias. The graph edit distance
for each solution is between 623 and 1098 across all percentages of
data sparseness. Hence, the found solutions need a relatively high
number of graph edit operations to transform into the ground truth.
The spread of the solutions in terms of graph edit distance is relatively
small compared to other techniques. However, Powell’s Method fails to
identify the ground truth successfully.

Similar to Powell’s Method, ABC shows consistency in terms of
graph edit distance for missing values, noise, and bias. The graph edit
distance for most solutions is either 416 or 1243 graph edit operations
across most percentages of missing values and all percentages of noise
and bias. At 40% and 60% missing values, Fig. 5(a) shows an outlier
with a graph edit distance of only 254 node operations from the ground
truth. Nevertheless, ABC fails to identify the ground truth.

BO has a more diverse graph edit distance of the solutions across the
various percentages of data sparseness, but the majority of the graph
edit distances still lies between 400 and 707 operations. For a data
sparseness of 0%, BO identifies the ground truth represented by a graph
edit distance of 0. With 10%, 20%, 40% and 60% missing values, BO
finds optimal solutions that have a relatively low graph edit distance
between 334 to 400 edit operations. However, the ground truth is not
identified for any percentage of missing values. Comparatively, BO does
identify the ground truth at 80% noise. Additionally, the differences
in graph edit distance between the solutions for each percentage of
noise are less spread out. Especially at 40%, 80%, and 90% noise, all
solutions have a relatively low graph edit distance between 323 to 413
graph edit operations. For bias, we see in Fig. 5(c) that BO finds optimal
solutions with a relatively high graph edit distance compared to missing
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Fig. 5. Graph edit distance per dimension of data sparseness for Powell’s method, ABC, BO, GA.

values and noise for each percentage of data sparseness, meaning more
solutions with 942 to 1051 graph edit operations from the ground truth.
In contrast, the ground truth is identified most frequently for bias at
40%, 80%, and 90%.

GA shows a diverse graph edit distance of the solutions across the
various percentages of data sparseness, where we observe an iden-
tification of the ground truth as well as relatively high graph edit
distances. Other solutions have graph edit distances in the range of
236 to 801 graph edit operations. For 0% data sparseness, GA finds
an optimal solution with a relatively high graph edit distance of 1033
graph edit operations. The ground truth is not found for 0% of data
sparseness. GA identifies the ground truth for 10%, 20%, 50%, and 60%
of missing values. For noise, GA is able to identify the ground truth
most often as visible in Fig. 5(b). The ground truth is identified for the
majority of noise percentages, excluding 30% and 60%. Especially for
40% and 90% of noise, the other solutions that are identified are in
close proximity to each other with a graph edit distance between 236
and 456 graph edit operations. Overall, the graph edit distance for noise
stays limited to 582 edit operations. Next, GA identifies the ground
truth at 10%, 20%, 40%, and 60% of bias. Solutions with a relatively
high graph edit distance, i.e., of 869 and 1051 operations, are found
after 60% bias. This means that, for bias, GA found more complex graph
structures that explain the sparse data compared to missing values and
noise.

5.1.2. Ranking of average betweenness centrality

The graphs in the set for calibration are ranked based on their
average betweenness centrality (as described in Section 4.1), where
higher rankings correspond to higher average betweenness centrality
scores. The ground truth graph ranking is 39520, with a ranking from
0 to 40000, and the average betweenness centrality is 0.046, with a
range of 0.003 to 0.110. Fig. 6 presents rankings for all dimensions of
data sparseness across the four techniques. Results on the exact values
of the average betweenness centrality are provided in Appendix B.

Fig. 6 shows that Powell’s Method consistently identifies a few
specific graphs as optimal solutions over the increasing percentage of

10

missing values, noise, and bias. All optimal graphs of Powell’s Method
are found in a specific area of the set of graphs with a ranking of
around 15000 and an average betweenness centrality of 0.01. However,
the solutions are not close to the ground truth, based on their ranking
nor on their average betweenness centrality. The solutions of Powell’s
Method typically have minimal overlap with the solutions of the other
techniques, especially for the dimension noise (see Fig. 6(b)).

For ABC, we see that this technique reaches two optimal graphs
consistently over the increasing percentage of missing values, noise,
and bias. One optimal graph with a ranking of 0 is quite distant from
the ground truth, while the other is in closer proximity with a ranking
of 34589. For missing values, Fig. 6(a) displays that the outliers of 40%
and 60% of missing values have a ranking of betweenness of 39999,
seemingly in close proximity to the ground truth. Their graph edit
distance of 254 graph edit operations indicates that the graph is indeed
close to the ground truth. Except for 70% noise and for 50% and 60%
bias, where only one optimal solution is discovered, the two graphs
consistently emerge as optimal solutions across increasing percentages
of data sparseness.

Comparatively, BO finds a variety of graphs for missing values,
noise, and bias when looking at the betweenness ranking. For missing
values, the diversity of solutions increases when the percentage of
missing values increases up to 50% of missing values. Especially at
70% and 80% of missing values, the optimal graphs are relatively
close to each other in terms of average betweenness centrality. For
noise, the optimal graphs align closely with the ground truth in terms
of betweenness ranking but they display a wide spread in average
betweenness centrality. For bias in Fig. 6(c), BO identifies a diverse
set of graphs based on betweenness ranking as optimal solutions, yet
most frequently finds the ground truth.

GA also identifies a variety of graphs as solutions for missing values,
noise, and bias based on the ranking of average betweenness centrality.
As missing values increase to 50%, the diversity of solutions increases,
but decreases beyond that point. This indicates a closer proximity in
solutions, especially at 70% missing values. For noise, Fig. 6(b) shows
that the optimal solutions are close to the ground truth for betweenness
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Fig. 6. Ranking of average betweenness centrality per dimension of data sparseness for Powell’s method, ABC, BO, GA.

ranking. Yet, their average betweenness centrality is relatively high and
wide spread. For bias, GA identifies diverse optimal graph solutions
in terms of ranking of betweenness and average betweenness central-
ity. As bias increases, the diversity of solutions increases, meaning a
higher percentage of bias leads to a more diverse set of optimal graph
structures.

5.1.3. Vertices and edges

Fig. 7 and Fig. 8 show the number of vertices and edges of each
solution graph per dimension of data sparseness for the four techniques.
The ground truth graph contains 23 vertices and 29 edges.

For all three dimensions of data sparseness, Powell’s Method iden-
tifies optimal graphs within a distinct range of vertices and edges,
specifically between 58 to 78 vertices and between 130 to 293 edges.
Particularly for noise, the range of vertices and edges has a minimal
overlap with other techniques. Next, ABC identifies two optimal so-
lutions for most percentages of data sparseness: one graph with 108
vertices and 325 edges, and the other graph with 38 vertices and 89
edges. For the outliers at 40% and 60% missing values, an optimal
graph is discovered with 21 vertices and 31 edges, with a close prox-
imity to the ground truth. The optimal solutions of ABC have limited
overlap with the other techniques in terms of vertices and edges.

BO identifies optimal solutions with a varying number of vertices
and edges for missing values, noise, and bias. These solutions generally
have higher vertex and edge counts compared to the ground truth,
meaning a richer structure that resonates with the sparse data. Fig. 7(a)
shows that the number of vertices increases up to 30% of missing
values. For noise, BO identifies graphs with vertex and edge counts that
are closer to, yet still higher than, the ground truth. For bias, Figs. 7(c)
and 8(c) show that BO discovers a diverse range of graphs in terms of
vertices and edges. The vertices and edges of the optimal solutions of
BO overlap mostly with those of GA.

GA identifies optimal solutions with vertex and edge counts both
lower and higher than the ground truth across different percentages
of noise and bias. For missing values, GA only finds graphs that have
higher vertex and edge counts than the ground truth. For noise, GA

11

Table 3
Configuration of scenarios.

Scenario Noise Bias Missing Values
High Noise 80% 20% 25%
High Bias 20% 80% 25%
High Noise & Bias 80% 80% 25%

discovers graphs closer to the ground truth in terms of vertices and
edges, also identifying optimal solutions with fewer vertices and edges.
Fig. 7(b) shows that GA typically finds an optimal graph with around 50
vertices for each noise percentage except 40%. For bias, GA identifies
a wide variety of graphs with a varying number of vertexes and edges,
with diversity notably increasing after 50% bias.

5.2. Analysis of combinations of data sparseness dimensions

Having analyzed the dimensions of data sparseness separately, we
evaluate to what extent the model calibration techniques can still
reconstruct the supply chain structure when combining the different
dimensions of data sparseness. For this, we use the two best-performing
techniques of individual analysis: BO and GA. The model calibration
techniques are evaluated using scenarios where the dimensions of data
sparseness are combined. Table 3 presents the percentage of data
sparseness per scenario. In the scenarios, we use percentages of noise
and bias of 20% and 80%, since BO most frequently identifies the
ground truth with bias, and GA with noise. The goal is to see whether
these techniques can still find the ground truth when a combination of
the various dimensions of data sparseness is added.

Fig. 9 shows that BO and GA fail to identify the ground truth
for each scenario. We see in Fig. 9(a) that BO has a relatively low
graph edit distance between 242 and 419 edit operations in all three
scenarios, with two outliers with 650 and 779 operations, respectively,
for the scenario High Noise and for the scenario High Noise & High
Bias. The graph edit distance of GA is relatively high with a range
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of 390 to 895 operations. The scenario High Noise has the highest
graph edit distance, meaning GA finds solutions that have denser graph
structures. In line with this, Fig. 9(b) shows that the solutions of BO
are in close proximity to the ground truth in terms of the ranking
of average betweenness centrality. Yet, GA identifies a diverse set of
solutions relatively distant from the ground truth, and it has a lower
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average centrality betweenness. Also, Fig. 9(c) and Fig. 9(d) illustrate
that BO identifies optimal graphs in terms of the number of vertices
and edges, closer to the ground truth, whereas GA tends to be more
distant from the ground truth. Especially for the scenario of High Noise
and the scenario of High Bias, the solutions of BO and GA are distant
from each other. For all three scenarios, BO and GA identify optimal
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solutions within distinct subsets of the graph features. A pair plot is
presented in Appendix B for a more detailed picture of the difference
between BO and GA.

6. Discussion

This section reflects on the results of the model calibration tech-
niques and discusses the limitations of our study.

6.1. Reflection on model calibration techniques

The results show that Powell’s Method and ABC are not suitable
techniques for calibrating the structure of a supply chain simulation
model with sparse data. Similar to [5], Powell’s Method gets stuck in
a local optimum instead of reaching the global optimum. We see this
in our results as Powell’s Method is consistent in identifying a specific
range of graphs for all features. Also, ABC consistently identifies two
optimal solutions that deviate from the ground truth across most per-
centages of each data sparseness dimension. A possible explanation is
ABC gets stuck in local optima for two reasons: (1) the algorithm results
in a bimodal distribution, meaning multiple regions of the input space
lead to optimality, and (2) the algorithm does not mutate fast enough,
hindering its ability to reach a global optimum. Moreover, despite the
different impact of data sparseness dimensions on Manhattan distance
(Appendix B), Powell’s Method and ABC consistently generate similar
outcomes across varying percentages of missing values, noise, and bias.

BO and GA are suitable techniques for calibrating the structure of
a supply chain simulation model with sparse data. Both techniques
result in a diverse set of optimal solutions with various graph edit
distances when increasing the degree of sparseness individually. The
diverse set of optimal solutions for BO and GA largely overlap. BO
can identify the ground truth, especially for a high percentage of bias.
The main property of BO is that it uses a Gaussian process to model
the distribution of the unknown objective function while balancing
exploration and exploitation, making it efficient and relatively fast for
sparse data situations [68]. However, especially in a non-linear decision
space such as calibrating discrete event simulation models and having
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a combination of data sparseness, distinguishing between identifying
promising regions and exploring uncertain regions may not be straight-
forward. Next, GA is the only technique that successfully identifies the
ground truth for all dimensions of data sparseness, especially for noise.
Through the population-based nature of GA and the use of evolutionary
operators such as crossover and mutation, GA is able to cope with
noise, and other dimensions of data sparseness relatively well since
the algorithm relies on the properties of the population rather than the
individual evaluations [53].

Additionally, a reason for GA outperforming BO could be the imple-
mentation of the decision variables in the algorithms. BO tries to fit a
continuous distribution that only works with floating point numbers,
whereas the decision variable requires integers to rank the graphs.
In BO, we rounded the floating point number to integers, leading to
possible smaller steps taken by the algorithm and fewer evaluations
of unique solutions. In contrast, GA allows for the direct use of the
integers, allowing for taking larger steps and more exploration.

Although BO and GA are suitable when varying individual di-
mensions of data sparseness, they both fail to identify the ground
truth when combining these dimensions. In contrast to the individual
analysis, the results of the combined scenario show a minimal overlap
between the optimal solutions of BO and GA. Further research is needed
to investigate the extent to which model calibration techniques can
cope with the combination of data sparseness dimensions for accurately
identifying the ground truth.

To obtain a comprehensive overview of the various graphs ap-
proximating the ground truth with sparse data, we advise using a
combination of the results of BO and GA. For further work, it would
be interesting to develop an algorithm that combines the exploration
and exploitation using the Gaussian process of BO with the population-
based approach of GA, and evaluate the suitability for calibrating the
structure with sparse data.

In both individual analyses and scenarios, BO and GA identify
graphs with high graph edit distances, which often indicates signifi-
cantly more vertices and edges than the ground truth. Having more
vertices and edges suggests a more dense structure of a graph and more
complexity. This complexity carries a risk of overfitting as it allows



LM.v. Schilt et al.

the simulation models of the dense graphs to resonate and reproduce
the sparse data better than those that slightly differ from the ground
truth. Denser graphs, then, seem optimal for the model calibration
techniques. For example, with noise and bias, the simulation models
of the dense graphs fill in the gaps created by the data sparseness,
and for missing values, “anything goes”. Especially in a highly rugged
fitness landscape, typical for discrete event simulations, BO and GA
favor these dense structures over those closer to the ground truth. To
address this, we shift towards a different direction in terms of the metric
of calibration, i.e., match the simulated data to the ground truth data.
One possible approach is to limit the likelihood of dense graphs being
considered optimal by penalizing denser structures in the objective
of the calibration or by restricting the degrees of freedom during the
model calibration. In the case of illicit supply chains, the maximum
number of vertices and edges of the graph can be limited to ensure less
dense graphs can be identified as optimal. However, the dense graphs
found by BO and GA do not necessarily lead to “wrong” results since
they could explain the sparse data. Restricting the degrees of freedom
for model calibration could lead to an unrealistic and (too) narrow view
of the potential structures of the supply chain.

Another approach is to embrace and control the diversity of simula-
tion models that explain the sparse data. Instead of a model calibration
technique leading to a single optimal solution distant from the ground
truth, we want a diverse set of optimal solutions ranging from those
relatively close to the ground truth to those further away. For real-
world illicit supply chains, this diverse set of plausible structures that
could explain the sparse data, including dense structures, is realistic.
For example, a dense structure with more actors and routes spreads risk
effectively, but it also increases vulnerability to detection since more
actors are involved [10,96]. Further research should focus on finding a
diverse set of optimal solutions in terms of simulation model calibration
with sparse data.

6.2. Limitations

Designing a large set of graphs using System Entity Structures (SES)
as input for the model calibration techniques comes with limitations.
First, the set of graphs is merely a sample representation of poten-
tial structures, and the set is not exhaustive. This could lead to an
overrepresentation of certain configurations of supply chains based on
constraints. In this research, it results in many generated graphs in the
set having more vertices and edges than the ground truth. Second, the
constraints of the SES are chosen by the user. In our study, we use a
known ground truth to inform constraint selection. However, in real-
world situations where the ground truth is unknown, setting constraints
can be difficult. Different perspectives result in varying constraints,
affecting the outcomes and optimal solutions of model calibration
techniques [84]. Hence, incorporating diverse perspectives is crucial for
modeling structural uncertainty. Despite the limitations, SES remains a
powerful method for describing structural uncertainty within complex
models, like an illicit supply chain model, to approximate the ground
truth.

Another limitation of this research is the assumption that the exact
percentage of the dimensions of data sparseness is known, whereas
these are often unknown in real life. Irrespective, the type and degree
of dimensions of data sparseness can be determined based on the char-
acteristics of a real-world supply chain. For example, criminals try to
hide data and overrepresent outdated information on their operations
as much as possible, resulting in a high degree of missing values and
bias.

7. Conclusion
This research addresses the question: “To what extent can various

model calibration techniques reconstruct the underlying structure of an illicit
supply chain when varying the degree of data sparseness?” We evaluate
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the quality-of-fit of a reference technique, Powell’s Method, and three
model calibration techniques that promise to be able to handle sparse
data: Approximate Bayesian Computing (ABC), Bayesian Optimization
(BO), and Genetic Algorithms (GA). For this, we use a case study of a
counterfeit PPE supply chain as ground truth, and formalize structural
uncertainty with System Entity Structures (SES). Our analysis shows
that:

» SES is a powerful approach for defining structural uncertainty in
a supply chain simulation model to approximate the ground truth
using calibration. Incorporating diverse perspectives of users on
the system is crucial for modeling structural uncertainty.

Powell’s Method and ABC fail to reconstruct the underlying struc-
ture of an illicit supply chain for any dimension of data sparse-
ness. These algorithms result in local optima instead of global.

GA and BO are suitable for reconstructing the underlying struc-
ture of an illicit supply chain for a varying degree of data sparse-
ness individually. For a comprehensive understanding of the vari-
ous graphs approximating the ground truth, we recommend com-
bining the results of BO and GA.

Denser graph structures, i.e., more vertices and edges, tend to
resonate with sparse data. Many optimal solutions from the model
calibration techniques are, therefore, distant from the ground
truth but are not necessarily incorrect. We highlight the need for
identifying a diversity of solutions that are optimal with sparse
data, instead of only one.

Reconstructing the underlying structure of an illicit supply chain
helps to get insight into the operations of criminals, and it allows law
enforcement agencies to effectively plan their interventions.

Further work is needed to investigate the extent to which model cal-
ibration techniques can cope with a combination of the dimensions of
data sparseness. Future studies should focus on developing an algorithm
that combines BO and GA, and evaluating generalizability to various
types of supply chains. Additionally, further research should focus on
incorporating the diversity of graphs that are coherent with sparse
data for analysis and measuring the quality-of-fit of model calibration
techniques.
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